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Given the Quality of Service (QoS) requirements and various traffic characteristics in mul-
tiservice networks, traffic management is critical to the success of network operations. In
general, traffic management is designed towards providing QoS guarantees as well as max-
imizing system utilization. In this dissertation we first analyze statistical multiplexing of
deterministically constrained traffic and design a conservative call admission scheme which
guarantees the QoS of established connections. In principle, flow control can improve sys-
tem utilization which otherwise might be low when fixed amounts of network resources
are reserved for the traffic with fluctuating requirements. We propose a novel explicit rate
flow control algorithm for Available Bit Rate (ABR) service subject to cell loss and fairness
constraints. We argue that the combination of conservative admission control and adaptive
ABR service can achieve an adequate system utilization and provide robust QoS guarantees.
Moreover, overall network efficiency can be further improved by careful route selections.
We also consider the routing in a Virtual Path (VP) network and pinpoint problems which
arise due to statistical multiplexing and traffic heterogeneity.
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Chapter 1

Introduction

This chapter provides an overview of problems in managing integrated services networks as
well as a brief introduction to this dissertation. We begin with a review of the key features
of integrated services networks and the new design and management challenges that result
from heterogeneity in both traffic characteristics and service requirements. Subsequent
sections provide an overview of the chapters of the dissertation.

1.1 On Integrated Network and Traffic Management

Traditionally there have been separate communication networks for carrying specific types
of traffic. For example, voice traffic was carried by public circuit-switched networks, while
data was usually transmitted over packet-switched computer networks. However, due to the
significant advances in technology, including signal processing and computer engineering,
communication networks are evolving and merging in a very dramatic fashion. Recent
examples include Internet phone, and data service over CATV and satellite networks.

The deployment of optical fiber and high speed switching electronics have brought
greater bandwidths to both circuit-switched and packet-switched networks. With bit rates as
high as gigabit per second becoming available, it is reasonable to ask whether it is possible
to merge conventionally separated networks and provide a single infrastructure upon which
various current and future communication services can be efficiently supported. The moti-
vations for this are various, including the obvious desirability of sharing network resources,
thus avoiding unnecessary duplication of network infrastructure and improving flexibility.
The need for flexible networks is particularly important in light of the wide spectrum of
applications evolving in current computer networks with both heterogeneous traffic charac-
teristics and quality of service (QoS) requirements.

Asynchronous Transfer Mode (ATM) has been developed and promoted as the tech-
nology of choice to support Broadband Integrated Services Digital Networks (BISDN)
[51, 44, 14]. ATM is based on statistical multiplexing and switching of fixed size cells—
53-byte packets. The service is connection-oriented with cells transported on Virtual Chan-
nel Connections (VCCs). Most importantly, QoS such as delay or cell loss are defined
as part of the attributes which distinguish among various service types. Given such QoS
requirements and the diversity in traffic characteristics, traffic management is critical to en-
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sure the success of network operations. In particular, the promise of ATM lies in providing
“managed bandwidth” in an efficient and predictable manner.

In general, the objective of network management is to provide QoS guarantees as
well as to maximize system utilization. With a careful management of traffic and resources,
the network can carry more connections while keeping its QoS commitments, or provide
better service without additional hardware. In the following we discuss three principal
components of network management.

� Admission control. This is the mechanism by which the network determines whether
a connection request should be accepted, and is a basic tool for ensuring the QoS
guarantees.

� Routing. When a network considers accepting a new connection, it must account
for the impact the new connection might have on the rest of network. For example,
an appropriate route or path must be selected in order to avoid congestion when the
connection traverses the network.

� Flow and congestion controls. These are used to slow down a source’s transmission
so as to prevent network congestion, or speed up the transmission in order to take
advantage of the available capacity inside the networks.

These three control methods constitute a basis for traffic management. Admission
control ensures there are enough network resources to support the QoS of established con-
nections. Flow control can in principle improve system utilization which otherwise might
be low when fixed amounts of network resources are reserved for the traffic with fluctuating
requirements. Overall network efficiency is further improved by careful route selections.

In this dissertation we consider these management issues in the context of multiser-
vice networks. We begin by considering admission control for deterministically constrained
traffic in Chapter 2. Unlike telephone networks, call admission in an multiservice network
is not straightforward. A number of problems arise in performing admission control. For
example, the estimation of resource requirements for new connections requires information
such as the traffic characteristics and current system status, both of which are not readily
available.

To reduce management and signaling costs, Virtual Paths (VPs) have been proposed
to allow for joint handling or bundling of connections in ATM networks. In Chapter 3 we
consider the routing in a VP network, and pinpoint problems which arise due to statistical
multiplexing and traffic heterogeneity. In Chapter 4 we propose an explicit rate flow control
algorithm for Available Bit Rate (ABR) service, which provides connections with dynam-
ically varying capacities. We discuss the QoS issue for ABR service and identify the key
parameters which may affect performance. Finally we provide some design principles and
conclude in Chapter 5.

2



1.2 Chapter 2: Statistical Multiplexing of Deterministically Con-
strained Traffic

The QoS (e.g., cell loss and delay) that a traffic flow experiences when it passes through
network links depends on several factors. Indeed, the cell rates, the link capacity, and
the buffer size, may all affect the resulting queuing delay and the amount of possible cell
loss. Because prior information about the traffic characteristics is essential for networks to
reserve an appropriate amount of resource and guarantee QoS, a “description” (or model)
of the traffic is needed.

One can model the traffic by a stochastic process, such as Gaussian process, or
Markov Modulated Poisson Process, see e.g.,[22, 35], and then analytically evaluate the
performance of the system. However, stochastic traffic descriptors are difficult to enforce
and/or verify. Moreover, the predicted performance is then sensitive to modeling errors and
vulnerable to mis-behaving users.

By contrast, traffic could be modeled using deterministic descriptors. Various re-
searchers have used deterministic traffic models for which the worst case traffic behavior
can be determined and bounds on delay and buffer requirements are established, see e.g.,
[13]. However, the analysis is usually limited to deterministic QoS such as worst case
end-to-end delay, because multiplexing of connections is typically not considered. In [34]
statistical performance is analyzed for deterministically constrained traffic, but the analysis
therein is based on a Gaussian approximation approach.

In Chapter 2 we consider a deterministic approach to modeling traffic, where the
maximum arrivals of each connection over any time interval t are bounded. Given such traf-
fic, we analyze statistical multiplexing in a buffered link and derive an upper bound on the
overflow probability by using the Large Deviations results. The upper bound is computed
based on the traffic descriptor as well as the link capacity and buffer size. The dependence
of multiplexing performance on system parameters is shown to have a significant impact on
performance and thus on admission control.

Given such deterministic descriptors, it is also reasonable to ask what would be the
worst case conforming traffic pattern which results in the worst overflow probability upon
being multiplexed in a buffered link. Although this question is critical, it is an open problem
and the solution is not yet available. Nevertheless, we present some observations about this
problem and discuss the characteristics of possible solutions.

1.3 Chapter 3: Virtual Paths—Resource Allocation and Rout-
ing

ATM technology is based on multiplexing and switching cells transported on virtual channel
connections (VCCs). Virtual path connections (VPCs) in turn allow for joint handling of
connections and, among other reasons, have been proposed to reduce the management costs.
The VP layer is likely to serve as an intermediate resource management layer, wherein
key resource allocation decisions are made on a somewhat slower time scale than typical
connection times. Indeed, one can use the VP layer to simplify call admission control,
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routing, and to segregate traffic based on QoS, traffic characteristics, or service classes.
In Chapter 3 we consider a variety of problems concerning the traffic management on VP
layered networks.

Due to statistical multiplexing, the bandwidth requirement of a connection on var-
ious resources across the network is not fixed. Indeed, it would depend on the interfering
traffic with which the connection is multiplexed. Motivated by this fact, we first consider the
following problem. Given two traffic types with different quality of service requirements,
should one segregate such flows on their own VPs, or is it to the network’s advantage to
multiplex the flows on a single VP guaranteeing the most stringent QoS requirement? The
answer to this problem is not straightforward. One needs to assess the QoS requirement as
well as traffic characteristics and mix in order to chose the best policy.

Next we consider the problem of routing multiple traffic types with a pre-defined
traffic mix onto multiple VPs between a source destination pair. We show that it is not
advantageous to let each VP carry every traffic type. In fact, the optimum solution to this
problem, perhaps surprisingly, suggests that only a small number of traffic types, or even
homogeneous traffic should be present on each VP.

These results show that it is critical to account for the statistical multiplexing and
traffic mix in making routing decisions and resource allocations. We propose a simple
routing algorithm which accounts for these factors and results in a much better blocking
probability than Least Loaded Routing—itself often claimed to be “optimal.”

1.4 Chapter 4: Explicit Rate Flow Control of ABR Traffic

The rationale for including ABR service, in ATM networks, is to provide an economical
and flexible way to carry data traffic. From the service provider’s point of view, ABR traffic
promises to enhance utilization by directing sources to make the most of the network’s
available capacity subject to minimum cell rate and cell loss guarantees.

In Chapter 4 we propose a novel explicit rate flow control algorithm intended for
ABR service on an ATM network subject to loss and fairness constraints. The goal is to
guarantee low cell loss in order to avoid throughput collapse due to retransmission by higher
level protocols. The mechanism draws on measuring the current queue length, bandwidth
availability, as well as tracking the current number of active sessions contending for capac-
ity, to adjust an explicit bound on the source transmission rates.

We identify the factors that might affect the queue overflows, e.g., round trip delay
of sessions and a constraint on the aggregate bandwidth variability, and then propose simple
design rules aimed at achieving transmission with controlled loss in a dynamic environment.
One might argue that the feedback control mechanism of ABR would be ineffective for
individual bursty sessions. To improve the system utilization, we also consider the role of
statistically multiplexing bursty ABR sources and show that this allows for an increase of
the acceptable number of concurrent sessions.
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1.5 Chapter 5: Conclusions

In Chapter 5 we review the results that have been discussed in this dissertation. We review
our findings in the context of designing multiservice networks and discuss some directions
for the future research.
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Chapter 2

Statistical Multiplexing of
Deterministically Constrained Traffic

2.1 Introduction

In order to carry heterogeneous traffic on the same network and meet their Quality of Ser-
vice (QoS) requirements, several changes need to be made to current networks. Techniques
for traffic modeling, routing, Connection Admission Control (CAC) and scheduling are re-
quired and intensively being investigated. Because of the high speed of the network and
the stringent service requirements, it is difficult to keep the service commitments by flow
control. Hence CAC plays an important role in meeting the QoS guarantee.

The core of the CAC mechanism is based on the ability to estimate performance,
such as overflow probability, given the information about the current link capacity, buffer
sizes, number of connections, and traffic characteristics. One approach to estimating perfor-
mance is to generate statistical models for traffic and then analytically evaluate the steady
state performance of the queue, see, e.g.,[22, 35]. Unfortunately, the enforcement of such
source models and the sensitivity of predicted performance to modeling errors are two con-
cerns. Even if traffic can be adequately modeled, the problem of actually estimating the
performance of statistically multiplexed traffic streams is generally difficult.

An alternative approach is to determine the worst case congestion behavior based on
a worst case traffic specification, see, e.g., [16, 15, 34, 38]. Given some traffic parameters,
such as mean rate and/or maximum cumulative arrivals within a time interval �0� t�, a traffic
stream satisfying the constraints is said to be the worst behaving traffic when it causes
the “worst” performance upon being multiplexed. Thus, an upper bound on the overflow
probability or the worst case performance of the system can be computed by multiplexing
the associated worst behaving traffic streams.

In this chapter we refine the second approach, by further considering the time-scale
problem. We consider a set up where N streams are multiplexed at a buffered link and con-
sider the probability that the aggregated arrivals within a fixed time interval may overcome
the link’s potential capacity and further exceed the buffer capacity. The traffic is described
by a traffic constraint function e�t�, and the cumulative arrivals of the traffic stream within
an interval of length t, A�τ�τ� t�, are bounded by e�t� uniformly in τ [13, 52]. For off-line
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traffic, e�t� can be found by computing the empirical envelope of the cumulative arrivals
from the traffic’s trace, while for real-time traffic, it can be enforced by a traffic policer at
the entrance to the network.

For example, the Generic Cell Rate Algorithm1 for Usage Parameter Control (UPC)
in an ATM network is a typical deterministic traffic descriptor or policer [18] . The main
functionality of UPC is to ensure the conformance of every connection to its pre-negotiated
traffic characteristics, such that the QoS of sessions sharing the network will not be deteri-
orated by misbehaving traffic. The leaky bucket algorithm is usually considered one of the
simplest traffic policing algorithms.

In a leaky bucket algorithm, a counter representing the number of tokens is main-
tained for each connection. The counter value increases at a pre-defined rate ρ, i.e., the
token arrival rate, but its maximum value is clamped by the bucket size σ. Each time a cell
departs from a leaky bucket, a token is consumed and the counter decreases by 1. A cell can
not depart when the counter is 0. In principle, the leaky bucket can be viewed as regulating
the traffic to a rate ρ, but allowing a burst of σ cells. In addition, a leaky bucket is usually
coupled with a peak rate regulator to ensure that the cell rate is bounded when the counter
value is positive. For example, if a traffic stream is policed by a leaky bucket �σ�ρ� and
peak rate regulator p, then A�τ�τ� t��min�pt�ρt �σ��

This chapter is organized as follows: In �2.2 we discuss the deterministic traffic
descriptor which will be used in this chapter. An upper bound on the overflow probability
is derived in �2.3. In �2.4 the worst case traffic pattern is considered. Simulation results are
presented in �2.5 and followed by a summary.

2.2 Traffic Description

Let a�0� t�, �t � �0�T �, denote the cumulative arrivals of a traffic stream with duration T ,
e.g., a video stream which is stored off-line. Note that this corresponds to a fixed sample
path of arrivals, i.e., stored data with a pre-defined transmission schedule. We define a
periodic extension of a�0� t� as ã�0� t �nT �� a�0� t��na�0�T ���t � �0�T �� n � �. With the
extended cumulative arrivals ã�0� t�, one can define an empirical envelope e�t� by

e�t� � max
τ

ã�τ�τ� t�� (2.1)

We will use e�t� as a deterministic traffic descriptor since it bounds the maximum arrivals
over any arbitrary interval of length t.

Suppose we randomize the “phase” Θ of the arrivals uniformly over �0�T �; then the
resulting periodically extended arrival process is a stationary and ergodic random process.
Let us define µ � a�0�T ��T as the mean rate of arrivals for the off-line traffic stream. It
can be shown that E�ã�Θ�Θ� t�� � µt� We will show that the random variable ã�Θ�Θ� t�
plays an important role in considering the performance of statistically multiplexing N such
e�t�-constrained streams.

In the case of real-time traffic, we shall assume a similar traffic description exists.
Suppose the arrival process is policed so that it is deterministically constrained by a concave

1Also referred to as the Virtual Scheduling or continuous-state Leaky Bucket algorithm.
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function e�t�, i.e., the cumulative arrivals A�τ�τ� t� over any interval of length t satisfy
A�τ�τ� t�� e�t�� Thus, e�t� plays the same role as an empirical envelope for off-line traffic.
For example, if the traffic is policed by a leaky bucket with parameters �σ�ρ� and a peak
rate regulator p, then the deterministic constraint on the traffic is e�t� � min�pt�ρt �σ��

An equivalent way to describe a deterministically constrained traffic flow is by
determining its impact on a buffer with a fixed service rate c, e.g., the maximum buffer
occupancy or burstiness curves b�c�, see, e.g.,[36]. The traffic description b�c� corre-
sponds to the worst case buffer occupancy for a stream served at rate c. On one hand,
for a traffic stream with envelope e�t�, its maximum buffer occupancy is given by b�c� �
supt�0�e�t�� ct�. On the other hand, given b�c�, one can bound the traffic arrivals by
A�0� t� � ct � b�c�� �c� Since the choice of c is arbitrary, ê�t� � infc�0�ct � b�c�� is an-
other envelope function for A�0� t�. It can be shown that ê�t�� e�t� with equality when e�t�
is concave. In fact, ê�t� is the smallest concave function which is greater than or equal to
e�t� for all t � 0.

From the definition of the empirical envelope e�t� in (2.1), we know it is increasing
but not necessarily concave. However, a concave e�t� results in nice structural properties as
shown in �2.3.3. Thus we will upper-bound e�t� with ê�t� when e�t� is not concave. In the
sequel, we simply assume e�t� is concave.

2.3 On the Statistical Multiplexing

2.3.1 Large Deviations Results

Suppose we are given N stationary i.i.d. traffic streams with arrivals Ai�0� t� which are
constrained by the same empirical envelope e�t�. We assume that limt�∞

e�t�
t � µe, i.e., all

traffic streams constrained by e�t� have finite mean cell rates. Let µ be the mean rate of
the streams Ai�0� t�, it follows that µe � µ. Next we consider the overflow probability when
statistically multiplexing N such streams in a buffer of size Nb with capacity Nc. Let AN

t

be the aggregated arrivals of N streams over an interval of length t, i.e., AN
t � ∑N

i�1 Ai�0� t� ,
where all Ai�0� t� are i.i.d. random variables. Using the large deviations results in [9, 7], we
know that for large N the probability that AN

t exceeds N�ct �b� at a particular time scale t
is given by ��AN

t � N�ct �b��	 exp��NΛ�t �ct �b��� where Λ�t �α� � supθ�θα� logM�θ��
and M�θ� � Eexp�θAi�0� t�� � Eexp�θA�0� t��.2

Since the traffic processes are stationary, the steady state queue length can be written
as QN � supt�0�A

N
t �Nct�. Thus the steady state overflow probability can be approximated

by [7]

��QN � Nb�	 sup
t�0

��AN
t � N�ct �b��	 exp��N inf

t�0
Λ�t �ct �b��� (2.2)

Note that such large deviations results can be improved by including the Bahadhur-Rao
leading term [39]. Intuitively (2.2) suggests that the overflow probability ��QN � Nb�
essentially corresponds to the largest probability of AN

t exceeding N�ct �b� over any fixed
time interval t. A time scale t which achieves the inf in (2.2) is called an overflow time

2We drop the subscript i since the random variables Ai�0�t� are i.i.d.
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scale, which is not necessarily unique. If the distribution of A�0� t� is known, M�θ� can be
computed and ��AN

t � N�ct � b�� can be estimated. However, the distribution of A�0� t�
is usually unavailable, and the overflow time scale is unknown. Herein we assume only
knowing that A�0� t� is bounded by e�t� and � �A�0� t�� � µt.

2.3.2 Upper Bound on the Overflow Probability

Since the same peak e�t� and mean µt constraints can be satisfied by various distributions,
there may be multiple rate functions Λ�t �α� associated with different conforming traffic
streams, which results in different estimation of the overflow probabilities. One approach
to overcome this difficulty is to determine the “worst” conforming distribution and obtain
an upper bound on the overflow probability.

Since the maximum mean rate which an e�t�-constrained traffic can achieve is
limt�∞

e�t�
t � µe, we assume that µ is equal to µe in order to obtain the largest amount of traf-

fic allowed by e�t�. In addition for a fixed t, it can be proved that when A�0� t� is Bernoulli
distributed with peak e�t� and mean µt, this leads to the largest bound exp��NΛ�t �ct � b��
[24, 54, 38] over all distributions with the same peak and mean. Note that a stationary traffic
flow in conformance with e�t� would typically be unable to achieve a Bernoulli distributed
“marginal” A�0� t�; this means that the bound would not be tight. However, the upper bound
computed from a Bernoulli distributed A�0� t� is still shown to be useful by simulations. In
�2.4 we will further discuss the relationship between e�t� and the resulting distribution of
A�0� t�.

Given a Bernoulli random variable with mean µt and peak e�t�, the rate function is
given by [3][p.148]

Λ�t �ct�b��K�
ct �b
e�t�

�
µt

e�t�
�� where K�x�y��

�
x log x

y ��1� x� log 1�x
1�y if 0 � y � x � 1

∞ otherwise.

Thus from (2.2), the steady state overflow probability is bounded by

��QN � Nb�� exp��N inf
t�0

K�
ct �b
e�t�

�
µt

e�t�
���

2.3.3 Uniqueness of Overflow Time Scale

Next we investigate the characteristics of K�ct�b
e�t� �

µt
e�t�� as a function of t in order to compute

inft�0 K� ct�b
e�t� �

µt
e�t��. For an overflow to occur within a time scale t, it is clear that e�t�� ct�b

since otherwise K���
 ∞, i.e., overflows are not going to occur. Given the concavity of
e�t�, it can be shown that the region of interest is the interval, �t1� t2� � �t �R � 0� ct�b

e�t� � 1.

In the following we show that K�ct�b
e�t� �

µt
e�t�� has an unique minimizer t� in this interval. The

proof of the following lemmas can be found in �2.6.

Lemma 2.3.1 For 0 � y � x � 1, K�x�y� is strictly convex in the pair �x�y�.

Lemma 2.3.2 Let x�t� � ct�b
e�t� , y�t� � µt

e�t� and �t1� t2� be the interval where 0 � ct�b
e�t� � 1,

then A � ��λ�y�t�� � R�R � t � �t1� t2�� λ� x�t� is convex.
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Figure 2.1: Contour plot of K��� �� and locus of �x�y�.

Theorem 2.3.1 K� ct�b
e�t� �

µt
e�t�� has a unique minimizer on the interval �t1� t2�.

Proof: By Lemma 2.3.1 and Lemma 2.3.2 it is clear that there exists a unique minimizer
of K��� �� on the set A� �0�1�� �0�1�, see Fig.2.1. In addition, since K��� �� is increasing in
x for any fixed y, the minimizer lies on the boundary of A, i.e., the locus of �x�t��y�t�� for
t � �t1� t2�. �

We have shown that there is a t� minimizing K��� �� and maximizing the overflow
probability. For any traffic conforming to e�t�, the overflow probability is thus upper-
bounded by

��QN � Nb�	 sup
t�0

��AN
t � N�ct �b��� exp��NK�

ct��b
e�t��

�
µt�

e�t��
��� (2.3)

2.3.4 An Example: Leaky Bucket Constrained Traffic

Next we consider in detail the multiplexing of the traffic streams which are policed by leaky
buckets. Consider a stationary, ergodic, and leaky bucket policed traffic, with maximum
arrivals on interval �0� t� given by A�0� t� � e�t� � min�pt�ρt �σ� and �A�0� t� � ρt. By
applying (2.3), we can obtain an upper bound on the overflow probability. Our objective is
to find the minimum K� and minimizer �x��y�� of K��� ��. The envelope e�t� and the contour
plot of K��� ��, as well as with the locus of �x�t� � ct�b

e�t� �y�t� �
ρt

e�t�� for t � �t1� t2� are shown
in Fig.2.2.

In Fig.2.2, MNO is the locus of �x�t��y�t�� for t � �t1� t2�, i.e., the set of possible
overflow time scales. Since K��� �� is increasing in x for any fixed y, it is clear that �x��y��
would fall in NO instead of MN. It is worth noticing that the key parameters in Fig.2.2
affecting the overflow probability are the ratios of capacity to mean arrival rate c

ρ , buffer

size to burstiness b
σ , and mean rate to peak rate ρ

p . More insight can be obtained by varying

these parameters. For example, if b
σ increases, the point L is moving to the right and K�

would increase. It leads to a smaller overflow probability, which is expected for less bursty
traffic streams. Similarly, if we increase c

ρ , we will get larger K�, resulting in a smaller
overflow probability.

However, the changes as we adjust ρ
p are trickier. Given points O�L on the contour

plot of K��� ��, it can be shown that K��� �� is convex along the line OL. Depending on the
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Figure 2.2: e�t� and locus of �x�y� on the contour plot of K��� ��.

position of N, �x��y�� might be located at point N or somewhere between N and O. This
introduces an interesting threshold phenomenon. If we increase ρ

p from 0, it does not affect
the K�(or the overflow probability) at first; after passing some point, �x��y�� is located at
N and K� starts to increase as ρ

p increases. Since we know that K��� �� is strictly convex on
NO, the minimizer and minimum are both unique and easy to compute.

2.3.5 Multiplexing Heterogeneous Traffic

When the N connections carried by a buffered link are not constrained by the same envelope
function, some modifications are needed in order to find an upper bound on the overflow
probability. Suppose there are two types of independent connections multiplexed on the
same link and they are constrained by envelope functions e1�t� and e2�t� respectively. Let
N f1 and N f2 be the numbers of connections for each type, where f1 � f2 � 1. For fixed t,
the exponent Λ�t �α� from large deviations results is given by

N �Λ�

t �α� � sup
θ

�Nθα�N f1 logM1�θ��N f2 logM2�θ�� � N � sup
θ

�θα� log�M f1
1 �θ�M f2

2 �θ����

where M1�θ� and M2�θ� are the Moment Generating Functions (MGF) of the cumula-
tive arrivals associated with different traffic types. Therefore, this problem can be trans-
formed into another one with N homogeneous connections by constructing a “typical”
traffic type to represent the mix of different connections. The “typical” traffic will have
an envelope function emix�t� associated with it, such that the resulting MGF of cumula-
tive arrivals Mmix�θ� � M f1

1 �θ� �M f2
2 �θ�� Unfortunately, an expression of emix�t� in terms

of e1�t� and e2�t� is not available at this point in time. An approximation is given by
emix�t� � f1e1�t�� f2e2�t�. However, this approximation can not guarantee staying on the
conservative side. That is, it may be quite optimistic.

2.4 In Search of the Worst Case Traffic

In �2.3.2 we used the MGF of a Bernoulli random variable to upper-bound the MGF
of Ai�0� t� in order to estimate the overflow probabilities based on the Chernoff’s bound.
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However, a stationary traffic conforming to e�t� would be unable to achieve a Bernoulli-
distributed Ai�0� t�. Hence the upper bound on the overflow probability is not associated
with a worst traffic pattern, i.e., is not tight.

Let us consider the worst case e�t�-constrained traffic using fluid model for two
scenarios: bufferless and buffered links. In a bufferless link, the overflow occurs instanta-
neously whenever the aggregate cell rates exceed the link capacity. Hence to find a worst
case traffic, one only need to consider the MGF of the marginal cell arrival rates. For
e�t�-constrained traffic, the largest mean rate is limt�∞

e�t�
t � µe and the largest peak rate

is limt�0�
e�t�

t � pe.3 Therefore, it can be shown that a traffic with cell rates alternating
between pe and 0 subject to the envelope constraint e�t� is a worst case traffic pattern for a
bufferless link.

For example, various researchers have shown by different approaches that a periodic
On/Off traffic source is a worst case leaky bucket constrained traffic pattern, see Fig. 2.3. It
causes the worst overflow probability when large numbers of such streams are multiplexed
in a bufferless link, see e.g.,[38, 15, 54]. However, the worst case traffic pattern for a
buffered link is still an open problem. Simulation results and simple computations suggest
that the periodic On/Off traffic is in fact not the worst case traffic if buffering is allowed,
see e.g.,[15, 53].

Figure 2.3: A periodic On/Off traffic constrained by e�t� � min�pt�ρt �σ�.

In a buffered link, an overflow occurs when the aggregate arrivals over some time
interval exceed the link’s potential capacity, which causes the queue length to grow and
eventually exceed the buffer size. Hence the MGF of cumulative arrivals A�0� t� are critical
in assessing the overflow probability. However, it is not clear how the distribution of A�0� t�
is affected by the envelope constraint e�t�, which is to be satisfied by all time shifted A�0� t�.

Consider stationary and ergodic arrivals processes Ai�0� t� which are constrained by
e�t� and have a mean rate µe. Suppose that the traffic is carried by a link with capacity Nc
and buffer size Nb. As shown in �2.3.2, the overflow probability can be approximated by

��QN � Nb�	 sup
t�0

��AN
t � N�ct �b��	 exp��N inf

t�0
Λ�t �ct �b���

Our objective is to find a traffic pattern which would lead to the smallest rate function
inft�0Λ�t �ct �b�, and in order to do so we resort to finding a traffic pattern which results in
the largest MGF, i.e., � �exp�θAi�0� t���.

Let a�0� t� be a sample path of A�0� t�. The MGF of A�0� t� is given by

lim
T�∞

1
T

� T

0
exp�θa�τ�τ� t��dτ � � �exp�θA�0� t��� a.s.

3For the e�t� of interest, both limits exist.
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To explore the nature of the worst case traffic patterns, we consider the following optimiza-
tion problem:

max
a�0�t�

1
T

� T
0 exp�θa�τ�τ� t��dτ

s.t. 0 � a�τ�τ� t�� e�t�� � τ� t � 0 (2.4)

Note that in doing so we are considering finite duration functions a�0� t� which are uniformly
constrained by e�t� for any τ and t. It can be shown that the set of functions satisfying the
constraints constitute a convex feasible set. Since the objective is a convex functional, a
solution to this optimization problem will be an “extremal” point of the feasible set. How-
ever, the uniform constraints imposed by e�t� over all τ and t result in a complicated set of
feasible arrivals functions. Nevertheless an exploration of the extremal functions within the
set provides some insight.

An example: leaky bucket constrained traffic. Next we consider the worst case leaky
bucket constrained traffic. To overcome the complexity of the feasible set resulting from
the constraints imposed by e�t�, we will relate a sample path a�0� t� of cell arrivals to the
token status of the leaky bucket which polices a�0� t�. By doing so, we formulate (2.4) from
a different perspective and discuss the characteristics of possible solutions based on the
“extremal” property of the feasible set.

Let w�τ� be the number of tokens in the leaky bucket at time τ. Suppose no tokens
are lost, so the maximum mean cell rate ρ can be achieved. The cell process a�τ�τ� t� and
the token number w�τ� can be related as follows:

a�τ�τ� t� � ρt �w�τ��w�τ� t��� τ� t�

Now we consider the constraints on the number of tokens w�τ�. First, since the number of
tokens is non-negative and the bucket size is σ, it follows that 0 � w�τ� � σ. Second, the
upper bound on w

�

��τ�,
4 i.e., the rate of increases of token number, is ρ, when no tokens are

consumed (or cell rate is zero). Similarly w
�

��τ� is lower-bounded by ρ� p when tokens
are consumed at rate p, i.e., the cell rate is p.

Therefore (2.4) can be written as:

max
w���

1
T

� T
0 exp�θ�ρt ��w�τ��w�τ� t���dτ

s.t. 0 � w�τ�� σ� �τ� 0

ρ� p� w
�

��τ�� ρ� �τ� 0� (2.5)

A maximizer w��τ� is necessarily an “extremal” point of the convex feasible set of (2.5).
Let us say that a traffic is “on” when its cell rate is positive. Otherwise it is said to be “off”
when cell rate is zero. Since maximizers are extremal, a worst case leaky bucket constrained
traffic has the following properties:

1. cell rates are either ρ or p over an “on” period.
4Since w�τ� is continuous, we assume that its right derivative exists for all τ.
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2. cell rates can not be equal to ρ exclusively over an “on” period.

3. cell rates are unimodal over an “on” period.

Based on the aforementioned properties for the “extremal” traffic, we consider a
family of possible traffic patterns which we believe to be the candidate worst case traffic for
the buffered scenario. The traffic is periodic and has symmetric cell arrival rates over each
“on” state, see Fig. 2.4. This family of traffic patterns is parameterized by the length of
mean rate “burst” which surrounds the peak rate “burst” of length σ

p�ρ over each “on” state.
It is clear that the duration of the “off” state is σ

ρ in order to achieve maximum allowable
mean cell rate ρ. Note that a special case of Tm � 0, i.e, no mean rate “burst”, is indeed a
periodic On/Off traffic shown in Fig. 2.3, which is a worst traffic pattern for the bufferless
case.

Figure 2.4: The proposed traffic pattern.

We will numerically compute the exponent Λ�t �ct �b� associated with randomizing
the phases of these periodic arrivals for various Tm� t and then determine infTm�t�0Λ�t �ct�b�,
where t is the likely time scale for an overflow to occur. The parameters are as follows:
e�t� � min�120t�80t � 400�, c � 100 and b � 160. Fig. 2.5 shows that infTm�t�0Λ�t �ct � b�
(i.e., the lowest point on the surface) is achieved at t � 9�9�Tm � 6�5. This plot suggests that
a periodic On/Off traffic (Tm � 0) is far from being a worst traffic in a buffered scenario.
Because the conventional periodic On/Off traffic does not result in the worst cast overflow
probability upon being multiplexed, resource reservation based on multiplexing them may
not be able to guarantee the overflow probability requirement for the connections on a
buffered link.

2.5 Simulation Results and Summary

In order to verify the effectiveness in using the proposed upper bound on the overflow prob-
ability to perform CAC, we multiplex off-line video traffic streams in a single multiplexer
with a fixed total capacity and buffer size. We obtain an envelope function e�t� by periodi-
cally extending the video traces. The overflow probability is then obtained from simulation
results and compared with the analytical upper bound given by exp��NK�ct��b

e�t�� �
µt�

e�t����, see
Fig.2.6.

As shown in Fig.2.6, the simulated overflow probability is indeed upper-bounded by
the one predicted by our analysis. Since the estimation of the overflow probability is likely
to be used for resource reservation and connection admission control, we also consider the
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Figure 2.5: Λ�t �ct �b� for various t and Tm.

Overflow prob. 3.564e-02 1.403e-02 5.244e-03 1.858e-03 5.747e-04 9.329e-05 3.359e-05
No. simulated 59 57 55 53 51 49 47
No. predicted 50 46 42 40 38 32 30
No. pk-rate allocation 15 15 15 15 15 15 15

Table 2.1: Comparison of admissible numbers of connections.

effectiveness of the proposed upper bound from this perspective. Given a fixed link capacity
and buffer size, we compute the admissible numbers of streams predicted by our approach,
by a peak rate allocation scheme, and observed from simulation, see Table.2.1.

Our approach leads to a conservative number of admissible connections due to over-
estimation of the overflow probability. This is not unexpected, since our analysis gives an
upper bound on the overflow probability for any traffic conforming to the same envelope
and the video trace used in the simulation is not necessarily the worst case traffic. However,
without making any assumption on the traffic’s statistics, the admissible number predicted
by our approach improves significantly over that made by a peak-rate allocation scheme.
For example, for an overflow probability 3�36 � 10�5, there is 100% improvement in the
admissible number of connections.

To make the upper-bound approach less conservative, one can combine it with on-
line measurement. By doing so, we can estimate the distribution of Ai�0� t� rather than
assuming it is Bernoulli. For example, when a multiplexer considers accepting a new con-
nection, the descriptors of its envelope function (e.g., leaky bucket parameters) can be sent
to the multiplexer. The multiplexer then uses the Bernoulli assumption for the new connec-
tions, while measurement data are used for the existing connections.

In a network carrying heterogeneous traffic, under-utilization because of overesti-
mation of overflow probabilities is an issue. However, the spare capacity could in principle
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Figure 2.6: Simulated overflow probability(with 95% confidence interval) and the upper
bound.

be used by Available Bit Rate traffic, whose cell rates can be controlled dynamically to
increase the network’s utilization. In Chapter 4 we will discuss the management of ABR
traffic. The advantage of our approach is that it uses only the deterministic traffic descrip-
tors which the network can enforce, rather than the traffic statistics. Hence it can lead to a
robust, simple connection admission control mechanism.

2.6 Appendix

2.6.1 Proof of Lemma 2.3.1

Lemma 2.3.1 For 0 � y � x � 1, K�x�y� is strictly convex in the pair �x�y�.
Proof: Consider λ � �0�1�,

K�λx1 ��1�λ�x2�λy1 ��1�λ�y2�

� �λx1 ��1�λ�x2� log
λx1 ��1�λ�x2

λy1 ��1�λ�y2

+ �1� �λx1 ��1�λ�x2�� log
1� �λx1 ��1�λ�x2�

1� �λy1 ��1�λ�y2�

� �λx1 ��1�λ�x2� log
λx1 ��1�λ�x2

λy1 ��1�λ�y2

+ �λ�1� x1���1�λ��1� x2�� log
λ�1� x1���1�λ��1� x2�

λ�1� y1���1�λ��1� y2�
�
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By Theorem 2.7.1(log sum inequality) [12][p.29],

K�λx1 ��1�λ�x2�λy1 ��1�λ�y2�

� λx1 log
λx1

λy1
���1�λ�x2� log

�1�λ�x2

�1�λ�y2

+ λ�1� x1� log
λ�1� x1�

λ�1� y1�
� �1�λ��1� x2� log

�1�λ��1� x2�

�1�λ��1� y2�

� λK�x1�y1���1�λ�K�x2�y2��

The equality holds when x1
y1

� x2
y2

and 1�x1
1�y2

� 1�x2
1�y2

, or equivalently x1 � y1. Therefore,
K�x�y� is strictly convex in pair �x�y�, for 0 � y � x � 1. �

2.6.2 Proof of Lemma 2.3.2

We will need the following two lemmas in order to prove Lemma 2.3.2.

Lemma 2.6.1 If e�t� is differentiable everywhere in �t1� t2�,
e
�

�t�
e�t��te� �t�

is decreasing in t.

Proof: If e�t� is differentiable everywhere in �t1� t2�, it follows that e
�

�t� � 0 and e
��

�t� � 0
since e�t� is an increasing concave function. Thus e

�

�t� is decreasing in t and �e�t�� te
�

�t��

is increasing in t, We can conclude that e
�

�t�
e�t��te� �t�

is decreasing in t. �

Lemma 2.6.2 If e�t� is not differentiable at some t � �t1� t2�,
e
�

��t�

e�t��te
�

��t�
� e

�

�
�t�

e�t��te
�

�
�t�

.

Proof: If e�t� is not differentiable at t, then e
�

��t� � e
�

��t� because e�t� is a continuous,
concave function. This lemma follows directly. �

Lemma 2.3.2 Let x � ct�b
e�t� , y � µt

e�t� and �t1� t2� be the interval where 0 � ct�b
e�t� � 1. Then

A � ��λ�y�t�� � R�R � t � �t1� t2�� λ� x�t� is convex.
Proof: Consider a function f �y�t�� � x�t�� t � �t1� t2�. Note that A is the epigraph epi( f ) of
f . By Theorem[5.10] [49], the convexity of f corresponds to the convexity of epi( f ).

If e�t� is differentiable everywhere in �t1� t2�, the derivative of f is

dx
dy

�
dx
dt
dy
dt

�

ce�t���ct�b�e
�

�t�
e2�t�

µe�t��µte� �t�
e2�t�

�
ce�t�� �ct �b�e

�

�t�
µ�e�t�� te��t��

�
c�b e

�

�t�
e�t��te� �t�

µ
�

By Lemma 2.6.1, e
�

�t�
e�t��te� �t�

is decreasing in t, so the derivative of f is increasing.

If e�t� is not differentiable at some t � �t1� t2�, by Lemma 2.6.2, we still could show
f
�

��x�� f
�

��x�. This proves the convexity of f , and hence of A. �
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Chapter 3

Virtual Paths—Resource Allocation
and Routing

3.1 Introduction

Traditionally networks have been designed to carry specific types of traffic, e.g., the tele-
phone network for voice and computer networks, such as the Internet, for data traffic. Cur-
rent integrated-services networks aim to provide a single infrastructure upon which various
current and future communication services can be efficiently supported. The motivations
for this are various, including the obvious desirability of sharing network resources, thus
avoiding unnecessary duplication of network infrastructure and improving flexibility. The
need for flexible networks is particularly important in light of the wide spectrum of applica-
tions evolving in current computer networks with both heterogeneous traffic characteristics
and quality of service (QoS) requirements. Such diversity will be an important feature in fu-
ture broadband networks so network design and management may have to carefully account
for it [45].

ATM has been designed to meet the possible needs of integrated broadband commu-
nication networks. This technology is based on multiplexing and switching cells transported
on virtual channel connections (VCCs). Virtual path connections (VPCs) allow for joint
handling of bundled VCCs and can serve as an effective way of reducing complex signaling
and management tasks in a core network. The VP layer is in fact likely to serve as an in-
termediate resource management layer, wherein key resource allocation decisions are made
on a somewhat slower time scale than typical connection times. Indeed, one can use the
VP layer to simplify call admission control, routing, and to segregate traffic based on QoS,
traffic characteristics, or service classes. This chapter addresses the question of whether or
not segregating heterogeneous traffic with different QoS requirements on separate VPs is
desirable. We shall see that traffic heterogeneity plays a critical role in multiplexing, and
careful allocation of traffic mixes is essential to achieving good performance.

Similar care is needed in making routing decisions in a heterogeneous environment.
There is much research and experience with routing policies in circuit-switched networks
but one might ask if these principles will extend to multiservice networks. In circuit-
switched networks, there exists a clear separation among connections, and the reserved
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resources for each connection are well defined from the start. Routing schemes selecting
the “least-loaded path” can be useful in single service networks because they tend to balance
the traffic load across the network and minimize the blocking probability [23]. However,
in a multiservice network, it has been suggested that a “most-loaded path” strategy might
be preferable in order to leave room on the “least-loaded path” for future connections with
high bandwidth requirements [47]. Various other routing policies, such as trunk reserva-
tion, have been investigated, and these are likely to also play a role in integrated services
networks, see e.g., [31].

In this chapter we consider the impact that heterogeneity and statistical multiplexing
might have on the design and performance of simple routing decisions, such as selecting
among many VPCs that have already been dimensioned. Although we assume capacity
has been partitioned among VPCs one would nevertheless hope that a moderate degree of
statistical multiplexing can be achieved by sharing the resources allocated to VPCs. One
difficulty in considering the role of statistical multiplexing in such systems is that the “ef-
fective bandwidth” required for each traffic stream may depend on the current load and
capacity of the system, see e.g., [47]. A simple example can illustrate this and show how
it might in turn impact routing policies. Consider a bufferless link shared by two types
of traffic whose cell arrival rates are for simplicity modeled by Gaussian random variables
with means m1, m2 and variances σ2

1, σ2
2 respectively. Suppose the link currently has n1 and

n2 ongoing connections of each type. It can be shown that the capacity requirement is then
roughly given by

c�n1�n2� � �n1m1 �n2m2�� k
�

�n1σ2
1 �n2σ2

2��

where k is an overall QoS parameter related to a link overflow probability. The bandwidth
required for an additional connection of Type 1 can be approximated by1

∂c
∂n1

	 m1 �
1
2

k σ2
1 �n1σ2

1 �n2σ2
2�
� 1

2 � (3.1)

Note that the marginal bandwidth needed for an additional connection depends on traffic
characteristics, mix, and load. For example, given the mean m and the variance σ2 of a con-
nection’s cell arrival rate, the key factor determining the marginal bandwidth requirement is
the variance of the aggregate traffic n1σ2

1�n2σ2
2 currently on the links it traverses. Based on

this example we conclude that, it may be “cheaper” (consuming less additional bandwidth)
to route a new connection through a link whose current aggregate variance is large. In turn
by selecting routes with minimum marginal bandwidth requirements one might make more
resources available to incoming connections or other types of services.

This argument is in sharp contrast to typical routing policies that try to balance the
loads on the network. Indeed a naive interpretation of (3.1) suggests that we might want
to generate imbalances on various routes because they may result in reduced resource re-
quirements, and are thus more “economical.” In the usual circuit-switched environment,
the bandwidth requirement for each traffic stream is fixed and independent of other traffic

1This approximation is based on the derivative of c�n1�n2� with respect to a continuous variable n1� It can
be shown to be accurate when the aggregate variance is high.
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currently sharing the links. By contrast, in packet-switched networks statistical multiplex-
ing and the traffic mix on the link will affect the bandwidth requirements and thus judicious
routing of connections may improve the system performance.

Suppose there are multiple traffic types carried on the same link. In this case, vary-
ing bandwidth requirements complicate admission decisions since the traffic mix in the
system needs to be considered upon admitting new connections. Indeed such heterogene-
ity results in an admissible region with a nonlinear boundary. To simplify call admission,
one can approximate the admissible region’s boundary by a hyper-plane. By doing so, we
linearly approximate the boundary and approximate the bandwidth requirement (per con-
nection) of each type by a constant independent of the traffic mix. These constants are
called the “effective bandwidth” for each traffic type, and are often proposed as a means
to simplify call admission control. In [6], an argument is made that the boundaries may be
linearized without any significant reduction in the potential “revenue” subject to the traffic
loads. In fact, unless such linearizations are done carefully, i.e., paying attention to the
traffic loads and routing policies to be used, they can result in a loss of revenue.

Indeed, routing in multiservice networks also introduces new challenges. On one
hand, a traffic type may have different “effective bandwidth” associated with it on different
links because of different linear approximations. Routing decisions may need to account for
these differences in “effective bandwidth” in order to improve overall resource efficiency.
On the other hand, the linearization of each link’s admissible region may need to consider its
impact on routing. Hence it may not be straightforward to extend the current “know how”
on routing policies in circuit-switched networks to multiservice networks. In this chapter we
shall show that routing decisions which account for the impact of statistical multiplexing,
and the relative loads of various traffic types can significantly improve performance.

The balance of this chapter is organized as follows: In �3.2 we discuss the role of
statistical multiplexing and nonlinear call admission regions associated with heterogeneous
traffic. The problem of VP partitioning is analyzed in �3.3. Routing issues are discussed in
�3.4 and are followed by simulations and summary.

3.2 Traffic Mix and Admissible Region

3.2.1 Characteristics of the Admissible Region

In general to assess the exact admissible numbers of connections on a given link, one would
have to resort to either simulation or a significant amount of computation. In this chapter
we will resort to a popular (conservative) approximation based on the Chernoff’s bound in
the context of bufferless multiplexing. Most of the ideas herein follow from the qualitative
characteristics of the admissible region which are captured by this bound, see e.g., [32, 25].
Suppose N i.i.d. traffic streams are carried on a bufferless link, and each stream has a
stationary cell arrival rate Ai� i � �1� ����N. Assume that the link capacity is c and we
require that the aggregate arrival rate to the link exceeds the capacity only rarely—with a
probability no larger than δ. Based on the Chernoff’s bound [3], the overflow probability is
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upper-bounded by

��
N

∑
i�1

Ai � c�� exp�� sup
θ�0

�cθ�NΛ�θ���� (3.2)

where Λ�θ� � log�� �exp�θAi��� is the logarithm of the moment generating function of Ai.
One can generalize the result to multiple traffic types and analyze statistical multi-

plexing with heterogeneous traffic. Let

A �
J

∑
j�1

nj

∑
i�1

A ji

be the aggregate arrivals, where Aji are independent random variables denoting the cell
arrival rate of i th traffic flow of Type j, and Λj�θ� � log�� �exp�θAji���. In this case the
Chernoff’s bound and the overflow constraint give the following requirement:

log��A � c���sup
θ�0

�
cθ�

J

∑
j�1

njΛ j�θ�
�� logδ� (3.3)

We shall define the admissible region A�c� for a bufferless link with capacity c as the
collection of vectors n � �n1� ����nJ�� 0 which satisfy (3.3), i.e.,

A�c� �

�
n�n� 0 and

J

∑
j�1

α j�θ
��nj � log�δ�

θ�
� c� for some θ� � 0

�
� (3.4)

where α j�θ�� �
Λ j�θ��
θ� and θ� depends on the chosen n and is the argument which achieves

the sup in (3.3) for a given n.2 Note that the θ� is an implicit function of n. Hence the
bandwidth requirement (per connection) for each traffic type is affected by the traffic mix.

It has been shown in [26] that the complement of the admissible set in �J
� is a convex

region. It was suggested in [32, 25] that a linear approximation could thus be used to conser-
vatively represent the boundary of the admissible region. However, a linear approximation
of the admissible region boundary is not always accurate, and may affect performance.

The nonlinearity in the admissible region is called the diversity cost of the system
and was quantified in [46]. It was pointed out in [16] that the total allocated bandwidth for
a single type of aggregate traffic needs to exceed a critical value in order to make the traffic
“statistically-multiplexable.” Thus a minimum capacity is required to see the “economies
of scale.” The results in [16] also showed that combining “statistically-multiplexable” and
“nonstatistically-multiplexable” traffic will create a nonlinear admissible region which can
not be effectively approximated by a linear hyper-plane.

For example, let us consider the admissible region of traffic with Bernoulli cell
arrival rate. The peak rate and mean rate are assumed to be pj and mj respectively, i.e.,
Λ j�θ� � log

�
1� mj

pj
�eθp j �1�

�
. For simplicity let us consider the case with two traffic types,

i.e., J � 2. In Fig. 3.1 we plot the admissible region for a bufferless link with capacity 25
and two linear approximations. The two traffic types are On/Off with peak rates 1 and

2In the cases of interest, here θ� is finite.
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0�5 as well as mean-to-peak ratios 10% and 90% respectively, and δ � 10�9. Fig. 3.1
shows that the admissible region’s boundary is convex and that linear approximations can
be very inaccurate, suggesting that the effective bandwidth of each type is indeed state-
dependent and sensitive to the traffic mix. In Fig. 3.2 we exhibit the admissible region when
the capacity is increased 4 times. As shown in the figure, as the link capacity increases,
the admissible region appears to become more “linear.” Such changes are due to better
multiplexing allowed by the higher link capacity.
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Figure 3.1: An admissible region and its
linear approximations.
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Figure 3.2: Another admissible region.

Next we consider the admissible regions A�c� for various qualities of service δ �

10�3�10�6 and 10�9 in Fig. 3.3. The figure shows that, as the δ decreases, the region
not only becomes smaller, but its boundary also becomes more “nonlinear.” In fact, the
increased “nonlinearity” is caused by less “efficient” multiplexing when the overflow prob-
ability requirement becomes more stringent. Note that Type 2 traffic is “nonstatistically-
multiplexable” in this set-up [16], so the maximum admissible number of Type 2 traffic
stays at 50. By contrast, Type 1 is “statistically-multiplexable”, so its maximum admissible
number changes as δ varies. As with the link capacity, the QoS requirement δ also affects
the the nonlinear characteristics of the admissible region’s boundaries.

We can conclude that the traffic mix indeed plays a role in the effectiveness of
statistical multiplexing, even though its impact might be neglected when the number of
connections, i.e., system capacity, becomes large or the QoS is relaxed. When carrying
multiple traffic types in segregated VPs, where the bandwidth and number of connections
are both moderate, the admissible region may indeed be nonlinear due to the diversity in
burstiness and insufficient statistical multiplexing. In such cases the traffic composition in
the VPs will be an important factor in dimensioning their capacities.

3.2.2 Linearization of the Admissible Region

To simplify call admission, it may be advantageous to linearize the admissible region. A
linearization of A�c� can be done by fixing an operating point n� on the boundary and using
the tangent hyper-plane to the admissible region’s boundary at n� as a linear approximation
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Figure 3.3: Admissible regions for various δ.

to the boundary, see Fig. 3.4. Therefore, θ� in (3.4) will be determined by n� and (3.4) can

Figure 3.4: Linearization of the admissible region’s boundary.

be rewritten as

An��c� �

�
n�n� 0 and

J

∑
j�1

α jn j � c
�

�
� (3.5)

where α j � α j�θ�� is the “effective bandwidth” of Type j traffic and c
�

� c� log�δ�
θ� is the

link’s “effective capacity” with respect to θ� (i.e., a linearization at n�.) Given such a lin-
earization, the relative bandwidth requirements of each traffic type become fixed, resulting
in a linearly constrained region and making call admission straightforward.

Note that it is essential to select the operating point n� carefully. The selection
may become more critical when the number of traffic types increases, which makes the
admissible region more “nonlinear.” As shown in (3.4), the effective bandwidth αj of each
traffic type depends on n�. Thus in principle we could exploit this dependence so as to
change the relative resource requirements of each traffic type to the advantage of network.
Note that a desirable operating point n� is mainly determined by the offered loads from
different traffic types which can be controlled through routing decisions. We will show in
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�3.4 that careful selection of operating points could result in a better statistical multiplexing,
hence reduces the total bandwidth requirements in the network.

3.3 VP Integration

We consider the problem of carrying multiple traffic types on VPs. It is generally believed
that one should segregate traffic with different QoS requirements on their own VPs, see
e.g., [23]. The intuition is that if we multiplex traffic with different QoS requirements on
the same VP, then the overall QoS for the VP will be the most stringent QoS requirement.
By providing a QoS that is more stringent than necessary to some traffic streams, we waste
network resources. However, due to the nature of statistical multiplexing, it may still be
more “economical” to put all traffic on the same VP. Careful allocation of VPs is essential
to achieving high efficiency. In the following we use an example of two traffic types to
illustrate the roles of statistical multiplexing and traffic mix.

3.3.1 Integration or Segregation?

Suppose there are N total connections which consist of a fraction f1 of Type 1 flows and a
fraction f2 of Type 2 flows, where f1 � f2 � 1.3 In order to get a qualitative understanding,
we shall first resort to Gaussian traffic models for which an explicit expression for band-
width requirements exists and then consider the popular On/Off traffic model. The cell
arrival rates of each traffic type are modeled by Gaussian random variables with mean and
variance �m1�σ2

1�, �m2�σ2
2� respectively. We assume that the two traffic types are carried by

a bufferless link and require cell loss ratios of 10�6 and 10�3 respectively. The goal is to
decide whether to partition a link into two segregated VPs, or form a single shared VP. If we
aggregate the flows on a single VP, then the loss ratio requirement is 10�6. Otherwise we
can have different QoS on separate VPs. Forming a single VP and providing a better QoS to
Type 2 traffic is not necessarily a bad idea, since multiplexing may be more efficient when
all flows are on the same VP. To understand this question, we need to assess the bandwidth
requirements for the two options.

The total required capacities for these two cases are:

c1 � N� f1m1 � f2m2�� k1

�
N
�

f1σ2
1 � f2σ2

2 (3.6)

c2 � N� f1m1 � f2m2��
�

N
�
k1

�
f1σ2

1 � k2

�
f2σ2

2

�
� (3.7)

where k1 and k2 are the QoS parameters. For the Gaussian model, the tail distribution can
be captured by the deviations from mean, and k1�k2 correspond to the multiples of standard
deviation [41]. The bandwidth requirements of a single shared VP and segregated VPs are
shown in (3.6) and (3.7) respectively. Without loss of generality, we assume k1 � k2. For
the aforementioned QoS, k1 and k2 are 4�7534 and 3�0902 respectively. We are interested
in a condition making c1 � c2, so it is advantageous to form a single VP and give Type 2

3For simplicity we assume f1� f2 are real numbers even though they should be restricted to multiples of 1
N

such that N f1�N f2 are integers.
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traffic a better QoS, rather than setting up two VPs. In other words, the benefit of statistical
multiplexing outweighs the loss in over-provisioning for a better QoS.

Surprisingly, the condition depends only on σ1
σ2

and f1, where N plays no role. In-
deed for c1 � c2, we need that

k1

�
f1�

σ1

σ2
�2 � k2

�
1� f1 � k1

�
f1�

σ1

σ2
�2 �1� f1�

which can be rewritten as

σ1

σ2
� k2

1� k2
2

2k1k2

�
1� f1

f1
� (3.8)

Hence to answer the question of whether to integrate two types of traffic on the same VP, one
needs to assess if the ratio of their standard deviations exceeds a threshold which depends
on their QoS requirements and the traffic mix.

Figure 3.5: Traffic mix vs. σ1
σ2

.

In Fig. 3.5 we plot the threshold on σ1
σ2

, i.e., the right side of (3.8), as a function of
the traffic mix f1 with the aforementioned k1 and k2. The threshold defines the integration
and segregation regions. For example, for σ1

σ2
� 0�6, we should form a single VP when the

fraction of Type 1 traffic exceeds 0�35. Otherwise, it is more efficient to have two VPs with
different QoS.

Based on the regions shown in Fig. 3.5 it is clear that when f1 is small, the ratio
of σ1

σ2
needs to be large in order to make integration beneficial. An interpretation for this

might be that we waste a larger amount of bandwidth in bringing a better QoS to Type 2
traffic (i.e., integration) when f1 is small. Thus only when Type 1 traffic is “bursty”, i.e.,
has high variance, can the benefit of better multiplexing outweigh the waste of bandwidth.
Therefore, the threshold on σ1

σ2
should be larger when f1 is small, as shown in Fig. 3.5. By

contrast when f1 is large, the Type 2 traffic becomes less significant, so the threshold on
σ1
σ2

becomes less stringent, i.e., integration is desirable. The trade-offs of integration are
captured by the curve in Fig. 3.5.

Note that k2
1�k2

2
2k1k2

serves as a scaling factor for the the curve in Fig. 3.5. If k1 and k2 are
close, then the threshold on σ1

σ2
for integration becomes small, which increases the integra-
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tion region. That is, one is indeed likely to integrate traffic with similar QoS requirements
when minimizing the bandwidth reservation.

One can look at the problem of whether to integrate or segregate from a different
perspective. Suppose n1 and n2 are the numbers of Type1 and Type 2 connections carried
by the system. Inequality (3.8) can then be written as:

n1σ2
1

n2σ2
2

�
�

k2
1� k2

2

2k1k2

	2

�

In Fig. 3.6, we plot the integration and segregation regions with respect to n1 and n2 with
aforementioned k1, k2 and σ1

σ2
� 0�6. The figure clearly indicates that the ratio of n1 and n2,

rather than their magnitudes, determines the decision.

0 10 20 30 40 50
0

20

40

60

80

100

Type 1

T
yp

e 
2

Integration

Segregation

Figure 3.6: Integration and segregation regions.

Next we consider On/Off traffic models. For such models, it is difficult to derive a
simple criterion such as (3.8) to determine whether to segregate or integrate heterogeneous
traffic. The complexity is mainly due to the lack of a closed-form expression for the band-
width requirement. Nevertheless we can show the trade-offs of integration numerically. In
Fig. 3.7 we plot the difference in bandwidth requirements between integrating and segre-
gating two types of On/Off traffic. The z-axis represents the difference, and a positive value
means that segregation requires more bandwidth than integration. Fig. 3.8 indicates where
integration or segregation are desirable.

The two types of On/Off traffic have mean rates 0�5 and 0�15 as well as peak rates
0�9 and 0�8. In addition, the overflow probability requirements are 10�9 and 10�3 for Type
1 and Type 2 respectively. As shown in the figure, there exists integration and segregation
regions which are dependent on the traffic mix �n1�n2�. As in the Gaussian case, the traffic
mix determines whether it is advantageous to integrate two traffic types. An interesting
observation is the small “plateau” region around �n1 � 0�n2 � 0� in Fig. 3.7. This is
because the number of connections is too small to achieve any statistical multiplexing,
and the bandwidth reservation is done based on peak-rate allocation. Hence it makes no
difference whether the two traffic types are integrated or segregated. Note that for Gaussian
traffic, there is no such a threshold in the number of connections for achieving statistical
multiplexing.
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Figure 3.8: Integration and segregation
regions.

As with the example of Gaussian traffic, the desirability of VP partitioning for
On/Off traffic depends on the traffic mix and traffic characteristics, see Fig. 3.8. These
results show that the dimensioning of VP bandwidth is not straightforward and accounting
for the efficiency of multiplexing is essential in order to minimize the bandwidth reserva-
tion. For cases with more than two traffic types, these observations still hold, but a simple
criterion for the best bandwidth partitioning is unlikely because of the increased complex-
ity. Nevertheless optimum VP partitioning of multiple traffic types could be determined
numerically or by simulation.

3.3.2 The Benefit of VP Integration

We have shown that it may be more efficient to carry traffic streams with different QoS
requirements on the same VP, even though the VP is provisioned for the most stringent
QoS requirement. Next we quantify the bandwidth savings as a function of the model’s
parameters using the Gaussian traffic example— this is given by

∆c � c2� c1

�
�

Nσ2

�
k1


 �
f1�

σ1

σ2
�2�

�
f1�

σ1

σ2
�2 �1� f1

�
� k2

�
1� f1

	
� (3.9)

Note that although the number of connections N does not play a role in the condition (3.8)
determining whether it is beneficial to form a single VP, the bandwidth savings ∆c grows as�

N as the number of connections increases.
Let us call ∆c divided by N� f1m1 � f2m2� the normalized bandwidth savings. It

should be clear that the normalized bandwidth savings are proportional to 1�
N

, i.e., they
become smaller as N increases. This result is not unexpected due to the increased efficiency
of statistical multiplexing. Indeed when N is large, the effective bandwidth of each traffic
stream decreases and approaches its mean rate, so the bandwidth utilization of both the
integration and segregation schemes improve. Hence the (normalized) difference between
(3.6) and (3.7) becomes smaller as N increases. However, the absolute magnitude of ∆c
still increases as N becomes large, and since the number of connections on a VP may be
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moderate, statistical multiplexing gains may not effectively eliminate the impact of the
traffic mix and heterogeneous QoS requirements. Thus a careful partitioning of VPs can
lead to improvements in performance that perhaps should not be ignored.

3.4 Routing and Traffic Mix

We have shown that it may be more efficient to carry multiple traffic types on the same VP.
With efficient multiplexing, one can minimize the total reserved bandwidth and in turn allow
more connections to enter the system. However, using multiple VPs may be preferable (or
necessary) in some circumstances. For example, one might choose to use multiple VPs
through different links to increase reliability or due to capacity constraints. By doing so,
we ensure that if a VP fails, the traffic can be quickly rerouted to other resources and the
performance degrades smoothly. Given such requirements, one needs to determine how to
route the heterogeneous traffic efficiently through multiple VPs. We will show that routing
policies that account for statistical multiplexing characteristics have a significant impact
on performance. For simplicity we shall assume that all VPs provide the same aggregate
QoS, which are equal to or better than those requested by each traffic type. As shown in
�3.3.1, integrating traffic and providing a better QoS on VPs could be advantageous. We
first consider the impact of nonlinear admissible region’s boundaries by using an example
of two traffic types and two VPs. Then we consider a more general set up with linearized
admissible region’s boundaries on each VP.

3.4.1 Routing of Permanent VCs

Suppose there are two VPs between a given origin-destination pair, see Fig. 3.9. We first
consider a simple static network flow problem for partitioning heterogeneous connections
onto the VPs, geared at achieving good multiplexing. This problem is indeed an abstrac-
tion of routing permanent VCs on a VP network, where the goal is to minimize the total
bandwidth reservation in order to maximize free capacity in the network. For simplicity,
we again focus on routing two traffic (VC) types modeled by Gaussian distributions, but the
solutions are based on general traffic characteristics leading to nonlinear admissible regions.

Figure 3.9: Two VPs and two traffic types.

Consider two VPs with bandwidth c1, c2 and two types of Gaussian traffic streams
as in �3.3.1. Assume there are n1 Type 1 and n2 Type 2 streams, and both have the same
overflow probability requirement. We will consider two problems: first, whether this load
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is admissible, and second how to partition (or route4) these connections onto the two VPs
in order to minimize the total bandwidth reserved on the two VPs. Note that the remaining
bandwidth can be used to admit other traffic or carry best-effort traffic, so it is advantageous
to minimize the bandwidth reservation.

Suppose a fraction5 a of Type 1 and a fraction b of Type 2 traffic are sent to VP 1
and the remaining traffic is sent to VP 2, then the bandwidth requirements r1�r2 on each VP
must satisfy the following inequalities:

c1 � r1 � n1am1 �n2bm2 � k
�

n1aσ2
1 �n2bσ2

2 (3.10)

c2 � r2 � n2�1�a�m1 �n2�1�b�m2 � k
�

n1�1�a�σ2
1 �n2�1�b�σ2

2� (3.11)

where k is the QoS parameter. The admissibility constraints (3.10) and (3.11) ensure that
the bandwidth requirements subject to a pre-defined QoS do not exceed the capacities of
the VPs. Let V1 � n1aσ2

1 � n2bσ2
2 and V2 � n1�1� a�σ2

1 � n2�1� b�σ2
2 be the variances

of aggregate traffic on VP 1 and VP 2. The total capacity requirement is then given by
r1�r2 � n1m1�n2m2�k�

�
V1�

�
V2�. An optimum partitioning policy is a pair of �a��b��

such that (3.10) and (3.11) are satisfied, and �
�

V1 �
�

V2� is minimized (or equivalently
r1 � r2 is minimized).

Note that V � V1 �V2 � n1σ2
1 � n2σ2

2 is a constant representing the total variance
of the aggregate traffic. We can represent V1�V2 as fractions of V , e.g., V1 � αV� V2 � �1�
α�V�α � �0�1�. Since the contribution of m1 and m2 to r1 � r2 is fixed, the total bandwidth
requirement is determined by the variance V1�V2 on each VP. Hence determining �a��b��
is equivalent to picking V1�V2 or alternatively α such that F�α� �

�
αV �

�
�1�α�V is

minimized. Since F�α� is concave and symmetric, see Fig. 3.10, F�α� is minimized when
α� 1 or α� 0, i.e., send all traffic to one VP or the other.

However, with the admissibility constraints (3.10) and (3.11), sending all traffic to
the same VP may not be possible if c1 or c2 are not big enough. Nevertheless, to minimize
F�α�, it is essential to keep α close to 1 or 0. In other words, a partitioning policy should
distribute the total variance V in an unbalanced fashion so as to improve the efficiency of
multiplexing.

Figure 3.10: F�α�.

4The terms routing and partitioning are used interchangeably in this discussion.
5For simplicity we assume a and b are real numbers, even though they should be restricted to the multiples

of 1
n1

and 1
n2

, such that n1a and n2b are integers.
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Joint admissibility. We have shown in �3.2 that a nonlinear admissible region can be
obtained from the link’s bandwidth and traffic statistics. In Fig. 3.11, we represent the
joint admissible regions for the two VPs: VP 1 on the first quadrant and VP 2 on the third
quadrant. A point S � �s1�s2� in the first quadrant represents a scenario where s1 Type 1
and s2 Type 2 streams are carried in VP 1. Similarly a point T � ��t1��t2� in the third
quadrant represents t1 Type 1 and t2 Type 2 streams in VP 2. A line segment ST connected
by two points in the two quadrants represents the scenario where s1 � t1 Type 1 streams and
s2 � t2 Type 2 streams are jointly carried by the two VPs. In addition, a feasible ST is a line
segment with end points S and T which are located on the admissible regions of VP 1 and
VP 2 respectively.

Figure 3.11: The joint admissible region.

Suppose n1 � N f1 and n2 � N f2, where f1 � f2 � 1. To determine whether �n1�n2�

are jointly admissible, i.e., can be carried by two VPs subject to the QoS requirements, one

needs to find points S and T such that f2
f1
� s2�t2

s1�t1
and the length of ST is equal to

�
n2

1 �n2
2.

In fact, every feasible ST with slope f2
f1

is associated with a partitioning policy for traffic

with a mix f1� f2. There exists such an ST (may not be unique) having the largest length

K�. If K� �
�

n2
1 �n2

2, then �n1�n2� are jointly admissible. Note that K� depends on f1� f2

and, of course, the admissible regions of the two VPs.

Lemma 3.4.1 With (strictly) convex admissible region’s boundaries, in order to accommo-
date a maximum number of connections with a given mix f1� f2, a (unique) allocation exists
such that one of the two VPs carries homogeneous traffic, and the other VP carries the
remaining traffic.

The intuition behind this lemma is as follows. Since the admission region’s boundaries are
convex, the longest ST with slope f2

f1
will contain at least one of the four intercept points

of the admissible region’s boundaries with the coordinate axis, as shown in Fig. 3.12. That
is, one VP, which is determined by the slope of ST (i.e., the traffic mix), will carry a single
type of traffic, and K� can be determined accordingly. See �3.7 for a proof.

Fig. 3.12 shows that it is essential to partition the traffic carefully on each VP in
order to accommodate a maximum number of traffic streams. For example, if the relative
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traffic mixes are kept identical on each VP (i.e., ST passes the origin), then the length of ST
will be much shorter than its optimum value, and a smaller number of traffic streams can be
admitted.

Figure 3.12: Examples of ST with maximum length.

Minimizing reserved bandwidth. Suppose
�

n2
1 �n2

2 � K�, so the heterogeneous traffic
with combined number of connections �n1�n2� are jointly admissible. Now we consider
the problem of partitioning them onto two VPs in order to minimize the total reserved
bandwidth. For the Gaussian traffic model, we have shown that one needs to distribute the
variance V onto the two VPs in an unbalanced fashion in order to minimize the reserved
bandwidth. We expect general traffic will have similar characteristics. Assume c1 � c2,
then one needs to determine the location of ST

�
which will maximize V1 subject to two

constraints: n1 � s1 � t1 and n2 � s2 � t2. Since V1 � s1σ2
1 � s2σ2

2, it is clear that the end
point S of ST

�
will be on the admissible region boundary of VP 1 in order to make V1 large.

Lemma 3.4.2 To minimize the bandwidth reservation for the Gaussian traffic model, one
would fill the VP of larger bandwidth, and leave idle bandwidth, if any, on the smaller VP.
Moreover, one of the following two scenario occurs: (1) the larger VP carries all the traffic,
or (2) one of the VPs carries homogeneous traffic.

Fig. 3.13 shows examples of ST
�

with different slopes f2
f1

. Note that S is on the
admissible region’s boundary, and either S or T is located on the coordinate axis. See �3.7
for detailed proof.

Lemma 3.4.2 suggests that traffic streams are packed into the larger VP, leaving
the smaller VP partially occupied. The traffic fractions f1� f2 affect how traffic streams are
packed onto VPs, i.e., the location of ST

�
, in order to minimize reserved bandwidth.

3.4.2 Routing and Linearization of Admissible Region

In �3.2.2 we discussed how a convex admissible region’s boundary can be approximated by
a tangent hyper-plane at a given point n� on the boundary. Such a linearization results in a
notion of “effective bandwidth” for each traffic type. Here we discuss the impact that such
linearizations might have on the routing policy.
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Figure 3.13: Examples of optimum ST locations.

Suppose the capacities of VP 1 and VP 2 are c1�c2 and c1 � c2. Let s�1 and s�2 be the
maximum admissible number of homogeneous Type 1 and Type 2 connections which can
be carried by VP 1 based on its linearized admissible region. Similarly let t�1 and t�2 be the
admissible number of the two traffic types on VP 2. The slopes of two linear admissible
region’s boundaries are given by �s�2

s�1
and � t�2

t�1
respectively.

Without loss of generality, we consider the following two cases: (1) s�2
s�1
�

t�2
t�1

and (2)
s�2
s�1
�

t�2
t�1

. Note that the scenario of s�2
s�1
�

t�2
t�1

is equivalent to Case (2) since the designations of
Type 1 and Type 2 are interchangeable.

Case 1: Two admissible region’s boundaries are parallel, see Fig. 3.14.

Figure 3.14: Parallel boundaries.

Let us now consider the maximum number of heterogeneous connections which can
be carried by the two VPs with fractions f1 and f2 of each type. As shown in Fig. 3.14,
it is clear that for any feasible ST with slope f2

f1
, every ST with S and T on the boundaries

will have the same length of K� since the two boundaries are parallel. In other words, the
maximum number of permanent VCs can be admitted onto the VPs by multiple ST . By
contrast to Lemma 3.4.1, neither VP has to carry homogeneous traffic in order to admit the
maximum number of connections.
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Case 2: In this case, the boundaries of admissible regions are no longer parallel, see Fig.
3.15.

Figure 3.15: Non-parallel boundaries.

Indeed the “distance” between the two boundaries is monotonically increasing (or
decreasing) along the boundaries. Based on Fig. 3.15, it is clear that for any feasible ST
with slope f2

f1
, the maximal allocation ST

�
will have S or T at points A1 and/or A2. As a

result, in order to carry the maximum number of heterogeneous connections with fractions
f1 and f2, either one (or both) of the following two scenarios is possible:

1. VP 1 carries homogeneous Type 1 traffic and VP 2 carries the remaining traffic (ST
�

passes point A1);

2. VP 2 carries homogeneous Type 2 traffic and VP 1 carries the remaining traffic (ST
�

passes point A2).

Thus there exists a fixed preferable assignment of traffic types to VPs, i.e., Type 1 traffic is
mainly carried by VP 1 and Type 2 traffic is mainly carried by VP 2.

Note that such a “preference” is due to the difference in s�2
s�1

and t�2
t�1

, which results from
the linearizations of admissible regions. Therefore, different linearizations of admissible
regions may result in different first choice preference in these VP assignments.

3.4.3 Routing with Multiple VPs and Traffic Types

So far we have analyzed in detail the problem of routing two traffic types onto two VPs.
Next we consider the routing problem for the network shown in Fig. 3.16, where the admis-
sible regions of each VP are linearized. For simplicity we shall assume that all VPs provide
the same aggregate QoS, which are equal to or better than those requested by each traffic
type.

The problem of determining the maximum admissible number of connections can
be formulated as a linear programming problem where we relax the integer constraint on the
number of connections. We assume that the total number of connections of each type are
big enough that the rounding errors to the closest integers are negligible. Thus an optimum
solution to the linear programming problem is close to an optimum solution to the integer
programming problem.
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Figure 3.16: Problem set-up.

Suppose there are J traffic types to be routed onto P VPs with linearized admissible
regions, where αp� j

6 is the “effective bandwidth” of Type j traffic on VP p. We shall assume
that every VP can carry any traffic type. Let np� j denote the number of Type j connections
carried by VP p. The capacity constraints are then given by the following inequalities:

J

∑
j�1

αp� jnp� j � cp� �p� (3.12)

where cp is the effective capacity of VP p, see (3.5).
Next we consider a set of constraints associated with the pre-defined traffic mix.

Let f j� j � 1� ���J be the fraction of each traffic type and∑P
p�1 np� j denote the total number

of Type j connections carried by all VPs. To ensure the traffic mix constraint is met, we
require that

∑P
p�1 np�1

f1
�

∑P
p�1 np�2

f2
� ����

∑P
p�1 np�J

fJ
� (3.13)

We can rewrite these as a set of equality constraints7:

P

∑
p�1

np�1� f j

f1

P

∑
p�1

np� j � 0�� j �� 1� (3.14)

The goal is to maximize the total number of connections∑J
j�1∑

P
p�1 np� j. Given the

nature of this objective function, the constraints in (3.12) will hold with equality since we
have relaxed np� j to be continuous. The linear programming problem is then formulated as
follows:

max ∑J
j�1∑

P
p�1 np� j

subject to ∑J
j�1αp� jnp� j � cp� �p

∑P
p�1 np�1� f j

f1
∑P

p�1 np� j � 0� � j �� 1

np� j � 0 �p� j

(3.15)

It is clear that the feasible set is a polytope and a solution to this linear programming prob-
lem will be a vertex of the polytope [30, 37]. The constraints can be represented in a

6For simplicity the argument θ� is omitted. Nevertheless it should be clear that αp� j depends on θ� and the
linearization points.

7We assume that ∑P
p�1 np� j are big enough such that the error of rounding np� j to the closest integers are

negligible. Hence the traffic mix can be roughly maintained.
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# VP (P) # types (J) M # homogeneous VP
2 2 3 � 1
2 3 4 � 0
3 2 4 � 2
3 3 5 � 1
3 4 6 � 0

Table 3.1: Number of VPs carrying homogeneous traffic.

compact form as A�n � b��n � 0, where�n � �np� j�p � 1� ����P� j � 1� ���JT is a vector repre-
senting the number of connections on every VPs. In addition, we let np � �np� j� j � 1� ���JT

denote the number of connections on VP p.
Note that A is an M�N matrix, where M � P�J�1 and N � PJ.8 It can be shown

that a vertex�n� of the feasible set contains at most rank�A� non-zero components [30] and
rank�A��M. In other words, there exists a solution to (3.15) which contains at least N�M
zero components, where a zero component, i.e., np� j � 0, means that VP p does not carry
Type j traffic. This observation sheds light on how the traffic might be carried by the VPs
in order to maximize the admissible number of connections subject to a pre-defined mix.

For example, one can determine the number of VPs carrying homogeneous traffic
by assessing the number of non-zero components on�n�. Since each VP will carry some
traffic, there exists at least one n�p� j � 0� j � 1� ����J for each VP p. Therefore, at most
rank�A��P additional positive n�p� j can be spread out across P VPs. If rank�A�� 2P, then
it is clear that some VPs have to carry homogeneous traffic. In Table 3.1, we show the lower
bound on the number of homogeneous VPs for various numbers of VPs and traffic types.
For instance, when 2 traffic types are routed onto 3 VPs, we find that at least 2 VPs will
carry homogeneous traffic.

One can interpret min�P� rank�A��P� as the maximum number of heterogeneous
VPs. Given the fact that rank�A� � J �P� 1, so min�1� J�1

P � is an upper bound on the
fraction of VPs carrying heterogeneous traffic. As the ratio J

P decreases, i.e., the number of
VPs is greater than the number of traffic types, more VPs are likely to carry homogeneous
traffic.

In addition, 1� J�1
P also gives an upper bound on the “average” number of traffic

types carried on each VP, suggesting that only a small subset of the J traffic types will be
present on each VP when P is large. In particular, when P � J, the “average” number of
traffic types on each VP is smaller than 2.

The key insight is that it is not advantageous for each VP to carry all traffic types
in this heterogeneous set-up. To maximize the throughput, only a small number of traffic
types, or even homogeneous traffic will be present on each VP. This suggests that, in prac-
tice, optimized multiservice networks with sufficient routing diversity might end up looking
like multiple logical networks which are segregated by service type.

8Here we ignore the case of P � 1 or Q � 1, thus N � M.
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Routing with nonlinear admissible region. We have discussed the characteristics of a
routing policy for multiple VPs with linearized admissible regions. Next we show that
the same characteristics still hold even if the admissible region’s boundary of each VP is
convex.

Given nonlinear admissible regions, the maximization problem can be similarly
formulated but with new capacity constraints. The capacity constraints are now determined
by the nonlinear admissible region’s boundary and the feasible set F associated with these
capacity constraints is no longer a polytope. Nevertheless, there still exists an optimal
allocation �n� which maximizes the objective function f ��n� � ∑J

j�1∑
P
p�1 np� j and satisfies

the capacity as well as the traffic mix constraints.
Notice that the components of�n� consist of P points (i.e., n�p), and each n�p is on the

admissible region’s boundary of VP p. Therefore one can linearize the admissible region
of VP p at the point n�p. Based on these linearized admissible regions, we can formulate a
linear programming problem similar to (3.15) with a new feasible set F

�

which is a polytope.
Note that F

�

is a subset of the original feasible set F because linearization is a
conservative approximation of the admissible region of each VP, see e.g., Fig. 3.4. Hence
�n� must also be a maximizer to this linear programming problem with respect to F

�

. Indeed,
otherwise one finds a contradiction to the optimality of�n� for the nonlinear problem.

In addition, based on basic properties of linear programming, there exists a vertex
(might be�n� itself)�v� F

�

such that f ��v� � f ��n�� [37, 30]. Therefore,�v is also a maximizer
of f ��� with respect to both F and F

�

. Since�v is a vertex of polytope F
�

, it also contains
at most P� J� 1 non-zero components and all the aforementioned characteristics of the
routing policy follow exactly, e.g., the characteristics for the number of homogeneous and
the “average” number of traffic types on each VP are similar.

3.4.4 Routing with Dynamic Call Arrivals

Suppose that calls of each traffic type arrive as Poisson processes with rates λj and each
type of call has an arbitrary holding time distribution with mean µ�1

j . We will consider
the routing problem with the objective of minimizing blocking probabilities. The results in
�3.4.3 suggest that connections need to be allocated to VPs carefully and appropriate traffic
mixes need to be maintained on each VP in order to maximize the admissible number of
connections. However, it is not always possible to maintain desirable traffic mixes on each
VP in a dynamic environment. Based on our observation on static route assignment that
each VP carries only a small number of traffic types when the admissible number is maxi-
mized, we propose a simple alternate routing algorithm which approximately maintains the
traffic mix on each VP around desirable operating points.

Each traffic type will be assigned a sequence of potential choices of VPs. The
routing algorithm then selects the first VP in the sequence that can carry the connection.
Alternate routing usually comes in many flavors which mainly depend on how the routing
sequence is chosen [20]. We shall design the routing sequences to account for statistical
multiplexing and traffic mixes on the VPs.

Suppose the offered loads for each traffic type are ρj �
λ j

µj
. Let f j �

ρ j

∑ j ρ j
denote

the fraction of Type j traffic. One can formulate a static route assignment problem subject
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to these fractions fj and solve for a maximum allocation�n�. The sequence of VPs to be
attempted for Type j traffic is chosen based on�n� and the following rules:

� VP p precedes VP q on the sequence if�n� indicates that VP p carries only Type j
traffic and VP q carries heterogeneous traffic.

� VP p precedes VP q on the sequence if (1) n�p� j � n�q� j, or (2) n�p� j � n�q� j and p � q
(break ties).

For example, consider a three types and three VPs example where the components n�p� j of�n�

are given by �n�1�1�n
�
1�2�n

�
1�3� � �7�28�0�, �n�2�1�n

�
2�2�n

�
2�3� � �28�0�0�, and �n�3�1�n

�
3�2�n

�
3�3� �

�0�7�36�. The sequence of VPs to be used by the routing algorithm are 2 
 1 
 3, 1 

3 
 2, and 3
 1 
 2 for Type 1, 2, and 3 respectively.

A repacking routing policy. In general the order of call arrivals might affect the rout-
ing decision and thus the efficiency of network resource. Ideally, the “optimal” routing
policy without favoring any particular traffic type is one that recomputes the best routing
decisions whenever the system status changes, e.g., new connections arrive. In particular,
such a policy might reroute (repack) connections in order to admit a new request. By doing
so, networks can admit as many connections as possible and make the most of network
resources. However, repacking may not be feasible for the connections that are already in-
progress. Nevertheless, the blocking probabilities of such a policy can be used as a measure
of comparison in evaluating the proposed routing algorithm.

3.5 Simulation Results

In this section we use simulations to evaluate the performance of the proposed algorithm
under two scenarios: two traffic types and two VPs, and three traffic types and three VPs.
We compare the call blocking probabilities achieved by a repacking algorithm to a variety
of routing algorithms including Least-Loaded Route (LLR) and Minimum-Resource Route
(MRR) algorithms. Although LLR is usually claimed to be efficient for single service
networks [23, 27], our simulations showed that in the multiservice context it can not achieve
good performance because it fails to account for the impact of traffic mix and statistical
multiplexing.

3.5.1 Two Traffic Types and Two VPs

We first consider the case of two traffic types and two VPs. As shown in Table 3.1, we found
that at least one VP carries homogeneous traffic. This property leads to different routing
sequences of VPs for each traffic type, i.e., a sequence 1
 2 for one type and 2
 1 for the
other type. As a result, each type is assigned a separate primary VP and a connection will
be sent to its primary VP if it is available. If the primary VP is unavailable, the other VP is
tried. The connection will be blocked if the second trial fails.

The proposed algorithm is compared with other algorithms under various traffic
loads which are denoted by ρ1 and ρ2 respectively. In the simulations, both traffic types are
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assumed to be On/Off with peak rates 1 and 0�5 as well as mean-to-peak ratios 10% and
90% respectively. The two VPs have an identical capacity of 25, with nonlinear admissible
regions. The routing algorithms we compare are shown in Fig. 3.17 and explained below.

A. Balanced-load scheme without re-trial. Connections of each type are sent to each VP
with equal probability. The loads sent to each VP are 1

2 �ρ1 �ρ2�.

B. Balanced-load scheme. This is the same as Algorithm A except that if the selected VP
is unavailable, the other VP is tried. That is, each connection is assigned a routing
sequence 1 
 2 or 2
 1 with equal probability regardless of its type.

C. Aggregated-load scheme. A VP will be assigned as the primary VP for both traffic
types. If the selected VP is unavailable, the other VP is tried. For example, the
routing sequence 1
 2 is always attempted by new connections regardless of type.

D. Proposed algorithm. Different traffic types are assigned different routing sequences:
1 
 2 or 2
 1.

E. Repacking scheme. Connections are repacked if this will permit a new connection to be
admitted.

In addition to the above routing algorithms, we also simulated two dynamic routing
algorithms: LLR and MRR. In LLR, a newly arriving connection is sent to the VP which
has the largest free capacity9. By contrast, in MRR, a connection is sent to the VP where
minimum additional bandwidth is required to carry the new connection given the current
load and statistical multiplexing. If the selected VP is unavailable, the other VP is tried.

Figure 3.17: Four routing algorithms.

Comparison of blocking probabilities. The simulation results is shown in Table 3.2,
where p1 and p2 are the blocking probabilities of Type 1 and Type 2 traffic respectively.
Table 3.2 shows that Algorithm A has the worst overall blocking probabilities. This is
because Algorithm A uses static load sharing without retrying the other path if the selected
path is unavailable. Hence a connection may be blocked unnecessarily. The difference in
blocking probabilities of Algorithms A and B strongly suggests that re-trial is worthwhile in
order to improve the performance. Excluding the repacking algorithm (E), Algorithm D has
the smallest blocking probabilities for both traffic types under all traffic load combinations,
which echos the observation found in the static route assignment problem, that unbalanced
traffic mixes on the VPs will improve the efficiency of statistical multiplexing and the usage

9The free capacity is the difference between VP’s capacity and the minimum bandwidth required to carry
the connections already on the VP.
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Loads A B C D E LLR MRR
�ρ1�ρ2�
(40,40) p1=0.0597 p1=0.03099 p1=0.03120 p1=0.00221 p1=0.00081 p1=0.03024 p1=0.02891

p2=0.0837 p2=0.05027 p2=0.04743 p2=0.00222 p2=0.00158 p2=0.05149 p2=0.04283
(45,30) p1=0.0269 p1=0.00791 p1=0.00804 p1=0.00044 p1=0.00013 p1=0.00760 p1=0.00720

p2=0.0420 p2=0.01477 p2=0.01406 p2=0.00048 p2=0.00014 p2=0.01580 p2=0.01212
(30,45) p1=0.0498 p1=0.02280 p1=0.02289 p1=0.00148 p1=0.00076 p1=0.02258 p2=0.02257

p2=0.0627 p2=0.03149 p2=0.03043 p2=0.00149 p2=0.00137 p2=0.03201 p2=0.02767
(50,25) p1=0.0197 p1=0.00462 p1=0.00465 p1=0.00069 p1=0.00033 p1=0.00438 p1=0.00419

p2=0.0326 p2=0.00913 p2=0.00878 p2=0.00095 p2=0.00037 p2=0.00981 p2=0.00765
(25,50) p1=0.0542 p1=0.02796 p1=0.02853 p1=0.00289 p1=0.00169 p1=0.02867 p1=0.02971

p2=0.0655 p2=0.03405 p2=0.03282 p2=0.00290 p2=0.00279 p2=0.03458 p2=0.02990

Table 3.2: The comparison of blocking probabilities.

of VP capacities. Notice that the call blocking probabilities of Algorithm D are close to
those achieved by the repacking algorithm (E).

Intuitively an efficient multiplexing reduces the bandwidth reservation on each VP,
which in turn reduces the chance of blocking. This is why the proposed algorithm has
the best performance. Algorithms B and C have roughly the same blocking probabilities
due to the fact that the VPs end up having similar traffic mixes. The traffic load ratios on
each VP of Algorithm B and C are roughly equal to the original offered loads ratio ρ1

ρ2
, so

multiplexing is not as efficient as that in Algorithm D. For example, when the traffic load
is �45�30�, the blocking probabilities of Algorithm D are 0�00044 and 0�00048, which are
more than a order of magnitude smaller than those achieved by Algorithm B.

We find that LLR and MRR are inferior to the proposed algorithm, and their block-
ing probabilities are close to those of Algorithm B for both types of traffic. Since LLR
and MRR fail to account for the traffic mix in making routing decisions, the traffic load
ratios are roughly equal to the original offered load ratio ρ1

ρ2
on each VP. Therefore, LLR

and MRR can not achieve as efficient multiplexing as the proposed algorithm does, which
leads to higher blocking probabilities. These observations provide some insight into how
one should extend the routing policies in circuit-switched networks to multiservice packet-
switched networks. Obviously the effect of traffic mix and multiplexing on the selected
routes should be accounted for when routing connections.

3.5.2 Three Traffic Types and Three VPs

Next we compare two alternate routing algorithms with the repacking scheme for the prob-
lem of routing three traffic types onto three VPs. For simplicity we assume the admissible
regions of VPs are linearized. The “effective bandwidth” and the “effective capacity” of
VPs are shown in Table 3.3.

E. Repacking scheme. Connections are repacked if this will permit a new connection to be
admitted.

F. Balanced-load scheme. Three sequences of possible VP choices, 1
 2
 3, 2
 3
 1,
and 3 
 1 
 2 are randomly assigned to each connection with equal probability
regardless of the traffic type. Hence the VPs are attempted in a rotary fashion.
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VP Capacity Effective Bandwidth
Type 1 Type 2 Type 3

1 100 2 2.5 3
2 100 3 4 5
5 100 2 2 2

Table 3.3: Capacity and the effective bandwidths.

Traffic loads E F G
�ρ1�ρ2�ρ3�

(33,33,33) p1=0.00150 p1=0.00868 p1=0.00174
p2=0.00190 p2=0.01180 p2=0.00238
p3=0.00190 p3=0.01418 p3=0.00306

(42,42,15) p1=0.00080 p1=0.00461 p1=0.00129
p2=0.00110 p2=0.00613 p2=0.00179
p3=0.00110 p3=0.00748 p3=0.00223

(60,24,24) p1=0.00340 p1=0.01773 p1=0.00528
p2=0.00430 p2=0.02329 p2=0.00724
p3=0.00430 p3=0.02825 p3=0.00891

(50,30,15) p1=0.00035 p1=0.00321 p1=0.00055
p2=0.00045 p2=0.00429 p2=0.00077
p3=0.00035 p3=0.00531 p3=0.00094

(90, 9, 9) p1=0.00240 p1=0.00637 p1=0.00226
p2=0.00240 p2=0.00818 p2=0.00301
p3=0.00240 p3=0.00983 p3=0.00370

( 3,45,45) p1=0.00270 p1=0.00692 p1=0.00266
p2=0.00370 p2=0.01027 p2=0.00425
p3=0.00440 p3=0.01265 p3=0.00547

Table 3.4: Comparison of blocking probabilities.

G. The proposed algorithm. Each connection is assigned a sequence of possible VP choices
based on its type. The sequences are computed using the rules discussed in �3.4.4.

The comparison of blocking probabilities are shown in Table 3.4. The blocking
probabilities of the proposed algorithm (G) are pretty close to those of Algorithm E. In fact,
the routing sequences of the proposed algorithm are intended to approximate the effect of
“repacking.” These results show that “appropriate” traffic mixes on each VP were indeed
achieved by carefully selecting the routing sequence for each traffic type.

The load-balancing algorithm (F) resulted in worse blocking probabilities than the
proposed algorithm. For example, when the traffic loads are �54�30�15�, the p1 of Algo-
rithms E and F are 0�00035 and 0�00048 respectively, but p1 of Algorithm G is 0�00321.
The difference is almost a order of magnitude. The discrepancy in blocking probability is
due to the traffic mix which in turn affects the usage of VP capacities.
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Traffic loads Routing Sequence
�ρ1�ρ2�ρ3� Type 1 Type 2 Type 3
(15,30,60) 2 
 1 
 3 1 
 2
 3 3
 1 
 2
(18,30,60) 2 
 1 
 3 1 
 2
 3 3
 1 
 2
(15,30,72) 2 
 1 
 3 1 
 2
 3 3
 1 
 2
(15,30,48) 2 
 1 
 3 1 
 2
 3 3
 1 
 2
(18,24,60) 2 
 1 
 3 1 
 2
 3 3
 1 
 2
(12,24,72) 2 
 1 
 3 2 
 1
 3 3
 1 
 2

Table 3.5: Routing sequence under various traffic loads.

3.5.3 Robustness & Linearization

In our proposed algorithm, the routing sequences of each traffic type depend on the relative
magnitudes of the components on�n�. When the offered traffic loads (mix) are perturbed,
the sequences are usually preserved. Hence the proposed routing algorithms are robust
against gentle fluctuations of traffic loads or measurement errors. For example, when the
traffic loads in �3.5.2 are perturbed around an operational point �15�30�60� by 20%, most
of the computed routing sequences stay unchanged, see Table 3.5.

Suppose in the simulations of �3.5.2 the linearization of admissible regions are iden-
tical on all the VPs, i.e., the effective bandwidths of each traffic type are identical across
the VPs, then Algorithms E, F and G will have the same performance. In fact, the choice of
routing sequence becomes irrelevant. In this scenario, there exists a resource pooling effect,
see e.g., [33] and three VPs “look” like a big VP of larger capacity with the same effective
bandwidth for each traffic type. Hence it might be advantageous to linearize the admissible
regions identically on all VPs in order to simplify the routing algorithms.

In [6], an argument was made that the boundaries of admissible regions can be lin-
earized without significantly reducing the achievable “revenue” in high-capacity networks.
However, unless the linearization points are chosen carefully and appropriate routing poli-
cies are used to keep the networks around the desired operational regime, linearization can
lead to a loss in overall revenue. Note that a desirable linearization point n�p is mainly de-
termined by the offered loads from different traffic types which can be controlled through
routing decisions.

3.6 Summary

In this chapter we have attempted to clarify problems related to resource allocation and
routing in integrated services networks. In particular, we were motivated by questions that
arise in managing heterogeneous traffic types with possibly different QoS requirements
using VPCs as an intermediate resource management layer.

The first natural question that arises is whether heterogeneous traffic with different
QoS requirements should be segregated on distinct VPs or aggregated on a single VP but
given the most stringent QoS requirement. Based on a simple model our analysis shows
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that the answer is certainly not straightforward, i.e., in some cases, it is advantageous to
aggregate while in others it is better to segregate. For this model a criterion for making
such decisions is derived which depends on the traffic characteristics, traffic mix, and QoS
requirements. Similar behavior is likely to hold for more general setups, where the essential
tradeoff is between achieving improved statistical multiplexing by aggregating but losing
efficiency due to provisioning for the most stringent QoS.

Given a QoS requirement, such as cell loss at a link, the set of admissible numbers
of connections of various types is very likely to have a nonlinear boundary. This reflects
the role that the traffic mix plays in determining the effectiveness of statistical multiplexing
of such traffic. We argue that although such nonlinearities disappear as the link bandwidths
become larger, they are nevertheless present in systems multiplexing moderate numbers of
connections, as might be expected when network resources are partitioned using VPs. The
second natural question is to consider the impact of statistical multiplexing and relative
traffic mix in routing connections through the network.

Indeed we argue that statistical multiplexing, might encourage “users” to route con-
nections along heavily loaded links or VPs, since increased loads are likely to reduce the
marginal bandwidth requirements for the new connection. This observation motivated us to
consider whether this approach might also be beneficial from the network’s point of view.
In a network with heterogeneous traffic types, we found that an aggressive strategy seek-
ing the most loaded resource is however not as effective as a more careful allocation of
resources that accounts for the traffic characteristics and mix. Indeed we show that in both
a static and a dynamic routing model with heterogeneous traffic types, careful allocations
or decisions can lead to a significant decrease in the required bandwidth or the blocking
probability that connections will experience.

In summary, we have obtained following observations and insight:

� The “marginal” bandwidth requirement for an additional connection depends on the
current load and the mix of traffic on the path. Judicious route selections may lead to
a better system performance.

� VP dimensioning depends on both the traffic characteristics and the QoS require-
ments. Integrating traffic with different QoS requirements on the same VP is not
necessarily a bad idea, since the increased benefit of multiplexing across traffic types
may outweigh the possible loss caused by providing a QoS that is more stringent than
necessary to some traffic.

� The “effective bandwidth” for each traffic type is determined by the linearization
of admissible region’s boundaries. The routing decisions may be affected by the
possibly different “effective bandwidths” associated with the same traffic type on
different links. Hence the linearization can affect the routing decision. Alternatively,
the routing decisions may change the traffic loads on each link, which in turn could
also affect the linearization.

� It is not always advantageous for the VPs connecting a given source-destination pair
to carry all traffic types. To maximize the throughput, only a small number of traffic
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types, or even homogeneous traffic are present on each VP. This suggests that in
practice multiservice networks might end up looking like multiple logical networks
which are segregated by service types.

� A simple alternate routing algorithm which accounts for traffic mix can achieve a
better blocking probability than LLR.

3.7 Appendix

3.7.1 Proof of Lemma 3.4.1

Proof: To determine the maximum length of ST with slope f2
f1

, we first draw an auxiliary

line passing the origin O with a slope � f1
f2

, see Fig. 3.18. Let �ST� denote the length of ST .

It is obvious that �ST� � �SM�� �MT�. Suppose �OM� � x, both �SM� and �MT� are
(strictly) convex functions of x since the admissible region’s boundary is (strictly) convex.
In turn, �ST� is also a (strictly) convex function of x. Hence the problem is indeed to
maximize a (strictly) convex function of x and the (unique) maximizer will occur at the
boundary of feasible interval of x, namely the optimum ST contains intercept points of the
joint admissible region’s boundaries with the coordinate axis. That is, one VP will carry a
single type of traffic. �

Figure 3.18: Determining the length of ST .

3.7.2 Proof of Lemma 3.4.2

Proof: It is clear that when VP 1 is large enough to carry all the traffic, the total bandwidth
reservation is minimized if all the traffic are sent to VP 1. Below we consider what happens
when this is not the case. It is easy to see that S � �s1�s2� will be located on the admissible
region’s boundary in order to maximize V1 � s1σ2

1 � s2σ2
2. Along the boundary, s2 is a

convex function of s1. It follows that V1 � s1σ2
1 � s2σ2

2 is also a convex function of s1
along the admissible region’s boundary, and V1 is maximized when S is at both ends of
the boundary. However, recall that n1�n2 are fixed, namely the slope and length of ST are
fixed, so the location of ST might be constrained by the admissibility of point T on the third
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quadrant, see Fig. 3.13 for examples. Hence, V1 is maximized when ST is located on the
boundary of its feasible set, i.e., at least one of the two points S and T is on the coordinate
axis. That is, one VP will carry a single type of traffic. �
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Chapter 4

Explicit Rate Flow Control of ABR
Traffic

4.1 Introduction

Asynchronous Transfer Mode (ATM) networks are geared towards supporting and integrat-
ing a variety of communication services which might broadly be divided into those based
on reservation, e.g., Constant and Variable Bit Rate (CBR,VBR) services and best effort
services, such as Unspecified Bit Rate (UBR) and to some extent Available Bit Rate (ABR)
services. Among the latter, ABR service promises to play an important role in supporting
high bandwidth data as well as Internet traffic, such as TCP traffic. The rationale for in-
cluding ABR is to provide an economical and flexible way to carry data traffic, as might be
needed to simplify adoption of ATM to support delay adaptive real-time applications [4].
From the service provider’s point of view, ABR traffic can be used to enhance utilization by
directing sources to make the most of the network’s available capacity subject to minimum
cell rate and cell loss guarantees.

It has been shown [42, 43] that TCP performs poorly over ATM networks when
there is congestion and ATM cells from multiple TCP packets are dropped. Significant
performance degradation results from “corrupted” TCP packets since they 1) waste network
bandwidth because they are useless to TCP upon arriving at their destination hosts, and 2)
trigger retransmission from the sources to make the effective throughput even lower. Several
algorithms have been proposed for dealing with this throughput collapse problem, such as
packet discard strategies and tuning of the TCP flow control mechanism [43]. However,
instead of tuning the concurrent feedback loops of TCP and ABR, we believe that it is
important to ensure low cell loss inside the networks, so as to avoid the throughput collapse.
This chapter aims to analyze resource requirements and proposes simple design rules to
provide ABR service with controlled loss in a dynamic environment.

ABR service is likely to use rate-based feedback flow control1, i.e., adjusting the
transmission rates of sources based on the current network state. Feedback control in the
context of wide and even local area networks is plagued by the potentially large source

1Rate-based feedback flow control had been chosen by ATM Forum in 1995.
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transmission rates relative to the propagation (as well as processing and queuing) delays in
the system, making the responsiveness of such mechanisms sluggish and typically requiring
large buffers to absorb traffic fluctuations. In general, when ABR sessions have relatively
long bursts of traffic to send, one might hope to have enough time to properly adapt their
transmission rates—such sessions are said to be greedy. By contrast, traffic with small burst
sizes relative to the control time scales, e.g., some WWW connections, are said to be bursty
sessions. Feedback control would typically be ineffective for individual bursty connections
though it might still work reasonably well on an aggregated basis.

There are two types of rate control mechanisms. The network can determine and
enforce a bound on the transmission rate for each ABR session based on the current state of
the system or may rely on exchanging minimal (binary) congestion indications to incremen-
tally adjust source transmission rates; for a survey see [4, 40, 28] and for a representative
analysis see [5]. These two mechanisms are not incompatible and in fact future networks
might use a natural combination of binary feedback adjustments with explicit rate bounds
to adjust source transmission rates, e.g., the Proportional Rate Control Algorithm (PRCA)
and Enhanced PRCA (EPRCA) discussed in [4]. In the PRCA the source continuously
decreases its cell rate in a multiplicative fashion—proportional to its current cell rate. It
increases its cell rate linearly only after it receives a positive feedback which indicates the
network is not congested. If the feedback is negative or lost, the source will keep decreas-
ing its cell rate. EPRCA, an improved version of the PRCA, provides an Explicit Rate (ER)
feedback as a dynamic upper bound on the cell rate calculated by the PRCA. In other words,
the new cell rate will be the minimum of the calculated rate, based on single bit feedback,
and the most recent explicit rate received from the network.

There are other variations of the PRCA, aimed at enhancing its performance, e.g.,
with respect to fairness. For example, the network can send congestion indications selec-
tively to particular sources rather than all sources [48]. However, slow adaptation to the
network’s state and instability are two problems with algorithms using single bit feedback.
In [5] it was shown that such control mechanisms result in an oscillating queue and traffic
flows. By contrast, using explicit rate feedback allows switches to specify a desirable traffic
rate, so sources can rapidly adapt their traffic.

Several algorithms have been suggested for computing the explicit rate. In general,
the computation is based on the queue length, see e.g., [11, 17, 2] and/or the arrival rates, see
e.g., [48, 29, 10]. The former uses the difference between queue length and a target queue
threshold to adjust the explicit rate. Algorithms using arrival rates to compute the explicit
rate do so by dividing the capacity among sessions in a “fair” manner without considering
the queue length. In order to divide capacity “fairly” among sessions, the switches need
to maintain rate/state information for each session. The computational complexity incurred
by the per-source accounting is an issue in implementation.

This chapter extends an approach first proposed in [8], which was inspired from
[19]. In �4.2 we propose a computationally efficient algorithm for computing the explicit
rate by considering queue length, source activity, and available capacity. In practice one
might expect a mix of traffic with various burst scale properties to use ABR service, and it
is of interest to understand the impact that both the unpredictable nature of source transmis-
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sions and spare capacity in the network will have on flow control. In �4.2 we also consider
a simple model for a flow control mechanism which accounts for such fluctuations. In �4.3
we show that the lossless guarantee can be met by reserving a minimum capacity and buffer
in the bottleneck node. We also show in �4.4 that when sources are greedy, the queue length
and explicit rate will be asymptotically stable around the equilibrium points. In principle
one might argue that by statistically multiplexing a large number of bursty ABR sessions on
a given link, one can achieve relatively high utilizations. In �4.6 we articulate this point of
view and suggest how one might hope to optimistically use this to deal with bursty ABR ses-
sions. The balance of this chapter includes further discussion of the proposed flow control
mechanism, preliminary simulations, and consideration of implementation requirements in
the context of ABR service.

4.2 Explicit Rate Flow Control—a Fluid Model

In this section we consider a “fluid model” wherein for simplicity we assume that the in-
stantaneous transmission rates of sources and links are well-defined. In practice these cor-
respond to windowed estimates of the cell rates in the system. We further assume the
Minimum Cell Rates (MCR) of ABR sessions are zero. The case of positive MCR will be
discussed in �4.5.3.

Figure 4.1: Network bottleneck model.

Network model. We simplify our analysis of the network dynamics by considering a
single “bottleneck” buffered link shared by at most nmax concurrent ABR sessions. We
shall assume that the worst case delay, including both propagation and queuing time, from
the jth source to the bottleneck is τf

j and then back is τb
j for a total round trip delay of τj�

Let τ � maxnmax
j�1 τ j and ∆τ � maxnmax

j�1 �τ� τ j� be the worst case round trip delay and worst
case delay discrepancy respectively.

The bottleneck model is shown in Fig. 4.1, where c�t� denotes the instantaneous
capacity available at a bottleneck link. We further assume that the rate at which the available
capacity can decrease is lower-bounded, i.e., dc�t��dt ��ρ� Changes in c�t� are primarily
due to fluctuations in the aggregate bandwidth requirements of current reserved services,
e.g., VBR sessions sharing the link, as well as changes in the number of such sessions.
As the number of sessions sharing high capacity network links becomes large, one might
hope that statistical averaging would result in slow fluctuations in the aggregate bandwidth
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requirement of reserved services relative to the link capacity. Drops in the available capacity
due to sudden increases in the number of VBR connections may be controlled by exerting
flow control on call admissions. Both of these mechanisms affect the magnitude of ρ and
are further discussed in �4.6 and �4.7.

Source model. Let r j�t� denote the instantaneous transmission rate for the jth session
at time t� Throughout its lifetime a source’s transmission rate can never exceed the most
current explicit rate indication e�t� 2 received from the network, i.e., rj�t� � e�t� τb

j�. We
introduce a threshold r� to discriminate among sources with different “activity” levels.

� If e�t � τb
j�� r�, we say a session is “on” if its current transmission rate exceeds r�,

i.e., r j�t� � r�� otherwise the session is said to be “off.” Sessions which are “on” are
contending for available capacity.

� If e�t�τb
j�� r�, then the available capacity of the link is low, that is, the link appears

to be congested and all sessions are considered to be “on.”

Moreover we will assume that once a session’s transmission rate exceeds r�, at most a
linear rate of increase, g, can be supported. Fig. 4.2 shows the characteristics of the source
transmission rate as discussed above.

Figure 4.2: Source model characteristics.

This mechanism captures a possibly desirable initial cell rate wherein sources can
typically jump start their transmission up to a rate r� after being idle and may thereafter
ramp up linearly. Note that sources desiring to transmit at a rate below the threshold r� may
do so freely, which should expedite short bursty transmissions. By contrast a persistent
session wishing to transmit at high rate may certainly do so but must give the network
time to detect that it is becoming a major contender for capacity in the network, hence
the ramp-up above r� is constrained. In addition, such linear ramp-up constraints might
be desirable in order to integrate single-bit and explicit-rate flows control mechanisms in a
heterogeneous environment.

2Here e�t� means the explicit rate , not the envelope function of a deterministically constrained traffic.
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Flow control mechanism. The dynamics of the bottleneck queue are given by :

q̇�t� �

�
� ∑nmax

j�1 r j�t� τ f
j �� c�t�� q�t� � 0��

∑nmax
j�1 r j�t� τ f

j �� c�t�
��

� q�t� � 0�
(4.1)

with �x�� � max�x�0� and where the transmission rate of each session is bounded by the
latest explicit rate received, i.e., rj�t�� e�t� τb

j��

The explicit rate e�t� is computed based on the current network state which includes
the queue length, q�t�, the current available capacity, c�t�, and delayed information about
the current number of sources that are “on.” The number of “on” sources is given by

n̂�t� �
nmax

∑
j�1

1�r j�t� τ f
j �� r��1�e�t� τ j�� r� � (4.2)

where 1�� is the indicator function. The first term corresponds to the sources with trans-
mission rates exceeding r�, while the second term corresponds to the scenario where the
bottleneck node appeared to be congested, indicated by e�t � τj� � r�. In that scenario a
session was assumed to be “on” regardless of its rate.

The explicit rate is computed so that the net input into the network approximately
tracks a delay-free reference model for the queue dynamics given by

q̇�t� � f �q�t�� e.g., f �q�t�� ��k�q�t��q���

where the drift f �q�t�� is selected to drive the reference queue towards a target level q�� The
bottleneck queue computes e�t� so as to approximate this drift assuming the sources that
were “on” ( with at least one being on, i.e., n̂�t��1 ) will transmit at this new rate, i.e.,

f �q�t�� � e�t��n̂�t��1�� c�t� � e�t� � f �q�t���c�t�
n̂�t��1 � (4.3)

Thus the explicit rate is based on the available capacity as well as the queue’s state, which
as suggested in [1] is necessary to ensure stability. Note that a single e�t� is computed for
all ABR sessions carried by the bottleneck link, which significantly reduces the implemen-
tation complexity of this algorithm.

4.3 Guaranteeing No Loss and Positive e�t�

In this section we show a minimum amount of buffer bmin must be reserved at the potential
bottleneck in order to ensure no loss. In addition, a minimal service rate cmin also needs to
be reserved in order to guarantee that the explicit rate is non-negative since the transmission
rate can not be less than zero. For the remainder of this chapter, we assume the drift function
is linear, i.e., f �q�t�� ��k�q�t��q��� where k � 0, and show that

bmin � q�� w
k ��kq��w�τ and cmin � k�bmin�q��� (4.4)

where w � τρ�nmax�r��gτ�.
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Lemma 4.3.1 The aggregate arrival rate into the queue at time t is bounded by f �q�t �
τ��� c�t� τ��nmax�r��gτ�.

Proof: Consider the aggregate traffic rate reaching the bottleneck queue at time t. We can
subdivide the contributing sources into the n̂�t � τ� that were thought to be “on” at time
t� τ� and those that were thought to be “off”:

nmax

∑
j�1

r j�t� τ f
j � �

nmax

∑
j�1

1�r j�t� τ� τ f
j �� r� OR e�t� τ� τ j�� r� r j�t� τ f

j �� �� �
“on” sources

�
nmax

∑
j�1

1�r j�t� τ� τ f
j �� r� AND e�t� τ� τ j�� r� r j�t� τ f

j �� �� �
“off” sources

�

where the arguments of indicator functions are based on the two cases captured in (4.2).
Using the explicit rate constraint and the bound on the ramp-up of sources’ trans-

mission rates, we can establish that

r j�t� τ f
j � � r j�t� τ� τb

j��g��t� τ f
j �� �t� τ� τb

j��

� e�t� τ��g∆τ�

Now distinguishing between the sources which were “on” and accounting for the worst case
linear growth of “off” sessions from r�, we get the following bound on the aggregate rate
into the queue at time t:

nmax

∑
j�1

r j�t� τ f
j � � n̂�t� τ��e�t� τ��g∆τ�� �nmax� n̂�t� τ���r��gτ�

� f �q�t� τ��� c�t� τ�� n̂�t� τ�g∆τ��nmax� n̂�t� τ���r��gτ�

� f �q�t� τ��� c�t� τ��nmax�r
��gτ�� (4.5)

�

Notice that the upper bound on arrival rate includes transient bursts caused by the
“off” sessions turning “on” between t� τ and t. The feedback mechanism guarantees that
the arrival rates of such bursting sessions will be regulated no later than τ seconds after the
bottleneck node detects them. From the queue’s perspective, such bursts will last at most τ
seconds and only contain a finite amount of traffic, so the sudden increase in queue length
due to such bursts can be upper-bounded.

Using (4.5) and (4.1), as well as the variability constraint on the available capacity,
we find the following differential inequality :

q̇�t� � f �q�t� τ��� c�t� τ�� c�t��nmax�r
��gτ�

� f �q�t� τ��� τρ�nmax�r
��gτ�

� f �q�t� τ���w� (4.6)

where w � τρ� nmax�r�� gτ�. Note that ρ is the variation of available capacity, or equiv-
alently the burstiness of VBR connections sharing the same link. In the worst case, τρ
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corresponds to the maximum variation in the arrival rate of VBR traffic over τ seconds.
Thus the worst case queue growth is driven by three factors: 1) the drift computed from
delayed queue information, 2) the unexpected burstiness of VBR connections, and 3) the
unexpected bursting ABR connections.

The bound in (4.6) is conservative as it is based on the assumption that capacity is
dropping by ρτ and nmax sessions are turning “on” at the same time. Nevertheless, it can be
used to derive an upper bound on queue length.

Lemma 4.3.2 The queue length is upper-bounded by qmax � q�� w
k ��kq��w�τ�

Proof: Note that the upper bound (4.6) on q̇�t� depends on the queue length at t � τ. If
q�t� τ�� q�� w

k , it follows that f �q�t� τ����w and q̇�t�� 0. In other words, the queue
length has to stop increasing τ seconds after it exceeds q�� w

k . Consider arbitrary time
intervals during which the queue length exceeds q�� w

k ; we call such periods “overshooting
cycles.” We first show an upper bound on the queue length over such “overshooting cycles.”

Without loss of generality, let t � 0 be the beginning of an “overshooting cycle” and
q�0� � q�� w

k . Since the queue length exceeds q�� w
k , we know q̇�t� � 0, for t � τ on the

“overshooting cycle.” To compute the maximum queue length qmax over an “overshooting
cycle,” it suffices to consider the worst case queue growth, see Fig. 4.3, on the interval �0�τ�:

q�t� � q��
w
k
�
� τ

0
f �q�t� τ���w dt (4.7)

� q��
w
k
�

� τ

0
�kq��w� dt

� q��
w
k
��kq��w�τ� qmax�

We have shown that qmax is an upper bound on the queue length over an “overshooting

Figure 4.3: An upper bound on the queue length.

cycle.” For intervals other than “overshooting cycles,” the queue length does not exceed
q�� w

k , thus qmax is an upper bound on the queue length. �

In order to guarantee that no loss occurs, we need to reserve a buffer of size

bmin � q��
w
k
��kq��w�τ� where w � τρ�nmax�r

��gτ�� (4.8)

In addition, we need to reserve a minimum capacity cmin to guarantee non-negative e�t�.
Indeed, to ensure e�t� � 0, we require that f �q�t�� � c�t� � 0. Since the minimum of
f �q�t�� corresponds to the largest queue length, a capacity cmin �� f �qmax� � k�bmin�q��
is sufficient to ensure non-negative e�t�.
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By modifying the drift function f ���, we can change the minimum buffer/capacity
requirements. This is further discussed in �4.7.3.

4.4 Asymptotic Stability

In this section we discuss the stability of the proposed algorithm in a fixed environment,
i.e., the number of sessions and capacity are both fixed and all the sessions are greedy. In
particular we analyze the impact of the round-trip delay, drift function f ���, and the ramp-
up constraints on the stability of the system. We assume that n greedy sessions share a link
with fixed capacity c�t� � c � cmin. In other words, the sources attempt to track the latest
explicit rate indications. Hence in the following analysis, r� plays no role in distinguishing
source activity—sources are always assumed to be “on.”

4.4.1 Linear Feedback

We shall first relax the ramp-up constraint on the sources and discuss the stability of the
system. If we take derivative on both sides of “e�t� � f �q�t���c

n ” with respect to t, it follows

that ė�t� � �kq̇�t�
n . Now substituting into (4.1), we find that e�t� is governed by a delay-

differential equation given by

ė�t� ��k
n
�

n

∑
i�1

e�t� τi�� c�� (4.9)

An equivalent system for (4.9) is shown in Fig. 4.4, where G�s� � 1
s D�s�, and D�s� �

∑n
i�1 e�sτi models the feedback delays. The model shown in Fig. 4.4.(b) is a linear feedback

Figure 4.4: The control system model and its equivalent.

control system and its stability can be verified based on the frequency response of G�s�
using the Nyquist criterion [50]. By contrast, one can take a transfer function approach and
consider the location of the transfer function’s poles, i.e., the roots of 1�k

n G�s�, see e.g.,
[11, 2, 17]. However, it is usually nontrivial to find the poles of such transfer functions. In
the following we consider the stability of this system based on how the frequency response
of G�s� encircles the Nyquist point z ��n

k . The Nyquist plot of G�s� is determined by

G� jω� �
n

∑
i�1

e� jωτi

jω
�

n

∑
i�1

��sin�τiω�
ω

� j
cos�τiω�

ω
��
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Since
��� sin�ωτi�

ω

��� � τi, it follows Re�G� jω�� � �∑n
i�1 τi. Thus the Nyquist plot of G� jω�

always resides on the right hand side of the vertical line z ��∑n
i�1 τi on the complex plane.

If we choose the Nyquist point to be z ��n
k � �∑n

i�1 τi, then G� jω� will stay away from
circling the Nyquist point at all. As a result, k

n ∑
n
i�1 τi � 1 is a sufficient condition to ensure

the asymptotic stability of the system.
Since the ramp-up of sources is not constrained, the cmin in �4.3 can not be applied

to ensure e�t� � 0. Thus we have a different requirement on cmin to ensure that e�t� is
well-defined, i.e., does not become negative, and thus prevents our model from assuming
negative source rates.

Lemma 4.4.1 For the system in Fig. 4.4.(a), c � cmin � k2q�τ is a sufficient condition to
ensure e�t�� 0.

Proof: See Appendix 4.10.1.

4.4.2 Nonlinear Feedback

Next we discuss the stability of the proposed algorithm subject to source ramp-up con-
straints. We shall use the result in �4.4.1 as a stepping stone and take a similar approach.
Consider the nonlinear system shown in Fig. 4.5. The system is similar to the one in
Fig. 4.4 except the block showing that ṙ�t� � min�ė�t��g�, i.e., the ramp-up of sources is
constrained.

Figure 4.5: The non-linear model with constraints.

Lemma 4.4.2 For the system in Fig. 4.5, k
n ∑

n
i�1 τi � 1 is a sufficient condition to guarantee

the asymptotic stability of the system.

Proof: See Appendix 4.10.2.
We have shown in �4.4.1 that k

n ∑
n
i�1 τi � 1 is a sufficient condition for ensuring the

asymptotic stability in the linear feedback case. The same condition also holds for our pro-
posed algorithm where the source ramp-up is constrained. Note that the ramp-up constraint
g will affect the minimum buffer requirement in �4.3. Hence we can change g to meet
different buffer requirements without affecting the stability. Another useful property is that
this condition only depends on the summation of all ABR session’s round-trip delays (or
equivalently the average round-trip delays among all sessions), rather than their individual
values. This means that variation in each session’s round-trip delay can be tolerated as long
as the average satisfies the stability condition.
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4.5 Steady State and Fairness

In the previous section we showed the asymptotic stability of our proposed mechanism
under the greedy source assumption. Next we consider its steady state characteristics. We
shall focus on the dynamics of bottleneck link in response to our control mechanism.

4.5.1 Steady State Characteristics of Greedy Sources

In steady state the derivatives of system variables go to zero, i.e.,

ė�∞� � lim
t�∞

ė�t� � 0 and q̇�∞� � lim
t�∞

q̇�t� � 0�

If ė�∞� � 0, then from (4.9) it follows that ne�∞� � c. Hence f �q�∞�� � 0 and q�∞� � q�.
As a result, the system converges to e�∞� � c

n and q�∞� � q�. It should be clear that
available capacity of a bottleneck link is partitioned fairly among sources which are “on”
and greedy.

4.5.2 Impact of Constrained Flows

Next we consider how the bottleneck link responds to the status in the other parts of the
network. Suppose some sessions are not able to send traffic at the allocated explicit rate,
i.e., are constrained elsewhere in the network. These constrained sessions will cause the
aggregate arrival rate to be smaller than expected, thus the queue length will decrease.
Nevertheless, the drift function f ��� in (4.3) aims to bring queue length towards the target
level, so it will compensate for this queue changes by increasing e�t�. The increased e�t�
allows other sessions to send traffic at even higher rates, so the available capacity will not
wasted. In other words, the unused bandwidth of constrained sessions is re-allocated to the
greedy sessions.

Suppose m sessions are constrained by peak rates pi � r� elsewhere in the network.
In steady state the following equation would hold:

c� f �q�∞��
n

� �n�m� � c�
m

∑
i�1

pi�

It follows that f �q�∞�� � m
n�mc� n

n�m ∑m
i�1 pi and q�∞� � �0�q�� 1

k�n�m��mc�n∑m
i�1 pi��

��

so the steady state queue length lies between q� and 0 as a result of constrained traffic. Thus
in order to fully re-allocate unused bandwidth, we need q� to be greater than 1

k�n�m��mc�
n∑m

i�1 pi�. Also notice that although constrained sessions are allocated higher rates than
they really use, this will not cause network instability. Indeed all sessions have to ramp up
at a rate g, so if their constraints are suddenly removed, this will give the network time to
detect the change.

4.5.3 Sessions with Minimum Cell Rate Guarantees

A further goal in managing ABR sessions is to guarantee each session a pre-negotiated
Minimum Cell Rate (MCR) mj� as well as a fair share of the spare network capacity among
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the currently active sources. In order to achieve this, we modify the proposed mechanism
as follows.

We reserve the MCR, mj, for each session and make the worst case assumption
that a session will attempt to send traffic at a rate no smaller than its MCR. Moreover, we
modify the definition of c�t� and rj�t� such that c�t��∑n

i�1 m j and mj � r j�t� are the total
available capacity and the real transmission rate of session j respectively. In other words,
c�t� and r�t� in the previous analysis are the spare capacity and data rate in excess of the
reserved MCRs. Therefore, e�t� is the fair share of spare capacity for each session, and the
transmission rate of session j is bounded by mj � e�t�. Note that the bottleneck node will
still send the same explicit rate e�t� to each session, so the complexity of the algorithm does
not change.

The reserved MCRs are constant terms, so they have no impact on the stability
results. In this case, k

n ∑
n
i�1 τi � 1 is still a sufficient condition for asymptotic stability. The

minimum buffer requirement bmin stays the same as in (4.4), but now we need to reserve
additional capacity to satisfy minimum cell rate requirements of ABR sessions sharing the
link i.e., cmin �∑n

i�1 m j.

4.6 ABR Call Admission and Statistical Multiplexing

Feedback control will be ineffective to control the connections sending small bursts whose
durations are shorter than the control time scale. While resources are reserved to account
for such bursts, the resource utilization is usually low. In this section we consider the role
of bursty ABR sessions and the statistical multiplexing of independent bursts from such
sessions. Our goal is to show that the admissible number of concurrent ABR sessions can
be increased by relaxing the loss constraint in a controlled manner.

Lossless analysis. From the result in (4.8), one can compute the buffer requirement when
at most nmax sessions are carried with a lossless guarantee. Moreover, (4.8) can also be used
as an admission control threshold to compute the admissible number nmax of ABR sessions
subject to a fixed buffer size and lossless guarantee. Note that nmax would then be a function
of r�� g� ρ� and τ� The capacity c does not affect nmax, as long as the rate cmin is guaranteed,
but the available capacity’s fluctuation ρ plays an important role in determining nmax.

The analysis in �4.3 is based on the worst case assumption that nmax ABR sessions
are concurrently “bursting” without being detected by the node. This is conservative since it
is unlikely that all ABR sessions will “burst” at the same time. Furthermore, ABR sessions
can not keep “bursting” without being detected. The node will usually detect such sources
and reallocate the explicit rate in a round-trip delay time, τ. Hence we can exploit the
“statistical multiplexing” of ABR sessions by modeling their bursting behavior and relaxing
the loss requirement, so as to increase the admissible number of sessions from nmax to nb

max.
In short, we shall control the probability that nmax sessions out of nb

max will burst within τ
seconds.
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Controlled loss. Suppose ABR sessions alternate between “off” and “on” modes through-
out their lifetime and the distribution of the time that sources stay “off” is modeled by an
exponential distribution with a parameter λ. We further assume the distributions of each
session’s “off” time are identical and independent. We can construct a random variable Ij
as follows

I j �

�
1 if stream j jumps from “off” to “on” within τ,
0 otherwise.

Therefore, a conservative admissible number of ABR sessions subject to controlled loss
would be

nb
max � max�n � ��

n

∑
j�1

I j � nmax�� δ�

where δ is a design parameter which roughly characterizes the desired quality of service at
the buffer of the bottleneck link. From the exponential distribution it follows that ��Ij �
0� � e�λτ, and nb

max can be determined by a Binomial distribution. The additional number
of sources nb

max � nmax that can be admitted on the link is due to statistical multiplexing
of ABR bursts. The effectiveness of such multiplexing depends on the average interval
between “bursts”, 1

λ , and round-trip delay τ. Some examples are considered in �4.8.

Capacity variability ρ. The analysis in �4.3 showed that the variability ρ in the available
capacity is critical to assessing queue fluctuations and thus the losses in the network. Since
ABR sessions exploit the unused bandwidth of VBR sessions sharing the same link, the
variation of the aggregate VBR bandwidth requirement will affect the available capacity
of ABR sessions. For example, an increase in the VBR bandwidth requirement will mean
a decrease in the available capacity of ABR sessions. Fig. 4.6 shows what might be the
aggregate bandwidth increment for a fixed number of heterogeneous VBR (MPEG 1 video)
sessions over various time scales τ. Measurements of the worst case and average ρ show
that the variability is on the order of 10’s of Mbps/s and highly dependent on the time scale
of interest. On the good side, the variability grows in a sub-linear fashion in the number
of sources, suggesting that VBR multiplexing will help to reduce the variability. On the
bad side, there is a large discrepancy between the average and worst case variability, which
makes buffer dimensioning difficult. In practice one might consider the distribution of
this quantity, represented by a random variable R, and let ρ satisfy ��R � ρτ� � 10�6, so
that the probability of failure for the control is small, and the quality of service is roughly
maintained. Given such a ρ, an appropriate buffer size can be determined.

4.7 Implementation and Design Issues

We briefly discuss the implementation of the proposed control mechanism based on the
rate-based flow control framework in [4].
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Figure 4.6: Average and maximum bandwidth increments for aggregated VBR sources.

4.7.1 Protocols and Complexity

Feedback rate control depends on regular information exchange between the network and
sources. This information is carried in special Resource Management (RM) cells which are
periodically (every Nrm data cells) generated by the source and sent along the session’s
route to the destination where they are looped back to the source. The RM cells carry
various types of information; of particular interest herein, will be the Current Cell Rate
(CCR), the Minimum Cell Rate (MCR), the Explicit Rate (ER), and a Congestion Indication
(CI) bit. The explicit rate is initially set to the source’s Peak Cell Rate (PCR) and the CCR
is equal to the Allowed Cell Rate (ACR) when the RM cell is generated. The ER and CI
fields can be modified by properly equipped switches, as the RM cell travels through the
network.

In our proposed mechanism the CCR corresponds to the current transmission rate
of the source which is constrained by the latest ER message sent to the source from the
network. We envisage a setting where explicit rates are computed at some or all of the
switches a session traverses, and the minimum of computed ERs is stamped on the returning
RM cells. To compute the current ER, the switch needs to determine roughly how many
sources are “on.” Notice that this assessment could be done at the source/policer end and
the results are encoded in RM cells. The switch does not need to monitor the rate/state
information for each session, which otherwise could be prohibitively expensive for switches
carrying a large number of ABR sessions.

Hence the switch simply tracks the number of “on” sessions by updating a state
variable based on the information carried by RM cells, and monitors both the available
capacity and queue state. Each source would receive a returned RM cell with an explicit
rate, which it would for example add to its reserved MCR to determine its allowed cell
rate. This algorithm has the advantage that the computed e�t� is the same for all sources
sharing a given link. This significantly reduces the complexity of computing explicit rates
and stamping RM cells. Pseudo code of the proposed algorithm can be found in Appendix
4.10.3.
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4.7.2 Estimation of Link Status

The proposed algorithm uses the available capacity c�t�, the queue length q�t�, and the
number of “on” ABR sessions n̂�t� to compute e�t�. The queue length can be easily obtained
by monitoring the ABR buffer of a link, but the available capacity is dependent on other
service types sharing the same link, such as VBR. Suppose a given link (e.g., an output port
of a switch) is shared by VBR and ABR connections. The available capacity consists of two
parts. The first part is the difference between the link capacity and the bandwidth which
has been reserved to provide quality of service guarantees to VBR connections. The second
part comes from the momentarily unused capacity left from the reserved capacity for VBR.
To determine the amount of momentarily unused capacity, we need to measure how much
capacity is consumed by VBR.

To estimate n̂�t�, one can monitor the rate/state of each ABR connection. However,
the complexity of such approach is again a concern in its implementation. We propose an
algorithm for estimating n̂�t� without doing per-source accounting. Suppose the ith RM
cell arrives at a switch at time ti, and it carries CCRi and a status3 si � �0�1, i.e., “off” or
“on.” The switch monitors the RM cell arrivals in a synchronous fashion over fixed length
intervals of l seconds. For the jth interval, the number of “on” sources which send RM cells
can be approximated by

δn j � ∑
i�Lj

Nrm
l �CCRi

si� where Lj � �i � jl � ti � � j�1�l�

Note that the summation of si has been normalized by the inter-arrival time of RM cells and
the interval length l. Suppose an “on” source’s CCR is fixed, it will send RM cells every
Nrm
CCR seconds. Within l seconds, l�CCR

Nrm RM cells are expected to arrive at the bottleneck link,
so the associated si is normalized by this number to get a correct estimate for the number
of active sources. As a result, n̂�t� is a piece-wise step function, which is continuous from
right hand side at the points t � j � l� j �N . The recursive estimate is computed as follows

n̂�� j�1�l� � n̂� jl��α�δnj � �1�α��

where α is an averaging factor. Fig. 4.7 shows an example of estimated n̂�t� and real n�t�
when a link carries 100 bursty ABR sessions. Clearly n̂�t� can track the number of “on”
sessions quite nicely.

4.7.3 Design Parameters

From the analysis in �4.3, the buffer requirement is a function of several system parameters.
In the following we discuss the design trade-offs in selecting these parameters.

Drift function f ���. In �4.3 we considered the linear drift function f �q�t�� � �k�q�t��
q�� and used the fact that f �q�t�� � kq� to derive an upper-bound on the queue length. In
practice one may want to saturate the maximum value of the drift f ��� in order to control

3Currently, the on/off status bit is not in the standard definition of RM cell fields.
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Figure 4.7: The estimation of n̂�t��

bmin to a desirable value, see e.g., Fig. 4.8. Moreover, if the minimum value of f ��� is
clamped by fmin and �k�bmin�q��� fmin � 0, the minimum capacity requirement cmin will
be equal to � fmin rather than k�bmin� q��, thus the minimum capacity requirement can be
reduced.

Figure 4.8: A saturated function f ���.

Ramp-up constraint g. In practice source rate adjustments might occur according to the
positive feedback CI mechanism using additive rate increase and proportional rate decrease
factors (AIR,RDF) discussed in [4]. Note that using this type of proportional rate control
mechanism, one can bound a source’s growth g by PCR�Nrm�AIR�Thus these parameters
can be used to optimize the operation and determine the growth rate that should be assumed
in dimensioning of the network resources. Linear ramp-up also facilitates the integration of
CI-based and ER-based mechanisms in a heterogeneous environment.

Rate threshold r�. This parameter allows the sessions some degree of freedom in sending
small bursts. It also captures the impact of such bursts on the network operation. The
threshold r� prevents the switch from incorrectly believing a session sending small bursts
is becoming a major contender for spare capacity, thus reducing the overhead of doing
unnecessary adjustments on the explicit rate computation. Moreover, r� could be interpreted
as the Initial Cell Rate (ICR) in the ABR framework [4], which limits the initial transmission
rate after an idle period.
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Capacity variation ρ. In addition to the fluctuations in available capacity due to statistical
multiplexing of VBR flows, a further contributor to the changes in available capacity would
be the admission of new CBR/VBR calls into the system. Let N�r�s� denote the number of
new connections that are admitted to a particular link during the time interval �r�s�� In order
to control the magnitude of ρ, it may be necessary to constrain call admissions such that
N�r�s�� γ�s� r�� Note that hardware and demand would limit the rate γ of call admissions.
During a round trip delay τ, at most γτ connections are initiated. Assuming they have a
peak rate p Mbps, the available bandwidth could decrease at a rate pγ Mbps/sec. Overall
we believe it is not unreasonable to assume that once the operation regime and traffic on a
link is known, the variability ρ can be assessed by combining empirical evaluation of VBR
traffic fluctuations and admission control on the connection process.

Queue threshold q�. The target queue level q� will determine the overall utilization of
the system. Intuitively the larger q�, the greater the ability of the system to buffer ABR
traffic, and thus to exploit available capacity if it suddenly becomes available. However, a
larger q� means a larger queuing delay in steady state, so a trade-off between utilization and
delay needs to be made in selecting q�. In addition, if some ABR sessions are constrained
and can not fully utilize the allocated rate, we showed in �4.5.2 that a large enough q� is
necessary to allow reallocating the unused capacity of constrained connections. In essence,
q� determines the “dynamic range” for the explicit rate that the link can support when
sessions are constrained elsewhere.

4.8 Simulation and Performance Evaluation

In this section we present some simulation results to verify the analysis in previous sections.
Our network configuration, shown in Fig. 4.9, contains 15 ABR connections and aggregated
VBR connections sharing a bottleneck link. We are interested in the interaction between
ABR feedback control and the rate variation of VBR connections, as well as their impact
on the bottleneck node’s queue length.

Stability. In �4.4 we proved the bottleneck queue length will converge to the target level
q� in a fixed environment if the drift function gain k is chosen such that k

n ∑
n
i�1 τi � 1. We

first consider the case where ABR connections are greedy and the VBR connections are
off, hence the available capacity and the number of “on” sources are both fixed. The queue
threshold q� is 200 and the largest round-trip delay τ for the ABR connections is set to be 20
ms, which means that the largest k guaranteed to ensure stability is 0�0207 Mb/(Cells*s).
The queue dynamics for k � 0�02 and k � 0�06 are shown in Fig. 4.10, illustrating that
k � 0�06 may result in instability.

Queue response to varying available capacity. Next we study the bottleneck queue re-
sponse when the available capacity changes. We feed greedy ABR connections and an
on/off VBR connection into the bottleneck link. The arrival rate of the VBR connection,
ACR of an ABR connection, and the queue length are shown in Fig. 4.11. The figure shows
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Figure 4.9: A bottleneck link shared by ABR and VBR connections.

Figure 4.10: Queue dynamics for different drift function gains k.

a jump in the queue length when the VBR flow starts bursting. However, the queue length
goes back to the target level and available capacity is reallocated after the bottleneck link
responds to the change in the available capacity. Since the queue length is controlled around
the target level, the available capacity is fully utilized.

Statistical multiplexing. In the lossless case the queue overshooting contributed from
bursting ABR sources is determined by the total number of ABR sessions, nmax. In �4.6
this contribution was reconsidered because the effective number of bursting ABR sessions
within a round-trip delay time is smaller than the total number of ABR connections due
to statistical multiplexing. Hence, in a controlled loss scenario, the buffer requirement
can be reduced, or alternatively the admissible number can be increased. We assume the
average idle time of ABR connections is 100 ms and use the result in �4.6 to compute the
nb

max for different “QoS” when nmax � 30. The results, shown in Table 4.1, indicate that the
admissible number of ABR sessions is increased significantly due to statistical multiplexing
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Figure 4.11: Queue length and ACR in a changing environment.

“QoS” (δ) 0 1e-7 1.0e-6 1.0e-5 1.0e-4 1.0e-3
nmax 30 30 30 30 30 30
nb

max 30 63 68 75 84 94

Table 4.1: Comparison of admissible numbers.

of their bursts.

Utilization improvement. An important advantage of introducing ABR service is to im-
prove the network utilization. Because of the stringent quality of service requirement and
bursty behavior of VBR traffic, the network utilization is usually low if only VBR con-
nections are carried. One can let ABR connections use the momentarily unused bandwidth
inside the network, so as to improve utilization. In our final simulation we let the bottleneck
link carry 45 VBR connections from the video traces for obtaining Fig. 4.6. In addition,
we introduce 3 greedy ABR connections to exploit the unused bandwidth. We found the
utilization of the bottleneck link increased from 70% to 95%. The plots of aggregate VBR
arrival rate, ACR of an ABR connection, and the queue length are shown in Fig. 4.12. It
shows that the ACR of ABR connections are varying according to the changes in the VBR
arrival rates.

4.9 Summary

In order to avoid throughput collapse, ABR service will need to be implemented so as to
provide some control on cell loss. To achieve this, flow control mechanisms need to be de-
signed, so that by making appropriate resource reservations and performing call admission,
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Figure 4.12: 45 VBR and 3 ABR connections.

the network can ensure that losses are low. We have proposed a simple algorithm to com-
pute an explicit rate bound on source traffic. Indeed, it substantially reduces the complexity
of computing explicit rates, since it is based on estimating the number of ABR sessions
currently contending for bandwidth on a bottleneck link, without requiring per-connection
rate/state information. By accounting for the rate variability of the interfering (VBR) traffic
and the source update behavior, we analyzed the queue dynamics at the bottleneck link and
derived the minimum buffer and capacity requirements for guaranteeing lossless service to
ABR connections.

We have introduced a threshold r� to discriminate among sources with different
activity levels. Sources are free to send bursts at any rate below the threshold, but must
ramp up linearly after exceeding it. In practice this setup would expedite the transmission
of short bursts and facilitate the integration of CI-based and ER-based flow control mecha-
nisms. In general, feedback control would typically be ineffective at regulating ABR traffic
with small burst sizes relative to the network’s round trip delay time. Hence resources need
to be reserved to absorb such traffic variability and control loss, but doing so would typically
reduce link utilization. By accounting for statistical multiplexing of source bursts, one can
reduce the required reservations to achieve the desired quality of service, or alternatively
one can allow for a larger number of concurrent ABR connections for a given reservation.
We have articulated this point of view and proposed a primitive model to assess the accept-
able number of concurrent connections. The effectiveness of such multiplexing depends on
the control time scale and the characteristics of bursty traffic.
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Finally, we have discussed design parameters for our proposed algorithm in the
context of standard ABR rate control mechanisms. We identified the factors that would
affect queue overflows, such as the source behavior, variability of available capacity, and
of course round trip delays. We believe that our analysis provides some novel insights to
dimensioning capacity/buffer requirements for ABR rate control mechanisms.
Acknowledgment. We used the NIST ATM network simulator for the simulation in this
chapter. The pseudo codes of switches and ABR sources were implemented based on [21].

4.10 Appendix

4.10.1 Proof of Lemma 4.4.1

To ensure e�t� � 0, we require that f �qmax�� c � 0, i.e., the maximum queue length will
determine the minimum capacity requirement. First notice that

q̇�t� �
n

∑
i�1

e�t� τi�� c �
1
n

n

∑
i�1

� f �q�t� τi��� c�� c �
1
n

n

∑
i�1

f �q�t� τi���

hence q̇�t� depends on the past queue lengths. If q�t � τ� � q�� �t � 0, it follows that
f �q�t � τi�� � 0� �i� �t � 0 and q̇�t� � 0� �t � 0. In other words, the queue length has to
stop increasing τ seconds after it exceeds q�. Consider arbitrary time intervals during which
the queue length exceeds q� and call such periods “overshooting cycles.” We show an upper
bound on the queue length over an “overshooting cycle.”

Without loss of generality, let t � 0 be the beginning of an “overshooting cycle”
and q�0� � q�. Since the queue length exceeds q�, we know that q̇�t� � 0� �t � τ on an
“overshooting cycle.” To compute the maximum queue length qmax of an “overshooting
cycle,” it suffices to consider the worst case queue growth on the interval �0�τ�:

q�t�� q��
� τ

0

n

∑
i�1

f �q�t� τi��

n
dt � q��

� τ

0
kq� dt � q�� kq�τ� qmax�

Thus qmax is an upper bound on the queue length over an “overshooting cycle.” For intervals
other than “overshooting cycles,” the queue length does not exceed q�, thus qmax is an upper
bound on the queue length. Given this bound, in order to ensure non-negative e�t�, it suffices
that when c�� f �qmax� � k2q�τ.

�

4.10.2 Proof of Asymptotic Stability

In Fig. 4.5 we have a controller k�x� with input x � c�∑n
i�1 r�t� τi� in the system. Since

the ramp-up of sources is constrained, i.e., ṙ�t� � min�ė�t��g�, the controller k�x� is nonlin-
ear and k�x� � min�k

nx�g�� see Fig.4.13. A generalized Nyquist criterion—Circle criterion
[50][p.344] is useful in determining the stability of a nonlinear system. For reference, an
abridged and rephrased version of the theorem is given below.

Theorem 4.10.1 (Circle criterion) Consider a feedback control system consisting of a non-
linear controller (memoryless gain function) k�x� and a LTI system G�s�, e.g, the system in
Fig. 4.5. The system is asymptotically stable if
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1. k�x� lies in the sector �a�b�, i.e., a � k�x�
x � b, �x �� 0� where 0 � a � b,

2. G�s� � Ga�s��Gr�s�, where Gr�s� is strictly proper and Ga�s� is the Laplace trans-
form of a function in the space L1�0�∞� augmented by delayed impulses,

and the Nyquist theorem is satisfied for the G� jω� locus with respect to the circle with
diameter on the negative real axis of the complex plane from �1

a to �1
b , i.e., the locus stays

away from the circle and encircles it an appropriate number of times [50] according to the
Nyquist theorem. �

We first show that k�x� lies in a sector. Since r�t� is non-negative, hence x � c�
∑n

i�1 r�t � τi� � c� In addition, we assume that k�c� � min�knc�g� � g � k
nc, otherwise k�x�

is a linear function and the stability of such system can be considered based on the Nyquist
criterion, see �4.4.1. We consider the possible values of k�x�

x as follows.

� Case 1: 0 � x � c

k�x�
x

�

�
k
n � if 0 � x � gn

k �
g
x � g

c � if gn
k � x� c�

� Case 2: x � 0

k�x�
x

�
min� k

nx�g�

x
�

k
n
�

Note that g
c �

k
n because k�c� � g � kc

n . Thus we can conclude that g
c � k�x�

x � k
n .

Figure 4.13: k�x� lies in a sector.

Next we verify that whether G�s� can be decomposed in the form of Ga�s��Gr�s�.
Let us choose a single term 1

s e�τ1s in G�s� as an example. We can decompose 1
s e�τ1s in the

following way,

e�τ1s

s
�

e�τ1s�1
s

�
1
s
�

The second term is strictly proper, which satisfies the condition in Theorem 4.10.1. The
inverse Laplace transform of the first term is u�t�τ1��u�t�, where u�t� is a unit step function,
thus it is clearly in L1�0�∞�.
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Finally, let us consider the Nyquist plot of G� jω�. As shown in �4.4.1, the real
part of G� jω� always resides on the right hand side of the vertical line z ��∑n

i�1 τi on the
complex plane. If k

n ∑
n
i�1 τi � 1, the Nyquist plot of G� jω� will stay away from the circle

determined by �n
k and � c

g , see Fig. 4.14. Therefore, k
n ∑

n
i�1 τi � 1 is a sufficient condition

to guarantee the stability of the system in Fig .4.5.

Figure 4.14: Nyquist plot of G� jω� and the circle.
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4.10.3 Pseudo-code for Sources and Bottleneck Links

/* ABR SOURCE */

/* initialization */
count=0;
acr = MCR;

/* upon receiving a returned RM */

er = cell(ER); /* get the new feedback from Network */

/* send cells */

if(now() >= scheduled_cell_time)
{

if (count==0) /* time for sending RM cells */
{ /* and updating acr */

acr = acr + g*(now() - last_RM);
acr = min(acr, er + MCR);
acr = min(acr, PCR);
send_RM_cell();
last_RM = now();
count++;

}
else
{

send_data_cell();
count = (count + 1) mod Nrm;

}

scheduled_cell_time = now() + 1/acr;
}

/* SWITCH */

/* upon receiving a forward RM cell */

n_on = update( RM_cell(status) ); /* update the number of ON sources */
drift = -k*(q_length - q_target);
er = (link_rate + drift - measured_VBR_rate) /(min(1,n_on));

/* compute the new ER */
/* upon receiving a backward RM cell */

RM_cell(ER) = min(er,RM_cell(ER)); /* stamp ER on the backward RM */
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Chapter 5

Conclusions

In this dissertation we have discussed three important issues in the management of inte-
grated services networks. Below we summarize our findings.

� Admission control. We analyzed statistical multiplexing of deterministically con-
strained traffic. The rationale for using deterministic traffic descriptors is that such
parameters can be enforced and verified by networks. An upper bound on the over-
flow probability in a buffered link is derived based on the traffic descriptor, link ca-
pacity, and buffer size. Using this upper bound, one can design a conservative call
admission scheme which guarantees the QoS of established connections.

� Routing. We proposed a routing scheme which accounts for traffic mix and the ef-
ficiency of multiplexing in a multiservice network. Given the nature of statistical
multiplexing, the resource requirements of a connection are state-dependent across
network resources. Thus in principle we can exploit this dependence to achieve bet-
ter overall network efficiency. For example, we found that it is not always advanta-
geous for the VPs connecting a given source-destination pair to carry all traffic types.
To maximize the throughput, only a small number of traffic types, or homogeneous
traffic should be present on each VP. This suggests that in practice multiservice net-
works might end up looking like multiple logical networks which are segregated by
the service types.

� Flow control. We proposed an explicit rate flow control algorithm for ABR which
draws on measuring the current queue length, bandwidth availability, as well as track-
ing the current number of active sessions contending for capacity. Because the num-
ber of active connections are estimated by a simple scheme without using the per-
connection information, the complexity of the proposed algorithm is minimized. We
also considered the role that statistical multiplexing might have in managing bursty
ABR sessions.

Design issues. ATM networks are geared towards supporting and integrating a variety of
communication services which might broadly be divided into those based on reservation,
e.g., Constant and Variable Bit Rate (CBR,VBR) services and best effort services, such as
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Unspecified Bit Rate (UBR) and to some extent ABR services. To guarantee QoS as well
as to maximize efficiency, a general approach might be as follows. The aforementioned
call admission scheme can be used to determine a connection’s resource requirements and
to control the number of established connections in order to ensure the QoS of reservation-
based services. Since resource reservation is based on conservative deterministic traffic
descriptors, there will be a significant but varying amount of bandwidth for adaptive ser-
vices such as ABR. In principle a flow control scheme can direct best-effort traffic to exploit
the available capacity, leading to an overall improvement in system utilization.

Whether this combination of conservative CAC with ABR services can achieve an
adequate utilization depends on the speed (bandwidth) and extent (i.e., propagation delays)
in the network. Indeed, consider a Wide Area Network having high capacity links but
large round trip propagation times. For such networks flow control may be sluggish and
ineffective. However, due to the large capacity links our conservative CAC scheme based
on crude traffic descriptors can achieve relatively high efficiencies. By contrast in a Local
Area Network with low round trip delays and perhaps lower link rates, the multiplexing
of reservation-based services would be less efficient. However, in this case flow control
mechanism can be very effective at exploiting spare capacity in the system. Thus we argue
that by considering the combined utilization that can be achieved in multiservice networks,
relatively crude CAC can be used without compromising efficiency.

Future work. There are some issues discussed in this dissertation that deserve extension
and further investigation. It is natural to ask how the proposed call admission scheme
can be written as a simple formula in terms of the UPC parameters such as the peak cell
rate, sustainable cell rate, and burst tolerance etc. A simple formula is desirable because
it would greatly streamline the procedure of call admission. In addition, such a formula is
also helpful in resource reservation.

We obtained some qualitative understanding on the routing issues in Chapter 3.
However, it is desirable to “quantify” these findings. For example, it is useful to be able
to analytically estimate the blocking probability based on traffic loads and link capacities
across the networks. Based on such an estimation, one can allocate appropriate VP capaci-
ties in order to maintain desirable system performance.

A further open problem is to find the worst case traffic pattern subject to a determin-
istic traffic descriptor. In Chapter 2 we considered an optimization problem and obtained
some properties of the possible solutions. It would be interesting to solve this problem since
this would provide a tight worst case bound on multiplexing performance.

69



Bibliography

[1] E. Altman, F. Baccelli, and J. C. Bolot. Discrete-time analysis of adaptive rate control
mechanisms. Proc. 5th Int. Conference on Data and Communications, pages 121–40,
1993.

[2] L. Benmohamed and S. M. Meerkov. Feedback control of congestion in packet switch-
ing network: The case of a single congested node. IEEE Trans. Networking, Vol.
1:694–708, 1993.

[3] P. Billingsley. Probability and Measure. John Willey and Sons, New York, 1986.

[4] F. Bonomi and K. W. Fendick. The rate-based flow control framework for the available
bit rate ATM service. IEEE Network Mag., Vol. 9, No. 2:25–39, 1995.

[5] F. Bonomi, D. Mitra, and J. B. Serry. Adaptive algorithms for feedback-based flow
control in high-speed wide-are ATM networks. IEEE JSAC, Vol. 13, No. 7:1267–83,
1995.

[6] S. Borst and D. Mitra. Asymptotically achievable performance in ATM networks. To
appear in Advanced Applied Probability.

[7] D.D. Botvich and N.G. Duffield. Large deviations, the shape of the loss curve, and
economies of scale in large multiplexers. Technical Report DIAS-APG-94-12, Dublin
Institute for Advanced Studies, 1994.

[8] J-Y. Le Boudec, G. de Veciana, and J. Walrand. QoS in ATM: theory and practice.
35th IEEE CDC, pages 773–778, 1996.

[9] J.A. Bucklew. Large Deviation Techniques in Decision, Simulation and Estimation.
John Wiley and Sons, New York, NY, 1990.

[10] A. Charny, K. K. Ramakrishnan, and A. Lauck. Time scale analysis and scalability
issue for explicit rate allocation in ATM networks. IEEE Trans. Networking, Vol.
4:569–581, 1996.

[11] S. Chong, R. Nagarajan, and Y.T. Wang. First-order rate-based flow control with
dynamic queue threshold for high-speed wide-area atm networks. Proceedings of
SPIE Conference on Performance and Control of Network Systems, 3231:259–270,
1997.

70



[12] T.M. Cover and J.A. Thomas. Elements of Information Theory. Wiley Series in
Telecommunications, 1991.

[13] R. L. Cruz. A calculus for network delay, Part 1: Network elements in isolation. IEEE
Trans. Inform. Theory, 37:114–131, 1991.

[14] M. de Prycker. Asynchronous Transfer Mode Solution for Broadband ISDN. Prentice-
Hall, 1996.

[15] B. T. Doshi. Deterministic rule based traffic descriptors for broadband ISDN: Worst
case behavior and connection acceptance control. Proc. 14th Int. Teletraffic Cong.,
6-10 June 1994 North-Holland Elsevier Science B.V., 1:591–600, 1994.

[16] A. Elwalid, D. Mitra, and R.H. Wentworth. A new approach for allocating buffers and
bandwidth to heterogeneous, regulated traffic in an ATM node. IEEE JSAC, Vol. 13,
No. 6:1115–1127, 1995.

[17] A. I. Elwalid. Analysis of adaptive rate-based congestion control for high-speed wide-
area networks. IEEE ICC’95.

[18] The ATM Forum. ATM User-Network Interface Specification Version 3.1. Prentice-
Hall, Englewood Cliffs, NJ, 1995.

[19] C. Fulton and S.-Q. Li. UT: ABR feedback control with tracking. IEEE Infocom’97.

[20] A. Girard. Routing and Dimensioning in Circuit-Switched Networks. Addison-Wesley,
1990.

[21] N. Golmie, A. Koenig, and D. Su. The NIST ATM Network Simulator Operation and
Programming. NIST, 1995.
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