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Motivation and vision. There is growing demand for applications such

as cloud robotics, Virtual Reality (VR), and Large Language Model (LLM)-

powered chatbots that require low-latency responses and substantial com-

pute and memory resources. These requests often originate from resource-

constrained mobile devices and are offloaded to edge or cloud servers for ex-

ecution. However, such servers are shared, resource-limited, and subject to

unpredictable congestion. This thesis develops online algorithms to efficiently

manage compute and memory resources on these servers, ensuring that service-

level objectives (SLOs) are met under realistic workload conditions.

Computation offloading. We first address the challenge of offloading

stochastic and heterogeneous compute jobs—such as those arising in cloud

robotics—to edge or cloud servers under delay constraints and congestion on

both the wireless link and the server. The goal is to maximize either the net
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computational work offloaded or power savings at the client. We propose a

measurement-based policy that combines two components: Probabilistic Ad-

mission Control and Cut Assignment (PACCA), which coordinates tradeoffs

across diverse workloads, and Predictive Abandonment (PA), which drops jobs

unlikely to meet their deadlines. Through extensive simulation across diverse

loads and job profiles, we show that PACCA + PA significantly outperforms

naive greedy policies and approaches near-optimal performance in many set-

tings. We also demonstrate its robustness to uncertainty in job arrival rates.

Caching in VR. Next, we explore how to improve cache hit rates for data ob-

ject requests at an edge server—for example, from clients navigating a shared

VR environment. We focus on two aspects: a) how data objects are rep-

resented, such as through layered representation where each additional layer

improves quality at the cost of more memory, and b) how to leverage patterns

in client requests, such as groups of clients exploring the same VR space and

making correlated requests.

We analytically show how layered representations impact cache per-

formance under LRU, without relying on extensive simulation. Then, we in-

troduce a measurement-based caching policy, Least Following and Recently

Used (LFRU), which infers correlations in client requests to outperform tra-

ditional policies like LRU and LFU. To support this, we construct synthetic

traces that emulate VR workloads with different correlation patterns. Our

simulations demonstrate that leveraging such correlations, when present, can

improve cache performance by up to 2.9× over LRU and 1.9× over LFU.
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LLM inference scheduling. Finally, we consider the problem of serving

LLM inference requests on a GPU. Each request goes through two stages:

the prefill phase, which processes the entire prompt and generates the first

token, and the decode phase, which generates the remaining tokens one by

one. These phases place different demands on the GPU—prefill is compute-

intensive, while decode is more memory- and bandwidth-sensitive. Moreover,

the number of decode steps is not known in advance. The scheduling objective

is to reduce Time To First Token (TTFT) during prefill while meeting Time

Between Tokens (TBT) constraints during decode.

We propose a measurement-based scheduling policy that dynamically

prioritizes decode requests based on real-time system conditions. This adaptive

strategy allows the scheduler to better allocate GPU resources under chang-

ing load, outperforming static policies—especially when TBT constraints vary

across requests. We validate our approach using experiments on an NVIDIA

RTX ADA 6000 GPU, demonstrating lower TTFT while meeting TBT goals

across a range of loads.
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Chapter 1

Introduction

In this chapter, we lay the foundation for this dissertation by estab-

lishing the underlying research motivations. We begin by exploring the key

features and inherent challenges associated with serving an emerging set of ap-

plications in Section 1.1. Subsequently, in Section 1.2, we provide an overview

of the key contributions of this dissertation. Finally, in Section 1.3, we outline

the organization of the dissertation.

1.1 Serving a New Generation of Applications

Latency-sensitive, resource-intensive mobile workloads—such as cloud

robotics, immersive virtual/augmented/mixed reality (XR), and chatbots pow-

ered by Large Language Models (LLMs)—are now widespread, and their client

base is growing rapidly. However, despite their diversity, these applications ex-

hibit three common and tightly coupled properties:

• Multi-resource footprint. Each request can simultaneously saturate

multiple resources—compute cores, high-bandwidth memory/cache, and

communication resources—and different workloads stress these resources

in markedly different proportions.
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• Stochastic arrivals. Request streams fluctuate unpredictably with

client behavior and exogenous events, yielding possibly bursty load pro-

files.

• Stringent service objectives. Tight deadlines or contractual Service-

Level Objectives (SLOs) dictate client experience and provider revenue;

violations of even a few hundred milliseconds are often unacceptable.

Running such workloads entirely on end devices would be ideal, yet

the compact form-factor and thermal constraints of smartphones, XR head-

sets, and IoT devices impose hard limits on computation, memory, and en-

ergy budgets. Consequently, contemporary deployments are expected to rely

on Mobile-Edge Computing (MEC) or cloud offloading, wherein resource-rich

servers located at—or near—the radio access network execute the heavy com-

putation and store data to serve requests. Offloading can reduce latency, curb

on-device energy consumption, and unlock application footprints that would

otherwise be infeasible. But offloading merely relocates the bottleneck: shared

edge/cloud server resources are finite and can experience bursty congestion, so

simply adding servers does not guarantee deadline compliance nor maximize

system-wide utility. This dissertation tackles the above challenges through

four progressively richer problem settings.
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1.1.1 Managing Computation Offloading to MEC Under
Hard Deadline Constraints

We first focus on using edge/cloud server as a computing resource to

handle machine learning–powered, compute-intensive jobs—such as those in

XR applications, autonomous navigation, or advanced photo editing. Mobile

clients generate these jobs, each structured as a sequence of sub-tasks, modeled

as a linear directed acyclic graph. These jobs can be partially or fully offloaded

via the base station communication resources for execution on servers. How-

ever, this offloading must be managed under hard deadline constraints; a job

is only useful if it finishes on time. We focus on addressing the following three

challenges:

• stochastic job arrivals over limited shared computation and communica-

tion resources,

• strict deadline rewards (jobs yield value only if completed on time),

• and, heterogeneity in device capabilities and job profiles (deadlines, com-

putation, and communication demands).

1.1.2 Caching Layered Data Objects

Next, in our second work, we study a setting where edge server acts as

a cache close to the clients, storing data objects such as those used in Virtual

Reality (VR) environments. Each object can be stored in multiple versions

that trade-off size for quality, e.g., if a client is far from an object in a VR
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environment, the system can serve a smaller, lower-quality version to save

resources. Each data object version can be represented in:

• Multiple Representation (MR): each version is a separate, independent

data object.

• Layered Representation (LR): higher-quality versions are formed by

stacking additional layers on top of a base version.

In this work, we focus on the setting where client requests follow the Indepen-

dent Reference Model (IRM), and address the following questions:

• Which representation-MR or LR-offers better cache performance?

• Can we develop analytical hit-rate models for common caching policies

such as Least Recently Used (LRU) and Least Frequently Used (LFU)

when using LR?

• How do the number and size of layers or versions in LR impact the

cache’s efficiency?

1.1.3 Caching Under Structured Request Correlations

In our third work, we move beyond the assumption of independent

client requests. In many real-world systems, requests are not random or iso-

lated—they often show structure and correlation due to shared client contexts

or coordinated actions. For example, in collaborative VR environments, corre-

lations may arise explicitly—such as students following a teacher through the
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same virtual space—or implicitly, when many clients independently explore a

popular location (e.g., New York), resulting in overlapping content requests.

Our goal in this work is to explore the following questions:

• How well do traditional caching policies perform when client requests

are correlated?

• Can we develop analytical models to understand caching policies under

such correlations?

• Can we design caching policies that detect and leverage these request

patterns to improve performance?

1.1.4 Service Level Objective-Aware Scheduling for Large
Language Model Inference on Graphics Processing Units.

In our fourth work, we study how to manage the performance of Large

Language Model (LLM) inference workloads—such as ChatGPT—running on

a GPU. Each LLM inference request goes through two phases: the prefill phase,

where the input prompt is processed and the first output token is generated,

and the decode phase, where the model produces the remaining tokens one at

a time in an autoregressive manner. These phases are governed by distinct

latency SLOs. For the prefill phase, the key performance metric is Time To

First Token (TTFT), which measures the time between the arrival of a request

and the generation of its first output token. In contrast, the decode phase is

evaluated using Time Between Tokens (TBT), defined as the delay between
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the generation of consecutive output tokens. Our work addresses the following

challenges:

• prefill and decode phases of requests stress different resources, so joint

management of these is non-trivial,

• the length of a request’s decode phase (total number of output tokens)

is unknown at arrival which makes resource management subject to that

uncertainty,

• and, TTFT and TBT SLOs pull in opposite directions: prioritizing pre-

fills reduces TTFT but can starve decoding; prioritizing decodes protects

TBT but may leave compute cores idling and increases TTFT.

1.2 Summary of Contributions

The research questions addressed and contributions through out this

dissertation are as follows:

How can we design lightweight, online policies that maximize

system-wide utility for jobs that concurrently require

computation, communication, and memory—before any single

resource becomes the bottleneck?

First, when the edge server is treated purely as a computation resource,

we introduce Probabilistic Admission Control and Cut Assignment (PACCA),
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an algorithm that runs at the base station and jointly decides which jobs

to offload and if so, which parts to offload. PACCA smooths bursty load by

“shaping” traffic before it reaches the server. At run time we perform real-time

congestion management through Predictive Abandonment (PA); where clients

abandon offloading if they predict that communication and computation delays

will preclude on time completion. Together, PACCA and PA form a closed-

loop control layer that is robust to estimation inaccuracies in system loads and

delivers performance which is near optimal in some scenarios.

Second, when the server is used for caching data objects, we propose

ways to exploit the statistical structure in data object requests. For indepen-

dent client requests, we show that the choice between the use of data objects

with multi-representations (MR) and layered representations (LR) is driven

by a tradeoff between storage overhead of LR over MR and request diversity.

We derive a working-set approximation that predicts LRU hit probability un-

der LR to within 1% error, and empirically show that if more versions are

available for a data object they need not be beneficial. We then generalize

the classical Independent Reference Model by proposing the Grouped Client

Request Model, which captures spatial and temporal correlations observed in

VR traces. Under the Grouped Client Request Model, we empirically estab-

lish the sub-optimality of LFU for large caches and design Least Following

and Recently Used (LFRU), a simple online policy that adapts to correlations

in client requests. Extensive experiments on VR datasets show that LFRU

increases hit ratio by up to 2.9× over LRU and 1.9× over LFU.
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Finally, we tackle SLO-aware scheduling of LLM inference workloads

on a GPU. Our focus is on settings where there is heterogeneity in the target

TBT across requests. We design a practical scheduler that supports hetero-

geneous TBT targets while reducing TTFT and we empirically demonstrate

improvements over current state-of-the-art in terms of TTFT while meeting

all SLOs.

Collectively, these contributions deliver algorithms, analyses, and pro-

vide datasets that advance multi-resource management for MEC/cloud server

systems across computation, caching, and LLM inference.

1.3 Organization

The rest of the dissertation is organized as follows. In Chapter 2,

we present the management of edge offloading for stochastic workloads with

deadlines. In Chapter 3, we provide answers to fundamental questions related

to caching data objects with layered representations. In Chapter 4, we move

beyond the IRM and focus on structured correlations in clients’ cache requests.

Then in Chapter 5, we focus on scheduling LLM inference jobs on GPUs while

trying to meet SLOs. Finally, we conclude the dissertation in Chapter 6.
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Chapter 2

Managing Mobile Edge Computing Offloading

with Deadlines

In this chapter,1 we study how mobile devices with deadline-sensitive,

compute-heavy jobs can exploit edge/cloud server compute offloading with

possible wireless and server congestion. We introduce a Predictive Abandon-

ment (PA) policy, where users opportunistically cut and offload jobs but aban-

don offloading if they predict that communication and computation delays will

preclude on-time completion, and a lightweight edge-side Probabilistic Admis-

sion + Cut Assignment (PACCA) mechanism that coordinates those decisions

across heterogeneous users. Together, PA and PACCA substantially boost

net offloaded work and device energy savings, approaching an analytic upper

bound even under imperfect load estimates.

1This chapter is based on the published work in [6? ]:

• A. Bari, G. De Veciana, K. Johnsson and A. Pyattaev, “Managing Edge Offloading
for Stochastic Workloads with Deadlines,” Proc. ACM MSWiM ’23, 99–108.

• A. Bari, G. De Veciana, K. Johnsson and A. Pyattaev, “Dynamic Offloading for
Compute Adaptive Jobs,” IEEE CCNC 2023, 131–139.

Agrim Bari led the formulation of the problem, the design of policies, execution of experi-
ments, and the writing of the paper.
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2.1 Introduction

Next-generation applications and the MEC fabric. A new

generation of applications powered by machine learning, e.g., AR/VR/XR,

autonomous navigation, and photo editors, is pushing the computational and

energy limits of mobile devices. One way to overcome these limitations while

addressing low latency and privacy requirements is for users to (partially) of-

fload computationally intensive jobs to shared Mobile Edge Computing (MEC)

resources. By combining mobile devices’ sensing, communication, and com-

putation capabilities with computation at nearby edge servers and/or more

distant cloud servers, one can envision a computation-communication fabric

that can cost-effectively address the most demanding mobile users’ compute

jobs.

Benefits of compute job offloading. There are several benefits

mobile devices can reap from offloading. First, devices with insufficient com-

putation resources may only be able to complete a job through offloading.

Second, even if a device can complete a job, it may opt to offload to save en-

ergy and/or reduce its computational work to allow for computation of other

jobs. Third, offloading a job might enable a mobile device to leverage powerful

MEC/cloud computation resources to speed up job completion. In this chap-

ter, we introduce policies that maximize the amount of work offloaded from

devices, the amount of energy devices save while completing jobs on time, or

the fraction of jobs that experience reduced execution times.
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Managing compute job offloading. To realize these benefits, one

must orchestrate offloading across various resources and account for the pos-

sible costs of doing so. In general, offloading a compute job may include the

following steps: (i) (partially) computing the job on the device; (ii) transfer-

ring data to an edge/cloud server via a shared wireless link for performing the

remaining computational work; (iii) performing further computation on the

edge/cloud server; and (iv) transferring the results back to the device. These

steps may involve shared computation resources on the mobile device, shared

wireless channels, and shared edge/cloud computation resources, which may

become congested under stochastic loads. Such systems also face significant

heterogeneity in terms of devices’ computation and/or communication capabil-

ities as well as running heterogeneous compute jobs with different Quality-of-

Service (QoS) requirements, e.g., constraints on completion time. To address

these complex challenges, we present an offloading framework that combines

an offload admission control policy with a lightweight user-driven offload aban-

donment policy.

DAG job cutting and offloading. In this work, we focus on of-

floading compute jobs that can be roughly modeled as linear Directed Acyclic

Graphs (DAGs), where the nodes represent computational sub-tasks, e.g., Deep

Neural Network (DNN) layers, and edges represent the data dependencies and

potential cut locations between sub-tasks, e.g., see Fig. 2.1. In our work, we

use the findings of [70] to only select a single cut location for time-sensitive

jobs. The authors show that, under a block fading/Markovian stochastic chan-
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nel, the optimal policy for offloading computational work from a local device

to an edge/cloud server would at most offload once. This result assumes

a congestion-free system, a device expends more power on processing a job

than sending/receiving data, edge server processes faster, and flexibility to

execute sub-tasks on either device or edge server. In the shared MEC fab-

ric, a job’s optimal cut location depends on its computation-communication

requirements per cut location, completion deadline, current wireless network

conditions, and the computational resources of the device it is generated on

relative to available networked edge compute servers. It also depends on the

operator’s preferences [46] (e.g., rewards and/or fairness). Thus, some form of

coordination of offloading decisions is necessary.

Figure 2.1: Cutting and offloading of a linear DAG.

Applicability of DAG model. There are several works [64, 36, 40,

31, 57] in the literature that embrace the linear DAG model as an effective

abstraction/approximation of jobs that might particularly benefit from offload-

ing. The underlying driver is the layered structure of DNNs, currently used in
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several applications ranging from image classification, facial, digit, and speech

recognition to many others. We believe that a substantial volume of future

workloads will have structures like linear DAGs, where there is flexibility to

cut and offload jobs. For a general DAG, the researchers [69] have extended

their offloading policy for a linear DAG to a general DAG by exploiting the

notion of a DAG’s critical path.

2.1.1 Related work

Offloading problem. Offloading of compute jobs to MEC has been

widely studied in the literature, which can be divided into two main categories:

binary offloading and partial offloading. In binary offloading, a job is either

executed on the device or offloaded to one or more edge servers for execution,

intending to optimize performance metrics such as average computation delay

or energy consumption. In most cases, the binary offloading problem is NP-

hard, and various heuristics, approximation, and stochastic approaches have

been proposed, see e.g., [13, 68, 3, 14, 75, 60, 48, 66]. Researchers in [3] explore

the behavior of users when making decisions about offloading compute jobs

in a multi-MEC server environment. They propose a Prospect Theory-based

solution, considering users’ risk-seeking or loss-aversion behavior. However,

[3] has limitations, focusing on jobs consisting of independent sub-tasks and

lacking a strict deadline constraint. Similarly, authors in [68] propose a game

theoretic solution.

In [14], authors address fairness and maximum delay tolerance in hybrid
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fog/cloud systems by jointly optimizing computation migration and resource

allocation (including computing and bandwidth). They propose a suboptimal

algorithm to solve the formulated mixed integer non-linear programming prob-

lem. Another paper, [75], focuses on joint computation offloading decisions,

resource allocation, and content caching strategy. The authors transform the

problem into a convex form and solve it in a distributed and efficient manner

using optimization theory tools. Given a set of jobs and multiple edge servers,

[13] proposes an approximate solution considering dynamic voltage frequency

scaling for mobile devices. Their heuristic algorithm optimizes job offloading

and frequency scaling decisions. However, all of the aforementioned works fo-

cus on static regimes where all jobs are assumed to be present at the beginning

and ignore congestion on wireless channels and edge servers.

Partial offloading. In partial offloading, a job represented as a DAG,

see Fig. 2.1, can be offloaded at several cut locations. Several research studies

such as [70, 69, 10, 62, 44] have been conducted on partial offloading in the

context of edge computing. In [70], the focus is on minimizing energy con-

sumption while meeting latency constraints in a collaborative mobile device

and edge server environment with stochastic channels. They propose a poly-

nomial time algorithm for efficient job execution. Building on this work, [69]

extends the approach to encompass general DAG frameworks beyond linear

ones. In [10], the authors employ Reinforcement Learning (RL) to explore

offloading multiple users’ jobs to multiple servers. The users offload heteroge-

neous jobs over time-varying wireless channels. However, the RL-based policy
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requires re-learning for each new environment (number of users, job profiles,

channel capacity, etc.). To overcome this limitation, [62] introduces the use of

Meta Reinforcement Learning, enabling the RL agent to quickly adapt to new

environments without re-learning. [44] investigates an online offloading frame-

work similar to ours, where heterogeneous job types with deadline constraints

arrive in the network according to a stochastic process and are executed dy-

namically over time. The authors propose a heuristic approach by relaxing

the deadline constraint. The objective is to minimize the average makespan

time.

2.1.2 Contributions and organization

The main contributions of this chapter are summarized as follows:

• We tackle the design of offloading policies for stochastic and heteroge-

neous job requests (distinct deadlines, cut locations, and computation-

communication requirements per cut locations) under strict deadline con-

straints.

• We introduce and evaluate three “revenue” models to capture the pos-

sible benefits of offloading. The first model, termed net timely offloaded

workload, aims to maximize the amount of computational work offloaded

while accounting for offloading overheads. The second model, referred

to as power savings with wastage, aims to maximize power savings while

considering power wastage associated with unsuccessful offloads. The
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third model, termed fraction of completed jobs with execution time re-

duction, aims to maximize the fraction of jobs that reduce their execution

time by offloading some or all of their work. For the first two revenue

models, as a comparative baseline, we derive an upper bound on the

revenue under any offloading and scheduling policy.

• We propose several classes of offloading policies. They differ in terms of

(1) their requirements of knowledge of the system state, including adapt-

ing to the long-term offloading offered load and job types; (2) leveraging

measurement-based abandonment policy, which reacts dynamically to

congestion resulting from an excessive number of active users or poor

wireless channel capacity relative to the job deadlines; and (3) their

ability to adapt decisions regarding the choice of cut location and the

fraction of jobs to admit based on changes in long term loads. We evalu-

ate and compare these policies using representative job profiles from [36].

We do this for a range of offered job rates resulting in varying levels of

congestion on the wireless network and edge server and study how close

their performance is to the performance upper bound. Since some poli-

cies, such as PACCA + PA, our best policy, require prior knowledge of

loads and thus possibly re-optimization when loads change, we also eval-

uate it under imperfect estimates of offered loads showing the approach

is robust to such errors.

The chapter is organized as follows: In Section 2.2, we introduce our
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basic system model. In Section 2.3, we develop an upper bound on the achiev-

able revenue rate and explore different offloading management policies. We

end the section with some simulation results. We discuss offloading manage-

ment policies for heterogeneous compute job types in Section 2.4. Finally,

Section 2.5 concludes the chapter.

2.2 System Model

We begin by introducing our system model for a set of users, gener-

ating homogeneous jobs (identical deadlines, cut locations, and computation-

communication requirements per cut location) with limited local computation

resources and a limited amount of shared wireless network and edge/cloud

computation resources. We later consider heterogeneous jobs.

2.2.1 Model for load

We let U denote a set of users sharing a wireless access point – the set

has cardinality N = |U|. Each user u generates homogeneous jobs according

to a stationary process. Users can have different channel qualities/classes. We

let C denote the set of possible channel qualities with associated capacities.

We let cu denote the channel quality of user u and use λu,cu to denote the

arrival rate of jobs from user u. The total arrival rate of jobs from users with

channel quality c is given by λc =
∑

u∈U λu,cu1(cu = c). We denote the vector

of total arrival rates for each channel quality as λ = (λc, c ∈ C). Finally, we

define the total job arrival rate to the system as λ =
∑

c∈C λc.
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2.2.2 Job model

The execution of a job may involve computation on a user’s device, of-

floading of data to the edge/cloud server, processing on the edge/cloud server,

and then transmitting the result back to the device. Initially, we focus on

a single job type with a fixed time budget, τ , for job execution – that does

not include the time required to transmit the result back to the user device2.

We model the job as a DAG, where the possible cut locations are denoted by

a set S = {1, 2, ..., n}, with n representing the last cut location. For a cut

location k ∈ S, we let βk denote the cumulative device processing measured in

floating point operations (FLOPs) including overhead related to cutting itself,

dk denotes the offload data volume (in bits), and γk models the cumulative

edge server processing (in FLOPs). Here, k = 1 corresponds to processing

everything on the edge server, and k = n corresponds to processing everything

on the user’s device.

2.2.3 Model for user’s device, wireless channels, and edge server
resources

A user’s device has an effective processing speed denoted by δ, measured

in floating point operations per second (FLOPs/sec). A user with channel

quality c has an uplink capacity to the base station of rc Mbps. However, the

transmission rate throughout the offloading process, as explained later, may

2We neglect this because for a variety of applications such as video analytics, data volume
associated with the result is much smaller than the uplink data transfer and the downlink
capacity is typically much higher than the uplink capacity.
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be reduced by congestion, e.g., by competing job offloads from other users.

We consider multiple processors with multiple cores at the edge server.

The total processing capacity, ω (FLOPs/sec), is modeled as the sum of all

cores’ processing rates across all processors, assuming jobs can be parallelized

on all processors and cores. Thus, all active jobs get an “equal” time of edge

server. Note that modern computing systems would allow the parallelization

of jobs across only a limited number of cores of a given processor. Hence this

is a simplification.

We let Sc ⊆ S denote the set of cut locations for a user with channel

quality c that guarantee the job will meet its delay deadline, τ when one opti-

mistically assumes there is no competition for communication or computation

resources in the system. Thus k is in Sc if

βk
δ︸︷︷︸

local processing

+
dk
rc︸︷︷︸

data offloading

+
γk
ω︸︷︷︸

edge processing

≤ τ (2.1)

where the left-hand side is the best possible end-to-end time to complete the

offload when a job is cut at location k.

2.2.4 Sharing base station uplink resources

At any time, t, multiple users may be offloading data. U(t) represents

the set of active users, and N(t) = |U(t)| is its cardinality. We shall assume

that all users in U(t) share the BS’s uplink resources in a Proportional Fair

manner, with each ongoing offloading over channel c served at rate rc
1

N(t)
.
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2.2.5 Model for computation on the device and data offloading

When a job with local computational requirements is generated on a

user’s device, it undergoes computation based on a non-preemptive priority

scheme that prioritizes jobs by their generation time. As a result, a job may

be queued before its execution. After it leaves the queue, it is processed if

there is enough time to execute it; otherwise, it is dropped.

Once the local part of the execution is complete, a job with data to

offload is served on a first-come, first-served basis, so there may be additional

waiting before offloading to the edge server begins.

2.2.6 Stationary offloading policies

We consider a set Π of stationary offloading policies. A policy may

consist of any combination of job admission control/cutting

/offloading methods, wireless channel scheduling, and edge server resource

sharing. For a given offered load λ and policy π ∈ Π, we define q(λ, π) =

(qc,k(λ, π) : c ∈ C, k ∈ S), where qc,k(λ, π) denotes the long-term fraction of

jobs that belong to users with channel quality c, are cut at location k, and

complete. Naturally, it must be the case that the sum of these fractions is

less than or equal to one, meaning
∑

k∈S qc,k(λ, π) ≤ 1 for all c ∈ C (in case

not all jobs complete on time). We define F(λ) = {q(λ, π) | π ∈ Π}, as the

set of fractions that are feasible under some policy. This set is convex since

if π1, π2 ∈ Π, then by alternating between policies over long periods, one can

achieve any convex combination of their associated performance.
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2.2.7 Reward model and revenue metric

We introduce three reward models to guide the design and evaluation

of offloading policies. We use αk to represent the reward associated with the

timely completion of a job cut at location k.

Net timely offloaded workload. The first reward model captures

the total amount of work offloaded to the edge server for jobs that complete

on time. It indirectly captures the freeing up of users’ computation resources.

The reward for offloading a job at cut location k is modeled as

αk = γk − g · dk. (2.2)

Here γk denotes computation work offloaded to the edge and g ·dk the overhead

of doing so, where dk represents the volume of data offloaded, and g is a factor

that “converts” bits to FLOPs.

The net timely offloaded workload measured in FLOPs/sec for a given

offered load λ under policy π, is defined as

O(q(λ, π),λ) = Row(q(λ, π),λ)− Low(λ, π) (2.3)

where

Row(q(λ, π),λ) =
∑
c∈C

λc
∑
k∈S

αkqc,k(λ, π) (2.4)

denotes the rate at which net work is offloaded, and Low(λ, π) is the rate of

computational work on users’ devices associated with jobs that do not complete
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on time and with jobs that a user attempts to offload but ends up completing

locally3.

Power savings with wastage. The second reward model quantifies

the energy savings on a user device resulting from offloading. The energy

expended by a device when offloading a job at cut k is modelled as a · βk +

b · dk joules, where a and b represent the energy expended per FLOP for local

computation and per bit for data offloading, respectively. The energy savings

from offloading at cut k vs. not offloading at all, i.e., cut at n (the last cut

location), is given by

αk = a · (βn − βk) + b · (dn − dk) (2.5)

in joules. This captures the energy saved from decreased local computation

while considering the energy overhead of data offloading.

We define the net power savings with wastage measured in Watts for a

given load λ under policy π, as

P (q(λ, π),λ) = Rps(q(λ, π),λ)− Lps(λ, π) (2.6)

where Rps(·) is defined in the same way as Row(·) but with the energy savings

reward αk defined above for each timely job completion. Lps(λ, π) represents

the power expended at devices associated with jobs that miss their deadlines

and with jobs that a user attempts to offload but ends up completing locally.

3Note this occurs when a user attempts to offload a job but due to congestion on wireless
channels and/or edge server abandons and reverts to local execution.
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Fraction of Completed jobs with an execution time Reduction

of at least 1/s (FCR(s)). The third reward model captures the fraction of

jobs that experience reduced execution times due to offloading some or all of

their sub-tasks. A job takes βn
δ
seconds for local execution, where n represents

the last cut location. We define τs =
1
s
βn
δ

as the reduced execution time, with

1/s (0 < 1/s ≤ 1) signifying the the fraction of time it takes to execute the

job when some or all of its sub-tasks are offloaded compared to executing it

locally. Given an offered load λ, reduced execution time τs, and offloading

policy π, we define q(λ, π, τs) = (qc,k(λ, π, τs) : c ∈ C, k ∈ S \ {n}), where

qc,k(λ, π, τs) denotes the long-term fraction of jobs associated with users with

channel quality c that are cut at location k, and complete within τs.

We define the overall fraction of jobs that achieve an execution time

reduction of at least 1/s for a given load λ under policy π, as

S(q(λ, π, τs),λ, τs) =
∑
c∈C

∑
k∈S\{n}

qc,k(λ, π, τs). (2.7)

For this metric, we assume that every job would be executed and com-

pleted locally4 within βn
δ
, the time required for local execution, although some

users may concurrently offload at a pre-selected cut location to possibly reduce

their execution time. Note that this metric optimistically ignores the slowdown

caused by concurrently offloading data while executing the job locally.

4Thus, we ignore any cost (as done in previous revenue metrics) corresponding to jobs
that miss the τs execution deadline.
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2.3 Homogeneous Jobs and Offloading Policies

In this section, we propose and evaluate several offloading policies for

users with heterogeneous channel qualities but a homogeneous job type. In

the next section, we extend the analysis to the case with heterogeneous job

types.

2.3.1 Upper bound

We begin by developing a simple upper bound for the net timely of-

floaded workload or power savings with wastage achievable by any stationary

offloading policy. Let q = (qc,k : c ∈ C, k ∈ S), where qc,k denotes the fraction

of jobs that belong to users with channel quality c, are cut at location k, and

complete. We define the set of all possible vectors q as

Q = {q | q ≥ 0,
∑
k∈S

qc,k ≤ 1 ∀ c ∈ C

and qc,k = 0, c ∈ C, k ∈ S \ Sc}
(2.8)

where in some settings, a fraction of jobs may not complete, hence they need

not sum up to 1, and fractions for infeasible cut locations are zero. Given q,

we define the channel and edge server utilization as

ρch(q) =
∑
c∈C

λc
∑
k∈S

qc,k
dk
rc
11(k ∈ Sc), (2.9)

ρed(q) =
∑
c∈C

λc
∑
k∈S

qc,k
γk
ω
11(k ∈ Sc), (2.10)

respectively. Recall that we defined F(λ) to be the set of feasible long-term

fractions of successful job completions under a set of stationary offloading
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policies when the system load is λ. We define the set of all possible successful

long term fractions

F(λ) = {q | q ∈ Q, ρch(q) ≤ 1 and ρed(q) ≤ 1} (2.11)

as a natural outer bound for F(λ) which leads to the following simple perfor-

mance bounds.

Theorem 1. Given an offered load λ we have that F(λ) ⊆ F(λ).

Then the maximum net timely offloaded workload achievable by any stationary

offloading policy is defined as

O∗(λ) := max
q∈F(λ)

O(q,λ) ≤ max
q∈F(λ)

Row(q,λ) (2.12)

Similarly, the maximum power savings with wastage achievable by any sta-

tionary offloading policy is defined as

P ∗(λ) := max
q∈F(λ)

P (q,λ) ≤ max
q∈F(λ)

Rps(q,λ) (2.13)

Proof. We first argue that F(λ) ⊆ F(λ). Indeed suppose q ∈ F(λ). Recall

that qc,k represents the fraction of incoming jobs that belong to users with

channel quality c, are cut at location k, and complete. Since each job is cut

at only one location, these fractions always sum to less than or equal to 1

over all cut locations, thus q is clearly in Q – but suppose the load on the

channel or edge server is greater than 1 – given these fraction of jobs, i.e.,

ρch(q) > 1 or ρed(q) > 1. If this is true, then not all jobs will complete

on time, contradicting our earlier statement. Thus, the channel and edge
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server load must be less than or equal to 1, i.e., ρch(q) ≤ 1 and ρed(q) ≤ 1

if q ∈ F(λ), which implies q ∈ F(λ). Thus F(λ) ⊆ F(λ). This then im-

plies maxq∈F(λ)Row(q,λ) ≤ maxq∈F(λ)Row(q,λ) which results in the Equa-

tion 2.12, since

Low(λ, π) ≥ 0. Similarly under the energy savings reward model and recog-

nizing that Lps(λ, π) ≥ 0, we have Equation 2.13.

Remark 1. We let q∗
ow(λ) = argmaxq∈F(λ)Row(q,λ) and

q∗
ps(λ) = argmaxq∈F(λ)Rps(q,λ) denote the vector that maximizes the bounds

for the two reward models. These indicate the fraction of load to admit across

sets of channel qualities and cut locations to maximize revenue in the absence

of resource contention during job offloading.

2.3.2 Offloading policies

Naive Greedy (NG). The NG offloading policy optimistically assigns

the cut location, ku, that yields the highest reward among all feasible cut

locations given deadline τ , to all jobs generated by user u in U with channel

quality cu as follows:

ku = argmax
k∈Scu

αk (2.14)

where αk either reflects net offloaded workload or energy savings, see Sec-

tion 2.2.7. The policy then greedily tries to offload data and process on the

edge server until success or time budget, τ , expires.

Predictive Abandonment (PA). PA is a real-time user-based of-
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floading policy that adapts to channel and edge/cloud server congestion. Sim-

ilar to the NG policy, a user u implementing PA selects the cut location ku

with the highest reward, see Equation 2.14. However, unlike NG, during the

offloading process, a user implementing PA estimates the feasibility of meeting

a job’s completion deadline given current channel and/or edge server conges-

tion. If the deadline is unlikely to be met, PA saves resources by abandoning

the job’s offload, thus increasing the likelihood of completing other jobs on

time. Furthermore, a job whose offload is abandoned can still attempt to com-

plete its residual processing on the user device if time permits. Thus, PA can

be viewed as performing a type of state-dependent self-admission control or

abandonment policy.

Under PA, a user u determines whether its ith job is likely to complete

on time by considering/predicting the following factors: queuing time, local

processing time, data offloading time, and edge processing time. The queuing

time for a job i at time t, denoted Wu,i(t), corresponds to the time the job

has been waiting in the user’s queue. The local processing time is calculated

as the number of operations before the cut location ku divided by the device’s

execution speed, i.e.,
βku
δ

secs. Since a user’s compute speed is fixed, this value

is the same for all t. Also, recall that all jobs from a user u are cut at the same

location. The data offloading time at time t is calculated as the sum of time

already spent offloading the job (if any) and the time required to offload any

remaining data. The latter can be estimated by dividing the data yet to be

offloaded at time t, su,i(t), by an estimate for the future average transmission
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rate hu,i(t). Suppose user u initiates data offloading of job i at time tu,i over

channel quality cu. At any instance t′ (for t′ greater than or equal to tu,i),

the transmission rate under our model is given by rcu
N(t′)

, where recall rcu is

the uplink channel capacity and N(t′) is the number of active users. We

estimate the future average transmission rate based on the average throughput

experienced by the user u since it began offloading job i, i.e.,

hu,i(t) =
1

eu,i(t)

eu,i(t)+tu,i∑
t′=tu,i

rcu
N(t′)

(2.15)

where eu,i(t) is the time elapsed since offloading began. The last factor in

the equation for job latency is the edge processing time. We assume that the

edge server provides users with or users themselves maintain estimates of the

job’s processing time per cut location, mku . These estimates are periodically

updated.

Putting together the elapsed time and estimated future

transmission/processing latencies, the estimated total latency for user u’s job

i is given by

Wu,i(t)︸ ︷︷ ︸
queuing

+
βku
δ︸︷︷︸

local processing

+ eu,i(t) +
su,i(t)

hu,i(t)︸ ︷︷ ︸
data offloading

+ mku︸︷︷︸
edge processing

. (2.16)

Under PA, a user may abandon offloading if it determines that its

estimated total latency for job i is greater than its time budget, τ . Once

abandoned, any remaining computation, γku , for job i can be completed on

the user’s device if there is enough time.
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This prediction method is crude but roughly captures the impact of the

user’s channel capacity rcu , channel’s uplink congestion N(t), and congestion

at the edge server using the actual estimate of processing latencies, mku . Note

that these estimates will reflect changes resulting from the PA policy itself

since PA impacts the load on the channel and edge server. For more accurate

predictions, one can consider additional factors such as number of active users

during each user’s offload and/or remaining service requirements of currently

offloading jobs. See, [63] for such a discussion in a processor-sharing scenario

without abandonment.

PA effectively performs a sort of “real-time” admission control by aban-

doning jobs unlikely to meet their deadlines due to channel and/or edge server

congestion. In congested scenarios, PA “prefers” users with better channels,

since they are more likely to complete their offloads on time. Finally, note PA,

like NG, is decentralized and does not require knowledge of the overall offered

job rate, λ. Next, we explore a policy that considers the overall rate of offered

jobs for coordination.

Probabilistic Admission Control and

Cut Assignment (PACCA). Under PACCA, we pre-determine pc,k, the

fraction of jobs that belong to users with channel quality c that should be

offloaded at each cut location k to maximize revenue given the rate of incoming

jobs. We let p = (pc,k : c ∈ C, k ∈ S), and require
∑

k∈S pc,k ≤ 1 for all c ∈ C.

We denote the associated policy as PACCA (p). If a job is not admitted for

offloading under this policy, it will attempt to execute locally. Determining
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Figure 2.2: Simulation parameters associated with AlexNet and DeepFace job
types.

p is complex, as it involves multiple factors, such as contending offloads from

users with different channel qualities, channel and server congestion, delay

constraints, and revenue rate optimization. We propose to choose p based

on the upper bounds from Theorem 1, either q∗
ow(λ) to maximize net timely

offloaded workload or q∗
ps(λ) to maximize power savings with wastage. In

later sections, for brevity we use q∗ to refer to either q∗
ow(λ) or q

∗
ps(λ). Given

that there is no resource contention underlying Theorem 1 (see Remark 1),

these probabilities reflect optimistic admission control and cut assignment for

a given λ. Nevertheless, they still reflect reasonable overall system tradeoffs.

Once a job is admitted for offloading, the user can either attempt to

offload the job greedily at the assigned cut location or perform PA, only pro-

ceeding with the offload if it determines the job’s deadline can be met. We

refer to the former policy as PACCA (q∗) + Greedy and the latter as PACCA
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(q∗) + PA.

2.3.3 Simulation results

In this subsection, we evaluate the performance of our proposed offload-

ing policies via discrete-time simulations in terms of: (i) net timely offloaded

workload; (ii) power savings with wastage (explained in Section 2.2.7). We

also plot the fraction of jobs completed. The simulations are conducted in

MATLAB R2023a.

Settings. We consider a system with N = 20 users5, where each

user generates an equal rate of homogeneous jobs per second, according to a

Poisson distribution6, with intensity λ/20. This results in an aggregate job

generation/arrival rate of λ per second. The system includes two channel

qualities, half of the users (i.e., 10) have one channel quality, half the other7.

A user’s channel quality/capacity does not change, but the transmission rate

at any instance depends on both the channel capacity and the number of

competing users because of the Proportional Fair sharing of uplink resources.

Table 2.1 summarizes the simulation parameters. We present results for the

homogeneous scenario based on the job characteristics of AlexNet, a state-

of-the-art Convolutional Neural Network for image classification. In the next

section, we will also use DeepFace, which is used for face recognition. Fig. 2.2

5We chose this to represent typical traffic at a 5G BS/AP in a dense urban environment
deployment scenario, we can increase/decrease the number as needed.

6We also ran the simulations for other arrival processes but due to space limitations only
include the results for the Poisson arrival process.

7We consider this for simplicity; our work applies to any number of channel qualities.
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displays the job characteristics of AlexNet on the left and DeepFace on the

right. The four bar graphs (from top to bottom) show the volume of data that

gets offloaded, the amount of local vs. edge processing, the energy saved, and

the amount of work that gets offloaded per cut location. The worst delay a job

may experience is calculated as τmax = maxk

(
βk
δ
+ dk

minc∈C rc
+ γk

ω

)
. However,

this may not be the absolute worst case as it only considers the worst channel

quality and not congestion. We evaluated our policies under both strict τ =

0.4τmax and relaxed τ = 0.8τmax delay deadlines. Results are averaged over 20

Monte Carlo simulations, each performed over 5e5 time slots. Here a time slot

is 100 µs long.

Table 2.1: Simulation parameters

Parameter (units) Value Parameter (units) Value
rc (Mbps) (20, 40) g (FLOP/bit) 2

δ (FLOPs/sec) 1125 ∗ 106 a (J/FLOP) 6 ∗ 10−9

ω (FLOPs/sec) 11360 ∗ 106 b (J/bit) 4 ∗ 10−7

Results discussion. Our first set of results, presented in Figures 2.3a

and 2.3b, include the net timely offloaded workload and fraction of total jobs

completed for our policies per total offered job rate, respectively, under a strict

job deadline. In Fig. 2.3a, we show the net computational workload offloaded,

which depends on the fraction of total jobs completed and the reward per

completed job. Therefore, a policy can perform equally well in two cases:

(i) completing numerous jobs with a low reward or (ii) completing fewer jobs
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with a high reward. Thus, we also present the fraction of completed jobs in

Fig. 2.3b for the same simulation setting for all policies.

We observe that as the offered job rate λ increases, the NG policy expe-

riences throughput collapse, see Fig. 2.3a. By contrast, policies like PA, which

implement congestion-dependent offload abandonment, and PACCA, which

determines admission control and cut assignments based on prior knowledge

of incoming jobs per user and channel quality, perform well under heavy job

loads. However, PA does not perform as well as PACCA, highlighting the ben-

efit reserving channel and edge resources for jobs with good channels and/or

high reward cut locations. The benefit of combining these policies, PACCA +

PA becomes more evident at high-load regimes where admission control and

congestion management is crucial.

In Fig. 2.3b, we show the fraction of completed jobs under different

offloading policies as job arrival rate λ increases. With PA, more than 90%

of jobs are completed in the load regimes considered. Indeed, for all the re-

sults reported hereafter, we only considered load regimes where PA has a high

completion fraction (at least 90%) and where the channel is the bottleneck.

Interestingly, the fraction of jobs that complete under PACCA + Greedy is

non-monotonic with increasing load. This is because initially (from 0 to 23

jobs/sec), PACCA selects the highest reward cut location for every job. How-

ever, since channel capacity is fixed, an increase in the number of jobs means

a decrease in completions. Hence, the downward curve. Then, at 23 jobs/sec,

PACCA determines it will earn more revenue by adjusting the distribution of
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cut locations, so that jobs have less data to offload. This results in less re-

ward per job, but more completed jobs. PACCA makes this adjustment every

time the rate of incoming jobs increases beyond 23 jobs/sec, thus the upward

curve. We observe similar non-monotonic behavior for PACCA + PA though

it is barely perceptible in the figure.

In Fig. 2.3a, we saw the advantage of combining PACCA with PA un-

der a strict delay deadline. We observe similar benefits under a relaxed delay

deadline, see Fig. 2.4a; however, the performance gap between PACCA +

PA and PACCA + Greedy decreases. This is because, with a relaxed delay

deadline, a user has a higher chance of completing an offload, even with net-

work congestion. Thus, network congestion is detrimental only under strict

delay deadlines necessitating a congestion-aware policy like PA. We see similar

trends with power savings with wastage in Figures 2.5a and 2.6a. Additionally,

as we relax the completion deadline, our best-performing policy (PACCA +

PA) approaches the upper bound for both performance metrics.

We now compare different offloading policies based on the Fraction of

Completed jobs with an execution time Reduction of at least 1/s or FCR(s),

as introduced in Eq. 2.7. In the simulation results presented in Figures 2.7 and

2.8, all users have the same channel capacity, specifically, rc = 40 Mbps. For

the PA/NG policy, we predetermine the optimal cut location as the cut that

results in minimal delay in the best-case scenario (no congestion anywhere),

i.e., ku = argmaxk∈S\{n}

(
βk
δ
+ dk

rc
+ γk

ω

)
. We use the same cut location for

PACCA, although we additionally optimize the fraction of jobs admitted for
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offloading such that neither the channel nor edge compute utilization exceeds

1. In Fig. 2.7a, we present the results for different values of 1/s, the ratio of

reduced execution time τs to local execution time βn
δ
. These results are for

an aggregate arrival rate of λ = 30. As expected, for small values of of 1/s,

few jobs are able to reduce their execution times that much even with offload-

ing. However, for large values of 1/s, the fraction of jobs that experience a

small reduction in execution time increases significantly. In the plot shown,

the performance of PACCA + PA and PA coincides, and these policies out-

perform their greedy counterparts. In addition, we also exhibit the fraction of

abandoned jobs under the abandonment based policies in Fig. 2.7b, where we

observe an overlap in the fraction of total jobs abandoned.

We see similar results for an aggregate arrival rate, λ = 50 in Fig. 2.8a.

In addition to a decrease in the fraction of jobs experiencing reduced execution

times as compared to results for λ = 30, we now see a performance gap between

policies that perform admission control and cut assignment versus those that

do not. Given that we do not penalize the final performance of policies based

on the fraction of abandoned jobs, we see PA outperforming PACCA + PA

even though a significant fraction of jobs are abandoned under PA, as shown

in Fig. 2.8b.

Robustness study. We demonstrate the robustness of PACCA + PA

to imperfect knowledge of offered job load in Figures 2.9a and 2.9b, for net

timely offloaded workload under a strict and relaxed delay deadline, respec-

tively. In these simulations, we added errors to the estimates of job arrival
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(a) Net timely offloaded
workload (FLOPs/sec).

(b) Fraction of total jobs completed.

Figure 2.3: Comparing the net timely offloaded work and fraction of total jobs
that complete for different policies when the job’s delay deadline is strict, i.e.,
τ = 0.4τmax.

(a) Net timely offloaded
workload (FLOPs/sec).

(b) Fraction of total jobs completed.

Figure 2.4: Comparing the net timely offloaded work and fraction of total jobs
that complete for different policies when the job’s delay deadline is relaxed,
i.e., τ = 0.8τmax.
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(a) Power savings with wastage (W). (b) Fraction of total jobs completed.

Figure 2.5: Comparing the power savings with wastage and fraction of total
jobs that complete for different policies when the job’s delay deadline is strict,
i.e., τ = 0.4τmax.

(a) Power savings with wastage (W). (b) Fraction of total jobs completed.

Figure 2.6: Comparing the power savings with wastage and fraction of total
jobs that complete for different policies when the job’s delay deadline is relaxed,
i.e., τ = 0.8τmax.
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(a) Fraction of total jobs completed within
τs.

(b) Fraction of total jobs abandoned.

Figure 2.7: Comparing the fraction of jobs that experience a reduced execution
time of at least τs =

1
s
βn
δ

under an offloading policy for λ = 30.

(a) Fraction of total jobs completed within
τs.

(b) Fraction of total jobs abandoned.

Figure 2.8: Comparing the fraction of jobs that experience a reduced execution
time of at least τs =

1
s
βn
δ

under an offloading policy for λ = 50.
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rates per user, which affect the aggregate arrival rate per channel quality. We

optimize PACCA + PA for the corresponding load and compare three scenar-

ios: (i) PACCA + PA (exact), where we provide PACCA with the exact load,

i.e., λ ; (ii) PACCA + PA (overestimate), where we provide PACCA with an

overestimate of load, i.e., λ·(1+x%), leading to less offloading compared to (i);

and (iii) PACCA + PA (underestimate), where we provide PACCA with an

underestimate of load, i.e., λ · (1−x%), resulting in more offloading compared

to (i). We show PA as a baseline. The results show that for an estimation

error of 25% (i.e., x = 25), both PACCA + PA (overestimate) and PACCA +

PA (underestimate) are within 10% of PACCA + PA (exact). Additionally,

we observe that PACCA + PA (underestimate) performs at least as well as

PA, as huge underestimation errors result in admitting every job at the highest

reward cut location, effectively imitating PA. We observe similar trends with

power savings with wastage in Figures 2.10a and 2.10b.

2.4 Heterogeneous Jobs

In this section, we investigate the performance of our policies in net-

works with heterogeneous jobs, where jobs no longer have identical deadlines,

cut locations, and requirements per cut location (such as computation and

data to offload).

We have a set of users generating different types of jobs, denoted by

J = {1, 2, ..., J}. For each job type j in J , we let U j be the set of users

generating such jobs, and λj,u denotes the arrival rate of job type j generated by
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(a) Strict delay deadline, τ = 0.4τmax. (b) Relaxed delay deadline, τ = 0.8τmax.

Figure 2.9: Evaluating robustness of PACCA + PA for a 25% deviation from
exact load knowledge when the job’s delay deadline is strict vs. relaxed for
net timely offloaded workload.

(a) Strict delay deadline, τ = 0.4τmax. (b) Relaxed delay deadline, τ = 0.8τmax.

Figure 2.10: Evaluating robustness of PACCA + PA for a 25% deviation from
exact load knowledge when the job’s delay deadline is strict vs. relaxed for
power savings with wastage

.
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user u in U j. The total arrival rate of job type j is denoted as λj =
∑

u∈Uj λj,u.

We define the arrival rate of job type j over channel quality c in C from all

users as λjc =
∑

u∈Uj λj,u1(cu = c), and let λj = (λjc, c ∈ C). The arrival rate

of each job type is captured by Λ = (λ1, ...,λJ). We use τ j to represent the

delay constraint, and Sj to capture the set of possible cut locations for type

j jobs. As before, Sjc is a subset of Sj that only includes cut locations that

are feasible for a given user’s channel quality c under time budget τ j, i.e., a

location k is in Sjc if

βjk
δ︸︷︷︸

local processing

+
djk
rc︸︷︷︸

data offloading

+
γjk
ω︸︷︷︸

edge processing

≤ τ j (2.17)

where βjk represents the computational burden (in FLOPs) on the user

(including overhead for cutting), djk denotes the volume (in bits) of data trans-

fer to the edge server, and γjk captures the computational burden (in FLOPs)

on the edge server for a type j job cut at location k.

For an offered load, Λ, under offloading policy π ∈ Π, we define

Q(Λ, π) = (q1(Λ, π), ...,qJ(Λ, π)), where qj(Λ, π) = (qjc,k(Λ, π) : c ∈ C, k ∈

Sj), and qjc,k(Λ, π) is the long-term fraction of type j jobs that belong to

users with channel quality c, are cut at location k, and complete. These frac-

tions must sum to less than or equal to 1 (some jobs may not complete), i.e.,∑
k∈Sj q

j
c,k(Λ, π) ≤ 1 for all j ∈ J , c ∈ C. We define T (Λ) = Q(Λ, π) for

π ∈ Π as the set of feasible long-term fractions, which is convex through time

sharing argument presented in the homogeneous case.
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Just as in the homogeneous scenario, we have two revenue metrics:

weighted net timely offloaded workload revenue and weighted power savings

with wastage revenue. We let αjk denote the reward generated from a successful

job completion when a type j job on a user is cut and offloaded at cut location

k.

Weighted net timely offloaded workload revenue. We define it

as a weighted sum of net timely offloaded workload for each job type, where

wj is the weight 8 for job type j and
∑

j∈J w
j = 1. For a given offered load Λ

and offloading policy π, the revenue is defined as:

O(Q(Λ, π),Λ) = Row(Q(Λ, π),Λ)− Low(Λ, π). (2.18)

Here

Row(Q(Λ, π),Λ) =
∑
j∈J

wj
∑
c∈C

λjc
∑
k∈Sj

αjkq
j
c,k(Λ, π) (2.19)

denotes the aggregate reward, and Low(Λ, π) is the rate of computational work

on users’ devices associated with jobs that do not complete on time and with

jobs that a user attempts to offload but ends up completing locally.

Weighted power savings with wastage revenue. We define it as a

weighted sum of power savings with wastage per job type j. Given an offered

load Λ and an offloading policy π, we calculate it as follows:

P (Q(Λ, π),Λ) = Rps(Q(Λ, π),Λ)− Lps(Λ, π) (2.20)

8The weights wj are used to prioritize one job type over another in the admission con-
trol policy. However, we still assume the underlying wireless scheduler is round-robin and
unaware of job types.
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where Rps(·) = Row(·) except that reward, αjk, is based on energy saved per

job completion. L(Λ, π) represents the power expended at devices associated

with jobs that miss their deadlines and jobs that a user attempts to offload

but ends up executing locally.

2.4.1 Upper bound

Let Q = (q1, ...,qJ) be a vector of vectors, where qj = (qjc,k : c ∈ C, k ∈

Sj), and qjc,k is the fraction of type j jobs that belong to users with channel

quality c, are cut at location k, and complete. We define

Σ = {Q | qj ≥ 0,
∑
k∈Sj

qjc,k ≤ 1 ∀ j ∈ J , c ∈ C,

and qjc,k = 0 ∀ j ∈ J , c ∈ C, k ∈ Sj \ Sjc}
(2.21)

as the set of such possible vector of vectors. We then define the channel and

edge server utilization per job type j based on Q, which is long term fraction

of completed jobs, as

ρjch(Q) =
∑
c∈C

λjc
∑
k∈Sj

qjc,k
djk
rc
1(k ∈ Sjc ), (2.22)

ρjed(Q) =
∑
c∈C

λjc
∑
k∈Sj

qjc,k
γjk
ω
1(k ∈ Sjc ), (2.23)

and let ρch(Q) =
∑

j∈J ρ
j
ch(Q) and ρed(Q) =

∑
j∈J ρ

j
ed(Q) denote the total

channel and the total edge server utilization, respectively.

Recall that we defined T (Λ) to be the set of feasible long term fractions

of successful job completion by stationary offloading policies when the system
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load is Λ. Here we define

T (Λ) = {Q | Q ∈ Σ, ρch(Q) ≤ 1 and ρed(Q) ≤ 1} (2.24)

as a natural outer bound.

Theorem 2. Given an offered load Λ we have that T (Λ) ⊆ T (Λ).

Then the maximum weighted net timely offloaded workload revenue achievable

by any stationary offloading policy is defined as

O∗(Λ) := max
Q∈T (Λ)

O(Q,Λ) ≤ max
Q∈T (Λ)

Row(Q,Λ) (2.25)

Similarly, the maximum weighted power savings with wastage revenue

achievable by any stationary offloading policy is defined as

P ∗(Λ) := max
Q∈T (Λ)

P (Q,Λ) ≤ max
Q∈T (Λ)

Rps(Q,Λ) (2.26)

Proof. Similar to proof of Theorem 1.

Remark 2. We let Q∗
ow(Λ) = argmaxQ∈T (Λ)Row(Q,Λ) and

Q∗
ps(Λ) = argmaxQ∈T (Λ)Rps(Q,Λ) denote the maximizers associated with the

bounds for the two reward models. Once again, for brevity we will use Q∗.

2.4.2 Simulation results

In this subsection, we compare the performance of various offloading

management policies when dealing with heterogeneous jobs. For PACCA, we

determine the admission control probabilities per combination of job types,
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user channel qualities, and cut location based on the fractions that maximize

system revenue, i.e., Q∗. We then again schedule the offloading of admitted

jobs using either Greedy or PA policies, i.e., PACCA + Greedy or PACCA

+ PA. Due to space constraints, we omitted our study of the robustness of

PACCA + PA for the heterogeneous case.

Setting. The simulation involves 20 users generating two job types,

AlexNet and DeepFace. Half of the users (i.e., 10) generate job Type 1, while

the other half generates job Type 2. Each user in either category generates

jobs at an equal rate per second based on a Poisson distribution with intensity

λj/10, where λj is the aggregate arrival rate for job type j. We have set

equal aggregate arrival rate for the two job types. Users for each job type are

divided equally into two channel quality groups, with half (i.e., 5) offloading

over channel Quality 1 and the other half over channel Quality 2. For more

information on the simulation parameters, refer to Table 2.1 and Fig. 2.2.

Results discussion. Figures 2.11 and 2.12 illustrate the weighted net

timely offloaded workload and weighted power savings with wastage revenue

achieved by various offloading policies, respectively. As observed in the case

of homogeneous jobs, the PACCA + PA policy outperforms other policies.

However, the relative performance of PA policy has declined compared to the

homogeneous case since it only considers the residual data and channel capac-

ity, ignoring a job’s weight relative to others. In contrast, PACCA coordinates

job admission control and cut assignment based on how much relative revenue

each job type and cut will generate.
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(a) Strict delay deadline,
(τ1, τ2) = (0.4τ1max, 0.8τ

2
max).

(b) Relaxed delay deadline,
(τ1, τ2) = (0.8τ1max, 0.8τ

2
max).

Figure 2.11: Comparing the weighted net timely offloaded workload revenue
for different policies with (w1, w2) = (0.97, 0.03).

(a) Strict delay deadline,
(τ1, τ2) = (0.4τ1max, 0.8τ

2
max).

(b) Relaxed delay deadline,
(τ1, τ2) = (0.8τ1max, 0.8τ

2
max).

Figure 2.12: Comparing the weighted power savings with wastage revenue for
different policies with (w1, w2) = (0.97, 0.03).
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Robustness study: We evaluate the robustness of PACCA + PA to

imperfect estimates of the offered job loads in Figures 2.13a and 2.13b, for

the weighted net timely offloaded workload revenue under a strict and relaxed

deadline respectively. Following a similar approach to the homogeneous case,

we simulated perturbed arrival rates of jobs per user that affect the aggregate

load per channel and job type. We optimize PACCA + PA for the corre-

sponding loads and compare three scenarios: (i) PACCA + PA (exact), where

we provide PACCA with the exact loads, i.e., λj; (ii) PACCA + PA (over-

estimate), where we provide PACCA with an overestimate of the loads, i.e.,

λj · (1+x%), leading to less offloading for the lower weighted jobs as compared

to (i) in the considered regimes; and (iii) PACCA + PA (underestimate), where

we provide PACCA with an underestimate of the loads, i.e., λj · (1− x%), re-

sulting in more offloading for both job types as compared to (i). We show PA

as a baseline. The results show that for an estimation error of x equal to 25%,

PACCA + PA (overestimate) is almost indistinguishable from PACCA + PA

(exact). This is because it accepts fewer lower-weighted jobs, which do not

significantly contribute to the total revenue. However, with underestimation,

PACCA + PA (underestimate) has identical performance to PA for certain

loads, resulting in a performance gap of 11% as compared to PACCA + PA

(exact) in the worst case. We see similar trends with the weighted power

savings with wastage revenue in Fig. 2.14.
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(a) Strict delay deadline,
(τ1, τ2) = (0.4τ1max, 0.8τ

2
max).

(b) Relaxed delay deadline,
(τ1, τ2) = (0.8τ1max, 0.8τ

2
max).

Figure 2.13: Evaluating PACCA + PA’s robustness with
(w1, w2) = (0.97, 0.03) and 25% deviation from exact load knowledge with
strict vs. relaxed deadline for weighted net timely offloaded workload revenue

.

(a) Strict delay deadline,
(τ1, τ2) = (0.4τ1max, 0.8τ

2
max).

(b) Relaxed delay deadline,
(τ1, τ2) = (0.8τ1max, 0.8τ

2
max).

Figure 2.14: Evaluating PACCA + PA’s robustness with
(w1, w2) = (0.97, 0.03) and 25% deviation from exact load knowledge with
strict vs. relaxed deadline for weighted power savings with wastage revenue

.
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2.5 Conclusion

Managing heterogeneous compute job offloading in the MEC fabric sub-

ject to delay constraints presents significant challenges that require careful

management of user device, channel, and edge server resources while con-

sidering different job characteristics and system loads. To address this, we

have detailed a comprehensive framework, which relies on job profiling, using

probabilistic admission control and cut assignment, coupled with a predictive

abandonment policy that abandons offloads unlikely to meet their deadline

(this not only frees up resources for jobs with more promise but also avoids

throughput collapse). Our proposed approach, PACCA + PA, is expected to

perform robustly and effectively but requires prior knowledge of offered job

rates across job types and channel qualities. If this is not known, signal pro-

cessing techniques such as window averaging can be employed to learn the

offered job rate over time.
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Chapter 3

Fundamentals of Caching Layered Data

Objects

This chapter 1 looks at caching data that comes in versions. In a

multiple-representation (MR), every version is separate. In a layered repre-

sentation (LR), a high-quality version is just the low-quality one plus a few

extra layers.

We check how familiar rules like LRU, LFU, and Belady behave under

both representations. With a simple working-set model we show when LR

wins, when MR wins, and why adding more layers is not always a good idea—it

helps only if the extra layers are small enough and requested often enough to

justify their space in the cache.

1This chapter is based on the published work in [7]:

• A. Bari, G. De Veciana, G.Kesidis, “Fundamentals of Caching Layered Data Objects,”
To appear in ICDCS ’25

Agrim Bari led the formulation of the problem, the design of policies, execution of experi-
ments, and the writing of the paper.
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3.1 Introduction

Managing shared edge caching. Efficient management of shared

memory systems for applications requiring large amounts of data continues

to be a challenging problem. These challenges are exacerbated when mobile

applications with latency constraints leverage limited/costly edge caching re-

sources but have limited or variable connectivity to the network edge. In such

settings, ensuring data is available when needed is all the more critical.

Layered representations and applications. The focus of this

chapter is on applications where data objects can be stored and be of use in

multiple versions which are encoded in Layered Representations (LRs). Each

version of a data object embodies a tradeoff in size, and thus resource re-

quirements, versus the ‘quality’ that an application can extract. LRs are such

that the cumulative availability of each additional layer delivers a version with

improved quality. Such an incremental approach to representing data object

versions brings flexibility to systems where applications have heterogeneous

quality requirements or can tolerate quality degradation when resources are

scarce. LRs have found applications in, e.g., zoomable maps, video compres-

sion, and Virtual Reality (VR) games. For maps, LRs can be used to deliver

different levels of topographic detail. Similarly, scalable video coding includes

a base layer that contains essential information for lower quality, while en-

hancement layers contribute details for higher quality. In computer graphics,

particularly relevant to VR, progressive meshes [25] can be used for efficient

storage and rendering of 3D models. Through iterative mesh simplification
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algorithms, along with vertex splitting and collapse operations, a hierarchical

structure emerges. Each level in this hierarchy represents a progressively more

detailed version of the original mesh. LRs are also applicable when seeking

to have compact Neural Network (NN) models. In this context, the base NN

model can deliver lower inference accuracy but can be enhanced through addi-

tional data layers, which increase model complexity or weight fidelity, resulting

in an NN model with higher inference accuracy [33, 37].

Exploiting layered representations. Applications may request dif-

ferent versions of a data object for various reasons. First, an application

might consider the computational resources of the end device, e.g., an end

device with limited resources may request a version that requires less com-

pute/memory/energy. Second, data object requests may vary based on the

communication network conditions. In instances where the end device has

limited bandwidth, preventing it from receiving high-quality data promptly,

users may opt for versions that balance quality with efficient transmission.

Thirdly, an application may simply not require the highest quality version.

For example, in VR gaming settings, a detailed model for a complex tree that

is far away would not be visible and thus is not required. Overall, these di-

verse considerations highlight the needed flexibility that LRs would be able to

satisfy for a range of application requirements and constraints.

Alternative representations. There are other ways of representing

different versions of data objects, e.g., Multiple Representations (MRs) with or

without transcoding, see [21, 54, 56]. In the case of MR without transcoding,
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Figure 3.1: 3 Versions under Multiple/Layered representation of a data object.

discrete and independent versions of data objects are created — in the context

of video streaming, these versions correspond to encoding video at different

rates without any layering. MR may be more storage-efficient as compared

to LR for the same version because LR may require additional information

to extend to higher versions, see Fig. 3.1. However, LR may be more storage

efficient when plural quality/resolution levels of the same object are simulta-

neously in demand because the MR version will have a significant amount of

identical (lower quality) information.

Whereas, MR with transcoding involves storing only one version cor-

responding to the highest ‘quality’ level - so, any lower version can be readily

computed from this version. This transcoding can occur either in real-time

(online transcoding), generating lower versions in real-time upon request, or

in non-real-time (offline transcoding) where transcoding takes place in the

backend for potential future requests. However, in this chapter, we will focus

solely on MR without transcoding limiting the computational burdens and

delays associated with real-time transcoding.
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Caching policies with layered representations. While consider-

able attention has been paid to the design and analysis of caching policies for

MR, limited attention has been given to the LR setting which as mentioned

above, we expect will be of increasing relevance to emerging applications and

caching at the network edge. In this chapter, we focus on a disciplined study

of traditional caching policies which have been redesigned to leverage LR data

representations. Below we briefly discuss relevant related research before sum-

marizing our contributions.

3.1.1 Related work

Analytical works on caching policies and approximation. We

restrict our review to papers most relevant to our work. [11, 29] summa-

rize significant early work in the design of caching policies, and [22] describes

analytical methods and evaluation results for the performance assessment of

caching strategies. The aim of any caching policy is to achieve efficient cache

utilization. This efficiency is measured primarily by the cache hit rate, which

is the averaged fraction of data object requests for which the data object is in

the cache when requested.

Besides hit rate, other design objectives for caching policies are ease of

implementation, low operational overhead, and adaptability to fluctuations in

access/request patterns. An important difference among caching policies is in

what they evict when the cache is full. Under Least Recently Used (LRU),

the cache is consistently updated to hold the most recently requested data

75



objects, enabling it to leverage the temporal locality of data object requests.

Notably for LRU under the Independent Reference Model (IRM), where each

data object is requested independently of any past requests, the invariant

distribution assuming data objects of the same size [38] and an approximation

for the hit rate [12, 15, 9, 20] have been obtained. In particular, [12] describes

the working-set approximation for hitting probabilities, the fraction of requests

for a data object for which the object is in the cache. This approximation has

been shown to be accurate as the number of objects scales [15, 20]. We herein

extend the analysis of [12] for the approximation to our setting, where data

objects have layered representations, and also demonstrate the asymptotic

accuracy of the approximation based on ideas from [15].

Under the IRM model, for a fixed cache capacity with same-size data

objects, caching the most popular data objects is optimal for causal policies

[2]. Least Frequently Used (LFU) performs optimally under stationary regimes

of request patterns by replacing cached data objects based on the frequency

measurements of past requests. An interesting work by [28] shows that a

variant of LRU that infers the instantaneous request rate subject to the history

of requests can come arbitrarily close to the optimal LFU algorithm. [30] shows

that even for strongly correlated request patterns, LFU is still optimal among

causal policies. However, while LFU may be effective in stationary scenarios

where access patterns remain relatively constant, it may struggle to perform

optimally in non-stationary regimes where the dynamics of data access change

over time.
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Moving beyond the IRM, various researchers have conducted compet-

itive analyses, considering the total number of cache misses as the figure of

merit [58, 19]. They compare the performance of an online policy, i.e., one

that makes eviction decisions without knowledge of future requests, with the

optimal offline policy, Belady [8], i.e., one that knows the entire sequence of re-

quests in advance. The LRU policy has a competitive ratio that scales linearly

with the cache size, B. Improving on LRU, researchers in [19] have shown

that a randomized online algorithm, Marker, which uses markers to decide

and prioritize critical data objects, could be worse than the optimal offline

algorithm by a factor of 2HB ≈ 2 log(B) (HB denotes the Bth harmonic num-

ber: HB = 1 + 1/2 + 1/3 + . . . + 1/B), but not more. Moreover, no online

algorithm could achieve a factor less than HB. Recently, [47] extended these

results to cases where the traditional marker algorithm is combined with pre-

dictions about the next time of request for objects currently in the cache when

making eviction decisions. If done correctly, they show that one can improve

upon this factor of log(B) depending on the accuracy of the prediction.

Multiple vs. Layered Representations. Researchers have also

explored the caching problem for objects which could either be in MR or LR.

In [21], the authors advocate for storing MR for some data objects and LR

for the rest when the goal is to maximize the hit rate. In addition, they also

develop heuristic policies that dynamically adapt the representation for each

data object. [55] compares optimization-based static caching policies for MR

versus LR to conclude that the hit rate for an LR based caching policy is
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superior. We address this question more broadly by showing the benefit of LR

over MR in terms of hit rate as a function of MR’s storage efficiency compared

to LR. We also present results showing the benefit of LR as we vary the cache

size, the fraction of requests for different versions, the relative size of versions,

and the number of versions.

3.1.2 Contributions and organization

The main contributions of this chapter are now summarized. First, we

redesign and analyze traditional caching policies (Belady, LFU, LRU) for set-

tings where data objects are available in MR or LR. In particular, we introduce

a new working set approximation to compute the hit probabilities for data ob-

jects in a cache utilizing Layered LRU (LLRU) caching policy under an IRM

for requests for data object versions. We show the asymptotic accuracy of this

approximation for both a fixed number of layers and a continuum of layered

representations. The continuum model seems appropriate for settings where

layering overhead is minimal and thus applications could in principle cache

only the data it requires for where it needs better quality, e.g., in a VR gam-

ing setting where high quality is needed only for aspects of the environment

that are currently (or maybe in the near future) close by.

Second, using the working-set approximation, we evaluate the benefit

of LR versus MR for a fixed set of equivalent data object versions. Our re-

sults suggest that even if LR incurs relatively high overheads versus MR, the

performance benefits of LR representations are excellent. We note however
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that this does depend on the popularity of the distinct versions, i.e., the lay-

ered structure is particularly beneficial when there is sufficient diversity in the

requests for a data object’s versions. With these observations in mind, we

consider greedy caching policies that might exploit the availability of both LR

and MR, by greedily seeking to represent the versions in the cache in the most

memory-efficient manner. Such policies can provide some benefit but only

under highly skewed popularity for data object versions. We also explore the

performance of various layered caching policies under stationary IRM showing

that layered LRU is not quite on par either with layered LFU or, of course, the

genie-based layered Belady; yet LLRU can be expected to be a workhorse for

caching LR based systems because of its simplicity and robustness to dynamic

request distribution.

Finally, we explore the performance sensitivity of LLRU to the size

and popularity of layers and data object versions. This provides an avenue to

study how many layers are enough or when indeed more layers leads to better

performance.

The chapter is organized as follows. We start by describing the system

model and working-set approximation for the LLRU policy in Section 3.2.

In the same section, we describe the re-design of traditional caching policies

(Belady, LFU, LRU) with LRs along with an optimization-based static-offline

caching policy. In Section 3.3 we empirically evaluate the claims of Section 3.2.

Finally, Section 3.4 concludes the chapter.
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3.2 System Model and analysis

3.2.1 Model for cache

The system consists of a cache server of capacity B bytes. The server

stores various versions of data objects to serve near-future requests from a user

population. Owing to practical constraints, the cache capacity typically is not

enough to store all versions of data objects.

3.2.2 Model for data objects and arrival requests

We let D denote the set of these data objects - the set has cardinality

D = |D|. Each data object d ∈ D can be stored in several versions, v ∈

{1, 2, . . . , V }, where V is the number of versions. We adopt the Independent

Reference Model (IRM), which is a good abstraction for independent requests

generated from a large population of users. Let λ(d, v) denote the arrival rate

of requests for version v of data object d. The total arrival rate of requests for

data object d ∈ D is given by λ(d) =
∑V

v=1 λ(d, v) and λ =
∑D

d=1 λ(d) denotes

the total arrival rate of requests generated by a population of users. We denote

the vector of requests for each version and data object as λ = (λ(d, v) : d ∈

D, v ∈ {1, 2, . . . , V }). We define q(d) = λ(d)/λ and q(d, v) = λ(d, v)/λ as the

probability of request for data object d ∈ D and probability of request for data

object d ∈ D in version v, respectively. We consider two representations for

storing these data object versions as explained below.
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3.2.3 Model for Multiple Representations

Under Multiple Representations (MRs), several distinct versions of a

data object can be maintained in the cache. Let sMR(d, v) denote the cache

storage space occupied by data object d ∈ D in version v under MR. The

size of versions of a data object d under MR is strictly increasing in v, i.e.,

sMR(d, 1) < sMR(d, 2) < · · · < sMR(d, V ). As explained before, if one version

of a data object is cached and there is a request for a different version of

the same data object, the cached version cannot be used to serve this request

under multiple representations.

3.2.4 Model for Layered representations

Under Layered Representations (LRs), a version v of a data object is

represented by a set of consecutive layers l ∈ {1, 2, . . . , v} where the size of

layer l for data object d is denoted by δ(d, l). So version v of data object d

occupies sLR(d, v) =
∑v

l=1 δ(d, l) space in the cache. Note that the incremental

layer sizes δ(d, l) need not be strictly increasing or decreasing in l. We will be

exploring the impact of this in later sections. Depending on the application,

we expect the overall size of representations under LR to be larger than MR,

i.e., sMR(d, v) ≤ sLR(d, v). We will be studying the impact of such overheads

in the sequel. We let γ(d, l) =
∑V

v=l λ(d, v) denote the total request rate for

layer l induced by the requests for different versions of data object d and

p(d, l) = γ(d, l)/λ =
∑V

v=l q(d, v) denote the request probability for layer l of

data object d.
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3.2.5 Caching Policies

We consider a set Π of caching policies. These policies can either be

online or offline, i.e., they adapt the cached content based on incoming requests

or not, respectively, and they may have knowledge about the future requests

or request rate. For a given vector of request rate λ and policy π ∈ Π, we

define hλ,π = (hλ,π(d, r) : d ∈ D, v ∈ {1, 2, . . . , V }), where hλ,π(d, v) denotes

the long-term fraction of requests for data object d and version v that results

in a cache hit. These data objects could either be stored in LR or MR.

3.2.6 Performance metric

We capture the overall performance of the cache in terms of hit rate.

For a given vector of request rates λ under policy π, we define it as

Hλ,π =
D∑
d=1

V∑
v=1

λ(d, v)hλ,π(d, v). (3.1)

3.2.7 Layered Caching Policies

We now introduce our caching policies for layered representations. Note

that for all policies, a user request to access an object involves using a hash

table to determine whether the object is cached (i.e., whether it’s a cache hit)

and, if so, where it is stored in cache memory. We first define a common

property of all layered caching policies stated hereafter.

Property of layered caching policies. For all policies discussed

hereafter, if layer l + 1 is present in the cache, then layer i ∈ {1, 2, . . . , l} is
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also present in the cache.

3.2.7.1 Static optimal

We begin by developing an optimization-based static-caching policy

that maximizes the hit rate given the vector of request rates λ, where data

objects are in LRs. This is the best that a policy with no knowledge of future

requests can do. Let x = (x(d, v) : d ∈ D, v ∈ {1, 2, . . . , V }), where x(d, v)

denotes an indicator for whether data object d in version v is included in the

cache or not. We formulate the following optimization that maximizes the hit

rate.

max
x

D∑
d=1

V∑
v=1

λ(d, v)x(d, v) (3.2a)

s.t.
D∑
d=1

V∑
v=1

δ(d, v)x(d, v) ≤ B, (3.2b)

x(d, v − 1) ≥ x(d, v), ∀ d ∈ D, v ∈ {2, 3, . . . , V }, (3.2c)

x(d, v) ∈ {0, 1} ∀ d ∈ D, v ∈ {1, 2, . . . , V } (3.2d)

where Constraint 4.20b is on the cache capacity and Constraint 4.20c is en-

suring the previously mentioned property of layered caching policies.

3.2.7.2 Layered Least Frequently Used (LLFU)

The LLFU caching policy prioritizes the caching of layers of data ob-

jects that have been accessed most frequently while ensuring Constraint 4.20c.
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Although we will show through simulations that this policy is optimal when

the size of each layer is equal among policies with no knowledge of future re-

quests, it involves tracking and updating access frequencies of each layer of

every data object. Thus, it may not be practical.

An LLFU cache serves an incoming request for object (d, v) as follows:

• The number of accesses for layer (d, l) is incremented for all l ≤ v.

• If a cache miss occurs (i.e., layer (d, v) is not present in the cache), to

meet Constraint 4.20b, the server may need to evict layers of cached

data objects in increasing order of their current number of accesses until

there is enough space to store all layers l ≤ v for data object d.

So, under LLFU, only layers with the currently highest access counts are

cached. Periodically to prevent numerical overflow, access counts of all data

object layers can, e.g., be simultaneously decremented by a common amount

(equal to the currently smallest access count among all data object layers). In-

stead of access counts, one can define an LLFU policy with access frequencies

equal to the inverse of auto-regressive estimates of inter-access times.

A hybrid LR-MR LFU policy is described in Section 3.2.10 below.

3.2.7.3 Layered Least Recently Used (LLRU)

LLRU manages the cache by evicting the least recently accessed layers

among all data objects currently in the cache. This policy works well when
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there is temporal locality of request patterns, i.e., layers and data objects

accessed more recently are more likely to be accessed again in the near future.

Let a(d, l) denote the time of last access for layer l and data object d ∈ D. An

LLRU cache serves an incoming request for (d, v) at time t as follows:

• Set a(d, l) = t for all l ≤ v while ensuring that lower layers come after

the higher layers.

• If a cache miss occurs, to meet Constraint 4.20b the server may need to

evict layers of cached data objects in the increasing order of access times

until there is enough space to store all layers l ≤ v for data object d.

Instead of using access times, the LLRU cache-eviction order can be main-

tained by just using a doubly-linked list.

A hybrid LR-MR LRU policy is described in Section 3.2.10 below.

3.2.7.4 Layered Belady (LBelady)

LBelady evicts by identifying layers of data objects that will be accessed

furthest in the future and is thus a non-causal policy. Let f(d, l; t) > t denote

the smallest access time after t for layer l of data object d. When the size of

each layer is equal, this is the optimal policy among all possible policies, albeit

accurate future knowledge is generally not available. In our simulations, this

will serve as a benchmark for the case of equal layer sizes.

An LBelady cache serves an incoming request at time t in the following

manner:
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• If a cache miss occurs, to meet Constraint 4.20b, the server may evict

layers of data objects (d, l) in decreasing order of f(d, l; t) until there is

enough space to store the requested version.

3.2.8 Working-set approximation for LLRU

We present a working-set approximation for the LLRU policy when

data objects are stored in layered representations. We will demonstrate its

accuracy by studying this working set as number of data objects go to infinity

in the next section and in a later section through simulations.

Consider a system where time is divided into slots. For the analysis we

assume that the request arrival process for each data object d and layer l is

a Bernoulli process with parameter p(d, l), i.e., the probability that there is a

request for data object d and layer l in a time slot is p(d, l) and such events

occur independently across time slots.

3.2.8.1 Characteristic time

Suppose there is a request for data object d and layer l at time zero.

Let Tf (i, k) be the time of first request for data object i ̸= d and layer k,

where k = {1, 2, . . . , V }. We use Tn(d,m) to denote the time of next query for

data object d and layer m, where m ≤ l. Under the Bernoulli arrival process

model, these times are geometrically distributed, i.e., Tf (d, l) ∼ Geo(p(d, l))

or Tn(d, l) ∼ Geo(p(d, l)).

At time t > 0, the total size of different data objects and layer requested
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up to time t (i.e., working-set size), excluding requests for data object d and

layer l is given by:

S−(d,l)(t) =
D∑
i=1
i ̸=d

V∑
k=1

δ(i, k)1 {Tf (i, k) < t}+
l−1∑
k=1

δ(d, k)1 {Tn(d, k) < t} , (3.3)

where δ(i, k) represents the size of layer k for data object i.

The characteristic time T−(d,l)(B), a random variable, is defined as the

minimum time t > 0 at which the working-set size excluding data object d

and layer l exceeds B:

T−(d,l)(B) = min{t > 0 : S−(d,l)(t) ≥ B}. (3.4)

A request for data object d and layer l at time Tn(d, l) is a cache hit if

the working-set size remains belowB, i.e., S−(d,l)(Tn(d, l)) < B, or equivalently,

if Tn(d, l) < T−(d,l)(B). This relationship is expressed as:

{S−(d,l)(Tn(d, l)) < B} = {T−(d,l)(B) > Tn(d, l)}. (3.5)

Thus, the hit probability for data object d and layer l is then

h(d, l) = P
(
T−(d,l)(B) > Tn(d, l)

)
= E

[
1− (1− p(d, l))(T−(d,l)(B)−1)

]
. (3.6)

Since T−(d,l)(B) corresponds to the time when the working-set size first

reaches B, we have:

B =
D∑
i=1
i ̸=d

V∑
k=1

δ(i, k)1 {Tf (i, k) < t}+
l−1∑
k=1

δ(d, k)1 {Tn(d, k) < t} . (3.7)
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and taking expectations on both sides and simplifying,

B =
D∑
i=1
i ̸=d

V∑
k=1

δ(i, k)E
[
1− (1− p(i, k))T−(d,l)(B)−1

]
+

l−1∑
k=1

δ(d, k)E
[
1− (1− p(d, k))T−(d,l)(B)−1

]
. (3.8)

We use two common approximations from the literature to simplify hit

probability calculations; see [9, 20] for details.

Approximation 1: For D ≫ 1, the characteristic time T−(d,l)(B) be-

comes concentrated around its mean value. Therefore, T−(d,l)(B) can be ap-

proximated by a deterministic value t−(d,l)(B) for data object d and layer l.

Thus, the above equation can be rewritten as follows:

B =
D∑
i=1
i ̸=d

V∑
k=1

δ(i, k)
(
1− (1− p(i, k))t−(d,l)(B)−1

)
+

l−1∑
k=1

δ(d, k)
(
1− (1− p(d, k))t−(d,l)(B)−1

)
. (3.9)

The above is a fixed point equation, which can solved to find t−(d,l)(B)

and one can use that to find the hit probability for data object d and layer l

by

h(d, l) =
(
1− (1− p(d, l))(t−(d,l)(B)−1)

)
. (3.10)

Approximation 2: The dependence of t−(d,l)(B) on (d, l) can be ignored for all

data objects and layer. This is works when p(d, l) is relatively insignificant to
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1, and becomes exact if request probabilities are equiprobable. In summary,

the working-set approximation for LLRU is as follows. Let t∗(B) be such that:

B =
D∑
d=1

V∑
l=1

δ(d, l)
(
1− (1− p(d, l))(t

∗(B)−1)
)

(3.11)

Then the hit probability for data object d ∈ D and layer l ∈ {1, 2, . . . , V } is

given by

h(d, l) =
(
1− (1− p(d, l))(t

∗(B)−1)
)
. (3.12)

This hit probability for data object d and layer l is equal to hit probability for

data object d and version v, where v = l because of the property of LLRU. The

results for a time-slotted system can be extended to continuous time, where

the request arrival process for data object d and layer l is a Poisson process

with parameter γd,l. The hit probability for data object d and layer l is given

by

h(d, l) = 1− e−γd,lt
∗(B), (3.13)

where t∗(B) is such that:

B =
D∑
d=1

V∑
l=1

δ(d, l)
(
1− e−γd,lt

∗(B)
)
. (3.14)

In the next section, we show the asymptotic accuracy of working-set approxi-

mation.

3.2.9 Asymptotic accuracy of working-set approximation for LLRU

We extend the analysis from [15] to incorporate layers into the con-

struction, focusing on LR for this part. Specifically, we consider a system of
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caches where the request probability for data objects and the working-set size

scale as a function of D. In this framework, each data object is assumed to

have V fixed layers (or versions).

Let F be a smooth, monotone increasing function with domain [0, 1],

such that F (0) = 0 and F (1) = 1. We define the request probability for data

object d and version v as D scales in the following manner:

q(D)(d, v) = (F (d/D)− F ((d− 1)/D)) g(v; d/D) (3.15)

where g(v; d/D) denotes the request probability for version v of data object d

and
∑V

v=1 g(v; d/D) = 1 for all data objects. Based on the definition of F and

g, we have
∑D

d=1

∑V
l=1 q

(D)(d, v) = 1 and q(D)(d, v) ≥ 0. Thus, q(D)(d, v) is a

probability distribution determined by F and g. We use δ(D)(d, l) to denote

the size of layer l for data object d and p(D)(d, l) =
∑V

v=l q
(D)(d, v) denotes the

request probability for layer l of data object d.

We define b = B/D, which scales as a function of D, and develop the

notion of characteristic time in the same way as in the previous section. We

assume a system with time-slots and request arrival process for data object

d and layer l is a Bernoulli process with parameter p(D)(d, l) and such events

occur independently over time-slots.

Suppose there is a request for data object d and layer l at time zero.

Let T
(D)
f (i, k) be the time of first request for data object i ̸= d and layer k,

where k = {1, 2, . . . , V }. We use T
(D)
n (d,m) to denote the time of next query

for data object d and layer m, where m ≤ l. Under the Bernoulli arrival
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process model, these times are geometrically distributed, i.e., T
(D)
f (d, l) ∼

Geo(p(D)(d, l)) or T
(D)
n (d, l) ∼ Geo(p(D)(d, l)). At time t > 0, the total size of

different data objects and layer requested upto time t (i.e., working-set size),

excluding requests for data object d and layer l is

S
(D)
−(d,l)(t) =

l−1∑
k=1

δ(D)(d, k)1
{
T (D)
n (d, k) < t

}
+

D∑
i=1
i ̸=d

V∑
k=1

δ(D)(i, k)1
{
T

(D)
f (i, k) < t

}
, (3.16)

with

E
[
S
(D)
−(d,l)(t)

]
=

l−1∑
k=1

δ(D)(d, k)
(
1− (1− p(D)(d, k))(t−1)

)
+

D∑
i=1
i ̸=d

V∑
k=1

δ(D)(i, k)
(
1− (1− p(D)(i, k))(t−1)

)
. (3.17)

Similarly, we can find the working-set size at time t and its expectation is

given by:

E
[
S(D)(t)

]
=

D∑
d=1

V∑
l=1

δ(D)(d, l)
(
1− (1− p(D)(d, l))(t−1)

)
. (3.18)

We define Riemann integrable ∆ satisfying ∆(d/D, l) = δ(D)(d, l) for

all D, d and l for the theorem below.

Theorem 3.1 (Asymptotic hit probability). Consider the system of caches

which scales as a function of D. For large D, the hit probability for data

object d and layer l, h(D)(d, l), is approximated by

h(D)(d, l) =
(
1− (1− p(D)(d, l))(t

∗(B)−1)
)

(3.19)
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where t∗(B) is such that:

B =
D∑
d=1

V∑
l=1

δ(D)(d, l)
(
1− (1− p(D)(d, l))(t

∗(B)−1)
)
. (3.20)

In the limit D → ∞, the hit probability for data object d and layer l is

given by:

h(d, l) := lim
D→∞

h(D)(d, l) = 1− e−τ
∗(b)F ′(d)

∑V
v=l g(v;d) (3.21)

where τ ∗(b) is such that:

b = lim
D→∞

E
[
S(D)(Dτ)

D

]
=

∫ 1

0

V∑
l=1

∆(x, l)dx −

∫ 1

0

V∑
l=1

∆(x, l)e−τ
∗(b)F ′(x)

∑V
v=l g(v;x)dx. (3.22)

Proof. Refer to the Appendix.

We next study a system of caches where probability requests for data

objects, layers, and working-set size scales as a function of D and V .

As before, let F and G be two smooth, monotone increasing function

with domain closed interval [0, 1], such that F (0) = G(0) = 0 and F (1) =

G(1) = 1. We define the request probability for data object d and version v

as D and V scales as follows:

q(D,V )(d, v) = (F (d/D)− F ((d− 1)/D)) (G(v/V )−G((v − 1)/V )) . (3.23)
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Based on the definition of F and G, we have∑D
d=1

∑V
l=1 q

(D,V )(d, v) = 1 and q(D,V )(d, v) ≥ 0. Thus, q(D,V )(d, v) is a proba-

bility distribution determined by F and G. We use δ(D,V )(d, l) to denote the

size of layer l for data object d and p(D,V )(d, l) =
∑V

v=l q
(D,V )(d, v) denotes the

request probability for layer l of data object d. We define Riemann integrable

∆ satisfying ∆(d/D, l/V ) = δ(D,V )(d, l) for all D, V, d and l for the theorem

below.

Theorem 3.2. Consider the system of caches which scales as a function of D

and V . For large D and V , the hit probability for data object d and layer l,

h(D,V )(d, l), is approximated by

h(D,V )(d, l) =
(
1− (1− p(D,V )(d, l))(t

∗(B)−1)
)

(3.24)

where t∗(B) is such that:

B =
D∑
d=1

V∑
l=1

δ(D,V )(d, l)
(
1− (1− p(D,V )(d, l))(t

∗(B)−1)
)
. (3.25)

In the limit D → ∞ and V → ∞, the hit probability for data object d

and layer l is given by:

h(d, l) := lim
V→∞

lim
D→∞

h(D,V )(d, l) = 1− e−τ
∗(b)F ′(d)G′(l) (3.26)

where τ ∗(b) is such that:

b = lim
R→∞

lim
D→∞

E
[
S(D,V )(DV τ)

DV

]
=

∫ 1

0

∫ 1

0

∆(x, y)dxdy −∫ 1

0

∫ 1

0

∆(x, y)(e−τ
∗(b)F ′(x)G′(y))dxdy. (3.27)

Proof. Similar to the proof of Theorem 3.1.
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3.2.10 Greedy hybrid LRU and LFU policies

In this subsection, we briefly describe two policies that adapt and store

the best representation choice (MR or LR) for each cached data object’s as-

sociated versions. These approaches are inspired by the work of [21] and aim

to store objects as MR if there is a skewed popularity among its different

versions. Conversely, if a data object is popular across multiple versions, it

is stored as LR. Under our Greedy Hybrid LRU-type policy, when a request

occurs for a version of a data object which is not present in the cache in any

other version, the data object is fetched in the requested version and stored in

its MR representation. If there is a request for a version of a data object which

is different from a version that has already been cached, then both versions

are stored as LR including all layers up to the maximum version requested.

This policy is called “HLRU” in our numerical evaluation section.

Similarly we can define a static Greedy Hybrid LFU - type approach

where the policy to decide which objects to include in the cache proceeds as

follows. Data object versions are ranked in descending order of popularity none

of which are initially cached. Take the most popular uncached object/version

(d, v): If no cached version of d exists and there is room, then (d, v) enters

the cache in its MR representation. If another version of d is in the cache and

if there is room, then (d, v) enters the cache as LR the other cached version

of d converts to LR. This process proceeds until the cache is full. This static

Greedy Hybrid LFU policy is such that objects cached only in one version are

stored as MR, otherwise LR. This policy is called “HLFU” in our numerical
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evaluation section. The described policies are greedy under the constraint that

for all data object d and version v, sMR(d, v) ≤ sLR(d, v) and, for all versions

v > 1, min1≤u<v≤V sMR(d, u) + sMR(d, v) ≥ sLR(d, v).

3.3 Numerical evaluation and simulation results

In this section, we perform extensive numerical evaluations based on

the working set approximation and simulations of layered caching policies.

The aim is to characterize the fundamental tradeoffs underlying the caching

of data objects with LR and/or MR representations.

3.3.1 How accurate is the working set approximation for LLRU?

Setting. We consider a caching system with D = 100 data objects,

each having V = 4 layered versions. The request probability q(d) follows a

Zipf distribution with parameter 0.8, while the request probability q(d, v) for

version v is uniformly selected from (0, q(d)), ensuring
∑V

v=1 q(d, v) = q(d).

Additionally, we impose q(d, v1) > q(d, v2) for v1 < v2, reflecting the higher

request frequency of lower versions. Requests for object d and version v follow

a Poisson process with rate q(d, v). The size of each layer is uniformly chosen

from [1, 240], ensuring a total object size of 240.

Results discussion. We plot the hit probability of data objects ranked

1, 5, 10, and 15 in Fig. 3.2. The squares represent the results obtained from

simulations of LLRU policy, conducted over sufficiently long runs to ensure

high accuracy. The lines are derived from the working set approximation for
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(a) Version 1 (b) Version 2

(c) Version 3 (d) Version 4

Figure 3.2: Hit probability against cache capacity for selected data objects
under LLRU caching policy.
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LLRU. The agreement between simulation results and approximation is nearly

perfect for all practical purposes across all layers of a data object. We will use

this approximation to address the questions posed at the beginning.

3.3.2 When are Multiple Representations (MR) better than Lay-
ered Representations (LR)?

Setting. We now examine a caching system with D = 100 data objects

and V = 2 versions under multiple/layered representations, where request

probability for a data object follows a Zipf distribution with parameter 0.8.

Let α = q(d, 1)/(q(d, 1)+q(d, 2)) denote the request probability for Version 1 of

MR/LR for data object d. Thus, the request probability for Version 2 of either

MR or LR is 1 − α. For the case of multiple representations, β = sMR(d, 1)

denotes the size of Version 1 and the size of Version 2 is 1, i.e., sMR(d, 2) = 1

for data object d. The size of Version 1 and 2 under layered representation is

given by sLR(d, v) = (1 + o) · sMR(d, v), where o is the percent overhead of LR

vs. MR. As before the request arrival process is modeled as a Poisson process

and we set the total request rate, λ, to = 1.

Results discussion. In Fig. 3.3a, we show the percentage relative

improvement in the hit rate of LLRU (data objects are stored in LR) com-

pared to MRLRU (data objects are stored in MR) for varying cache capacities

(10, 20, and 100). As the cache capacity increases, the observed improvement

decreases. This trend emerges because the hit rate for MRLRU and LLRU con-

verges to 1 with increasing cache capacity, regardless of overhead. Ultimately,
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(a) Comparison of hit rate of LLRU
to MRLRU for α = 0.5.

(b) Comparison of hit rate of
different caching policies with B = 100.

(c) Comparison of hit rate of different caching
policies when fraction of requests for versions
of odd numbered data objects is (α, 1−α) and
(0.5, 0.5) for the rest with B = 100.

Figure 3.3: Performance comparison of LR vs. MR for β = 0.5 as a function
of percent overhead and fraction of requests.
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a sufficiently large cache achieves the optimal hit rate of 1. Consequently, for

such large cache capacities, there will be no difference in hit rates between

LLRU and MRLRU, leading to no relative improvement.

Moreover, in Fig. 3.3b, we plot the hit rate under two scenarios: one

where all data objects are exclusively stored in LR (with a cache utilizing

LLRU) and another where they are stored in MR (with a cache utilizing

MRLRU). This is presented as a function of fraction of requests for Version

1. We show the results for two different overhead values of 5 and 25. These

overhead values represent the extremes for SVC vs. AVC overhead, see [16].

Additionally, we remind the reader of the HLRU and HLFU policies, see Sec-

tion 3.2.10, that are capable of adapting the optimal representation for each

data object. The rationale behind these approaches is to minimize the storage

space occupied by the data object. Initially, the data object is stored in MR,

given that sMR(d, i) < sLR(d, i) for i equal to 1 or 2. However, if there is an

additional request for the other version, the data object is then stored in LR,

considering that sLR(d, 2) < sMR(d, 1) + sMR(d, 2).

We note that for o = 25, MRLRU performs better or comparable to

LLRU when the fraction of requests for different versions is skewed, though

this is not necessarily true for lower overhead values for example o = 5. Ad-

ditionally, the hybrid variant of LRU, HLRU, designed to minimize the space

occupied by each data object, consistently performs either as well as or better

than LLRU for the presented overhead values. We perform a similar study for

another scenario where we fix the fraction of requests for Version 1 of even-
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numbered data objects at 0.5 and vary the fraction of requests for Version 1 of

odd-numbered data objects using the parameter α, i.e., the fraction of request

is α for Version 1 and 1 − α for Version 2. The results are plotted in Fig-

ure 3.3c, and once again, the HLRU outperforms or matches LLRU. At last,

we draw reader’s attention to static Greedy Hybrid, HLFU, which uses the

knowledge of popularities of data objects and versions to determine what to

cache. This policy consistently outperforms all the other policies irrespective

of the overhead values.

In summary, we note substantial performance benefits favoring layered

representations over multiple representations, especially for reasonable percent

overhead (o less than 25). However, for o = 25, MRLRU may outperform

LLRU if the request distribution is skewed, highlighting the need for policies

that can dynamically adapt and store the optimal representation for each data

object. Next, we study the different layered caching policies.

3.3.3 Study of different layered caching policies

We begin with a study to compare the performance of different layered

caching policies with two vs. only one version under layered representation for

each data object. For this, we discretely vary the request rate for LR 1 for a

fixed size of Version 1 and 2. Next, we study the performance comparison of

LLRU policy for two vs. one version under layered representation as a function

of request rate for LR 1 again for a fixed size of Version 1 and 2.

Setting. We have a caching system with D = 100 data objects. The

100



Figure 3.4: Hit rate against cache capacity under Layered caching policies for
(α, ρ) = (0.99, 0.5).

request probability for data objects follows a Zipf distribution with parameter

0.8. As before α = q(d, 1)/(q(d, 1) + q(d, 2)) denotes the fraction of requests

for LR 1 of data object d when each data object has two versions. Thus, 1−α

is the fraction of requests for LR 2 or requests for both layers. For each data

object, α = 0 and α = 1 correspond to all requests for both layers and only

the first layer, respectively. Let ρ = δ(d, 1) denote the size of Layer 1 for data

object d, and the total size of each data object is 1, making the size of Layer 2

equal to 1− ρ. The request arrival process follows a Poisson distribution with

a total request rate equal to 1.

3.3.3.1 Layered caching policies

Results discussion. Fig. 4.4 depicts the hit rate for different layered

caching policies and the optimal hit rate as a solution of the static optimal

policy. We observe that the policy with knowledge of future arrivals, LBelady
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(a) Performance of different caching
policies with 1 version under LR for each
data object.

(b) Performance comparison for
(α, ρ) = (0.99, 0.5).

(c) Performance comparison for
(α, ρ) = (0.9, 0.5).

(d) Performance comparison for
(α, ρ) = (0.5, 0.5).

Figure 3.5: Performance comparison of two vs. one version under layered
representation against cache capacity.
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(a) Hit rate under LLRU with two versions
under layered representation for each data ob-
ject.

(b) Hit probability for Data Object 1.

(c) Hit probability for Data Object 10.

Figure 3.6: Performance of LLRU with two versions under layered representa-
tion for each data object against fraction of requests for LR 1 and ρ = 0.5.
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performs the best, following that both LLFU and Static optimal have similar

performance. Thus, LLFU, which keeps track of the number of arrivals for

each data object and version, is the optimal policy among the class of policies

without the knowledge of future arrivals. Finally, the LLRU policy, which does

not require knowledge of the arrival process nor keep track of the number of

arrivals for each data object and version has comparable performance.

3.3.3.2 Comparison of hit rate for two vs. one version under lay-
ered representation for different caching policies: discrete
values for fraction of requests for version 1

Results discussion. As a baseline, we first show the hit rate under

different layered caching policies when each data object consists of only 1

version in Fig. 3.5a. We then plot the percent relative improvement in hit

rate of two vs. one version under layered representation with different layered

caching policies for different values of α and ρ in Fig. 3.5. As α increases for

fixed ρ, we observe an improvement in relative performance for all policies at a

given cache capacity. Additionally, for cache capacity equal to 100 the percent

relative improvement is 0 because all policies achieve the best possible hit rate.

3.3.3.3 Comparison of hit rate for two vs. one version under lay-
ered representation under LLRU: varying fraction of re-
quests for Version 1

Results discussion. Fig. 3.6a shows the hit rate under the LLRU

caching policy for different cache capacities as a function of the fraction of

requests for LR 1, α. We observe a non-monotonic behavior for the hit rate
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for all cache capacities. This is explained through Figures 3.6b and 3.6c,

where we show the hit probability for both versions of data object 1 and 10,

respectively, for different cache capacities. In both figures, the hit probability

for LR 1 increases as the fraction of requests for Version 1 increases from left to

right, while decreasing for LR 2. Since the hit rate is a convex combination of

hit probabilities for LR 1 and LR 2, we observe the non-monotonic behavior in

Fig. 3.6a. Thus, for a fixed size of Version 1, the performance is non-monotonic

in the fraction of requests for LR 1.

3.3.4 Impact of layers’ sizes and popularity on performance

In this section, we study the impact of layer size and popularity of

layers on the hit rate. More specifically, we will fix the size of layers and

offer guidance on how to set the popularity of versions and thus layers that is

optimal. Similarly, for a fixed popularity of versions, we address the optimal

setting of the size of each layer. We will do this first for the case where data

objects have 2 versions and then 3 versions.

Setting. For this section, we have a caching system with D = 100 data

objects. The request probability for data objects follows a Zipf distribution

with parameter 0.8. For the case of 2 versions, we remind the reader about

α, which denotes the fraction of requests for Version 1 of data object d and

ρ = δ(d, 1) denotes the size of Layer 1 of data object d. With 3 versions

for each data object, we let ζ = q(d, 1)/(q(d, 1) + q(d, 2) + q(d, 3)), and η =

q(d, 2)/(q(d, 1) + q(d, 2) + q(d, 3)) denote the fraction of requests for Version
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Figure 3.7: Performance of LLRU for different size and popularity for a cache
capacity of 20.

1 and 2 respectively. Thus, the fraction of requests for Version 3 is 1− ζ − η.

We use ρ = δ(d, 1) and κ = δ(d, 2) to denote the size of Layer 1 and Layer 2,

making the size of Layer 3 equal to 1− ρ− κ.

3.3.4.1 How to set the size and popularity when each data object
has 2 version?

Results discussion. We show the performance of cache under LLRU

caching policy in Fig. 3.7 for different values of fraction of requests for Ver-

sion 1 and size of Layer 1. We observe that for a fixed fraction of requests

for LR 1, as the size of Layer 1 decreases, the performance improvement is

monotonically increasing. Also, as already observed in the previous section,

the same is not true for the fixed size of Layer 1 and the increasing fraction

of requests for LR 1. Furthermore, if both the size and fraction of requests

vary simultaneously, possibly along a diagonal, the hit rate does not follow

a monotonic pattern. The last observation is significant improvements occur
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(b) Performance for (ρ, κ) = (0.8, 0.1).

Figure 3.8: Performance of LLRU for different popularities of versions when
there 3 versions for B = 80.

with an increasing fraction of requests for LR 1 and a decreasing size of Layer

1.

3.3.4.2 How to set the size and popularity when each data object
has 3 versions?

Results discussion. We show the performance of cache under LLRU

caching policy in Fig. 3.8 for different values of fraction of requests for LR

1 and LR 2 under different fixed sizes of layers. We limit ourselves to a

scenario where the fraction of requests for any version is at least 0.1 and thus

for infeasible pairs of (ζ, η) we set the hit rate value to 0. In Fig. 3.8a, we

observe that the maximum hit rate is observed for (ζ, η) = (0.8, 0.1), i.e., if

most of the requests are for LR 1, which also has a small size, one observes the

maximum hit rate. Similarly, in Fig. 3.8b we observe the maximum hit rate for

(ζ, η) = (0.8, 0.1) even though the size of layer 1 is the maximum of all. This
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Figure 3.9: Performance of LLRU for different popularities of versions when
there 3 versions for B = 80.

is a result of the condition that the presence of a higher layer implies all layers

lower than that must also be present in the cache. In addition, we observe that

for a fixed value of ζ and increasing η, the hit rate is not monotonic. Thus,

a naive approach to selecting the popularity might not be optimal. We show

similar results for the case when popularity is fixed, and we need to select the

optimal size of layers in Fig. 3.9.

3.3.5 Is it beneficial to increase the number of versions for a data
object?

Setting. We manage 100 data objects, and the request probability for

each data object follows a Zipf distribution with parameter 0.8. We scale the

number of versions as V and correspondingly vary the request probability for

data object d’s vth version as q(V )(d, v) = (V−v+1)m∑V
i=1(V−i+1)m

while size varies as
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s
(V )
LR (d, v) =

∑v
l=1 δ

(V )(d, l) where δ(V )(d, l) = (l)n∑V
i=1(i)

n
. We plot the request

probability, p(V )(d, l) =
∑V

v=l q
(V )(d, v), for the first three layers and size,

δ(V )(d, l), as a function of number of versions in Fig. 3.10a and Fig. 3.10b,

respectively.

Results discussion. We conduct a performance comparison of LLRU

with V vs. 1 versions under layered representation in Fig. 3.10. In Figures

3.11a, 3.11b, 3.11c, and 3.11d we show the hit rate under LLRU against the

number of versions for different values of m and n. We empirically observe

that both the popularity and size of layers need to increase/decrease at a

certain rate to see benefits in terms of the hit rate. In Fig. 3.11a, the hit rate

is monotonically decreasing in the number of versions whereas by increasing

the value of m for same n, we see a non-monotonic behavior, see Fig. 3.11b.

This points to the subtle ways in which the overall hit rate depends on the

number of versions, popularity, and size characterization. In addition, we

observed that the hit rate is monotonic in the number of versions for all values

of m > 0 and n ≥ 0.

3.4 Conclusion

The efficient management of the large amounts of data required by

emerging delay-constrained applications, e.g., multiplayer VR gaming and

NN-based inference, will require judicious use of caching which exploit, when

appropriate, hierarchies of data object representations that enable tradeoffs

between data object’s size and quality. To address this, in this chapter, we
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(a) Fraction of requests for layers. (b) Size of layers.

Figure 3.10: Popularity and size characterization for different values of m and
n as a function of number of versions.

have studied caching policies optimized for data objects with multiple versions

and layered representations. Based on numerical analysis and simulation, the

benefits of LR are substantial even if in some settings such hierarchical rep-

resentations incur additional overheads. To make the most of such represen-

tations it is critical to understand the impact that the incremental size of

layers and the level of demand for different versions will play. This chapter

explores these impacts and suggests when, for example, additional layers may

be of value, and when they may in be counterproductive, towards enhancing

performance.
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(a) m = 0, n = -1

X 10

Y 0.786969

X 2

Y 0.816617
X 1

Y 0.79418

(b) m = 2, n = -1

(c) m = 0, n = 1 (d) m = 2, n = 1

Figure 3.11: Comparison of LLRU with V vs. 1 version under layered rep-
resentation for request probability of version v of data object d given by
q(V )(d, v) = (V−v+1)m∑V

i=1(V−i+1)m
and size of lth layer by δ(V )(d, l) = (l)n∑V

i=1(i)
n
.
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Chapter 4

Inferring Causal Relationships to Improve

Caching for Clients with Correlated Requests:

Applications to VR

This chapter1 tackles edge-cache design when client requests are corre-

lated—as they are, for example, when groups of users explore the same VR

scene and therefore ask for the same objects in succession. We introduce a

grouped-client request model that extends the classic Independent Reference

Model to capture such correlations and use it to analyse mainstream poli-

cies. The analysis shows an intriguing split: with small to medium caches,

the frequency-based LFU rule is optimal, but once the cache is large enough,

the recency-based LRU rule becomes superior. We then introduce LFRU: a

lightweight online caching policy that adapts to structured correlations when

present, outperforming both LRU and LFU across cache sizes.

1This chapter is based on the work submitted to Infocom 2025:

• A. Bari, G. De Veciana, Y.Zhou, “Inferring Causal Relationships to Improve Caching
for Clients with Correlated Requests: Applications to VR,” Submitted to Infocom
2026

Agrim Bari led the formulation of the problem, the design of policies, execution of experi-
ments, and the writing of the paper.
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4.1 Introduction

Managing shared edge caching. Efficient management of shared

edge caches plays a crucial role in modern networked systems, reducing la-

tency, alleviating backhaul network congestion, and improving client experi-

ence. However, ensuring data availability for multiple clients on the limited

shared edge caches with diverse and dynamic request patterns presents a signif-

icant challenge. To maximize the overall performance, there are two decisions

to be made, first, about what data to place in the cache (placement), second,

what data to evict when storage constraints are reached (eviction).

Existing heuristic caching policies. Traditional caching policies

rely on well-established heuristics to determine cache placement and eviction.

Least Recently Used (LRU) prioritizes the eviction of objects accessed least

recently, making it effective when request patterns exhibit strong temporal

locality. Least Frequently Used (LFU) retains the most commonly requested

objects over time, excelling in settings where demand popularity remains rel-

atively stable. However, in many scenarios, client data requests exhibit corre-

lations which can be dynamically changing.

Correlation in client requests and applications. In many real-

world applications, the patterns of request of client data are not independent

but exhibit strong correlations due to shared contexts, coordinated activities,

or inherent behavior of the system. For example, in collaborative Virtual Real-

ity (VR) environments, correlations in client requests can arise explicitly, such

as when students follow their teacher through a VR space and request the same
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data objects with some delay. Alternatively, correlations may emerge implic-

itly when multiple clients independently visit a popular virtual location, such

as New York, leading to overlapping content requests. Similarly, in collabora-

tive editing platforms such as Google Docs or GitHub, employees working on

shared documents or repositories often access overlapping data files in rapid

succession.

A similar structure exists in edge computing, where client-generated

tasks rely on microservices that must be loaded into the edge server’s memory

before execution. In many applications, clients invoke specific sequences of

microservices due to inherent task dependencies. For instance, a request for

an authentication service is frequently followed by requests for data processing

or storage services, with multiple clients exhibiting similar access patterns.

These correlations, whether arising from user behavior, system architecture, or

application workflows, present an opportunity to optimize caching strategies,

improving efficiency and reducing service latency.

Different client request patterns in VR.

In VR environments, client request patterns can exhibit different forms

of correlation, as illustrated in Fig. 4.1. One common scenario, which we

denote as structured following, occurs when followers replicate their leader’s

requests sequentially. For example, in a virtual museum setting, a teacher

guiding students through exhibits results in each student accessing the same

content in the same order as the teacher. In contrast, unstructured following

arises when followers are distributed around the leader, leading to a staggered
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(a) Structured following. (b) Unstructured following.

Figure 4.1: Different types of correlations in a VR environment, example rel-
ative positions of clients.

and less predictable request pattern, such as when students explore a VR en-

vironment independently, but still request content influenced by the teacher’s

interactions.

In this work, we introduce a unified model denoted grouped client re-

quest model to capture structured and unstructured following behaviors. This

model extends the traditional Independent Reference Model (IRM) by ex-

plicitly accounting for correlations among client requests. Furthermore, we

propose a caching policy that dynamically infers causal relationships between

client requests. In scenarios characterized by structured following, our ap-

proach significantly outperforms the conventional LRU policy and others by

prioritizing the retention of objects likely to be requested by (follower) clients

based on these inferred dependencies.
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4.1.1 Related work

Analytical works on caching policies and approximation. We

restrict our review to the most relevant papers in our work. [11, 29] summa-

rize significant early work in the design of caching policies, and [22] describes

analytical methods and evaluation results for the performance assessment of

caching strategies. The aim of any caching policy is to achieve efficient cache

utilization. This efficiency is measured primarily by the cache hit rate, which

is the averaged fraction of data object requests for which the data object is in

the cache when requested.

Besides hit rate, other design objectives for caching policies are ease of

implementation, low operational overhead, and adaptability to fluctuations in

access/request patterns. An important difference among caching policies is in

what they evict when the cache is full. Under Least Recently Used (LRU),

the cache is consistently updated to hold the most recently requested data

objects, enabling it to leverage the temporal locality of data object requests.

Notably for LRU under the Independent Reference Model (IRM), where each

data object is requested independently of any past requests, the invariant

distribution assuming data objects of the same size [38] and an approximation

for the hit rate [12, 15, 9, 20] have been obtained. In particular, [12] describes

the working-set approximation for hitting probabilities, the fraction of requests

for a data object for which the object is in the cache. This approximation has

been shown to be accurate as the number of objects scales [15, 20]. In this

chapter, we define a new working set approximation and use that to find the
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hit probability for requests from different clients under a grouped client request

model defined later.

Under the IRM model, for a fixed cache capacity with same-size data

objects, caching the most popular data objects is optimal for causal policies

[2]. Least Frequently Used (LFU) performs optimally under stationary regimes

of request patterns by replacing cached data objects based on the frequency

measurements of past requests. An interesting work by [28] shows that a

variant of LRU that infers the instantaneous request rate subject to the history

of requests can come arbitrarily close to the optimal LFU algorithm. [30] shows

that even for strongly correlated request patterns, LFU is still optimal among

causal policies. However, while LFU may be effective in stationary scenarios

where access patterns remain relatively constant, it may struggle to perform

optimally in non-stationary regimes where the dynamics of data access change

over time.

Machine Learning-Based Caching Approaches.

Recent advancements in Machine Learning (ML) have significantly influenced

the development of intelligent and adaptive caching strategies. Approaches

such as those in [49, 50, 17] leverage supervised learning to predict content

popularity and optimize caching decisions. [49] focuses on long-term predic-

tions, utilizing deep learning models to forecast future content demand. By

contrast, [17] emphasizes the ability to adapt to short-term, immediate fluc-

tuations in user demands, particularly in edge networks. While both meth-

ods demonstrate the potential of ML in improving caching performance, they
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are heavily reliant on predictive models that require substantial amounts of

training data. Moreover, they typically struggle to adapt to rapidly changing

workloads, especially when faced with unpredictable shifts in user behavior.

This limitation is mitigated by our proposed LFRU policy, which does not

depend on predictive modeling. Instead, LFRU adapts in real-time based on

observed correlations between client requests, making it more responsive to

dynamic workloads without the need for extensive training data.

The authors of [39] and [42] employ reinforcement learning (RL) to

make cache eviction decisions based on factors such as access patterns, object

size, and content popularity. These RL-based approaches dynamically adjust

their caching decisions in response to changing network conditions, thereby

optimizing content delivery efficiency. While RL-based methods are effective

in handling dynamic environments, they typically require continuous retrain-

ing to maintain accuracy as access patterns evolve. This presents a challenge

in rapidly changing contexts, such as VR applications, where request patterns

can fluctuate significantly. LFRU, however, does not rely on retraining or pre-

dictive modeling. Instead, it infers causal relationships between client requests

in real-time, ensuring efficient cache eviction decisions even as access patterns

change unpredictably.

The works most closely aligned with our approach are [26] and [18].

In [26], the authors use a neural network to model the inter-relationships be-

tween content requests. By learning patterns of dependencies among requests,

[26] aims to optimize cache eviction decisions by prioritizing content that is
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more likely to be requested soon. In contrast, LFRU builds similar relation-

ships across client requests but does so in a computationally more efficient

manner than neural networks. This makes LFRU a more lightweight solution,

especially in resource-constrained environments.

In [18], cache decisions are made based on the Follow-The-Regularized-

Leader algorithm, which optimizes the selection of actions by combining histor-

ical data with regularization penalties. Similarly, LFRU makes cache eviction

decisions based on the observed behavior of clients and infers which clients

are more likely to be followed by others. While both methods aim to op-

timize decision-making based on past behavior, LFRU offers a more direct

and computationally less expensive approach by focusing on observed client

correlations rather than relying on complex models or algorithms.

Finally, [47] explores hybrid strategies that integrate machine-learned

predictions with traditional caching techniques. This combination seeks to

improve the competitive ratio of caching algorithms despite potential inaccu-

racies in predictions. While hybrid methods have shown promise in improving

caching performance, they still rely on predictive models, which can incur

higher computational costs and may struggle with rapidly changing work-

loads. LFRU, in contrast, offers a purely observational approach that does

not rely on predictions or complex models, providing a more efficient alterna-

tive in environments where quick adaptation and low computational overhead

are critical.
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4.1.2 Contributions and organization

In summary, we make the following key contributions:

• We introduce the grouped client request model, a generalization of IRM

that captures different types of correlations in client requests.

• We derive a working-set approximation for computing hit probabilities

under LRU and show that LFU is suboptimal for large caches in corre-

lated request settings.

• We propose Least Following and Recently Used (LFRU), a lightweight on-

line caching policy that adapts to structured correlations when present,

outperforming both LRU and LFU across cache sizes.

• We develop VR-based datasets to capture different types of correlated

client requests and empirically show that LFRU improves cache hit ratios

by up to 2.9× over LRU and 1.9× over LFU.

The remainder of this chapter is organized as follows. In Section 4.2, we de-

scribe the system model and present the working-set approximation for LRU

under the grouped client request model. This section also includes an approx-

imation for calculating hit probabilities for different clients. In Section 4.3,

we introduce our caching policy that leverages inferred causal relationships.

We then empirically evaluate and compare different caching policies using a

dataset emulating a VR environment in Section 4.4. Finally, we conclude the

chapter in Section 4.5.
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4.2 System Model, analysis and simulation results

4.2.1 Model for cache

We shall consider a simple cache with capacity b bytes. The cache stores

various data objects to serve future requests from a client population. Due to

practical and cost constraints, the cache capacity typically is not enough to

store all data objects.

4.2.2 Model for grouped client request patterns

We consider a fixed set of data objects, denoted by D, where D is

the total number of data objects that a population of clients can request.

Clients are represented by the set C = {1, 2, . . . , C}, where C is the total

number of clients. Each client belongs to exactly one of several distinct and

non-overlapping groups, denoted by G = {1, 2, . . . , G}, where G is the total

number of groups.

For each group g ∈ G, let Dg represent the set of data objects that can

be requested by clients in the group, and Cg represent the set of clients in the

group. Each group has a designated leader client, denoted by lg, along with a

number f g of followers.

For a data object d ∈ D, we let Gd ⊆ G denote the subset of groups

that may request the data object d. Note that while groups do not overlap in

terms of clients, they may share common data objects.

Definition 4.1 (Grouped Client Request Model). Each group’s leader gen-

erates requests data objects independently of other requests, following a sta-
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tionary Poisson process. Followers in each group make the same data object

requests but with a possibly random delay relative to the time the leader made

the request.

Formally, let λg(d) denote the arrival rate of requests for data object

d ∈ Dg by the leader lg. The total arrival rate of requests generated by leader

lg is denoted as λg =
∑

d∈Dg λg(d). The probability that the leader requests

data object d ∈ Dg is denoted as pg(d) = λg(d)
λg

.

We define ∆g
i as a random variable representing the delay (or possible

advancement) between the request of the i-th follower and the leader of group

g for the same data object. The joint distribution of these delays across all

followers in group g is (∆g
i : i = 1, . . . , f g). These delays can have an arbitrary

joint distribution, independent but not identically distributed, or independent

and identically distributed (i.i.d). The grouped sequence of requests from group

g is modeled as a Marked Poisson Point Process (MPPP):

Ag =
(
(Agn, D

g
n, (∆

g
i,n : i = 1, . . . , f g)) : n ∈ Z+

)
∼ MPPP(λg),

where Agn is the arrival time of the n-th request from the leader of group g,

Dg
n is a random variable representing the data object requested by the leader,

(∆g
i,n : i = 1, . . . , f g) ∼ (∆g

i : i = 1, . . . , f g) represents the joint distribution of

delays for the n-th request from the followers of group g, relative to when the

leader made the request. These delays associated with followers requests are

independent across different request instances n.

The overall sequence of arrivals across all groups is denoted as A =
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(Ag : g ∈ G). The processes Ag for different groups g ∈ G are independent

MPPPs. The probability that the leader of group g requests data object d ∈ Dg

is P(Dg
n = d) = pg(d).

Finally, we let s(d) denote the size of data object d, and let Λ = (λg(d) :

g ∈ G, d ∈ Dg) represent the vector of request rates for each group leader and

data object.

Remark 4.1 (Generality of the Grouped Client Request Model). The proposed

model is flexible and can represent various scenarios where client requests are

grouped/correlated. For example:

1. Independent Reference Model (IRM): If f g = 0 for all g ∈ G, the model

reduces to the Independent Reference Model, where client requests are

independent and uncorrelated.

2. Structured follower requests: If the delays ∆g
i are fixed and structured,

such as ∆g
i = δi + ∆g

i−1 for i > 1 where δi are positive constants, then

each leader’s request is followed by a predictable sequence of follower

requests. This models scenarios like a teacher guiding students in a VR

environment, where both the teacher and students request data objects

that fall within their field of view. Here, the students follow the teacher

in a fixed sequence, making requests one after another.

3. Unstructured random follower requests: If the delays follow a random

distribution, such as ∆g
i ∼ U[αi, βi], where αi can be negative, the model
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represents a scenario where follower requests are randomly distributed

around the leader’s request. This captures a more dynamic VR setting,

where students follow a teacher but do not adhere to a strict structure.

Students may request data before or after the teacher.

These examples demonstrate the model’s ability to handle both deterministic

and random correlated patterns for client group requests.

Remark 4.2 (Extending the Grouped Client Request Model). While this

model assumes that followers always request data after their leader, it can be

easily extended to allow followers to randomly opt out of following the leaders

requests. This is a potential direction for our future work.

4.2.3 Hit probabilities for leaders and followers under LRU under
the grouped client request model

The Least Recently Used (LRU) policy evicts the least recently accessed

data object in the cache when a new object is requested, provided that the

new object is not already in the cache and there is no space available to

cache. Suppose d is requested at time 0. Under LRU, assuming the cache

orders data objects from most recently used to least recently used, d initially

occupies the bottom position. Over time, after some data objects (other than

d) are requested, d moves to the top of the cache and is subsequently evicted,

provided that it is not requested again before this happens. Now, we let

Tb(d) be a random variable representing the amount of time it would take to

accumulate other unique data objects requests excluding d so as to fill the
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cache. This variable, Tb(d), is referred to as characteristic time of the data

object d ∈ D.

Quantifying Tb(d) is important for determining the probability that

d will still be in the cache under the LRU policy. In the literature, two ap-

proximations simplify this calculation, and these approximations become more

accurate as the total number of data objects, D, increases (i.e., when D ≫ 1).

For further details, see [9, 20].

Approximation 1: For D ≫ 1, the characteristic time Tb(d) con-

centrates around its mean value. Therefore, Tb(d) can be approximated by a

deterministic value, tb(d), for each data object d.

Approximation 2: The dependence of tb(d) on the specific data object

d can be neglected. This approximation is commonly used and justified in

the literature [9, 20], particularly when the request probability
∑

g∈Gd pg(d) is

small relative to that of the remaining data objects request probabilities. This

approximation becomes exact when the request probabilities are uniform.

Thus we introduce t∗b as the mean characteristic time for any data

object. Given the above approximations, t∗b satisfies the following equation:

b =
∑
d∈D

P (data object d was requested at least once in [−t∗b , 0]) s(d). (4.1)

where the right hand side captures the size of set of data objects present in

the cache at time 0 without loss of generality and since under LRU a data

object stays in the cache for t∗b amount of time after it is requested, we focus

on the case whether a data object was requested at least once in the time
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interval [−t∗b , 0]. This is referred to as the working set approximation, which

has been shown to be accurate as the number of data objects scales. We define

an event V lg ,i
τ as follows: the leader client lg of group g makes a request at

time τ , and i−th follower’s request for the same data object does not occur

within [−t∗b , 0]. This condition is equivalent to {τ +∆g
i /∈ [−t∗b , 0]}. Let p(d, t∗b)

denote the probability that data object d is requested at least once in [−t∗b , 0].

We compute it in the following lemma.

Lemma 4.2 (Working Set Approximation). Consider a cache of size b that

follows the Least Recently Used (LRU) eviction policy and serves a grouped

client request pattern (see Section 4.2.2 for details). The probability that a

data object d is requested at least once within the time interval [−t∗b , 0] is given

by

p(d, t∗b) = 1− e−
∑

g∈Gd

∫∞
−∞ λgτ (d,t

∗
b ) dτ , (4.2)

where λgτ (d, t
∗
b) = λg(d)qgτ (t

∗
b). The function qgτ (t

∗
b) is defined as:

qgτ (t
∗
b) =

{
1− P

(⋂fg

i=1 V
lg ,i
τ

)
if τ ∈ [−∞,−t∗b) ∪ (0,∞),

1 if τ ∈ [−t∗b , 0].
(4.3)

Under Approximations 1 and 2, the characteristic time t∗b is determined by

solving the fixed-point equation:

b =
∑
d∈D

p(d, t∗b)s(d). (4.4)

Proof. To derive p(d, t∗b), we first compute the probability that no client in a

group g ∈ Gd requests data object d within the interval [−t∗b , 0].
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The leader of group g generates requests for d as a PPP with rate λg(d).

Consider the leader of group g requests d at time τ , then its i-th follower

requests it at time τ +∆g
i . A request for data object d from a client in group

g can fall in the interval [−t∗b , 0] either due to the leader’s request occurring

within the interval or due to a follower’s request. Formally, we define qgτ (t
∗
b) as

the probability that at least one client in group g requests d in [−t∗b , 0], given

that the leader made a request at time τ . This probability is given by

qgτ (t
∗
b) =

{
1− P

(⋂fg

i=1 V
lg ,i
τ

)
if τ ∈ [−∞,−t∗b) ∪ (0,∞),

1 if τ ∈ [−t∗b , 0].
(4.5)

Since the leader requests arrive according to a PPP, we can define

an inhomogeneous thinned PPP that models at least one client in group g

requesting d within [−t∗b , 0], with rate λgτ (d, t
∗
b) = λg(d)qgτ (t

∗
b). We can now

compute the probability that no client in group g requests d in [−t∗b , 0] as:

e−
∫∞
−∞ λgτ (d,t

∗
b ) dτ . (4.6)

Since the requests from different groups are independent, the probabil-

ity that d is requested at least once in [−t∗b , 0] is

p(d, t∗b) = 1− P(No client in Gd requests d in [−t∗b , 0]), (4.7)

= 1− e−
∑

g∈Gd

∫∞
−∞ λgτ (d,t

∗
b ) dτ . (4.8)

Finally, under the LRU policy, the total size of cached data objects at time

0 is
∑

d∈D p(d, t
∗
b)s(d). Under approximations 1 and 2, we can now find the

127



characteristic time t∗b which satisfies

b =
∑
d∈D

p(d, t∗b)s(d). (4.9)

We now use this lemma to compute the hit probability for a data object

requested by a client in a group. Let pL(d, g) denote the hit probability for data

object d when requested by the leader lg of group g. Similarly, let pF (d, g; i)

represent the hit probability for a request from the i-th follower in group g.

For two clients c1, c2 ∈ Cg in group g, we define an event Ec1,c2 as follows:

client c1 makes a request for a data object at time 0, and client c2’s request

for the same data object does not occur within the time interval [−t∗b , 0]. For

example, if c1 is the leader lg and c2 is the i-th follower in group g, then Elg ,i

represents the event that the leader generates a request at time 0, but the i-th

follower’s request does not fall within [−t∗b , 0]. This condition is equivalent to

{∆g
i /∈ [−t∗b , 0]}.

Theorem 4.3 (Hit Probability for Clients). Consider a cache of size b that

follows the Least Recently Used (LRU) eviction policy and serves a grouped

client request pattern (see Section 4.2.2 for details). Under Approximations 1

and 2, the hit probability for a data object d requested by leader lg of group g

is given by

pL(d, g) = 1− [1− p(d, t∗b)]

[
P

(
fg⋂
i=1

Elg ,i

)]
. (4.10)
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Similarly, under Approximations 1 and 2, the hit probability for a data

object d requested by i-th follower of group g is

pF (d, g; i) = 1− [1− p(d, t∗b)]

P

 fg⋂
j=1
j ̸=i

Ei,j

 ∩ Ei,lg


 . (4.11)

Proof. To calculate the hit probability for a data object d requested by the

leader lg of group g, assume without loss of generality that this request occurs

at time 0. The leader’s hit probability depends on two factors: first, the

randomly distributed request from lg’s followers around time 0: lg can get a hit

if at least one follower in group g requests data object d within [−t∗b , 0] since the

followers can request for a data object before their leader does (Section 4.2.2

for details), second, requests other than the randomly distributed request from

lg’s followers around time 0: by Slivnyak’s theorem [5], the remaining requests

still follow a MPPP and thus lg can get a hit if at least one client, from any

group, requests data object d within the interval [−t∗b , 0] which is given by the

earlier lemma under Approximations 1 and 2.

Using these two conditions, the leader’s hit probability can be expressed

as:

pL(d, g) = 1− [P(No follower in group g requests d in [−t∗b , 0])] [p(d, t∗b)] .

(4.12)

From our earlier definition of event Elg ,i, we know:

P(No follower in group g requests d in [−t∗b , 0]) = P

(
fg⋂
i=1

Elg ,i

)
. (4.13)
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Now, consider the hit probability for a data object d requested by the

i-th follower of group g. Again, assume without loss of generality that this

request occurs at time 0. As before the follower’s hit probability depends on

two considerations: first, requests from clients other than i-th follower in group

g: i-th follower can get a hit if at least one other client in group g requests

data object d within [−t∗b , 0], second, requests other than the requests already

considered: again using Slivnyak’s theorem [5], the remaining requests still

follow a MPPP and thus i-th follower can get a hit if at least one client (from

any group) requests the data object d within the interval [−t∗b , 0] which is given

by the earlier lemma under Approximations 1 and 2.

Using these two conditions, we express the hit probability for follower

i as:

pF (d, g; i) = 1− P
(
No client except the i-th follower in

g requests d in [−t∗b ,0]

)
[1− p(d, t∗b)] (4.14)

From our earlier definition of events, we obtain:

P
(
No client except the i-th follower in

g requests d in [−t∗b ,0]

)
= P


 fg⋂
j=1
j ̸=i

Ei,j

 ∩ Ei,lg

 . (4.15)

In the coming section, we will use this theorem to understand the im-

pact of client group structures.
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Remark 4.3 (Calculations for different distribution(s) of ∆g
i ). We derive the

following expressions for hit probabilities based on different distribution(s) of

∆g
i :

1. Structured follower requests: If ∆g
i = i · δ, where δ > 0, we can

compute the concerned probabilities as follows:

p(d, t∗b) = 1− e
−
(∑

g∈Gd λ
g(d)
(
t∗b+f

g ·min(δ,t∗b )
))
, (4.16)

pL(d, g) = p(d, t∗b), (4.17)

pF (d, g; i) =

{
1, if δ < t∗b ,

p(d, t∗b), if δ ≥ t∗b .
(4.18)

4.2.4 Caching Policies

We will consider the set Π of stationary caching policies including both

online and offline policies which possibly adapt the cached content based on

incoming requests, and may have knowledge about future requests or request

rates. For a given vector of request rates Λ and policy π ∈ Π, we define

hΛ,π = (hg,cΛ,π(d) : g ∈ G, c ∈ Cg, d ∈ Dg), where hg,cΛ,π(d) denotes the long-term

fraction of requests for data object d from client c of group g that result in a

cache hit.

4.2.5 Performance Metric

We evaluate the performance of a caching policy based on the overall

cache hit ratio. For a given request rate vector Λ and policy π, the cache hit
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ratio is defined as:

HΛ,π =
∑
g∈G

∑
d∈Dg

λg(d)hg,l
g

Λ,π(d) +
∑
g∈G

fg∑
i=1

∑
d∈Dg

λg(d)hg,iΛ,π(d). (4.19)

4.2.6 An optimal (offline) static caching policy

An optimal static caching policy is one that decides which fixed set

of data objects to retain in the cache to maximize cache hit ratio given the

request rate vector Λ. Let x = (x(d) : d ∈ D), where x(d) is a binary vari-

able indicating whether data object d is cached. We formulate the following

optimization problem to maximize the cache hit ratio:

max
x

∑
g∈G

∑
d∈Dg

λg(d)x(d)(1 + f g) (4.20a)

s.t.
∑
d∈D

x(d)s(d) ≤ b, (4.20b)

x(d) ∈ {0, 1},∀ d ∈ D (4.20c)

where constraint Eq. 4.20b ensures that the cache size does not exceed

the capacity b.

4.2.7 Simulation results

In this subsection, we show the accuracy of the working set approxi-

mation for grouped client request pattern under the LRU caching policy and

perform a comparative evaluation of different caching policies.
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(a) Hit probability of leaders. (b) Hit probability of a typical follower of
each group.

Figure 4.2: Hit probability against cache capacity for different clients and data
objects under LRU.

4.2.7.1 How accurate is the working set approximation for grouped
client request pattern under LRU?

Setup. We consider a caching system with three groups (G = 3), where

each group can request data objects from a distinct set. The data object sets

for the groups are defined as follows:

D1 = {1, 2, . . . , 1000}, D2 = {1001, 1002, . . . , 2000},

D3 = {2001, 2002, . . . , 3000}.

Each group consists of one leader and several followers. The number of

followers in each group is:

f 1 = 6, f 2 = 4, f 3 = 3.

The delay between the i-th follower (for all i ∈ {1, · · · , f g}) and the leader

of group g is modeled as an independent and identically distributed (i.i.d.)
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random samples from a uniform distribution:

Group 1: ∆1
i ∼ U[−10, 20], Group 2: ∆2

i ∼ U[15, 30],

Group 3: ∆3
i ∼ U[−5, 40].

The request probability pg(d) for an object d in group g follows a Zipf

distribution with parameter 1, identical across all groups. Requests from group

leaders arrive according to a Poisson process, with the following rates:

λ1 = 10, λ2 = 8, λ3 = 12.

The size of objects is defined so that even-numbered objects have a size of 2,

while odd-numbered objects have a size of 5 for all groups.

Results Discussion. Fig. 4.2 shows the probability of hit for various

objects requested by clients (leaders and followers) in different groups. Since

follower delays in each group are i.i.d., the hit probability for all followers in a

group is identical. The squares in the figure represent simulation results for the

LRU policy, obtained from long simulation runs to ensure reliable accuracy.

The lines are derived from the working set approximation for LRU. As shown,

the approximation aligns almost perfectly with the simulation results across

all clients, demonstrating its high accuracy for practical applications.

4.2.7.2 Impact of client group structure on hit probability.

In this subsection, we use the working set approximation to analyze how

the temporal overlap in follower requests and the number of followers affect
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(a) Impact of standard deviation of delay. (b) Impact of number of followers.

Figure 4.3: Impact of client group structure on hit probability for follower
requests.

the hit probability for follower requests. We focus on the following simulation

setup:

Setup. We consider a caching system with a single group of clients

requesting objects from the set D1 = {1, 2, . . . , 5000}. The group has f 1

followers, and the delay between the i-th follower and the group leader is

modeled as a uniform random variable ∆1
i ∼ U[α, β]. The probability of a

request p1(d) for a data object d follows a Zipf distribution with parameter 1.

The group leader generates requests according to a Poisson process with rate

λ1 = 20. Object sizes are defined such that even-numbered objects have a size

of 2, while odd-numbered objects have a size of 5.

Impact of standard deviation of delay. We fix the mean delay for

follower requests, i.e., 0.5 (α + β) = 30 and vary the standard deviation of

the delay, (β − α)/
√
12. The number of followers is set to f 1 = 4. Fig. 4.3a
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shows the hit probability of a typical follower for different data objects as a

function of standard deviation of delay. Since follower delays are independent

and identically distributed, all followers have the same hit probability. As the

delay variance increases (reducing the temporal locality in follower requests),

the hit probability for each data object decreases. This demonstrates how

temporal locality can be quantitatively linked to cache performance under the

LRU policy.

Impact of number of followers. Here, we fix α = 0 and β = 60,

and vary the number of followers. Fig. 4.3b depicts the hit probability for

different data objects as a function of the number of followers. As the number

of followers increases, the likelihood of requests for the same data object with

short delays between them increases. Consequently, the hit probability for

each data object increases.

4.3 Caching based on inferred causal relations

In the previous section, we analyzed the performance of the LRU under

the grouped client request model. As we will observe in Section 4.4, LRU per-

forms suboptimally for small cache capacities compared to alternative caching

strategies. To address this limitation, we propose a caching policy that infers

temporal causal relationships between client requests and prioritizes eviction

based on two key factors: (i) the frequency with which a client’s request is

followed by requests from other clients and (ii) the recency of requests. By

leveraging these inferred dependencies, the proposed policy improves cache
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performance across different cache capacities.

Our focus is on structured following, such as the interactions between

teachers (leaders) and students (followers) navigating a VR environment. How-

ever, the grouping of clients is not known a priori and must be dynamically

inferred and tracked by our caching policy. In the following section, we intro-

duce the necessary notation and framework to formalize this approach.

4.3.1 Notation

Recall that the set of clients is denoted by C = {1, 2, . . . , C}, where

C = |C| represents the total number of clients. Let a = ((am, dm, cm) : m ∈ Z+)

represent a sequence of requests ordered in time, where am is the arrival time

of the m-th request, dm is the data object requested at that time, and cm is the

client who made the m-th request. We denote the sequence of arrival requests

generated by client c as ac = ((acn, d
c
n) : n ∈ Z+), where acn is the arrival time

of the n-th request made by client c, and dcn is the data object requested at

that time. We let M(t) denote the set of data objects present in the cache

memory at time t.

To identify the last client who requested a specific data object d before

time t, we define the function:

c(d, t) =

argmaxc

{
an · 1(dn = d) · 1(an < t)

: c ∈ C, n ∈ Z+

}
if client exists,

−1 otherwise.

(4.21)

137



where 1(·) is the indicator function. If no such client exists, the function

returns -1.

Next, we define nc(t) as the index of the last request made by client c

at or before time t:

nc(t) = argmax
n

{
acn ≤ t : n ∈ Z+

}
. (4.22)

Definition 4.4 (Following event). We define a following event, where say

client c2 follows c1 on a cache hit if: (1) c2 requests a data object for which it

experiences a cache hit and (2) c1 is the client that most recently requested the

same data object.

Formally, suppose that client c2’s n-th request for data object dc2n at

time ac2n results in a cache hit, i.e., dc2n ∈ M(ac2n ), and that client c1 was the

last client to request dc2n before time ac2n , i.e., c(d
c2
n , a

c2
n ) = c1. In this case, we

say that client c2 followed client c1. We mathematically define this as follows:

f c1,c2n = 1(dc2n ∈M(ac2n ))1(c(d
c2
n , a

c2
n ) = c1) (4.23)

4.3.2 Caching policy

4.3.2.1 Least Following and Recently Used (LFRU (w))

The LFRU policy can improve on traditional LRU caching policy by

considering inferred temporal relationships (following events) between clients’

requests. This policy manages cache evictions by looking at both the recency

of a request and how often other clients have followed the client who made the

request. The goal is to keep data objects that were recently accessed and are
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more likely to be accessed again soon, based on these past patterns of client

requests.

To quantify these temporal relationships, we examine the last w re-

quests made by each client, where w is a policy parameter. Specifically, we

construct a matrix F (t) at time t of size C × C, where the entry in the c1-th

row and c2-th column represents the number of times in the last w requests of

client c2, that client c2 followed client c1. More formally, we define the (c1, c2)

element of the matrix as

F c1,c2(t) =

{∑nc2 (t)
n=nc2 (t)−w f

c1,c2
n c1 ̸= c2

0 otherwise
(4.24)

This matrix helps determine which clients’ requests should be kept in

the cache longer, based on the following event count for clients in the past.

Description of the Policy: When a new request (am, dm, cm) arrives,

we first check whether it results in a cache hit or a cache miss. If it is a cache

hit, the requested object is moved to the most recent position in the access

order to reflect its recency. If it is a cache miss, the object is added to the

cache as the most recent entry, and evictions are performed as required.

To determine which object(s) to evict at time am, we first update the

matrix F (am), which captures the number of following events between pairs

of clients. Next, using this matrix, we calculate the maximum number of

times that other clients have followed each client’s requests. Finally, objects

associated with clients having the fewest following events are evicted first. If
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multiple objects correspond to clients with the same following event count,

least recently accessed object is evicted. Note if no following events have been

seen then the caching policy corresponds to LRU.

Remark 4.4 (Advantages of a Request-Based Window Over a Time-Based

Window). Using a fixed request-based window of the last w requests per client,

rather than a time-based window, provides a fair and consistent method for

comparing following events across different clients. The key advantages of this

approach are as follows:

• Fair comparison across different request rates: A request-based

window ensures that following events are counted in a comparable manner

for all clients. In contrast, a time-based window may count more events

for clients with higher request rates, overestimating their influence on

caching decisions.

• Adaptability to traffic variations: Since a request-based window

directly tracks request behavior, it remains unaffected by fluctuations in

request timing, making the caching policy more robust to dynamic traffic

patterns.

• Consistent eviction decisions: By maintaining statistics based on

a fixed number of past requests, a request-based window leads to stable

and predictable cache eviction rules. In contrast, a time-based window

varies with traffic conditions, potentially resulting in unpredictable cache

behavior.
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4.3.2.2 Least Following and Recently Used with Smoothing
(LFRUS (w, γ))

In the case that requests patterns are changing frequently, we consider

a variant of LFRU policy, LFRUS, that adapts and assigns different weights to

following events based on their recency. This policy is a combination of expo-

nential averaging and sliding window. The key difference is in the calculation

of F c1,c2(t), which is calculated as follows:

F c1,c2(t) =

{⌊∑nc2 (t)
n=nc2 (t)−w γ

(nc2 (t)−n)f c1,c2n

⌋
c1 ̸= c2

0 otherwise.
(4.25)

Here, γ is a parameter that determines the weight assigned to each following

event, with more recent events given higher weightage. The notation ⌊x⌋

represents the floor of x. This policy has two parameters - w, γ.

4.4 Simulation results

In this section, we evaluate the proposed caching policy and compare its

performance against standard caching policies across different request traces.

These traces range from grouped client request model to client requests for

objects within a VR environment.

For the VR-based request traces, clients move in groups and request

objects that fall within their visibility range. We consider two approaches to

generating these requests. First, we simulate client movement within a toroidal

space where data objects are randomly distributed, and all objects have equal

size. Second, we use an actual VR environment where the size of data objects
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depends on factors such as the number of vertices, edges, textures, and the

distance of the client from the object.

The primary evaluation metric used in our analysis is the cache hit ratio,

which measures the fraction of client requests that are successfully served from

the cache.

Caching policies. We consider three additional online caching policies

for evaluation.

• Least Frequently Used (LFU): LFU prioritizes caching data objects

that have been accessed most frequently.

• Belady: Belady’s algorithm evicts the data object that will be requested

furthest in the future, making it an optimal but non-causal policy, as it

requires full knowledge of the request sequence. We evaluate this policy

for traces where all data objects have the same size.

• Sieve [71]: Sieve is a caching policy that retains recently accessed objects

while efficiently managing evictions using a single queue and a ”hand”

pointer. Each object is marked as either visited or non-visited, and the

least recently visited object with its visited bit unset is evicted. Similar

to Belady, we evaluate this policy only for traces where all data objects

have the same size.
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Figure 4.4: Cache hit ratio against cache capacity defined as percentage of
trace foot print (the number of unique objects in the trace) under different
caching policies.

4.4.1 Simulations for the grouped client request model

Setup. We consider a caching system with three groups (G = 3),

where each group can request data objects from a distinct set. The sets of

objects for the groups are defined as follows:

D1 = {1, 2, . . . , 1000}, D2 = {1001, 1002, . . . , 2000},

D3 = {2001, 2002, . . . , 3000}.

Each group consists of one leader and several followers. The number of

followers in each group is:

f 1 = 8, f 2 = 6, f 3 = 4.
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The delay between the i-th follower (for all i ∈ {1, · · · , f g}) and the leader of

group g is modeled as constant and ordered, with the following values:

Group 1: ∆1
i = 10i, Group 2: ∆2

i = 20i, Group 3: ∆3
i = 30i.

The probability of a request pg(d) for an object d in group g follows a

Zipf distribution with parameters 0.8, 0.85, and 0.9 for Groups 1, 2, and 3,

respectively.

Requests from group leaders arrive according to a Poisson process, with

the following rates:

λ1 = 10, λ2 = 15, λ3 = 20.

The size of all data objects is 1.

Results Discussion. Fig. 4.4 presents the cache hit ratio for different

caching policies across various cache capacities, expressed as a percentage of

the total data volume (computed as the number of data objects multiplied

by their average size). The cache capacity ranges from small (0.1%) to large

(10%). As expected, Belady’s policy, which has full knowledge of future re-

quests, performs the best.

For larger cache capacities, LRU and LFRU/LFRUS with w = 2 out-

perform other online policies such as LFU, LFRU/LFRUS with w = 20, and

Sieve, as well as the offline Static Optimal policy. This is because, with a

larger cache, objects remain in cache for extended periods. Consequently,
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when a leader requests a data object, all its followers are more likely to experi-

ence a cache hit for the same object under LRU. However, the performance of

LFRU/LFRUS with w = 20 degrades due to incorrect inferences of temporal

causal relationships between clients. This issue arises for two primary rea-

sons, first, leader requests are independent of past requests and follow a Zipf

distribution, leading to frequent requests for popular objects, and second, as

cache capacity increases, objects remain in the cache for longer, increasing the

likelihood that a leader repeats a request for an object previously requested

by another client. As a result, LFRU incorrectly infers that the leader follows

that client. In contrast, with a smaller window size (w = 2), such incorrect

inferences are quickly forgotten, minimizing their impact on caching decisions.

For small cache capacities, prioritizing data objects based on client-

following behavior and request recency becomes crucial. In this case,

LFRU/LFRUS effectively detects a limited number of following patterns and

uses them to make more informed eviction decisions. This results in a sig-

nificant performance gap between LFRU/LFRUS with w = 20 and w = 2

compared to LRU. A larger window size further widens this gap, as inferred

following patterns persist longer, affecting eviction choices.

Under the grouped client request model, LRU performs well when the

characteristic time, t∗b—the time before a newly introduced object is evicted

if there are no additional requests for this object—is longer than the delay

between follower requests. In such cases, every follower request results in a

cache hit, regardless of the requested object. To illustrate this effect, vertical
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lines in Fig. 4.4 mark cache capacities of 2%, 3.2%, and 3.8% of the total

data volume. These correspond to cache sizes where the characteristic time

matches follower delays in Groups 1, 2, and 3, with delays of 10, 20, and

30 units, respectively. As expected, around these points, the LRU hit rate

exhibits a sharp increase.

In contrast, under LFU, followers experience a cache hit only when

they request the most frequently accessed data objects that remain in the

cache. Additionally, due to the high number of distinct requests, LFU performs

similarly to the Static Optimal policy. Similarly, Sieve prioritizes the retention

of frequently and recently requested objects. However, as demonstrated in our

results, these strategies are suboptimal in this setting because follower requests

closely track leader requests, even for objects that are infrequently accessed

overall.

While in this section, we examined client request patterns based on the

Grouped Client Request Model, this model assumes that a leader’s requests are

independent of past requests. However, in practical scenarios, client requests

are inherently influenced by movement and past interactions, particularly in

environments such as VR. To better capture these real-world dependencies,

in the next section, we shift our focus to a synthetic VR environment, where

client requests arise as users navigate a shared space.
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4.4.2 Simulations for synthetic request traces for client motion in
a Toroid

4.4.2.1 Simulation environment for generating cache request
traces

To analyze spatio-temporal patterns in data object requests, we gener-

ate cache request traces in a controlled simulation environment where clients

move as part of distinct groups. The simulation takes place in a 3D toroidal

cube, with each side measuring 1000 units. This space contains 4000 data

objects, which are randomly distributed throughout the volume. The size of

each data object is equal; we revisit this in the next section.

To model group motion dynamics, each group consists of a leader client

and multiple follower clients. The total number of groups, the designated lead-

ers, and the overall number of clients remain fixed throughout the simulation.

Leaders follow unique motion paths, while followers trail behind with a fixed

delay. Group composition can change over time, with followers either reorder-

ing themselves within the group or switching to a different leader.

The simulation operates in discrete time slots, where each time slot

represents one unit of simulated time. During each time slot:

1. Leaders update their positions based on a constant speed of 25 units

per time slot and their current direction. Every 10 time slots, each

leader selects a new random direction. They move continuously through

the toroidal space, reappearing on the opposite side when crossing a

boundary.
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Figure 4.5: Cache hit ratio against cache capacity under different caching
policies for Trace 1.

2. Followers update their positions by following the path of their assigned

leader, but with a delay of a specified number of time slots. For example,

if a follower has a delay of τ time slots, its position in the current time

slot matches the leader’s position from τ time slots earlier. This delay

models how group members in the real world follow a leader with some

lag.

3. Each client, including both leaders and followers, requests data objects

located within a 360-degree field of view with a radius of 50 units.

The simulation runs for 10 million time slots, enabling the capture of

long-term spatio-temporal patterns in client movement and data access.

4.4.2.2 Trace 1: Static following

Setup. In this trace, we simulate 3 groups comprising a total of 17

clients navigating the 3D toroidal space. Groups 1, 2, and 3 consist of 8, 4,
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Figure 4.6: Cache hit ratio for different clients against cache capacity under
different caching policies for Trace 1.

Figure 4.7: Comparison of client cache hit ratios across different caching poli-
cies under two delay configurations: uniform delays between followers (row 1)
and non-uniform delays (row 2).
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and 2 followers, respectively. Each group’s leader is initialized at a random

location and navigates according to the dynamics described above. The delay

between the i-th follower and the leader varies by group. In Group 1, the i-th

follower trails its leader with a delay of 4i time slots, e.g., Follower 1 trails

the leader by 4 time slots, Follower 2 by 8 time slots, and so on. Similarly, in

Group 2, the i-th follower trails its leader with a delay of 8i time slots, while

in Group 3, the delay is 20i time slots. Each client maintains a local cache

managed using the Least Recently Used (LRU) policy. The size of each local

cache is set to 5% of b, where b is the total cache capacity of the edge or cloud

server. When a client makes a request, it first checks its local cache. If the

requested item is not found (a cache miss), the client forwards the request to

the main cache (edge or cloud server). The cache hit ratio is defined as the

fraction of requests to the main cache (edge or cloud server) that result in a

hit.

Results discussion. Figure 4.5 shows the cache hit ratio for different

caching policies at various cache capacities, expressed as a percentage of total

data volume (computed as the number of data objects multiplied by their

average size). The cache capacity ranges from small (0.1%) to large (10%). In

Figure 4.6, we also show the client cache hit ratio for a selected set of caching

policies. The client cache hit ratio is defined as the proportion of requests

from a specific client that result in a cache hit, compared to the total number

of requests. As expected, Belady’s policy, which is based on the knowledge of

future requests, performs the best. This is because it can retain objects that
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will be requested again soon.

Next, LFRU/LFRUS with w = 20, LFRU/LFRUS with w = 2, and

LRU show similar performance when the cache capacity is large. This happens

because, with a larger cache, objects stay in the cache for longer periods. As

a result, once a leader requests a data object, all its followers also experience

a cache hit for that object, as shown in Figure 4.6. Therefore, even though

our policies account for following events to decide on evictions, there is enough

cache space to keep the objects requested by each leader.

However, when the cache capacity is small and space is limited, it

becomes important to decide which objects to keep based on client-following

behaviors and the recency of requests. This creates a noticeable performance

gap between LFRU/LFRUS with w = 20 and w = 2 as compared to LRU. As

seen in Figure 4.6 for our LFRU-based policies, followers start to experience

cache hits for their requests, which does not happen with LRU. With a larger

window, this gap becomes even larger, as any detected following event stays in

the window for a longer period of time. However, if older following events are

not given equal weight, a performance gap appears, as seen in the difference

between LFRU and LFRUS with the same window sizes.

We also observe performance jumps for LRU. These jumps occur when

the delay between followers in a group becomes roughly equal to the time a

typical object stays in the cache under LRU. We can see this in Figure 4.6,

where the client cache hit ratio for followers in different groups shows jumps

in performance under LRU at different cache capacities. These jumps follow
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the order of delays between followers in the groups, meaning that Group 1

followers, with lower delays, experience a higher cache hit ratio than Group

2 followers. Finally, the LFU policy, which prioritizes the most frequently

accessed objects, performs poorly. This is because when a follower requests

the same object as their leader, the object’s access frequency increases, causing

it to stay in the cache longer than needed. Instead, the policy should focus on

keeping new data objects requested by group leaders, even if they are rarely

accessed.

4.4.2.3 Effect of different delays between followers for Static fol-
lowing

Setup. In this simulation, we consider a group consisting of three

clients: one leader and two followers. We examine two scenarios for the delay

between followers - Case 1: The delay between followers is uniform. The i-th

follower trails its leader with a delay of 25i time slots, Case 2: The delay

between followers is non-uniform. Follower 1 trails its leader with a delay of

25 time slots, while Follower 2 trails its leader with a delay of 90 time slots.

Results discussion. Fig. 4.7 presents the client cache hit ratio for

different caching policies at various cache capacities. In the first row, which

corresponds to Case 1, both Follower 1 and Follower 2 exhibit similar perfor-

mance. However, in the second row, which represents Case 2 with increased

delay for Follower 2, we observe a decline in Follower 2’s cache hit ratio com-

pared to Case 1. This performance drop is consistent across all caching policies.
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Figure 4.8: After every p time slots, Client 2 and 3 (followers) swap their
positions in following Client 1 (leader).

(a) p = 1000. (b) p = 100.

Figure 4.9: Cache hit ratio against cache capacity under different caching
policies for Trace 2.

4.4.2.4 Trace 2: Periodic order shuffling

Setup. In this trace, the group characteristics remain the same as in

Trace 1. However, we introduce periodic shuffling of followers, denoted by a

parameter p, which specifies the number of time slots in each period. At the

start of a new period, follower 2i − 1 and follower 2i in each group exchange

their delays/positions relative to the leader, see Fig. 4.8. This value of the

parameter p allows us to evaluate the impact of varying the frequency of these

swaps on the performance of our caching policies. As before, each client has a
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local cache managed using the Least Recently Used (LRU) policy. The size of

each local cache is set to 5% of b, where b represents the total cache capacity

(of edge/cloud server).

Results discussion. Figures 4.9a and 4.9b show the cache hit ratio

for various caching policies when the period p is large and small, respectively,

indicating how long a particular following behavior persists.

When p is large, the proposed caching policies that utilize inferred

causal relationships continue to perform well. However, there is a slight per-

formance degradation (though not noticeable) compared to Trace 1.

When p is small, the performance of LFRU with w = 20 decreases for

larger cache sizes as compared to Trace 1 in the previous section. This happens

because followers change their order more frequently, so the policy is biasing

its decisions on incorrect inferences of following relationships. Additionally,

the cache needs to flush out all data objects associated with clients that were

previously perceived as being followed by others, but are no longer followed.

This leads to a performance loss.

This issue can be mitigated by using a smaller window, as shown by

LFRU with w = 2. A smaller window helps the policy adapt more quickly by

forgetting past following events. Alternatively, assigning weights to following

events ensures that only persistent following events influence the decision of

which data objects to retain; see LFRUS variants of LFRU.

For small cache capacities, larger windows remain preferable because
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(a) p = 1000. (b) p = 100.

Figure 4.10: Cache hit ratio against cache capacity under different caching
policies for Trace 3.

the likelihood of LFRU detecting all following patterns is lower. As a result,

even when the order changes, there is no significant performance degradation.

4.4.2.5 Trace 3: Periodic leader switching

Setup. In this trace, the number of leaders remains 3, and the total

number of clients remains 17. However, we introduce periodic leader changes

for followers, controlled by a parameter p, which specifies the number of time

slots in each period. At the start of a new period, each follower selects a

new leader with predefined probabilities: Leader 1 is chosen with probability

0.5, Leader 2 with probability 0.3, and Leader 3 with probability 0.2. When a

follower selects a new leader, its delay relative to this new leader is determined

by the number of followers who have already selected this leader and the

delay between consecutive followers, which we set to 5. Consequently, the i-th

155



follower trails behind its newly selected leader by 5i time slots. As before, the

parameter p allows us to study the effect of varying the frequency of these

leader switches on the performance of our caching policies. Lastly, each client

has a local cache managed using the Least Recently Used (LRU) policy. The

size of each local cache is set to 5% of b, where b represents the total cache

capacity (of edge/cloud server).

Results discussion. Figures 4.10a and 4.10b show the cache hit ratio

for various caching policies when the period p is large and small, respectively.

The period p indicates how long a group configuration and the order of fol-

lowers in that group persist.

When duration is large, as shown in Fig. 4.9a, our caching policies that

use inferred causal relationships continue to perform well.

When the duration is small, there is a significant performance gap be-

tween LFRU with w = 20 and LRU for medium to large cache sizes. This

occurs because, in this case, followers not only change their order, but also

switch leaders. With a larger window, it takes more time to forget and update

the cache. This performance gap decreases when using a smaller window, such

as LFRU with w = 2.

However, the best performance is achieved when we also apply smooth-

ing along with a small window. This allows the policy to adapt quickly and

giving more weightage to recent following events between clients. This ap-

proach also shows a significant performance improvement over LRU, especially
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Figure 4.11: The virtual city of the simulation.

for smaller cache capacities.

The synthetic VR environment in this section captures how client re-

quests depend on movement, but does not account for certain real-world fac-

tors. In practice, objects in a VR scene may be occluded by other objects,

making them temporarily inaccessible. Additionally, the size of an object in a

request depends on its pixel size, texture, geometric complexity, and distance

from the client. These factors affect how objects are rendered and influence

caching decisions. In the next section, we refine our request model to incorpo-

rate these additional constraints, making it more representative of real-world

VR environments.

4.4.3 Simulations for emulated VR request traces

4.4.3.1 Simulation environment for generating cache request
traces

We generated cache request traces using a simulator that models a

virtual desert city, measuring 376.29 × 608.22 m2 and containing 1,176 objects

(e.g., buildings, trees, fountains). In this simulation, a virtual reality (VR)
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client navigates the city from a height of 1 to 2 meters above the ground, which

represents the typical height of a VR headset, whether the client is sitting or

standing. Objects in the city may be occluded by buildings depending on the

client’s position, so clients can only request visible data.

To determine visibility, we dynamically compute the set of objects that

are visible from all directions around the client’s current position. This ap-

proach is preferred over relying on a fixed or random view direction, as it

ensures that we send data for all possible directions rather than waiting for

the client to specify their view. This method is particularly important because

visibility computation is computationally expensive, and the client’s viewpoint

may change rapidly. Computing visibility only for the current view direction

would be inefficient, especially when the client may quickly turn or move.

Clients navigate through alleys along pre-designated, looped paths,

avoiding collisions with objects, as shown in Fig. 4.11. In our dataset, there

are always three client groups, each consisting of five clients and each group

follows a distinct path. Within each group, one client serves as the leader,

while the remaining clients follow in the same direction. These paths are bidi-

rectional and non-intersecting, and all clients move at a constant speed of 2

m/s.

The simulation operates in discrete time slots. In each slot, each client

updates its position based on the elapsed time since the previous slot and

recomputes the visibility of objects. A client initiates a request for an object

if it becomes visible in the current time slot and was not requested in the
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previous slot. This request mechanism assumes that the client’s local cache

is large enough to store data retrieved in a given time slot for use in the

subsequent slot.

In the simulation, data objects come in multiple versions, each varying

in size. The version of a requested data object depends on the distance of

the client from the object: If the client is within 10 m, it requests the highest

quality version; if it is beyond 50 m, it requests lowest quality version; and for

distances between 10 and 50 m, it requests middle quality version. The size

of each version is influenced by factors such as pixel resolution, texture, and

geometric detail. For example, the highest quality version of an object may be

1MB, the middle quality version 0.5MB, and the lowest quality version 0.1MB.

Additionally, each request must be served with the exact version specified by

the client; a request for one version cannot be fulfilled using another version

of the same object.

4.4.3.2 Trace 1: Unstructured follower requests.

Setup. In this trace, all clients within the same group are initialized

near a common point on their designated path (Fig. 4.12). Each client starts at

a random position within 4 meters of this point. Clients do not enter buildings

during navigation.

All followers move in the same direction as their group’s leader, main-

taining a constant delay of 0.5 seconds. Specifically, if the leader changes

direction at a corner, all followers adjust their movement 0.5 seconds later.
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Figure 4.12: Example relative positions of the leader and followers in unstruc-
tured follower requests.

Each client maintains a local cache of previously requested objects managed

using the LRU policy. The size of each local cache is set to 5% of b, where b

is the total cache capacity of the edge or cloud server. When a client makes

a request, it first checks its local cache. If the requested item is not found (a

cache miss), the client forwards the request to the main cache (edge or cloud

server). We have considered a local cache for each client as described for all

simulation results discussed hereafter.

Results discussion. Fig. 4.13 presents the cache hit ratio for different

caching policies across various edge/cloud cache capacities, expressed as a

percentage of the total data volume (computed as the number of data objects

multiplied by their average size). The cache capacity varies from small (1%)

to large (22%).

Our results show that LRU performs best for moderate to large cache

capacities. This is because, in unstructured following, followers are distributed
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Figure 4.13: Cache hit ratio against cache capacity under different caching
policies for unstructured follower requests.

around the leader in a staggered pattern and do not consistently request the

same set of data objects. Consequently, the number of consistent following

events is lower, making inferred temporal relationships less effective for cache

management. In such cases, eviction decisions based on recency outperform

those based on inferred causal relationships. This is evident from the per-

formance gap between LFRUS and LFRU for the same window size, where

smoothing enables the caching policy to assign greater importance to recent

following events. Additionally, using a smaller window size improves adapt-

ability by allowing the policy to quickly discard outdated following patterns.

For small cache capacities, LFRU/LFRUS performs better with larger window

sizes. Rather than considering the recency of all client requests, these policies

prioritize clients that are closer and exhibit more persistent following behavior,

leading to an improved cache hit ratio.
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Figure 4.14: Example relative positions of the leader and followers in struc-
tured follower requests.

Figure 4.15: Cache hit ratio against cache capacity under different caching
policies for structured follower requests.

4.4.3.3 Trace 2: Static following (Structured follower requests)

Setup. In this trace, all followers move along the path by following

their leader (Fig. 4.14). The leader is initialized at a random point on the

path, and each follower is subsequently initialized with a constant delay of 2

seconds.

For example, if the leader is initialized at position x, the first follower
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starts at x - 4 meters along the path (assuming movement in a positive di-

rection). The second follower is initialized at x - 8 meters, and so forth.

Throughout the simulation, all clients maintain their initial relative distances

from one another on the path.

Results discussion. Fig. 4.15 presents the cache hit ratio for different

caching policies across various cache capacities, ranging from small (1%) to

large (22%).

Our results indicate that LFRU/LFRUS with w = 20 consistently out-

performs all other caching policies across all cache capacities. This is because,

in structured following, followers sequentially request data after their leader

and tend to repeat the leader’s requests. Once these following events are de-

tected, they enhance cache eviction decisions by prioritizing the retention of

objects requested by a client (excluding the last follower) within a group, as

these objects are likely to be requested again by another follower in the same

group.

The advantage of retaining the following events detected for longer is

evident in the performance gap between LFRU with w = 20 and w = 2. A

larger window size allows the policy to leverage persistent following patterns

more effectively, leading to higher cache hit ratios. Furthermore, in this setting,

smoothing is unnecessary, as following events remain stable over time.
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(a) p = 150 seconds. (b) p = 30 seconds.

Figure 4.16: Cache hit ratio against cache capacity under different caching
policies for Periodic order shuffling.

4.4.3.4 Trace 3: Periodic order shuffling

Setup. In this trace, the setup remains the same as in Trace 2, except

that followers periodically swap positions in pairs. Every p seconds (30s or

150s), adjacent followers swap positions: the first follower swaps with the

second, the third with the fourth, and so on.

The swap occurs gradually over a duration of 3 seconds, rather than

instantaneously. During this process, clients continue their normal movement

along the path, but their relative distances temporarily change as they tran-

sition to their new positions.

Results discussion. Figures 4.16a and 4.16b present the cache hit

ratio for different caching policies when the period p is large and small, respec-

tively. The period p represents the duration for which a particular following

behavior persists.
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When p is large, caching policies that leverage inferred causal relation-

ships maintain strong performance. However, a slight performance drop is

observed compared to Fig. 4.15, though it remains negligible.

When p is small, the performance of LFRU with w = 20 deteriorates

for larger cache sizes compared to scenarios with a larger p. This decline

occurs because followers change their order more frequently, leading the policy

to make incorrect inferences about following relationships. Additionally, the

cache must evict objects associated with clients who were previously identified

as being followed but are no longer, resulting in performance degradation.

This issue can be mitigated by using a smaller window size, as demon-

strated by LFRU with w = 2. A smaller window enables the policy to adapt

more quickly by discarding outdated following events. Alternatively, assigning

weights to following events ensures that only persistent relationships influence

caching decisions, as seen in the LFRUS variants of LFRU.

For small cache capacities, larger window sizes remain beneficial, as

LFRU is less likely to capture all following patterns. Consequently, even when

follower order changes, the performance does not degrade significantly.

4.5 Conclusion

In this chapter, we introduced a model for capturing correlated client

request patterns. We then showed that correlations in client requests influence

the characteristic time of an LRU-managed cache, leading to improved cache
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hit ratios compared to LFU as cache size increases. To further leverage these

correlations, we proposed LFRU, an adaptive caching policy that dynamically

infers and exploits causal relationships between client requests. By incorpo-

rating both the recency of requests and the frequency with which clients follow

others’ requests, LFRU enhances its eviction decisions. Our empirical evalua-

tions on synthetic and VR-based datasets demonstrated that LFRU achieves

up to 2.9× and 1.9× improvements in cache hit ratio over LRU and LFU,

respectively, under structured following. These findings underscore the impor-

tance of incorporating request correlations in caching strategies and provide a

foundation for the development of more adaptive and efficient caching mech-

anisms in future networked systems.
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Chapter 5

Optimal Scheduling Algorithms for LLM

Inference: Practice

This chapter1 looks at serving large language model powered chatbot

requests with heterogeneous Service Level Objectives (SLOs) on a single GPU.

We devise a practical scheduler, SLO Aware LLM Inference (SLAI) scheduler

that supports such requests and empirically demonstrate its performance on

NVIDIA RTX ADA 6000.

1This chapter is based on the work to be submitted to Sigmetrics 2026:

• A. Bari*, P. Hegde*, G. De Veciana, “Optimal Scheduling Algorithms for LLM In-
ference: Theory and Practice,” Submitted to Sigmetrics 26

Agrim Bari led the formulation of the practical problem, the design of the policy, execution
of experiments, and the writing of the paper.
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5.1 Introduction

LLM inference systems. The core problem in Large Language

Model (LLM) inference is to generate a response autoregressively, one token2

at a time, given a prompt—for example, ”What is the capital of France?” pro-

ducing the output ”It is Paris.” Modern LLMs such as GPT-4, Llama 3, and

Gemini now power a wide range of services, including chatbots, coding assis-

tants, and search engines. These services handle millions of user requests daily,

and private deployments are rapidly increasing. As a result, there is growing

interest in optimizing how requests are processed across one or more Graphics

Processing Unit (GPU)-enabled nodes in data centers, since improved effi-

ciency can lead to significant reductions in infrastructure and operating costs.

Objectives for LLM serving systems. To meet growing demand,

LLM systems must be carefully designed to make efficient use of hardware. A

well-designed system keeps each active GPU busy—fully utilizing both its com-

pute and memory—while also keeping response times low. This leads to two

main goals: (1) achieving high throughput, measured in requests per second,

to reduce the cost per request, and (2) maintaining low latency, which directly

affects user experience. Latency is typically measured using two Service-Level

Objectives (SLOs)3: Time To First Token (TTFT), which is the delay between

a request’s arrival and the generation of the first output token, capturing how

2A token in a LLM is a unit of text-such as a word, subword, or character-used as the
basic input element for processing and generation.

3Thresholds may vary by application, but these two metrics are commonly used.
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long a user waits before the LLM starts responding; and Time Between To-

kens (TBT), which is the time between successive output tokens, indicating

the rate at which the response is streamed to the user. In real-world systems,

request routing, scheduling, and caching are used to meet these goals. This pa-

per focuses on scheduling, which plays a critical role in increasing throughput,

reducing TTFT, and keeping TBT within acceptable limits.

Phases of an LLM request and scheduler decisions. Each re-

quest to an LLM based on the Transformer architecture goes through two

main phases: prefill and decode. In the prefill-phase, the model processes the

entire prompt and generates the first output token. After that, the request

enters the decode-phase, where it produces one token at a time in an auto-

regressive manner until a stop token is generated. These two phases have

distinct characteristics. The prefill-phase is highly parallelizable and can fully

utilize the GPU’s compute resources. By contrast, the decode phase is sequen-

tial and has low parallelism, which means that multiple decode-phase requests

must be batched together to make efficient use of the GPU. Additionally,

Transformer models store intermediate representations of tokens—called the

Key-Value (KV) cache—which grow with the number of tokens processed and

consume GPU memory. The scheduler’s job is to select a mix of prefill-phase

and decode-phase requests to include in each GPU batch. These decisions

must balance GPU compute and memory bandwidth usage, stay within the

memory budget, and meet latency SLOs.
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Challenges in scheduler design. Designing an effective scheduler

for LLM inference presents several key challenges. First, GPU compute effi-

ciency depends heavily on the composition of each batch—that is, the mix of

prefill and decode-phase requests scheduled together. As a result, the sched-

uler must construct batches carefully to make the most of available resources.

Second, the scheduler must balance resource allocation between the prefill and

decode phases, as both phases have their respective SLOs: TTFT and TBT.

Prioritizing prefill-phase requests can reduce TTFT but may delay decodes

and worsen TBT. Conversely, prioritizing decode-phase requests keeps TBT

low but can lower compute utilization and increase TTFT for new requests.

Third, while the prompt length is known upon a request arrival the output

length is unknown, making memory management complex—particularly since

GPU memory is often a bottleneck. Finally, many LLM serving systems sup-

port multiple user tiers which have heterogeneous performance needs.

Our approach. In this work, we approach the LLM scheduling prob-

lem from two complementary perspectives. From a theoretical standpoint, we

develop a rigorous framework for analyzing and achieving throughput-optimal

scheduling. From a practical perspective, we design a scheduler that dynami-

cally adapts to diverse latency SLOs across heterogeneous user tiers.

Contributions. Our key contributions are:

1. A SLO-Aware Scheduler. We design a practical scheduler called SLO-

Aware LLM Inference (SLAI) scheduler that aims to minimize online me-
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dian TTFT when serving requests with heterogeneous TBT constraints.

To achieve this, SLAI uses online measurements to decide when the ex-

ecution of a decode-iteration has become time-critical, i.e., should be

prioritized for scheduling. In addition, it uses the known prompt length

information to order prefill-phase requests so as to reduce the median

TTFT. See Section 5.2.

2. Experimental Performance. We evaluate SLAI on the openchat shareGPT4

dataset using the Mistral-7B LLM on an NVIDIA RTX ADA 6000 GPU.

Our results show that SLAI can reduce the median TTFT by 53% while

meeting TBT requirements compared to Sarathi-serve, the current state-

of-the-art scheduler. Additionally, when median TTFT can not exceed

0.5 seconds, SLAI increases the serving capacity by 26%. See Section

5.3.

5.1.1 Related Work

LLM serving systems must make decisions about when to run the prefill

and decode phases of a request, where to execute each request, and how to

manage the growing KV cache produced by the model. Based on these chal-

lenges, prior work can be broadly categorized into three areas: (a) scheduling

within a single inference node, (b) routing across multiple inference nodes, and

(c) managing the KV cache.
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5.1.1.1 Scheduling policies

Schedulers differ in how they prioritize prefill-phase and decode-phase

requests, and in their batching granularity. Below, we highlight some of the

key work in this literature.

Decode-prioritizing (request-level) schedulers. Frameworks such

as FasterTransformer [51, 52] and the request-level mode of TensorRT-LLM

process a set of requests till completion, before admitting any new requests.

Since new prefill-phase requests never interrupt ongoing decode-phase requests,

these schedulers perform well on TBT. However, they have low throughput

when there is a imbalance in the total (prompt and output) length of requests

and thus GPU may be under-utilized.

Prefill-prioritizing (iteration-level) schedulers. Iteration-level

batching, first introduced by Orca [67], enables dynamic admission and com-

pletion of requests at each forward pass. However, it relies on static memory al-

location for the KV cache, which limits the number of concurrent requests to 16

on an A100 GPU. vLLM [41] overcomes this limitation using paged attention,

allowing more flexible memory management and increasing the maximum num-

ber of concurrent requests to 128. Additionally, like FlashDecoding++ [24] and

DeepSpeed-FastGen [23], vLLM aggressively admits new prefill-phase requests

to improve throughput. However, this eager admission policy can delay decode

iterations—especially for long prompts—leading to higher TBT latencies.
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Hybrid schedulers. Sarathi-Serve [1] introduces a token-budgeted,

chunked-prefill strategy to balance throughput and TBT, effectively reduc-

ing decode-iteration stalls that are common in prefill-prioritizing schedulers.

Beyond such scheduling-focused methods, recent systems propose orthogonal

techniques aimed at improving overall LLM inference performance. Blend-

Serve [72] targets offline workloads by reordering requests based on their

resource usage profiles to improve hardware efficiency. POD-Attention [35]

enables pipelined execution of prefill and decode phases to increase kernel

overlap and improve GPU utilization. HydraGen [34] reduces redundant com-

putation by identifying and merging shared prompt prefixes across requests.

DistServe [74] adopts a disaggregated architecture that separates prefill and

decode execution across different nodes, thereby eliminating intra-GPU con-

tention; however, it introduces communication overhead due to the transfer of

large KV caches.

5.1.2 Cluster-level Routing

Per-GPU schedulers rely on the router to provide a well-balanced stream

of requests. Most production systems still use simple strategies like round-

robin or shortest-queue routing. These methods overlook the complex rela-

tionship between request length, prompt size, and current GPU state. The

Intelligent Router for LLM Workloads [27] addresses this by framing routing

as a sequential decision problem. It trains a workload-aware reinforcement

learning agent to minimize overall latency by predicting each request’s re-
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sponse length and estimating how much delay each placement would cause.

5.1.3 KV-Cache Management

In transformer models, self-attention reuses all previous tokens, making

KV-cache management critical for both speed and capacity.

Memory layout. vLLM [41] uses paged attention, which divides

GPU memory into fixed-size blocks that are dynamically assigned to requests.

This reduces fragmentation and allows hundreds of requests to run in parallel.

Llumnix [59] builds on this by migrating KV tensors across replicas in real

time, balancing memory usage and lowering preemption costs.

Prefix reuse and compression. Some systems try to reduce the

amount of KV data stored or recomputed. SGLang [73] introduces a radix-

tree cache and orders batches to maximize prefix reuse across multi-turn chats

and speculative decoding. CacheGen [45] compresses KV blocks and streams

them on demand, while FlashInfer [65] creates custom GPU kernels that op-

erate directly on the compressed format. These techniques are independent of

scheduling and routing and can be used alongside paged layouts or distributed

setups.

Preemption strategies. When GPU memory runs out, systems must

either recompute or offload paused requests. vLLM [41] and Sarathi-Serve [1]

evict stalled requests, splice their outputs back into the prompt, and later

rebuild the KV cache. DistServe [74], on the other hand, moves the KV tensors

to host memory and resumes decoding once space is available. Each method
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involves a trade-off between memory traffic and computation, and interacts

closely with the scheduler’s design.

5.1.4 Speculative decoding

Speculative decoding [43] offers a complementary approach that accel-

erates decode-phase computation by generating token drafts using a smaller

auxiliary model, which are then validated by the larger target model. While

originally proposed to reduce per-request latency, this technique can also ben-

efit scheduling by reducing decode durations, improving GPU throughput, and

enabling more efficient batch formation under tight latency constraints.

5.2 SLO Aware LLM Inference Scheduler

Request classes. In real-world LLM serving systems, requests may

come from different classes of user with heterogeneous latency SLOs. For

example, paying users typically expect fast and smooth responses, especially

during token generation, which requires stricter TBT deadlines. By contrast,

free-tier users are generally more tolerant of delays and can be served with

more relaxed TBT constraints. Managing these mixed latency requirements

well is important to keep users satisfied while making efficient use of system

resources.

Recall that we consider a class of schedulers that executes prefill-phase

and decode-phase requests as sequences of prefill-iterations and decode-iterations,

respectively.
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Motivation. The throughput-optimal RAD scheduler described in the

theoretical section of the paper focuses on maximizing throughput, but it does

not consider latency SLOs during either the prefill or decode phases due to

the challenges mentioned in practical insights section in the paper. However,

in practice, meeting these latency constraints is critical to deliver a good user

experience.

Sarathi-Serve, the current state-of-the-art scheduler, addresses this by

chunking long prefill-phase requests into smaller chunks and interleaving them

with decode-phase requests in each batch. Each batch is constrained by a token

budget—the maximum number of tokens it can process. Sarathi-Serve includes

all active decode-phase requests from the previous batch in the current one

and uses the remaining token budget to schedule prefill-iterations. However,

it treats all decode-iterations of associated decode-phase requests as if they

had the strictest TBT deadline, even when actual TBT deadlines vary across

requests. While this conservative strategy ensures tail TBT latency is below

some threshold, it can lead to inefficient use of batch capacity and does not

address reducing TTFT for prefill-phase requests. To overcome this limitation,

we propose the SLO-Aware LLM Inference (SLAI) Scheduler. SLAI tracks

each decode-iteration’s TBT deadline and delays its inclusion in a batch until

necessary. This allows the scheduler to allocate more of the batch’s token

budget to prefill-iterations earlier, without missing TBT deadlines on decode-

iterations. As we will show, this approach better aligns scheduling decisions

with request-specific needs, resulting in lower median TTFT for prefill-phase
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requests while still meeting tail TBT latency constraints on decode-iterations.

Key concepts and parameters. We begin by explaining how SLAI

dynamically decides when to include a decode-iteration in a batch. The key

idea in this process is the last schedulable time, which determines when a

decode-iteration becomes critical and must be included to meet its latency

target.

Let δ > 0 be an offset parameter for SLAI that defines how early a

decode-iteration should be considered critical. Consider the ith decode itera-

tion for a given request j which has an SLO requirement of TBTj, SLAI notes

the end time of the most recent batch in which its (i−1)th decode-iteration was

included, denoted ei−1,j. It also maintains the running average of batch exe-

cution times observed so far, denoted by tbatch. We define its last schedulable

time as:

Ci,j = ei−1,j + TBTj − δ · tbatch (5.1)

This is the latest wall-clock time by which decode-iteration j must be included

in a batch to meet its TBT deadline. When constructing batch m at time tm,

the scheduler checks each active (in progress that currently occupies GPU

memory) decode-phase request and labels its decode-iteration as critical if

tm ≥ Ci,j; otherwise, it is considered as non-critical and can be deferred to a

later batch.

Besides this dynamic prioritization, SLAI uses several key parameters

to balance latency targets with efficient GPU use. The token budget τ sets the
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maximum token count allowed in a batch, ensuring effective use of the GPU’s

compute resources without violating TBT SLOs. A cap on the number of

active requests α limits how many active requests are allowed at once, helping

prevent memory overflows for large models or long prompts. A decode limit β

restricts how many of decode-iterations can be included in a batch, avoiding

long batch execution times due to too many decode-iterations in a batch.

Finally, the offset parameter δ provides a safety margin for the last schedulable

time computation to absorb variability in batch execution and reduce the risk

of missing TBT SLOs. We will later discuss how these parameters interact and

influence the behavior and performance of the scheduler. Next, we describe

how the SLAI scheduler works.

Batch construction. We now describe how a batch is constructed by

the SLAI scheduler. At each decision point, the scheduler forms a batch from

the set of active requests and new requests that have not yet been processed.

While forming a batch, it must respect several system constraints: the token

budget (τ), the cap on active requests (α), and the decode request limit (β).

The batch construction follows these steps:

1. Identify critical decode-iterations: For each active decode-phase request,

compute the last schedulable time for its decode-iteration. A decode-

iteration is marked as critical if current time is past its last schedulable

time; otherwise, it is marked as non-critical.

2. Add critical decode-iterations: Include critical decode-iterations in the
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batch, in the increasing order of last schedulable time. This ensures that

decode-iterations that are closest to their TBT deadline are scheduled

first.

3. Add prefill-phase requests: Next, add prefill-phase requests in a non-

preemptive manner. Among these, requests that have already been sched-

uled at least once (i.e., active prefill-phase requests) are given a higher

priority. If token budget and cap on number of active requests has not

been exceeded, new prefill-phase requests are considered. We consider

two possibilities for ordering the incoming requests: Shortest Prefill First

(SPF) to reduce the average or median TTFT or First Come First Serve

(FCFS) order to ensure fairness.

4. Add non-critical decode-iterations: Finally, if there further token budget

remains and number of decodes in the batch are less than the decode

limit, include additional non-critical decode-iterations in increasing order

of their last schedulable time.

Next, we discuss the impact of parameters other than the offset (δ),

which has already been covered in our earlier discussion of the scheduler.

5.2.1 Impact of different scheduler parameters

5.2.1.1 Token budget (τ).

The token budget places an upper limit on the number of tokens that

can be processed in a single batch—one token per decode-phase request and
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c ≥ 1 tokens per prefill chunk. Fig. 5.1a shows how the choice of token budget τ

affects TTFT and batch-execution time. When τ is small, a 2048-token prefill

must be split into many small chunks. This leads to frequent kernel launches

and synchronization, causing the GPU to spend more time idling. As a result,

TTFT increases. Conversely, when τ is large, the scheduler can process the

entire request in fewer large batches. This improves GPU utilization but each

batch takes longer to execute. If a decode-iteration is scheduled during such

a long batch, it must wait, increasing the risk of violating its TBT constraint.

The scheduler must thus choose a token budget τ that balances efficiency and

responsiveness. Batches should be large enough to use the GPU effectively, but

not so long that they excessively delay latency-sensitive decode-phase requests.

Choosing this value carefully is a key part of designing an effective scheduling

policy.

5.2.1.2 Cap on the number of active requests (α).

Each request generates KV tensors that must be stored in GPU memory

until the request is completed. Fig. 5.1b shows how GPU memory utilization

grows with the number of active decode-phase requests, based on runs with N

concurrent decode-phase requests (each with a 2048-token prefill followed by

a 1-token decode iteration) on Mistral-7B. As more requests become active,

memory usage increases steadily.

When too many requests are active, the scheduler may need to evict

KV tensors to make room for new ones. If a request’s KV tensors are evicted,
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Figure 5.1: Impact of token budget, concurrency, and batch composition on
request execution latency and GPU memory usage for Mistral-7B on a single
NVIDIA RTX ADA 6000 GPU.
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they must be recomputed before the request can resume decoding. This adds

unnecessary delay and increases TTFT, even for requests that have not yet

been scheduled. To avoid this, the scheduler should cap the number of ac-

tive requests, ensuring that all necessary KV tensors can remain in memory

without eviction. Doing so helps maintain low latency and avoids unnecessary

recomputation overheads.

5.2.1.3 Decode limit (β).

The decode limit sets an upper bound on how many decode-iterations

can be included in a single batch. Fig. 5.1c shows how batch-execution time

changes as the number of decode-iterations increases, while keeping the token

budget fixed at 512. When only a few decode iterations are present, the batch

finishes quickly. However, as more decode-iterations are added, the batch

takes significantly longer to finish due to increased pressure on compute and

memory resources. Each decode-iteration triggers self-attention computation,

which involves GeMVs per request—an inefficient computation on GPU.

When many decode-phase requests are active, limiting the number of

decode-iterations in each batch helps control latency. In order to meet strict

TBT deadlines, the scheduler can cap the number of decode-iterations per

batch, reducing the number of TBT violations and maintaining better respon-

siveness under load.
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5.3 Simulation results

Implementation. We built SLAI on top of the open-source imple-

mentations of Sarathi-serve [1] and vLLM [41].

Evaluation. We evaluate SLAI using the Mistral-7B [32] model and

run all experiments on a single NVIDIA RTX ADA 6000 GPU. For our work-

load, we use the openchat shareGPT4 [61] dataset, which contains multi-round

conversations between users and ChatGPT4 [53]. Each round is treated as a

separate request.

Our baseline is Sarathi-serve configured with FCFS ordering for prefill-

phase requests, referred to as Sarathi-serve (FCFS), which represents the cur-

rent state-of-the-art in LLM inference scheduling on a single node. We also

evaluate a variant of Sarathi-serve that uses shortest prefill first ordering, re-

ferred to as Sarathi-serve (SPF).

Similarly, we assess SLAI under both FCFS and SPF prefill orderings,

referred as SLAI (FCFS, fixed offset) and SLAI (SPF, fixed offset), respec-

tively. In addition, we evaluate a dynamic version of SLAI, called SLAI (SPF,

dynamic offset), where the offset δ is adjusted at runtime based on GPU

memory utilization measurements. When GPU memory usage is low, a small

offset is used to allow more prefill-phase requests into the system. When

memory usage is high, a larger offset is applied so that decode-iterations are

marked critical earlier and prioritized accordingly, thus clearing out memory.

For completeness, we also include vLLM in our comparisons, a scheduler that
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prioritizes prefill-phase requests and serves as another relevant baseline.

Metrics. We evaluate two key metrics. The first measures the median

TTFT since this is measured only once per request. This reflects how well the

scheduler meets responsiveness objectives across requests. The second metric

is the 99th percentile of the TBT, which is computed once per generated token

and captures tail latency during the decode-iterations. This helps assess how

smoothly tokens are generated over time.

Workload. To emulate realistic traffic, we generate synthetic traces

based on request length distributions observed in the dataset. Prefill and de-

code lengths follow the distributions shown in Table 5.1, and request arrivals

are modeled using a PPP. We cap each request’s length to 8192 tokens in

total. We consider two types of requests associated with paying and free-tier

users. Paying users expect faster and smoother generation compared to free-

tier users. To reflect this, we assign a TBT SLO threshold of 0.1 seconds

for paying users and 0.5 seconds for free-tier user. These values are slightly

relaxed compared to real-world production settings because our implementa-

tion is in Python (which is not fully optimized), includes telemetry overhead,

and also reflects the inherent performance limitations of the model–hardware

combination. Each incoming request is randomly marked as associated with a

paying or free-tier user with some probability.

Results discussion. We first consider a scenario where each request

has a 5% chance of coming from a paying user. This low percentage reflects the

user distribution seen on platforms like ChatGPT, where most users belong
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Dataset Prompt length (tokens) Decode length (tokens)
Median P90 Std. Median P90 Std.

openchat sharegpt4 1730 5696 2088 415 834 101

Table 5.1: Prompt and decode length (token) statistics for requests in the
openchat sharegpt4 dataset.

to the free tier and Figures 5.2a and 5.2b present the 99th percentile TBT

(P99 TBT) for paying and free-tier users, respectively. Figure 5.2c illustrates

the median TTFT as a function of the request rate. In all experiments, we

configure Sarathi-serve (both FCFS and SPF variants) with a token budget

of 512 to ensure that the 0.1-second TBT target for paying users is met. For

all SLAI variants, we use the same token budget, and set both the number of

active requests and concurrent decode-phase request limit to 128. For SLAI

(FCFS/SPF, fixed offset), we set the offset parameter to 10, which controls

when a decode-phase request becomes time-critical, whereas for SLAI (SPF,

dynamic offset), the offset is set to 5 if GPU memory utilization is below 96%,

and to 10 otherwise.

TBT Behavior. Figures 5.2a and 5.2b show how SLAI dynamically

prioritizes requests during their decode phase based on their TBT targets.

Under Sarathi-serve, the 99th percentile TBT steadily increases for both pay-

ing and free-tier requests as the system load grows. This happens because

every decode-iteration is included in every batch, and as load increases, so

does the batch execution time, leading to higher delays for all requests. By

contrast, SLAI handles decode-iterations differently. Requests from paying

users have strict (low) TBT targets, which in most cases are always consid-
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ered time-critical. As the load increases and batches take longer to run, their

P99 TBT naturally increases. Free-tier requests, however, have more relaxed

TBT targets. At lower loads, the scheduler can defer these decode-iterations

to prioritize prefills, since they are not immediately time-critical. This initially

causes their P99 TBT to rise. But as the load continues to increase and batch

execution time becomes longer, the window during which a free-tier decode-

iteration remains non-critical shortens. As a result, these decode-iterations be-

come time-critical sooner and are prioritized earlier in scheduling. This leads

to a drop in their P99 TBT. Eventually, at high loads, all free-tier decode-

iterations are immediately marked as time-critical, and their TBT increases

again—now dominated by the growing batch execution time, similar to paying

users. Lastly, vLLM since it is a prefill-prioritizing scheduler ends up violat-

ing P99 TBT at a relatively low load and thus is not effective at managing

decode-phase requests.

TTFT behaviour. Figure 5.2c shows the median TTFT as a func-

tion of requests per second. The vLLM policy, which prioritizes prefill-phase

requests, achieves the lowest median TTFT at low loads. However, it does

so by aggressively batching prefill requests at the expense of violating 99th

percentile TBT latency constraints, making it unsuitable for scenarios with

strict QoS requirements. Sarathi-serve improves upon this by balancing prefill

and decode phases to maintain both acceptable median TTFT and TBT tail

latencies. When Sarathi-serve is combined with the SPF-based policy it yields

a better median TTFT than its FCFS counterpart, highlighting the benefit of

186



reordering prefill requests by prompt length. However, Sarathi-serve does not

adapt to heterogeneous TBT deadlines across requests. SLAI (SPF, fixed off-

set) addresses this by selectively deferring decode-phase requests with relaxed

deadlines, achieving further improvements in median TTFT. Finally, SLAI

(SPF, dynamic offset) introduces dynamic decode-iteration deferral based on

real-time GPU memory utilization, allowing the system to better utilize avail-

able token budget of a batch. As a result, SLAI delivers significant performance

improvements: it reduces the median TTFT from 1.5 seconds (under Sarathi-

Serve (FCFS)) to 0.7 seconds—a 53% improvement under high load—and

increases the maximum sustainable request rate from 1.15 to 1.45 requests

per second while maintaining a fixed median TTFT constraint of 0.5 seconds

and meeting tail TBT latency targets, representing a 26% increase in serving

capacity.

See Appendix B.1 for additional experimental results that highlight

several important aspects: i) the performance of different policies as a function

of prompt lengths, ii) the impact of prioritizing paying users over free-tier users

during the prefill phase, and iii) how the policies compare when the proportion

of paying users increases to 50% or 95%.

5.4 Conclusion

This paper presented a framework for designing efficient LLM infer-

ence systems. To handle heterogeneous request classes with different latency

needs, we proposed the SLAI scheduler. SLAI reduces TTFT by intelligently
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prioritizing requests while still meeting tail TBT constraints. In comparison

to existing state-of-the-art, SLAI reduced the median TTFT by 53% and in-

creased the maximum serving capacity by 26% for a fixed median TTFT, while

meeting the TBT constraints.
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Figure 5.2: Performance comparison of SLAI, Sarathi-serve, and vLLM under
mixed user workloads with 5% paying users. SLAI (SPF, dynamic offset)
achieves the best latency-throughput trade-off.
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Chapter 6

Concluding Remarks and Future Directions

6.1 Conclusion

Maximizing the system-wide utility of edge and/or cloud server re-

sources while meeting the requirements of latency-sensitive, heterogeneous

workloads with multi-resource footprints is a challenging problem. This disser-

tation examined two main use cases for such resources: bringing computation

and data caching in proximity to clients.

Chapter 2 – Edge compute offloading. Offloading computationally

heavy workloads to the edge/cloud server can serve various goals—such as

saving device power, reducing average job completion time, or maximizing

throughput under delay constraints. However, uncertainty in wireless chan-

nel conditions and heterogeneity in jobs and computation demands make it

challenging to optimize such systems under stochastic loads. In this thesis,

we showed that a measurement-based policy combining both proactive and re-

active elements can address these difficulties effectively. The proactive phase,

probabilistic admission control and cut assignment, performs admission control

and decides which parts of a job to offload, while the reactive phase, predictive

abandonment, abandons jobs that are unlikely to meet their deadlines.
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Together, these components adaptively manage resources and can approach

near-optimal performance in some settings.

Chapters 3 and 4 – Exploiting edge caching resources. Next, we

explored how to improve cache hit rates for data object requests by focusing

on two key aspects: the way data objects are represented, and how to leverage

patterns in client requests when they exist.

First, we analytically demonstrated how different data object represen-

tations—especially layered representations—can influence cache performance

under LRU, without the need for extensive simulations. Second, we devel-

oped a measurement-based caching policy, Least Following and Recently Used

(LFRU), that infers correlations in client requests and exploits them to out-

perform traditional policies such as LRU and LFU across a wide range of

settings.

To evaluate our approach, we created a synthetic dataset with di-

verse request patterns, including both uncorrelated and correlated behaviors.

Our experiments showed that under structured or correlated request patterns,

measurement-based policies can significantly improve performance. However,

in cases where such structure is absent, traditional policies may still remain

effective. Overall, our findings highlight the importance of adapting caching

strategies both to the structure of client requests and to the form in which

data is or can be stored.
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Chapter 5 – Serving jobs that need both compute and memory re-

sources. Lastly, we investigated how to efficiently execute LLM inference re-

quests on a GPU, with the goal of reducing the Time To First Token (TTFT)

during the prefill phase while meeting Time Between Tokens (TBT) constraints

during the decode phase. These two phases place different demands on a

GPU—prefill is compute-intensive, while decode is more sensitive to memory

bandwidth and memory. Adding to the complexity, number of decode itera-

tions are not known in advance, and the latency objectives for the two phases

often conflict. This makes it challenging to mix and schedule such requests

efficiently.

In this thesis, we proposed a measurement-based policy that dynam-

ically prioritizes decode requests based on observed system conditions. This

allows the scheduler to better allocate resources as the load changes, outper-

forming static policies—especially in settings with heterogeneous TBT targets.

We demonstrated the effectiveness of our approach through experiments on

an NVIDIA RTX ADA 6000 GPU, showing reduced TTFT compared to the

state-of-the-art while meeting TBT goals for a range of loads.

These results show that simple, measurement-based

rules—when aligned with the data and the load—can keep modern edge sys-

tems both fast and efficient.
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6.2 Future Research Directions

The findings in this dissertation were obtained under certain modeling

assumptions that highlight the core ideas and allow careful theoretical analysis.

However, several open directions remain for exploration as elaborated below:

1. Beyond Linear DAG Models for Job Offloading. The MEC of-

floading framework presented in this thesis assumed that jobs could be mod-

eled as linear directed acyclic graphs, which simplifies partitioning of jobs.

However, many real-world applications involve more complex workflows—e.g.,

tree-structured or branching graphs, or even iterative loops in model pipelines.

These richer structures may require more sophisticated partitioning strategies

and dynamic coordination between edge and device compute, which presents

both modeling and algorithmic challenges.

2. Self-Tuning Policies. Several of the policies developed in this thesis rely

on parameters tuned offline through simulation—for example, the number of

requests used to infer following behavior under LFRU or the token budget and

decode offset in the LLM scheduler. In practical deployments, such tuning is

infeasible. An important research direction is to develop online, measurement-

driven methods that enable these systems to self-tune in response to dynamic

loads, possibly using techniques from adaptive control or reinforcement learn-

ing.
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3. Routing and Caching for LLM Inference. While our work focused on

intra-GPU scheduling under heterogeneous TBT constraints, future systems

for LLM inference must also tackle the joint design of routing, scheduling and

caching policies. For example, a router must decide whether to steer a request

to a lightly loaded GPU with a cold cache, or to a busy GPU that holds

relevant Key–Value (KV) tensors for the request. Similarly, cache eviction

strategies must take into account both model access patterns and routing

behavior. Coordinated algorithms that integrate all three dimensions—when

to run prefill and decode phases of a request, where to run it, and how to

manage the ever-growing KV cache that the model produces—are still needed.
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Appendix A

Proof for working set approximation

In this section we provide the proof our theorem for hit probability of

a data object and layer.

Lemma A.1. Under the working set memory management in the independent

reference model with D data objects and V layers, the variance in the size

of working set is bounded above by
(
D·V
4

+D · V · (V − 1)
)
·
(
δ
(D)
max

)2
, where

δ
(D)
max = maxd∈D,l∈{1,2,··· ,V } δ

(D)(d, l)

Proof. Let X(D)(d, l) be a random variable which is 1 if data object d and

layer l is in the cache at time t, and 0 otherwise. The working set at time t is

given by:

S(D)(t) =
D∑
d=1

V∑
l=1

δ(D)(d, l)X(D)(d, l), (A.1)
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then the variance V
(
S(D)(t)

)
in the size of working set is

V
(
S(D)(t)

)
= V

(
D∑
d=1

V∑
l=1

δ(D)(d, l)X(D)(d, l)

)

=
D∑
d=1

V∑
l=1

(
δ(D)(d, l)

)2
V
(
X(D)(d, l)

)
+

2
∑

1≤i<d≤D

V∑
l=1

(
δ(D)(i, l)δ(D)(d, l)

)
Cov

(
X(D)(i, l), X(D)(d, l)

)
+

2
D∑
d=1

∑
1≤l<k≤V

(
δ(D)(d, l)δ(D)(d, k)

)
Cov

(
X(D)(d, l), X(D)(d, k)

)
where Cov is the covariance. Since

V
(
X(D)(d, l)

)
≤ 1/4,

Cov
(
X(D)(i, l), X(D)(d, l)

)
≤ 0, i ̸= d

Cov
(
X(D)(d, l), X(D)(d, k)

)
≤ 1, l ̸= k,

We find that

V
(
S(D)(t)

)
≤
(
D · V
4

+D · V · (V − 1)

)
·
(
δ(D)
max

)2
(A.2)

A.0.1 Proof of 3.1

We first show that

lim
D→∞

E
[
S(D)(Dτ)

D

]
=

∫ 1

0

V∑
l=1

∆(x, l)dx−
∫ 1

0

V∑
l=1

∆(x, l)e−τF
′(x)

∑V
v=l g(v;x)dx

(A.3)
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where

E
[
S(D)(Dτ)

D

]
=

1

D

D∑
d=1

V∑
l=1

δ(D)(d, l)
(
1− (1− p(D)(d, l))(Dτ−1)

)
(A.4)

By the Mean Value Theorem,

q(D)(d, v) = (F ′(ψ(d))/D) · g(v; d/D) (A.5)

for some ψ(d) with ((d− 1)/D) ≤ ψ(d) ≤ (d/D) and

p(D)(d, l) = (F ′(ψ(d))/D)
∑V

v=l q
(D)(d, v)

We now use Lemma 10 from [15], which states that for each closed

bounded set C,

(1− (c/n))τ0n → e−τ0c as n→ ∞, uniformly over all c in C. (A.6)

The above is just using point wise limits. Thus, for D ≫ 1 if∣∣∣∣∣∣
(
1− F ′(ψ(d))

D

V∑
v=l

q(D)(d, v)

)Dτ0

− e−τ0F
′(ψ(d))

∑V
v=l q

(D)(d,v)

∣∣∣∣∣∣ < ϵ (A.7)

then one can easily show the following using the same arguments as from [15]∣∣∣∣∣ 1D
D∑
d=1

V∑
l=1

δ(D)(d, l)
(
(1− p(D)(d, l))(Dτ0−1) − e−τ0F

′(ψ(d))
∑V

v=l q
(D)(d,v)

)∣∣∣∣∣ < ϵ

(A.8)

Now by the definition of Riemann Integral,

1

D

D∑
d=1

V∑
l=1

δ(D)(d, l)
(
1− e−τ0F

′(ψ(d))
∑V

v=l q
(D)(d,v)

)
(A.9)
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is an approximation to the following integral∫ 1

0

V∑
l=1

∆(x, l)dx−
∫ 1

0

V∑
l=1

∆(x, l)e−τF
′(x)

∑V
v=l g(v;x)dx (A.10)

where Riemann integrable ∆ satisfies ∆(d/D, l) = δ(D)(d, l) for all D, d and l.

The absolute error between Eq. A.9 and Eq. A.10 can be made smaller than ϵ

for sufficiently large D. Thus, we show the result in Eq. A.3.

Additionally, using Lemma A.1, we obtain the following

lim
D→∞

V

(
S(D)(Dτ)

D

)
→ 0. (A.11)

Let τ ∗ denote a unique solution to

b = lim
D→∞

E
[
S(D)(Dτ)

D

]
=

∫ 1

0

V∑
l=1

∆(x, l)dx −

∫ 1

0

V∑
l=1

∆(x, l)e−τF
′(x)

∑V
v=l g(v;x)dx (A.12)

For finite D ≫ 1, this equation is approximated by

B = E
[
S(D,V )(t)

]
=

D∑
d=1

V∑
l=1

δ(D)(d, l)
(
1− (1− p(D)(d, l))(Dτ−1)

)
(A.13)

with t∗ = Dτ ∗ as the unique solution for the above equation when B = Db.

Note that as D → ∞,

S
(D)
−(d,l)(Dτ)

D
∼ S(D)(Dτ)

D

So,

lim
D→∞

P
(
S
(D)
−(d,l)(Dτ) ≥ B

)
= lim

D→∞
P
(
S(D)(Dτ)/D ≥ b

)
= u(τ − τ ∗)
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By Palm’s theorem [4], the stationary LRU miss probability for data

object d and layer l is

1− h(D)(d, l) = P
(
S
(D)
−(d,l)(T

(D)(d,l)
n ) ≥ B

)
=

∞∑
t=1

P
(
S
(D)
−(d,l)(t) ≥ B

)
p(D)(d, l)(1− p(D)(d, l))t−1

For t = Dτ , B = Db, D ≫ 1, we can obtain the following with τ ∗ as the

unique solution of Eq. A.12

1− h(D)(d, l) =
∞∑

τ=1/(D)

u(τ − τ ∗)p(D)(d, l)(1− p(D)(d, l))Dτ−1

= (1− p(D)(d, l))Dτ
∗−1

= (1− p(D)(d, l))t
∗−1

for all data objects d and layer l. As D → ∞, using Lemma 10 from [15] or

point wise limits for right hand side, we obtain

1− h(d, l) = e−τ
∗F ′(d)

∑V
v=l g(v;d). (A.14)
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Appendix B

Additional experimental results for LLM

inference scheduling

B.1 Results for the scenario of 5% split

Figure B.1 presents a comparative evaluation of scheduling policies un-

der heterogeneous TTFT and TBT constraints, with a workload comprising

5% paying users. Figure B.1a shows the median TTFT for all requests as a

function of request rate, plotted on a log-scaled y-axis to highlight differences

at low load. This view reveals how various schedulers handle contention-

free versus saturated conditions. Figure B.1b reports the number of requests

completed at the peak load of 1.6 requests per second, bucketed by prompt

length. Notably, SLAI (SPF, dynamic offset) serves nearly as many requests

as Sarathi-serve while achieving substantially lower median TTFT, whereas

vLLM exhibits instability and fails to maintain throughput under high load.

Finally, Figure B.1c plots the mean TTFT at 1.6 requests per second as a func-

tion of prompt length. Despite favoring shorter prompts, SPF-based sched-

ulers yield a lower overall TTFT compared to FCFS variants, demonstrating

the benefit of prioritizing short requests even in the presence of heterogeneous

job sizes.
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versus prompt length.

Figure B.1: Performance comparison of different policies under mixed user
workloads with 5% paying users.
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(b) Mean TTFT for free-tier users as a
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Figure B.2: Performance comparison of different policies under mixed user
workloads with 5% paying users.

B.2 Prioritizing prefill-phase requests of paying users
over free-tier users

In this section, we evaluate an additional policy: SLAI (SPF with pri-

ority, dynamic offset). This policy gives strict priority to prefill-phase requests

from paying users over those from free-tier users, regardless of prompt length.

In other words, it always schedules a paying user’s request first. All other

parameters are the same as in SLAI (SPF, dynamic offset). Figure B.2 com-

pares this priority-based policy with other scheduling strategies. At high load

(1.6 requests per second), we observe that the mean TTFT for paying users

is lower than that for free-tier users. However, the improvement in TTFT for

paying users is relatively small.
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Figure B.3: Performance comparison of SLAI, Sarathi-serve, and vLLM under
mixed user workloads with 50% paying users. SLAI (SPF, dynamic offset)
achieves the best latency-throughput trade-off.
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Figure B.4: Performance comparison of SLAI, Sarathi-serve, and vLLM under
mixed user workloads with 95% paying users. SLAI (SPF, dynamic offset)
achieves the best latency-throughput trade-off.
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B.3 Results for the scenario of 50% and 95% split

In this section, we present additional results for scenarios with less

heterogeneity in user workloads. Figures B.3 and B.4 show results similar to

those discussed earlier, but for cases where the percentage of paying users is

50% and 95%, respectively. As the proportion of paying users increases, the

improvement in serving capacity under SLAI (SPF, dynamic offset) compared

to Sarathi-serve (FCFS) becomes smaller. This is because a larger share of

traffic now has stricter TBT constraints, leaving fewer opportunities for SLAI

to defer decode-phase requests dynamically.
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gorithm,” Random Struct. Algorithms, vol. 33, no. 2, p. 219–251, sep

2008.

[29] P. R. Jelenković, “Asymptotic approximation of the move-to-front search

cost distribution and least-recently used caching fault probabilities,” The

Annals of Applied Probability, vol. 9, no. 2, pp. 430–464, 1999. [Online].

Available: http://www.jstor.org/stable/2667340
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