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This dissertation is in the area of pervasive computing. It focuses on designing

platforms for storing, querying, and computing contextual information. More

specifically, we are interested in platforms for storing and querying spatio-

temporal events where queries exhibit locality.

Recent advances in sensor technologies have made possible gathering

a variety of information on the status of users, the environment machines,

etc. Combining this information with computation we are able to extract

context, i.e., a filtered high-level description of the situation. In many cases,

the information gathered exhibits locality both in space and time, i.e., an event

is likely to be consumed in a location close to the location where the event was

produced, at a time which is close to the time the event was produced. This

dissertation builds on this observation to create better platforms for computing

context.
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We claim three key contributions. We have studied the problem of

designing and optimizing spatial organizations for exchanging context. Our

thesis has original theoretical work on how to create a platform based on cells

of a Voronoi diagram for optimizing the energy and bandwidth required for

mobiles to exchange contextual information that is tied to specific locations in

the platform. Additionally, we applied our results to the problem of optimizing

a system for surveilling the locations of entities within a given region.

We have designed a platform for storing and querying spatio-temporal

events exhibiting locality. Our platform is based on a P2P infrastructure of

peers organized based on the Voronoi diagram associated with their locations

to store events based on their own associated locations. We have developed

theoretical results based on spatial point processes for the delay experienced

by a typical query in this system. Additionally, we used simulations to study

heuristics to improve the performance of our platform. Finally, we came up

with protocols for the replicated storage of events in order to increase the

fault-tolerance of our platform.

Finally, in this thesis we propose a design for a platform, based on

RFID tags, to support context-aware computing for indoor spaces. Our plat-

form exploits the structure found in most indoor spaces to encode contextual

information in suitably designed RFID tags. The elements of our platform

collaborate based on a set of messages we developed to offer context-aware

services to the users of the platform. We validated our research with an ex-

ample hardware design of the RFID tag and a software emulation of the tag’s

x



functionality.
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Chapter 1

Introduction

Ubiquitous, or pervasive, computing is considered the third major step

in the history of computing, following the main-frame and the personal com-

puter. At the very core of this vision, first articulated by Mark Weiser in [83],

ubiquitous computing embraces the multitude of devices characterizing mod-

ern computing environments, i.e., sensors, netbooks, smart-phones, PDAs,

laptops, etc., and strives for innovative approaches to handle the resulting

challenges in human-computer interaction and system scalability. Interaction

transparency and its pre-requisite context awareness are the two most promis-

ing system properties identified so far to address the above challenges, see

[39, 72, 84, 85].

This thesis focuses on novel platforms for managing context. Our work

encompasses issues like gathering, storing, querying and computing context.

Production and consumption of context is frequently performed by humans.

A key observation that drives our work is that humans tend to be interested

in context/information that occurred close to them in space and time. In

other words, context exhibits spatio-temporal locality. For example, in a smart

parking management application, information about a vacant parking spot

1



may be valid for say, 5 minutes and its area of interest is roughly 100 meters.

Clearly, the characteristics of this type of information are radically different

than those of, e.g., generic data files, which corresponds to the majority of

traffic carried by the Internet today. We will capitalize on context’s locality

to achieve scalability in our design.

Spatial organizations for context. In Chapter 2 we explore a fixed

platform to support context storage and query. We consider a model where

locations are randomly placed on the plane representing ‘information booths’,

that store and compress the information/context around them - we call the

region associated with each location its ‘cell’. Suppose a mobile device queries

for context after it enters a cell and acquires context associated with that cell

only. To evaluate scalability we consider a simple model where the amount

of context associated with a cell scales as a function of its area, obviously the

bigger the area the more the context it contains, but as we argue in Chapter 2

the rate of growth need not be linear. Indeed, pieces of spatial information at

two nearby locations may exhibit correlation, allowing compression and thus

reducing the rate of functional form of the growth.

We explore scalability by optimizing the density of cells to best mediate

context exchange. Specifically, we optimize a cost function which is a first-

order proxy for the bandwidth and energy consumption of mobiles trying to

exchange context relevant to their locations as they move in space.

In this thesis we explore two optimization strategies, the ‘aggregative’

and the ‘hierarchical’. In the aggregative approach we try to use as big cells as
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possible to amortize the fixed cost associated with connecting with a new cell.

Additionally, in our aggregative approach we potentially reap the benefits of

context redundancy by exchanging compressed information corresponding to

a bigger cell. We explore various cases for the scaling of the average amount

of content found in a cell. Our analysis shows that when there exists a lot of

information redundancy, i.e., specifically when the average amount of context

found in a cell grows slower than the square root of the average cell size, the

aggregative approach can achieve unbounded gains over an unoptimized case.

As the average amount of context increases with cell size, the maximum

gain through aggregation diminishes. Moreover, the optimization occurs only

on a limited scale of aggregation, i.e., there exists an upper bound on the size

of the cells used for exchanging context. Our approach stops reducing the cost

when the size of the cells used for aggregation is too large. In that case we end

up exchanging context not truly local to the user, and thus it is irrelevant. For

the special case where the average amount of context grows linearly in the size

of a cell, we offer an example where the maximum gain is 42.5%. For the case

that context grows super-linearly, we offer an example where the maximum

gain is 27.5%.

Our ‘hierarchical’ approach tries to achieve the best of two worlds when

there exists redundancy in the context. It exchanges the unique context per-

taining to each cell at a fine spatial granularity and in addition it exchanges

shared context among cells using larger, aggregative cells. We prove that when

context grows relatively fast, i.e., the average amount of context found in a
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cell grows faster than the square root of the cell’s size, then the hierarchical

approach is asymptotically better than the aggregative one. Otherwise, when

context grows slowly, the hierarchal approach will asymptotically produce sav-

ings but it will not be better than the aggregative one.

We conclude Chapter 2 with an application of our ideas to the problem

of surveillance of a group of mobiles. We propose two strategies, a ‘direct’ one,

ideally suitable for passive RFID technology, which detects the movement of

mobiles at designated points corresponding to natural barriers in space, e.g.,

doorways. Our ‘indirect’ strategy detects the locations of mobiles through a

location positioning system. We prove that for services offered on a ‘person-

alized’ scale, i.e., when context is exchanged for a space of roughly human

dimensions, the direct approach is preferable to the indirect one.

A P2P platform for managing events. In Chapter 3 we turn

our attention to a more concrete representation of contextual information.

Events are a well established abstraction to represent real-time information.

We propose a formal model for events that encodes spatio-temporal locality

explicitly. Using our event model as a building block, we define a special type

of query, the ‘range’ query, which returns all ‘current’ events inside a disk.

This allows us to present other types of queries spanning a wide range of use-

cases found in ubiquitous computing, e.g., checking proximity of events to each

other, coverage of an area by events, etc. This increases the semantic power of

our platform compared to the context exchanges we discussed in Chapter 2.

In Chapter 3 we explore a possible organization of infrastructure to
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support context-awareness. We propose a P2P platform for storing events

and define associated protocols for storage and query. To promote locality in

storage, we require events to be stored at the closest peers to their location.

This also increases the scalability of our platform by exploiting the role of

context locality. We evaluate the performance and scalability of our platform,

by studying the average query delay. To develop intuition we first study a grid

model based on rigorous queuing theoretic assumptions. Our main conclusion

is that, unlike ‘traditional’ content distribution P2P networks, our context

delivery P2P network has an optimal peer intensity, i.e., more is not necessarily

better. Its scalability is limited by the routing cost of traversing a large number

of peers.

We verify these idealized models by simulating a prototype of our P2P

platform and compare its average query delay to that predicted by our model.

The results show convergence of the two views in the case of uniform traffic

and topology. Additionally, we quantitatively study the benefits of locality;

our simulations show up to a 34% improvement on the average query delay

as compared to the case of events not exhibiting locality. We conclude the

chapter by introducing fault-tolerance into our design via replication.

Addressing non-uniformities. In Chapter 4 we study the effect of

limited storage capacity per peer as well as non-uniform traffic and topology.

We propose a modified storage scheme that is motivated by our work on fault-

tolerant storage; a peer having reached its storage capacity can be considered

a special case of a failed peer. Our modified storage scheme re-distributes
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events from overloaded peers and increases the overall storage capacity; we

call that storage pooling. We are able to compute the blocking probability

associated with our modified storage scheme for a grid topology using Er-

lang’s loss formula. We provide a specific example where, according to our

formula, our modified scheme reduces the blocking probability from 10% to

0. Moreover, using the same grid model we argue that storage pooling does

not significantly increase traffic in our platform since events tend to be stored

close to their original locations maintaining locality. Finally, we study the

‘survival probability’ of an event, i.e., the probability that at least one replica

of an event gets stored and survives its life-time. We derive an approximate

expression for the survival probability using Erlang’s loss formula. Contrary

to intuition we argue that more replicas do not always lead to bigger survival

probabilities when storage space is limited. Examining specific cases we show

that in some cases there exists an optimal number of replicas.

In the sequel we turn our attention to addressing non uniformities in

topology and traffic. We classify traffic to two categories: ‘local’ traffic that

is mainly affected by the size of a peer’s cell and ‘end-to-end’ traffic, that is

mainly affected by the location of a peer as well as the quality of the edges

comprising the topology. An example of local traffic is the traffic resulting

from storing, events and an example of end-to-end traffic is the traffic resulting

from routing queries among peers. To address non uniformities in the peers’

locations, we propose a novel heuristic, the ‘move’ heuristic, which dynamically

adjusts the peers’ locations to balance the traffic load they receive. We study
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the performance of the move heuristic experimentally and are able to report

that under heavy traffic, the heuristic can improve the average traffic delay up

to 2− 3 orders of magnitude, stabilizing the network.

To address non-uniformities in the traffic experienced by our network

we propose a novel heuristic, the ‘congestion edge’ heuristic. Our heuristic,

dynamically identifies for each peer the source peer that contributes the biggest

number of queries towards it and creates a ‘shortcut’ edge between the two

peers. The effect of our heuristic is to significantly alleviate the network from

traffic and smooth the traffic reducing the traffic variability. We simulate the

effect of our heuristic for two configurations: a ‘low’ non-uniform traffic and

a ‘high’ one. Our heuristics improve the end-to-end query delay roughly by

factors 2x and 5x respectively.

A context-aware application platform with locality. In Chapter

5 we present a concrete example of a platform supporting context and exhibit-

ing locality in users’ interests. We focus on context that is generated by spaces

that support a hierarchical organization, i.e., spaces contain other sub-spaces

that might contain other sub-sub-spaces etc. We encode this structure in a

stack that contains a frame for each level of the spatial hierarchy the user is

located in. Information relevant to each level is contained in the corresponding

frame of the stack. We present a companion protocol leveraging the opera-

tions of the spatial stack and investigate how the proposed protocol can be

implemented. For our implementation we choose to focus on RFID technology.

Passive RFID is a light-weight technology ideally suited for exploiting locality
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given its limited range. The limited range of an RFID tag naturally imple-

ments the ‘interaction transparency’ that characterizes ubiquitous computing,

[83], and the resulting pruning of information ensures the scalability of the ap-

proach. Passive RFID tags are powered wirelessly from the entities querying

them, thus they do not suffer from power management issues plaguing other

candidate technologies for ubiquitous computing.

1.1 Conclusions

The contributions of this thesis are in the area of ubiquitous computing.

We address the problem of designing efficient platforms for managing context

with locality. In Chapter 2 we describe a fixed infrastructure used by mobiles

for exchanging localized context. In Chapter 3 we describe a P2P platform

for storing and querying events based on locality. In Chapter 4 we address

the limitations of our P2P platform arising from non-uniformities and limited

storage. In Chapter 5 we describe an application platform for managing lo-

calized context. Finally, in Chapter 6 we conclude this thesis by examining

future directions for our research.
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Chapter 2

Design and Optimization of Spatial

Organizations For Context Exchange and

Surveillance

2.1 Introduction

Context-awareness refers to the ability of applications to recognize the

‘environment’ in which they are executing. Such a capability is a key pre-

requisite for ubiquitous computing. Its wide applicability has led to many

radically different, but equally valid, manifestations, e.g., services available

in a space, sensor values describing the local conditions, personal data about

people present in a room for a social-networking application, etc., can all be

considered context. Spatial context, e.g., the gas stations in the neighborhood

or a person’s shopping preferences in a mall to be used by a targeted adver-

tisement application, is a special type of contextual information that exhibits

strong locality.

Exchanging this type of data has become increasingly prevalent in

ubiquitous computing. Thus, we believe that optimizing such contextual ex-

changes between mobile users and applications is a problem of primary im-

portance. Our focus in this chapter is on contextual information that is en-

coded, stored and available for use, but tied to an area, i.e., is relevant only
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to users/applications at certain spatial locations.

Optimization issues. How often should a mobile user interact with its

environment to exchange contextual information? Is it preferable to frequently

exchange small amounts of context or bulk amounts of context less often?

Should location information come from a shared infrastructure mechanism or

is it better for mobile users to individually calculate their locations? These are

the types of questions that we aim to address in this chapter. The answers will

depend primarily on the scaling characteristics of the information exchanged.

Intuitively, one might expect that, e.g., temperature measurements, taken from

adjacent sensors will be highly correlated. Therefore, temperature contextual

information need not be acquired from all sensors but only from a selected

subset of them appropriately distanced from each other. Additionally, the

mechanism used to perform the exchange can complicate the picture, e.g., the

most efficient ways to perform context exchange using a wireless protocol will

be affected by its overheads.

Clearly, the way we perform contextual exchanges will have a major

impact on the performance and the lifetime of a ubiquitous computing sys-

tem. For example, if users carry laptops, PDAs, phones etc., to access con-

textual information, energy consumption will be a primary concern. Shorter

and less frequent exchanges of context result in reduced energy consumption,

which in turn will affect the required size of batteries, their cost and the time

horizon until pausing to re-charge a battery. One cannot overemphasize the

importance of these issues for ubiquitous computing especially as new excit-
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ing avenues such as wearable computers and smart-objects emerge, see, e.g.,

[56, 81]. Understanding some of the trade-offs in designing such infrastructure

is the goal of this chapter.

System model. In order to quantitatively assess the relevant merits

of particular architectures for context exchange, we propose a simple but novel

model, capturing the salient features of such systems; see Fig. 2.1. We assume

space is partitioned as a tessellation with each cell corresponding to a region

whose context will be acquired together. This is a first-order approximation

that can be used as a guide when designing/optimizing spatial organizations

for context exchange. Similar approaches have been successfully applied to

the problem of network design, see, e.g., [4, 5]. In the sequel we will present a

simple taxonomy capturing different ways in which the amount of contextual

data associated with a cell may be modeled depending on the character of the

associated applications.

Our model assumes a mobile traversing cells of the tessellation; a

surveillance mechanism that is part of the space’s infrastructure notifies the

mobile about traversal events and the mobile in response acquires/transmits

the context relevant within each cell, e.g., when a mobile enters a building it

acquires the associated context. However, each exchange of contextual data

incurs a cost in terms of bandwidth or energy plus some overhead. Our goal

is to find organizations that minimize such costs. In particular, we wish to

determine the granularity that cells should have. For example, inside a mall

one could exchange context at a floor, shop or even finer granularity. Thus,
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on one hand, if we exchange context more frequently from small cells we ex-

change only the context that we need, but might incur a higher overhead.

On the other hand, if we exchange context less frequently from larger cells, a

mobile user will download irrelevant context from the finest-grain cells it will

not actually visit in addition to the useful context that comes from cells to be

visited, but the overhead is amortized. As such, depending on the manner in

which context content scales and the nature of exchange overheads, one might

expect to find optimal cell granularities.

Related work. Context acquisition is a problem of recognized im-

portance in the ubiquitous computing community as well as in the networking

community, see, e.g., [76],[22] and [55]. However, to the best of our knowledge

this is the first work to focus on quantitative assessment, albeit based on sim-

plified models, of spatial context exchange. Geometrical modeling of spaces

and their use in ubiquitous computing is not a new idea, see, e.g., [17]. The

key difference between this work and others focusing on geometrical modeling

is that we use a stochastic model for the typical architectural features. We

introduce a few parameters, based on which we compute performance metrics

that are representative of a large variety of scenarios.

Context aggregation is widely recognized as an efficient policy for cop-

ing with scalability issues challenging ubiquitous systems, see, e.g., [20] and

[21]. In [20] context aggregation is modeled with the help of a graph connect-

ing context sources, context operators, and context sinks. Context information

flows uni-directionally from sources to sinks along the edges of the graph in the
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form of context update events. Key insights drawn from the lessons learned

from deploying Solar, a concrete realization of the proposed architecture, are

provided. In contrast, our work takes a more detailed view on the scalability

characteristics of context to assess the limitations of aggregation and allows

for modeling bi-directional context exchanges between mobile users and appli-

cations. Our work shares with [70] a concern about context aggregation for

resource limited mobile devices. They favor a distributed approach to con-

text aggregation as opposed to our approach, which uses different aggregation

scales. The work in [91] and ours share a concern with scaling issues of context

but we choose to focus on studying context exchange while [91] focuses on the

quality of the acquired contextual information. The work presented in [13]

describes the use of context for improving network performance and assumes,

as in this chapter, that context data is exchanged by the same mechanisms

used for communication. Other research in the area of context acquisition is

[88],[82], [89],[42]. A preliminary version of this work has appeared in [92].

Contributions and organization. The key contributions and orga-

nization of this chapter are summarized as follows. In Section 2.2 we formally

propose a simple first-order stochastic geometric model, based on cells from a

random Voronoi tessellation, for a spatial organization of context exchanges

to/from mobile users/terminals. In order to argue quantitatively about the

relevant merits of different architectures, we also propose a taxonomy for how

context content scales with the area of a cell for various applications.

In Sections 2.7 and 2.10 we consider a flat organization, which aggre-

13



gates contextual data via cells and exchanges the associated data as a batch

when a mobile traverses a cell. For this scenario we show that when the average

context content of a cell scales slower than the square root of its average area

then aggregative organizations increasingly reduce overall costs, i.e., band-

width/energy. However, when the amount of cells’ context grows faster than

the latter then it is either not beneficial or there is an optimal granularity for

aggregation which depends critically on the exchange overheads and the char-

acteristics of context scaling. In other words, the case where context content

scales roughly as the square root of the area, is a critical case in considering

optimization of context exchanges to mobile users.

In Section 2.12 we consider hierarchical organizations for context ex-

change. In particular, if the context content of a cell scales sub-linearly with

the area, one expects to have contextual redundancy in the space. Thus, it is

natural to exchange shared context using a coarse organization of data, while

data specific to a given location is exchanged at finer scales. We will show

that such hierarchical organizations are indeed beneficial, but once again the

benefits relative to aggregative organizations depend critically on the context

scaling characteristics. In Section 2.13 we elaborate on different mechanisms

to surveil a space’s cells and consider their contribution to the energy costs.

The chapter concludes with Section 2.18.
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2.2 Modeling context regions and scaling

Spatial context is usually formed around designated points of interest

in the environment, e.g., information about art exhibits targeted to visitors of

a museum. The corresponding regions formed are hardly ever regular, usually

the more the context in a region the bigger the size of the region formed around

it. For example, art masterpieces are often allocated more space than other

exhibits. The resulting partition of the space is very similar to the Voronoi

tessellation formed by the points of interest as nuclei. To express the multitude

of possible configurations of regions, a stochastic approach is needed.

Stochastic geometry, [79], has recently proven to be a useful tool for

modeling the architecture and performance of communication networks as well

as the role of mobility, see, e.g., [4, 5]. The general idea is to develop simple

first-order models that depend on a few parameters and that capture the salient

features of the problem at hand, allowing one to roughly consider optimizing

system designs. This is the character of the model we consider below.

2.2.1 Model for context regions

We shall start by considering a non-hierarchical, ‘flat’, partition of the

environment into cells. After a user crosses a cell’s boundary, an exchange of

context takes place. The exchange might happen at any later point as long

as the user is inside the cell. The cell’s localized context is transferred to the

user, and the user’s cell-specific context is transferred to the application(s)

serving the cell. We model such a partition based on the cells of a Voronoi
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tessellation induced by a homogeneous Poisson Point Process, on the plane

which we very briefly describe next, see additionally [79]. The geometry of

spaces found in the real world is far too complex to be described by a single

model. We think that homogeneous stochastic Voronoi tessellations form a

reasonable first-order model controlled by a single parameter that is amenable

to optimization.

A Poisson Point Process P on the plane with intensity λ is defined as

a random set of points P = {p0, p1, . . . } such that:

• for every set S ⊂ R2 the number of points in it follows a Poisson distri-

bution with rate λ|S|, where |S| is the area of S;

• and for S1, S2 ∈ R2 such that S1 ∩ S2 = ∅ the number of points in S1

and S2 are statistically independent.

The Voronoi tessellation V (P ) = {Cp0 , Cp1 , . . . } corresponding to the Poisson

Point Process P is defined as a collection of closed and convex cells Cpi covering

the plane where

Cpi = {p ∈ R2 | |p− pi| ≤ |p− pj|,∀pi, pj ∈ P}.

The intensity λ of the Poisson Point Process captures with a single

parameter the granularity of the cells of a tessellation – the average area of

a cell is given by 1
λ
. Higher values of λ lead to finer grain cells, while lower

values of λ correspond to a tessellation with coarser cells. Additionally, we
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shall assume that a tessellation induced by a Poisson process Pf with intensity

λf models the natural, finest grain, spatial organization of context in the

environment. We consider a second independent Poisson process, Pa with rate

λa < λf , modeling a coarser aggregative view to study the potential benefits of

exchanging context from larger cells. For the remainder of the chapter we will

refer to these tessellations as the ‘finest grain’ and ‘aggregative’ tessellations

respectively, these are exhibited in Fig. 2.1.

finest grain tessellation aggregative tessellation

Figure 2.1: ‘Finest grain’ and ‘aggregative’ Voronoi tessellations modeling
contextual spaces.

2.2.2 Model for context content of a cell

Each cell of a tessellation is associated with a certain amount of context

to be exchanged. In general, this amount may depend on the size and shape

of the cell. For example, a cell with bigger area is expected to have a higher
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number of services in it. Or, in the case of a library or supermarket, contextual

content may depend on the perimeter of the shelves storing books, items, etc.

Definition 2.2.1. Context content function. The context content function

c : K → R+ where K denotes the set of bounded convex sets, models the

amount of context associated with a region in the plane. We assume this

function is translation invariant.

Depending on the specifics of the application considered, the amount

of context content can refer to a cell’s context transferred to a mobile and/or

a mobile’s cell-specific context that is transferred to the application(s) serving

the cell.

Definition 2.2.2. Context scaling. Consider A ∈ K, we say a context content

function c(·) is:

• additive iff c(A) =
∑
c(Ai);

• sub-additive iff c(A) <
∑
c(Ai);

• super-additive iff c(A) >
∑
c(Ai);

for any partition A1, . . . , An ∈ K of A. Note that since c() is translation

invariant, an additive context content function must be proportional to the

area of a set.

Examples of additive, sub-additive and a super-additive context content

functions are: |A|,
√
|A|, and |A|2 where | · | denotes the area of a set.
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A sub-additive context content function might arise in situations where

there is spatial redundancy in contextual information, e.g., as might be the

case when context comes from geographically adjacent sensors or cells that are

part of a shared hierarchical structure, e.g., the same building. In this case,

shared context can be ‘compressed’ resulting in a context content function

that is sub-additive. An example of an additive context scaling would be a

situation where a number of services are spatially deployed, say with intensity

1 service per unit area. Consider the context content of a cell with area |A|. If

we merely want to collect the status of the services in the cell, e.g., operational

or not, the amount of context per region would be proportional to its area |A|.

However, if contextual information should include both the status and location

of each service we will need information proportional to log2(|A|)∗|A|, since to

describe the location of a service inside a space of area |A|, within a precision

of a unit area, we need at least log2(|A|) bits. This then is an example of a

super-additive context content function.

In practice, for complex environments context content functions may

grow arbitrarily with cell size, i.e., they need not fit neatly into the above

taxonomy. Our idealized models for the context content function capture only

some basic characteristics of such systems.

For mathematical ease and to capture a range of possible context con-

tent functions, we introduce the following assumption.

Assumption 2.3. Context content model. The context content of a cell is a

function of its shape. The average context content in a typical cell (as seen by a
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mobile) in the aggregative Poisson Voronoi tessellation V (Pa) with associated

intensity λa, is denoted by c(Va) and given by

c(Va) ,
c(Vf )λ

α
f

λαa
, where α > 0,

and c(Vf ) is another constant interpreted as average context content of a typical

cell in the finest grain Poisson Voronoi tessellation V (Pf ) with intensity λf >

λa.

Note that above we refer to a typical cell as a cell seen by a mobile

where we will assume in the sequel that mobiles have stationary trajectories

independent of the tessellation. Under these circumstances one can show that

the area of typical cells is proportional to 1
λa

, i.e., the area of a randomly

sampled cell under the Palm probability. To avoid these considerations we

directly model the typical average context content as seen by mobiles.

The polynomial model chosen is continuous at λ = λf and fulfills

through a single parameter, α, our stated assumption of expressing various

context content scalings that depend on the shape of an average cell, i.e., the

area scaling as 1
λ
, the perimeter or diameter scaling as 1√

λ
, etc. In practice,

the exact scaling of the context content function can be quite complex, but

we think it is unlikely to be exponential. Polynomial functions are reasonable

first order bounds for the context content scalings of most of the use cases

we have identified. Inspired by use cases from the environmental sensor do-

main, we observe that there is correlation in spatial context. Use cases from
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the monitoring, control or social networking domain exhibit combinatorial con-

text scalings. These observations corroborate our choice of polynomial context

content scaling.

The parameter α depends on the context content characteristics of a

particular space/application. Intuitively, the higher the amount of spatial

redundancy in the relevant context, the lower the value of α < 1. For α = 1

the average amount of context content in a typical cell is proportional to the

average area of a cell of the V (Pa) tessellation. More generally, for α > 0 the

context content growth is proportional to a power of the average area – with

cells of higher average area, containing more content, but scaling in different

ways. Our results apply to all context content scalings, but the focus is mainly

on α ≤ 1.

Our Poisson-Voronoi model for cells allows for a stochastic amount of

context content in each cell through our assumption that context is a function

of the shape of each cell. Assumption 2.3 models the average amount of context

content in an aggregative cell and will be used for optimizing our chosen cost

function.

2.3.1 Mobility model

The time instances at which context exchanges happen depend on the

specifics of each application. For example, a ubiquitous computing application

that serves a particular area and operates based on proximity will perform

context exchanges as soon as the mobile is within a certain range. The intensity

21



of such events depends on the specific characteristics of users’ mobility. We

shall assume a generic homogeneous model for mobility.

Assumption 2.4. User mobility. We assume mobiles are initially distributed

as a Poisson process with intensity λ0, their motions are stationary and inde-

pendent with mean velocity v. A user’s trajectory is assumed to be sufficiently

smooth, i.e., continuous and piecewise differentiable. The context associated

with a cell is exchanged once when a user is inside the cell.

Recent advances in mobility modeling suggest that human mobility

might follow something akin to Levy-random walks, see, e.g., [64]. Our as-

sumption on the users’ mobility is fairly generic and acceptable. A more critical

concern with the model is the assumption that the mobility patterns are in-

dependent of the spatial organization of contextual information. Most likely,

mobility and context content would be linked to actual physical structures.

This is a simplification required to attempt to study some of the fundamental

properties of the problem. Under this assumption one can show the following

fact, see, e.g., [5].

Fact 2.5. The intensity of cell boundary crossings of a homogeneous Poisson

Voronoi tessellation with rate λ seen by a typical user moving at mean speed

v is

4 ∗ v
π

√
λ crossings/unit time. (2.1)

We will use the above result to compute the rate of context exchanges as

mobiles acquire the context of a cell once according to our mobility assumption.
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2.5.1 Cost model

The nature of the ubiquitous computing paradigm is such that com-

munication will take place via a wireless medium. It is plausible to define

the cost associated with an architecture for context exchange based on the

bandwidth or energy expended to perform such exchanges. As a first-order

approximation, both bandwidth and energy might be roughly proportional to

the total amount of context exchanged, including for example, protocol and

packetization overheads. The following model captures these salient features.

Assumption 2.6. Cost model. The cost to exchange d units of contextual

data between a mobile and a cell is

h+K ∗ d. (2.2)

where h,K are constants independent of d. We assume the energy cost for

exchanging context is, to a first order, proportional to the amount of data and

overhead.

The parameter K can model overheads that are proportional to the

amount of data, e.g., packet overheads. In the sequel we will assume without

loss of generality that K = 1. The effect of K 6= 1 can be evaluated by scaling

the context content function in Assumption 2.3. The parameter h can model,

e.g., fixed protocol overheads, the cost to authenticate with a new cell, the

cost to wake-up a terminal from sleep mode, etc.
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2.7 Analysis of aggregative tessellations under additive
context content scaling

In this section we explore the benefits of using an aggregative orga-

nization to perform bulk context exchanges versus doing this at the finest

grain. Recall that these two organizations are modeled via a coarse aggrega-

tive tessellation V (Pa) with intensity λa and finest grain tessellation V (Pf )

with intensity λf where λa < λf . Given that context exchanges take place

once per cell crossed, under the finest grain organization users/mobiles ex-

change context more often than in the aggregative case.

In this section we focus on a simple case. We assume that the context

content function is additive and so proportional to the average area of an

aggregate cell 1/λa. In particular we will take α = 1 in Assumption 2.3

and model the typical context content seen by mobiles at different levels of

granularity as

c(Va) =
λfc(Vf )

λa
. (2.3)

The key idea for our analysis is simple. Under our assumption for

users’ mobility, the intensity of cell boundary crossings, and thus of context

exchanges, is proportional to the square root of the intensity of the cells. Each

context exchange corresponds to an average cost including overheads and data

exchanged. Thus, in the case of the aggregative organization, the total cost

incurred per unit time is proportional to

√
λa ∗ (h+ c(Va))
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with a similar form for the finest grain case. In order to have cost savings under

the aggregative organization versus the finest grain the following inequality

must hold √
λa ∗ (h+ c(Va)) <

√
λf ∗ (h+ c(Vf )) (2.4)

where c(Va) is related to c(Vf ) by Eq. 2.3. The following result, which is

derived in Section A.1 summarizes when aggregation is indeed beneficial.

Theorem 2.7.1. Under Assumptions 2.4,2.6 and an additive context content

function, i.e., Assumption 2.3 with α = 1, the aggregative organization with

intensity λa can achieve a reduced cost relative to the finest grain organization

with intensity λf if c(Vf ) < h and λa satisfies

λa ∈
(
λf (

c(Vf )

h
)2, λf

)
. (2.5)

The optimal rate for the aggregative tessellation that minimizes the cost is

given by

λa,opt =
c(Vf )

h
λf . (2.6)

Let x denote the overhead ratio x , h
c(Vf )

. Then the maximum relative cost

reduction is given by

|1−
√
λa,opt(h+ c(Va))√
λf (h+ c(Vf ))

| = 1− 2
√
x

1 + x
. (2.7)

We can interpret this result as follows. The aggregated context is ben-

eficial only when the average context content per cell c(Vf ) of the finest grain

tessellation is less than the overhead h. This might have been expected since
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one can amortize overheads through aggregated context exchanges. Note, how-

ever, that using increasingly aggregated contextual regions eventually hurts.

Indeed there is a lower bound λa if cost reductions are to be achieved. Intu-

itively this lower bound can be explained as follows. If aggregative cells are

too large, one will be exchanging context to users that is not actually rele-

vant to them, i.e., associated with spatial regions they will in fact not visit; in

such cases finer grain organizations are best. Observe that the optimal rate

for the aggregative tessellation is always inside the allowable region since for

c(Vf )

h
∈ (0, 1) we have that 1 >

c(Vf )

h
> (

c(Vf )

h
)2.
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Figure 2.2: Context aggregation using aggregative tessellations with additive
context scaling.

Fig. 2.2 exhibits an example of the results. For c(Vf ) > h, e.g., c(Vf ) =
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4
3
, h = 1, the average cost per unit of time for a typical user using aggregative

cells always exceeds that of the finest grain organization. For the case where

c(Vf ) < h, e.g., c(Vf ) = 1
10
, h = 1, one can see the interval for λa in which

using an aggregative tessellation is beneficial. The left and right boundaries

of the interval as well as the location of the optimal rate of the aggregative

tessellation are as predicted by Theorem 2.7.1. The relative cost reduction

by using the aggregative tessellation with the specific parameter values used

in Fig. 2.2 is 42.5%.

The results of Theorem 2.7.1 can be constrained by the limited space

resources found in typical mobile devices. Excessively large aggregative orga-

nizations may contain too much context content per cell to be downloaded to

a mobile device. A designer trying to define the optimal achievable scale of

aggregation should choose the biggest aggregative cell whose context fits in

the space provided by the mobiles to be used. This policy is guaranteed by

the single mode of the cost function in Theorem 2.7.1.

2.7.1 Selective context

Up to now we have assumed that a context exchange occurs for each

cell of the underlying tessellation crossed by a mobile. However, this need

not hold in practice. Indeed a user/application interacting with a finest grain

organization could select exactly in which cells/services it has an interest. As

a result, the cost associated with exchanges from the finest grain tessellation

may be lower. A simple enhancement to our model capturing this phenomenon
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would be that a context exchange with a finest grain cell occurs only with

probability p, where p captures the users’ selectivity. Additionally, we assume

that only a percentage q of the context of each finest grain cell is acquired.

We further assume that p and q are independent of each other. The cost of

the aggregative tessellation remains unaffected.

In that case the following fact holds, for a proof see Section A.1.

Fact 2.8. Under the assumptions of Theorem 2.7.1 and assuming that a mobile

interacts with the cells of the finest-grained organization with average probabil-

ity p ≤ 1 and acquires a fraction q ≤ 1 of a cell’s context, a necessary condition

for an aggregative organization to achieve savings compared to a finest-grained

organization is

p ∗ (x+ q) > 2 ∗
√
x, x > 1 (2.8)

where x is defined as in Theorem 2.7.1.

Observe that for p = q = 1 the condition in Fact 2.8 is consistent with

x > 1 as required by Theorem 2.7.1 and ensures that the maximum relative

cost in Eq. 2.7 is less than 1. The optimal scale of aggregation is still given by

Theorem 2.7.1. In the interest of generality, we will present the results for the

new range over which aggregation is a win, in Section 2.10 for generic α 6= 1.

The interpretation of the previous fact is that if the context associated

with finest grain cells is of sufficient interest to users, one can still benefit from

exchanging the aggregated context. Fig. 2.3 shows the relationship between

the probability of interest p and x, for different values of q. In the x > 1
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regime where there is more overhead than context associated with a finest-grain

cell, the minimum necessary value of p, diminishes as the overhead increases.

Indeed, when the overhead is extremely high, using an aggregative tessellation

is the correct strategy, and the actual amount of context exchanged does not

play a key role. But q, the percentage of context of interest in a finest-grained

cell, plays a key role. If q is too low, it might be impossible to achieve savings,

see the curves above the p = 1 line in the invalid region. For large values of x

the role of q is diminished, observe the convergence of the curves in Fig. 2.3.

In that case, there is an excessive amount of overhead that dominates the cost,

and the amount of context transferred does not matter much. Additionally,

observe that for q = 1 we can always achieve savings through an aggregative

tessellation.

Fig. 2.4 shows the relationship between the minimum value of q neces-

sary to be acquired and x, for different values of p for an aggregative tessel-

lation to be beneficial. Observe that as the overhead increases, the minimum

percentage of context necessary to be acquired drops. Indeed, when there is an

excessive amount of overhead, it dominates the cost and the amount of context

transferred does not play a key role. Note, that for low values of overhead it

might not be feasible to achieve savings through an aggregative tessellation if

the probability of interaction with the finest-grained tessellation is too low, see

the curves above the q = 1 line in the invalid region. Additionally, observe that

for p = 1 we can always achieve savings through an aggregative tessellation.

29



1 2 3 4 5 6 7 8 9 10
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

overhead/context , x

p
ro

b
a
b
ili

ty
 t
h
re

s
h
o
ld

 ,
 p

q=1
q=0.7
q=0.3
valid probabilities

valid region

invalid region

q=1

q=0.3

q=0.7

Figure 2.3: Minimum cell interaction probability p vs. overhead, to achieve
savings using aggregation.

2.8.1 Dynamic context

Aggregation pays off in terms of bandwidth/energy consumption but

this comes at the expense of the accuracy of highly dynamic data. For ex-

ample, as aggregative cells become larger and larger the readings from highly

dynamic sensors provided to a mobile at the time of exchange might be in-

valid at the time the mobile reaches the sensors. In practice, a wide class of

contextual information is static, e.g., a map of the current floor of the mall,

or slowly varying e.g., readings from a temperature sensor. A designer trying

to decide on the appropriate level of aggregation has to consider the nature

of the contextual information as well as the average sojourn time of a mobile

through a typical cell. The following fact serves as a rule of thumb for deciding
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Figure 2.4: Minimum percentage for interest in context vs. overhead, to
achieve savings using aggregation.

when aggregation is acceptable for dynamic data.

Fact 2.9. Aggregation is meaningful for acquiring data from sensors that

change with frequency f if

f ≈
√
λav

where v is the average speed of the mobiles.

This fact relies on the observation, demonstrated in Section A.7, that

the mean sojourn time of a mobile through the cells Voronoi tessellation in-

duced by a homogeneous Poisson Point Process with rate λ is proportional to

1
v
√
λ
.
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2.10 Analysis of aggregative tessellations under gener-
alized context scaling

In the previous section we assumed that the context content function

was additive. However, as discussed in Section 2.2 one can consider applica-

tions with different scaling characteristics. To capture the more general case,

we consider context scaling of the form posited in Assumption 2.3. In this

case, by analogy with Eq. 2.4, one finds that coarse grained context regions

will be beneficial if

√
λa ∗ (h+ (

λf
λa

)α ∗ c(Vf )) <
√
λf (h+ c(Vf )). (2.9)

The results below are shown in Section A.3 and summarize the characteristics

of minimum cost organizations for context exchange.

Theorem 2.10.1. Under Assumptions 2.3, 2.4 and 2.6, an organization

for context exchanges based on an aggregative tessellation with intensity λa is

beneficial if

• α < 1
2

and λa ∈ (0, λf ). In this case the cost is strictly increasing in λa,

thus the intensity should be as small as possible.

• α > 1
2
,

c(Vf )

h
< 1

2α−1
, and λa ∈ (λ̂a, λf ), where λ̂a is the maximum

solution to the equation

√
λa(h+ (

λf
λa

)αc(Vf )) =
√
λf (h+ c(Vf )) (2.10)

32



such that λ̂a < λf . In this case the optimal intensity for the aggregative

tessellation is

λa,opt = (
2α− 1

x
)

1
α ∗ λf

Let x denote the overhead ratio x , h
c(Vf )

, then the maximum relative

cost reduction of acquiring context from aggregative versus the finest grain

organization is given by

|1−
√
λa,opt(h+ c(Va))√
λf (h+ c(Vf ))

| = 1− 2α

2α− 1

x

1 + x
(
2α− 1

x
)

1
2α . (2.11)

One can interpret this result as follows. Recall that the problem with

aggregating and exchanging context from coarse grain cells is that mobile

users would obtain contextual data that may not be relevant to them as they

move through space. However, when context content scales slowly, i.e., slower

than the square root of the area, this corresponds to an application that has

quite a bit of spatial redundancy in the contextual information. In this case,

coarse aggregative cells effectively compress contextual data, or alternatively

the redundancy ensures that most of the context content of an aggregative cell

will be relevant. Additionally, the reduced rate of paying for fixed overheads

makes the aggregative approach appealing.

Note that when α < 1
2
, the context content function of a cell from the

‘finest grain’ tessellation scales slow enough that aggregation always helps. As

shown in Fig. 2.5 in this case any value for λa less than λf achieves a cost

savings. Note that this is true irrespective of the values of h and c(Vf ). Of
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course, the higher the values of h and c(Vf ), the higher the amount of context

exchanged, but asymptotically, the amount of cost per unit time for a typical

user goes to 0 as λa decreases.

When α > 1
2
, context content grows quickly so more care needs to be

taken in using aggregative cells, this was already observed in the special case of

Theorem 2.7.1. In particular, the interval for the intensity of the aggregative

tessellation to be beneficial is now bounded from below, e.g., compare the

lower curves shown in Fig. 2.6. versus the upper curves where aggregation

does not pay off.
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Figure 2.5: Context aggregation, α < 1
2
.

Fig. 2.6 exhibits a case where
c(Vf )

h
> 1

2α−1
, e.g., c(Vf ) = 4

3
, α = 4

3
, h = 1.
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As can be seen, the average cost associated with the aggregative tessellation

always exceeds that of the finest grain organization. Thus, aggregation does

not pay off. By contrast, when
c(Vf )

h
< 1

2α−1
, e.g., c(Vf ) = 1

10
, α = 4

3
, h = 1,

there is an interval for λa in which aggregation is beneficial. The left and right

boundaries of the interval as well as the location of the optimal rate of the

aggregate tessellation are those predicted by Theorem 2.10.1. The relative

cost reduction achieved by aggregation for the case shown in Fig. 2.6 is 25.7%.

Recall that for α = 1, Fig. 2.2, we had a higher relative savings of 42.5%.

Indeed for α = 4
3
, the benefit of aggregation diminishes because the context

content for aggregative cells grows super-linearly.
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An important special case of our context model is when h=0, i.e., the

cost is simply proportional to the amount of context exchanged. The following

result summarizes what happens in this scenario.

Corollary 2.10.2. Under Assumptions 2.3, 2.4 and 2.6 with h = 0, the

cost associated with an aggregative tessellation of intensity λa results in cost

reduction only if α < 1
2

and λa ∈ (0, λf ). The optimal intensity for the ag-

gregative tessellation does not exist since the cost decreases as the intensity λa

approaches zero.

The previous result can be obtained by setting the value h = 0 to

Eq. 2.9.

In this special case the overhead for acquiring contextual information

from a cell is proportional to the context content of the cell; there are no

fixed overheads. Additionally, the amount of redundancy in a cell’s context is

reduced for α > 1
2
. Therefore, by using increasing amounts of aggregation, one

can never match the cost of acquiring context from the finest scale tessellation.

2.10.1 Intuition: the α = 1
2

case

By looking at Theorem 2.10.1 and Corollary 2.10.2 the case α = 1
2

shows

special significance. In this section we will offer an intuitive explanation why

this is true. For a 2-dimensional homogeneous Poisson Point Process with rate

λ, it is known, see [59], that the average chord length is proportional to 1√
λ
.

Assuming simplistically that a mobile moves in a straight line trajectory inside

36



a cell of the aggregative tessellation, the average number of finest-grained cells

it crosses while inside a coarse-grained cell is
√

λf
λa

, see Figure 2.7. At the

same time, the ratio of the context acquired from an aggregative cell over a

finest-grained cell is (
λf
λa

)α. If α < 1
2
, the rate at which context is acquired is

smaller than the rate at which new finest-grained cells are crossed, amounting

to a true economy. If α > 1
2

this does not hold anymore, and h, the overhead

associated with each transfer, plays a dominant role.

mobile’s trajectory

1√
λa

1√
λf

Figure 2.7: Intuitive explanation for α = 1
2
.

2.10.2 Selective context

In Section 2.7 we examined the case of a mobile having selective interest

in the context of the cells of the finest-grain organization. We will revisit the

same case here for generic α. The following fact holds; for a proof see Section
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A.4.

Fact 2.11. Under the assumptions of Fact 2.8, a necessary condition for an

aggregative organization to achieve savings compared to a finest-grained orga-

nization is

• α < 1
2

and λa ∈ (0, λ̂a), where λ̂a < λf is the unique solution to the

equation r2α − rp(x+ q) + x = 0, r ,
√

λf
λa

.

• α > 1
2

and p(x+q)
2α

> 2α
2α−1

x, x > 2α − 1. In this case, there exist λ′a <

λ′′a < λf s.t. λa ∈ (λ′a, λ
′′
a).

where x is defined as in Theorem 2.7.1. The optimal scales of aggregation are

still given by Theorem 2.10.1.

The main conclusion of this fact is that the selective context transfer

does not alter the structure of the problem, just the range of the beneficial

levels of aggregation. We do not discuss the quantitative implications of this

fact. We refer the reader to the discussion in Section 2.7 which is essentially

analogous.

2.12 Hierarchical organization for context exchange

In this section we focus on applications that have a sub-additive context

content function, i.e., α < 1 in Assumption 2.3. Recall that sub-additivity

likely results from spatial redundancy or shared context across finest grain

cells. Intuitively, it makes sense to consider a hierarchical organization, whereby
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shared context is delivered via a coarser level of granularity, while context that

is specific to a location is delivered via a fine grained organization. For exam-

ple, for the case of a mall discussed in Section 2.1, the part of the contextual

information that is shared among all stores on the same floor, e.g., locations of

emergency exit points, could be exchanged once at floor level while informa-

tion specific to each store, e.g., discounts offered by a store, can be acquired

once at store level.

In this section a hierarchical organization for context exchanges involves

both the ‘aggregative’ and ‘finest grain’ tessellations introduced earlier, but

they are used in different manners. In particular, when a mobile finds itself in

a cell of the ‘finest grain’ tessellation it obtains only the context data that is

unique to that cell. The shared context is exchanged with mobiles once in each

cell of the aggregative tessellation. The idea is to try to minimize overheads

while maximizing the relevant context that is exchanged to users.

The effectiveness of our proposed hierarchical organization depends on

the average amount of shared context among finest grain cells of the V (Pf )

tessellation. We estimate the average shared context as follows. Each cell

of the finest-grained tessellation has an average context content c(Vf ) and an

average unique context among their peers denoted by c(Vf |Va) < c(Vf ), since

we operate on the α < 1 regime and there is spatial redundancy for the context

content. The unique part of each finest-grain cell’s context, c(Vf |Va), is stored

in the cell. The shared context among all finest-grained cells covered by an

aggregate cell, c(Vf )− c(Vf |Va), is stored in the aggregate cell. A typical cell
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from the aggregative tessellation V (Pa) has a total, unique plus shared, average

context content c(Va), area 1/λa, and will on average cover λf/λa finest grain

cells. Thus, the total context of the aggregative cell should satisfy

c(Va) =
λf
λa
c(Vf |Va)︸ ︷︷ ︸

sum of unique

+ [c(Vf )− c(Vf |Va)]︸ ︷︷ ︸
shared

,

where the first term is the sum of the unique context of its constituent finest

grain cells, and the second term is the context shared by the finest grain cells.

Denoting the context shared by finest grain cells by s = c(Vf )− c(Vf |Va) one

can solve the above equation to obtain:

s =
λfc(Vf )− λac(Va)

λf − λa
. (2.12)

Analogous to the previous sections, the cost per unit of time for a

typical user under this hierarchical organization is now given by√
λa(h+ s) +

√
λf (h+ c(Vf )− s),

where h is the overhead associated with each context exchange. The first term

corresponds to the shared context, which is exchanged from aggregative cells

while the second term corresponds to the costs associated with exchanging

context that is unique to the ‘finest grain’ cells. Under this model we can

show the following results, where again we have relegated the derivations to

Section A.5.

Theorem 2.12.1. Under Assumptions 2.3, 2.4 and 2.6, the hierarchical or-

ganization for context exchanges achieves a cost saving over the finest-grained
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organization if:

α < 1 , λa ∈ (0, λf ) and x ,
h

c(Vf )
<
r2 − r2α

r + 1
, f(r)

where r ,
√

λf
λa

.

The interpretation of Theorem 2.12.1 is that when context content

scales sub-linearly, for increasing levels of aggregation, the hierarchical orga-

nization will always produce savings compared to acquiring context from a

finest-grained tessellation. The relationship between a hierarchical organiza-

tion and an aggregative one is described in the following Theorem proved in

Section A.6.

Theorem 2.12.2. Under Assumptions 2.3, 2.4 and 2.6, the hierarchical

organization for context exchanges achieves a cost saving over the aggregative

organization if:

α < 1 , λa ∈ (0, λf ) and x ,
h

c(Vf )
<
r2α − 1

r + 1
, g(r)

where r ,
√

λf
λa

.

Note that if α > 1
2

exchanging context from a hierarchical organization

will eventually lead to a cost savings. Indeed if α > 1
2
, then limr→∞ g(r) =∞

so the condition in Theorem 2.12.2 is eventually satisfied irrespective of the

value of c(Vf ) and h. So it suffices to employ a sufficiently coarse granularity

(a value of λa that is small enough) for the hierarchical approach to result in

cost savings. Observe in Fig. 2.8 and in Fig. 2.9 that the hierarchical approach
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can reduce the cost for any value of c(Vf ), while the aggregative approach has

at best a certain range over which it can achieve cost reduction.
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Figure 2.8: Hierarchical vs. aggregative when α > 1
2
, c(Vf ) = 1.

By contrast, if α < 1
2
, exchanging context from a hierarchical organi-

zation may or may not be preferable to an organization based on aggregation,

depending on the coarseness of aggregate cells one can practically achieve.

From Theorem 2.10.1 we know that for α < 1
2

an aggregative approach al-

ways results in cost savings. In this case the limit of the upper bound g(r)

of Theorem 2.12.2 goes to 0 as r → ∞. Thus in this case, a designer should

be careful enough to evaluate both approaches before deciding which one is

better. In Fig. 2.10 we observe that the aggregative approach results in cost
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Figure 2.9: Hierarchical vs. aggregative when α > 1
2
, c(Vf ) = 10.

savings for all allowable values of λa, while the hierarchical approach needs

cells to be coarse enough to do so. Once cells are coarse enough, the hierarchi-

cal approach produces savings that for the specific values chosen for the graph

in Fig. 2.10 outperform the aggregative approach for all practically achievable

scales of aggregation.

A comparison summary of the two organizations is shown in Table 2.1.
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2.13 Assessing the cost of surveillance in ubiquitous en-
vironments

Throughout this chapter we have implicitly assumed the existence of

a surveillance mechanism that is part of a space’s infrastructure and allows

mobiles to detect when they cross cell boundaries. We envisage two generic

types of surveillance mechanisms.

• A direct mechanism that is part of a space’s infrastructure and monitors

each cell’s boundary. An airport or shopping mall with RFID readers

installed on the doors exciting RFID tags on the mobiles passing through

would be an example of such a mechanism. Such a mechanism is assumed
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α > 1
Aggregative may help depending on the scale of aggregation

Hierarchical cannot help

1 > α > 1
2

Aggregative may help depending on the scale of aggregation
Hierarchical eventually help

Hierarchical eventually outperform aggregative ones

α < 1
2

Aggregative always help
Hierarchical eventually help

Aggregative eventually outperform hierarchical ones

Table 2.1: Aggregative vs. hierarchical organizations.

in [94].

• An indirect mechanism that detects boundary crossings by comparing

each mobile’s location to the location of the cell boundaries. A tracking

service that is part of the infrastructure or self-positioning by each mobile

device can be used to calculate location. We assume that self-positioning

mobile nodes detect boundary crossings using an a-priori downloaded

map of the cell boundaries. For a well known location system based on

this approach, see e.g., [6].

Let us first consider direct surveillance mechanisms. We abstract the

underlying mechanism by assuming that the cost to detect a boundary crossing

is Ed units of energy/device, e.g., the energy in an RFID reader’s pulse to read

a potential tag. Additionally we let fd denote the frequency with which the

mechanism checks for boundary crossings, e.g., an RFID reader on a door sends

a pulse every second to detect mobiles, we say that fd = 1 Hz. Clearly, there

will be a trade-off between the surveillance frequency and the timeliness with

which contextual data is delivered. Finally, it is known that the average cell
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boundary per unit of area for a homogeneous Poisson Voronoi tessellation with

rate λ is 2
√
λ [79]. Motivated by the use-cases presented in [94] and practical

considerations, we note that mobiles moving from cell to cell pass through

designated points e.g., doors, and detectors will have a certain coverage range

so only a fraction, Kd, of the total cell boundary has to be surveilled directly.

The following assumption captures these elements.

Assumption 2.14. We assume that the average power for a direct surveillance

mechanism per unit of area is given by

2 ∗
√
λ ∗Kd ∗ fd ∗ Ed. (2.13)

With this additional assumption, the power expended for surveilling

cell boundaries and exchanging context using an aggregative tessellation with

intensity λa is given by

2 ∗
√
λa ∗Kd ∗ fd ∗ Ed + λ0 ∗

4 ∗ v
π

√
λa(c(Va) + h). (2.14)

This in turn can be simplified to
√
λa ∗ (ĥ + K̂c(Va)) where ĥ and K̂ are

appropriate constants. This cost function has the same form as that considered

in Section 2.2, which leads to the following corollary.

Corollary 2.14.1. Theorem 2.10.1 can be applied for optimizing the intensity

of an aggregative tessellation for context exchange using direct surveillance.

The overhead ratio is given by x , ĥ

K̂c(Vf )
.

Note that for the case α > 1
2
, the frequency at which the shared infras-

tructure surveils boundary crossings, fd, plays a key role. An increased value
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of fd is beneficial in two ways: it increases the timeliness of mobile detection

and increases the parameter overhead ratio x above the 2α − 1 threshold re-

quired for the aggregative tessellation to produce savings, see Theorem 2.10.1.

Also note that the added cost of surveillance does not change the underlying

structure of the problem, i.e., the existence of optimal values for the scale of

aggregation still depends on the scaling (α) of the context content function.

Thus, the results derived in the previous sections provide a designer with the

tools to roughly evaluate how to optimize the aggregative organizations.

For the indirect surveillance mechanism, we define the frequency with

which a mobile acquires location information fi and the corresponding energy

expended Ei in a similar way as in the direct case.

Assumption 2.15. Under Assumption 2.4 the average power per unit area

expended by an indirect surveillance mechanism to track boundary crossings is

λ0 ∗ fi ∗ Ei. (2.15)

Observe that the power expended increases linearly with the intensity of

the mobiles. Such an approach would face scalability problems if the number of

mobiles increases significantly as expected in ubiquitous computing scenarios.

Note that the frequencies fd, fi, must be high enough to ensure that

a mobile does not ’miss’ acquiring context from a cell in a timely manner.

Intuitively, the higher the intensity of the aggregative process, λa, the higher

the cost for exchanging context. The following fact, formally proved in the

Appendix, provides lower bounds on fd, fi.
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Fact 2.16. Under Assumption 2.4 and surveillance frequencies fd, fi chosen

to ensure that a mobile transitioning through an average sized cell of an ag-

gregative organization of rate λa is not missed, the frequency fd must satisfy

fd > Kf
d and the frequency fi should satisfy fi > Kf

i ∗
√
λa.

Kf
d and Kf

i are constants depending on the average velocity of the

mobiles and the range of the devices used to perform the surveillance. Note

that the previous fact is predicated on not missing on average sized cell, so in

practice the variability in cell sizes would require surveillance frequencies to

be higher.

For a given aggregative organization, i.e., fixed λa, a designer can con-

sider which surveillance mechanism is more energy efficient.

Fact 2.17. The direct surveillance is more efficient than the indirect surveil-

lance if

2 ∗
√
λa ∗Kd ∗ fd ∗ Ed < λ0 ∗ fi ∗ Ei (2.16)

For services offered on a ‘personalized’ scale, i.e., λf ∼ Θ(λ0),
√
λa << λ0

for an aggregative tessellation and the leverage of the shared infrastructure by

a direct surveillance mechanism provides significant gains.

2.18 Conclusions and future work

This chapter is a first attempt at studying the fundamental character-

istics of context exchange and surveillance organizations for ubiquitous appli-

cations. To allow for quantitative arguments, we propose a simple stochastic
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geometric model that naturally represents the main characteristics of such sys-

tems. The key results show how the effectiveness of optimal aggregative ver-

sus hierarchical organizations depend on the manner in which context content

scales with area. We also consider how energy costs for direct and indirect

surveillance mechanisms would vary under such organizations. Clearly, our

model has several simplifications that it would be of interest to relax, and are

part of our future work. Among other issues, it would be of interest to capture

how limited caching of contextual data might enable mobiles to reduce their

energy expenditures while maintaining updated contextual information.
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Chapter 3

P2P Network for Storage and Query of

Spatio-Temporal Flow of Events

3.1 Introduction

3.1.1 Motivation

A significant and largely unaddressed challenge in the wide-spread use

of networked systems is the harnessing of real-time flows of spatio-temporal

information to deliver real-time context-awareness to applications and their

users. In this chapter, we study a novel peer-to-peer (P2P) infrastructure

enabling wireless and wired users/devices and their associated applications to

store and query a flow of events that are short-lived and associated with partic-

ular spatial locations. We envisage a system handling a high intensity of events

generated by humans, sensing devices, applications or combinations thereof.

We focus on systems exhibiting locality in queries, i.e., queries are likely to be

related to events located in the vicinity of the device/user making the query,

see e.g. [80]. To motivate our design, consider a system for managing available

parking spots. Primitive events signifying (possible) vacant parking spots are

contributed by a disparate collection of devices/users including sensors, pay-

ment stations, cameras surveilling the streets or the human drivers who vacate

a spot. A fixed peer overlay is used to store the corresponding events and re-
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spond to queries about them from interested parties. Such a system would be

a representative application for our proposed system. One can generalize to

other classes of applications that can be handled using our proposed system,

e.g., resource discovery, predicate computation.

3.1.2 Centralized solution is undesirable

Devising an infrastructure to realize such functionality poses several

challenges. A centralized solution requires the flow of events/info to be trans-

ported to, and stored at centralized resources, enabling low cost management

and sharing of computing resources over the event/information flow. In turn,

queries would be routed to the centralized location for processing and back.

Such a solution does not exploit the queries’ spatial locality and thus can be

wasteful when the cost of transporting bits per unit distance is high. Indeed

the data associated with events/info would potentially be transported far away,

possibly never to be of any use, or at best, to subsequently be retrieved and

taken back to devices/users close to where the information was originally gen-

erated. In other words when the spatio-temporal intensity of events is high,

such a solution would not be particularly scalable. Moreover, a centralized

approach may preclude a more ad hoc, or grass roots, distributed infrastruc-

ture that might better match application modalities in terms of performance,

fault-tolerance and scalability. For example, given we assume there is spatial

locality in the queries, if events/information are stored close to where they are

generated, network delays and traffic could be substantially reduced.
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3.1.3 Peer-to-peer distributed infrastructures

This chapter focuses on exploring the design space of overlay infrastruc-

tures of fixed peers that act as gateways for mobiles; this approach has already

proved its merits, see [46]. The challenge lies in designing a P2P network with

the primary purpose of supporting spatio-temporal context-awareness based

on a flow with high spatial intensity of many short lived events over a set of

peers possibly exhibiting churn. In this context a simple very low overhead de-

sign that achieves low query delays is desirable. We expect to achieve reduced

traffic (due to the spatial locality of events and queries) and ultimately re-

duced query delay (since queries are resolved locally) in addition to inheriting

the advantages of P2P architectures (e.g., distribution, scalability, robustness,

lack of central administration, use of idling resources, enabling of grass roots

deployments). As explained in the related work section below, to date P2P

networks have not been designed for storing and sharing spatio-temporal flows

of events/info. Thus our approach, although drawing on several key compo-

nents developed in previous work on geo-located routing, overlays and network

protocols, is quite novel.

3.1.4 Related work

Computing context from primitive events is a problem of growing in-

terest in the pervasive computing community. Known approaches based on

storing events in P2P overlays and computing on the results of queries do

not fully satisfy the requirements imposed by the real-time nature scenario we
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target in this chapter. Seminal DHT-based P2P storage systems, e.g., Chord

[78] Pastry [68] or GHT [62] are ideally suited for applications performing

location-independent naming and load balancing across storage capacity, see

[7]. They do not preserve locality in storage, i.e., two files contributed by

the same peer are not necessarily stored at the same (or close-by) peers nor

do they explicitly incorporate notions of the stored information’s relevance in

space and time; these approaches were not designed with the aim of support-

ing real-time context-awareness. Attempts to overcome these limitations while

still remaining in the realm of DHT-based overlays do not fully succeed. Kuhn

et al. in [48], introduce “containers” as a new abstraction for storing spatially

related events. This way of storing events lacks flexibility when compared to

our approach and does not naturally maintain locality, i.e., containers have

to be specified ahead of time and two events that are within a query-defined

distance to each other are not guaranteed to lie in the same container, this will

become obvious subsequently in this chapter when we introduce the ‘range’

query. PeopleNet, [58], introduces the ‘bazaar’, a topic specific region to re-

solve topic-specific queries. Neither of these approaches preserves locality in

storage.

Context can be computed and queries resolved more efficiently in a

platform providing access to relations between events/info rather than simply

to the individual events/info. Similarity queries, see [8], are a reasonably

powerful family of queries for computing context derived from events exhibiting

locality, e.g., retrieving events tied to a given region. Resolving these types
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of queries calls for a modified P2P architecture directly factoring locality into

information storage and retrieval.

Voronoi tessellations have proven to be a useful geometric structure to

capture similarity queries and spatial locality in networks. SWAM [8] and

VoroNet [11] are designed to enable efficient processing of similarity queries

by using Voronoi diagrams. The key idea is to embed data in a d-dimensional

attribute space, and, based on an attribute distance metric, determine the in-

duced Voronoi tessellation and Delaunay graph. Edges in the Delaunay graph

(in the attribute space) are mapped to edges in the overlay network among

the peers that currently hold the data items. By contrast, our focus is on

the physical proximity of the locations to which events/information are tied

and to their regions of relevance. Links are driven by the spatial proximity

of peers and network performance concerns alone, rather than the data’s at-

tributes. Challenges for SWAM and VoroNet lie in the overheads associated

with managing a d-dimensional Voronoi diagram, particularly when peers join

and leave the P2P network frequently. By contrast, in our work peer churn

results in moving data among peers to maintain network functionality. Our

work, and the above mentioned works, considers the introduction of additional

edges between peers in the overlay, such as those proposed in [43], to improve

query performance. However, in our work we study their effect on query delay

rather than the hop-count, and we show how such edges and topology should

be managed to optimize system performance.

A platform for distributing the location updates for players in Massively
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Multi-player Online Games (MMOGs) is presented in [33]. Updates about

a player’s location need only be distributed to a neighborhood around the

player. This is a form of locality in a virtual space as opposed to our work,

which employs locality in the physical space. This observation has critical

implications on performance as physical locality correlates positively with low

delays in the underlay network. The work in [33] uses geometrical routing on

the overlay network as we do although the underlying topology is quite different

from ours. Our work is based on a generic event model that takes explicitly

into account spatio-temporal locality. No such model is offered in [33], where

the focus is on a special type of information, i.e., location updates. In our

work, events have a life-time that is independent of the life-time of the peers

forming the overlay. In [33] the information disseminated, i.e., the location

updates coincide with the life-time of the players in the MMOG. Moreover,

in our platform a peer can store more than one event. In [33] information is

not stored, each player knows its own location and publishes updates about

it. Finally, in our work we offer procedures for storing, deleting and querying

events. No equivalent procedures are offered in [33].

Finally, VoRaQue [2], considers the efficient implementation of range

queries, a special type of queries that we define in the sequence, on Voronoi

based overlays. Their work focuses on algorithmic considerations in resolv-

ing such queries, specifically on computing a spanning tree over the specified

range. This work has a narrow focus on 2-dimensional data with no protocol,

scalability or performance analysis as found in the present work.
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In terms of competing platforms, recent technology [51] has been de-

veloped that enables devices to efficiently wirelessly advertise resource/events

(types) directly to others within proximity. This enables resource discovery

but requires periodic advertising throughout the lifetime of the event to assure

context awareness. We view this work as complementary, if not an extreme

version of the service we target in this chapter. A preliminary version of this

work has appeared in [93].

3.2 Event and query models

Our focus is on capturing a spatio-temporal flow of (short-lived) events

that can represent a wide range of data/information associated with users,

applications, sensors or machines. These are formally defined as follows:

Definition 3.2.1. An event e is a five-tuple

(e.location, e.range, e.time, e.duration, e.type) ∈ E

where E = R2×R+×R×R+×T and T denotes a set of possible event types.

As shown in Fig. 3.1, this can be visualized as a cylinder where an

event e has associated spatial coordinates, e.location indicating where the event

‘occurred’ or is centered, a range e.range defining the region where it is relevant

(see [36] for a similar concept ‘Area Of Interest’ (AOI)), as well as a time at

which it is generated/starts and duration: e.time and e.duration respectively.

We assume that devices/applications that generate events have geo-location

56



capability and synchronized clocks. This allows them to ‘stamp’ the events

with meaningful spatio-temporal coordinates. Events with larger cylinders can

‘interact’, e.g., overlap with a larger number of other events possibly producing

additional relationships or contextual information. For simplicity we let B(e)

denote the disc centered at location e.location with radius e.range, i.e., the

disc B(e.location, e.range) and refer to events whose duration contains the

current time as active. The possible event types, e.g., ‘change-of-status’ type,

are assumed to be predefined, but for the remainder of this chapter we will

not focus on this aspect.

time

x -coord

y-coord
e.duration

e.location

e.time

e.rangeB(e)

Figure 3.1: Event model.

The goal of the infrastructure is to efficiently support spatio-temporal

queries. In this chapter we focus on range queries on active events. This is

done to simplify notation, i.e., remove time, but one can easily generalize this

to consider queries on past or even future events. Range queries are defined

as follows:

Definition 3.2.2. The Range Query RQ(l, r) returns all active events e within
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a range r of a location l, i.e., events currently stored in the system such that

e.location ∈ B(l, r).

For example, return all users/resources currently available within 200m

of a given location, e.g., my location. Based on range queries, one can define

and compute more complex queries representing relevant spatio-temporal con-

text, some examples are presented below.

k-Nearest Neighbor Query: NN(k, l, r) , {k closest active events e1, . . . , ek

within B(l, r)}, e.g., return the 2 closest users to the current location.

Proximity Query: PQ(l, r) , { all pairs of active events (e1, e2) : e1, e2 ∈

RQ(l, r) s.t. e1.location ∈ B(e2) and e2.location ∈ B(e1)}, e.g., return pairs

of resources that are mutually within communication range of each other and

are within a range r of location l.

Intersection Query: IQ(l, r) , { all pairs of active events (e1, e2) : e1, e2 ∈

RQ(l, r) s.t. B(e1) ∩B(e2) 6= ∅}, e.g., return pairs of events with overlapping

regions within B(l, r) such as fire overlapping with chemical spill.

Clique Query: CQ(l, r, ρ) , { sets of active events {e1, . . . , ek} : ∃l′ : ei ∈

B(l′, ρ), 1 ≤ i ≤ k, ei ∈ RQ(l, r)}, e.g., sets of events in B(l, r) that are within

2ρ of each other.

It should be clear that the family of queries that can be resolved once range

queries are enabled is fairly rich, e.g., one can check that they suffice to verify

the 9-set intersection relationships [24] among discs. In Section 3.7.2 we will

show how to resolve range queries in our infrastructure.
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We conclude by formalizing the operational scenario of interest in this

chapter, specifically:

Assumption 3.3. Spatial locality of events and queries. Event and queries

submitted by users/devices exhibit locality in that they are associated with close

by locations.

This assumption will drive in part our design choices. It is motivated by

the idea that spatio-temporal context awareness for short lived events makes

sense and is most likely to be relevant close to where users/devices currently

dwell.

3.4 Architecture

Devising a P2P network to store and resolve queries on a flow of spatio-

temporal events involves a set of trade-offs that are unique versus P2P systems

that were previously devised. In this section we describe the key elements of

our proposed architecture.

We consider a platform where the participating entities can play one or

more roles: contribute events, make queries, and/or serve as a peer in the P2P

overlay network. Further we envisage a setting where there may be (mobile)

wireless entities, e.g., sensors, phones etc., that can not serve as peers, and

wired fixed devices, e.g., PC and corporate servers, that can. All entities are

assumed to know their locations, but exact locations are not necessary. Fig. 3.2

exhibits the elements of the platform that will be discussed below.
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Figure 3.2: Elements of the P2P architecture.

3.4.1 Overlay topology management & routing

We let P = {p1, p2, . . .} denote the set of peers identified by their

unique locations pi ∈ R2. They are interconnected via links in a structured

P2P overlay, represented in Fig. 3.2 by thick straight lines. Overlay links

are realized by one or more physical links in the IP layer. The basic overlay

connectivity is simple and driven by the goal of exploiting spatial locality of

queries – it corresponds to the Delaunay graph induced by the peers’ locations.

Indeed a set of peer locations P induces a Voronoi tessellation of R2 and an

associated Delaunay graph as follows.

Definition 3.4.1. The Voronoi tessellation V (P ) induced by P ⊂ R2 is a

partition of R2 into cells {C(p|P ) : p ∈ P} such that

C(p|P ) = {x ∈ R2 : ||x− p|| ≤ ||x− q||,∀q ∈ P},

i.e., the cell C(p|P ) includes all locations that are closest to p.

Definition 3.4.2. The Delaunay Graph (DG) induced by P ⊂ R2 is a graph
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GD(P,E) with vertices P and undirected edges E = {(p, q) : (p, q) ∈ P 2, where

C(p|P ) and C(q|P ) are neighbors in V (P )}.

In the sequel, when clear we will abuse notation and denote the Voronoi

cell C(p|P ) corresponding to peer p by Cp. We let N(p) denote the set of peer

p’s neighbors in the Delaunay graph.

There is already substantial work on distributed protocols to maintain

a Delaunay graph among a set of peers, addressing efficiency, correctness, and,

in part, peer churn, see e.g., [52, 54] and [77]. As such, in this chapter we will

defer to this work, and simply assume that protocols are in place to maintain

such overlay structures.

Assumption 3.5. Topology and Routing. We assume the overlay connec-

tivity of our platform is a superset of the Delaunay graph, and peers execute

a distributed protocol to maintain the Voronoi tessellation and the Delaunay

graph. We further assume peers employ greedy routing to store events and

make queries over the overlay.

Greedy routing here, refers to a policy where each peer forwards a

message (event or query) destined to a location, say l, to the neighbor that

is closest to l with the intent of eventually reaching the peer closest to the

location. These choices for our platform result in the following beneficial

properties.

Greedy routing always converges. Greedy routing on a Delaunay

Graph always succeeds, see [15]. Moreover such routing on a superset of the
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DG also succeeds, see [30], thus we will consider adding additional overlay links

to optimize system performance. Castro et al., [19] argue that it is critical

for overlay routing to be aware of the underlay network topology. Zahn and

Schiller, [90], extend the previous argument for peers with mobility in a DHT

overlay. We conjecture that a similar statement holds for non-DHT based P2P

systems like ours. This observation drives our decision to perform routing on

the Delaunay graph. Note that the length of the shortest path between two

peers in the Delaunay graph is a constant times their Euclidean distance, see

e.g., [23]. Thus paths chosen on the overlay network might roughly correlate

to low cost routes in the IP underlay network.

Limited routing storage overhead per peer. Greedy routing only

requires each peer to maintain the location of its neighbors in the DG. More-

over, the routing information exhibits locality, that is inconsistencies in routing

information at a given peer will not lead to poor routing outside the peer’s

local region. We deem this important for networks with peer churn.

Maintaining the DG under churn is scalable. For P2P networks

experiencing churn, some members of the network will have to update their

neighborhoods. In Section B.2 we prove the following fact:

Fact 3.6. Scalability of Topology Maintenance

1. If a peer pold leaves the overlay, the only peers that have to update their

neighborhood in the DG(P \ {pold}) are the neighbors of pold in DG(P ).
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2. If a peer pnew joins the overlay, the only peers that have to update their

neighborhood in DG(P ∪ {pnew}) will become neighbors of pnew.

From the previous fact, we deduce that the cost of a departure/join, in

terms of peers needing to update their neighborhoods depends on the number

of neighbors a typical peer will have. In [79] it is proved that for a homoge-

neous Poisson point process, the average number of neighbors of a point in

the DG is 6. We conjecture that on average O(1) peers have to update their

neighborhoods when a peer leaves the overlay for a wider class of overlays. In

[32] it is proved that when a new point is added to a set of points for which the

Voronoi diagram has already been calculated, O(1) structural changes have to

be done on average to update the Voronoi diagram. The average is taken over

all the possible configurations of points. A structural change denotes an ad-

dition of a new Voronoi edge or a deletion of an existing one. Every cell that

changes has one or more Voronoi edges change. Thus, on average in our plat-

form O(1) peers will be affected. The worst case is given in [3] and is proved

to be O(|P |) peers affected. Combining these results we deduce that topology

management under churn in our platform is not computationally demanding

as relatively few peers are involved in it.

Routing on the overlay graph, assuming a homogeneous distribution

of peers, roughly implies that the peer hop count will grow linearly in the

distance to be traveled. Adding extra edges among peers, i.e., operating on a

superset of the DG, can significantly reduce the number of hops a query has
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to traverse. This however requires adding edges with care. In the sequel we

will use the well known result of [43] which we summarize as follows:

Fact 3.7. Kleinberg edges. Let s and t be the source and destination peers of a

query respectively and suppose they are drawn uniformly from an n×n square

grid. Suppose each peer u on the grid has edges to its immediate neighbors as

well as to one other peer v chosen with probability proportional to ||u− v||−2,

then there exists a decentralized algorithm performing greedy-routing and a

constant c, independent of n, so that the expected number of hops between u

and v is at most c(log(n))2, where c is a constant.

We describe a mechanism to add such edges to our overlay network in

Section B.6. A peer need only generate a location at random according to a

distribution that is proportional to the inverse of the square of the Euclidean

distance from its own location, and then route a message to that location, i.e.,

the closest peer to the randomly selected location. In the sequel we denote

such additional edges, ‘Kleinberg’ edges, and in Section 3.9 we explore the

resulting performance and scalability benefits.

3.7.1 Associating with the P2P network

Wireless devices and wired nodes that are not currently participating

in the P2P overlay may still contribute by submitting events and queries. Such

nodes access the overlay network by associating with a proxy peer currently in

the overlay network – such associations are denoted by zig-zag lines in Fig. 3.2.

The association process can be divided in two functions.
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Bootstrapping. Non-peer entities must be able to bootstrap into the network

by identifying a peer with a known IP address with which to associate, e.g., a

dedicated peer, a home computer, an enterprise server, or a peer cached from

a previous session.

Improving association. Once bootstrapped into the network a node can

‘improve’ its association. Specifically, given our assumption on spatial locality,

it might want to associate with the peer whose physical location is closest to

its own, or it might change its association due to poor performance. This can,

for example, be achieved by a node sending an association query message to

its own location, which eventually will be routed to the desired peer.

Nodes wishing to join the overlay network as peers can use similar

mechanisms to do so. Specifically, they can bootstrap into the network through

a proxy and then join the overlay network by sending a join message to the

peer closest to their own location. The topology management protocol can

take over from there.

3.7.2 Data management and query processing

Our spatial locality assumption on events and queries motivates the

following rule.

Rule 3.7.1. Event storage. Each event e is stored at the overlay peer p ∈ P

that is closest to e.location, i.e., such that e.location ∈ Cp.

This rule is easily implemented in our framework by greedily routing

and storing the event to the peer p closest to e.location. One can consider
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various policies for event deletion. Since in this chapter we focus only on active

events, they are deleted once they expire. However one can envisage policies

where events are only deleted when storage space runs out or borrowing from

caching policies whereby least recently queried events are deleted when new

ones are to be stored.

One of our design goals is to address the possibility of peer churn.

Clearly this not only requires managing the overlay topology but also where

events are stored. Each time a new peer pnew joins the P2P network a subset

of the events currently stored in the P2P network may fall within its Voronoi

cell, and according to Rule 3.7.1 those events should be moved to pnew. Data

management in the presence of churn is scalable and has low overheads since

only events in pnew’s neighborhood may need to be moved:

Fact 3.8. Scalability of data management. If a peer pold leaves the network,

its events will be moved to its current neighbors N(pold). If a new peer pnew

joins the P2P network, only events stored by neighboring peers N(pnew) in the

updated topology may need to be moved.

The previous fact follows from Fact 3.6, if we take into account that in

our model event locations are mapped to points. Since a peer will typically

have a low number of neighbors, as proved in Fact 3.6, churn results in low

overhead irrespective of the total size of the network, assuring the scalability

of our platform.

One can envisage lazy data management mechanisms aimed at reducing
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the overheads associated with moving events, e.g., if events are very short lived

and queries are responded to on a best effort basis, simply placing new events

as appropriate at pnew may suffice.

The ability to process range queries, see Section 3.2, is key to our

proposed solution. A range query RQ(l, r) initially issued by a peer or proxy

peer (on behalf of another entity using the overlay) q is greedily routed to the

peer p closest to location l. When the query arrives at p, the query resolution

process is initiated, see Algo. 1. Specifically p checks if it has events in the

range query’s disc and forwards the query to its neighbors. Neighboring peers

check if their cell overlaps with the range query’s disc, if so they check for

events and forward the query to their own neighbors, etc.

If a disk B(l, r) overlaps with Cp it will overlap with at least one of its

edges. Thus, it suffices to check each edge of Cp for overlap with the disk. We

state the following criterion to detect overlaps, for a ‘visual’ proof see Fig. 3.3:

Proposition 3.8.1. A disk B(l, r) intersects with an edge e of the Voronoi

cell of a point p defined by the vertices π1, π2 if

1. r > min(|l − π1|, |l − π2|) and l does not belong to the rectangular strip

defined by e and the vertical lines to e passing through π1 and π2 respec-

tively, or

2. r > ||l − l̂||, where l̂ ∈ e, is the point where the perpendicular line to e

passing through l meets e and l belongs to the rectangular strip defined

by e and the vertical lines to e passing through π1 and π2 respectively.
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Figure 3.3: If l lies outside the strip defined by the dashed lines and r <
min(|l − π1|2, |l − π2|2) then all the points in the edge defined by π1, π2 are
farther away than r to l. In the other case it suffices to check the distance of
l̂ to l.

We focus on basic functionality here, but clearly a peer need not forward

the query back to the peer that originally forwarded it, and it need not forward

it more than once to its neighbors. This recursive query propagation eventually

stops if there are only a finite number of peers in the range query’s disc. The

peers involved in the processing of the query then collect the intermediate

results and forward them to the (proxy) peer q that originated the query. The

resolution process is depicted in Fig. 3.4. Note that the reply to a query can

be sent directly to the IP address of the originating (proxy) peer q, reducing

traffic on the overlay network.

3.9 Performance and scalability analysis

Query delays in our overlay network are to a first-order determined by

the number of peers a query message traverses and the queuing/processing at
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Figure 3.4: Resolution of range query RQ(l, r).

each intervening peer. A high density of peers can make the number of hops

a query traverses high – this is a side-effect of our decision to route queries

on the Delaunay graph. A low density of peers might result in peers being

responsible for larger regions, increasing the storage and traffic loads they see,

and thus increasing the per peer queuing delay. This suggests that for our

network, “more is not always better.” We explore this below.

Performance Analysis. To study these performance trade-offs we

consider the following idealized model. Assume that peers are spaced δ m

apart in a square grid of physical dimensions r × r m2, see Fig. 3.5, so there

are a total of b r
δ
c2 peers. To avoid edge effects we assume the grid wraps

around, i.e, its geometry is akin to a torus, e.g., peer p1 in Fig. 3.5 has a

distance of 1 hop from the peers p2, p3 and p4. Peers act as sources and des-

tinations for queries. We assume that events are generated according to a
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Algorithm 1 Range Query Resolution

1: Resolve Query(q, p, RQ(l, r)). {resolves RQ(l, r) on behalf of peer q at
peer p. }

2: if B(l, r) ∩ Cp 6= ∅ then
3: response set = ∅
4: for all events e at p s.t. e.location ∈ B(l, r) do
5: response set = response set ∪ {e}
6: end for
7: for t ∈ N(p) do
8: response set = response set ∪ResolveQuery(p, t, RQ(l, r))
9: end for

10: send response set to q
11: end if

spatio-temporal homogeneous Poisson Point Process (PPP) [57] with inten-

sity γe events/sec-m2. Each event is stored at its closest peer, so since each

peer is associated with a cell of size δ2 m2, each peer sees an intensity of

γeδ
2 events/sec. Similarly, queries are submitted according to an independent

spatio-temporal homogeneous PPP with intensity γq queries/sec-m2. They are

assumed to be processed by the closest (proxy) peer, so each such peer sup-

ports an intensity γqδ
2 queries/sec. The destination of a query is uniformly

distributed among the peers in a diamond with ‘radius’ l m centered around

the associated source (proxy) peer. The parameter l is a measure of the spatial

locality of the queries. The lower l, the higher the spatial locality. Queries

are assumed to be greedily routed on the grid from the source peer to the

destination, with ties broken at random. Queries are assumed to be point

range queries, i.e., RQ(l, r) where r is very small. To make things tractable,

we assume that the service time for processing, storing or relaying a query
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at a peer is an exponential with parameter µ. With these assumptions this

model corresponds to a network of M/M/1 queues with generalized routing

[41]. This grid model is only a first-order caricature of a homogeneous system

in terms of both the traffic and peer topology, but as we will see gives some

key insights on the characteristics of such systems.

p p

p p3 4

1 2

ps

l

pd

δ r

spatial
locality
diamond
for queries
submitted 
by p
 

s

 n = | r/   |δ

Figure 3.5: Idealized grid model.

Symmetry in this grid model allows us to easily estimate the end-to-

end delays on the overlay network. To account for the relayed traffic let h(δ)

denote the average number of hops traversed by a typical query when the peers

are spaced δ m apart. Then, the total traffic load that will be serviced in the

network consists of two components: (1) storing of events, which is n2γeδ
2;

and (2) query relaying and processing, which is the number of peers n2, times

the query load per peer, times the average hop count, i.e., n2 × γq × δ2 ×
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max(1, h(δ)). By symmetry, the total load is divided equally amongst the n2

peers giving a load per peer of

γ(δ) = γq × δ2 ×max(1, h(δ)) + γeδ
2. (3.1)

The average end-to-end delay, D, for a typical query corresponds to travers-

ing h(δ) M/M/1 queues each supporting a traffic intensity γ(δ). Given the

additivity of delays experienced across the network we have that:

D = max(1, h(δ))
1

µ− γ(δ)
. (3.2)
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Figure 3.6: Average query delay vs. cell side δ.

Note that topology and locality of the traffic on the overlay network

impact the mean hop count h(δ) of a typical query. If each peer maintains
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edges to only its grid neighbors, the number of hops a query traverses is roughly

proportional to the mean distance and inversely proportional to δ, i.e.,

h(δ) ≈ c1
l

δ
(3.3)

where c1 is a constant. Fig. 3.6 exhibits a plot of the query’s mean delay, i.e.,

Eq. 3.2, on a log scale versus the grid spacing δ when there is no locality, i.e.,

l = r/2, and µ = 1, r = 10, γq = 0.05, γe = 0.05 and c1 = 0.5. As can be seen,

a higher density of peers, i.e., lower δ, leads to a high mean query delay, due

to the increased hop count of paths, while a lower density, i.e., high δ, leads

to high mean query delays due to increased congestion in the traversed peers.

Indeed, if δ is too high, the traffic load on a peer may exceed its capacity. For

a given set of system parameters, there is an optimal density for peers, see

Fig. 3.6.

As mentioned in Section 3.4.1 one can improve the performance in this

system by including additional edges in the graph. In particular adding a single

additional edge per peer as proposed by Kleinberg (see Fact 3.7) reduces the

mean hop count to

h(δ) ≈ c2(log(
l√
2δ

))2 (3.4)

where c2 is a constant. Note in Eq. 3.4 we have accounted for the fact that our

queries are uniform in a locality diamond of radius l. The diamond centered

at each peer includes roughly 2 l2

δ2
peers, giving an ‘equivalent’ square grid to

that considered by Kleinberg with n =
√

2 l
δ

and divided by a factor of 2 to

account for distances in wrap-around geometry. As expected and shown in
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Fig. 3.6 these new edges substantially reduce the mean end-to-end delay on

the overlay – here we set c2 = 1. Indeed the best performance is achieved with

a much larger δ, i.e., one can get away with a much lower density of peers.

Note, that the quantity in Eq. 3.4 is the mean number of hops. Each

peer, in this case, will be the ‘target’ of a different number of Kleinberg edges.

That means that the traffic intensity received by each peer is not the same

anymore. Thus, the quantity

1

µ− γ(δ)

in Eq. 3.2, where γ(δ) is given in Eq. 3.1, representing the mean per hop delay,

is a lower bound for the case of Kleinberg edges, since the mean per hop delay

is a convex function of the traffic intensity. In Fig. 3.7 we show that the lower

bound is tight.

Admittedly, the grid model is idealized. To capture more realistic

topologies, we simulated a Homogeneous Poisson Delaunay (HPD) topology.

In an HPD topology the peers’ locations are generated by a homogeneous Pois-

son spatial point process with intensity λ, and peer connectivity follows the

edges of the corresponding DG. The peers were placed inside a r × r square

region, and we used the same event/query model as the one described in the

previous paragraph for the grid topology. Additionally, we consider a HPD

topology augmented by Kleinberg edges. In Fig. 3.6, we include our simu-

lated results for HPD topologies. We scale the horizontal axis for grid and

HPD networks via the correspondence δ ∼
√
r2√
n2
↔ 1√

λ
. The theoretical results

based on the grid capture the qualitative behavior of the HPD topology, but
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there are significant quantitative discrepancies for high δ/low λ. The latter

is due to the arbitrary choice of the constants involved in Eqs. 3.3,3.4 and

the effect of the statistical variations of the cells’ sizes. Indeed, in contrast to

the grid model, in the HPD topology the cell sizes for all the peers are not

the same. This means that a peer with a bigger cell than the rest will likely

see more traffic - this can lead to instability affecting all the queries routed

through that peer. This explains the effect seen for high δ/low λ. When λ

is high, the average cell size goes down, and the effect of varying cell sizes is

mitigated; this is a fundamental property of HPDs. In this case the traffic

becomes more uniform essentially like a grid; observe the convergence of the

theoretical and simulated curves. This motivates the need to devise ways to

adapt the topology to non-uniformities either by adapting the peers’ cell sizes,

e.g., by associating a “virtual” location with a peer, allowing modification of

the associated Voronoi cells or the edges connecting the peers. We discuss this

in Chapter 4.

Fig. 3.7 shows some simulated results for the mean query delay on var-

ious overlay topologies as query locality is varied. We compare three topolo-

gies: HPD, HPD augmented with Kleinberg edges, and HPD augmented with

Kleinberg edges restricted to the locality region of each peer. The values of

the specific parameters used are µ = 1, γq = 0.1, γe = 0.05, r = 10, n2 = 5000.

Each simulation lasted 100000 time units. From Fig. 3.7 it is clear that when

the locality of the queries is high, e.g., 0.5, the delay of the queries is mostly

due to the processing rather than queuing and the grid overlay performs well.
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However, as locality is reduced, i.e., l increases, the benefit of Kleinberg edges

appears, with an improvement in performance of up to 34% for this scenario.

Further if the scale of locality were known up front, then limiting the edges

within the locality region leads to a small yet consistent performance improve-

ment, although simply adding edges throughout the whole network is robust

and performs quite well. The graph also shows the analytical performance

curves associated with Eqs. 3.2, 3.3 and 3.4, where c1 and c2 were estimated

by matching the value of the equations with the values reported by our simula-

tions for l = r
2

= 5. As can be seen the analytical and simulation results match

very well. This validates the ability of our model to qualitatively capture the

performance of the actual system.

0 1 2 3 4 50

5

10

15

locality

m
ea

n 
de

la
y

Voronoi, simulation

grid, theory

grid + Kleinberg edges, theory

Voronoi + Kleinberg edges, simulation

Voronoi + locality-based Kleinberg edges, simulation

Figure 3.7: Average query delay vs. locality.

76



3.9.1 Scalability analysis

The above results might be contrasted with P2P networks for sharing

(large) files, where increasing the number of peers wanting the same file typi-

cally improves the performance. Indeed, in such systems new peers place new

demands but also serve as potential sources for the parts of a disaggregated

file they are retrieving, i.e., they also increase system capacity. Our system,

however, does not have such a characteristic since events are assumed to cor-

respond to relatively small amounts of information and are stored in only one

peer. The system is optimized to reduce bottlenecks associated with storing

and resolving queries when there is a high intensity of events and queries, i.e.,

the overheads lie mainly in managing and finding data, rather than trans-

mitting the data. To explore the performance scalability of our platform, let

us consider how performance in our grid model scales as the spatio-temporal

query intensity γq(f) grows linearly, i.e.,

γq(f) = γ0
qf.

where f is the scaling factor and assume γe(f) ∝ γq(f), i.e., both grow linearly.

Let us also consider various possible scalings for the service rate of each peer

µ(f), the total number of peers in the network n2(f), and the locality of queries

l(f) as a function of f as follows:

µ(f) = µ0f
p, n2(f) = n2

0f
q, and l(f) =

l0
f s
, p ≥ 0, q ≥ 0, s ≥ 0

Note that such a scaling for the number of peers implies a scaling in the

distance among the peers δ(f) ≈ Θ(f−
q
2 ).
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The central question we would like to tackle is what the relationships

amongst p, q, s should be to ensure bounded mean query delays as f grows.

The following proposition shows when this is the case, a proof is presented in

Appendix B.

Proposition 3.9.1. Scalability. For a linear growth in event/query traffic,

a necessary condition for the grid network to have bounded delays is the poly-

nomial scaling exponents for the number of peers, service capacity and locality

p, q and s respectively to satisfy

p ≥ 1− q

2
−min[

q

2
, s].

If the network is augmented with Kleinberg edges then p > 1− q may suffice.

This provides some nice insight on the scaling matter. Suppose peers

have a fixed service capacity (p = 0) then if locality is also fixed (s = 0) then

peers must scale at least quadratically (q ≥ 2). Otherwise, with increased

locality s > 0 peers can scale linearly (q = 1) but only if locality scaling is fast

enough (s > 1/2). By contrast, if Kleinberg edges are added, locality plays a

small role, i.e., asymptotically the additional edges have limited impact.

3.10 Fault-Tolerance

In Section 3.4 we discussed the elements of our architecture and how

they might be managed in the presence of peer churn but assumed that churn

happens gracefully, i.e., peers follow our protocols. In practice, these assump-
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Type Variable
set < Peer > holders
set < Peer > owners

dictionary(Peer, set < Peer >) neighbors

Table 3.1: Definition of the class EventRecord for an event e. We assume the
existence of the primitive class Peer.

Type Variable
set < Peer > neighbors

dictionary(Event, EventRecord) events
set < Peer > holdsEventsForMe

dictionary(Peer, set < Event >) holdEventsForPeer

Table 3.2: Data structures for fault-tolerance. We assume the existence of the
primitive classes Event and Peer. The class EventRecord is defined in Table
3.1.

tions might be violated, e.g., peers may fail. This motivates considering mech-

anisms to achieve fault-tolerance.

The simplest approach to achieving fault-tolerance is replication. Repli-

cation is not optimal with respect to minimizing the total amount of storage

required, e.g., as opposed to coding, still, it is used by some of the seminal

P2P storage systems [68, 78]. Moreover, for our platform this is a good choice

due to the high intensity of short-lived real-time events and the need for an ap-

proach with low computational complexity. To set the limits of our approach,

we shall consider a well defined failure model for the peers under which the

proposed protocols should maintain functionality. We start by introducing

the updated rules for event storage with replication and the associated failure
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model. Then we present fault-tolerant algorithms for data management and

query processing. Topology management and routing as well as peer associa-

tion with the P2P network will not be discussed as they are the same as those

presented in Section 3.4.

We introduce a revised rule for event storage that extends Rule 3.7.1:

each event is stored in the k+1 closest available peers to the event’s location -

this allows us to tolerate up to k peers’ failures. Observe that k = 0 amounts to

no replication. We refer to these k+ 1 peers storing the event as its “holders”.

In case some of the k + 1 closest peers to an event are unavailable to store it

because, e.g., they have ran out of space, they are substituted by peers that

are further away from the event. Collectively, we refer to all the peers involved

in the storage of the event as its “owners”, i.e., the set of owners of an event

includes its holders as well as any peers that should be holders by virtue of

their proximity to the event but were not available to store events. We present

formal definitions for these terms:

Rule 3.10.1. Fault-Tolerant Storage. Each event e is stored at the k+1 peers

{hi(e), i = 0, . . . , k} ⊂ P that are closest to e.location and are available to

store it. We will denote this set of peers by holders(e). The owners of an

event e, owners(e) , {p0(e), . . . , pn−1(e)}, are all the peers that are closer to

e.location than hk(e), including hk(e). 1

Obviously, pn−1(e) = hk(e).

1In the sequel, when it is clear from the context, we will refer to a peer as an owner when
it is an owner but not a holder.
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Storing all the replicas for an event in the closest peers to its location,

limits the fault-tolerance of our approach as neighboring peers are more likely

to fail together. A similar issue is recognized in the context of the ‘Topology-

based nodeId assignment’ topology-aware routing policy in structured P2P

overlay networks, see [19]. We consider this part of the design trade-offs we

adopt in our platform.

As will become apparent in Section 4.1 when we address issues of limited

storage at the peers, our solutions for fault-tolerance and limited storage share

similarities. Therefore, in the interest of generality, in Rule 3.10.1 we require

peers to be available to store events. In the unlikely event that there does not

exist k + 1 available peers to store an event, the procedure stops at the last

holder. Additionally, the algorithms in the current section will be presented

in their most general form, taking storage limitations into account, although

the topics of fault-tolerance and storage limitation are in general distinct and

can be examined separately.

As explained previously, maintaining k+ 1 replicas per event allows us

to tolerate up to k peer failures. Our failure model is consistent with that

observation:

Assumption 3.11. Failure Model.

1. Peers fail according to the fail-stop model, i.e., once a peer fails it re-

mains silent and unresponsive.
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2. For each event stored in our platform, up to k of its holders may fail

until one of the remaining holders executes our protocol.

3. The underlying distributed protocol for topology maintenance can main-

tain the overlay topology correctly in the presence of failures. Peers exe-

cute our protocol having complete and accurate knowledge of their neigh-

bors.

4. No overlay topology change occurs while our data management/query

processing algorithms execute.

5. All messages sent are eventually acknowledged within a bounded period

unless the intended recipient has failed.

Our failure model is an extension to the one used in [52] with k > 1.

Our assumption about the number of holders that may fail before one of

the remaining holders is notified about their failures, will serve to restore

the correct number of replicas. The protocol presented in [52] is an example

of an underlying protocol for maintaining the DG. The assumption that no

overlay topology changes occur while our data management/query processing

algorithms execute will serve to ensure that our algorithm is correct as well as

the results of a query are accurate. Finally, our assumption that all successfully

received messages are acknowledged within a bounded period will help detect

failed peers.

Before we proceed with presenting our protocols for data management,

we shall state our assumptions about the data-structures to be maintained
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by each peer. These data-structures will be leveraged in the operation of our

protocols. Each peer needs to maintain auxiliary data structures to implement

Rule 3.10.1. Table 1 exhibits the needed data structures that we explain below.

Assumption 3.12. Data Structures for Fault-Tolerance. Each peer maintains

the data structures shown in Table 3.2.

Our failure model ensures that the information stored in the data struc-

tures maintained by each peer is complete and accurate when it is executing

our protocols.

Each peer p maintains its neighbors in the DG N(p) in the variable

p.neighbors. According to Assumption 3.12:

N(p) == p.neighbors.

To every event e stored by p we associate, through a 1− 1 mapping, an

instance, er, of the class EventRecord and store it in the dictionary p.events

under the key e. The class EventRecord works as a place-holder for storing

the information about the holders and the owners of events. Additionally, the

class EventRecord contains information about the neighbors of e’s owners in

the DG: the dictionary p.events[e].neighbors has an entry for each owner of

e - the value stored is the neighbors of that owner. According to Assumption

3.12:

(er.owners == er.neighbors.keys) ∧

(∀o ∈ er.owners : N(o) == er.neighbors[o]).
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If p is a holder of the event e, then it maintains a copy of er, i.e.,

p ∈ holders(e)⇔ e ∈ events.keys.

Finally, to facilitate processing, we maintain at each holder the following book-

keeping structures: the set holdsEventsForMe and the dictionary

holdEventsForPeer. The former contains all peers that hold events for which

the current peer is an owner. According to Assumption 3.12:

(q ∈ p.holdsEventsForMe) == (∃e ∈ q.events.keys :

(p ∈ q.events[e].owners) ∧ (p 6∈ q.events[e].holders)).

The latter maps to each owner the set of events for which the current peer is

a holder. According to Assumption 3.12:

(q ∈ p.holdEventsForPeer.keys) == ∃e ∈ p.events.keys :

(q ∈ p.events[e].owners) ∧ (q 6∈ p.events[e].holders)).

To better illustrate the concepts of holders and owners and how these

are encoded in our data structures, we present a small example. In Fig. 3.8

for the event e and k = 1 assuming peer p1 is unable to store e, the following

84



p0

p1

p2

e

Figure 3.8: Data-Structures example
.

relationships hold:

owners = {p0, p1, p2},

holders = {p0, p2},

p0.holdsEventsForMe = ∅,

p0.holdEventsForPeer = {p1},

p1.holdsEventsForMe = {p0, p2},

p1.holdEventsForPeer = ∅,

p2.holdsEventsForMe = ∅,

p2.holdEventsForPeer = {p1}.
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3.12.1 Fault-Tolerant Data Management

In this section we will specify how events are stored and deleted from

our platform according to Rule 3.10.1. This entails updating the records

maintained by the holders of each event stored/deleted. Additionally, we will

demonstrate how to update the data structures maintained by the peers when

the overlay topology changes due to a peer joining or leaving/failing.

Event Storage and Deletion. We start by describing a distributed

algorithm for identifying the holders and the owners of an event. Consider

a new event e to be stored in our platform. Our storage algorithm identifies

recursively the holders/owners of e starting from p0(e) and terminating with

hk(e). Once all k + 1 holders of e have been identified, hk(e) communicates

the information about them to the rest of the holders/owners, which in turn

update their records about e.

Storing an event e, as in the case without peer failures, starts by greedily

routing the event towards the closest peer to its location, p0(e). We do not

present the messages used for that purpose. Upon reception of e, p0(e) is

responsible for ‘bootstrapping’ the procedure for identifying holders(e) and

owners(e), according to Rule 3.10.1. Alg. 2 exhibits pseudo-code describing

the actions of peers upon receiving the various messages exchanged.

Alg. 2 requires every potential holder to receive the special message,

“recursiveStore(e, er)”. The message specifies the event to be stored as well

as the corresponding record that will be used for recording the owners/holders

86



and their neighbors. First, p0(e) bootstraps the procedure by ‘sending’ the

message “recursiveStore(e, er)” to itself. Assuming it has space to store e, p0

adds itself to the holders/owners of e, by updating er.holders and er.owners

respectively, and proceeds to identify p1. Otherwise, p0 records itself as merely

an owner and proceeds to identify p1 as well. The following proposition serves

as the basis for identifying the next owner:

Proposition 3.12.1. Evolution of a peer’s set of neighbors

1. The jth closest peer to an event e, pj, j = 1, . . . , n, is such that pj ∈

N(pj−1|P \ {p0, . . . , pj−2}), i.e., pj is a neighbor of pj−1 in the Voronoi

tessellation induced by the locations of the peers in P \ {p0, . . . , pj−2}.

2. Let p, q ∈ P be two neighbor peers in the DG and N(p|P ), N(q|P ) be

the sets of their neighbors respectively. If p leaves/fails, the new set

of neighbors for q will be N(q|P \ {p}) = (N(q|P ) ∪ SN(p|P )) \ {p} ⊂

N(q|P ) ∪ N(p|P ), where SN(p|P ) ⊂ N(p|P ) is the set of neighbors of p

that will also be neighbors of q after p fails/leaves.

The first part of Prop. 3.12.1 follows by definition. To see why the

second part of Prop. 3.12.1 holds we recognize that the set of q’s neighbors

can only grow, by the statement of Prop. 3.12.1 no new peer joins to destroy

any edge, so all of q’s neighbors, apart from p, will remain remain as neighbors

in P − {p}. The new neighbors of q in P − {p} can only be p’s neighbors

in P , since Fact 3.6 ensures that only p’s neighbors will have to update their
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neighborhood. Therefore, the set of q’s neighbors N(q|P \ {p}) will evolve to

N(q|P ) ∪ SN(p|P ), where SN(p|P ) ⊂ N(p|P ).

Based on the previous facts we deduce that

p1 ∈ N(p0|P ),

p2 ∈ N(p1|P \ {p0}) ⊆ (N(p1|P ) ∪N(p0|P )) \ {p0},

p3 ∈ N(p2|P \ {p0, p1}) ⊆ (N(p2|P ) ∪N(p0|P ) ∪N(p1|P )) \ {p0, p1},
...

pj+1 ∈ N(pj|P \ {p0, . . . , pj−1})

⊆ (N(pj|P ) ∪ (∪j−1
i=0N(pi|P ))) \ {p0, . . . , pj−1}.

The previous equations suggest that p1 is the closest neighbor of p0 in

the DG to e.location. Once p1 has been determined, another iteration begins

by p0 sending to p1 the message “recursiveStore(e, er)”. Upon reception of

the “recursiveStore” message p1 adds itself to the owners, or the holders of

e or both and proceeds to identify p2. To achieve that, the previous equa-

tions suggest that p2 will be the closest peer to e.location among the peers in

(N(p0|P )∪N(p1|P )) \ {p0, p1}. The information about p0, p1 and their neigh-

bors is encoded in the structure er. Using the above strategy recursively one

can identify all the holders/owners of an event by identifying the jth closest

peer to e at the jth iteration.

When the last holder is identified, it notifies the rest of the owners about

the event’s storage by sending an “update(e, er)” message. Upon reception of
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the “update” message, each holder will update its record corresponding to e

as follows:

h0[e] = h1[e] = · · · = hk[e] = er.

In addition, each owner will update its holdsEventsForMe set to include

the holders of e. Each holder will update the value stored in the dictionary

holdEventsForPeer for each owner, to include the event e. Finally, each

holder will make sure that past owners for which it does not store any event

anymore are removed from its dictionary holdEventsForPeer. These owners

are notified to remove the holder from their holdsEventsForMe sets.

3.12.2 Event Deletion

We delete events as soon as they expire, as in the case without failures.

A peer p holding a recently expired event e should remove it from the value

corresponding to each owner of e in the dictionary p.holdEventsForPeer. If

e is the last event p is holding for a particular peer q, p will remove the entry

for q from the dictionary p.holdEventsForPeer and will notify q to remove p

from the set q.holdsEventsForMe. Finally, the record for e will be deleted

from p.events. The necessary bookkeeping is described in Alg. 3.

3.12.3 Handling a new peer joining the P2P overlay

Consider a new peer q joining the overlay. For all events e s.t. q is closer

to e.location than hk(e), q should be an owner of e in P ∪ {q}. Additionally,

if q has space to store e, it should also become a holder of e, removing hk(e)
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Algorithm 2 Fault-Tolerant Event Storage
1: Event : e;EventRecord : er;Peer : p, q
2: {peer p receives “ recursiveStore(e, er)” from peer q}
3: insert p to er.owners
4: er.neighbors[p]← N(p)
5: if p has space to store e then
6: insert p to er.holders
7: end if
8: if |er.holders| < k + 1 then
9: N ← ∩t∈er.ownerser.neighbors[t]

10: if ∅ 6= N \ er.owners then
11: find r ∈ N \ er.owners that is the closest to e
12: send message “recursiveStore(e, er)” to r
13: end if
14: else
15: {we have identified all the holders for e.}
16: for r ∈ er.owners do
17: send “update(e, er)” to r
18: end for
19: end if

20: Event : e;EventRecord : er;Peer : r, p
21: {peer r receives “update(e, er)” from peer p}
22: if r 6∈ er.holders then
23: for t ∈ er.holders do
24: insert t to p.holdsEventsForMe
25: end for
26: else
27: for (t ∈ er.owners) ∧ (t 6∈ er.holders) do
28: insert e to r.holdEventsForPeer[t]
29: end for
30: for t ∈ r.holdEventsForPeer.keys : (e ∈ r.holdEventsForPeer[t]) ∧ (t 6∈

eh.owners) do
31: remove e from r.holdEventsForPeer[t]
32: if ∅ == r.holdEventsForPeer[t] then
33: remove the entry for t from r.holdEventsForPeer
34: notify t to remove r from t.holdsEventsForMe
35: end if
36: end for
37: r.events[e]← er
38: end if
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Algorithm 3 Fault-Tolerant Event Deletion
1: Event : e;Peer : p
2: {event e to be deleted from peer p}
3: for (q ∈ p.events[e].owners) ∧ (q 6∈ p.events[e].holders) do
4: remove e from p.holdEventsForPeer[q]
5: if ∅ == p.holdEventsForPeer[q] then
6: remove the entry for q from p.holdEventsForPeer
7: notify q to remove p from q.holdsEventsForMe.
8: end if
9: end for

10: remove the entry for e from p.events

from the set of holders. In this section, we describe a recursive distributed

algorithm for updating e’s storage. Algo. 4 exhibits the relevant pseudo-code.

‘Bootstrapping’ the update of e’s storage. The underlying topol-

ogy management protocol ensures that upon q joining the overlay, its neighbors

will be notified about it. The following fact guarantees that at least one of the

neighbors of q is an owner of e too.

Fact 3.13. New Owner Detection. Consider any event e stored in our platform

and a new owner of e, q, that joins the platform. Then, there exists at least

one owner of e among the neighbors of q:

owners(e) ∩N(q) 6= ∅.

We offer a proof in the Appendix B. Consider, p, the closest peer to

e.location among the neighbors of q. We require p to ‘bootstrap’ the procedure

for updating e’s storage.
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If p is a holder of e, it notifies hk to release event e by sending it a

“release(e, q)” message. Upon reception of the “release” message, hk removes

itself from the set of holders of e and removes the owners of e from e’s entry

in its holdEventsForPeer directory. If it does not hold events for some peers

anymore, they are removed from the dictionary holdEventsForPeer and they

are notified to remove hk from their set holdsEventsForMe. Additionally, hk

removes all the other owners between hk−1 and itself to ensure that owners(e)

does not contain any peer that is farther from e.location than the farthest

holder, hk−1. Finally, hk notifies q to hold event e by sending the message

‘recursiveStore(e, hk.events[e])’ to it. At that point, there exist k replicas of e

stored in the platform, and the procedure to identify the last replica continues

as in the case of storing the event in the first place, described in Algo. 2.

If p is just an owner of e, but not a holder, it cannot identify hk(e).

Therefore, p notifies the peers that hold events on its behalf, to do that, by

sending them a “join(q)” message.. The closest holder to p that holds a replica

for e, say peer r, will notify hk to release its replica by sending it a “release(e, q)

message. From that point, the procedure continues as described for the case

that p is a holder.

In a more efficient implementation, messages for different events can be

aggregated in a single message reducing the communication cost substantially.
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Algorithm 4 Handling a peer joining
1: Peer : p, q
2: {peer p detects peer q as a new neighbor in the DG}
3: for all events e ∈ p.events.keys do
4: if (||q − e.location||) < ||hk(e) − e.location||) ∧ (p is the closest holder

of e to q) then
5: send msg “release(e, q)” to hk(e)
6: end if
7: end for
8: for r ∈ p.holdsEventsForMe.keys do
9: send “join(q)” to r

10: end for

11: Peer : hk, q, p;Event : e
12: {peer hk receives “release(e, q)” message from peer p}
13: remove hk from hk.events[e].holders
14: for t ∈ hk.events[e].owners : t 6∈ hk.events[e].holders do
15: remove e from hk.holdEventsForPeer[t]
16: if ∅ == hk.holdEventsForPeer[t] then
17: remove the entry for t from hk.holdEventsForPeer
18: notify t to remove hk from t.holdsEventsForMe.
19: end if
20: end for
21: for t ∈ (hk−1, hk] : t 6∈ hk.events[e].holders do
22: remove t from hk.events[e].owners
23: end for
24: send msg “recursiveStore(e, hk.events[e])” to q
25: remove the entry for e from hk.events

26: Peer : r, q, p
27: {peer r receives “join(q)” from peer p}
28: for all events e ∈ r.holdEventsForPeer[p] do
29: if (||q − e.location|| < ||hk(e)− e.location||) ∧ (p is the closest owner of

e to q) ∧ (r is the closest holder to p) then
30: send msg “release(e, q)” to hk(e)
31: end if
32: end for
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3.13.1 Handling a peer leaving the P2P overlay

A peer leaving the P2P network gracefully will have to ensure that

replicas for all the events it holds are replaced in the platform. Additionally,

the storage of the events for which it is merely an owner has to be updated.

In this section, we present a distributed algorithm to achieve the above tasks.

The relevant pseudo-code is shown in Algo. 5.

Consider peer p leaving the P2P overlay. For each event, e, that peer p

holds, p contacts the closest holder of e to it, q, and ‘delegates’ to q, the task

of looking for a new holder for e. This happens by sending a “handle(e, p)”

message to q. Upon reception of the “handle” message, q removes p from the

set of owners/holders of e. If p is just an owner, q sends update messages to

the rest of the holders so as to update their holdEventsForPeer dictionaries.

Otherwise, if p is the farthest holder from e.location, it notifies the owners of

e to remove p from their sets holdsEventsForMe and removes all the owners

between hk−1 and p to ensure that owners(e) does not contain any peer that

is farther from e.location than the farthest holder, hk−1. At that point there

exist k replicas of e stored in the platform, and the procedure to identify the

last replica continues as in the case of storing the event in the first place,

described in Algo. 2.

Finally, p has to notify all the holders of the events for which it is

merely an owner, but not a holder, about its departure. For each such event

e, the closest holder to p, q, will remove p from the set of owners and notify

all the other holders by sending them an “update(e, q.events[e])” message.
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In a more efficient implementation, messages for different events can be

aggregated in a single message, reducing the communication cost substantially.
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Algorithm 5 Handling a peer’s departure
1: Peer : p
2: {peer p leaves the overlay}
3: for all events e ∈ p.events.keys do
4: q ← closest holder of e to p
5: send message “handle(e, p)” to q
6: end for
7: for r ∈ p.holdsEventsForMe.keys do
8: send message “depart()” to r
9: end for

10: Peer : q, p;Event : e
11: {peer q receives a “handle(e, p)” message to update the storage of event e after

peer p has left/failed}
12: remove p from q.events[e].owners
13: if p 6∈ q.events[e].holders then
14: for t ∈ q.events[e].holders do
15: send “update(e, q.events[e])” to t
16: end for
17: else
18: remove p from q.events[e].holders
19: for (t ∈ q.events[e].owners) ∧ (t 6∈ q.events[e].holders) do
20: notify t to remove p from t.holdsEventsForMe
21: end for
22: if p == hk then
23: for t ∈ (hk−1, hk) : t 6∈ q.events[e].holders do
24: remove t from q.events[e].owners
25: end for
26: end if
27: send msg “recursiveStore(e, q.events[e])” to itself
28: end if

29: Peer : r, p
30: {peer r receives a “depart” message from peer p}
31: for all events e ∈ r.holdEventsForPeer[p] do
32: if (r is the closest holder of e to p) ∧ (p ∈ r.events[e].owners) then
33: send message “handle(e, p)” to itself
34: end if
35: end for
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3.13.2 Handling a peer’s failure

The case of a peer q detecting that one of its neighbors, peer p, has

failed presents similarities with the case of a peer leaving the overlay gracefully.

After peer p fails, the underlying topology management protocol will notify

its neighbors about its failure, see Assumption 3.11. In this section we will

present a distributed algorithm to update the storage for all events for which

p was a holder/owner. Algo. 6 has the relevant pseudo-code. Fact 3.13 ensures

that for each event, e, for which p is an owner/holder, there exists a neighbor,

assume it is q, that is also an owner. If q is the closest holder of e to p, we

require that it ‘bootstrap’ the update of e’s storage by sending a “handle(e, p)”

message to itself. From that point on, the procedure is similar to the case of

peer p leaving the overlay gracefully.

If q is only an owner of e, but not a holder, it will notify all the peers

that hold events on its behalf to update e’s storage by sending them a “fail(p)”

message. Among them, the closest holder of e to p will update e’s storage by

sending a “handle(e, p)” message to itself. At that point there are k replicas of

e in the platform and the procedure to identify the last platform will proceed

as in the case where the event was first stored.

In the case that more than one peer fails, the closest holder of e to p

might have failed too. In that case, one of the remaining holders of e will

update its storage. Such a holder always exists since according to Assumption

3.11 up to k holders of e may fail before one of the remaining holders executes

our protocol. Let u = pj(e) denote one of the remaining holders. When
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u executes our protocol, either because one of his neighbor holders failed or

because it received a “fail” message from one of the owners of e, it will start a

timer waiting for the update message for each event for which p was an owner.

The jth time the timer goes off, assuming all the holders from p0 to pj−1 have

failed, u will update the storage for the corresponding event.

In a more efficient implementation, messages for different events can be

aggregated in a single message reducing the communication cost substantially.
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Algorithm 6 Handling a peer’s failure
1: Peer : p, q
2: {peer q finds out that neighbor peer p has failed}
3: for all events e ∈ q.events.keys do
4: if (q is the closest holder of e to p) ∧ (p ∈ q.events[e].owners) then
5: send message “handle(e, p)” to itself
6: else
7: start a timer waiting for the “update” message for event e.
8: end if
9: end for

10: for r ∈ p.holdsEventsForMe.keys do
11: send message “fail(p)” to r
12: end for

13: Peer : p, q
14: {peer r receives “fail(p)” message from peer q}

15: for all events e ∈ r.holdEventsForPeer[q] do
16: if (r is the closest holder of e to p) ∧ (p ∈ r.events[e].owners) then
17: send message “handle(e, p)” to itself
18: else
19: start a timer waiting for the “update” message for event e.
20: end if
21: end for

22: Peer : p, q
23: {timer for the “update” message for event e goes off for the ith time}
24: remove the ith closest holder of e from

p.events[e].owners,p.events[e].holders.
25: if q is the (i+ 1)th closest holder of e to p then
26: for t ∈ {1st, . . . , ith closest holders of e to p} ∪ {p} do
27: send message “handle(e, t)” to itself
28: end for
29: else
30: start a timer waiting for the “update” message for event e
31: end if
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Figure 3.9: Fault-tolerant query resolution.

3.13.3 Fault-Tolerant query processing

In §3.4 we identified the range query as the fundamental building block

supported by our platform for realizing more complex queries. Alg. 1 described

its resolution when peers do not fail. In this section we present Alg. 7, a

modified version of Alg. 1, which takes fault-tolerance into account.

Just as in the case with no peer failures, a range query RQ(l, r) is

initially issued by a peer or a proxy peer operating on behalf of another entity

using the overlay. The decision to store the k + 1 replicas for each event at

the k+ 1 closest peers to the event’s location allows us to retain the resolving

strategy essentially unaltered. The query is initially routed greedily towards

location l as depicted in Fig. 3.9. The closest peer to that location bootstraps

its resolution by checking for events stored locally that are inside the disk

specified by the query. In addition to the events stored locally, a peer has

to check for events stored in other peers on its behalf as well. A peer replies
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only for the events for which it is the closest holder. After these events have

been acquired the resolution proceeds as in the case with no faults with the

peer flooding the query to its neighbors in the DG. 2 The performance of a

flood-based algorithm is acceptable in a restricted disk under Assumption 3.3,

still, the same heuristics as for the case with no failures can be used to reduce

the resulting traffic, e.g. never forward the same query twice, never forward

the query back to the peer from which the query was received. The recursive

resolution stops at the peers whose cells do not overlap with the disk specified

at the query. At that point each peer involved in the resolution returns the

events it has gathered to the peer from which it received the query. Finally,

the closest peer to the location mentioned in the query returns the results to

the peer that issued the query. Again, the response can be sent directly to the

IP address of the source instead of being propagated on the overlay.

3.14 Conclusions

We have introduced a novel P2P architecture for storing and querying

events that exhibit locality in space and time. The core idea is to exploit spatial

locality by aligning the overlay topology with the Delaunay Graph induced by

peer locations, and augmenting it by Kleinberg edges. We have extended

our data management algorithms to address fault-tolerance. Indeed, storing

extra replicas for each event in the 2nd,3rd,. . . k, closest peers to the event’s

2In practice, the flooding and acquiring the events stored on other peers on a peer’s
behalf can proceed in parallel.
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Algorithm 7 Range Query Resolution

1: Resolve Query(q, p, RQ(l, r)) {resolves RQ(l, r) on behalf of peer q at
peer p. }

2: response set = ∅
3: if B(l, r) ∩ Cp 6= ∅ then
4: for all events e ∈ p.events.keys s.t. (e.location ∈ B(l, r)) ∧ (p is the

closest peer to e among the peers in p.events[e].holders do
5: response set = response set ∪ {e}
6: end for
7: for t ∈ p.holdsEventsForMe do
8: response set = response set ∪HolderReport(p, t, RQ(l, r))
9: end for

10: for t ∈ N(p) do
11: response set = response set ∪ResolveQuery(p, t, RQ(l, r))
12: end for
13: end if
14: send response set to q

15: Holder Report(q, p, RQ(l, r)) {returns to peer q the events peer p stores
on its behalf}

16: s = ∅
17: for e ∈ p.holdEventsForPeer[q] do
18: if (e.location ∈ B(l, r)) ∧ (q is the closest peer to e among the peers in

p.events[e].holders) then
19: s.insert(e)
20: end if
21: end for
22: send s to q
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associated location or utilizing these peers in case the closest peer runs out

of storage space are natural extensions to our data management algorithms.

In Chapter 4 we will further address the impact of non-homogeneity on the

performance of our network.
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Chapter 4

Addressing the Impact of Non Uniformities in

Topology and Traffic

4.1 Introduction

In Chapter 3 we focused on homogeneous network topologies and traffic.

More specifically, we assumed that peers join the P2P network with equal

probability at any location. As far as the traffic is concerned, we assumed

that events occur at all locations/times with equal probability and peers make

queries from every location to every location (possibly within some range) with

equal probability. Additionally, we assumed that peers have unlimited event

storage capacity.

In practice, these assumptions need not hold. Variations will exist

that may impact the performance dramatically. There may be higher event /

query loads to some regions that have higher interest at some point in time,

e.g., think of the area around a famous exhibit in a museum during the time

the museum is open. There may be fewer peers in some locations as compared

to others, e.g., think of the area of the downtown of a city during a weekend.

Such variations can result in a subset of the overlay peers being overloaded.

Moreover, overlay peers may have limited storage capabilities or may choose to
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limit the amount of storage they contribute resulting in local resource scarcity.

In this section, we study the following techniques to offset the effect of

such non-uniformities:

1. storage pooling, where peers with available storage can store events on

behalf of other peers;

2. and, congestion load-balancing, where the overlay dynamically adjusts

the number of peers, their locations and the edges between them to

mitigate local overloads.

4.2 Storage pooling

Consider an event that according to Rule 3.7.1 in Chapter 3 should

be stored at a peer that has run out of storage capacity. That event would

have to be blocked or require the deletion of some other event. However, if

viewed in the aggregate, the platform has a total storage capacity equal to the

sum of the storage capacities of the overlay peers. Still, our rule for storage

prevents us from exploiting the total capacity available since each event is

to be stored at one peer only. To demonstrate the effect of this decision on

performance, we will briefly return to our simple grid model for a back-of-the-

envelope calculation:

Fact 4.3. Consider a square grid overlay network with a unique peer at each of

its nodes, such as the one considered in Section 3.9. Events arrive uniformly

at each peer with rate γe events per unit time, space, i.e., each peer receives

105



γeδ
2 events per unit time since each peer has a distance δ from its neighboring

peers in the grid. Suppose each peer has storage capacity for m events and a

typical event’s duration is an arbitrary independent random variable with mean

β. For such a system the storage blocking probability for a typical event, i.e.,

at a typical peer, is given by pblock , E(γeδ
2β,m), where E(, ) corresponds to

the standard Erlang loss function.

For a definition of the standard Erlang loss function, see [44]. Clearly, as

the number of peers increases and the dimensions of the grid remain constant,

the distance between two neighboring peers decreases, i.e., δ → 0. As a result,

according to the previous formula, the blocking probability vanishes since the

Erlang function is monotonic in its first argument but this happens at the

expense of an increased mean query delay, as discussed in Section 3.9. Using a

similar approach, the corresponding storage blocking probability if peers could

share the total storage capacity of the platform is E(n2γeδ
2β, n2m), where n2

is the total number of peers in the grid. For reasonably high n, the previous

expression will be much smaller than the one derived above. For example, for

the parameters γe = 0.05, n2 = 10000, β = 600, i.e., 10 minutes, δ = 0.5 and

m = 10 we have an improvement from 0.1 to roughly 0.0.

To enable pooling of storage resources we modify our storage policy to

allow peers that have sufficient storage space to store events on behalf of other

peers. In the interest of self-containment of the current chapter we re-state

Rule 3.10.1, the modified rule for storage, and the concepts of holders and

owners for an event.
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Rule 4.3.1. Fault-Tolerant Storage. Each event e is stored at the k+ 1 peers

{hi(e), i = 0, . . . , k} ⊂ P that are closest to e.location and are available to

store it. We will denote this set of peers by holders(e). The owners of an

event e, owners(e) , {p0(e), . . . , pn−1(e)}, are all the peers that are closer to

e.location than hk(e), including hk(e).

Furthermore, to disentangle issues of load-balancing and fault-tolerance,

we will initially focus on the case where only 1 replica per event is stored in

our platform, i.e., k = 0.

Observation 4.4. Storage Capacity. Using Rule 4.3.1 for storing events, an

event can always be stored in our platform as long as there is available space

in at least one peer, i.e., we achieve the optimal storage performance.

Indeed, an event might be stored arbitrarily far away from its location.

In the sequel, we tackle this issue.

4.4.1 How far from its closest peer should an event be stored?

In our previous observation we allowed for an event, e, to be stored an

unbounded distance from its closest peer if all the owners that are closer to

it have run out of space. In this section we will argue that this is an unlikely

event. Let us once again consider our grid model for a back-of-the-envelope

calculation. Suppose that an event is blocked at each peer independently

with probability pblock. In the sequel, we will address the case of correlated

blockings.
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In the grid, each peer has 4 neighbors that are 1 hop away, 8 peers that

are 2 hops away, etc. The total number of peers at a distance up to j hops

away from a peer, including itself, is j2 + (j + 1)2.

Fact 4.5. Storage Distance. Consider an infinite square grid with a unique

peer at each one of its nodes. Suppose an event, e, can be stored at a given

peer with probability 1 − pblock independently of the other peers. Then, the

probability e is stored at a peer that is j ≥ 1 hops away from p0(e) is

(1− p4j
block)× p

(j−1)2+j2

block . (4.1)

The mean distance, in hops, between the holder of event e and p0(e) (mean

storage distance) is
∞∑
j=1

j ∗ (1− p4j
block)p

(j−1)2+j2

block . (4.2)

The mean storage distance as a function of pblock is plotted in Fig. 4.1.

Fig. 4.1 suggests that for reasonable values of pblock, an event e is unlikely to

be stored far away from its closest peer, p0(e). In practice, events are not

blocked independently by peers. A event that is blocked by a peer is likely to

be blocked by neighboring peers as well since we try to store to neighboring

peers. Let X1, X2 be indicator functions for the events that ‘e is blocked at

peer p1 and its neighbor p2’. Since there is positive correlation between them,

we expect E[X1X2] ≥ E[X1]E[X2]. So our calculation above yielded a lower

bound.

Storage Pooling Scalability. The previous result implicitly suggests

that the performance of our platform is unlikely to suffer when we perform
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Figure 4.1: Mean storage distance for an infinite square grid (in hops).

storage pooling. Rule 4.3.1 requires events to be moved as a result of changes

in the overlay topology. The penalty for the increased performance in storage

will come in the form of an increased overhead traffic to adjust an event’s

storage when overlay topology changes occur. For example, assume that event

e ends up being stored at owner pj(e), j > 0. Any peer q joining inside the

disk B(e.location, ||e.location − pj(e)||) will cause e to be moved from peer

pj(e) to peer q. The smaller the distance ||e.location − pj(e)||, the less likely

the above event.

4.5.1 On the interplay between storage pooling and fault-tolerance

Using k + 1 > 1 replicas/event for fault-tolerance is guaranteed to

increase the storage load on all peers. Peers with big cells and/or in areas
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where the intensity of events is high are likely to see high loads. Keeping

more replicas to ensure a copy of an event is always available prevents other

events from being stored due to lack of space and vice versa. This reveals a

trade-off between storage pooling and fault-tolerance: high degrees of fault-

tolerance through replication will lead to higher storage loads for the peers,

and less storage loads for the peers have to come at the expense of reduced

fault-tolerance through replication.

We attempt to capture the above trade-off through the following quan-

tity: the likelihood that ‘a typical event e has at least one of its k replicas

remain alive for its entire lifetime’. A replica stops being alive if the corre-

sponding peer holding it fails. Again, we assume that an event is deleted as

soon as its lifetime expires. Alternative policies, e.g., a new event overwrites

an old event, will be considered in our future work.

Fact 4.6. Storage vs. Fault-Tolerance Tradeoff. Consider n peers arranged in

a square grid where each peer has a distance δ from its neighbors. Suppose that

events arrive according to a homogeneous spatio-temporal Poisson Process with

intensity γe events per unit time,space, and events have an average duration

of β units of time. Assume that for each event, e, we maintain k + 1 replicas

at the closest peers to its location available to store it. Suppose, that each

peer can store up to m events otherwise the peer is unavailable to store events.

Suppose a peer hosting a replica of e fails before e expires with probability

pfail independently of the other peers and is replaced immediately by another

peer. Then, the probability at least one replica remains alive in our platform
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throughout the entire lifetime of the event is approximately

k+1∑
i=1

(1− p̂block(i))p̂block(1)1(i 6=k+1)(1− pifail) (4.3)

where p̂block(i) = E(n2γeδ
2β, n2m

i
), is a lower bound on the probability a ‘batch’

of i replicas gets blocked from storage and E(, ) corresponds to the Erlang

standard loss function.

The previous formula takes into account the individual events that only

i = 1, . . . , k+ 1 out of the k+ 1 replicas can be stored in the grid by the peers.

A replica is available at the end of its lifetime if it is stored at a peer and the

corresponding peer does not fail during its lifetime. The ‘batch’ arrival process

is Poisson, since event arrivals are assumed to be Poisson, but we require every

replica to be stored in a different peer. For example, if peer p has space for two

events, still according to Rule 4.3.1 only one replica will be stored in it. Thus,

our expression for p̂block yields a lower bound on the true blocking probability

of a batch.

Based on Eq. 4.3 we cannot conclude that adding more replicas per

event ensures that the probability of at least one replica surviving its lifetime

increases. An optimal value for the number of replicas/event might exist,

depending on the lifetime of a typical event and the storage capacity of each

peer. In Fig. 4.2 we demonstrate this effect by plotting Eq. 4.3 for the following

parameter values: γe = 0.05, n2 = 10000, δ = 0.5 and pfail = 0.1. Curve 1

corresponds to β = 600, m = 10, Curve 2 corresponds to β = 180, m = 10,

and Curve 3 corresponds to β = 600, m = 100. Because of the relatively
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big lifetime of each event in Curve 1, β = 600 = 10 minutes, and the low

storage capacity of each peer, adding more replicas per event decreases the

probability an event survives its entire lifetime. This happens because most

events will be blocked from storage in the first place. Decreasing the lifetime

of a typical event to β = 180 = 3 minutes, as in Curve 2, reveals that an

optimal number of replicas, k+ 1 = 4, exists. Indeed, the decreased lifetime of

a typical event reduces the number of events blocked. The increased number

of replicas stored per event increases the fault-tolerance of the platform. Once

we exceed the optimal number of replicas per event, there are ‘too’ many

replicas in the system, so adding more replicas decreases the fault-tolerance of

the platform. Finally, if we increase the available storage space per peer, as in

the case corresponding to Curve 3, the optimal number of replicas/event for

the platform, not shown in Fig. 4.2, increases too. This gives the platform an

excellent fault-tolerance, in comparison to Curve 1, for the same number of

replicas.

It is part of our future work to research further the conditions under

which an optimal number of replicas for our platform exists.

4.7 Congestion load-balancing

In this section, we explore ways to adapt the overlay topology, i.e.,

the number of peers, their locations and the edges connecting them, so as to

balance the traffic load on the peers. As discussed in the introduction, different

peers may receive widely different amounts of traffic due to non-uniformities
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Figure 4.2: Replica survival probability for a n× n square grid.

in the peers’ and/or traffic’s spatial distribution.

‘Local’ vs. ‘End-to-End’ Congestion. Congestion at the peers can

be conceptually divided into ‘local’ and ‘end-to-end’ congestion. We will define

the former as caused by exceedingly high event traffic generated in a cell or

query traffic whose source and destination lie in the same cell, while the latter

is caused by routing of queries across the overlay network. Local congestion

depends on the size of a peer’s cell; the bigger the cell the more local traffic it

might be expected to receive. End-to-end congestion depends mainly on the

location of a peer, the more ‘central’ a peer is, the more routes cross its cell.
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End-to-end congestion also depends on the quality of the edges in the topology

long edges connecting peers that share a lot of traffic are better.

In this section we consider the following approaches to mitigating con-

gestion: modifying the locations of the peers, adapting the connections among

peers to the underlying traffic, as well as adapting the number of peers in the

overlay so as to approximate the optimal peer intensity suggested in the work

discussed in Section 3.4.

The first approach addresses mainly the local congestion, the second

approach addresses the end-to-end congestion, and the third addresses both.

4.7.1 Modifying the location of peers

The locations of the peers uniquely determine the size of the cell of

each peer. Consider the set P containing all the peer locations {p1, . . . , pn}

such that for each pi ∈ P, pi ∈ R, for some region R. We denote by Qi(P ) the

queue size of the ith peer under the peer placement suggested by P . Ideally

one would like to find an algorithm that provides a solution to the following

optimization problem.

min
P
{E[

|P |∑
i=1

Qi(P )]|pi ∈ R for all pi ∈ P} (4.4)

under the constraint of greedy routing and a fixed average intensity of events

γe and queries γq. By Little’s law, this is a proxy for the average traffic delay

in the system.

For local traffic only, any arrangement that divides the topology in
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shapes of equal area, e.g., square grid, grid of equilateral triangles, etc would

be a solution for Eq. 4.4. The addition of ‘end-to-end’ traffic complicates

things.

In Section 3.9 we studied the performance of our platform using a uni-

form square grid as the overlay topology. Eq. 3.1 asserts that the bigger the

area of a peer’s cell, the more traffic it receives. If peers could advertise a dif-

ferent location than their current one, provided it is still close to the original

(so as not to lose the benefits of locality), a more ‘balanced’ overlay topology

could be achieved.

This observation motivates the following simple heuristic:

Rule 4.7.1. Move Heuristic. An overloaded peer, p, may invite a non-overloaded

peer, q, to drop its current location and join the overlay with a different ‘vir-

tual’ location that is closer to p and thus take some of its load.

For purposes of implementing this heuristic, a peer will be considered

overloaded with respect to another peer if its queue size exceeds a fixed mul-

tiple, fqs > 1, of the other peer’s queue size. Below we discuss how a peer

estimates its queue size. To account for the effect of changing topology, each

peer maintains an exponentially weighted estimate of its queue size. In other

words, if the current estimate at time t for a peer’s queue size is Q(t) and a

new sample Q′ of the queue size is obtained at time t′ > t, the estimate of the

queue size is updated as follows

Q(t′) = (1− e−
t′−t
τ )Q(t) + e−

t′−t
τ Q′. (4.5)
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The time constant, τ , of the exponential weighting function is chosen such

that the decay for an event that arrives an ‘average inter-arrival’ interval after

the previous event is 1
e
.

For simplicity, we will require the peers q and p involved in such move

heuristics to be neighbors in the DG. The peer q will be restricted to move to

a new location that lies along the line connecting its original location to the

location of p. The resulting distance between the two peers will be a fraction,

fd < 1, of the original distance between them, see Fig. 4.3.

The above mentioned heuristic has the effect of reducing the area of the

overloaded peer’s cell, which in turn will lower the local traffic the peer sees.

Moreover, a peer with a big cell is likely to lie in the path of an increased num-

ber of queries and suffer increased end-to-end traffic as well. Thus, reducing

a cell’s size is likely to have a positive impact on end-to-end traffic as well.

Evaluation. To evaluate the effectiveness of the ‘move’ heuristic on

the mean delay to process an event, we performed the following experiment:

we varied the average intensity of events arriving at a peer per m2-sec γe, and

measured the mean delay to process an event with and without the ‘move’

heuristic, see Fig. 4.4. We assumed that the event arrival process is Poisson

with mean rate γe, ranging from 0.2 to 2 events per m2-sec. New event arrivals

are assumed to be homogeneous in space, and arriving events enter the queue

of the closest peer. To decouple the study of the local congestion from the end-

to-end congestion we set γq = 0 for this experiment. The time to process an

individual event is assumed to be an independent exponential random variable
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Figure 4.3: Move Heuristic, dold is the distance between p and q before the
heuristic, dnew is the distance after and dnew

dold
= fd.

with mean µ = 1. The overlay topology is generated by placing 60 peers

independently in a 5 × 5 region according to a homogeneous Poisson process

with rate λ = 60
52

= 2.4 peers per m2. Two peers are connected if and only if

they are neighbors in the Delaunay graph. For this experiment, since γq = 0,

the Kleinberg edges would not play any role. For our preliminary evaluation of

the ‘move’ heuristic, we used the following parameters fqs = 1.3 and fd = 0.95.

117



Peers were selected to perform the heuristic at random, i.e, uniformly, at each

tick of an exponential clock with rate µmove = 0.05. The rate of the clock

has been selected such that on average each peer will have at least 100 event

arrivals before being selected to implement the heuristic. This allows for our

heuristic to operate on meaningful queue size statistics, i.e., the queue size

estimates obtained via Eq. 4.5.

The simulation lasted for 120000 units of time, ensuring that on average

100 ‘cycles’ where performed, each cycle corresponding to a period in which

every peer performs the heuristic at least once.

0 0.5 1 1.5 2100

101

102

103

104

event intensity

lo
g(

m
ea

n 
de

la
y)

'move' heuristic

Figure 4.4: Figure shows in logarithmic scale the mean delay to process an
event as the spatial intensity of events γe grows in the overlay network. Two
cases are shown, the first where peers are randomly located in space, and the
second after the move heuristic is carried out.
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The ‘move’ heuristic has an obvious beneficial effect on the mean delay

to process an event for the entire range of event traffic. Although the maximum

mean event arrival intensity at a cell is γ = γe
λ

= 2
2.4

= 0.84 < µ = 1, due to

statistical variations of the cell sizes, some peers will receive more traffic than

they can handle and will become unstable. In Fig. 4.5 we show that the ‘move’

heuristic manages to create a homogeneous topology where most cells are of

roughly equal size, thus minimizing the probability a peer overflows. This is

consistent with our observation about Eq. 4.4.

Beneficial effect on ‘end-to-end’ congestion. Previously, we claimed

that although the ‘move’ heuristic aims to address ‘local’ congestion, it has

a beneficial impact on ‘end-to-end’ congestion as well. To evaluate the effect

of the ‘move’ heuristic on the mean delay to process a query, we performed

the following experiment: we varied the intensity of query traffic generated

per m2-sec, γq, and measured the mean delay for a query starting from its

source to reach its destination, with and without the ‘move’ heuristic. The

query traffic is assumed to arrive according to an independent homogeneous

Poisson process with intensity ranging from γq = 0.04 to γq = 0.32; we kept

γe = 0. Each query is immediately placed by its source in the queue of the

first hop. For this experiment the clock rate µmove has been set equal to 0.04.

The duration of the experiment has been set equal to 150000 sec. The rest

of the parameters of the experiment have been chosen following the same ra-

tionale as in our previous experiment. Throughout the simulation, each peer

has a Kleinberg edge to a fixed point, the ‘target’ of that edge is the peer
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Figure 4.5: Resulting overlay by applying the ‘move’ heuristic for γe = 2 (up)
and original overlay topology (down) (the facets extending to infinity have
been omitted).
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that happens to be closest to that point at any time. The initial placement

of the peers, depicted in Fig. 4.5, is the same as the one used in our previous

experiment. The results are shown in Fig. 4.6. The ‘move’ heuristic appears

to be beneficial for high query intensities; we further discuss that point in the

sequel.
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Figure 4.6: Figure shows in logarithmic scale the mean delay to process a
query as the spatial intensity of queries γq grows in the overlay network. Two
cases are shown, the first where peers are randomly located in space, and the
second after the move heuristic is carried out.

A rough, yet enlightening, view of the effect of our heuristic is that it

divides the overlay topology in two areas: the inner area, which consists of

uniformly arranged peers with small cells that suffer primarily from end-to-

end cross congestion, and the outer area, which consists of uniformly arranged
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peers with big cells that suffer primarily from local congestion, i.e., with high

probability queries originate and end at their cell. Fig. 4.7 exhibits the re-

sulting topology achieved by our heuristic when γq = 0.32. The inner area is

defined by the dashed disk. The resulting arrangement ensures that all peers

receive on average the same amount of total traffic, local plus end-to-end.

Figure 4.7: Resulting overlay by applying the ‘move’ heuristic for γq = 0.32.
The facets extending to infinity have been omitted.

To further illustrate our point, in Figs. 4.8 and 4.9 we plot the mean

traffic intensity per peer vs. the query intensity on the network. We provide

two sets of two curves: one set without our heuristic and another set with our
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heuristic. In each set we provide two curves: one for the peers ending up in

the inner area mentioned above and another for the peers ending up in the

outer area (remember that peers’ locations change according to our heuristic).

The quantity averaged across peers is the exponentially weighted estimate of

the traffic intensity observed by each peer. Looking at Figs. 4.8 and 4.9, the

balancing effect of our heuristic becomes apparent.
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Figure 4.8: Mean traffic intensity per peer vs. the query intensity on the
network without using the ‘move’ heuristic. The two curves correspond to the
‘inner’ and ‘outer’ areas shown in Fig. 4.7.
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Figure 4.9: Mean traffic intensity per peer vs. the query intensity on the
network using the ‘move’ heuristic. The two curves correspond to the ‘inner’
and ‘outer’ areas shown in Fig. 4.7.

Going back to Fig. 4.6, we deduce that the performance of our heuristic

for low query intensities is slightly worse than when omitting it but as the

traffic increases, the heuristic pays off. The initial performance gap is due to

the following reasons:

1. Our heuristic increases the average hop count for queries. Our

heuristic balances the traffic among peers, thus peers tend to move from
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the periphery of the topology towards the center, see Fig. 4.7. Due to

the increased peer intensity at the center of the overlay, routes driven

by greedy routing, crossing the center have to go through more hops.

In Fig. 4.10 we plot the time average number of hops/query averaged

over all peers. Fig. 4.10 supports our claims. As expected the average

number of hops/query is independent of the query intensity.

The average end-to-end query delay equals the average hop delay times

the average number of hops/query. For low query intensities, the average

hop delay is small, so the number of hops/query is the deciding factor

for the end-to-end performance. As the query intensity increases, the

hop delay dominates the end-to-end delay, and the effect of the number

of hops is less important. Note that the average number of hops/query

in Fig. 4.10 is attained with the help of Kleinberg edges. In the absence

of Kleinberg edges, the difference would be even more dramatic.

Combining the results of Fig. 4.10, Fig. 4.8, Fig. 4.9, and Fig. 4.6, we

observe that due to the improved traffic balancing achieved by the move

heuristic, the effect of the increased number of hops/query is mitigated

to some extent and does not affect the average end-to-end delay signifi-

cantly.

2. The movement of peers affects the delay of the queries they

hold in their queues. Every time a peer moves to a different location

according to our heuristic, the progress of a subset of the queries it has in
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its queue is ‘impeded’ if the movement is in a direction opposite to their

current destination. This results in an increased delay for these queries.

For low amounts of query traffic this delay is observable. As the query

intensity increases, the effect of congestion at the peers dominates this

phenomenon, and the benefit from the resulting balanced arrangement

of peers pays off for our heuristic.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.352.5

3

3.5

4

query intensity

m
ea

n 
nu

m
be

r o
f h

op
s/

qu
er

y

move heuristic

Figure 4.10: Figure shows the mean number of hops/query as the query in-
tensity grows in the overlay network. Two cases are shown, the first where
peers are randomly located in space, and the second after the move heuristic
is carried out.
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Mixed traffic: Events and Queries. To evaluate the effect of the

‘move’ heuristic on the mean delay to process an event/query for traffic consist-

ing of a mixture of events and queries, we performed the following experiment:

we varied the intensity of query traffic generated at a peer per m2-sec, γq, and

measured the mean delay to process traffic consisting of events/queries with

and without the ‘move’ heuristic, see Fig. 4.11. Individual events and queries

contributed equally to the average delay reported. In Fig. 4.11, we present

the curve for the mean delay for γe = 0.05. The query traffic is assumed

to arrive according to an independent homogeneous Poisson process with in-

tensity ranging from γq = 0.04 to γq = 0.28. The source and destination of

each query are chosen independently by point sampling the underlying space

homogeneously and ‘truncating’ to the closest peer. The dimensions of the

underlying space and the initial placement of the peers are the same as in

our previous experiment. We used an independent exponential clock to select

the peers to perform the ‘move’ heuristic. The intensity of the clock, µmove,

has been set equal to 0.05, following the same rationale as in our previous

experiment. The duration of the simulation has been set equal to 120000 time

units following the same rationale as before. The parameters for the ‘move’

heuristic are the same as in our previous experiment as well. Throughout the

simulation, each peer, in addition to the edges to its neighbors in the Delaunay

graph, has a Kleinberg edge to a fixed point, the ‘recipient’ of that edge is the

peer that happens to be closest to that point at any time. The resulting over-

lay topologies are depicted in Fig. 4.12. The results show the same qualitative
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characteristics as for the previous experiment, thus validating our conclusions.
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Figure 4.11: Mean delay to process an event/query, γe = 0.05.

How does a peer estimate the queue size of its neighbors? As

discussed previously, our heuristic is triggered depending on the relative queue

sizes of the current peer and its neighbors peers. A peer can piggyback the

current estimate of its queue size on the queries originating from its cell. This

way, neighboring peers can estimate its relative queue size to theirs and choose

whether to invite it to move closer to their cell.

4.7.2 Adapting the edges among peers to non-uniform traffic

In Section 3.4 we proposed augmenting our overlay topology with Klein-

berg edges. The effect of these edges is to create short, on average, routes be-
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Figure 4.12: Resulting overlay by applying the ‘move’ heuristic for γq = 0.28
and γe = 0.05 (the facets extending to infinity have been omitted).

tween any two peers in the overlay. A limitation of Kleinberg edges is that they

are oblivious to the congestion in the network, and they are not sufficiently

flexible to handle non-uniformities in the traffic. For example, consider the

case of a group of people attending a conference at a convention center. Some

of their queries could be destined to locations corresponding to the restaurant

where the conference banquet will take place. Obviously, in this case traffic is

not homogeneous in space. The peers that happen to be in the path between

them and the destination peer answering their queries will be disproportionally

stressed by traffic.

To model the non-uniformity in traffic, we introduce the concept of

a traffic ‘dipole’, see Fig. 4.13. Each dipole creates traffic that originates
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Figure 4.13: A ‘dipole’ model for non-uniform traffic. Non-uniform traffic from
location source, which falls into Ct is destined to location destination, which
falls into Cq. We denote this traffic by a solid arrow. The bigger the length of
the arrow, the bigger the separation between the source and the destination of
the dipole and more peers are affected by the traffic it generates. The dashed
arrow, represents a non-uniform edge between peers t and q. The effect of this
edge is to remove traffic from peers t1, t2 which would have to support this
traffic in the edge’s absence.

from one location, i.e., its source, to another location, i.e., its destination.

The distance between the source and the destination of a dipole is termed its

separation.

To realize a traffic-aware P2P topology, one can further augment the
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topology by a traffic-dependent edge per peer. A simple heuristic would be:

Rule 4.7.2. Congestion Edge Heuristic. Each peer, q, estimates the average

traffic intensity, γt,q and the average traffic delay, dt,q, for the queries origi-

nating from every peer t ∈ P in the network destined to q. The peer with the

maximum γt,q × dt,q is selected to create an edge to q. We call the associated

edge, the congestion edge of peer t.

The quantity γt,q×dt,q, by Little’s law, is a proxy for the average number

of queries ‘in-flight’ from peer t to peer q. By creating an edge between peers

t and q, we offload the corresponding traffic from the overlay network and

restrict it to the source/destination. In our implementation, each peer, t,

maintains the cost, γt,q × dt,q associated with the peer q to which it directs its

congestion edge. In case another peer, r, invites t to establish its congestion

edge toward it, t accepts only if γt,r × dt,r exceeds γt,q × dt,q. A peer can

estimate the load and the delay from another peer through, e.g., exponentially

weighted estimates as in Eq. 4.5. We estimate the associated decay parameter

as the average inter-arrival time of queries from the other peer.

How often do peers implement the congestion edge heuristic?

A peer can be triggered to switch its congestion edge at random times gen-

erated by, e.g., an exponential clock with rate µcongestion edge. We set the

value of µcongestion edge such that, on average, a peer receives at least 100

queries before selecting the peer to invite to direct its congestion edge.

Evaluation. We studied the performance of the congestion edge heuris-

131



tic via the following experiment. We used the peer placement depicted in

Fig. 4.5, the same as the one used in the experiments for the move heuristic.

Additionally, we augmented the topology with edges derived from the Delau-

nay Graph as well as with Kleinberg edges. We simulated a combination of

homogeneous and non-homogeneous traffic. The homogeneous traffic consisted

of events arriving with intensity γe = 0.05 events/m2-sec and queries arriving

with intensity γq = 0.04 queries/m2-sec. This is the same traffic intensity as

in the experiment for the move heuristic. For the non-homogeneous traffic,

we created a fixed number, 10, of traffic ‘dipoles’. The source and destination

of each dipole were placed at random on the topology. For simplicity, in our

implementation all dipoles had a traffic intensity equal to γnon-uniform. For

the non-uniform traffic we simulated two different intensities, a ‘low’ one with

γnon-uniform = 0.1 queries/sec and a ‘high’ one with γnon-uniform = 0.25

queries/sec. The service time for each event/query was an independent expo-

nential random variable with rate µ = 1. The rate of the exponential clock

triggering the heuristic at the peers was set to µcongestion edge = 0.2 and

the simulation lasted for Ts = 50000 time units. The simulation duration was

chosen so as to ensure that on average at least 100 cycles of the heuristic are

performed, where a cycle is defined as the period where all the peers perform

the heuristic.

In Figs. 4.14 and 4.15 we vary the dipoles’ separation and plot the

average delay for traffic. The traffic consists of events, uniform queries, and

non-uniform queries. The intuition is that as the separation of the dipoles
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Figure 4.14: Average traffic delay vs. dipole separation for γnon-uniform =
0.1. The traffic consists of events, uniform queries and non-uniform queries.

increases more peers will suffer from the resulting transit traffic. In Fig. 4.14

the overall traffic is relatively low, so the contribution of the non-uniform

traffic is noticeable but small. In Fig. 4.15 we increase the intensity of the

non-uniform traffic, driving the increases in overall average delay.

The relative performance of the two schemes exhibited in both figures

matches our intuition. Indeed, in both figures the mean delay achieved by our

heuristic remains essentially the same regardless of the dipole separation, as

opposed to the delay of the base case without our heuristic. The apparent

non-monotonicity of the delay for the case without our heuristic in Fig. 4.15

can be attributed to the high variance of the measurements, we explain this

in the sequel.
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Figure 4.15: Average traffic delay vs. dipole separation for γnon-uniform =
0.25. The traffic consists of events, uniform queries and non-uniform queries.

The traffic delay in the network exhibits high variability as some peers

are particularly stressed by the non-uniform traffic. This effect becomes appar-

ent from Figs. 4.16 and 4.17. We ensured that the simulation duration is not

the cause of this phenomenon by running the simulation for exceedingly long

intervals. Still, our heuristic manages to reduce the variability of the delay in

the network. Our heuristic, by creating congestion edges between the sources

and the destinations of non-uniform traffic, ‘flattens’ the traffic, regardless of

the separation of the dipoles.

In Figs. 4.18 and 4.19 we show the ‘effectiveness’ of our heuristic, i.e.,

the percentage of the edges that are established from a source of a dipole to its

destination. We observe that the effectiveness of our heuristic is always greater
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Figure 4.16: Standard deviation of traffic delay vs. dipole separation for
γnon-uniform = 0.1. The traffic consists of events, uniform queries and non-
uniform queries.

than 80% and in many cases close to 100%, regardless of the separation. One

would expect that as the non-uniform traffic increases in intensity, our heuristic

would make each source establish its congestion edge to the destination of

the dipole. Fig. 4.19 confirms that as the non-uniform traffic increases the

effectiveness of the heuristic increases as well. By studying the cases where the

heuristic failed to connect the source with the destination of a dipole, we were

able to identify the underlying reason is that the source and the destination of

a dipole, being generated randomly, were in the same cell so the corresponding

peer could not establish its congestion edge to itself.

One could argue that the comparison we presented in our previous
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Figure 4.17: Standard deviation of traffic delay vs. dipole separation for
γnon-uniform = 0.25. The traffic consists of events, uniform queries and
non-uniform queries.

experiments is not fair since peers under our heuristic have one more edge

to route queries, the congestion edge. Note that even if additional Kleinberg

edges were added to the scheme without our heuristic, the performance would

still be poor. It is the edges that are congestion-aware that provide the real

additional benefit when traffic is non-homogeneous.
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Figure 4.18: Heuristic effectiveness vs. separation for low non-uniform inten-
sity, γnon-uniform = 0.1.

4.7.3 Adapting the number of overlay peers

In Section 3.9 the analysis of our platform for the idealized square grid

overlay topology revealed that the average query performance in our system

is a trade-off between having too few or too many peers in the overlay, see

Fig. 3.6. In the former case, performance suffers due to traffic congestion of the

peers, in the latter due to excessively long routing. The addition of Kleinberg

edges can help but, in the limit, the average delay of queries increases without

bound. This motivates adopting policies that operate the overlay near the

optimal intensity of peers.

Rule 4.7.3. Leave Heuristic. A non-overloaded peer may leave the overlay if
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Figure 4.19: Heuristic effectiveness vs. separation for high non-uniform inten-
sity, γnon-uniform = 0.25.

it is the least loaded among its neighbors and they are not overloaded as well.

A peer is considered overloaded if the total traffic intensity it receives,

a combination of the event traffic arriving in its cell and the query traffic that

it has to route or process, is close to its service capacity. Empirically, values

of the total traffic intensity received, that are close to, e.g., 90% of the peer’s

capacity, render the peer overloaded.

The intuition behind the previous heuristic is that when all peers in

a neighborhood are not overloaded, it is likely that there are too many peers

in the overlay. In this case, removing peers from the overlay makes the plat-

form operate closer to the optimal intensity of peers. As the leaving peer is
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not overloaded by definition, the overhead due to the messages exchanged for

updating the storage of the events it owns, is not expected to be significant.

Again, information about the load on each peer can be piggybacked on the

queries that originate from that peer.

To address the ‘reverse’ situation, i.e., when there are too few peers to

keep up with the traffic, we propose the following heuristic:

Rule 4.7.4. Join Heuristic. An overloaded peer whose neighbors are all over-

loaded, and which is the most loaded among them may ask an entity that is

not part of the overlay to join.

The intuition is to add more peers to the overlay so as to operate the

platform closer to its optimal intensity of peers. As stated in Section 3.4, in

our platform there are entities that do not participate in the overlay and access

its services through a proxy. Some of these entities could very well play the

role of the peer. For example, a peer p receiving queries from an entity en

through proxy q can invite en to join the overlay. Under Assumption 3.3, en

is likely to be close to p so by joining the overlay it will ‘relieve’ the peers in

p’s neighborhood by taking up some of their load. The incentive for en is that

its own queries will see a speedup as they are routed through those peers.

We do not explore the effect of the heuristics experimentally as they

are straight-forward consequences of our theoretical model.
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4.8 Conclusion

In this chapter we address the storage and performance issues result-

ing from non-uniformities in the topology and the traffic. To address storage

limitations, we modify our storage scheme to re-distribute events to peers

who have not reached their storage capacity. To address non-uniformities in

the topology, we propose and experimentally evaluate a heuristic that dy-

namically adapts the locations of the peers to balance the load. To address

non-uniformities in traffic, we propose and experimentally evaluate a heuristic

that creates ‘shortcut’ edges in the topology where they are needed most.
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Chapter 5

An RFID-based Platform Supporting

Context-Aware Computing in Complex Spaces

5.1 Introduction

The vision of ubiquitous computing was originally conceived by Mark

Weiser at Xerox Parc, see [83]. The realization of this vision requires over-

coming significant obstacles, many of which have at their root the use of ab-

stractions more appropriate for the PC world than the new field of ubiqui-

tous computing. To name just a few, the weight, energy consumption, mone-

tary cost and interface of future mobile computers will significantly influence

the adoption of the ubiquitous computing paradigm. Additionally, issues like

poor wireless connectivity, effective sharing of limited bandwidth and privacy

threats call for more ‘localized’ user-application interactions as opposed to

‘centralized’ interactions where service is provided from a few master points

only.

In this thesis, we advocate for a ubiquitous computing platform that

exploits locality in context in order to tackle the above issues. We assume

that the spaces where entities reside are complex, i.e., spaces where one space

is ‘nested’ inside another, e.g., in Fig. 5.1, we see that the bookstand (defined
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to be at depth 2) lies inside the airport (defined to be at depth 1). We chose to

focus on these types of spaces because they can easily model the vast majority

of spaces humans spend most of their time, e.g., homes, business buildings,

shopping malls, etc.
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Figure 5.1: Main elements of a complex space realizing our platform

Our work is motivated by passive RFID technology being a candidate

fabric for our platform. Passive RFID technology offers distinctive advantages

in terms of cost, weight and energy consumption, giving our platform some of

the desired properties alluded to before almost ‘by construction’. Extensive

use of RFID technology as a means to store context and data is assumed.

Specifically, we propose a platform in which mobile entities, e.g., humans,
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robots, pets carry with them a minimalistic artifact to hold information de-

scribing the current context and application data only. All the rest, i.e., energy,

computational power and logic are provided by applications embedded in the

environment.

The rest of this chapter is organized as follows. In Section 5.2 we

review related work. In Section 5.3, we discuss the key abstractions underlying

the proposed platform. Section 5.4 presents the actual protocol used by our

abstractions. In Section 5.5, we discuss a low cost implementation platform

on top of RFID technology – this ‘low end’ implementation demonstrates the

immediate benefits of our approach’s inherent simplicity. Finally, Section 5.6

concludes the chapter.

5.2 Related work

There has been a substantial body of work focusing on providing users

with transparent and efficient access to their data, irrespective of where it is

stored, see [72]. While such efforts address an important need, their focus is

still akin to a PC-like, centralized view of the world, where a person’s relevant

data/information is, for the most part, explicitly owned by that person and

accessed via some personal all encompassing device (PC, PDA, etc.), i.e., they

still adhere to a more ‘user-centric’ view of the world, quite distinct from that

advocated in this thesis.

Since then, highly successful prototypes of key building blocks and en-

abling technologies for pervasive computing include [25, 28, 35, 38, 40]. More
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recently, the interest in ubiquitous computing has culminated especially in the

context of ‘smart’ spaces, e.g., see the work in [9, 16].

A major approach to the problem of making a space smart relies on

a ‘meta-operating system’ that administers the entire space and coordinates

devices and applications running on top of traditional operating systems. For

example, in [66, 67], GAIA, a distributed software middleware is demonstrated

that manages resources and provides location information and event services

within a managed space. GAIA supports the notion of context through first

order predicates, yet it does not directly address space dependent characteriza-

tion and discrimination of arbitrary mobile entities, as well as entity-targeted

communication, which are key contributions of our work. The work in [31]

focuses on information to enable service migration and discovery.

Location-aware computing is an orthogonal approach to context-aware

computing. In [74] the authors try to address the issues currently hampering

the global adoption of location-aware ubiquitous computing, in the sense of

using GPS coordinates. A platform is proposed, ‘Place Lab’, which attempts

to exploit the already large installed base of Wi-Fi networks. Our approach

shares the idea that location forms a natural hierarchy but is oblivious to the

exact location of a mobile entity within such spaces.

The use of context is paramount in our approach. An excellent general

discussion about context, its role, and the advantages of using a tuple-like

formalism is given in [87]. One of the first efforts to exploit context and build

applications that react to an individual’s changing context is described in [73].
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It relies on a system akin to a rule-based expert system. Upon detection of

the presence of a user, an action is triggered depending on the identity of the

user and the rules pertaining to the event. The definition of context used is

more narrow than ours, and context information is stored centrally while our

approach encapsulates context in the SE abstraction that goes with the mobile

entity. In [61], context information is used to select the best possible device

and method of communication. A contextual model of first order predicates

is used in one of their implementation platforms. The tuple formalism we use

shares similarities with Linda, see [18], yet the latter addresses issues relative

to parallel computing.

Our approach assumes the existence of a suitable ontology to model

spaces and attributes. In this work we have assumed the simplest version of

such an ontology. For most comprehensive ontologies, see [34, 45].

Little work has been published in the area of methodologies for de-

signing ubiquitous devices. The closest match to this type of work is [69, 75].

In [75] a high-level design methodology for building context-aware devices is

presented. A set of rules for detecting whether an application can benefit from

the knowledge of context, e.g., a temperature sensor, and ways to capture and

represent context are provided. In [69] a software framework for interacting

with mobile devices supporting different communication technologies is pre-

sented. In [29, 47] the challenges for creating embedded hardware prototypes

for ubiquitous computing research are presented. In [63] a case study for the

use of constructing a virtual prototype of an RFID reader embedded in a cell
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phone is presented.

Security and privacy are a concern in our platform as well. Our mech-

anism for assigning IDs, and the profile concept (to be defined in the sequel),

which is essentially an anonymizing mechanism, contribute towards this goal.

In [65] an overview of RFID security challenges and solutions is presented.

In [71, 86], a thorough examination of problems relevant to RFID security is

made. A list of security protocols are evaluated, with an emphasis on their

suitability for the low-cost limited hardware capability of RFID tags. In [14]

the authors deal explicitly with the problem of location privacy. They advo-

cate in favor of a mechanism that will allow users to frequently change ID’s

(pseudonyms in their terminology) and introduce the concept of a mixed zone.

A mixed zone for a group of users is defined as a maximum size connected

space in which the users are not visible to any application. Users change

aliases each time they enter the mixed zone, which enhances the system’s pri-

vacy. The work in [50] discusses a vast array of privacy issues in the field of

ubiquitous computing. In [49], an in depth discussion on principles/policies

towards privacy-awareness in ubiquitous computing is provided.

5.3 Key abstractions supporting spatially contextual-
ized ubiquitous computing

In this section, see also Fig. 5.1, we will present the main abstractions

identified for supporting context-aware ubiquitous computing, namely:

• Space Manager (SM): an OS-like layer that administers the actual com-
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puting fabric embedded in the physical environment.

• Ubiquitous Applications (UAs): the set of ubiquitous computing appli-

cations executing on the particular fabric; and

• Serviced Entities (SEs): interface to the actual mobile entities being

currently served by UAs, in the particular physical space.

The space manager, depicted as a layer that logically surrounds all

spaces in Fig. 5.1, provides an OS-like (distributed) layer, i.e., offers a set of

basic resource management and operational services/primitives to be used by

both local UAs and SEs. Inside the physical space administered by an SM,

there can be an arbitrary number of UAs and SEs. We sometimes refer to an

actual physical space provided with an SM as a ‘managed space’. Throughout

the chapter, we illustrate our approach using a running example of an airport

structured as a managed space. To make our scenario more realistic, we assume

that the SE models a human passenger and all the SE abstractions are stored

in an RFID chip in the passenger’s ticket.

The logic underlying the operation of a managed space is as follows.

Local ubiquitous applications, running on the myriad of (smart) objects pop-

ulating the particular physical space, provide the actual computing services.

For example, in Fig. 5.1, UA #1 represents a ubiquitous application offer-

ing parking services, e.g., directions to parking space and prices, inside the

airport. The ‘serviced entities’ represent mobile entities, e.g., people, robots,

pets, etc., that temporarily enter the managed space and potentially benefit
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from its services. In Fig. 5.1, the little human figure that moves around is

modeled as a SE. Each SE carries with it information describing its current

context as well as application data. Only when one such SE comes to physical

proximity with a ubiquitous application, will it transparently react depending

on whether there is a context match (as specified by the SE and the applica-

tion). The reaction can be the provision of the object’s service or total lack of

it. No involvement from the SE is required. For example, at times t1 and t2

the SE in Fig. 5.1, does not receive any service since it is not close to UA #1

and does not share any interest in UA #2’s services (UA #2 lets SEs find out

about the time at their destination, while the SE only cares about the weather

at its destination inside this space).

An application can write its data to the SE, data that will be available

for other applications to inspect and update when the SE comes to physical

proximity to them. This mechanism realizes a form of application communi-

cation. For example, at time t3 UA #3 that runs inside the bookstand makes

a recommendation about a fiction book to the SE by posting an appropriate

message on it. At t4 this information is exploited by UA #4 to give a 10%

discount to the SE. (This would not have happened unless the SE had spec-

ified that inside bookstands it cares about the attributes ‘recommendation’

and ‘discount’).

In this sequel, we expand more on some elements of the key abstrac-

tions: the space type and the SE.
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Figure 5.2: Airport example

5.3.1 The space type and its attributes

As alluded to in the introduction, a key objective of our approach is

to enhance entities immersed in a given physical space with information to be

used by ubiquitous computing applications to seamlessly establish the poten-

tial relevance of their services to such entities. Towards that, our approach

consists of abstracting the very services meaningful inside a particular space

in terms of attributes. A space type can thus be defined as a collection of

attributes.

Fig. 5.2a, presents a simplified view of an airport. This figure shows

several space types, e.g., a generic airport space and other more specialized

ones, e.g., a secure area. Attributes abstracting the relevant services in a,

e.g., restaurant include vegetarian food, kosher restrictions, low fat diet, etc.,

while attributes relevant to a, e.g., secure area used for departures include gate

information (denoted from now on as ‘gate’). While above we give suggestive

names to space types and attributes, truly those are just identifiers. Thus, the

combination, e.g., < secure area, gate > will unambiguously abstract gate

149



restaurant−profile−ID

ID 3789

Profile Id Repository

<empty>

<empty>

<empty>

Spatially−Aware Messaging Board

airport

<empty>

<empty>

Entity ID

<empty>

airport−profile−ID

Spatially−Aware Context Stack

<empty>

<empty>

<empty>

secure−area
secure−area−profile−ID

bookstand−profile−ID

vegeterian

gate

mobility problems

language

airline

vegetarian | spinach−lasagna

vegeterian | veggie−burger

gate | D4

airline | Southwest

language | English

restaurant

Figure 5.3: Key SE’s abstractions

related services inside the secure area of the airport. Naturally, the definition

of such service taxonomies will ultimately require a flexible standardization

effort, enabling new space types and attributes to be added to the standard,

as their need becomes apparent.

5.3.2 The serviced entity: SE

A serviced entity or SE is defined by the following set of abstractions

which are physically stored in it:

Temporary ID. Requiring entities to provide some form of ‘perma-

nent identification’ upon entering a managed space could potentially infringe

on one’s privacy and is actually unnecessary – rather, in our approach each SE

entering a managed space is simply assigned a temporary ID – see Section 5.4
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for details on the protocol used for the purpose. (Note also that privacy con-

siderations may further dictate that such temporary IDs are to be periodically

dropped and reassigned.)

Spatially-Aware Context Stack. The spatial organization assumed

in this paper supports complex spaces, nested inside each other. We use a tree

to encode this structure, see Fig. 5.2b. The actual location of any entity can

thus be defined as a path from the root of the tree to the node corresponding

to the ‘innermost’ space where the entity is currently located. For example,

entities X and Y in Fig. 5.2a, are currently located in ‘airport→secure area’,

and ‘airport→secure area→restaurant’, respectively.

Services in our platform are related to the spaces in which they are

offered. A stack is used for representing that since it naturally captures the

containment relationships alluded above. The Spatially-Aware Context Stack

is responsible for holding the attributes characterizing the classes of services

the SE is interested in, in the context of its current physical location. Stack

frame (or entry) i+1 represents a physical space enclosed within the physical

space associated to stack frame i. Thus, for example, an entity positioned at

Y in Fig. 5.2a will have its stack filled as symbolically depicted in Fig. 5.3,

i.e., with frames 1, 2 and 3 of the stack representing the airport, the secure

area, and the restaurant, respectively. Fig. 5.3 shows a simple context stack

for an airline passenger – attributes characterizing services for this passenger

in the broad context of the airport may include his/her airline, language and

so forth.
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Naturally while at a given position the entity is characterized not only

by its attributes for the innermost space (stored in the frame currently at the

the top of the stack), but also by its attributes associated to all of the enclosing

spaces – that is, it continues to be sensitive and respond to applications and

messages addressing it in the context established by all such enclosing spaces

(established by the remaining stack frames). As the entity moves around across

different spaces, frames that are no longer relevant are popped from the stack

and new relevant ones are pushed into it – Section 5.4 gives details on the

adopted stack update protocol.

Location models have been used in the literature, e.g., [10, 12] to provide

applications with a way to describe information about the current location of

an entity. In our approach, the underlying location model for a space is a

tree, but location information is encoded in the spatially-aware context stack

of each SE. Moreover, the stack responds dynamically to the movement of the

SE in contrast to statically mirroring the structure of a space.

The Profile Repository of an Entity. A profile is a subset of a

space’s attributes, defining a compatible/coherent set of services within that

space. In practice, we use standardized sets of attributes for each space. More-

over we expect that, for many space types, it will be possible to define a number

of typical profiles that can be then directly adopted by entities when they enter

a space of that particular type for the very first time. Each such profile will

be encoded using an ID, the profile ID. Entities should choose the profile that

best describes the services they are interested in for a given space. The fact
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that the profile used will typically be a proper superset of the actual services

of interest to the user adds to the privacy of the platform, since a potential

attacker will be provided with information, only a subset of which is true.

The profile is a novel anonymizing mechanism that nicely fits in a ubiquitous

environment. Each SE holds a repository of its profile IDs for relevant space

types – see Fig. 5.3.

The Spatially-Aware Messaging Board. Communication and co-

operation between ubiquitous applications in our platform are scoped by the

SEs it is intended to service. SEs contain messaging boards for that purpose.

For each space held in the context stack of an SE, a corresponding messaging

board is defined. As depicted in Fig. 5.3, messages posted by ubiquitous ap-

plications in these boards are indexed by attributes. In the simple example

shown in Fig. 5.3, there is a message posted on the ‘secure area’ messaging

board of the particular entity referring to the passenger’s gate. (In the figure,

for clarity, the attribute used to index each message is separated from the

body of the message by a vertical bar.) Only messages guarded by attributes

contained in the SE’s profile can be posted to a messaging board. Thus, at-

tributes in our platform have a filtering functionality. This highly focused

form of communication adds to the scalability of our design in contrast to

other centralized solutions found in the literature using blackboards, e.g., [38].

Supporting Persistent State. In addition to the abstractions pre-

sented previously, a persistent version of the profile repository and the mes-

saging board exists, independent of spatial context. For example, a message
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describing the allergies the patient suffers from should be stored in a persis-

tent way independent of the space the passenger is in. We do not discuss this

feature any further.

5.4 Companion protocol

In this section, we describe the protocol used with SE devices imple-

menting our abstractions. Table 5.1 summarizes the messages defined in our

protocol – the first two columns describe the function of the message and pro-

vide an abbreviation name for it, the third column specifies the message’s

sender and receiver, and the fourth column describes the information ex-

changed through the message. In what follows, we discuss how the protocol

supports the different types of actions listed above, using such messages, and

we also present a FSM representing the intended behavior of an SE during

such actions – see Fig. 5.4.

ID Assignment. The SM periodically broadcasts the 〈man space〉

message to inform entities entering the particular physical space that this

is a managed space. Different spaces are distinguished by the space identifier

used. SEs reply with a message requesting a unique ID – 〈req id〉 – using some

bootstrapping identifier for the purpose. Upon receiving it, the SM sends a

unique ID to the requesting entity using the 〈assign id〉 message. This action

and corresponding interactions are captured in states “initial”, “waiting id”

and “named” of the SE’s FSM shown in Fig. 5.4.
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Message Descrip-
tion

Message
Name

Direction Information Ex-
changed

announce managed

space

man space SM → SE 〈space identifier〉

announce space identifi-

cation

space id SM → SE 〈space depth〉〈space

type〉
request managed

space id

req id SE → SM 〈bootstrapping ID〉

assign managed

space id

assign id SM → SE 〈new entity ID〉

S
M

M
es

sa
ge

s

reset SE reset SM → SE 〈entity ID〉
request spatially con-

textualized profile

req profile SE → SM 〈space depth〉〈space

type〉〈entity ID〉〈profile

ID〉
send spatially contextu-

alized profile

send profile SM → SE 〈space depth〉〈space

type〉〈entity ID〉〈profile

ID〉〈profile〉
qualified ping qping UA → SE 〈space depth〉〈attribute

type〉〈attribute〉
qualified ping response

true

qping rsp t SE → UA 〈space depth〉〈attribute

type〉〈attribute〉〈entity

ID〉
qualified ping response

false

qping rsp f SE → UA 〈space depth〉〈attribute

type〉〈attribute〉〈entity

ID〉
post message post UA → SE 〈space depth〉〈attribute

type〉〈attribute〉〈entity

ID〉 〈data〉
retrieve messages retrieve UA → SE 〈space depth〉〈attribute

type〉〈attribute〉〈entity

ID〉

U
A

M
es

sa
ge

s

retrieve messages re-

sponse

retrieve rsp SE → UA 〈message

number〉〈attribute

type〉〈attribute 〉〈entity

ID〉 〈data〉
retrieve messages re-

sponse end

retrieve end SE → UA 〈message

number〉〈attribute

type〉〈attribute 〉〈entity

ID〉 〈data〉

Table 5.1: Protocol basic messages
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Figure 5.4: A simplified view of the SE’s state machine (reset omitted for
simplicity). The notation x/y denotes the message triggering a transition and
its response.

Spatial Context Update and Profile Acquisition. Upon enter-

ing a new physical subspace, the entity eventually receives a 〈space id〉 mes-

sage from the SM, identifying the space type and level of nesting (within the

overall managed space). As a response, the entity’s SE is updated, i.e., the

corresponding stack frame is initialized and the messaging board that will be

holding messages for this space type is initialized as well. Once this is done,

the entity requests its profile for the new space type, using the 〈req profile〉

message. Upon receiving the latter, the SM sends the requested profile, using

the message 〈send profile〉. Subsequent 〈space id〉 messages, announcing the

same space, are ignored by the SE’s FSM. This action and corresponding in-
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teractions are captured in the SE’s FSM states “named” and “request profile”,

see Fig. 5.4. The persistent profile does not change with the space, in fact we

expect that it rarely changes that’s why its’ modification is done in a docking

platform.

Qualified Query. Applications (UAs), and the SM, can broadcast

messages inquiring for entities matching a certain attribute, using the 〈qping〉

message. Entities matching the attribute reply with their unique ID, using

the message 〈qping rsp〉. This way, applications can subsequently send direct

messages to an intended subset of the present entities, appropriately filtered.

A wild-card value can be used for the “attribute” field. The SE’s states corre-

sponding to this action and corresponding messages in Fig. 5.4 are “named”

and “pinging”. The “qping” message is used for querying both the context-

sensitive stack and the persistent profile repository. The semantics of the

message are interpreted differently for the two cases. In the context-sensitive

stack case the attribute type is interpreted as the space type of the SM query-

ing, in the persistent profile repository case it is interpreted as the attribute

type for which the SM is querying. In both cases a single “qping rsp” message

with a true or false bit set in the message code indicates whether the attribute

queried is part of one of the SE’s profiles.

Posting/Retrieving Qualified Messages. UAs can post and re-

trieve messages to/from the SE’s messaging boards. Upon receiving a 〈post〉

message, the addressed entity (indicated by the entity ID), checks its profiles

for a match with the attribute type — attribute pair contained in the message.
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A wild-card entity ID can be used that matches all entities, to implement a

broadcast delivery. Each messaging board performs the check independently.

For the context-sensitive messaging board if the check is true, it stores the re-

ceived data in the messaging board allocated for this attribute type, indexed

by the provided attribute. For the persistent messaging board the rules for in-

terpreting the attribute type are the same as the ones described in the “query”

subsection. In case a messaging board, regardless of its type, is full it behaves

like a cyclic buffer overwriting old contents.

Other UA’s can access the data stored in the messaging boards by

sending a 〈retrieve〉 message. In this case, the addressed entity will reply by

sending all messages (stored in the specified attribute type’s messaging board)

that match the specified attribute. The message used is 〈retrieve rsp〉 for the

initial messages and 〈retrieve end〉 for the last message. A similar version of

retrieve messages exists for messages from the persistent board. A wild-card

can be used for the “attribute” field. All messages matching the fields of the

retrieve message are lazily deleted. An application that wants a particular

message to remain in the messaging board has to explicitly repost it. The

main rationale behind such a decision is to ensure that only the absolutely

up-to-date messages will remain in the messaging board. In such a dynamic

environment as the one encountered in a pervasive computing scenario message

tend to “age” very quickly and loose their significance.

Finally, most likely it will be useful to give the SM the ability to reset

an SE. Once reset, the entity will be able to receive a new ID, and its context
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stack can be incrementally (re)built.

Limitations. Time in general and time ordering in particular, is an

important design feature that is absent from our protocol. The messages in

our protocol do not carry any timestamps so it is not possible to compare two

messages with respect to who came first. Instead we rely completely on the

context of each message and our replacement policies to replace older messages

with newer ones. Up to now we have not encountered the need for comparing

two messages based on their delivery or generation time, but in case such need

arises we believe that a structure akin to a logical clock will be appropriate. In

fact, due to the passive operation of some of the devices, having a synchronized

clock in all devices is infeasible.

Additionally in our protocol there is no provision for any Quality-of-

Service(QoS) metric. Message delivery is best-effort and is totally dependent

on the underlying medium access layer. We believe that QoS is less of an issue

in low-end ubiquitous computing than it is in e.g. wireless communications. In

the latter case it is not infrequent for multiple terminals to compete for medium

access. In the former case due to the relatively short range of communication,

which is comparable to human dimensions, and the social conventions that

govern our behavior it is rather improbable that two devices will be compet-

ing for service. For example, in an automatic bus ticket collector equipped

with RFID technology, people tend to form a queue that implicitly serializes

requests for service, thus eliminating competition for service. Nevertheless, a

more rigorous study of the usage patterns of this new style of communication
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is needed before reaching definite conclusions about the level of QoS needed.

5.5 Prototyping efforts

The SE embodies most of the innovative aspects of our approach, and,

most importantly, its cost/complexity defines how popular can this type of

technology eventually become. Towards assessing such potential, we:

• developed a ’low cost’ implementation of an SE, potentially targeted at

RFID technology.

• emulated an SE on top of existing RFID tags.

Details on our design are given below.

5.5.1 Hardware implementation

We implemented the state diagram in Fig. 5.4 in Verilog – our design

assumes that the interface to the analog part of the device implementing the

SE is comprised of two FIFO queues, one for input and another for output

messages. We further assumed that each SE has a byte-addressable memory

of 16KBytes allowing unaligned accesses. We note that this amount of mem-

ory is within the order of magnitude offered by current RFID technology, see

e.g., [1]. In our implementation, the context stack, the messaging boards and

the profile ID repository reside in different segments of the SE’s memory. The

data bus and the address bus connecting the protocol controller to the memory
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Figure 5.5: Software emulation stack

have widths of 32 and 16 bits, respectively. Our current implementation sup-

ports fixed length messages of 64 bits each. We synthesized our design using

Synopsis’s Design Vision V-2004.06-SP2 - the FSM implementing the protocol

and the FIFO queues require 9800 gate equivalents, a number comparable to

the gate count found in current passive RFID tags [86]. See Appendix C for

more details.

5.5.2 Platform prototype

Our platform for developing pervasive applications relies on a software

emulation layer, see Fig. 5.5. The purpose of the emulation is to

• export a suitable API for implementing the space manager and applica-

tions alluded to in Section 5.3.

• emulate the operation of a SE on top of real RFID tags.
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Message Sequence Time (sec)
post 0.67

qping, qping rsp 0.23
retrieve, retrieve end 0.36

Table 5.2: Message times

Each time the space manager or any of the applications wants to com-

municate with an SE, the communication goes through our emulation layer.

The role of the emulation layer is to translate all messages of our protocol to

standard RFID messages, which are then relayed to the RFID tags, and vice

versa.

Our implementation uses passive RFID tags from Texas Instruments.

The tags are compatible with the ISO15693 standard specification and were

included in the TI S4100 evaluation kit along with the readers. In each one

of the RFID tags, capable of holding 256 bytes of non-volatile memory, reside

data structures implementing all the abstractions presented in Section 5.3.2.

The choice of passive tags was made to assert that our protocol does not have

any power constraints. See Appendix C for more details.

5.5.3 Timing considerations

Our platform’s time and space performance is suitable for adoption

by current entities. The following back-of-the-envelope calculations demon-

strate the validity of the previous claim. Assuming an entity moving with

a speed of 1.5 m/sec = 5 km/hr=3.1 miles/hr and an average data bit-

rate of 10 Kbps (see [26] for actual “fast mode” and “long distance mode”
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bit-rates), a typical message in our protocol (64 bits under the used en-

coding) would require 6.4 msec and would take approximately 1 cm worth

of distance for the moving entity. Our emulation approach has a signifi-

cantly higher overhead since our protocol’s messages are encapsulated in a

series of RFID messages. For example, a POST message in our implemen-

tation is implemented with 4 READ MULTIPLE BLOCKS messages and a

WRITE SINGLE BLOCK message. The encoding used by TI results in an

exchange of ((4 ∗ 86) + 26) ∗ 8 = 2960 bits through a serial link operating at

56Kbps. This amounts to 0.052 sec, an order of magnitude increase (ignoring

the time communicating through the RF medium, reading/writing the tag,

emulation layer execution overhead and the cost of context-switches to the OS

for writing to the serial port). The actual times per message are shown in

Table 5.2.

The performance achieved, allows adoption of our technology even with

today’s limited support for our protocol/abstractions.

5.6 Conclusions

We proposed a low complexity platform for supporting spatially con-

textualized ubiquitous computing. The platform provides applications with

the ability to assess the relevance of their services to mobile entities within a

given space, and enables such applications to communicate via a post/retrieve

interface, physically implemented on the memories of participating entities.

The exchanged messages are filtered through a simple yet powerful mechanism

163



based on aliases, that takes into account each entity’s profile in a given con-

text space. The filtering mechanism ensures that each entity receives only the

subset of messages that are truly destined and/or relevant to it – key towards

enabling context awareness and iteration transparency. Finally, the platform

offers privacy gains since global/permanent unique identifiers are never used

revealing the true identity of any of the entities.

As part of our future work we intend to focus our attention on crafting

more mature application managers, thus assessing the expressiveness of our

protocol.

Moreover, our proposed abstractions offer a rudimentary level of privacy

by using temporary ID’s. Nevertheless, more sophisticated security solutions

can (and should) be used as our abstractions are orthogonal rather than in-

compatible with such solutions. We intend to show that such approaches are

feasible.
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Chapter 6

Conclusions and Future Work

Ubiquitous computing applications are increasingly permeating our lives.

The role of context in these applications is absolutely critical. In this chap-

ter we briefly summarize key conclusions from our work on storing, querying

and computing context. Additionally, we touch upon future directions for our

research.

In Chapter 2 we examined three different classes of context scaling and

identified necessary conditions for them to hold. The opportunities for opti-

mization, depending on the way the volume of contextual information “scales”,

highlight the importance of context scaling for ubiquitous applications. We

argue that developers and system architects of ubiquitous computing applica-

tions should take into account how context scales and choose an appropriate

aggregation policy.

As part of future work, it would be interesting to conduct empirical

studies to validate how context scales in various types of systems. Additionally,

in our work we assumed a fairly generic model for the movement of mobiles.

Recent developments in modeling human mobility, e.g., [53, 64] offer insight

on the way we move. An experimental comparison between our theoretical
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results and experimental results based on these models would strengthen the

applicability of our work.

In Chapters 3 and 4, we examined a distributed platform for storing,

querying and computing context. Our work is the first, to the best of our

knowledge, to argue that a P2P platform, already established as a viable al-

ternative for storing content, has great potential in this application as well.

However, the nature of a P2P-based network to support context awareness is

quite different. In particular, locality in the queries users will perform dic-

tates particular design choices to allow a reduction in traffic and allow the

platform to scale. Developers of similar platforms should recognize the key

role of locality for context and take advantage of it. At the same time, we

demonstrated the effect that non-homogeneities in the overlay topology and

the traffic pattern might play. The heuristics we proposed for addressing the ef-

fect of non-homogeneities are, to the best of our knowledge, the first attempts

to adapt the topology of an overlay architecture to the underlying traffic in

real-time.

Experimenting with alternative data management policies for P2P net-

works storing context is one of our future goals. For example, ‘sectoring’ the

storage, i.e., allocating half of the storage of a peer to local events, a quarter

to events from neighboring peers, i.e., 1 hop away, etc., is a promising alterna-

tive policy akin to trunk reservation used in telecom networks. Additionally,

a more formal justification of the heuristics presented in Chapter 4 would be

desirable.
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Our formal model for spatio-temporal context events takes locality into

account and can be used to model other types of systems, e.g., [60] where

similar assumptions arise. In fact, studying the propagation properties of

spatio-temporally local information is the subject of recent research, e.g., [37].

It would be interesting to define a quantitative model of context awareness

for such types of information and study how to maximize context awareness

for a configuration of information sources under a given network’s capacity

constraints.

In this direction, we have defined in our preliminary work, ‘unary’ and

‘binary’ context awareness, as the fraction of true predicates consisting of a

single or a pair of events respectively, that are known to a randomly placed

observer. We are currently studying distributed event scheduling algorithms

to maximize such context awareness measures. As the number of events and

predicates increases, it makes sense to adopt a macroscopic view of context

awareness. In that respect, one can study the ‘velocity’ of information prop-

agation, in the spirit of [27], and compute context awareness as a function of

propagation velocity.

Finally, in Chapter 5 we demonstrated the power of localized context by

creating a lightweight platform targeted at RFID technology. We expect that

the abstractions demonstrated in our work, i.e., the spatially-aware context

stack and spatially-aware messaging boards, are general purpose solutions that

could be used by future developers of ubiquitous applications. Additionally,

we believe that the profile abstraction is a novel anonymizing mechanism with
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potential to address some of the privacy-related issues plaguing the large-scale

adoption of ubiquitous technologies.
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Appendix A

Proofs of Theorems in Chapter 2

A.1 Proof of Theorem 2.7.1

Thm. 2.7.1 establishes the ranges of scales producing savings in context

acquisition compared to the fine grain tessellation. Starting with Eq. 2.4 and

using the additive scaling of context we get

√
λa ∗ (h+

λf
λa
c(Vf )) <

√
λf ∗ (h+ c(Vf ))⇒

h+
λf
λa
c(Vf ) <

√
λf
λa

(h+ c(Vf )).

By substituting r ,
√

λf
λa

and x , h
c(Vf )

we get

x+ r2 < r(x+ 1)⇔ r2 − r(x+ 1) + x < 0.

Observe that this inequality has a solution since

∆ = (x+ 1)2 − 4x = (x− 1)2 ≥ 0.

The inequality can be equivalently rewritten

(r − (1 + x) + (x− 1)

2
)(r − (1 + x)− (x− 1)

2
) < 0⇒

(r − x)(r − 1) < 0.
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The solution to the previous inequality is either

(r < x) ∧ (r > 1)⇔ 1 < r < x⇔ 1 <

√
λf
λa

<
h

c(Vf )
⇔ λa ∈ (λf (

c(Vf )

h
)2, λf ),

or

(r > x) ∧ (r < 1)⇔ x < r < 1⇔ h

c(Vf )
<

√
λf
λa

< 1⇔ λa ∈ (λf , λf (
c(Vf )

h
)2).

The first solution corresponds to aggregation, i.e., λa < λf and is feasible

if c(Vf ) < h. The second solution does not correspond to aggregation, i.e.,

λa > λf and is feasible if c(Vf ) > h. We reject the second solution because it

does not correspond to aggregation.

To calculate the optimal rate for the aggregative tessellation we will

minimize the amount of context exchanged in that case. Taking the derivative

with respect to λa for the left hand-side of Eq. 2.4 and setting it equal to zero

we get

h

2
√
λa
− λfc(Vf )

2λ
3
2
a

= 0⇔ λa,opt =
c(Vf )

h
λf .

This solution is guaranteed to lie in the interval (λf (
c(Vf )

h
)2, λf ) since (

c(Vf )

h
)2 <

c(Vf )

h
< 1 for

c(Vf )

h
< 1, therefore, it is a true minimum.

The maximum relative cost reduction compared to acquiring context

from the finest grain organization V (Πf ) is

1−
√
λa,opt(h+ c(Va))√
λf (h+ c(Vf ))

.

By plugging in the value for λa,opt we get

1−
√
hc(Vf )
h+c(Vf )

2

,
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which can be simplified to

1− 2
√
x

1 + x
.

A.2 Proof of Fact 2.8

We want to determine the effect of selective context in the interval of

possible scales achieving gains compared to the finest grain tessellation. The

cost of the aggregative tessellation remains unaffected. The cost of the finest

grain tessellation will be reduced due to the selective exchange of context. The

necessary condition to achieve savings is√
λa(h+

λf
λa
c(Vf )) <

√
λf (h+ qc(Vf ))p.

Performing the substitutions r ,
√

λf
λa
, x , h

c(Vf )
, the previous in-

equality becomes

r2 − rp(x+ q) + x < 0.

We define the function f(r) , r2− rp(x+ q) +x and study its behavior

in the interval r > 0. In order to achieve aggregation we need the minimum

of f to be achieved in the r > 1 interval. So,

f ′(r) = 0⇔ ropt =
p(x+ q)

2
> 1⇔ p(x+ q) > 2.

The minimum value achieved should be negative

f(ropt) =
p2(x+ q)2

4
− p2(x+ q)2

2
+ x = x− p2(x+ q)2

4
< 0⇔

p(x+ q) > 2
√
x.
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Combining the previous two equations we get

p(x+ q) > 2 max(1,
√
x).

If x < 1, the maximum value of the left hand-side of the previous

equation is x+ 1 and corresponds to the case p = q = 1. Also max(1,
√
x) = 1

and as a result x+1 > 2⇔ x > 1 which contradicts our assumption. Therefore,

we have x > 1 and the necessary condition is

p(x+ q) > 2
√
x.

A.3 Proof of Theorem 2.10.1

Starting from Eq. 2.9 the necessary condition to achieve savings is

√
λa ∗ (h+ (

λf
λa

)α ∗ c(Vf )) <
√
λf (h+ c(Vf )).

Substituting x , h
c(Vf )

and r ,
√

λf
λa

we get

x+ r2α < r(x+ 1)⇔ r2α − r < x(r − 1). (A.1)

We care about solutions that correspond to aggregation, i.e., r > 1. We will

do a case analysis:

• α < 1
2
. In this case x(r − 1) > 0 and r2α − r < 0, so by default we can

see that the inequality is satisfied for every r > 1. That means that the

allowable range for λa is (0, λf ).
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• α > 1
2
. Observe that in this regime the term r2α will grow asymptotically

bigger than the term r(x+1). This means that the inequality has at best

an interval over which it can be satisfied. We will identify the conditions

under which this interval does exist. Manipulating Eq. A.1 we get

f(r) , r2α − r(x+ 1) + x < 0, r > 1. (A.2)

Observe that f(1) = 1 − (x + 1) + x = 0. To ensure the interval in

question exists we impose a decreasing condition on f() at r = 1,

f ′(1) = 2αr2α−1 − (x+ 1) = 2α− (x+ 1) < 0⇒ x+ 1

2α
> 1, α >

1

2
.

The minimum for f() is attained at r0 s.t.

r2a−1
0 =

x+ 1

2α
.

The condition for decreasing behavior imposed on f() guarantees that

r0 > 1, i.e., we are in the aggregation regime. The value at r0 is indeed

a minimum for f() since

f ′′(r0) = 2α(2α− 1)r2α−2
0 > 0.

Additionally, we also need to prove that the minimum value for f() is

negative, thus satisfies Eq. A.2. As noted previously f(1) = 0, therefore

the minimum f(r0) < 0.

All the previous properties proven for f() taken collectively ensure that

the interval (λ̂a, λf ) where λ̂a is the maximum solution to Eq. 2.10 is the
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interval where aggregation is a win. The existence of λ̂a is guaranteed

by the fact that f is continuous, has a negative minimum for r0 > 1 and

asymptotically goes to infinity for r →∞.

To find the value where the amount of context transfered by an aggrega-

tive organization is minimized we define the following auxiliary function.

g(λa) ,
√
λa(h+

λαf
λαa
c(Vf ))−

√
λf (h+ c(Vf )).

We take the derivative of g() with respect to λa and set it equal to 0

h

2
√
λa

+ (
1

2
− α)λαf c(Vf )

1√
λaλαa

= 0,

which gives us the value for λa,opt

λa,opt = (
(2α− 1)c(Vf )

h
)

1
αλf .

This expression is valid since α > 1
2
. The optimality is verified by check-

ing the sign of the second derivative of f() at λa,opt

f ′′(λα) = − h

4λ
3
2
α

− 1− 2α

2
c(Vf )λ

α
f (α +

1

2
)

1

λ
α+ 3

2
a

.

Manipulating the previous expression we get

f ′′(λa) =
1

4λ
3
2
α

(
(2α + 1)(2α− 1)c(Vf )λ

α
f

λαa
− h).

Substituting the expression for λa,opt we get

f ′′(λa,opt) =
αh

2λ
3
2
a,opt

> 0.
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therefore, we have achieved a minimum.

The optimal rate for the aggregative tessellation corresponds to aggre-

gation if

(2α− 1)c(Vf )

h
< 1⇔ c(Vf )

h
<

1

2α− 1
.

which is the condition we have already identified above.

We will not provide a proof for the expression of the maximum relative

cost reduction. The steps are essentially the same as with the case α = 1.

A.4 Proof of Fact 2.11

Fact 2.11 establishes the benefitial range for aggregative tessellations

for a given α when we exchange context selectively. We will follow the steps

of the proof of Fact 2.8. Let

f(r) , r2α − rp(x+ q) + x.

We are interested in r s.t. f(r) < 0.

For α < 1
2
, observe that f(1) = 1−p(x+q)+x = (1−pq)+(1−p)x > 0,

but r grows faster than r2α as r → ∞. Therefore, there exists a point r̂a s.t.

f(r̂a) = 0 and for r > r̂a the aggregative organization is a win, see Fig.A.1

(left).

For α > 1
2
, observe that f(1) > 0 and r2α grows faster than r as r →∞.

The aggregative organization can be a win only if there exists an interval where
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f() is decreasing and its minimum is negative. Therefore,

f ′(r) = 2αr2α−1 − p(x+ q)⇒ f ′(1) = 2α− p(x+ q) < 0⇒ 2α < p(x+ q).

The minimum is achieved at r0 s.t.

f ′(r0) = 0⇔ 2αr2α−1
0 − p(x+ q) = 0⇔ r2α−1

0 =
p(x+ q)

2α
> 1.

The previous result combined with the observation that we are operating in

the α > 1
2

regime leads to the conclusion that r0 > 1.

We will identify the necessary conditions so that the minimum f(r0) is

negative. Evaluating f() at r0 we get

r0
p(x+ q)

2α
− r0p(x+ q) + x.

Since r0 > 1 as proved earlier an upper bound for the minimum is

r0
p(x+ q)

2α
− r0p(x+ q) + r0x = r0(

p(x+ q)

2α
− p(x+ q) + x).

A necessary condition for the miminum to be negative is

p(x+ q)

2α
− p(x+ q) + x < 0⇔ p(x+ q) >

2α

2α− 1
x.

Combining this result with the result for the decreasing behavior of f() we get

p(x+ q) > 2αmax{1, x

2α− 1
}.

Assume x < 2α − 1, then p(x + q) > 2α. But, at the same time

p(x+ q) < x+ 1 < 2α− 1 + 1 = 2α, which is a contradiction. Therefore,

p(x+ q) >
2α

2α− 1
x, x > 2α− 1.
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Since f(1) > 0, f(r)→∞ as r →∞ and f() has a negative minimum,

there exist r′a, r
′′
a s.t. for r ∈ (r′a, r

′′
a) an aggregative organization is a win, see

Fig. A.1 (right).

r̂a

1 + x

r

p(x + q)

1

1 + x

r

p(x + q)

1 r′a r′′a

p(x + q) p(x + q)

Figure A.1: Behavior of selective context transfer for aggregative organization
for α < 1

2
(left) and α > 1

2
(right).

A.5 Proof of Theorem 2.12.1

The condition for a hierarchical organization to obtain savings com-

pared to acquiring context from the finest-grained tessellation is√
λa(h+ s) +

√
λf (h+ c(Vf )− s) <

√
λf (h+ c(Vf )) (A.3)

where r ,
√

λf
λa
> 1, s , r2−r2α

r2−1
c(Vf ) is the amount of shared context content

between the cells of a finest-grained tessellation that are covered by a cell of

the aggregative tessellation. Introducing r and x to the previous equation we

get

(h+ s) + r(h+ c(Vf )− s) < r(h+ c(Vf ))
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which in turn gives

(x+
s

c(Vf )
) + r(x+ 1− s

c(Vf )
) < r(x+ 1), x ,

h

c(Vf )
.

Deleting common terms, re-arranging and plugging-in the expression for s we

get

x < r
s

c(Vf )
− s

c(Vf )
=

s

c(Vf )
(r − 1)

equivalently,

x <
r2 − r2α

r2 − 1
(r − 1) =

r2 − r2α

r + 1
.

If a ≥ 1 ⇒ r2 < r2α, for r ∈ [1,∞). So the previous inequality cannot be

satisfied. If a < 1 ⇒ r2 > r2α, for r ∈ [1,∞). So there exists a level of

aggregation, i.e., r0 s.t. for r > r0 the previous inequality is satisfied and the

hierarchical organization wins.

A.6 Proof of Theorem 2.12.2

We are trying to compute the conditions under which the hierarchical

approach is more beneficial than the aggregative one when context grows in a

sub-additive way. This regime is equivalently described as:

0 < α < 1 and λa ∈ (0, λf ).

In order for the hierarchical approach to have reduced cost compared

to the aggregative approach we would like the following inequality to hold:

√
λa(h+ s) +

√
λf (h+ c(Vf )− s) <

√
λa(h+ c(Va))
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where s , r2−r2α
r2−1

c(Vf ) is the amount of shared context content between the

cells of a finest-grained tessellation that are covered by a cell of the aggregative

tessellation.

Substituting the expression for c(Va) from Section 2.12 and setting r ,√
λf
λa
> 1 we get

(h+ s) + r(h+ c(Vf )− s) < h+ r2(c(Vf )− s) + s)

or equivalently,

x+
s

c(Vf )
+ r(x+ 1− s

c(Vf )
) < x+ r2(1− s

c(Vf )
) +

s

c(Vf )
, x ,

h

c(Vf )
.

Substituting the expression for s we get

x+
r2 − r2α

r2 − 1
+ r(x+ 1− r2 − r2α

r2 − 1
) < x+ r2(1− r2 − r2α

r2 − 1
) +

r2 − r2α

r2 − 1
.

Cancelling common terms we get the expression of Theorem 2.12.2.

rx < r2(1− r2 − r2α

r2 − 1
)− r(1− r2 − r2α

r2 − 1
)⇔

rx < r(r − 1)
r2 − 1− r2 + r2α

(r − 1)(r + 1)
⇔

x <
r2α − 1

r + 1
.

A.7 Proof of Fact 2.16

For the direct case, note that the detection of a boundary crossing

event must happen in an area of radius R around the device performing the

detection, provided that R is smaller than the mean cell size. This assumption

180



currently holds in practice, e.g., passive state-of-the-art RFID readers have a

range R ∼ 50 cm while the mean diameter of, e.g., a store in a mall is at least

5 m. Thus, the frequency fd has to be greater than v̄
R

where v̄ is the average

speed of mobiles.

For the indirect case, since cells are almost surely bounded, a mobile

entering a typical cell will eventually leave the cell. Consider a typical cell, by

Little’s theorem, the average sojourn time in the cell Tsoj must be the ratio of

the mean number of mobiles in the cell to the average rate of users into the

cell. Assuming that the initial distribution of mobiles is Poisson with intensity

λ0 and under our the mobility model in Assumption 2.4 one can show that

the mean number of mobiles in a typical cell is λ0/λa while the mean rate of

mobiles entering the cell is proportional to their intensity, mean velocity and

typical cells perimeter, i.e., λ0v√
λa
. Thus, the mean sojourn time is proportional

to 1
v
√
λa

giving the desired result.
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Appendix B

Propositions Related to our P2P Network

B.1 A proof of Prop. 3.9.1

We start with the plain grid case. Substituting the values

γq(f) = γ0
qf, γe(f) = γ0

ef, n2(f) = n2
0f

q, µ(f) = µ0f
p, and l(f) =

l0
f s
.

to Eqs. 3.1, 3.2, and 3.3 and ignoring constants:

h(f) = O(
1

f s
)O(

1

f−
q
2

) = O(f
q
2
−s)

and

γ(f) = O(f)O((f−
q
2 )

2
) max(1, h(f)) +O(f)O((f−

q
2 )

2
)

= O(f 1−q) max(1, O(f
q
2
−s)) +O(f 1−q).

So, the average delay from source to destination for a query is roughly

D(f) =
max(1, O(f

q
2
−s))

O(fp)−O(f 1−q) max(1, O(f
q
2
−s))−O(f 1−q)

.

We want to ensure that D(f) remains bounded as f grows without

bound. We will examine two cases:

1. q
2
− s ≤ 0
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In this case, max(1, O(f
q
2
−s)) = O(1) for large values of f . The delay,

becomes:

D(f) =
1

O(fp)−O(f 1−q)−O(f 1−q)
.

So p ≥ 1 − q is a necessary and sufficient condition for D(f) to remain

bounded. Since min( q
2
, s) = q

2
, the previous condition can be expressed

as

p ≥ 1− q

2
−min(

q

2
, s). (B.1)

2. q
2
− s ≥ 0

In this case max(1, O(f
q
2
−s)) = O(f

q
2
−2) for large values of f . The delay

becomes:

D(f) =
O(f

q
2
−s)

O(fp)−O(f 1−q)O(f
q
2
−s)−O(f 1−q)

=
O(f

q
2
−s)

O(fp)−O(f 1− q
2
−s)−O(f 1−q)

.

The necessary and sufficient condition for D(f) to remain bounded as

f grows without bound is that p ≥ max(1 − q
2
− s, 1 − q) = (1 − q

2
) +

max(− q
2
,−s) and that p ≥ q

2
− s. But, max(−s,− q

2
) = min( q

2
, s). So,

the condition becomes:

p ≥ 1− q

2
−min(

q

2
, s), p ≥ q

2
− s. (B.2)

Comparing Eqs. B.1 and B.2, the necessary condition for D(f) to remain

bounded is

p ≥ 1− q

2
−min(

q

2
, s).
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We now examine the case where we augment the topology with Klein-

berg edges. As discussed in Section 3.9 the expression in Eq. 3.2 is only a

lower bound of the delay when using Kleinberg edges. Performing the same

scalability substitutions as previously but using Eq. 3.4 and ignoring constants

we get:

h(f) ≈ (log(
1

O(f s)

1

O(f−
q
2 )

))2 = O(log(f
q
2
−s)2)

and

γ(f) = O(f)O((f−
q
2 )2) max(1, h(f)) +O(f)O((f−

q
2 )2)

= O(f 1−q) max(1, O(log(f
q
2
−s)2)).

Substituting, to the expression for the delay we get:

D(f) =
max(1, O(log(f

q
2
−s)2))

O(fp)−O(f 1−q) max(1, O(log(f
q
2
−s)2))

.

For large f , fp > log(f
q
2
−s)2, the interpretation of this fact is that in the

presence of Kleinberg edges, locality does not make a big difference. Thus,

the necessary and sufficient condition for D(f) to remain bounded as f grows

without bound is:

p > 1− q.

Note the strict inequality in the previous expression. This condition ensures

that the lower bound of the delay stays bounded.

B.2 A proof of Fact 3.6

We start with a basic observation that will prove helpful in the sequel:
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Fact B.3. Consider any peer p ∈ P .

1. If a new peer pnew joins the overlay P2P network C(p|P ∪ {pnew}) ⊆

C(p|P ).

2. If a peer pold ∈ P leaves/fails the overlay P2P network C(p|P ) ⊆ C(p|P \

{pold}).

Fact B.3 expresses the idea that a new peer will ‘acquire’ some space at

the expense of other peers to form its Voronoi cell while a peer that is leaving

will ‘release’ the space of its Voronoi cell to some of the peers.

We will start with the case of a peer, pold, leaves the overlay, and show

that only the neighbors of pold have to update their neighborhoods. Fact

B.3 asserts that in case that a peer leaves the overlay, the remaining peers

can change their cells only by growing. Consider a point σ ∈ Cpold , see also

Fig. B.1. When pold leaves the P2P network σ will have to belong to the

Voronoi cell of peer p1 that is the next closest peer to σ. We will prove that

p1 has to be a neighbor of pold in the DG. Assume p1 is not a neighbor of pold.

Consider the line connecting σ to p1. Without loss of generality assume that

there exists a peer p2 s.t. p2 is a neighbor of pold and the line (σ, p1) crosses

the shared edge between p1, p2. By our assumption p1 is the next closest peer

to the event σ so |σ−p1| has to be minimum among all the peers in P \{pold}.

But

|σ − p1| = |σ − π|+ |π − p1|
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π

p1

p2

pold

σ

Figure B.1: Peer pold leaves the P2P network.

where π is the unique point where the line (σ, p1) intersects the shared edge

between p1 and p2. By definition, since π belongs to the shared edge |π−p1| =

|π − p2|, we have that

|σ − p1| = |σ − π|+ |π − p2|.

Using the triangle inequality we have that

|σ − p2| < |σ − π|+ |π − p2|.
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Combining the two previous equations we get that

|σ − p2| < |σ − p1|.

which is a contradiction. So, p1 has to be a neighbor of pold.

p1

p

pnew

π′
π

p2

Figure B.2: Peer pnew joins the P2P network.

Next we examine the case where a peer pnew joins the overlay. Assume

that pnew ∈ Cp, see Fig. B.2. Let p1 be a peer whose cell will change as

a result of pnew joining the P2P network. According to Fact B.3, the cell

of p1, Cp1 must shrink. Let π ∈ C(p1|P ) and assume that after pnew joins,

π ∈ C(pnew|P ∪ {pnew}). Every point in the line between π and p1 will belong
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either to Cp1 or to Cpnew . Thus, p1 and pnew have to be neighbors. Moreover,

consider the line connecting pnew and π. The point π is internal to C(p1|P ) and

pnew is external, so there has to exist a neighbor of p1 inDG(P ), call it p2, and a

point π′ in the Voronoi edge between p1 and p2 s.t π′ = C(p1|P )∩line(p1, pnew).

Cpnew is convex, therefore π′ has to be inside Cpnew in the resulting Voronoi

tessellation. So we proved that for any peer whose cell changes, it has to

become a neighbor of pnew and at least one of the edges of Cp1 will change.

Locating the new neighbors. Are the peers in N(pnew) necessarily

neighbors of p, i.e., N(pnew) ⊆ N(p|P ) ∪ {p}? Once p finds out about pnew

joining the overlay, it could notify the peers in N(p|P ) and the process would

conclude there. We offer without proof the following fact:

Fact B.4. N(pnew) 6⊆ N(p|P ) ∪ {p}.

How can the peers in N(pnew) be identified at the time pnew joins?

Consider a peer v ∈ N(pnew). If v is a neighbor of p in DG it can be contacted

immediately. Otherwise, p can broadcast to its neighbors an advertisement of

pnew’s join event. All peers recursively forward this request to their neighbors

using the following criterion: a peer u forwards the advertisement about pnew

to its neighbor v iff pnew ∈ ∪α∈ve(u,v)B(α,||α−u||), see Fig. B.3.

B.5 A proof of Fact 3.13

We want to prove that for any event e stored in our platform and a new

owner of e, q, that joins the platform, there exists at least one owner of e among
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pnew u

v

Figure B.3: The thick black solid line represents the Voronoi edge between u
and v. The thin dashed disks define the locations for which pnew is closer to a
point in ve(u, v) than u and v.

the neighbors of q. Let {p0, . . . , pn−1 = hk(e)} be the set of owners of e after q

joins the overlay. If q = p0, then by the first statement of Prop. 3.12.1 (applied

for p!), it has to be a neighbor of p1, which proves our claim. Otherwise, we

assume that q = pj, j ∈ [1, n−1]. By the first statement of Prop. 3.12.1, q and

pj−1 are neighbors in the GD(P \ {p0, . . . , pj−2}). The addition of the peers

from {p0, . . . , pj−2} will either remove the edge between q and pj−1 or not. If

it doesn’t then q and pj−1 will still be neighbors in DG(P ∪ {q}), otherwise

at least one of the peers in {p0, . . . , pj−2} will become a neighbor of q (replace

pj−1). In any case, q will have at least one neighbor from the set {p0, . . . , pj−1}

in DG(P ∪ {q}) which proves our claim.
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B.6 Generating Kleinberg edges

The work in [43] describes an algorithm to generate ‘long’ edges be-

tween the points of a n× n square grid. The effect of those edges is that the

average distance between two uniformly randomly chosen points in the grid is

O(log(n)2). We call those edges, ‘Kleinberg’ edges. In this section we describe

an algorithm to generate Kleinberg edges for any topology. Additionally, we

discuss a locality constraint on them, i.e, the source and the destination of an

edge can be separated by a maximum distance.

Let R denote the length of such an edge. We modify the distribution

of R suggested in [43] as follows to encode our locality constraint:

fR(ρ) =

{
Kρ−2, ε ≤ ρ ≤ ρmax

0, else
(B.3)

where ρmax is the maximum distance between the source and the destination

of the edge, and ε is a parameter to avoid the singularity of the distribution

at ρ = 0.

Using the above distribution we get:

Pr[R ≤ ρ] =

{
2π
∫ ρ
ε
Kt−2tdt = 2πK log(ρ

ε
), ε ≤ ρ ≤ ρmax

0, else
(B.4)

where log() is the natural logarithm.

Normalizing the probability we get:

2πK log(
ρmax
ε

) = 1⇔ K =
1

2π log(ρmax
ε

)
.
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To generate a Kleinberg edge with the above distribution we generate

a random number x with a uniform distribution in the interval [0, 1]. That

value corresponds to an edge length ρ:

x = 2π
1

2π log(ρmax
ε

)
log(

ρ

ε
)⇔

log(
ρ

ε
) = x log(

ρmax
ε

)⇔
ρ

ε
= (

ρmax
ε

)x ⇔

ρ = ε(
ρmax
ε

)x.
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Appendix C

RFID design

For both implementations (hardware and software) we chose to imple-

ment a SE with the same characteristics so that direct comparisons could be

drawn. We used passive RFID tags from Texas Instruments. The tags were

compatible with the ISO15693 standard specification and were included in the

TI S4100 evaluation kit along with the reader. Each one of the RFID tags

is capable of holding 256 bytes of non-volatile memory. Given the memory

constraints of the tags used we selected the parameters shown in Figs. C.1 and

C.2 for the structures described in Section 5.3.

The parameters have to obey the following constraint imposed by the

total tag memory:

4 ∗ (6 + x) + 4 ∗ 5 ∗ z + 2 ∗ y + 2 ∗ w + 6 ∗ k ≤ 256.

The solution we chose is

x = 2, z = 8, y = 4, w = 4, k = 8.

The parameters chosen allow for 8 levels of nesting, 28 different at-

tribute types and 28 attributes per attribute type, 2 attributes per profile,

28 profile types per attribute type. Each messaging board can hold up to 8
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Context Sensitive Board (one per space depth)

previous frame

message buffer pointer

attribute type

space depth

next frame

profile length

profile [0]

...

Context Stack Frame (one per space depth)

x

z

Attribute

4 bytes1 byte

Message

Figure C.1: Implementation

Persistent Messaging Board

Profile TypeAttribute Type Attribute type Attribute

Persistent Profile RepositoryProfile Id Repository

Attribute type Attribute Message

1 byte 1 byte 1 byte 1 byte 1 byte 1 byte 4 bytes

w ky

Figure C.2: Implementation (cntnd)
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messages and a total of up to 4 profiles can be in an entity’s profile repository.

The actual message coding used for the messages of our protocol is depicted

in Figs. C.3 and C.4.

HASH

SPACE DEPTHCODE

5 3 8 8

ATTRIBUTE TYPE ENTITY_ID

man_space

req_id

space_id

assign_id

qping

qping_rsp_t/f

CODE

5

CODE

5 3 8

CODE HASH

5 11

CODE HASH

5 11 8

ENTITY_ID

SPACE DEPTHCODE

5 3 8 88

ATTRIBUTE TYPE ATTRIBUTE ENTITY_ID

SPACE DEPTH ATTRIBUTE TYPE

11 16

SPACE IDENTIFIER

CODE SPACE DEPTH

5 3 8 8 8

ATTRIBUTEATTRIBUTE TYPE ENTITY_ID

reset

Figure C.3: Message coding
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ENTITY_ID

8 32

DATAENTITY_IDCODE SPACE DEPTH

5 3 8 8

ATTRIBUTE TYPE ATTRIBUTE

8 32

DATAENTITY_IDCODE SPACE DEPTH

5 3 8 8

ATTRIBUTE TYPE ATTRIBUTE

8 32

DATAENTITY_IDCODE SPACE DEPTH

5 3 8 8

ATTRIBUTE TYPE ATTRIBUTE

8

PROFILE_NUM

8 32

DATAENTITY_ID

8

ENTITY_ID

8

PROFILE_NUM

32

DATA

reinst_rsp_t/f

reinst

send_profile

retrieve_rsp/end

req_profile

post

retrieve

CODE SPACE DEPTH

5 3 8 8

ATTRIBUTE TYPE ENTITY_ID

CODE SPACE DEPTH

5 3 8 8

ATTRIBUTE TYPE ATTRIBUTE

CODE SPACE DEPTH

5 3 8 8

ATTRIBUTE TYPE ATTRIBUTE

CODE SPACE DEPTH

5 3 8 8

ATTRIBUTE TYPE

Figure C.4: Message coding (cntnd)
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