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Abstract

Opportunistic Quality of Service Constrained Scheduling

Algorithms for Wireless Networks

Geetha Chandrasekaran, PhD
The University of Texas at Austin, 2024

SUPERVISOR: Gustavo de Veciana

Support of next generation service categories such as Ultra Reliable Low La-

tency Communication (URLLC) and Enhanced Mobile BroadBand (eMBB) is ex-

pected to be critical towards enabling next generation wireless applications such as

industrial automation, augmented and virtual reality, autonomous driving, remote di-

agnosis, and health care. The focus of this thesis is on wireless scheduling policies, and

more broadly, resource allocation frameworks for settings in which one has multiple

objectives associated with supporting multiple Quality of Service (QoS) requirements

for users with heterogeneous traffic and channel characteristics. Particularly chal-

lenging is the need to deliver low latency traffic to heterogeneous users/devices with

strict deadlines in a spectrally efficient manner. We develop spectrally efficient sched-

ulers that ensure low latency and reliability constraints for URLLC users, while also

maximizing the longer term throughput achievable by eMBB users.

We note that scheduling alone can not be called on to meet such complex

objectives, particularly in heterogeneous settings with substantial uncertainty that

10



arises in wireless systems. Indeed, there is a need for complementary approaches to

admission control if specific QoS requirements are to be met, and admission control

itself presents substantial challenges. As part of the work, we propose relatively

simple measurement based admission control policies. The general concept is to make

admission control decisions based on monitoring the actual resource requirements of

opportunistic schedulers that meet users’ QoS requirements.

Base stations across wireless service areas typically have an unequal distribu-

tion of user load which is stochastic in nature and thus leads to a dynamic coupling

among shared wireless resources. This along with a high network density makes it

hard to predict interference from neighboring base stations or design a centralized

algorithm for interference mitigation. We address the problem of distributed resource

allocation in wireless systems in the presence of dynamic user traffic and coupling re-

sulting from interference. In particular, we explore a setting where a stochastic game

is set up among base stations to learn efficient frequency reuse patterns and solved

using multi-agent RL given an underlying choice for user scheduling. We establish

the existence and convergence to a Nash equilibrium of the proposed setting.

Our research focuses on three key areas – we first concentrate on designing

delay constrained schedulers and admission control policies such that users’ traffic

will meet delay constraints with high reliability. Second, we focus on joint URLLC

and eMBB scheduling, guaranteeing delay constraints to the former and minimum

rate constraints to the latter. Finally, we focus on resource planning for dynamic

interference across the network in the presence of dynamic load and user distribution

across base stations – with special attention to service protection for delay constrained

users.
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Chapter 1: Introduction

Next generation wireless networks are set to provide ubiquitous connectivity

to diverse data traffic classes which have varied performance requirements. In order

to meet the complexity of doing so academia and industry have proposed a frame-

work which creates logical networks for each class of service type to enable virtual

resource allocation, which can then be mapped to physical resources (e.g., time fre-

quency blocks of Wireless spectrum) and/or compute resources to meet the Quality

of Service (QoS) requirements of applications/users. 5G wireless systems aim to sup-

port three principle QoS categories: eMBB (enhanced Mobile Broadband), mMTC

(massive Machine Type Communications) and URLLC (Ultra Reliable Low Latency

Communication). A few significant differences among these use cases are tabulated

in Table 1.1. For example, many works in literature assume perfect Channel State

Information (CSI) for eMBB, no CSI for MMTC devices [83] and perfect/imperfect

CSI for URLLC.

eMBB mMTC URLLC

Traffic type Best effort Periodic Latency sensitive
Error Tolerance Medium High Very low
CSI Perfect CSI No CSI Perfect/Delayed CSI
Rate requirement Rate adaptation Fixed Low
Connection type On demand Periodic Periodic/Aperiodic

Table 1.1: Differences across next generation communication devices.

A seamless user experience for future wireless applications, such as autonomous

driving, online gaming, remote surgery, and augmented/virtual reality will require

high speed data transfer with reliable information exchange and guaranteed resource
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provisioning. Increasing user density, mobility, and higher data demands together

with stringent QoS requirements will lead to an ever increasing scramble for lim-

ited physical resources. It is therefore essential to design efficient resource allocation

schemes that can support a large variety of user types with heterogeneity in QoS

needs, traffic characteristics, and channel variations. Furthermore, wireless resource

schedulers need to plan to support services in the face of substantial sources of un-

certainty, e.g., stochastic user traffic, time varying channel conditions, and dynamic

interference to provide reliable communications.

1.1 Background

Wireless networks operate over a limited set of radio frequencies with “regu-

larly” deployed base station infrastructure serving as a central controller/transceiver

connecting devices/users to the core network over the given frequency band. A con-

siderable fraction of the wireless spectrum is dedicated to transmitting control and

reference signals to users, in order to maintain connectivity and be aware of the chan-

nel quality of the users connected to the network. Wireless resources are shared across

users connected to a base station over discrete time slots or frequency bands or a slice

of both time and frequency, as is the case with Orthogonal Frequency Division Multi-

plexing Multiple Access (OFDMA) systems. Unlike wired communications, wireless

communications are susceptible to severe degradation in the transmitted signals de-

pending upon various factors such as:

• Pathloss – which depends upon the distance from the base station;

• Large scale shadowing – due to penetration loss caused by stationary (e.g.,

buildings) or non stationary objects (e.g., vehicles) in the environment;
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• Small scale fading – as the user receives the wireless signal from multiple paths

direct or reflected;

• Mobility – as the users’ locations change;

• Interference – from neighboring base stations that operate over the same wireless

resources.

Cellular network infrastructure: Previous generations of wireless network ar-

chitectures had separate pipelines for voice and data, namely, circuit switched voice

service and packet switched data service. This enabled simplifying the scheduling

policy that the network employed to provide resources to users with different QoS

requirements. However, the current cellular network architecture uses an Evolved

Packet Core (EPC) framework to provide services to users. Voice or any other ser-

vice that needs stringent QoS is treated as just another Internet Protocol (IP) service

under the EPC’s IP service architecture. An illustration of the network architec-

ture is shown in Fig. 1.1 with some of the key components – Mobility Management

Equipment (MME), Service Gateway (S-GW), Packet Gateway(P-GW), and radio

base station.

Network control/data flow: The MMEmanages user sessions and authenticates

and tracks a user across the network. Serving Gateway (S-GW) routes data packets

through the access network. The Packet Gateway (P-GW) manages quality of service

and acts as the interface between the Long Term Evolution (LTE) cellular network

and other packet data networks. Another component not shown in the architecture,

is the Policy and Charging Rules Function (PCRF) which supports service data flow

detection, policy enforcement and flow-based charging. User data is broken down into

packets which are then queued up at the base station for transmission over discrete
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Figure 1.1: Wireless cellular network infrastructure.

time slots. The base station maintains a queue for each user with packets that are

ready for downlink transmission waiting to be scheduled. The network has access to

only finite transmission resources, so user packets wait for a random time in queue

based on the availability of resources.

1.2 Quality of Service

User traffic can be broadly classified into elastic and inelastic traffic, based

on their QoS requirements. Commonly known as best effort traffic, elastic traffic

can adapt to the network conditions and is not as susceptible as inelastic traffic to

variability in transmission errors, delay, and throughput. For instance, applications

like web browsing, file download or electronic mail (e-mail) would be representative

of best effort traffic with no guarantees on latency or priority in network resource

allocation. By contrast, applications such as video conferencing or real time game

streaming require guaranteed bit rate services that are highly sensitive to delay, jitter
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and overall network congestion. The quality of service received by such users can be

quantified by key performance indicators such as latency, throughput, delay, fairness.

Wireless
Scheduling

ThroughputFairness

Delay

Reliability Complexity

Efficiency

Figure 1.2: QoS requirements and challenges in scheduling wireless users.

Wireless scheduling involves making intelligent decisions about the assignment

of resources such as frequency bands, time slots, power levels, and spatial dimensions

to different users sharing the network. It is the responsibility of a wireless scheduler

to meet the heterogeneous QoS requirements of users competing for the same set

of resources as shown in Fig. 1.2. A wireless user’s throughput refers to the rate at

which data is transferred over the network within a given period. An opportunistic

wireless scheduler could achieve better sum throughput (across users) by prioritizing

users that currently have the best wireless channel conditions, as better channels

correspond to higher data rates. However, this can cause queueing delays for users
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having poor channel conditions. As such, in practice, a certain extent of fairness is

desirable to provide a satisfactory user experience by ensuring that no single user or

device is allowed to hog network resources.

A wireless scheduler should in general maximize the spectral efficiency (i.e.,

bits per second per Hertz) to support as many users as possible, with an aim to

balance the competing user QoS demands. The wireless scheduler should take into

account the current information on each user’s channel quality, traffic pattern, queue

length, and the total number of active users to determine a subset of users to serve

at any point in time. This may involve a considerable computational overhead on

the network in terms of the scheduler complexity, transmission overhead for tracking

channel quality information of all users, and significant protocol overhead to grant

resources. The scheduler is also responsible for selecting the most efficient modulation

and coding scheme as necessary that achieves a target block error rate associated with

user’s desired QoS. The interested reader can find a summary of wireless scheduling

algorithms in [36, 44].

1.3 Challenges in Wireless Scheduling

QoS Constrained Scheduling: One of the key challenges of wireless communi-

cations is to allocate resources to users to meet their desired QoS requirements. In the

case of best effort traffic, one could wait for a user to see favorable channel conditions,

or simply allocate resources equally among users. However, real time traffic or mission

critical applications operate on strict deadlines, where one cannot afford to wait for

strong wireless channels. Furthermore, various aspects of the wireless environment

such as channel uncertainty, and stochastic nature of user traffic make resource al-

location even more challenging for such a scheduler. Packet loss, retransmission and
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non stationary wireless propagation conditions further complicate scheduling. Het-

erogeneity in user demands, channel variations, and traffic patterns demands resource

schedulers to take into account more variables in their decision-making.

Interference Mitigation: Interference and the associated coupling of scheduling

decisions across base stations is another particularly challenging aspect of wireless

scheduling. The amount of interference seen by a user depends on various factors

such as:

(a) Network topology influences interference from neighboring base stations.

(b) Spatial distribution of users can cause load differences across base stations.

(c) Stochastic traffic variations impact resource utilization.

The asymmetric distribution of user load across base stations further exacerbates the

challenges of QoS constrained scheduling in wireless networks. When traffic dynam-

ics and/or the user’s locations change, predetermined interference mitigation policies

and/or wireless schedulers may become less efficient. Dynamic interference also im-

pacts the accuracy of channel state information and the effectiveness of adaptive

modulation and coding leading to increased transmission errors or packet losses.

1.4 Thesis Outline

In this thesis, we introduce several classes of real-time wireless schedulers that

exploit the temporal variability in users’ channel capacity while maintaining QoS

guarantees on user’s packet delays or short term throughput. We then introduce a

distributed learning algorithm that works in conjunction with a predetermined wire-

less scheduler to support delay constrained schedulers in the presence of interference.
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This thesis is organized into various chapters each of which contributes to different

aspects of QoS constrained wireless scheduling.

Chapter 2 presents a measurement-based Opportunistic Guaranteed Rate Schedul-

ing (OGRS) algorithm and analyses its performance. In order to meet a pre-specified

user delay deadline, it calculates the service rate for the user queue based on results

from Deterministic Network Calculus, assuming leaky bucket constraint. In con-

trast, Chapter 3 introduces a measurement-based Opportunistic Guaranteed Deadline

Scheduler (OGDS) that meets strict delay deadlines by scheduling packet transmis-

sions whenever the current channel rate is better than that expected before packet

deadlines expire.

Chapter 4 introduces a class of algorithms for rate constrained users that

exploit statistical multiplexing gains across users while ensuring their respective min-

imum rate constraints are met. Finally, in Chapter 5 we investigate the problem of

distributed resource allocation in wireless systems in the presence of dynamic user

traffic, where the service rate of users’ queues across base stations is coupled through

interference. In particular, we explore a setting where a stochastic game is set up

among base stations to learn frequency reuse patterns and solve using multi-agent

Reinforcement Learning (RL) given an underlying choice for user scheduling.

Lastly, Chapter 6 summarizes key findings and takeaways derived from our

research with a few directions for future exploration.

1.5 Publications

The following is a list of published conference papers and submitted journal

versions related to the work presented in this thesis:

27



1. G. Chandrasekaran, G. de Veciana, V. Ratnam, H. Chen, C. Zhang, “Mea-

surement Based Delay and Jitter Constrained Wireless Scheduling with Near-

Optimal Spectral Efficiency”, Submitted to IEEE Trans. on Netwk., Mar 2024.
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Chapter 2: Opportunistic Guaranteed Rate

Scheduling∗

The support of Ultra Reliable Low Latency Communication (URLLC) is ex-

pected to be critical towards enabling next generation [3] wireless applications such

as industrial automation, augmented and virtual reality, autonomous driving, re-

mote diagnosis, and health care. The key challenge in supporting such applications

is their stringent constraints on Quality of Service (QoS). The latency constraints

for these applications range between 5 and 30 ms, with reliability requirements of

99.9 to 99.9999%, see e.g., [5]. Moreover, given the limited spectrum available and

associated costs, it is also critical to deliver such URLLC based services in a spec-

trally efficient manner. In general, this is challenging, e.g., one must add substantial

upfront redundancy to meet reliability requirements without delays associated with

re-transmissions, or given low latency requirements one may not be able to exploit

opportunism or wait for data to achieve more efficient modes of transmission.

In addition to dealing with the requirements of URLLC traffic, it is also crit-

ical to devise resource allocation and scheduling strategies that enable the support,

of a mix of traffic, e.g., Enhanced Mobile Broadband (eMBB) and Machine-Type

Communications (MTC) traffic, and possibly network slices provisioned to support

different classes of applications. Our focus in this chapter will be on spectrally effi-

cient scheduling of wireless user traffic with possibly heterogeneous delay deadlines,

perhaps the most challenging traffic class, yet we aim to provide an approach that

∗Publications based on this chapter: [23] Geetha Chandrasekaran, Gustavo de Veciana, Vishnu
Ratnam, Hao Chen, and Charlie Zhang. Spectrally Efficient Guaranteed Rate Scheduling for Het-
erogeneous QoS Constrained Wireless Networks. In 2023 IEEE 21st International Symposium on
Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2023
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can be combined with other scheduling policies, e.g., proportionally fair or utility

maximizing schedulers used to support eMBB traffic, to manage an assortment of

services with diverse QoS requirements. Below we provide a brief summary of related

work in this area, focused primarily on scheduling with delay based QoS constraints.

We then introduce the key contributions of this chapter.

2.1 Related Work

Wireless scheduling can be based on the user’s queue length, channel quality,

history of past allocations, etc., and may have multiple objectives including Quality

of Service (QoS) and fairness. In settings where users’ queues are fully backlogged,

perhaps the best known strategies are utility maximizing, i.e., maximizing the sum of

users’ utilities, which in turn is a function of each user’s long term throughput. Per-

haps the most popular wireless scheduling often used in practice is the proportionally

fair scheduler, see [54], which maximizes the log utility of users’ long term through-

put. Such an approach results in users to fair long term rates with opportunistic

scheduling in the short term when the channel rate is high. A heuristic algorithm to

meet end to end delay constraints is considered in [113]. A more sensitive resource

allocation that averts short term neglect of user allocation, see [31], maximizes the

user’s utility which is a function of the short term throughput. In general, such utility

maximizing schedulers work best for elastic traffic with no hard deadlines. In gen-

eral, utility-maximizing schedulers work best for elastic traffic with no hard deadlines.

When hard delay deadlines are considered, either all users have a homogeneous/time-

synchronized traffic model [49] or the problem can only be solved if the optimization

problem is feasible, i.e., if all users are able to meet the delay deadlines [50]. Several

questions such as how to choose the fairness criterion when user queues are not fully
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backlogged or when there are reliability constraints for meeting strict delays remain

unanswered.

In settings where user queues are not fully backlogged but instead driven by

stochastic arrivals, various channel state dependent throughput optimal policies (that

guarantee queue stability when feasible) have been devised, e.g., [103], and may also

achieve different types of delay objectives, e.g., roughly minimizing the max delays

across users or overall average delays. While efficient for “best effort” type traffic,

such scheduling policies do not deliver strict delay guarantees needed for real-time

applications and/or URLLC based services. In [66] the authors consider design of

throughput optimal scheduling under heavy-traffic regimes intending to identify an

optimal trade off between mean delay and service regularity. Some of these schedulers

also address other performance objectives, such as minimizing the max user queue

length in [92], or minimizing the average delay as in [87]. Adaptations of throughput

optimal schedulers to practical settings, like Modified Largest Weighted Delay First

(MLWDF) [11] consider the channel state, head-of-line packet delays, and user weights

reflecting QoS objectives for scheduling. Such schedulers offer a graceful degradation

of service when there are insufficient resources to meet QoS of all users.

Another interesting line of research borrows ideas from wireline scheduling

(e.g., traffic shaping and network calculus [65, 24]) to satisfy user QoS constraints

under wireless channel variations. Weighted round robin [64] or weighted fair queue-

ing [67] employ heuristic user weights or tokens [79] based on service deficit [57] to

either minimize the average delay or provide a graceful degradation of service. Much

of the above mentioned work focuses on scheduling one class of users, or traffic that is

sensitive to packet delays. In practice, wireless systems need to be shared by heteroge-

neous user classes. Packet level deficit tracking for evaluating the QoS service deficit
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has been considered for each user in [106], however, such an approach is prohibitively

expensive in complexity when there are a large number of users. In contrast, we em-

ploy cumulative service based techniques and queue based scheduling, avoiding the

need to track packet level deadlines or control. Wireless scheduling for optimizing

both service regularity and mean delay is considered in [66], but the emphasis is on

graceful degradation rather than guaranteed latency. Although [28] considers schedul-

ing with reliability for homogeneous user QoS requirements, it is assumed that only

one user can be scheduled every time slot which is a severe limitation under practical

scenarios.

Scheduling with guaranteed QoS is considered in [7], with no improvement in

spectral efficiency for latency constrained users. Joint resource allocation for URLLC

and eMBB traffic is proposed in [8] but opportunistic scheduling is limited to eMBB

users. More recent literature on URLLC scheduling [33, 58, 115, 6, 71] include reliabil-

ity guarantees, however, opportunistic scheduling has not been given much consider-

ation apart from the perspective of energy efficiency [96] or the violation of deadline

probability [112] or devising token based quality assurance [79] which may starve

weaker users until one is forced to schedule close to their deadline. Previous research

can only be considered a first step towards a more profound understanding of de-

veloping spectrally efficient algorithms for delay constrained traffic. To the best of

our knowledge, a simple approach to opportunistic scheduling over temporal channel

variations for deadline constrained traffic has not been considered in the existing liter-

ature. In this chapter, we propose a new class of opportunistic scheduling algorithms

for URLLC users with heterogeneous traffic and disparate QoS requirements, to en-

hance the throughput/utility for eMBB traffic that also shares the overall network

resources.
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Studies on QoS provisioning cannot be considered complete without addressing

the question of admission control and/or traffic shaping/policing. A closer look at

existing literature reveals that much of the work on wireless scheduling does not solve

this problem. Given the wireless channel uncertainty, it is infeasible to predict if a

given scheduling policy will be able to meet the user’s QoS constraints with high

reliability. Given the uncertainty and heterogeneity associated with traffic, channels,

and user requirements in a wireless system, it is virtually impossible to devise good

models that would allow one to predict if the users’ QoS requirements will be met

under a given scheduling policy.

No practical wireless scheduling policy is complete without a complementary

strategy for admission control and/or traffic shaping. Given the uncertainty and

heterogeneity associated with traffic, channels, and user requirements in a wireless

system, it is virtually impossible to devise good models that would allow one to predict

if the users’ QoS requirements will be met under a given scheduling policy. While

there have been many works in literature that propose measurement based admission

control [41, 42, 107], we note that meeting packet delay and loss targets in buffered

systems is challenging [18]. In contrast to traditional Measurement Based Admission

Control (MBAC) approaches, our approach directly measures the aggregate resource

that our delay constrained schedulers are using thus indirectly capturing the impact

of the users’ traffic, channel variability and delay constraints.

2.2 Chapter contributions

We propose a class of wireless schedulers that under appropriate assumptions

can meet heterogeneous delay deadlines and do so in a spectrally efficient manner such

that the more relaxed the constraint to more efficient. We design a scheduler that
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evaluates the rate required for each user’s QoS requirements and provision resources

such that delay deadlines can be met. To do so, the scheduler needs information on

each user’s queue length and data traffic. If a user’s traffic is leaky bucket constrained,

one can determine a fixed service rate that will ensure a desired maximum delay. The

assumed traffic shaping serves to constrain the peak burstiness of the arrival process.

The key underlying idea is to leverage the flexibility of wireless systems, in terms

of allocating a time varying number of Resource Blocks (RB) to overcome/exploit

variations in wireless users’ capacity per RB. This permits one to devise a scheduler,

the Wireless Guaranteed Rate Service (WGRS), which will ensure a user will see a

fixed service rate even with channels that have stochastic variations.

In fact, any scheduler which allocates at least as much cumulative service as

the WGRS scheduler over busy periods is GRS compliant, and will thus also meet the

user’s delay deadlines. This observation suggests the possibility of opportunistically

serving a user’s data ahead of time when channel rates are good, relative to the

GRS scheduler, and/or delay such service when channel rates are poor, as long as

the scheduling is GRS compliant. We devise a class of Opportunistic GRS (OGRS)

schedulers that take advantage of this relaxation along with knowledge of the statistics

of the users’ channel variations, to achieve better spectral efficiency while meeting

users’ strict delay constraints. At each time slot, the scheduler allocates resources to

users with good channel quality. The scheduler determines the channel quality based

on either a static threshold on the current channel’s percentile or dynamic thresholds

which further account for the extent to which the scheduler has served traffic ahead

of the GRS scheduler.

By considering oracle-aided policies that have access to future channel capacity

realizations, we show via extensive simulations that OGRS can be within 10% to 40%
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of such policies as the delay constraint is relaxed. These gains translate to doubling

the eMBB user’s throughput even for the weakest user when URLLC and eMBB

traffic share resources or an increase of upto 57% in the number of users admitted as

long the arrival rates and channel strengths are similar for the newly admitted users.

Finally, we propose an MBAC strategy, that indirectly accounts for the hetero-

geneity in traffic, channel, and delay constraints by directly tracking resource usage

statistics based on the resource allocation algorithm of our proposed OGRS scheduler.

While this approach may be more robust to uncertainty, it may fail from time to time,

unlike previously considered MBAC policies, and may have to resort to prioritizing a

particular class of users.

This chapter is organized as follows. Section 2.3 describes the system model

and traffic shaping assumptions. Sections 2.4 and 2.5 describe our proposed Guaran-

teed Rate Scheduling (GRS) algorithms for delay constrained scheduling with multi-

ple options to select adaptive channel rate thresholds to identify the best time slots

for transmission. Section 2.6 presents the main theoretical results of this chapter.

Section 2.7 provides extensive simulations for some practical wireless network set-

tings, and also evaluates the spectral efficiency of a natural class of delay constrained

schedulers that use neural network based channel rate predictions. Finally, Section 2.8

includes some concluding remarks.

2.3 System Model

We consider discrete time downlink scheduling for a base station serving a

set U of URLLC users with stochastic arrivals and possibly heterogeneous QoS re-

quirements. We denote by (Au
n)n∈N the arrival process for user u ∈ U, where Au

n is a

random variable denoting the number of bits that arrive and are available for service
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in time slot n with a transmission deadline of n+ d. In general, it is not possible to

ensure delay guarantees to a user without prior knowledge of its traffic statistics or of

constraints on its traffic. A common approach for the latter is to establish and enforce

(through traffic policing/shaping) apriori constraints on the user’s traffic that can be

used to design resource allocation mechanisms guaranteed to meet a user’s QoS re-

quirements. We will assume each user’s traffic satisfies dual leaky bucket constraints

[65] with parameters (ρu, σu, µu), where σu denotes the token bucket size in bits and

ρu, µu denote the peak and mean bit arrival rate per time slot, respectively. The

user’s cumulative arrival process Au(·, ·] is thus constrained as follows for all τ, n ∈ N,

Au(τ, τ + n] =
τ+n∑

k=τ+1

Au
k ≤ min [ρun, σu + µun] . (2.1)

The base station transmit resources are modeled as a sequence of frames/slots

each comprising multiple Resource Blocks (RBs) which can be arbitrarily allocated to

users on a per time slot basis by the scheduling policy. Each RB denotes a slice of time

and frequency block available to the BS for resource allocation. We let the random

variable Cu
n ∈ R+ denote the channel rate (bits per RB) that can be transmitted to

user u if it is allocated a single RB on time slot n. A user may be allocated multiple

RBs, but we assume a flat fading setting where the rate delivered to u is the same

across RBs in a given time slot. Further, we assume (Cu
n)n∈N are independent and

identically distributed (i.i.d.) across time slots. A non zero transmission rate Cn can

be viewed as a coverage/connectivity requirement for users.

Assumption 2.3.1. (Connectivity Assumption) The BS can transmit data over an

RB at a non-zero channel rate Cu
n > 0 with probability 1.

Additionally, we also assume that a sufficiently large number of RBs are avail-

able every time slot to meet the users’ QoS requirements. However, our goal is to
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devise schedulers for URLLC users that use a minimal number of RBs. In the sequel,

we will introduce admission control strategies in the event that only limited resources

are available to URLLC users.

We consider a system model where a scheduling policy, say π, decides the

number of RBs be allocated to each user in each time slot. The decision of policy π at

time n is assumed to be causal concerning knowledge of the current and past channel

rates (Cu
τ )

n
τ=0, arrivals and queue lengths, allowing for opportunistic scheduling, i.e.,

taking advantage of capacity variations across time. In particular, we let Mu,π
n ∈ R+

denote the number of RBs allocated to user u on slot n by a policy π given the

observed history. Such an allocation provides an overall service rate Su,π
n (total bits

transmitted with potentially multiple RBs allocated) to the user u on time slot n

given by,

Su,π
n = Mu,π

n Cu
n ,

and we define the cumulative service over an interval (τ, τ + n] as follows,

Su,π(τ, τ + n] =
τ+n∑

k=τ+1

Su,π
k . (2.2)

A user’s data queue (in bits) is modeled as a First Come First Serve (FCFS) discrete

time queue with arrivals Au
n and service rate Su,π

n as shown in Fig. 2.1. We let Qu,π
n+1

denote the number of bits in the user’s queue at the start of slot n+ 1, then

Qu,π
n+1 = [Qu,π

n − Su,π
n ]+ + Au

n+1 . (2.3)

2.4 Guaranteed Rate Scheduling

In this section, we will assume user traffic is leaky bucket constrained, whence

assuming a user’s data queue served in FCFS order, it’s delay requirement will be met
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n
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Figure 2.1: Leaky bucket constrained arrivals to a discrete time queue with a service
rate controlled by scheduling policy π.

through a sufficiently high fixed service rate per slot. Note that in practice wireless

capacity varies over time, yet we will start by introducing this example where the

user’s rate is fixed and later consider how to address user’s channel variability across

time. Without loss of generality, we shall henceforth present the analysis for a single

user with traffic shaping parameters (ρ, σ, µ) and delay requirement d. Referring to

the network calculus literature [65], the minimal service rate s required to meet the

user’s delay constraint d must satisfy,

d ≤ [ρ− s]+

ρ− µ

σ

s
=⇒ s =

ρσ

(ρ− µ)d+ σ
. (2.4)

where [x]+ = max[x, 0]. As long as a user is allocated enough resources to meet the

service rate of s, it will meet the packet level delay requirement owing to leaky bucket

constrained traffic. This is easily visualized, see Fig. 2.2. The red curve is the worst

case cumulative arrivals for leaky bucket constrained traffic, the blue line a fixed rate

service, and the green interval the worst case delay a bit must wait until service.

Unfortunately, wireless channel strength can vary significantly over time and

hence we return to the original channel rate construction as described in the system

model, a leaky bucket constrained traffic with random transmission rate every time

slot. Clearly, for a delay deadline d if the BS can provide a service rate of s every time

slot, irrespective of the channel fluctuations, then the user delay constraint can be

met with probability 1. This can be achieved by varying the number of RBs allocated
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Figure 2.2: Leaky bucket constrained flow arrival and service curves for deterministic
service rate.

to the user as a function of the channel quality. For instance, the service rate per RB

available to the user is (the dash-dotted line) illustrated in Fig. 2.2, i.e., above the

deterministic rate line st, then the delay deadlines will be guaranteed despite channel

variability. Mathematically, the service rate over an interval (τ, τ +n] for a user with

variable channel rate Ck is given by,

Sπ(τ, τ + n] =
n∑

k=τ+1

Sπ
k , where Sπ

k = Mπ
kCk , (2.5)

where k denotes the discrete time index and Mπ
k denotes the number of RBs (possibly

fractional) allocated at time k.

As long as we can ensure that Sπ(τ, τ + n] stays above sn throughout any

interval (τ, τ +n], the bound on the maximum delay d will still hold. In the following

we propose causal scheduling policies that shall provide delay guarantees to the user

with probability 1.

Definition 2.4.1. GRS(s) We let the Guaranteed Rate Scheduler with service rate

s, GRS(s), be the scheduling policy that guarantees a user data queue a service rate

of at least s per slot whenever it is sufficiently backlogged.
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The above definition matches with that of a strict service curve in Determin-

istic Network Calculus [65].

Definition 2.4.2. WGRS(s) A wireless GRS(s) scheduler for a user with time

varying channel rate Cn bits per RB allocates a time varying number of RBs Mn to

the user such that at time n,

Mn = min

[
s

Cn

,
Qn

Cn

]
, (2.6)

where Cn is the channel rate at time n and Qn denotes the number of bits in the user’s

queue, resulting in an overall service rate Sn = MnCn.

Under these policies, as long as the user’s queue is sufficiently backlogged the

user will see a service rate s. Since the GRS(s) scheduler satisfies the user’s delay

constraints for the appropriately selected s, so will the wireless version, although it

may require the allocation of a large number of RBs if the user’s channel capacity is

low. Recall we consider a setting where there is a sufficiently large number of RBs

available to users, and they are unlikely to require a lot of resources at the same time.

Further note that although the scheduler is designed based on worst case analysis,

resources are only be allocated if needed, i.e., only if the user queue is backlogged,

hence no resources would be wasted, indeed they will be allocated to other users.

2.5 Opportunistic GRS schedulers

Following the setting in Section 2.4, we shall propose a new class of wireless

schedulers that we refer to as Opportunistic GRS(s) schedulers that have additional

flexibility to exploit temporal variations in users channel capacity, yet are guaranteed

to meet the user’s delay requirements. To that end, we first formally define a property
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that ensures the policy will meet the same delay requirements as GRS(s) when users’

traffic is leaky bucket constrained.

Definition 2.5.1. GRS(s) compliant A scheduling policy π is GRS(s) compliant

if when subject to the same arrivals process for any busy cycle of the GRS(s) sched-

uler, say (0, b], the cumulative service of π over the interval (0, τ ] for τ = 1, 2, . . . , b is

greater than or equal to that of the GRS(s) scheduler. It follows that the user queue

under GRS(s) compliant policy will empty out whenever that under the GRS(s) sched-

uler empties.

Since a GRS(s) compliant policy’s cumulative service (departures) is greater

than that of the GRS(s) policy on any busy cycle, it is clear that it can only speed

up departures and thus reduce delays in FCFS user queues. We note that GRS(s)

compliance differs from the traditional service curve definition, see e.g., [65, 24]), in

that it is defined via a coupling of π to the GRS(s) policy on busy cycles, and in

particular it is not shift invariant, i.e., under π it is possible to have an interval in

which queues are backlogged and there are no departures.

While opportunistic schedulers have been employed to efficiently allocate re-

sources for best effort traffic, the role of opportunism in scheduling traffic with dead-

lines & reliability requirements is far less understood. Usually opportunism in the

wireless literature is considered across users with varying rates, where the decision

is to schedule users with high rates, long queues and/or best marginal utility. The

design of GRS in the previous subsection is based on worst case delay analysis which

is not opportunistic. In this section, we explore opportunism over a single user’s

temporal service rate variability, i.e., the wireless time varying channel could perhaps

be better exploited by transmitting more data whenever the received signal strength

is stronger.
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Fig. 2.3 exhibits a sample realization. In the figure, the red curve shows the

cumulative arrivals to a GRS(s) busy cycle beginning at time 0 – corresponds to the

worst case cumulative arrivals associated with a dual leaky bucket. The dotted line

represents the cumulative service at a fixed rate s. Meanwhile the blue cumulative

service curve corresponds to a policy π. As can be seen, from the start of the busy

cycle at time 0 to the end at time b, the cumulative service of policy π exceeds that

of the fixed rate service and so GRS(s) compliant.

Fig. 2.3 also exhibits the perspective underlying Opportunistic GRS schedul-

ing. The key idea is to exploit temporal channel rate variability to improve spectral

efficiency without impacting delay guarantees. We observe that at times n1 and n3

the user’s channels are particularly good, and the user has queued data significantly

higher than s. The scheduler chooses to exploit these good user channels, by serving

much more data at those times than the minimal service rate required by GRS(s)

scheduling. In principle, since the user’s channel is good at those times, the number

of RBs the wireless scheduler would be allocating by doing so would be reduced as

compared to the WGRS(s) scheduler introduced in the previous section. Next, we

formally introduce a class of Opportunistic GRS(s) scheduling policies.
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Figure 2.3: Temporal channel variations and opportunistic service based on bits in
queue. The wireless channel rate variations are shown in the figure with a threshold
γ to determine the channel quality.

Definition 2.5.2. OGRS(s) An Opportunistic GRS(s) scheduling policy π subject

to an arrival process (An)n simulates the GRS(s) scheduler and allocates RBs and

thus service Sπ(·, ·] to the user such that for any GRS(s) busy cycle, say (0, b], we

have

A(0, τ ] ≥ Sπ(0, τ ] ≥ SGRS(0, τ ] for τ = 1, 2, . . . , b,

where A(0, τ ] denotes the cumulative arrivals and SGRS(0, τ ] the cumulative service

allocated by GRS(s) since the beginning of the busy cycle.

By definition, OGRS(s) schedulers are GRS(s) compliant, and thus will sat-

isfy the user’s delay requirements if s is chosen appropriately, relative to the arrival

processes’ leaky bucket parameters. However, such schedulers have the additional
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freedom to decide when to allocate RBs to the user and in particular, to do so when

the channels are particularly good.

Definition 2.5.3. Threshold-based Opportunistic GRS(s) The basic principle

underlying a threshold-based OGRS(s) scheduling policy π is as follows: if on time

slot n the channel rate Cn exceeds a threshold γπ
n , then a sufficient number of RBs are

allocated by the scheduler to clear the queue backlog, i.e, Mπ
n = Qπ

n/Cn. Otherwise, a

minimal number of RBs are allocated so as to ensure the cumulative service allocated

keeps up with that of the GRS(s) scheduler over its busy cycles.

Note, that the threshold γπ
n can be time/state dependent and controls how the

algorithm exploits channel rate fluctuations – this will be explained in the sequel.

Algorithm 1 exhibits the details of the threshold based OGRS(s) scheduler

which operates with respect to the cumulative service a virtual GRS scheduler would

provide for the same arrival process. To start with, consider a GRS(s) busy cycle that

without loss of generality begins at 0. Then one can express the user queue length

and service for the GRS(s) at time n as follows,

QGRS
n = [QGRS

n−1 − s]+ + An,

SGRS
n = min[QGRS

n , s].

Therefore, the cumulative service provided by GRS(s) over an interval (0, n] can be

expressed as,

SGRS(0, n] = SGRS(0, n− 1] + min[QGRS
n , s] .

Next, we have the OGRS policy which needs a metric that can measure the amount

of service provided in excess of the guaranteed rate s per time. slot. Let Oπ
n denote
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the amount of data that has been (opportunistically) sent ahead of time n relative to

the GRS(s) scheduler, i.e.,

Oπ
n = Sπ(0, n− 1]− SGRS(0, n− 1].

We initialize Oπ
0 = 0 at the start of a busy cycle. Note that the duration of a busy

cycle of a GRS(s) compliant scheduling policy with leaky bucket constrained arrivals

is upper bounded [65] by bmax(s) = σ
s−µ

, which bounds Oπ
n and guarantees it will

eventually return to 0. Note that any amount of opportunism Oπ
n gained translates

to the scheduler being τn =
⌈
Oπ

n

s

⌉
time slots ahead of the service deadline, see oπn2

and

τn2 as marked in Fig. 2.3.

As mentioned in the policy Definition 2.5.3, if Cn > γπ
n then π serves all the

data in the user queue, i.e., Sπ
n = Qπ

n. Clearly, the metric Oπ
n must be positive if

Qπ
n−1 > s, because π has served all the traffic that has entered the queue since the

start of the busy cycle, while GRS(s) only the bare minimum service it guarantees.

When the channel rate is not so good, i.e., if Cn ≤ γπ
n then OGRS can choose to

not schedule any RBs if at least s bits had been transmitted in advance. Specifically,

if the amount of excess service at time n − 1 falls short of s then π only serves the

minimum number of bits to ensure it keeps up with the GRS(s) scheduler, i.e.,

Sπ
n = [min[s,Qπ

n]−Oπ
n]

+ .

2.5.1 OGRS Threshold selection

In this section, we propose various ways to design the thresholds (γπ
n)n driving

the behavior of the threshold-based OGRS scheduler. We shall assume that the

scheduler has access to FC(·), the CDF for the users’ channel rate variations. We
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Algorithm 1: Guaranteed Rate Scheduling with opportunism over
temporal variations

1 initialize O0 = 0, Sπ
0 = 0, SGRS

0 = 0 ;

2 while n > 0 do

3 if Cn > γπ
n then

4 Sπ
n = Qπ

n ;

5 else

6 Sπ
n = [min[s,Qπ

n]−Oπ
n]

+ ;

7 end

8 Mπ
n = Sπ

n/Cn;

9 SGRS
n = min[s,QGRS

n ] ;

10 QGRS
n+1 = QGRS

n − SGRS
n + An+1 ;

11 Qπ
n+1 = Qπ

n − Sπ
n + An+1 ;

12 Oπ
n+1 = Sπ(0, n]− SGRS(0, n] ;

13 end

also assume that F−1
C (·) is an appropriately defined inverse CDF. As explained in the

sequel, in practice the CDF can be inferred, as in [80] to possibly adapt to changes

over time.

2.5.1.1 ST(α): Static threshold

A simple way to select channel quality threshold is to identify a quantile or

percentile value above which the channel strength is considered high. Whenever

the current channel quality is above the chosen quantile or percentile, the user can

transmit all data in it’s queue with RBs allocated accordingly. Our first threshold

design is a static percentile, i.e., γπ
n = γπ corresponding to the α-percentile of the

channel rate CDF, where α ∈ (0, 1), so,

FC(γ
π) = α =⇒ γπ = F−1

C (α). (2.7)
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For example, with a choice of α = 0.8 the OGRS(s) triggers an opportunistic schedul-

ing of the user’s queued data only if the current channel rate has exceeded the 80th

percentile, i.e., cn > γπ. Note that the choice percentile α is a design parameter that

can in principle be optimized to minimize the mean resources (RBs) allocated by the

associated OGRS(s) scheduler.

2.5.1.2 DTP(δ): Dynamic threshold based on probability

Next we consider thresholds based on a dynamic percentile of the channel rate

CDF FC(·). Recall that Oπ
n = oπn denotes the amount of data that our OGRS(s)

policy has delivered ahead of time as compared to GRS(s) at time n. Given that

the GRS(s) must serve at least s bits per slot, an OGRS(s) policy could in principle

wait for τn =
⌊
oπn
s

⌋
time slots before the GRS(s) scheduler catches up and is forced to

schedule at time τn + 1. Ideally the data should be scheduled on slot n if the current

rate realization cn is better than that to be observed in the next τn + 1 time slots

with high probability, i.e.,

P
(
cn > max

i=1,...,τn+1
Cn+i

)
≥ δ. (2.8)

The following lemma translates the above requirement to a threshold on cn. Note

that δ is a design parameter that needs to be carefully chosen so as to minimize the

number of RBs required.

Lemma 2.5.1. Let (Cn)n be i.i.d random variables with the same marginal distri-

bution FC(·) and appropriately defined inverse F−1
C (·). If cn exceeds the threshold

F−1
C

(
δ

1
τn+1

)
then (2.8) is satisfied.

Proof. See Appendix A.1. ■
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2.5.1.3 DTE: Dynamic threshold based on expectation

A user with current channel rate cn might choose not to schedule transmissions

on the current slot in the hope of seeing a better channel in the next τn slots. The

previous threshold design was based on the inequality in (2.8) being satisfied with

high probability. Alternatively, the current channel rate cn might be considered good

if one can ensure the inequality holds on average. Taking the expectation of the

inequality on the right hand side of and computing the expectation of the max of

uniform random variables in (A.1) gives,

FC(cn) > E
[

max
i=1,...,τn+1

Ui

]
= 1− 1

τn + 2
.

Under this rough approximation an associated threshold on cn depends on τn which

can be set to,

γπ
n = F−1

C

(
1− 1

τn + 2

)
. (2.9)

This captures the key insight that with a larger number of slots τn, an OGRS(s)

scheduler can choose to wait until the channel rate exceeds the 1 − 1/(τn + 2) per-

centile. Furthermore, this threshold selection mechanism does not have any design

parameter which makes it easier to implement in practice.

2.6 Stochastic Dominance of OGRS over WGRS

Consider a user with an arrival process (An)n and a time varying channel rate

(Cn)n per resource block, whose traffic is subject to a delay constraint of at most d

slots. The arrivals An are leaky bucket constrained (ρ, µ, σ) where bits arrive and

are available for service at time n. Then the following theorem establishes how the

number of RBs required for a given user by the WGRS policy stochastically dominates

that of OGRS-DTE.
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Theorem 2.6.1. For a system in steady state, the mean RBs required by OGRS per

time slot is stochastically dominated by that required by WGRS.

E[MWGRS]≥E[MOGRS]. (2.10)

Proof. See Appendix A.2 for proof and Section 3.6.7 for simulation based results of

the above theorem. ■

The above theorem establishes the superiority of the OGRS-DTE policy over

the strict sense service policy WGRS in the ergodic sense, which directly implies that

the OGRS-DTE enables the overall network scheduler to support existing eMBB users

at a higher data rate than the WGRS policy.

2.7 Simulation results

We consider a BS serving a set of URLLC with each user’s channel rate Cn

per RB determined by the corresponding received Signal to Noise Ratio (SNR). The

received SNR was modelled using the 3GPP Urban-Micro path loss model [3], with

Rayleigh distributed small scale fading. We assume bounded channel realizations,

where the SNR lies between −6.934 dB ≤ SNR ≤ 20 dB. Underlying this assumption

is the notion that the network has been well engineered so that users are covered by

at least one BS with reasonable SNR. reasonable as in practice users one would

expect high overlapping coverage from multiple BSs where the user has non-negative

rate support from at least one BS. For simplicity, we shall use Shannon capacity

B log2(1+SNRn) to calculate the rate per RB Cn, where each RB is a time frequency

slice of duration 1ms with bandwidth B = 10 KHz. We initially use Shannon capacity

B log2(1+SNRn) to calculate the rate per RB Cn, where each RB is a time frequency
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slice of duration 1ms with bandwidth B = 10 KHz. Later on, we demonstrate our

performance using realistic 3GPP modulation and coding scheme [3] taking one of 15

quantized values in −6.934 dB ≤ SNR ≤ 20 dB.

In our simulations, we assumed random numbers of packets of constant size

(1KB) that can arrive each time slot, but they are shaped by a leaky bucket with

parameters (in packets per time slot) σ = 50, ρ = 10, µ = 5. We considered two kinds

of traffic models: Bernoulli arrivals with parameter µ
ρ
and ON-OFF burst arrivals

where packets arrive at a peak rate ρ during the ON period. The ON, OFF cycles

are of duration σ
ρ−µ

, σ
ρ
, respectively. The guaranteed packet rate s per time slot for

the given leaky bucket parameters are determined using (2.4) for the specified. The

efficiency of a policy is measured in terms of the average number of RBs required to

serve the user, subject to its delay deadline.

Henceforth, we shall refer to OGRS scheduling only by the threshold meth-

ods that we employ: OGRS with static percentile threshold as ST(α), OGRS with

dynamic threshold in expectation as DTE and OGRS with dynamic threshold in

probability as DTP(δ). The aim is to demonstrate the reduction in resource usage

when we employ these OGRS policies as compared to the WGRS(s). We also explore

the sensitivity of these efficiency gains to various system parameters such as: the

number of past channel samples used to estimate the empirical distribution of the

users channel quality, coding rates corresponding to 3GPP Modulation and Coding

Scheme (MCS), wireless connectivity outages, and the delay deadline d.

Finally, to determine the channel quality thresholds, we need the CDF FC(·)

for the channel rate per RB on a given slot, for each user. We used the last 100

channel SNR realizations to determine the empirical CDF of the user’s SNR at any

given instant. Note that all plots in this section were generated over 106 slots, resulting
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in a ±0.1 error for the estimated mean number of allocated RBs per slot M̄π with

99% confidence interval. Additionally, we will use the WGRS policy as a baseline and

also the multicarrier version of MLWDF [11] policy as a benchmark for evaluating

the performance of our proposed algorithm.

2.7.1 Spectral efficiency

For this subsection we consider three different URLLC users that are at dis-

tances 300, 500 and 700 meters and which we refer to as strong, medium and weak

users, respectively. Also, we assume each URLLC user has stochastic arrivals with

packet size of 1024 bits that arrive each time slot shaped by the leaky bucket with

parameters (in packets per time slot) σ = 50, ρ = 10, µ = 5. The guaranteed packet

rate s per time slot is then determined using (2.4) for a common delay deadline of

d = 4 ms for all the users. The efficiency of our proposed scheudling policy is mea-

sured in terms of the average number of RBs required to serve the user, subject to its

delay deadline. Henceforth, we shall refer to the proposed OGRS scheduling policy

by the threshold method that we employ to determine the channel rate quality.

Fig. 2.4 shows the percentage reduction in the average number of RBs required

to serve all three types of users with ST(α) relative to that needed by WGRS under

the same arrival and channel rate processes. It is interesting to note that the weak

user sees the best gain, which can be attributed to the higher range of channel strength

variations that a typical weak user would observe. Higher temporal variability should

lead to higher opportunistic gains for such users. Also, it is clear that the percentile

α that maximizes the spectral efficiency gain depends on the arrival pattern and user

channel strength.

Finally, we also evaluated the efficiency gains of DTE vs WGRS(s) and the
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Figure 2.4: Percentage reduction in RB usage for ST(α) with respect to (w.r.t) that
of WGRS. The top figure corresponds to efficiency gains for Bernoulli arrivals and
the bottom for burst arrivals.

results were as follows: the percentage reduction in the number of resources required

for each type of strong, medium, and weak, users were 26.79%, 37.47%, 37.67% for the

strong, medium and weak user, respectively. The DTE policy achieves at most 5%

loss in efficiency as compared to DTP(δ) policy, thus providing a reasonable approach

as it requires no parameter fine tuning.

2.7.2 Sensitivity to history

Next, we considered the impact of the number of channel samples used to

estimate the empirical CDF evaluation on the spectral efficiency. Fig. 2.6 shows the
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Figure 2.5: Resource reduction percent for DTP(δ) w.r.t. WGRS. The top figure
corresponds to efficiency gains for Bernoulli arrivals and the bottom for burst arrivals.

spectral efficiency of the proposed OGRS-ST(α) algorithm, for two different of the

number of past samples used to estimate the empirical distribution of the channel

rate CDF.

We can see that for as little as 10 samples of the past channels, we are within a 5%

of the spectral efficiency when using 100 samples for estimating the CDF. Clearly,

a short history such as ten past samples is sufficient to track the wireless channel

variations without significant loss in the efficiency of our scheduling algorithms.
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2.7.3 Admission Control

We consider a set of 100 users with ON-OFF bursty traffic and leaky bucket

constrained arrivals. The delay deadline and user location (distance from the BS)

are drawn uniformly random from the sample spaces {200, 250, . . . , 800} and {2, 3,

. . . , 10}, respectively. This subsection and the remaining subsections in this chapter

consider the bursty ON-OFF traffic model. The arrivals and channel variations are

generated over 106 time slots to simulate the number of users that can be admitted

for various system capacities m, the total number of RBs available in the system.

For the same set of users, we also use the Gaussian approximation for the aggregate

resource requirement Xu to determine the number of admitted users, shown as dashed

lines in Fig. 2.7. If Y is the random variable that denotes the resource requirement

of a new user, then the probability that the total resource requirement Xu + Y will

exceed m is approximated using the following inequality,

P (Xu + Y > m) ≤ exp

(
−(m− µ)2

2σ2

)
, (2.11)

where µ = µu + µ̂ and σ2 = σ2
u + σ̂2. Note that the inequality in (2.11) provides a

computationally reasonable expression that can be used to decide if the new user can

be admitted without exceeding the reliability requirement δ.

It can be seen that the Gaussian approximation provides a conservative es-

timate of the number of users that can be admitted into the system for both the

OGRS and WGRS scheduling policies. Note that OGRS scheduling policy is able to

admit more users when compared to the WGRS policy, which is interesting given that

WGRS is more deterministic in resource provisioning, whereas the others are more

bursty, as a function of the channel quality and arrivals.
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2.7.4 Measurement error

The admission control strategies discussed in [22, 23], rely on accurate knowl-

edge of the users’ aggregate resource usage statistics. In practice, however, one would

need to measure the system’s resource usage – which could potentially evolve based

on the overall network traffic and user channel dynamics. Consequently, it is of inter-

est to know the measurement errors in the mean and variance of aggregate resource

usage that would impact performance.

We estimate the measurement error for the mean and standard deviation of

the resources required by constructing a confidence interval based on 100 samples

of the total RBs required for servicing the heterogeneous users. We determine the

confidence interval for the mean, using the Gaussian confidence interval, CI = µ̂±zασ̂

, where zα ∈ R is the value such that P(X ≥ zα) ≤ α. The confidence interval for the

true standard deviation σtrue was obtained using the formula,√
(k − 1)σ̂2

χ2
α/2

≤ σtrue ≤
√

(k − 1)σ̂2

χ2
1−α/2

(2.12)

where k is the number of samples used to obtain the sample variance and χ2
α = x :

P(X ≥ x) = α, with X being χ2 distributed with k − 1 degrees of freedom.

Fig. 2.8 shows the confidence interval for the mean and standard deviation

for a 99.9999% confidence interval on the resource requirement based on all three

scheduling policies. The confidence interval around the mean is quite narrow and

re-emphasizes the certainty equivalence of the measured mean. As for the standard

deviation, Fig. 2.9 shows that one needs to account for the confidence interval of

the variance to provide robust admission control to URLLC users that require high

reliability.
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(a) 99.9% Confidence interval

(b) 99.999% Confidence interval

Figure 2.9: Confidence interval for mean and standard deviation of the total number of
resources allocated by OGRS-DTE to heterogeneous users admitted into the system.

2.7.5 Adaptation to transmission errors

Finally, we would like to consider a more practical wireless channel, unlike in

Assumption 2.3.1, to discern how well our proposed adaptive algorithms can perform

in the event of a channel outage. We need to adapt our OGRS algorithm to account

for the uncertainty in wireless data transmissions. Suppose the user has a successful
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transmission with probability 1− ϵ, independent of all past and future transmissions,

i.e., P(Cn = 0) = ϵ. Recall that the GRS(s) compliant algorithms meet the delay

deadline with probability 1 by assigning s RBs every time slot, under the assumption

that P(Cn = 0) = 0. Therefore, we propose a simple adaptation to address the

transmission error at time slot n, by assigning 2s RBs in the subsequent time slot

or 3s at n + 2 when both Cn = 0, Cn+1 = 0, and so forth. We demonstrate through

extensive simulations that for ϵ ≤ 0.1, we are able to meet the delay deadline with

very high probability.

Fig. 2.10 shows the probability of failure to meet the delay deadline when

the channel has a non zero probability for outage, i.e., P(Cn = 0) = ϵ. We present

results for both adaptive WGRS and adaptive OGRS scheduling algorithms proposed

in Sec 2.5, where for OGRS we use the DTE threshold. It can be seen that the

order of failure probability is at least one tenths less than ϵ for adaptive OGRS. Also

note that the outage performance of DTE is superior to WGRS and demonstrates the

robustness of DTE to channel outage. Since the failure probabilities of weak, medium

and strong users are same up to three decimal points, Fig. 2.10 shows results for the

medium user only.
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Figure 2.10: Probability of failure to meet the delay deadline for channel outage
probability ϵ, using DTE policy.

In summary, the δ-based dynamic threshold has better spectral efficiency than

either ST(α) (Sec. 2.5.1.1) or DTE (Sec. 2.5.1.3). However, ease of use with no

design parameter gives DTE an added advantage over the other threshold selection

mechanisms. Efficiency gains are higher if the traffic is bursty as the queues are usually

much busier, which is desirable for video and real time applications. Efficiency gains

are also higher if the user channel variations are large, as seen in the case of the weak

‘cell edge’ users. Furthermore, impact of number of samples for empirical estimation

has been demonstrated, the higher the number of past channel realization samples,

the better the empirical CDF estimate and hence overall spectral efficiency.

2.8 Chapter Summary

We have proposed a measurement based opportunistic wireless scheduler, which

can meet heterogeneous users’ hard delay deadlines while being spectrally efficient,

i.e., minimizing the resources required, thus permitting the system to achieve addi-
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tional throughput for other traffic sharing the network resources. The underlying

design principle for OGRS policies is to ensure that the wireless scheduler meets or

exceeds the service that a guaranteed rate scheduler with rate s would assign. Thus

by design, OGRS policies can also be used to efficiently deliver a Guaranteed Bit

Rate (GBR) service. Our proposed policy uses dynamic opportunistic thresholds to

leverage the knowledge of the user’s marginal channel quality rate distribution, which

in practice would be measured and/or tracked based on a limited number, say 10, of

the previous channel realizations.
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Figure 2.6: Reduction in RB usage for ST(α) as a function of the number of samples
used for empirical CDF. The top figure corresponds to efficiency gains for Bernoulli
arrivals and the bottom for burst arrivals.
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Figure 2.7: Admission control using Gaussian approximation on the total RBs re-
quired for all admitted URLLC users.
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Figure 2.8: Confidence interval for the mean and standard deviation of the total
number of RBs allocated by OGRS-DTE to heterogeneous users.
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Chapter 3: Opportunistic Guaranteed Deadline

Scheduling‡

While traffic shaping or policing provides a handle on the worst case traffic

arrival that the scheduler would see, it is often not convenient to represent real time

data traffic. For instance, video data will require a large token bucket size in order

to accommodate peak arrival rates corresponding to the packets of an I frame. In

this chapter, we will look at a delay constrained scheduler that is not limited to the

traffic being leaky bucket constrained. We propose an opportunistic scheduler that

meets strict delay deadlines on users’ packets by estimating the probability of seeing

a good channel in the future, before the packet deadline expires.

3.1 Related Work

Many works have focused on a setting where users’ data queues are fully back-

logged. When this is the case, one can consider devising schedulers that maximize the

sum of the users’ utility of their allocated long term rate [99]. For example, Propor-

tionally Fair (PF) wireless scheduling emerges when users have log utility functions,

see e.g., [54], and results in a scheduler that realizes a good tradeoff between oppor-

tunistically scheduling users which have good channels versus achieving a fair long

term allocation amongst the users. Variations on these ideas have been proposed

where the users’ utility is a function of the short term throughput, see e.g., [31]. This

‡Publications based on this chapter: [22] Geetha Chandrasekaran, Gustavo De Veciana, Vishnu
Ratnam, Hao Chen, and Charlie Zhang. Delay and Jitter Constrained Wireless Scheduling with
Near-Optimal Spectral Efficiency. In 2023 IEEE 34th Annual International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), pages 1–7, 2023

62



leads to a more responsive allocation avoiding short term neglect of any user. In

practice, PF, and other utility maximizing schedulers, provide a simple and effective

strategy for best effort or enhanced Mobile Broadband (eMBB) traffic with no strict

delay requirements. Still, questions remain as to what happens when user queues

are not fully backlogged or how to choose the fairness criterion, i.e., utility functions

when there are delay constraints that require high reliability.

In settings where users’ queues are not fully backlogged, researchers have fo-

cused on devising queue and channel dependent wireless schedulers which are through-

put optimal, i.e., ensure user queues’ stability whenever feasible. These schedulers also

address performance objectives, such as Max-Weight [103], which is delay optimal in

the idealized symmetric case, Exponential rule [92] which attempts to minimize the

max user queue, Log rule [87] which attempts to minimize the mean delay and a

variant of Exponential rule that supports real time and non real time QoS [91]. Such

schedulers have been adapted to more practical settings, such as the Modified Largest

Weighted Delay First (MLWDF) [11] which schedules users based on head-of-line

packet delays, current channels, and other hyperparameters (like queue lengths [32])

reflecting user QoS/allocation objectives. In practice, such schedulers do meet delay

constraints (with high probability) if sufficient resources have been provisioned, yet

it is difficult to verify when this is true, and as such provide a graceful degradation

across users when this is not the case.

Another class of wireless schedulers was born from modifying/adapting ideas

from wireline scheduling (e.g., traffic shaping and network calculus [65, 24]) to meet

QoS requirements under wireless channel variations. For instance, weighted round

robin [64] or weighted fair queueing [67] employ user weights drawn from heuristics

or tokens [79] based on service deficit [57] to either minimize the average delay or
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provide a graceful degradation of service. Much of the above mentioned work focuses

on scheduling one class of users, e.g., best effort users sensitive to throughput, or

traffic that is sensitive to packet delays. In practice, wireless systems need to be

shared by heterogeneous user classes.

While many schedulers in the existing literature address delay constraints for

real time traffic, spectral efficiency is often neglected, leading to lesser resource avail-

ability for non real time traffic. In this chapter, we place such interplay front and

center, with a focus on not only developing a scheduler that meets delay constraints

but one that does so in a spectrally efficient manner.

No practical wireless scheduling policy is complete without a complementary

strategy for admission control and/or traffic shaping. Given the uncertainty and

heterogeneity associated with traffic, channels, and user requirements in a wireless

system, it is virtually impossible to devise good models that would allow one to

predict if the users’ QoS requirements will be met under a given scheduling policy.

While there have been many works in literature that propose Measurement Based

Admission Control (MBAC) [41, 42, 107], we note that meeting packet delay and

loss targets in buffered systems is challenging [18]. In contrast to traditional MBAC

approaches, our approach directly measures the aggregate resource that our delay

constrained schedulers are using thus indirectly capturing the impact of the users’

traffic, channel variability and delay constraints. Building on [23, 22], we provide an

in-depth analysis of proposed algorithms’ spectral efficiency and a variety of practical

considerations.
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3.2 Chapter contributions

We propose several classes of wireless schedulers which under appropriate as-

sumptions can meet heterogeneous delay deadlines and do so in a spectrally efficient

manner such that the more relaxed the constraint the more efficient. The key under-

lying idea is to leverage the flexibility of wireless systems, in terms of allocating a time

varying number of Resource Blocks (RB) to overcome /exploit variations in wireless

users’ capacity per RB. This permits one to devise a scheduler, the Guaranteed Rate

Service (GRS), which will ensure a user will see a fixed service rate even with channels

that have stochastic variations. If a user’s traffic is leaky bucket constrained, one can

determine a minimum fixed service rate which will ensure a desired maximum delay.

Any scheduler which allocates at least as much cumulative service as the GRS

scheduler over busy periods is GRS compliant, and will thus also meet the user’s de-

lay deadlines. This observation suggests the possibility of opportunistically serving a

user’s data ahead of time when channel rates are good, relative to the GRS scheduler,

and/or delay such service when channel rates are poor, as long as the scheduling is

GRS compliant. We devise a class of Opportunistic GRS (OGRS) schedulers that

take advantage of this relaxation along with knowledge of the statistics of the users’

channel variations, to achieve better spectral efficiency while meeting users’ strict

delay constraints. While OGRS is opportunistic while meeting the delay constraints,

the underlying requirement to provide a minimum rate for each time slot is limit-

ing. We propose an alternative approach, denoted Opportunistic Guaranteed Delay

Scheduling (OGDS) that schedules data opportunistically based on the statistics of

its channel’s temporal variations and the remaining time window until its deadline

expires.

First, we establish a stochastic ordering between the resource requirements
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of OGRS and Wireless GRS scheduling algorithms. Next, by considering offline

policies with access to future channel capacity realizations, we derive a bound on the

spectral efficiency that any delay constrained schedulers could achieve. We show via

extensive simulations that OGRS can be within 10% to 40% of the bound as the delay

constraint is relaxed. Meanwhile, OGDS is within 10% of the bound for a range of

delays that we have simulated so far, which is up to 10 ms. These gains translate to

doubling the eMBB user’s throughput even for the users with the weakest wireless

channels when URLLC and eMBB traffic share resources. We also observe an increase

of up to 57% in the number of users that can be supported. This chapter further

explores the impact of various additional issues critical to wireless scheduling including

transmission errors, Hybrid Automatic Repeat Request (HARQ), user mobility, and

the time scales on which to estimate the empirical distribution of channel variations, to

show how our proposed approach would fare in practice. Finally, we also compare the

spectral efficiency of OGRS and OGDS with delay constrained schedulers leveraging

neural network based forecasts of future channel rates. We demonstrate regimes

where the spectral efficiency of schedulers using empirical statistics (OGRS, OGDS)

is higher than those that employ neural network predictions and vice versa.

This chapter is organized as follows. Section 3.3 describes the system model.

Section 3.4 describes our proposed algorithms for delay constrained scheduling. Sec-

tion 3.5 presents the main theoretical results of this chapter. Section 3.6 provides

simulation results that compares the spectral efficiency, jitter, error and admission

control of the proposed OGDS scheduler with other baseline algorithms. Section 3.7

provides extensive simulations for some practical wireless network settings, and also

evaluates the spectral efficiency of a natural class of delay constrained schedulers that

use neural network based channel rate predictions. Finally, Section 3.8 includes some
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concluding remarks.

3.3 System Model

We consider discrete time downlink scheduling for a base station serving a

variety of users with either real time or best effort traffic. We denote by set U the

delay constrained users with stochastic arrivals and possibly heterogeneous QoS re-

quirements. The base station also serves a set E of infinitely backlogged best effort

traffic users. We denote by (Au
n)n∈N the arrival process for user u ∈ U, where Au

n is a

random variable denoting the number of bits that arrive and are available for service

in time slot n with a transmission deadline of n+du, where du is the delay constraint

for user u. In general, it is not possible to ensure delay guarantees to a user without

prior knowledge of its traffic statistics or of constraints on its traffic. A common

approach for the latter is to establish and enforce (through traffic policing/shaping)

apriori constraints on the user’s traffic that can be used to design resource alloca-

tion mechanisms guaranteed to meet a user’s QoS requirements. In this chapter, we

devise a scheduler that meets packet delay constraints without directly relying on

traffic shaping constraints, but assuming admission control is in place. Note that

while OGRS (introduced in Chapter 2) exploits information on the traffic shaping

parameters to design an opportunistic scheduling rule, such strict traffic shaping is

not required for the OGDS policy, which only requires the peak bit arrival rate of the

user be bounded.

The base station transmit resources are modeled as a sequence of frames/slots

comprising multiple Resource Blocks (RBs) which the scheduler can allocate arbitrar-

ily to users on a per time slot basis by. For each RB, i.e., slice of time and frequency,

we let the random variable Cu
n ∈ R+ denote the channel rate (bits per RB) that can
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be transmitted to user u if it is allocated a single RB on time slot n. While Cn can

be small we assume that each RB has a non-zero effective transmission rate, like we

did in the previous chapter, reproduced below for ease of reference.

Assumption 3.3.1. (Connectivity Assumption) The BS can transmit data over an

RB at a non-zero channel rate Cu
n > 0 with probability 1.

Remark. This can viewed as a coverage/connectivity requirement for URLLC users

which is met using sufficiently strong coding and/or multiple antennas which is either

met with probability 1 or with a probability sufficiently high to far exceed the desired

reliability associated with users’ QoS guarantees.

A user may be allocated multiple RBs, but we assume a flat fading setting

where the rate delivered to user u is the same across RBs in a given time slot. Addi-

tionally, a single RB may be allocated to only one user in a given time slot. Further,

we assume (Cu
n)n∈N are independent and identically distributed (i.i.d.) across time

slots. Additionally, we also assume that a sufficiently large number of RBs are avail-

able every time slot to meet each user’s QoS requirements. In the sequel, we propose

admission control techniques that will limit the total number of users in the system

and thus ensure resource availability. Our goal is to devise schedulers for URLLC

users that use a minimal number of RBs. The remaining resources can be used to

serve backlogged eMBB users with no stringent delay requirements.

A scheduling policy π, decides the number of RBs to be allocated to each user

in each time slot. For ease of exposition, we will assume that there are enough RBs

to provision service to all users in the system, and in the sequel, we will introduce

admission control to limit the number of users as needed. The decision of policy π at

time n is assumed to be causal concerning knowledge of the current and past channel
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rates (Cu
τ )

n
τ=0, arrivals and queue lengths, allowing for opportunistic scheduling, i.e.,

taking advantage of capacity variations across time. In particular, we let Mu,π
n ∈ R+

denote the number of RBs allocated to user u on slot n by a policy π given the

observed history. Such an allocation provides an overall service rate Su,π
n (total bits

transmitted with potentially multiple RBs allocated) to the user u on time slot n

given by,

Su,π
n = Mu,π

n Cu
n ,

and we define the cumulative service over an interval (τ, τ + n] as follows,

Su,π(τ, τ + n] =
τ+n∑

k=τ+1

Su,π
k . (3.1)

A user’s data queue (in bits) is modeled as a First Come First Serve (FCFS) discrete

time queue with arrivals Au
n and service rate Su,π

n as shown in Fig. 3.1. We let Qu,π
n+1

denote the number of bits in the user’s queue at the start of slot n+ 1, then

Qu,π
n+1 = [Qu,π

n − Su,π
n ]+ + Au

n+1 . (3.2)

Au
n Su,π

n

Peak rate
constrained arrivals

User queue Qu,π
n

Service rate

Figure 3.1: Peak rate constrained arrivals to a discrete time queue with a service rate
controlled by scheduling policy π.

3.4 Opportunistic Guaranteed Deadline Scheduling

In this section, for the sake of brevity, we will drop the user index (marked by

superscript u) as we consider per user scheduler. The user index will be reintroduced
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in the sequel when we introduce admission control. Suppose we start with an empty

user queue at t = 0, then the arrival process A(0, τ ] delayed by d would be such

that A(−d, τ − d] = A(0, τ − d]. Fig. 3.2 depicts the cumulative arrivals A(0, τ ] in

blue and the corresponding delayed version in red A(0, τ − d]. The delayed arrivals

curve represents the worst case cumulative service that a server could provide without

violating the delay constraint on each packet. Any cumulative service curve that lies

within the arrivals and worst case departures curve will be delay compliant.

τ

Cumulative arrivals
Delayed

cumulative
arrivals

t0

Delay
compliant service

Figure 3.2: Delay compliant cumulative service along with worst case delayed service
curve.

Definition 3.4.1. GDS(d) We let the Guaranteed Deadline Scheduler with param-

eter d, GDS(d), be a scheduling policy that guarantees each bit in the user data queue

be serviced within a delay of d since its arrival. Clearly,

A(0, τ ] ≥ SGDS(0, τ ] ≥ A(−d, τ − d].

Definition 3.4.2. Opportunistic GDS(d). A threshold based OGDS(d) scheduling

policy π is as follows: whenever the channel rate Cn exceeds a threshold γπ
n , a sufficient

number of RBs are allocated by the scheduler to completely clear the queue backlog,

i.e, Mπ
n = Qπ

n/Cn. Otherwise, a minimal number of RBs are allocated so as to ensure

that the cumulative service of π at slot n exceeds or matches that of the d delayed

cumulative arrival curve.
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At each time slot, the number of slots τn over which there is flexibility to

pick when to serve the data in the user queue depends on the residual time until the

earliest deadline. Note that any data whose deadline is due to expire at a given time

slot will be allocated resources in the same time slot. In case the current channel rate

is expected to be better than those in the next τn time slots (i.e., current rate exceeds

the threshold γπ
n), the entire queue backlog is cleared.

Algorithm 2: Guaranteed Deadline Scheduling with opportunism over
temporal variations.

1 initialize Sπ
0 = 0;

2 while n > 0 do

3 τn = min [k : k ≥ n,A(0, k − d] ≥ Sπ(0, k]];

4 if Cn > γπ
n then

5 Sπ
n = Qπ

n ;

6 else

7 Sπ
n = [A(0, n− d]− Sπ(0, n− 1]]+ ;

8 end

9 Mπ
n = Sπ

n/Cn;

10 Qπ
n+1 = Qπ

n − Sπ
n + An+1 ;

11 end

Algorithm 2 details the steps involved in OGDS(d) scheduling. When the

channel rate is above a certain threshold Cn > γπ
n , the OGDS policy π serves all data

in the user queue,

Sπ
n = Qπ

n.

Otherwise, the scheduler π allocates only the minimum number of RBs required to

meet the worst case delayed service curve, i.e.,

Sπ
n = [A(0, n− d]− Sπ(0, n− 1]]+ .
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Specifically, if the cumulative service provided by π until time n − 1 is greater than

that of the worst case delayed cumulative service at time n, then policy π can com-

pletely refrain from allocating any resources at time n if the channel rate is below the

threshold.

OGDS Threshold selection: Define τn as the slack available to the scheduler

before it is forced to schedule data to maintain delay guarantees, i.e.,

τn = min [k : k ≥ n,A(0, k − d] ≥ Sπ(0, k]] . (3.3)
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Figure 3.3: Illustration of the slack available to schedule cumulative arrivals based
on the worst case service curve. The bottom figure shows the time varying nature of
the wireless channel rates with a fixed threshold γ to determine the channel quality.

The threshold selection is illustrated in Fig. 3.3. At the time n1, the OGDS

scheduler has a slack of τn1 time slots before it is forced to start servicing the user

queue. Therefore, for any particular channel rate realization cn, the channel condition

72



is considered good for opportunistic scheduling if,

E
[

max
i=1,...,τn+1

Ui

]
< FC(cn) . (3.4)

The left hand side is a maximum of τn + 1 i.i.d uniform random variables which can

be shown to be (see proof of Lemma 2.5.1),

E
[

max
i=1,...,τn+1

Ui

]
= 1− 1

τn + 2
< FC(cn).

With this rough approximation an associated threshold on cn depends on τn which

can be set to,

γπ
n = F−1

C

(
1− 1

τn + 2

)
. (3.5)

This captures the key insight that with a larger number of slots τn where π is not going

to be forced to schedule user data, an OGRS(s) scheduler might choose to wait unless

indeed it currently has a channel rate in the 1− 1/(τn + 2) percentile. Furthermore,

the current threshold selection does not have any design parameter which makes it

highly convenient for usage in practice. In the discussion above, we have assumed that

the user’s channel rate CDF is available. Typically, the serving BS tracks the user’s

Channel State Information (CSI) for adaptive modulation and coding, therefore, it is

reasonable to assume that we can empirically estimate the channel rate CDF using

CSI [80]. Also note that when the channel rates are discrete, we could use linear

interpolation to invert the empirical CDF and compute the percentiles for the channel

rate threshold.

3.4.0.1 Modified OGDS

While most scheduling policies for delay constrained traffic focus on improving

key performance metrics such as energy efficiency [96], reliability [28] and delay, jitter
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is often neglected. It is a particularly important metric when transmitting periodic up-

dates to networked real-time control and/or interactive AR/VR gaming applications.

Disparate transmission delays across users can be undesirable/intolerable, especially

in scenarios that need synchronization of updates across all users. There are multiple

ways to measure the variability of transmission delay. We define jitter in terms of the

standard deviation of delay for data transmissions that are periodic in nature.

We propose an elementary modification to the OGDS algorithm that provides

a way to trade off between spectral efficiency, delay, and jitter, by carefully selecting a

transmission window over which resources are allocated to the user. One could either

wait for a predetermined number of transmit instants, say ζ, or artificially advance

the targeted delay deadline to d − ζ to reduce packet jitter. A shorter window for

transmission reduces the number of opportunities available for a user to be efficient,

nevertheless, it reduces the variability in delay. Specifically, in Algorithm 2, step 10,

the user queue update equation could be modified as follows,

Qπ
n+1 = Qπ

n − Sπ
n + An+1+ζ , (3.6)

where Sπ
n denotes the service provided at time n, and An+1+ζ stands for the arrivals

at time n+ 1+ ζ. In the sequel, we will refer to the parameter ζ as the jitter control

parameter and demonstrate how the modified OGDS policy performs in terms of

spectral efficiency and jitter.

3.5 Lower Bound on Spectral Efficiency

In this subsection, we state the theorem on a lower bound on the minimum

number of resource blocks required by any wireless scheduler meeting the delay dead-

lines. The lower bound is based on considering an offline policy with complete knowl-
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edge of the future channel realizations and thus not achievable in an online setting,

yet a good benchmark.

Consider a user with an arrival process (An)n and a time varying channel rate

(Cn)n per resource block, whose traffic is subject to a delay constraint of at most d

slots.

Theorem 3.5.1. For any scheduling policy π meeting the delay constraint, let Nπ
n

denote the (possibly fractional) number of resource blocks used to serve the arrivals

An, these RBs may be allocated at the earliest on slot n, but no later than the deadline

n + d. Similarly, we let Mπ
n denote the total number of RBs allocated on slot n. It

then follows that,

Nπ
n ≥ An min

0≤j≤d

[
1

Cn+j

]
a.s. . (3.7)

Furthermore, if the arrivals and channel rate processes are stationary and

independent of each other and the policy π is such that,

lim
n→∞

1

n

n∑
τ=1

Nπ
τ = N̄π,

then the time average of (Mπ
n )n also converges to a limit M̄π, which satisfies

M̄π = N̄π ≥ E[A1]E

 1

max
0≤j≤d

C1+j

 . (3.8)

Proof. See Appendix B.1 for proof. ■

The lower bound on spectral efficiency is illustrated below using Fig. 3.4. An

oracle-aided policy that has access to future channel rate realizations can schedule a

packet that arrives by n1 for transmission at time slot n5 when the user’s rate is the

best before the packet deadline expires.
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Figure 3.4: Illustration of the spectral efficiency lower bound when future channel
rate realizations are known.

3.6 Simulation results

We consider a BS serving a set of URLLC with each user’s channel rate Cn

per RB determined by the corresponding received Signal to Noise Ratio (SNR). The

received SNR was modelled using the 3GPP Urban-Micro path loss model [3], with

Rayleigh distributed small scale fading. We assume bounded channel realizations,

where the SNR lies between −6.934 dB ≤ SNR ≤ 20 dB. For simplicity, we shall use

the 3GPP MCS Table 3.1 (see [2, Table 5.2.2.1-2]) to determine the rate obtained

per RB Cn, where each RB is a time frequency slice of duration 1ms with bandwidth

B = 10 KHz.

The traffic model is stochastic arrivals with a packet size of 1024 bits that

arrive each time slot shaped by the leaky bucket with parameters (in packets per
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MCS Index Modulation Coding Rate Spectral SNR

(bits/sym) Efficiency (dB)

1 QPSK 78 0.1523 -6.934

2 QPSK 120 0.2344 -5.147

3 QPSK 193 0.3770 -3.18

4 QPSK 308 0.6016 -1.254

5 QPSK 409 0.8770 0.761

6 QPSK 602 1.1758 2.697

7 16-QAM 378 1.4766 4.697

8 16-QAM 490 1.9141 6.528

9 16-QAM 616 2.4063 8.576

10 64-QAM 466 2.7305 10.37

11 64-QAM 567 3.3223 12.3

12 64-QAM 666 3.9023 14.18

13 64-QAM 772 4.5234 15.89

14 64-QAM 872 5.1152 17.82

15 64-QAM 948 5.5547 19.83

Table 3.1: 3GPP Modulation and Coding

time slot) σ = 50, ρ = 10, µ = 5, unless otherwise specified. Finally, to determine the

channel quality thresholds, we need the CDF FC(·) for the channel rate per RB on a

given slot, for each user. We used the last 100 channel SNR realizations to determine

the empirical CDF of the user’s SNR at any given instant. Note that all plots in this

section were generated over 106 slots, resulting in a ±0.1 error for the estimated mean

number of allocated RBs per slot M̄π with 99% confidence interval. Additionally, we

will use Wireless GRS (WGRS), OGRS policies introduced in the previous chapter as

a baseline and also other benchmark policies such as the multicarrier version of the

MLWDF [11] policy and schedulers that use neural network based forecasts of future

channel rates to evaluate the promise of our proposed algorithms.
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3.6.1 Spectral efficiency and jitter

We consider real time video streaming applications to evaluate the spectral

efficiency and jitter performance of our modified OGDS policy. Let traffic arrivals be

periodic, with 50 payloads of size 1 KB each that arrive once every 10 milliseconds

(ms), over a duration of 106 ms for a total rate of 5 Mbps. A range of 4−10 ms delay

deadlines are considered for each payload. Fig. 3.6 exhibits how jitter reduces for

each user with higher ζ at the cost of lower spectral efficiency as shown in Fig. 3.5.

The plots for modified OGDS are labeled as “ζ-OGDS”, where ζ is the jitter control

parameter. Also, note that as the delay deadline increases we see a fall in the total

number of RBs required for all policies.

Medium user

Strong user

Weak user

Figure 3.5: Spectral efficiency for various jitter control parameter ζ.
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Figure 3.6: Jitter performance.

3.6.2 Improvement on eMBB throughput

In this section, we demonstrate the throughput improvement for eMBB users

where the BS supports multiple heterogeneous users, 3 URLLC and 5 eMBB users.

We consider ON-OFF bursty arrivals for URLLC users, where packets arrive at a

peak rate ρ during the ON period. The ON, OFF cycles are of duration σ
ρ−µ

, σ
ρ
,

respectively. Distance from the BS and leaky bucket parameters for the 3 URLLC

users are tabulated below:

Table 3.2: Leaky bucket parameters for multiple users.

User distance (m) Delay(ms) ρ µ σ

1 300 5 10 5 50

2 500 3 20 10 50

3 700 7 10 5 50
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The eMBB users are located at distances 250, 560, 650, 720, 800 meters from

the BS. Note that we assume that eMBB users are infinitely backlogged and do not

have any stringent deadlines. Furthermore, we use proportionally fair scheduling to

select one eMBB user from the set of eMBB users at each time slot that gets allocated

all the leftover RBs.

A total of 6000 RBs are available to all the users connected to the BS and the

URLLC users are allocated resources with priority. After allocating resources to all

active URLLC users, the leftover RBs are used to serve eMBB users. The throughput

performance of the oracle-aided policy is also included to provide a bound on the best

feasible spectral efficiency for URLLC users, which translates to higher throughput

for eMBB users.

Fig. 3.7 showcases the throughput gains for eMBB users for the various algo-

rithms. When compared to the baseline and benchmark scheduling policies, OGRS

policy is indeed closer to the throughput gain bound set by the oracle-aided scheduling

policy with access to future channel rates.

Figure 3.7: Long term throughput distribution for eMBB users.
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Figure 3.8: Non-stationary environment.

3.6.3 Robust performance under nonstationary environment

Our design of the dynamic threshold that triggers packet scheduling was based

on the assumption that channel rate variations are i.i.d across time slots. However, in

practice, wireless channel rates are often nonstationary, depending on user mobility

and other propagation dynamics. To evaluate the performance of our scheduler on

non-stationary wireless channels we used a trace [46] driven simulation for all three

policies. In our simulation, we used 15 samples of past channel realizations to track

the empirical CDF of the wireless channel. Fig. 3.8 demonstrates that OGDS is very

close to the offline lower bound in a practical real world wireless environment.

3.6.4 Admission Control

We consider a set of 100 users with ON-OFF bursty traffic and leaky bucket

constrained arrivals. The ON OFF duration is set to σ
ρ−µ

, σ
ρ
, with parameters (in
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packets per time slot) σ = 50, ρ = 10, µ = 5. The delay deadline and user location

(distance from the BS) are drawn uniformly random from the sample spaces {200,

250, . . . , 800} and {2, 3, . . . , 10}, respectively. The arrivals and channel variations

are generated over 106 time slots to simulate the number of users that can be admitted

for various system capacities m (the total number of RBs available in the system).

If Y ∼ N(µ̂, ν̂) denotes the random resource requirement of a new user, then the

probability that the total resource requirement Xu+Y will exceed m is approximated

using the following inequality, see [26],

P (Xu + Y ≥ m) ≤ exp

(
−m− µ

2ν

)
, (3.9)

where Xu ∼ N(µ, ν), µ = µu + µ̂ and variance ν = νu + ν̂. Note that the inequality

in (3.9) provides a computationally reasonable expression that can be used to decide

if the new user can be admitted without exceeding the reliability requirement δ.

Therefore, for the same set of users, we also use the Gaussian approximation for the

aggregate resource requirement Xu to determine the number of users that can be

admitted, shown as dashed lines in Fig. 3.9.

Recall, it was seen in Fig. 2.7 from Chapter 2 that the Gaussian approximation

provides a conservative estimate of the number of users that can be admitted into

the system for both the OGRS and WGRS scheduling policies. However, for OGDS,

there is a cross-over point where the CLT estimate is above the simulation based users

admitted until a system capacity of 3500 RBs, after which the CLT estimate becomes

conservative. This can be attributed to the more bursty nature of OGDS scheduling as

compared to the other scheduling policies, making the CLT approximation for OGDS

reasonable only at higher system capacities than OGRS/WGRS. Also interesting to

note is that both OGRS and OGDS scheduling policies admit more users as compared
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Figure 3.9: Admission control assuming CLT approximation on the total RBs required
for all admitted URLLC users.

to the WGRS policy, given that WGRS is more deterministic in resource provisioning,

whereas the others are more bursty.

3.6.5 Transmission Error

So far we have discussed delay constrained scheduling based on the connectivity

assumption (see Assumption 3.3.1) that a user’s packet transmissions are successful

at all times. In practice, user transmissions are bound to see errors due to the

nature of wireless channel uncertainty. The probability with which errors in wireless

transmission occur depends on the size of the data packets, channel strength, and

the amount of redundancy added to the original data for error detection and/or

correction. In this subsection, we evaluate the probability of error for all algorithms

over various transport block lengths (which is higher for larger packets).

Recall that the modulation and coding scheme is chosen using the 3GPP MCS
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table ([2, Table 5.2.2.1-2]) based on the instantaneous channel strength. It can be

seen that the performance of all our proposed algorithms results in a ten-fold decrease

in the probability of transmission errors as compared to the WGRS, with the OGDS

algorithm being the best among all feasible (future agnostic) algorithms considered.

The proposed algorithms schedule transmissions when the channel has a higher prob-

ability of being better than future channels before the deadline expires, which in turn

leads to a lower probability of transmission errors.
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Figure 3.10: Probability of packet transmission error for various user types.
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3.6.6 Better Reliability

In this subsection, we illustrate the improvement in resource allocation by

having more transmissions scheduled for better channel quality. We plot a weighted

distribution of the channel strength per channel use, where the weights are directly

proportional to the number of bits scheduled for transmission at that channel strength.

This enables us to compare and contrast all the proposed scheduling policies accord-

ing to the efficiency with which each policy is able to identify the best time slot for

data transmission in terms of channel quality. Clearly, Fig. 3.11 validates the supe-

rior performance of OGDS policy across all users, irrespective of the average channel

strength of the received signal. Furthermore, it also shows that GDS policy schedules

URLLC traffic for transmission at a relatively better channel strength which corre-

sponds to greater reliability that is crucial for URLLC traffic. While OGDS is the

best performing scheduler we have proposed, it achieves these gains through a poten-

tially more bursty service and thus poor for jitter sensitive traffic. In certain settings

OGRS might be preferred as it provides a guaranteed service rate as long as there is

data in the queue.

3.6.7 Stochastic dominance of WGRS policy

Through extensive simulations, we were able to observe first-order stochastic

dominance of the number of resource blocks allocated during a WGRS busy cycle

over both OGRS-DTE policy and OGDS. We observed that on average OGRS-DTE

required lesser resources than WGRS during a WGRS busy cycle, i.e., 27%, 47%, 22%

for strong, medium, and weak users, respectively. Similarly, OGDS required fewer

resources than WGRS during a WGRS busy cycle, i.e., 43%, 62%, 54% for strong,

medium, and weak users, respectively.
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(a) Strong user (b) Medium user

(c) Weak user

Figure 3.11: The weighted distribution of channel strength per channel use for data
transmission under all three policies.

3.7 Practical Considerations

We list a few practical considerations which have not been addressed rigorously

in the theory developed so far. To start with, we assume that all transmissions on

the wireless channel are reliable, which may not be always possible [82], especially

with small payloads/block lengths [95]. It is not very clear as to which layer of

the network stack is better suited to support reliability, with the physical and MAC

layer being potential candidates. Moreover, it is not clear if typical Medium Access
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Control (MAC) layer Hybrid Automatic Repeat Requests (HARQ) can be adapted

to provide spectrally efficient resource allocation with guaranteed delay deadlines or

whether spatial diversity will be sufficient to achieve the target reliability without

any changes to the MAC layer.

Next, we do not consider an upper limit on the number of RBs that can be

allocated to a user in a time slot. Typically BSs support multiple type of users, and

possibly users with best effort traffic that do not operate under tight latency con-

straints. Therefore, it seems reasonable to assume that there shall be enough RBs

available at all times. Most part of our analysis takes a single user perspective, but

we would like to emphasize that the scheduler could in practise collate users with

similar QoS requirements into the same class and provision resources based on the

requirements of each class. Each class could in principle also perform admission con-

trol on latency constrained users to limit the total number of users as per availability

of spectrum.

It would also be more desirable to carefully consider the fractional RB setting

that we have used to measure the efficiency. Short block lengths call for mini-slot

scheduling, so it might be prudent to allow only integer values for Mπ
n . One could use

the mini slot size [5] to determine the number of RBs required, perhaps corresponding

to discrete coding rates that are used in practice, refer Table 3.1. In this section, we

consider some additional practical considerations affecting our proposed schedulers

including HARQ, user mobility, and how confidence levels on the measured resource

usage statistics impact the effectiveness of our proposed admission control strategy.
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3.7.1 Transmission Error

So far we have discussed delay constrained scheduling based on the connectivity

assumption that a user’s packet transmissions are successful at all times. In practice,

user transmissions are bound to see errors due to the nature of wireless channel

uncertainty. The probability with which errors in wireless transmission occur depends

on the size of the data packets, channel strength, and the amount of redundancy

added to the original data for error detection and/or correction. In this subsection,

we evaluate the probability of error for all algorithms over various transport block

lengths (which is higher for larger packets).

Fig. 3.10 shows the packet transmission error probability of our proposed algo-

rithms for various user channel strengths as a function of the transport block length.

The probability of transmission error ϵ was modeled based on the Polyanski bound

[76] [93]. For transmission of block length m, coding rate r and channel SNR γ, the

error bound is given by,

ϵ = Q

√ m

(log2 e)
2
(
1− 1

1+γ2

) (log2(1 + γ)− r)

 . (3.10)

Recall that the modulation and coding scheme is chosen using the 3GPP MCS table

([2, Table 5.2.2.1-2]) based on the instantaneous channel strength. It can be seen

that the performance of all our proposed algorithms results in a ten-fold decrease in

the probability of transmission errors as compared to the WGRS, with the OGDS

algorithm being the best among all feasible (future agnostic) algorithms considered.

The proposed algorithms schedule transmissions when the channel has a higher prob-

ability of being better than future channels before the deadline expires, which in turn

leads to a lower probability of transmission errors.
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3.7.2 HARQ

Wireless networks typically use automatic retransmit requests whenever there

are transmission errors that lead to packet losses. A one-shot retransmission would

typically suffice if the modulation and coding scheme were carefully chosen so as to

maximize the likelihood of successful retransmission. So a simple modification to the

proposed algorithms is to reduce the target delay deadline by one slot and perform

a one-shot retransmission of packets lost due to transmission error. Note that the

proposed modification assumes that the delay constraints exceed several time slots

(more than 2 slots).

Incorporating the modified target deadline to allow for HARQ one-shot re-

transmissions leads to successful packet deliveries for all types of users with an as-

sociated loss in spectral efficiency. Setting an earlier deadline for strong, medium,

and weak users leads to a loss in spectral efficiency of at most 9%, 14%, and 15%,

respectively.

3.7.3 User mobility

The adaptive rate thresholds (refer to Equation (3.5)) depend on the accu-

racy with which the distribution of the channel rate variations can be empirically

estimated. A sufficient number of past channel values are required to estimate the

channel variation statistics, but short enough to track non stationary changes and

exclude obsolete channel data. This calls for selecting the number of past channel

samples that are used to determine the channel rate distribution, which could poten-

tially depend upon the user’s mobility speed.

To evaluate this we use the Random Way Point model (RWP) to model

user mobility with a constant speed in the range of 5 − 40m/s. Using the user’s
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location given by RWP model, the wireless channel variations are modeled based

on the 3GPP channel model with correlated log-normal Shadow fading based on

the distance traveled. Specifically, the correlation factor for shadowing is given by,

Rx(·) = exp
(
−distance

dcorr

)
, where the parameter dcorr depends on the presence or absence

of Line of Sight (LoS) signal, i.e.,

1. LoS shadowing : Log N(0, 4), dcorr = 10m.

2. nLoS shadowing : Log N(0, 7.82), dcorr = 13m.

Figure 3.12: Resource requirement for a mobile user moving at a speed of 40 m/s.

Fig. 3.12 shows the resource requirement for various algorithms as a function

of the number of past samples used to estimate the CDF. We find that for various

mobility speeds in the range of 5-40 m/s, the number of samples (channel history)

required to efficiently track the user’s nonstationary channel distribution is 5. As can

be seen, using more samples leads to obsolete channel information being included in

the empirical estimate, resulting in the adaptive rate threshold being irrelevant to the

current wireless channel – and hence a loss in spectral efficiency.
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3.7.4 Delay constrained schedulers based on based channel prediction

Recall that in Section 3.5 we proposed an offline/genie based policy that given

perfect knowledge of future channel realizations achieved the best possible spectral

efficiency subject to the packet delay constraints. It is thus natural to attempt to im-

plement such a policy based on predicted future channel rates given the the observed

channel history. To explore the potential of this approach we considered various pos-

sible predictors introduced in [19] and followed their methodology for training our

predictions for the wireless channel data set in [46] using Adam/SGD∗ optimization

based Feed-forward Neural Networks (FNN) and state-of-the-art machine learning

architectures including Long Short-Term Memory (LSTM) [47], Recurrent Neural

Network (RNN) [39], Convolutional Neural Network (CNN) [63]. We evaluated the

spectral efficiency of the prediction based delay constrained schedulers, for traffic hav-

ing deadlines from 2 to 10ms. We considered a scenario with bursty traffic arrivals

with packets of size 1024 bits, that arrive according to an ON and OFF process with

duration 10 and 5 time slots respectively, with an ON rate of 10 pkts/slot.

Fig. 3.13 and Fig. 3.14 show the spectral efficiency (as measured by the mean

resource requirements to support the delay constrained traffic) that the prediction

based schedulers and our proposed schedulers achieve for the wireless trace data in

[46] and [35], respectively. The normalized Root Mean Square Error (RMSE) for

neural network predictions lies in the range of 0.081− 0.137 for “Berlin data” in [46]

and 0.057 − 0.127 for “Austria data” in [35]. Later on, we will see how this small

difference in prediction accuracy leads to large variations in performance.

The overall improvement in spectral efficiency saturates beyond a certain delay

∗Stochastic Gradient Descent
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Figure 3.13: Resource requirement for non-stationary “Berlin data”, wireless trace
data in [46], across proposed scheduling algorithms.

deadline due to the diminishing value of the flexibility that each additional time slot

provides. To see this clearly, we provide the prediction accuracy results for neural

network prediction for both “Berlin data” and “Austria data”. Figures 3.15, 3.16

show the Root Mean Square Error (RMSE) and 95% confidence interval for channel

rate predictions for the wireless trace data given in [46] and [35], respectively.
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Figure 3.14: Resource requirement for non-stationary “Austria data”, wireless trace
data [35], across proposed scheduling algorithms.

Figure 3.15: RMSE across various neural network architectures for channel rate pre-
diction [46].
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Figure 3.16: RMSE across various neural network architectures for channel rate pre-
diction [35].

As one would expect, the architecture delivering the lowest prediction error,

FNN-Adam for “Berlin data” in [46] and LSTM for “Austria data” in [35], leads to the

most spectrally efficient scheduling for prediction based delay constrained schedulers.

Our proposed measurement-based scheduler, OGDS outperforms all the prediction

based schedulers for “Berlin data”, with OGRS only slightly worse than FNN-Adam

based scheduler when delay deadlines are less than 2 ms. However, for “Austria data”,

a higher prediction accuracy for shorter delays (≤ 6 ms) leads to better spectral

efficiency for prediction based schedulers than both OGDS and OGRS. It appears

that the proposed ML-based schedulers are more sensitive to prediction errors when

deadlines are relaxed (> 6ms), resulting in lesser spectral efficiency than OGDS.

It should be noted that all neural networks were trained using thousands of

samples of data before being deployed on test data. This would mean the neural

network having adequate training on actual rate variations in the wireless environment

and a prediction phase where the user remains stationary, which is unrealistic! In
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summary, we have proposed measurement-based schedulers that appear robust for

real-world traces and have much lower computational complexity than schedulers

that use NNs. Online time series predictors that can learn to predict with fewer

learning samples and quickly adapt to non-stationary variations could be a promising

avenue for improving spectral efficiency.

3.8 Chapter Summary

In the previous chapter, we have shown that OGRS policy can be within

10% to 40% of the spectral efficiency oracle-aided policies, whereas OGDS can be

upto within 10% of such oracle-aided policies, as the delay constraint is relaxed.

These gains translate to doubling the eMBB user’s throughput even for the weakest

user when URLLC and eMBB traffic share resources or an increase of upto 57% in

the number of users admitted as long the arrival rates and channel strengths are

statistically distributed very similar to the typical † admitted user.

The underlying design principle for OGRS policies in the previous chapter

was to ensure that the wireless scheduler meets or exceeds the service that a fixed

rate scheduler designed based on leaky bucket constrained delay analysis would as-

sign. In contrast, our proposed OGDS policies allow for more aggressive opportunistic

scheduling, which depending on the delay constraints can achieve within 10% of the

spectral efficiency of optimal offline scheduling. Both policies use dynamic oppor-

tunistic thresholds to leverage the knowledge of the user’s marginal channel quality

rate distribution which in practice would be measured and/or tracked, based on a

†The resource requirement to meet the QoS constraints of a typical user will be Gaussian dis-
tributed, with mean and variance equal to the average resource usage statistics (mean, variance) of
all admitted users.
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limited number, say 10, of the previous channel realizations. However, the choice

of a particular scheduler will depend on the availability of resources and the desired

spectral efficiency. When the network resources are limited, OGRS supports more

users making it better suited than OGDS. Whereas OGDS might be preferred when

there are enough resources and spectral efficiency is the key to support more users.
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Chapter 4: Opportunistic Minimum Rate

Scheduling§

So far, we have focused on delay-constrained users with small packet sizes

and limited delay requirements (of the order of a few milliseconds). Future wireless

applications, such as online gaming, live video streaming, and augmented/virtual

reality need high fidelity data transfer with reliable control information exchange

to provide an immersive user experience. Developing wireless scheduling algorithms

that can guarantee a minimum data rate for users over a few hundred milliseconds

with possibly heterogeneous requirements and/or channel quality is crucial. In this

chapter, we will look at such a special class of QoS, namely the Guaranteed Bit Rate

(GBR) service, where users have minimum rate constraints over time windows that

are of the order of a few hundred milliseconds.

According to a recent study, more than 86% of the world population owns a

smartphone with more than 78% of data usage [88] coming from digital media. Wire-

less communication, once an infrastructure that provided cellular connectivity for

mobile users, has evolved into an urbane network that provides various data intensive

services such as GPS navigation, mobile gaming, and streaming digital content from

anywhere in the world. Due to current trends in live streaming and the prevalence

of social media, more real-time data communication is required, with stricter Quality

of Service (QoS) standards for a better user experience. Such applications require

predictable and stable data transfer rates in order to maintain smooth and uninter-

§Publications based on this chapter: [21] Geetha Chandrasekaran and Gustavo de Veciana.
Opportunistic Scheduling for Users with Heterogeneous Minimum Rate QoS Requirements. In ICC
2024 - IEEE International Conference on Communications, 2024
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rupted operations. Wireless spectrum is limited which bounds the physical resources

available for user allocation. It may be possible to provide better QoS for more users

by designing an adaptive algorithm that can efficiently allocate resources based on

network load and user target QoS requirements.

Consistency in network resource provision is indispensable to maintain the

overall quality of user experience for real time applications, especially those that re-

quire interactive control features. Reliable QoS provision for users with heterogeneous

wireless channel variability makes it impossible for a causal scheduler to be able to

accurately predict the fidelity with which it can support all users. As user loads, data

traffic, and wireless channel strength vary in the system, it is necessary to provide a

robust resource allocation to meet QoS of all users.

4.1 Related Work

Research interest in dynamic bandwidth allocation started with Asynchronous

Transfer Mode (ATM) networks [15] to provide differentiated quality of service to

users. The main objective was to optimize the network’s performance by adapting

to changing traffic conditions and ensuring fair allocation among competing users or

connections while maintaining QoS requirements. Then came wireline algorithms,

see [37, 27, 94, 34], that were specifically designed to ensure that different types of

traffic receive the appropriate level of service to meet their QoS guarantees. However,

meeting QoS requirements with high reliability is challenging in wireless networks due

to channel uncertainty.

Numerous early studies in the wireless literature offer differentiated quality of

service by optimizing the user’s utility function, such as overall network throughput

(MaxRate [108]), or maintaining bounded user queues whenever feasible (MaxWeight
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[103]), or minimizing average delay (Log rule [87]) or weighted queue lengths (EXP

[92]). Schedulers of this type achieve throughput optimality, meaning they have the

capability to stabilize user queues if that is possible. However, throughput optimal

schedulers may not provide the best performance and/or require parameter tuning

when the traffic flow dynamics are nonstationary [110] or when users see heteroge-

neous channel variations. Proportional Fair (PF) scheduling [54] was an attempt

to balance between maximizing the sum throughput versus fairness in resource al-

location across users but without any minimum rate constraints. There have been

numerous algorithms proposed to provide a minimum rate QoS while maintaining

fairness among users through QoS dependent weighted user selection, namely, QoS

aware PF [38], EXP rule for QoS constraints [91], and weighted maxQuantile [90] for

fair rate constrained resource allocation. Minimum rate QoS constrained scheduling

for differentiated services based on largest weighted time based debt [48] may unfairly

prioritize weak users with very poor channel conditions that have a lot of backlog in

their queues.

The majority of recent research on QoS constrained wireless scheduling has

focused on latency, refer [9, 28, 56, 23], with an aim to support mission critical

applications. Often such schedulers consider reliable transmission of short packets

with very low delay and designed to achieve better reliability through redundancy,

neglecting spectral efficiency. One could argue that it may be easy to extend delay

constrained schedulers that measure/track the wireless channel distribution [22], or

apply machine learning techniques to predict future rate realizations [52], however,

that is not the case.

It is quite challenging to provide the required amount of reliability and fair

distribution of excess resources under heterogeneous minimum rate QoS requirements
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and non identically distributed user channel rates. Algorithms such as DRUM [31,

78] provide a more customizable time window over which weighted α fairness could

possibly be met. However, such algorithms call for fine tuning a variety of design

parameters/user weights that need to be chosen in a non-trivial fashion. Furthermore,

they may not be well suited for the heterogeneous setup, i.e., if one were to design

max-min fair resource allocation with heterogeneous minimum rate guarantees (where

user time windows may be different or nonoverlapping) it is not clear how to formulate

the optimization problem parallel to the one proposed in [31].

Considering a network’s fixed capacity, it is crucial to develop an algorithm

that can support as many users as possible at their minimum QoS standards. Further-

more, algorithms proposed for minimum rate QoS usually target fully backlogged (full

buffer) users with best-effort traffic but do not focus on guaranteed resource avail-

ability during every QoS measuring window. This makes it really hard to directly

adopt such algorithms for the next generation applications that need VBR services

with very high reliability. Thus, it is necessary to develop an efficient spectrally effi-

cient algorithm paired with a complementary admission control strategy that assists

in guaranteeing a minimum level of QoS for all admitted users while also distributing

excess resources fairly. The literature on minimum rate QoS scheduling falls into two

categories: heuristic algorithms that may not work well in the case of heterogeneous

users and theoretical algorithms that are optimal under asymptotic/steady state con-

ditions. In practice, such algorithms fail due to the uncertainty of wireless channels

and the unpredictability of satisfying QoS requirements within the specified time

window. Novel applications such as Augmented Reality (AR) need service protection

with a guaranteed minimum bit rate over a duration of a few hundred milliseconds.

Such applications require the transmission of bursty traffic with large packets which
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often have periodic/quasi-periodic arrival times. This calls for a measurement based

approach to learn and/or predict future channel variations and online service tracking

to monitor timely minimum rate QoS delivery.

4.2 Chapter Contributions

In this chapter, we consider wireless scheduling algorithms designed to meet

minimum rate constraints over pre-specified time windows, e.g., on the order of a few

hundred milliseconds, for each user. We propose and evaluate a class of measurement-

based wireless schedulers that are based on tracking the empirical distribution of users’

wireless channel capacity variations and on tracking the users’ current QoS service

deficit. The key underlying idea, and challenge, is to find a balance between oppor-

tunistically scheduling users which are currently experiencing the best channels and

prioritizing the scheduling of users that are running a deficit with respect to meeting

their QoS requirements. A good scheduler thus might have two goals, on the one

hand, that of minimizing the probability of failing to meet users’ QoS requirements,

and on the other that of maximizing the overall sum rate.

We first consider a simpler setting where users’ QoS requirements and chan-

nel variations are homogeneous. The proposed scheduler denoted Adaptive Slack

for Greedy Opportunism, simply estimates if there is sufficient time to meet users’

requirements, assuming they are served at the mean rate. If so, the scheduler

chooses amongst all users opportunistically, otherwise, it chooses opportunistically

only amongst users with a deficit. We then propose a second scheduler denoted Ser-

vice Deficit Based Opportunism which addresses heterogeneity and further improves

upon reliability-sum throughput tradeoff. The second algorithm chooses users to

schedule based on their estimated quantile of the current channel and the normalized
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deficit. We also formulate an oracle-aided linear optimization for the minimum rate

QoS constrained scheduling problem to determine a bound on the overall sum rate.

Through extensive simulations, we show that our proposed algorithm provides a much

higher user rate than state-of-the-art schedulers such as QoS-PF [101], EXP-QoS [91],

and weighted MaxQuantile [80] with better reliability when the network is critically

loaded. We observe at least a two-fold increase in the mean rate for each user when

compared to the EXP-QoS [91] algorithm.

This chapter is organized as follows. Section 4.3 describes the system model

and sets up the bound on the best that one could do by formulating an oracle-aided

linear optimization problem. Section 4.4 describes our proposed scheduling algorithms

for achieving the minimum rate QoS for both homogeneous and heterogeneous user

settings. Section 4.5 provides simulation results that compares the spectral efficiency

of the proposed algorithms with other baseline algorithms. Finally, Section 4.6 in-

cludes some concluding remarks.

4.3 System Model

We consider discrete time downlink scheduling for a base station serving a set

U of users with heterogeneous rate QoS requirements. We assume that each user has

a fully backlogged queue and that a user i requires a minimum rate guarantee of rimin

over a time window of τ i. Such QoS requirements can be found in LTE specifications,

known as Guaranteed Bit Rate (GBR) services (refer C). The base station transmit

resources, i.e., Resource Blocks (RB) are modeled as a sequence of time-frequency

slices that can be arbitrarily allocated to users on a per time slot basis. At any given

time slot each RB can be assigned to at most one user and there are a total of M

resources available to service all users.
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Let the random variable Ri
n ∈ R+ denote the channel rate (bits per RB) that

can be transmitted to user i if it is allocated a single RB on time slot n. A user may be

allocated multiple RBs, but we assume a flat fading setting where the rate delivered

to i is the same across RBs in a given time slot. Further, we assume (Ri
n)n∈N are

independent and non identically distributed (i.n.i.d) across time slots. Additionally,

we also assume that a sufficiently large number of RBs are available every time slot so

that the users’ QoS requirements can be met. However, our goal is to devise schedulers

for users that use a minimal number of RBs so that each user can eventually get a

much higher rate than benchmark scheduling algorithms.

We consider a system model where resource allocation decisions are made

every time slot, which is typically 1 ms in an LTE system. The decision of the

scheduler at time n is assumed to be causal concerning knowledge of the current and

past channel rates (Ri
k)

n
k=0 and user resource allocation allowing for opportunistic

scheduling, i.e., taking advantage of channel rate variations across slots. In particular,

we letM i
n ∈ R+ denote the number of RBs allocated to user i on slot n by the proposed

scheduler. Note that for ease of mathematical analysis, we consider fractional resource

allocations for users possible. Such an allocation provides a service rate of Si
n (total

bits transmitted with potentially multiple RBs allocated) to the user i on time slot

n given by, Si
n = M i

nR
i
n, and we define the cumulative service over any interval

[(l − 1)τ + 1, lτ ] as follows,

Si[(l − 1)τ + 1, lτ ] =
lτ∑

n=(l−1)τ+1

Si
n . (4.1)

A user is minimum rate QoS compliant if,

Si[(l − 1)τ i + 1, lτ i] ≥ rimin,∀l ∈ N . (4.2)
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In the next subsection, we develop a lower bound on the number of resource blocks

required by any policy that guarantees the users’ respective rate requirements are

met. This will serve as a baseline or bound for the best spectral efficiency that one

could achieve under minimum rate QoS constrained resource allocation.

4.3.1 Oracle-aided Scheduling

Typically user downlink data transfer requests come in at random times, add in

the QoS window heterogeneity, we need a scheduler that can meet heterogeneous QoS

requirements over disparate time windows (τ i)i∈U. Suppose the resource scheduler has

complete information about the future channel variations of each user Ri
n = rin for the

next τ ′ slots, where τ ′ = lcm(τ i, i ∈ U), where lcm(·) is the least common multiple

of τ i, i ∈ U. Then one could solve the following combinatorial integer optimization

problem every τ ′ slots, to find the optimal resource allocation that maximizes the

overall network sum rate while meeting the QoS constraints of all users, whenever

feasible.

max
M i

n, i∈U,n∈[1,τ ′]

∑
i∈U

τ ′∑
n=1

rinM
i
n

s.t. Si[(l − 1)τ i + 1, lτ i] ≥ rimin, ∀i ∈ U,∀l ∈ N : ((l − 1)τ, lτ ] ⊆ [1, τ ′],∑
i∈U

M i
n ≤ M, ∀n ∈ [1, τ ′],

M i
n ≥ 0, i ∈ U, n ∈ [1, τ ′].

(4.3)

Although the optimization problem in (4.3) is NP-hard, we can simplify it by relaxing

the integer value condition on M i
n to allow fractional values. Note that the resulting

optimal value for resource allocation is the best any scheduling policy can achieve (as

it uses oracle-aided future information for all users).
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4.4 Proposed algorithms

We first introduce a scheduler for the idealized homogeneous setting in order

to motivate our scheduler design for the more practical heterogeneous case. We note

that QoS constrained schedulers will realize an inherent trade off. If they focus on

maximizing the sum rate, then this would impact the reliability/fairness with which

the QoS requirements are met. Alternatively, if they focus on simply meeting the

QoS requirements, they compromise the overall sum rate. The proposed algorithms

achieve a balance between spectral efficiency and meeting the QoS requirements.

4.4.1 Adaptive Slack Algorithm

Suppose users have i.i.d channel realizations, denoted by the random variables

Ri
n, i ∈ U, and the same minimum rate QoS constraint (i.e., a minimum rate of rmin

over a window τ). We consider synchronized QoS measuring windows across users

for ease of exposition. Assuming that each user sees a channel rate that is around

its mean, we can roughly estimate the number of time slots τest that are necessary to

meet all of the users’ rate QoS requirements. Based on this estimate, two scheduling

phases will be considered over the QoS time window τ .

n = 1

Greedy phase

u4

n = 2

Greedy phase

u4 u1

τest

τest

Figure 4.1: Illustration of the adaptive slack algorithm.

The algorithm’s initial phase begins at the start of the QoS time window and

persists until time slot τ − τest (refer to blue shaded region in Fig. 4.1, also associated
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Algorithm 3: Adaptive Slack for greedy Opportunism

1 while n > 0 do
2 if n (mod τ) = 0 then

3 τest = |U|
⌈

rmin

ME[R]

⌉
;

4 Di
n = rmin;

5 end
6 if n (mod τ) < τ − τest then
7 U′ = U;
8 else
9 U′ = {i |Di

n > 0};
10 end
11 i∗ = argmax

i∈U′
Ri

n;

12 Di∗
n = min

(
0, Di∗

n−1 −Ri∗
n M

i∗
n

)
;

13 M i∗
n = M/Ri∗

n ;

14 τest = max

(
0, τest −

Di∗
n

ME[R]

)
;

15 n = n+ 1 ;

16 end

with the if condition between Lines 6-8 in Algorithm 3). The scheduler picks user i∗

with the highest wireless channel rate for resource allocation during the first phase

on every time slot, i.e.,

i∗ = argmax
i

Ri
n, (4.4)

where Ri
n is the instantaneous channel rate of user i in bits per RB at time n. Given

that we have assumed i.i.d user channel variations, the adaptive slack algorithm is

expected to serve each user equally likely during the greedy opportunistic phase.

Whenever a user is scheduled, the algorithm (Line 12 in Algorithm 3) updates the

variable Di
n that tracks the amount of service required to meet the minimum rate

QoS of user i.

The dynamic estimate for τest (the number of time slots required to meet the
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QoS needs of all users) is updated every time slot according to the service already

provided to each user. Therefore, we have access to an online estimate of the slack

available for greedy opportunistic scheduling before the algorithm is forced to service

users that need QoS constraints to be met (the yellow portion in Fig. 4.1). Given

that the algorithm is highly opportunistic during the initial phase, one of two things

can happen in every slot:

1. The algorithm has exhausted all slack, in which case the algorithm will be forced

to only service those users that have QoS deficits.

2. All users’ minimum rate QoS requirements have been met, allowing the sched-

uler to remain in the greedy opportunistic phase until the end of τ time slots.

We will refer to the second phase as the QoS deficit phase where the algo-

rithm restricts its service to users with service deficit until all their QoS requirements

are met. During the QoS deficit phase, the scheduler still picks the user with the

maximum rate but from the reduced set of users U′ with QoS deficit (refer Line 9

Algorithm 3). Every time slot the set U′ is updated to reflect the users that still

fall short of their rate requirements. This process repeats until the end of the QoS

window of τ time slots, or when all the users’ QoS deficits are met. At this point, if

there are still slots left over within the current QoS window, the algorithm falls back

to the greedy opportunistic phase.

In practice, the Adaptive Slack scheduler needs to be modified to address real-

istic settings where users’ channel statistics and QoS requirements are heterogeneous.

We introduce such a modified scheduler in the next subsection.
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4.4.2 Service Deficit based Scheduler

In the heterogeneous channel setup, a user with the highest quantile chan-

nel rate [80] is considered the best concerning favorable wireless channel conditions.

Mathematically, the highest quantile user index i∗ is given by, i∗ = argmax
i∈U

FRi(Ri
n),

where Ri
n is the instantaneous channel rate of user i on time slot n and FRi(·) is the

Cumulative Distribution Function (CDF) of the channel rate realizations. For each

time slot, the algorithm calculates a weight for each user that has a non-zero service

deficit (i.e., Di
n > 0) which is the sum of the instantaneous channel rate percentile

and normalized service deficit as shown in Line 11 of the Algorithm 4. The best user

is the one with the highest weight and will be allocated all the resources in the current

slot if need be.

If the best user needs fewer resources than the total available, then the user

with the second best weight will be served in the current time slot. If there are any

residual resources after serving the best two users with service deficit, they are all

allocated to the user u ∈ U that has the best channel rate percentile (not necessarily

with service deficit), see Lines 14− 17 in Algorithm 4.

Algorithm 4 Complexity: The algorithm’s run time complexity depends on the

number of rate constrained users M and the number of past channel samples K used

to estimate empirical channel rate distributions. A user’s channel rate percentile is

determined by sorting K past channel samples, which is of O(K logK) complexity,

and then using their current rate value to determine where they are in the sorted array.

An efficient implementation of empirical estimation requires each user to initialize the

channel rate distribution with O(K logK) complexity. As the algorithm iterates, the

oldest channel value is removed from the sorted list and the most recent one is inserted

with a complexity of O(logK). A lookup table can then be used to determine the
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Algorithm 4: Service Deficit based scheduler

1 while n > 0 do
2 if n (mod τ i) = 0 then
3 Di

n = rimin;
4 end
5 k = 1;
6 U′ = {i |Di

n > 0};
7 while U′ ̸= ∅ & k ≤ 2 &

∑
i∈|U|

M i
n < M do

8 k∗ = argmax
i∈U′

(
FRi(Ri

n) +
Di

n

rimin

)
;

9 Mk∗
n = min

(
Dk∗

n−1

Rk∗
n

,M −
∑
i∈|U|

M i
n

)
;

10 Dk∗n = min
(
0, Dk∗

n−1 −Rk∗
n Mk∗

n

)
;

11 k = k + 1 ;
12 U′ = {i |Di

n > 0};
13 end

14 if
∑
i∈|U|

M i
n < M then

15 i∗ = argmax
i∈U

FRi(Ri
n);

16 M i∗
n = M −

∑
i∈|U|

M i
n ;

17 end
18 n = n+ 1 ;

19 end
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percentile based on the position at which the current channel rate is inserted. All

other steps in the algorithm are of O(1) complexity for each user, resulting in an

overall complexity of O(M logK). This algorithm is O(MK) space-complex, mainly

due to storing past channel values, and maintaining each user’s QoS deficits.

Remark: We have so far assumed fully backlogged users. However, the pro-

posed schedulers can handle real time users with any type of arrival pattern. For

instance, if user i has periodic arrivals, we can maintain a virtual service token queue

with tokens added at the start of each QoS time window τ i. In the case of stochastic

arrivals, one could add tokens to the virtual queue every time a packet arrives, with

an appropriate bound on the maximum number of tokens that can be added (based

on the maximum bit rate permissible by design).

4.5 Simulation results

We shall consider a BS serving ten users with a minimum rate QoS constraint

over a fixed time window, where user i’s channel rate on slot n is Ri
n per RB based

on its received Signal to Noise Ratio (SNR). The received SNR was modelled us-

ing the 3GPP Urban-Micro path loss model [3], with flat Rayleigh distributed small

scale fading. We will simulate both the symmetric user setting – with homogeneous

user rates and QoS constraints, and the heterogeneous case where the users have het-

erogeneous channel rate distributions and different QoS requirements. Each user’s

distance from the BS is as indicated in Table 4.2 for the heterogeneous setting. Since

we discuss both the symmetric and heterogeneous user settings, the users’ distance

(from the BS) for the symmetric setting is mentioned in the relevant subsection.

Furthermore, we assume bounded channel realizations, where the SNR lies between

−6.934 dB ≤ SNR ≤ 20 dB. The total number of RBs available for resource allo-
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cation to rate constrained users is set to 60 for all our simulations unless otherwise

specified.

We consider a practical Modulation and Coding Scheme (MCS) mapping SNR

to a coding rate in order to determine the user’s transmission rate Ri
n using the MCS

table in [2, Table 5.2.2.1-2]. Recall that our schedulers require FRi(·) – the CDF

for each user’s transmission rate. We estimate these using the empirical distribution

of the respective user’s past channel rate realizations. At each time instant we use

the last 100 channel rate realizations to determine the empirical distribution of each

user’s rate variations. As stated in our system model, we assume fully backlogged

user queues with packets of fixed size (1 KB) that can be allocated resources each

time slot.

Scheduler W i
n

Oracle-aided (Sec. 4.3.1) Not Applicable

QoS PF [101] τ irimin

Ri
n

Ti

EXP QoS [91] ain exp

(
ainW

i
n − aW

1 +
√
aW

)
Weighted MaxQuantile [80] Tokens based MaxQuantile FRi(·)

Table 4.1: Benchmark scheduling schemes.

We shall employ the proposed Adaptive Slack algorithm for scheduling in the

symmetric user setting (homogeneous rates, QoS requirements), and the proposed

Service Deficit based scheduling algorithm for the heterogeneous setting. We use

a set of extensive benchmark scheduling algorithms listed in Table 4.1 to compare

and contrast with the performance of our proposed scheduling algorithms. Minimum

rate targets for the EXP scheduling algorithm [91] are achieved by maintaining virtual

token queue V i
n for each user i, where rimin tokens arrive every τi time slots. The values
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for ain,W
i
n and aW are given in Table. 4.1, which were selected as recommended in

[91], are as follows: ain = Ri
n

Ri
, W i

n = V i
n

rimin
and aW = 1

k

∑k
i=1 a

iW i
n. Here Ri denotes

the statistical mean of the channel strength of user i, which we assume is known to

the scheduler.

One of the foremost important metrics for a minimum rate constrained sched-

uler is the number of users that can be supported with the guaranteed minimum rate

for all. Also crucial for any network is the amount of additional data that can be

provided to each of its users, i.e., the excess rate over the minimum rate requirement.

Finally, it is also important to have algorithms that are robust to load variations

in the network. A network is said to be critically loaded when one or more bench-

mark algorithms fail to support the minimum rate requirements of one or more users.

But when there are fewer users in the system, the amount of the excess rate that

a scheduling algorithm can provide its users and the level of fairness with which it

can distribute the resources to users matter. In the sequel, we address all these key

metrics and demonstrate the robustness of our proposed algorithms through extensive

simulations.

We demonstrate the robustness of our proposed algorithms through extensive

simulations using the mean rate achieved by each user as the performance metric. We

simulated 107 slots to generate each of the plots in this section, resulting in a ±0.1

error for the estimated mean excess rate provided to each user with 99% confidence

interval. The maximum RBs available to the network is only 60, and therefore the

network is critically loaded (because one or more benchmark algorithms are not able

to meet the QoS needs of all users).
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4.5.1 Symmetric case

For this subsection, all users are located at a distance of 500 m from the BS.

Also, they have the same minimum rate QoS requirement of 20.48 KB where the time

window τ was set to 100 time slots for all users. Fig. 4.2 shows the CDF for the

mean rate provided to each of the users under the symmetric network setup. As can

be seen, in Figure. 4.2 the mean excess rate provided to users is the highest for the

oracle-aided policy followed by the Adaptive slack algorithm. Some important points

of note are listed below:

• Adaptive slack algorithm achieves around a two-fold improvement in the mean

rate when compared to the EXP QoS [91] scheduling algorithm.

• Adaptive slack algorithm provides a marginally higher mean user rate than the

QoS-PF based technique.

Figure 4.2: Mean user rate over τ = 100 time slots when 60 RBs are available every
time slot to all users in the network.
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Note that while the weighted Max Quantile [80] provides user mean rates comparable

to the oracle-aided algorithm, it does not meet the user minimum rates with high

reliability like the other algorithms. This has been observed across all values for the

token design parameter provided in [80].

4.5.2 Heterogeneous case

For the results presented in this subsection, the users’ distances from the BS

are as specified in Table 4.2. The time window τ for the minimum rate QoS of

20.48 KB is 50 time slots for users with odd indices. Users with even indices also

have the same minimum rate QoS but over a time window of τ = 100 time slots.

The Slack Deficit algorithm (see Algorithm 4) is used for resource allocation in this

heterogeneous setting. Fig. 4.3 shows the mean rates achieved for all the users, while

the probability of meeting the rate requirement is tabulated in Table. 4.2.

Figure 4.3: Heterogeneous case: Mean user rate when 60 RBs are available every time
slot to all users in the network.

The key takeaways from the figure and table are as follows. Service deficit
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User Index Distance EXP QoS-PF Deficit

1 300 0.3710 0 0.0044

2 320 0.3599 0 0

3 350 0.3869 0 0.0063

4 400 0.3738 10−5 0

5 450 0.4077 10−4 0.0160

6 500 0.3818 10−5 0

7 550 0.4287 0.0597 0.0528

8 600 0.4027 10−5 0

9 620 0.4583 0.3419 0.0987

10 680 0.4174 10−4 0

Table 4.2: Probability of not meeting the minimum rate requirement.

algorithm provides the best mean rates to users without compromising reliability -

note that the QoS-PF algorithm does not handle heterogeneous settings very well.

As can be seen from Table. 4.2, QoS-PF fails to meet the rate requirements for the

weakest user that has only 50 time slots to meet its QoS constraint. (Note that the

other weak users have 100 time slots and hence meet their rate requirement with very

high reliability.) It is interesting to note that our Service deficit algorithm is able to

meet the minimum rate requirement of all users that have a longer time window with

probability 1, irrespective of their respective channel strengths! Fig. 4.4 illustrates a

comprehensive performance summary of the various algorithms considered in terms

of the sum rate achieved by each algorithm versus it’s average probability of failure

to meet the QoS. Clearly, our proposed Service Deficit algorithm for heterogeneous

users provides the best sum rate and the least probability of failure to meet QoS both

on average and absolute terms (see Table. 4.2).
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Oracle

QoS-PF

Service Deficit

EXP-QoS

Figure 4.4: Comprehensive performance

In order to demonstrate the mean user rates when the system is not critically

loaded, we include simulation results for the same set of users when the total number

of resources available is set to 100 RBs. Fig. 4.5 shows that our proposed algorithms

provide a fair distribution of excess resources across users with similar QoS, while

meeting the minimum rate QoS of each of these users.

Figure 4.5: Mean rates provisioned to users with a network capacity of 100 RBs.
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4.5.3 User capacity

In this subsection, we will show the number of users that our proposed slack

deficit algorithm can support as a function of the reliability with which minimum

rate QoS requirements are met for each user. We consider the heterogeneous setting

where the users’ distances are as specified in Table. 4.2. All the users have the same

minimum rate QoS of 20.48 KB but the time window for measuring QoS is set to

50 for all users with odd indices and 100 for those with even indices. Figure. 4.6

demonstrates how our proposed Slack Deficit algorithm supports more users than

other causal∗ benchmark algorithms. We will explain the intuition behind what

enables our proposed algorithm to support more users in the subsequent subsections.

While the number of users that meet QoS is similar for slack deficit and QoS-PF, in

the sequel we show how this is not the case when we evaluate reliability of both these

algorithms.

4.5.4 Weighted Fairness index

One of the most important performance criteria for a scheduler is the fair-

ness with which it allocates resources to its users. In an environment where users’

QoS/channel rates are heterogeneous, fairness is important. A scheduler might find

it easy to simply meet the QoS needs of users with a strong channel, thereby severely

impacting the QoS performance of weak users. Some of the most popular criteria for

measuring the fairness of scheduling algorithms are: max-min fairness, proportional

fairness, throughput fairness, and time fairness. Note that all these fairness indices

were introduced with best-effort traffic in mind. However, what we need is an index

∗The oracle-aided algorithm is non-causal as it requires future user channel rate information
rendering it impractical.
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Figure 4.6: Number of users supported for various reliability values as a function of
the network capacity.

that can measure the fairness with which resources are allocated among users with

similar QoS requirements, i.e., how well an algorithm can provide meet minimum

rate QoS that is not impacted by weak channel strength. Towards this end, we in-

troduce a new fairness criterion for QoS-constrained scheduling and show that our

proposed Service deficit algorithm offers the best fairness index among all benchmark

algorithms that have comparable reliability performance.

Let r1, r2, . . . , rk denote the sequence of mean rates achieved by all users in

the system. Then the Jain’s fairness index [53] for these users is given by,

J(r1, r2, . . . , rk) =
(
∑k

i=1 r
i)2

k ·
∑k

i=1 (r
i)2

. (4.5)

In the case of heterogeneous users, we introduce the following metric, namely the QoS

fairness index. Let ci denote the windowed mean rate achieved by user i, i.e., the

average rate allocated to user i (by any scheduling algorithm) measured over disjoint

windows of length τi, which is as defined by the QoS constraint of the user. Then the
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QoS fairness index for these users is given by,

Q(c1, c2, . . . , ck) =

(∑k
i=1

ciτ i

rimin

)2

k ·
∑k

i=1

(
ciτ i

rimin

)2 . (4.6)

Homogeneous QoS fairness: First we consider the scenario where the users

all have homogeneous QoS requirement of 20.48KB over 50 time slots, but with

heterogeneous channel rate variations where user locations are as specified in Table.

4.2. We then calculate the QoS fairness index for each of the non-causal scheduling

algorithms under different load conditions – light, critical, and overload. (The net-

work is considered to be overloaded when the oracle-aided policy is not able to find

a feasible resource allocation solution that can meet the QoS constraints of all users

with probability 1.) Table. 4.3 shows the QoS fairness indices for all the algorithms

as a function of the network capacity (in RBs). It can be seen that except for the

overloaded condition (network capacity = 40 RBs) and the critically loaded condi-

tions, all algorithms have similar fairness performance when the QoS constraints are

homogeneous.

Network Capacity (RBs)

Algorithms 40 60 80 100

Service Deficit 0.9656 0.9981 0.9995 1

QoS-PF 0.9001 0.9928 0.9998 1

EXP 0.7640 0.9351 1 1

Table 4.3: QoS fairness across algorithms for the Homogeneous case.

Heterogeneous QoS fairness: Next, we consider the heterogeneous setting with

user distances as specified in Table. 4.2. The time window τ for the uniform minimum

QoS rate of 20.48 KB is 50 time slots for users with odd indices, while the rest have
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τ = 100 time slots. Figure. 4.7 shows the QoS fairness indices for all users as a

function of the network capacity (the number of RBs available every time slot). It

can be seen that the QoS fairness index of our proposed Service Deficit algorithm

exceeds that of other benchmark algorithms that we have considered in this paper.

Also, note that the QoS fairness index of our proposed algorithm is quite robust to

network load conditions†. It can be seen that EXP and Service Deficit algorithms

have relatively better fairness in resource allocation than the other algorithms. To

Figure 4.7: QoS fairness indices for benchmark algorithms as a function of the network
capacity.

better visualize the fairness of these algorithms when there are more slack resources

in the system, we present in Figure. 4.5 the mean rates allocated to the users when

the network capacity is 100 RBs.

In summary, our proposed algorithms perform better than existing scheduling

algorithms in terms of reliability and being able to support more users under similar

†We simulate varying network load conditions by fixing the number of users in the network and
changing the number of resources to share among these users.
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wireless channel and load conditions. Intuitively, one could explain the reason for the

better performance as follows. The total resources available to the scheduler over the

duration of τ time slots can be categorized into two portions - the fraction of bare

minimum resources that are needed to meet the QoS requirement of all users and

then the slack resources (those which are available after meeting the QoS needs of all

users). It is important to perform opportunistic scheduling decisions (as it improves

spectral efficiency) while meeting the QoS needs in order to make room for additional

resources that can later be exploited through greedy opportunism. We conjecture

that our proposed algorithms strive for a good balance between conservative QoS-

constrained provisioning and greedy opportunism in order to maximize the overall

excess rate that the scheduler is able to provide all users without violating their QoS

requirements.

4.6 Chapter Summary

We have proposed a new class of slack based opportunistic wireless schedulers

designed to meet disparate QoS requirements of users with possibly heterogeneous

channel variations. Our study shows that our proposed schedulers can provide higher

mean rates to users than existing QoS-aware schedulers that also meet their mini-

mum rate requirements. Furthermore, for wireless schedulers to be able to effectively

support more users under QoS-constrained scheduling, they have to find a sweet spot

between maximizing long-term rates and ensuring fair resource allocation. Finally,

we have shown that our algorithms are able to handle graceful degradation of ser-

vices under critical load conditions, with better user rates than other algorithms with

comparable fairness indices and/or reliability.
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Chapter 5: Distributed Reinforcement Learning

for Interference Mitigation†

Wireless networks have undergone tremendous change over the past decades,

going through various technology generations supporting higher data rates, improved

network coverage, and better user experience. A major factor enabling this progres-

sion has been network densification. While network densification improves users’

data rates, it also may lead to reduced user traffic aggregation increasing the likeli-

hood of bursty interference from neighboring base stations rendering static frequency

reuse techniques less effective. Channel uncertainty, dynamic traffic, high interfer-

ence, transmit power constraints and limited availability of spectrum make resource

allocation a challenging task in dense wireless networks. This makes a dynamic fre-

quency reuse scheme that can self tune to the network and traffic conditions highly

desirable.

Resource allocation and power adaptation are problems in wireless systems

where Reinforcement learning (RL) has proven to have some promise. Two key

settings have been considered: cooperative Markov games and non-cooperative dis-

tributed games. Cooperative games typically draw on a more centralized decision

making approach that uses extensive information sharing posing practical limitations

[70]. By contrast, non-cooperative games typically involve distributed decision mak-

ing based on local information, typically leading to sub-optimal but more scalable

approaches suitable to adapt to dynamic interference and user traffic.

†Publications based on this chapter: [20] Geetha Chandrasekaran and Gustavo de Veciana. Dis-
tributed Reinforcement Learning based Delay Sensitive Decentralized Resource Scheduling. In 2023
Proceedings IEEE WiOpt Workshop on Machine Learning in Wireless Communications (WMLC),
2023
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5.1 Related work

Reinforcement Learning : Numerous works have proposed an RL based ap-

proach to solve the wireless resource allocation problem. For example,[73] proposes

a centralized learning system that periodically updates BS’s policies (neural network

model) giving it a partially centralized learning architecture. By contrast, we con-

sider a completely distributed learning approach with variants that do not need any

information exchange across BSs in the network. The work in [13], considers a het-

erogeneous network (HetNet) with macro and femto BSs sharing the spectrum in the

same area and proposes a Q-learning based algorithm for carrier selection and power

allocation, but does not account for users’ channel variability or interference from

other HetNets. Most of the current literature based on a distributed RL approach

to resource allocation, see [116, 25, 114, 74], ignores the impact of user traffic dy-

namics and/or resource scheduling on the effective network throughput. In our work,

we show that user traffic dynamics can be learned and devise resource allocation

strategies that leverage this information.

RL algorithms have also been applied to mitigate interference in wireless net-

works. Techniques such as dynamic Q-learning [97], neural network [55], actor-critic

RL [111], Deep Q-network (DQN) [89] have been used in a variety of settings such

as HetNets, Cognitive radio and vehicular communication, with the goal of resource

allocation that either minimizes or mitigates interference. However, these articles fail

to acknowledge and/or do not consider opportunistic scheduling, which we believe

cannot be ignored when building a solution to distributed resource allocation.

Stochastic games and scheduling : A centralized algorithm for resource alloca-

tion for interference mitigation and scheduling is considered in [86], but the approach

results in increased computational complexity for larger networks. In contrast, we
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design autonomous learning at each BS that is scalable and of the same complexity

irrespective of the network size. A downlink power control stochastic game between

a macro BS and its co-located small cell BSs has been considered in [105] without

considering the impact of inter cell interference from other macro BSs. A resource al-

location game among users using a Code-Division Multiple Access (CDMA) system,

with power and rate control for each user, has been considered in [72]. Note that

interference from neighboring CDMA networks has not been considered, this impacts

the feasible range of power and transmit rate values. Distributed learning for resource

selection and/or power allocation have also been considered in [43, 75, 84, 77], but

one or more of the following are not considered: interference from neighboring BSs,

user traffic dynamics, and channel uncertainty due to time varying interference. For a

more comprehensive survey of existing distributed learning approaches, the interested

reader is directed to [12].

Coupled queues : It is fundamentally challenging to share wireless spectrum

among users of different BSs because the transmission rate declines for all users

scheduled over the same resources. As a result, the service rate at each of these users

is now influenced by interfering transmissions from other BSs, creating a coupling

between the queues in terms of the maximum throughput that these users can see and

the associated delay at each of the user queues. The stability region for such coupled

users has been investigated in the literature, see [85, 102, 109], where any amount of

interference causes a complete loss of packets. The vast majority of scheduling policy

literature on coupled queues [30, 81, 62, 16, 61] deal with the case where both queues

can be serviced by the same server.

Parallel queues with coupled service rates in the presence of channel aware

scheduling have been discussed in [17], nevertheless, cooperative strategies for inter-
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fering BSs have not been investigated. It provides a detailed analysis of convergence

and the ‘capacity’ region associated with the proposed policies. Some recent work,

with realistic queue aware transmission schemes such as [29, 40] mainly focuses on

stability with results that depend on the assumed system model. While [14] investi-

gates a more realistic network with coupled queues that are not saturated, the results

are mainly applicable to a single shared resource. There is also a study of the sta-

bility region of two parallel queues with coupled service rates in [17], however, this

study does not consider any interference mitigation policy between the queues. This

chapter shows that appropriate coordination between coupled users, with a carefully

chosen resource scheduler, can help improve the sum user throughput when multiple

resources are shared by coupled users.

5.2 Chapter Contributions

We consider the design of a resource allocation algorithm with dynamic user

traffic for BSs coupled through interference. We propose a novel approach based on

two coupled sub problems which permit us to explore RL based interference mitiga-

tion, having chosen a state-of-the-art (opportunistic) throughput optimal scheduler.

This in turn reduces the state-space of the RL resource allocation problem leading

to a quick training time (order of a couple of minutes in real time) and a resulting

improvement in system capacity and performance. The main contributions of this

chapter are as follows:

1. We propose a systematic decomposition approach to optimizing frequency reuse

under a predetermined dynamic user scheduling policy geared at making dis-

tributed RL techniques possible. To the best of our knowledge, this has not

been previously considered.
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2. We propose and validate a proxy metric (reward) that enables distributed RL

agents (base stations) to learn the interference-driven coupling amongst BSs.

3. Multiagent RL is a non-stationary stochastic game, existence and convergence

to a Nash Equilibrium (NE) under specific conditions has been established in

[51]. We show that our proposed algorithm satisfies these conditions, and hence

show the existence of and convergence to an NE.

4. We analytically show that our proposed distributed learning policy converges to

a policy that has a higher capacity region when compared to the full frequency

reuse policy.

5. We show the existence of a distributed frequency reuse policy with a larger

stability region than the full frequency reuse by considering scheduling coordi-

nation between two coupled queues.

6. Finally, we show that the choice of Max weight [103] policy as the pre-determined

resource scheduler at each BS is throughput optimal.

7. We evaluate and compare through detailed simulation the potential of our pro-

posed distributed approach vs aggressive and more centralized baseline algo-

rithms. Our results exhibit capacity gains of 5-25% over full frequency reuse

as well as associated improvements in delay performance with improved energy

efficiency on the order of 9-34%.

This chapter is organized as follows. Section 5.3 describes the system model

and sets up the non cooperative Markov game among the BS agents. Section 5.4 de-

scribes our proposed distributed RL algorithm for learning a frequency reuse policy
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at each BS. Section 5.5 establishes the existence of Nash Equilibrium and addition-

ally provides ordering of the capacity/stability regions of the various Markov game

settings. Section 5.6 presents the main theoretical results of this chapter by analyzing

a pair coupled user queues. Section 5.7 provides simulation results that compares the

capacity and stability region of the proposed RL based frequency reuse policies with

other baseline algorithms. Finally, Section 5.8 includes some concluding remarks.

5.3 System Model

We consider downlink transmissions from a set of wireless BSs B of cardinality

|B| = B, serving a set of users/devices U such that |U| = U , as shown in Fig. 5.1.

The dynamics of the system evolve in discrete time, corresponding to transmission

frames that are synchronized across BSs. Each frame consists of N Resource Blocks

(RBs) each corresponding to a slice of subcarriers and time slots within the frame.

Each RB can be assigned by a BS b to serve at most one of its set of associated

users Ub. Let Au(t) be a random variable denoting the arrivals (in packets) for user u

during time slot t and thus available for transmission at t+ 1. We shall assume that

a user’s arrivals across time slots are independent and identically distributed (i.i.d).

Let λu = E[Au(t)] denote the mean packet arrivals per time slot for user u and let

λ = (λ1, . . . , λU). In the sequel, Qu(t) will denote the queue length (in packets) of user

u, i.e., the data available for transmission in time slot t and Qb(t) = (Qu(t) : u ∈ Ub)

the queues at BS b, while Q(t) = (Qb(t) : b ∈ B) the overall queue state of the

system.

The channel gain between BS b and user u in slot t is modeled by a random

variable Gb
u(t) and assumed i.i.d across time. Let G(t) = (Gb

u(t) : b ∈ B, u ∈ U)

denote the gains amongst all BSs and users, while Gb(t) = (Gb
u(t) : u ∈ Ub) denotes
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Figure 5.1: Network Model with dotted lines showing the interference caused by
neighboring base stations.

solely those between BS b and its associated users. For simplicity, we will assume

flat fading i.e., the channel gains for all the subcarriers within a resource block are

the same. We denote the mean channel gains by ḡbu = E[Gb
u(t)] along with associated

vector notations ḡb and ḡ. The allocation of RBs to users is modeled as a two-step

process. First, a frequency reuse decision is made which determines the subset of RBs

available for user allocation at each BS. A set of binary decisions are made at each

base station b for an RB k on slot t: Sb
k(t) is such that if Sb

k(t) = 1 if RB k is available

for use by the BS, and if Sb
k(t) = 0 it is not to be used. Second, a scheduling decision

is made determining which (if any) users are scheduled to transmit on the available

subset of RBs. We let Sb(t) = (Sb
k(t) : k = 1, . . . , N) denote the frequency reuse state

of BS b at time t and S(t) = (Sb(t) : b ∈ B) the overall frequency reuse state of the

network. It will be convenient to let Sb(t) = {k : Sb
k(t) = 1}k=1,...,N denote the set of

available RBs at base station b.

Generally, a scheduling policy h is an assignment hb for each BS b of the

available RBs to its users. The assignment may depend on the available information
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denoted Ib(t), so a scheduling policy hb for BS b is a mapping,

hb( · ; Ib(t)) : Sb(t) → Ub ∪ {0} , (5.1)

assigning each RB made available by the frequency reuse policy Sb(t) to one of

its users Ub or none at all, represented by user 0. Typically a BS scheduler will

only have local information such as its users’ channel gains and queue lengths, e.g.,

Ib(t) = (Sb(t),Gb(t),Qb(t)). For simplicity we shall equivalently represent the result

of scheduling via binary variables h(t) = (hb
uk(t) : b ∈ B, u ∈ U b, k = 1, . . . N) where

hb
uk(t) = 1 if the scheduler allocated an available RB k ∈ Sb(t) to user u ∈ Ub of BS

b, otherwise it is 0.

In practice, a BS’s scheduler has access to the Channel Quality Indicator

(CQI) as well as estimates of previously observed interference and/or success/failure

of transmissions for each of its associated users, based on which it estimates the users’

current Signal to Interference and Noise ratio (SINR). For simplicity, we assume an

adaptive modulation and coding scheme at the transmitter that can make use of this

information to achieve a data rate close to the Shannon capacity. We understand

that the Shannon capacity serves as a rough upper bound to the achievable rate,

nevertheless, to keep things simple we use Shannon capacity as a rate metric to

compare various algorithms proposed in this chapter.

Due to possible interference from neighboring BSs, the transmission user rate

under a given resource schedule is a complex function of all scheduled users. An

idealized model might be as follows: if hb
uk(t) = 1 the SINR for user u of BS b on RB

k is

SINRb
uk(t) =

PGb
u(t)∑

b′:b′ ̸=b

∑
u′∈Ub′

Phb′
u′k(t)G

b′
u (t) +N0

, (5.2)
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where the numerator corresponds to the received transmit power, and the denomina-

tor is the sum of intercell interference and noise. The downlink transmission rate to

user u ∈ Ub on resource k at time t is given by,

cbuk(t) = nµ
W

2
log(1 + SINRb

uk(t)) bits, (5.3)

where n is the number of subcarriers per RB and µ is the time duration of an RB.

Thus aggregating across the RBs of BS b we denote the total transmissions to user u

in slot t as,

cu(t) =
N∑
k=1

hb
uk(t)c

b
uk(t) bits , (5.4)

where we suppressed the superscript b in cbu(t) since each user is served by only one

BS. Hence, under such a scheduling policy the queue dynamics for user u are given

by

Qu(t+ 1) = [Qu(t)− f(cu(t))]
+ + Au(t) , (5.5)

where [x]+ = max[0, x] and f(x) is an integer valued non-decreasing function on x

modeling the packet departures at a user queue as a function of the SINR.

In the sequel, we will find it useful to introduce the following notation. Note

that given a frequency reuse state S(t) = s, a scheduler (5.1), channel and queue

states G(t) = g, Q(t) = q, the service to user u can be written as,

cu(t) = cu(s, g, q). (5.6)

Note that cellular networks can determine the interference-free signal to noise ratio

(SNR) based on the user location through state-of-the-art machine learning techniques

[59]. For a given user u ∈ Ub, the SNR at time t is denoted,

SNRu(t) =
PGb

u(t)

N0

, (5.7)
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and a user’s effective “interference free” capacity per RB for a channel strength

Gu
b (t) = gub is denoted,

κu(g
u
b ) = nµ

W

2
log

(
1 +

Pgbu
N0

)
bits . (5.8)

The three main sources of variability in the network are due to user packet

arrivals, channel variations, and dynamic interference across resource blocks. Each

BS allocates resources to its users based on the channel strength and user queue

lengths in the presence of dynamic interference from neighboring BSs. In principle,

one could design a centralized entity that collects channel strength and user queue

length across all BSs to perform joint resource allocation. Alternatively, one could

fix a scheduler (say MaxWeight) and let each BS figure out its resource selection

policy independently. We propose a separation of concerns by allowing solving for a

frequency reuse policy independent of user resource scheduling, i.e., fix a throughput

optimal scheduler and let each BS act as an independent agent to learn a resource

selection strategy that minimizes interference. In these circumstances, one can think

of a Markov game among the BSs for resource selection. It is challenging to select

a good set of resources because the user queues in the network are coupled through

interference.

The design of an optimal frequency reuse and scheduling policy for this stochas-

tic network system with queues that are coupled through interference is an exceedingly

challenging problem. In this chapter, we propose a separation of concerns where the

underlying BS schedulers are fixed, e.g., to a state-of-the-art opportunistic sched-

uler based on local information. Given the underlying scheduler, we propose to have

BSs learn how to manage frequency reuse so as to reduce the impact of inter-cell

interference.
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5.3.1 Markov Game: Learning frequency reuse policies

We formulate the problem of determining an overall frequency reuse policy

across BSs as a Markov game [68] where each BS decides on it’s own reuse policy so

as to either (a) maximize its own reward, or (b) maximize a shared network reward.

The rewards are a result of the BSs’ frequency reuse decisions, and the underlying

BS scheduling policies as well as the underlying environment/dynamics.

More formally, we consider a B-player Markov game

⟨S1, . . . , SB;A1, . . . ,AB; p1, . . . , pB; r1, . . . , rB⟩ (5.9)

including the following elements.

• Sb = {0, 1}N denotes the set of possible frequency reuse states for for BS b i.e.,

values Sb(t) can take.

• Ab denotes the set of all possible actions BS b can take.

• pb(s
′b|sb,ab) models the transition probabilities to the next state s′ ∈ S, given

that the current state and action pair given by (sb,ab).

• rb(s, g, q) corresponds to a reward associated with users scheduled at BS b on

a given time slot conditional on the overall frequency reuse state S(t) = s,

channel gains G(t) = g and user queues Q(t) = q.

Below we describe several approaches to defining the rewards and action space

for this game. Note that the frequency reuse game is such that BSs do not have access

to the entire network state, in particular to the frequency reuse state, channels and

queues of other BSs.
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5.3.2 Actions and Rewards: Non cooperative Markov game

An action ab ∈ Ab determines the next frequency reuse state for BS b. We

consider two possible models for the action spaceAb, {0, 1}N or {1, . . . , N}, depending

on the admissible action state complexity. When Ab = {0, 1}N , the frequency reuse

state for the next frame is deterministically set to s′b = ab. In the second model

where the action space is Ab = {1, . . . , N}, an action ab = k corresponds to a decision

to transmit only on k RBs in the subsequent frame, with the RB positions chosen

uniformly at random. Fig. 5.2 illustrates how a probabilistic action would be taken

when the total number of resources is 5 and the action action ab = 4.

Action a = 4 =⇒ Resources: p = 1
5

→

p = 1
5

→

..
.

p = 1
5

→

Figure 5.2: Illustration of the probabilistic action space in the case of Ab = {1, . . . , 5}.

We design the per slot reward for each BS b to capture both the amount of

data transmitted and the “efficiency” of such transmissions. In particular, given a

frequency reuse state s, and the scheduling decisions associated with channel gains g

and queue lengths q, the reward at BS b is modeled by,

rb(s, g, q) =
∑
u∈Ub

cu(s, g, q)

κu(g)
, (5.10)

where cu(·), defined earlier in (5.6) is the overall bits delivered to user u and κu

defined in (5.8) is the effective interference free capacity of user u. This rewards

the transmission of data to users at the BS, but penalizes transmissions experiencing

excessive interference. Note that each agent in the Markov Game only sees its own
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frequency reuse state sb, whence it sees a reward rb((sb, s−b), g, q) that depends on

the frequency reuse actions of other players denoted s−b, the stationary distribution

of the networks channel gains G(t) and possibly not stationary distribution of the

network queues Q(t).

We consider a non cooperative Markov game where each BS learns a policy

based on rewards either generated by its own users or all users in the network. The

learned frequency reuse policy π ≜ (πb, b ∈ B) induces a set of transition probabilities

on the frequency reuse states (Sb, b ∈ B) such that the expected long term rewards are

maximized. We consider three different game settings based on the rewards and/or

action space.

(G1) Global reward game: Each BS trains on the sum reward
∑

b∈B rb(s, g, q)
generated by all BSs. Each BS b has an action space Ab = {0, 1}N .

(G2) Local reward game: Each BS trains on its own local reward rb(s, g, q).
Each BS has an action space Ab = {0, 1}N .

(G3) Random action game: Each BS trains on its own local reward rb(s, g, q).
Each BS has an action space Ab = {1, . . . , N}.

We can thus model the frequency reuse state transitions as a Markov chain

induced on the frequency reuse state space by policy π and scheduling rule h. With

a slight abuse of notation, we use (πb(s) : s ∈ Sb) to also denote the steady state

distribution of the induced Markov chain at BS b. Note that the frequency reuse

policy π in conjunction with a scheduling rule h determines the users’ queue length

distributions.
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5.4 Probabilistic Frequency Reuse (PFR)

Given a traffic load λ, one would like to pick a set of frequency reuse policies π

from the set of all feasible policies P for interference mitigation and scheduler h ∈ H

that can either stabilize the user queues or maximize some network utility. Consider

the B-player Markov game summarized in (5.9), we fix the scheduler h at each BS

and learn interference management policies π using one of three game settings (G1),

(G2) or (G3) based on our carefully chosen proxy metric (5.10).

Channel Quality
Indicator

User Queue
Length

Resource pool

Base station
Scheduler

RL agent for
freq. reuse

(Pre-determined)

Rewards

Resource Blocks

Do not use

Figure 5.3: Block diagram representation of our proposed system architecture at base
station b.

We propose that each BS use an efficient algorithm to learn it’s own frequency

reuse policy in a distributed manner. Multi agent Q learning [51] is a model free

learning algorithm for non cooperative Markov games. A schematic representation

of our learning algorithm is depicted in Fig. 5.3. An agent at each BS b learns∗ its

frequency reuse policy πb using the rewards generated by the underlying BS scheduler.

The scheduler then allocates RBs made available by the frequency reuse policy to users

based on their channel quality and queue length. Finally the learning agent at each

∗After a random initialization of the reuse policy, the rewards generated by the scheduler is used
to iteratively improve the policy.
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BS trains on the reward metric for each resource selection configuration sb based on

which the reuse policy is updated to maximize discounted future rewards. We will

refer to this distributed method of learning as Probabilistic frequency reuse where

each BS learns the fraction of time it should spend on a particular frequency reuse

state to alleviate interference.

Let π be the multi agent frequency reuse policy learnt by the distributed

algorithm, then for a given initial state sb, the learning agent at each BS maximizes

it’s value function vπ
b
(·)

vπ
b

(sb) =
∞∑
k=1

γkEπ,χ
[
rb(Sb

t+k,Gt+k,Qt+k)|π,Sb
t = sb

]
. (5.11)

Note rb(·) is the reward of BS b at time t and k is time step to capture future rewards.

We start training with Q0 = 0 and after sufficiently long training time, the frequency

reuse policy converges to a stationary distribution πb which induces a distribution

χ on the queue length. Also, each BS has access to the reward of other BSs either

directly (as in global reward setting) or indirectly through the interference that each

BS sees. Furthermore, the actions of each BS in the network are either indirectly

observable at each BS through interference or irrelevant if there is no interference.

We will use vπ(s) to denote the sum of the value functions of all BSs under the

frequency reuse policy π.

Definition 5.4.1. In a stochastic game a Nash equilibrium (NE) is a set of policies

π∗ = (π∗1, . . . , π∗b, . . . , π∗B) such that for all s ∈ S, ∀πb ∈ Pb (Pb is the set of all

feasible frequency reuse policies for BS b) and b = 1, . . . , B,

vπ
∗
(s) ≥ vπ

′
(s), where π′ = (π∗1, . . . , πb, . . . , π∗B). (5.12)

We will next establish the existence of and convergence to a Nash equilibrium

for our non cooperative Markov game among the BSs.
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5.4.1 Existence of and convergence to a Nash equilibrium for our pro-
posed non cooperative Markov game

Theorem 5.4.1. Consider a non cooperative Markov game where each BS in the net-

work is autonomously learning a frequency reuse policy to mitigate interference. There

exists a Nash equilibrium, possibly not unique, for the game under all three reward

modes (G1), (G2) and (G3), with each BS’s agent converging to an NE frequency

reuse policy.

Proof. See Appendix. D.1. ■

5.5 Main Results

We shall first introduce a few definitions needed to present our main theoretical

results. Next we define a notion of the capacity region of our proposed Probabilistic

Frequency Reuse (PFR) for the non cooperative Markov game. By capacity region

we refer to the set of all user arrival rate vectors that the network is able to support

with stable queues. Next we establish a capacity order among the three game settings

(G1), (G2) and (G3) according to their learnt value functions.

5.5.1 Network stability under interference mitigation polices

We begin by defining a notion of capacity for the network given a frequency

reuse policy π = (πb, b ∈ B) which characterizes the set of possible long term downlink

transmission rates which are achievable under two assumptions (a) all users’ transmit

queues are backlogged, and (b) all BSs make use of the all resources made available

by their respective frequency reuse policies, and thus offer the worst case interference

according to their frequency reuse policy.
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Recall that π(s) denotes the probability that the frequency reuse policy across

all the BSs is in state s. Further, given the frequency reuse and channel states of

the network s,g and sbk = 1 (resource k is available at base station b), ϕb
uk(s, g)

denotes the fraction of time resource k is allocated to user u ∈ Ub, and thus under

the assumption (b) in the paragraph above, we have that
∑

u∈Ub ϕb
uk(s, g) = 1. This

corresponds to a static splitting resource allocation policy across the network when

the network is in state s ∈ S, g ∈ G. Let F denote the set of such feasible splittings

for all possible network states,

F =

{
ϕ : ∀b ∈ B,∀s, g, if sbk = 1 then

∑
u∈Ub

ϕb
uk(s, g) = 1

}
. (5.13)

Suppose ϕ is a feasible static splitting, then one could come up with a lower bound

on the downlink rate under a frequency reuse π for each user u ∈ Ub given by,

µ∞
u (π,ϕ) = Eπ,χ

[
N∑
k=1

ϕb
uk(S,G)cuk(S,G)

]
. (5.14)

where π and χ correspond to the distributions of the network’s frequency reuse and

channel states S and G respectively. We further let µ∞(π,ϕ) = (µ∞
u (π,ϕ), u ∈ U).

Definition 5.5.1. Given a frequency reuse policy π, we define the saturated net-

work capacity region C∞
π as follows

C∞
π ≜ {r : 0 ⪯ r ⪯ µ∞(π,ϕ), ϕ ∈ F} .

Notation: C∞,b
π denotes the saturated capacity region for BS b, (·)◦ denotes interior

of a set and λb denotes the user arrival rate vector of the arrival rate for BS b. λ−b

denotes the arrival rate vector of users at all BSs in the network except BS b.

We further define the capacity region for saturated networks under all possible

Markovian frequency reuse polices P as

C∞ =
⋃
π∈P

C∞
π . (5.15)
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Remark. It is easy to show that C∞
π is convex owing to the convexity of the set of

all possible static splits F. However, C∞ need not be convex. Indeed one could design

π1, (π2) which allocate resources only to b1, (b2), respectively. In this case it is not

feasible to achieve a convex combination of Cπ1 and Cπ2 as that calls for a scheduler

aware frequency reuse policy which goes against our separation of concerns paradigm.

Lemma 5.5.1. Consider a network where the users’ queues across the BSs have iid

arrivals with mean λ such that there exists a π and ϕ such that λ < µ∞(π,ϕ) ∈ C∞,

then the network is stable under the reuse policy π with static splitting rule ϕ.

Proof. See Appendix. D.2. ■

Lemma 5.5.2. For a given frequency reuse policy π, if the arrival rate λb at BS b is

such that λb ∈ (C∞,b
π )◦, then assuming base station b employs max weight scheduling

while all other BSs are saturated, the system is stable.

Proof. See Appendix. D.3. ■

Intuitively from a BS’s perspective, saturation of neighboring BSs’ users’

queues corresponds to a worst case in terms of interference and thus the capacity

that can be achieved for its users. One would expect if one relaxes the saturation

assumption that one would still achieve stability. The following result shows that this

is the case for a network where the arrivals at all BS/users lie in the interior of C∞.

Theorem 5.5.1. For a given frequency reuse policy π, if the arrivals to the user

queues in the network satisfy λ ∈ (C∞
π )◦, then max weight schedulers at each BS will

stabilize it’s users’ queues.

Proof. See Appendix. D.4. ■
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Remark. Local reward based (as in (G2), (G3)) distributed learning of frequency

reuse policy π is effective only when the metric represents the relative performance

of each user with reference to the no interference scenario.

Theorem 5.5.2. For a given scheduling policy h, let π∗
g , π∗

l denote possibly not

unique frequency reuse policies which are Nash Equilibria learnt using the global (G1)

and local (G2) reward games, respectively. For every local frequency reuse policy π∗
l

there exists a global frequency reuse policy π∗
g such that vπ

∗
g (s) ≥ vπ

∗
l (s).

Proof. See Appendix. D.5. ■

5.5.2 Higher capacity region when compared to FR1

We start by defining what we call a network with BSs tightly coupled in the

sense of interference caused by downlink transmissions. Then we state and prove our

main theoretical results. The next step will be to solve for the NP hard combinatorial

optimization problem in (5.24).

Definition 5.5.2. We say that the BSs in a network are tightly coupled for some

scheduling policy h if there exists a non empty subset of BSs A ⊂ B such that,

Eγ

[∑
b∈Ac

∑
u∈Ub

cuk(S,G,Q)

]
> Eγ

∑
b′∈A

∑
ũ∈Ub′

cũk(S,G,Q)

 . (5.16)

For instance, a network is called tightly coupled, if it is possible to turn off a single

BS b on resource k and have the sum marginal rate increase of all the other BSs on

resource k exceed the loss in rate for BS b on resource k.

Theorem 5.5.3. Let C1 be the saturated network capacity region for the frequency

reuse 1 policy denote by π′, which has all its mass only on the all ones state, i.e.,

π′bi(s) = 1 ∀i, if s = {1}N and 0 otherwise. Fix h to be the Max-Weight Scheduler.
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When the BSs are tightly coupled as in Definition 5.5.2, for any λ <

µ ∈ C1, we can find a policy π such that αλ ∈ C, where α > 1, i.e., we can find a

frequency reuse policy that stabilizes the system for a higher arrival rate vector.

Proof. See Appendix. D.6 ■

Corollary 5.5.1. Every RL agent converges to a frequency reuse policy πb based on

the rewards generated by the proxy metric such that the arrival rate vector of Cπb

strictly dominates Cπ′, where π′ is the frequency reuse 1 policy that has all its mass

only on the all ones state ,i.e., π′(s) = 1, iff s = {1}N .

Proof. See Appendix. D.7. ■

5.6 Parallel queues with coupled service rates

We have seen how neighboring BSs can learn a frequency reuse policy by

playing a Markovian game, but it’s unclear if such a policy exists. Is there a feasible

frequency reuse policy with a larger capacity region and if so, what scheduler should

be used at each of the BSs? In this section, we demonstrate how coupled queues with

coordination (appropriate frequency reuse policy) can help improve overall system

throughput when the resource scheduler at each BS is carefully chosen. In general,

the interference from the three strongest interference causing BSs is sufficient to

capture the impact on the SINR of the user, as shown in [4, Section 9.2]. However,

for simplicity of analysis, we will only consider the interference from the strongest

interference causing BS. This leads to a system where the service rates of two users

are coupled through interference.

Consider two parallel queues with coupling in service rates such that, if both

queues are busy servicing packets, then the service rate is assumed to be rI for each of

141



the queues. However, when one of the queues is idle, the other queue gets to service

at rate r0, where r0 > rI . We will construct the stability region for two queues with

coupled service rates under interference mitigation, with and without the presence

of coordination between the two queues. Specifically, when a queue backs off from

servicing its queue for a fraction of time, irrespective of the backlog in it’s queue,

there is an improvement in the sum total service rate at both queues.

Let πδi be the policy where Qi backs off from transmission for a fraction of

time δi ∈ (0, 1), irrespective of the backlog in its queue. Define π′ as the baseline

policy without interference mitigation, i.e., a queue is busy servicing whenever there

are packets to send. Moreover, by coordination we refer to the minimal information

exchange between the queues such that they do not choose† to go idle simultaneously.

Note that the global reward Markov game involves coordination and the local reward

and random action game settings are uncoordinated.

5.6.1 Queues Q1 and Q2 with infinitely backlogged buffers

• Case 1: No back off

Under the no backing off policy π′, the sum service rate at both queues cannot

exceed 2rI . The corresponding stability region is given by the dashed rectan-

gular region in Fig. 5.4.

• Case 2: Q1 or Q2 backs off

Suppose we have πδ1 , where Q1 backs off by a fraction δ1, then maximum rate

at which Q1 can service the packets in its queue is given by, (1− δ1)rI . For Q2,

the maximum rate at which packets can be serviced is δ1r0 + (1− δ1)rI .

†Since we want to design an efficient frequency reuse policy, it is desirable to avoid having both
queues go idle simultaneously
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(a) r0 < 2rI
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Figure 5.4: Stability region for parallel queues with coupled service rates. The shaded
regions correspond to the stability region for uncoordinated back off, and striped
region corresponds to the stability region for coordinated back off with δ1 + δ2 ≤ 1.

Adopting the frequency reuse policy πδ1 as compared to π′ in terms of total

service rate will be beneficial only when,

(1− δ1)rI + (1− δ1)rI + δ1r0 > 2rI

δr0 > 2δ1rI

r0 > 2rI

(5.17)

Similarly, one can show that under πδ2 the maximum service rates at Q1 & Q2

are δ2r0 + (1− δ2)rI and (1− δ2)rI , respectively. If r0 > 2rI , then adopting πδ2

is beneficial and the corresponding stability region is given by the dash dotted

red line in Fig. 5.4(b).

• Case 3: Q1 & Q2 coordinated back off

Consider the case πδ1 × πδ2 , where Q1 & Q2 back off by a fraction of time δ1 &

δ2, respectively, such that the time over which they back off does not overlap.
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Q1

δ1
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Figure 5.5: Parallel queues with coupled service rates and coordinated back off in a
slotted time system.

Also, with infinitely back logged queues it is not beneficial for either of the

queues if δ1 + δ2 > 1. From the joint distribution shown in Fig. 5.5, it is

clear that the maximum service rate at Q1 & Q2 is (1 − δ1 − δ2)rI + δ2r0 and

(1− δ1 − δ2)rI + δ1r0, respectively.

Q1 ON Q1 OFF

Q2 ON 1− δ1 − δ2 δ1
Q2 OFF δ2 0

Table 5.1: Joint state distribution of saturated parallel queues with coupled service
rates and coordinated back off.

Adopting the frequency reuse policy πδ1 × πδ2 as compared to π′ in terms of

total service rate will be beneficial only when,

2(1− δ1 − δ2)rI + (δ1 + δ2)r0 > 2rI

(δ1 + δ2)r0 > 2(δ1 + δ2)rI

r0 > 2rI

(5.18)

The stability region for this case is represented by the area covered by the

vertical lines in Fig. 5.4(b).

• Case 4: Q1 & Q2 random uncoordinated back off

Consider the case πδ1∩πδ2 , where Q1 & Q2 back off by a random fraction of time

δ1 & δ2, respectively. From the joint distribution in Table 5.2, it is clear that
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the maximum service rates at Q1 and Q2 are given by (1−δ1) [δ2r0 + (1− δ2)rI ]

and (1− δ2) [δ1r0 + (1− δ1)rI ], respectively. The stability region is given by the

blue shaded region in Fig. 5.4(b).

Q1 ON Q1 OFF
Q2 ON (1− δ1)(1− δ2) δ1(1− δ2)
Q2 OFF (1− δ1)δ2 δ1δ2

Table 5.2: Joint distribution of the states of saturated parallel queues with coupled
service rates and uncoordinated back off.

5.6.2 Unsaturated queues

If the arrival rates at each of the queues, λ1, λ2 ∈ (0, rI) then both the queues

are stable, because they can be treated as two independent queues with constant

service rates rI . Define ρi = λi

µi
, which denotes the utilization factor of Qi. We

would like to find the arrival rates at each of the queues for which the system can be

stabilized.

Suppose one of the queues, say Q2 is busy such that the utilization rate ρ2 → 1,

then the max service rate atQ1 can at most be rI . For an arrival rate λ1 atQ1, ρ1 =
λ1

rI

let the arrival rate at Q2 be expressed as λ2 = rI + ϵ. The system is stable if

λ2 < ρ1rI + (1− ρ1)r0

= λ1 +

(
rI − λ1

rI

)
r0

= r0 +

(
r0
rI

− 1

)
λ1

(5.19)

Therefore as long as ϵ < (r0 − rI) +
(

r0
rI
− 1
)
λ1, the system is stable.
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5.6.3 Impact of frequency reuse policy πδ on stability region

Consider the system when there is no interference mitigation employed, i.e.,

policy π′ where all BSs transmit packets whenever the queues are non-empty. Let Q1

be busy such that ρ′1 → 1 and λ′
2 < rI , then µ′

1 = (1− ρ′2)r0 + ρ′2rI and µ2 → rI .

Suppose Q1 has a saturated queue, if Q1 backs off by δ > 0, then the service

rate at Q2 is µ2 = (1 − δ)rI + δr0 > µ′
2 =⇒ ρ′2 < ρ. The service rate at Q1 can be

found using the expression µ1 = (1− δ1) [(1− ρ2)r0 + ρ2rI ]. In order to construct πδ1

such that we can support a higher arrival rate for both queues, we need to pick δ1

such that
µ1 = (1− δ1) [(1− ρ2)r0 + ρ2rI ] > (1− ρ′2)r0 + ρ′2rI

1− δ1 >
r0 − ρ′2(r0 − rI)

r0 − ρ2(r0 − rI)

δ1 < 1− r0 − ρ′2(r0 − rI)

r0 − ρ2(r0 − rI)

=
(ρ′2 − ρ2)(r0 − rI)

r0 − ρ2(r0 − rI)

(5.20)

Suppose Q1 has an unsaturated queue, then we have ρ′1 =
λ′
1

µ′
1
< 1, and hence the

maximum service rate at Q2 is given by (1− ρ′1)r0 + ρ′1rI . Assuming that Q1 and Q2

coordinate to not be idle on the same slot, the system of queues are stable when,

λ′
1 < (1− ρ′2)r0 + ρ′2rI

λ′
2 < (1− ρ′1)r0 + ρ′1rI

(5.21)

Suppose Q1 backs off by a fraction δ1 (coordinated back off happens only when Q2 is

active), the maximum service rate at Q2 is δ1r0 + (1 − δ1) [(1− ρ1)r0 + ρ1rI ], which

can also be expressed as [δ1 + (1− δ1)(1− ρ1)] r0 + (1 − δ1)ρ1rI . Since Q1 backs off

by a fraction δ1, we can expect that ρ′1 < ρ1. We want µ2 > µ′
2, for which we need to

choose δ1 such that

(1− ρ′1) ≤ δ1 + (1− δ1)(1− ρ1) and ρ′1 < (1− δ1)ρ1 (5.22)
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We simply pick δ1 =
ρ1 − ρ′1

ρ1
, using which the maximum service rate at Q2 is given

by, (1 − δ1) [ρ2rI + (1− ρ2)r0]. Since we want πδ1 to stabilize higher arrival rates at

the queues,
(1− δ1) [ρ2rI + (1− ρ2)r0] > ρ′2rI + (1− ρ′2)r0

δ1 < 1− ρ′2rI + (1− ρ′2)r0
ρ2rI + (1− ρ2)r0

=
(ρ′2 − ρ2)(r0 − rI)

ρ2rI + (1− ρ2)r0

(5.23)

Problem Formulation

The first step to solve for π,h is to select an appropriate metric function f(·), for

instance, sum user rate f(µ) = 1Tµ, proportional fairness f(µ) = 1T log(µ), weighted

user rate f(µ) = wTµ or the transmission delay associated with each user packet.

π,h = argmax
π∈P,H∈H

f(µ) s.t. λ < µ . (5.24)

Suppose Q1 and Q2 do not coordinate, then they could be idle during the

same time slot with probability (1−ρ1)(1−ρ2), for a detailed joint distribution check

Table 5.3. The maximum transmission rate for a user in Q1 and Q2 will then be

ρ1(ρ2rI + (1− ρ2)r0) and ρ2(ρ1rI + (1− ρ1)r0), respectively. Analyzing this case just

like the coordinated case results in the corresponding bounds for a π that aligns the

idle state of one queue with the active state of the other.

Q1 ON Q1 OFF
Q2 ON ρ1ρ2 ρ2(1− ρ)
Q2 OFF (1− ρ2)ρ1 (1− ρ1)(1− ρ2)

Table 5.3: Joint state distribution of unsaturated parallel queues with coupled service
rates and coordinated back off.
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Definition 5.6.1. Let F, as in (5.13), denote the set of feasible splittings for all

possible network states. The mean downlink rate under policy π ∈ P and a feasible

static splitting rule ϕ for user u ∈ Ub is given by,

µu(π,ϕ) = Eπ,γ,ν

[
N∑
k=1

ϕb
uk(S,G,Q)cuk(S,G,Q)

]
,

where π, γ correspond to the distributions of the network’s frequency reuse, channel

strength S,G, respectively and ν is the policy induced distribution on the queue sizes

Q. We define the network capacity region Cπ given the frequency reuse policy π as

follows

Cπ ≜ {r : 0 ⪯ r ⪯ µ(π,ϕ), ϕ ∈ F} .

Theorem 5.6.1. For a given frequency reuse policy π ∈ P, if the arrivals to user

queues in the network can be stabilized i.e., λ ∈ (Cπ)
◦, then max-Weight Scheduler at

BS b will stabilize it’s user queues.

Proof. See Appendix. D.8. ■

To summarize, a coordinated back off from resource scheduling across coupled

queues results in a larger sum capacity region for both saturated and unsaturated

queues. Furthermore, given any feasible frequency reuse policy, Max-Weight scheduler

is throughput optimal, i.e., it will stabilize queues if there exists any scheduler that

can stabilize queues.

5.7 Simulations

A simple network as in Fig. 5.6 with four BSs is considered. Each BS serves

5 users and has access to 5 resources (3.5-3.55 GHz with RB bandwidth 10 MHz).

Users are dropped uniformly at random over each square region and associated to
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the nearest BS. Other network parameters are as listed in the Table 5.4. For all

three game settings (G1), (G2) and (G3) a DQN is employed at each BS to learn

its frequency reuse policy πb based on the rewards generated. The DQN learns a

Q table [100] which keeps track of the mean discounted reward as a function of the

(state, action) pair of each BS. The state of every BS agent is given by the binary

vector corresponding to the frequency reuse state. The action corresponds to the

resources selected by each BS for transmission for the next time slot, with 1(0) to

denote whether a resource can be (cannot be) assigned to a user. During the training

phase each DQN performs exploration and exploitation to learn a policy πb that

maximizes the long term discounted rewards. The Keras Adam optimizer [1] was

used to implement the DQN with the following hyperparameters: exploration rate

ϵ ∈ [1, 0.01], exploration decay factor 0.995, a learning rate of 0.001 and a reward

discount factor γ = 0.95. Algorithm 11 gives the DQN training logic used at each of

the BSs. Open AI gym [69] was used to simulate the wireless network environment

for multi-agent RL.

Table 5.4: Simulation Parameters

Parameter Value

Base station tx power 2 W

User tx power 100 mW

Carrier frequency 3.5 - 3.55 GHz

Resource Bandwidth 10 MHz

Bounded path loss with α = 3 max{1, r−α}
Noise power -104 dB

The SINR of a user scheduled to transmit, is calculated using (5.2). The

transmit power of the BS (user) is 2 W (100 mW) with noise power set to -104 dB.

ĉu is the estimated data rate for user u per RB, based on channel quality (fading
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Figure 5.6: The network configuration used for simulations with four BSs (triangles),
each associated with 5 users (dots).

and path loss). We use bounded standard path loss max[1, r−α] with exponent α = 3

to model channel gains. Note that we use |hi|2 = 1 for the simulations, since we

assume that the Channel State Information (CSI) is available at the transmitter.

This is a reasonable assumption given that the BSs can evaluate the CSI for each

of its associated users and hence the channel fading |h|2 is not an unknown quantity

under flat fading with CSI.
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Algorithm 5: Training DQN of each RL agent at each base station

1 initialize policy πb;

2 while training do

3 generate random arrivals;

4 schedule resources using policy πb;

5 save training data (state, action, reward, next state) to batch;

6 if batch memory full, train DQN using batch data ;

7 update policy πb, choose action with max Q-value ;

8 if iterations > max Iterations then

9 done = True;

10 end

11 end

At each BS the DQN provides a list of available resources to the scheduler

that can be allocated to users. Each BS uses a Max weight scheduler (predetermined

scheduler h) to determine the users to be assigned available RBs. The weight for each

user is calculated based on both the current user queue size Nu and the estimated

downlink rate ĉu as, wu = Nuĉu. A BS assigns RBs iteratively to its users as follows.

The user with maximum weight is assigned the best channel available and then user

weights are reevaluated based on updated queue size accounting for potential packet

transmissions. Specifically, suppose user u was assigned a channel with rate ĉu for

transmission, then the user weight wu is calculated with an updated queue size Nu =

Nu−f(ĉu), where f(·) is a non decreasing function that denotes the number of packets

transmitted as a function of the downlink rate ĉu. We use a piece wise linear function

f(x) = ⌊log2(1 + x)⌋ to determine the number of packets transmitted, as a function

of the rate, ⌊log2(1 + SINR)⌋, where ⌊·⌋ is the floor operator. The minimum SINR

threshold below which no packets can be reliably transmitted is set to 0dB.

The training algorithm for the DQN agent at each BS is shown in Algorithm
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11. We use batch training for the DQNs, hence, a single iteration in the DQN training

is equivalent to multiple time steps in real time resource scheduling. We use max-

weight scheduling with frequency reuse 1 as a bench mark to gauge the performance

of our multi agent RL framework. In order to find the “best” that one could do with

a greedy strategy, we also include plots for an oracle-aided centralized benchmark

where each BS completely knows the interference that will be seen as resources are

allocated in the network. For the centralized benchmark, we use full frequency reuse

at each BS in the network and a sequential scheduling order, wherein the nth BS uses

max weight scheduling of resources but is completely aware of the exact interference

caused by the scheduling of the previous n− 1 BSs.

Figure 5.7: User mean rate CDF for all policies.

The empirical CDF of the users’ mean rate is shown in Fig. 5.7. It can be

seen that even the simplest and most practical random action game (G3) results in

better mean rate for users. Specifically, the global reward, local reward and random

action games show a 4.8%, 14.8% and 25% improvement in the total rate delivered

to all users, when compared to the baseline.
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5.7.1 Resource usage across BSs

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Arrival rate (per user)

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 
of
 re

so
ur
ce

s u
se

d

ideal
baseline
random
global
local

Figure 5.8: Fraction of resources used on average across the network, as a function of
the arrival rate per user.

Fig. 5.8 shows the mean fraction of resources selected for downlink transmis-

sion in the network as a function of the arrival rate at each of the users’ queues.

Observe that when compared to the random action game, the global and local re-

ward based policies learn to use a better frequency reuse strategies, which helps them

achieve better throughput Fig. 5.7. Also, note that in all three settings considered,

initially the fraction of resources allocated to users increases with an increase in the

user packet arrival rate. However, beyond a critical level, the fraction of resources

used almost saturates to a constant which is not 100%. While the global (G1) and

local reward (G2) games demonstrate a 32% and 34% improvement in energy effi-

ciency through better resource utilization (resource positioning), the random action

game (G3) still shows a 9% improvement in energy efficiency.
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5.7.2 Correlation in learnt policy across BSs

Each frequency reuse policy induces a distribution on the transitions across

various frequency reuse states of the underlying markov chain that models the policy.

Definition 5.7.1. A frequency reuse policy πb, defines the conditional probability of

choosing a frequency reuse state s′ ∈ Sb, given that the current frequency reuse state

is s ∈ Sb, such that the long term discounted rewards of the network is maximized.

We illustrate the correlation in frequency reuse patterns across BSs in the

network in spite of a distributed learning paradigm. One would expect to see nega-

tively correlated state transitions (intuitively the BSs would not use the same RBs

simultaneously), however, Fig. 5.9 shows both positively and negatively correlated

states.

Figure 5.9: Correlation across the frequency reuse states of all BSs under the global
reward game.
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As the user arrival rates increase, more resources are assigned for downlink

transmission at each of the BSs. Note that although each BS uses at least two thirds

of its resources at high user arrival rates, a correlation coefficient of at most 0.3

strength indicates that the BSs are trying to learn resource allocation patterns that

are complementary. Also, compared to global reward game (G1), the local reward

game (G2) (see Fig. 5.10) has weaker correlations across states, leading to relatively

poor down link rates. Clearly, the frequency reuse states learned across BSs based on

πg are more strongly correlated than those for πl. This can be attributed to the fact

that the global reward reflects complete information about the network performance

as compared to local rewards. Consequently, resource selection patterns learnt using

the global reward (G1) better mitigate interference as compared to (G2) or (G3).
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Figure 5.10: Correlation across the frequency reuse states of all BSs under the local
reward game.

A further interesting result from experimenting with our proposed architecture

is as follows. When all the BSs in the network except one, say BS 1, were configured to

act greedily, that is employ frequency reuse 1, then using the proxy metric in (5.10)

to train the DQN of BS 1 results in the agent to learn not to backoff but simply

use all its RBs (frequency reuse 1). This behaviour demonstrates that our proposed

algorithm is capable of learning the right policy in an adversarial setup. Another

experiment to test the proposed architecture involved moving the BSs further away

from each other (including their user locations), and it was observed that the DQN

agents at each of the BS learn to use frequency reuse 1 as expected. Additional

simulation results were not included due to lack of space.
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5.8 Chapter Summary

In this chapter, we have proposed two key concepts: First a separation of

concerns where one fixes the base station scheduler and optimizes a frequency reuse

policy for the given scheduler. Second, the use of a proxy reward metric that accounts

for the interference coupling among base stations during the learning process. The

key insight is that the proposed learning algorithm is able to learn a frequency resuse

policy without any explicit information exchange on the network topology, interfer-

ence graph or user traffic dynamics. Furthermore, we have demonstrated that the

training duration can be substantially reduced by a simplified action space in the

random action game.
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Chapter 6: Conclusion

Our goal in this thesis was to develop wireless scheduling algorithms that can

meet QoS constraints of a variety of services for heterogeneous users, e.g., URLLC,

eMBB, mMTC. We examined (1) delay constrained opportunistic wireless scheduling,

(2) rate constrained opportunistic wireless scheduling, and (3) learning algorithms for

distributed wireless scheduling which accounts for the dynamics of interference. We

developed measurement-based online scheduling algorithms that can provide spectral

efficiency on par with scheduling algorithms that use computationally intensive neural

network based channel rate predictions. Our proposed algorithms were still effective

for higher packet delay deadlines, whereas we found neural net based schedulers suffer

from poor accuracy in this regime. We also proposed and evaluated a new class of

minimum rate QoS constrained schedulers where relatively large packets are to be

delivered to users over user-specific time windows that are possibly not synchronous.

Our research also examined the impact of dynamic interference on delay constrained

users to develop frequency reuse planning based on decentralized multi-agent rein-

forcement learning.

6.1 Key takeaways

Some of the key takeaways from this thesis are as follows:

1. It is difficult to tune traditional wireless scheduling policies such as MaxWeight,

EXP rule, and Log rule, to meet strict packet deadlines for heterogeneous users

(channels and delay requirements), moreover, such solutions tend to translate

to spectrally inefficient resource allocation policies.
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2. One can build opportunistic delay constrained wireless schedulers that are based

on Neural network predictions of future wireless channels. Such schedulers can

be near optimal when delay constraints are tight and predictions are accurate,

but, in such scenarios the opportunistic gains are limited. By contrast, when

delay constraints are more relaxed, and one would hope to exploit channel vari-

ations over longer periods of time, the noise in the neural network’s prediction

appears to have a deleterious impact on the scheduler’s spectral efficiency.

3. Admission control based on directly measuring resource needs of wireless delay

constrained schedulers is an effective way to account for heterogeneity in users’

channels, traffic, and QoS requirements.

4. In general, when designing opportunistic delay constrained schedulers, there is

a trade off between the average spectral efficiency and variability in the per-user

resource requirement, which in turn impacts the number of users that can be

supported. Given a limited amount of wireless resources, one must decide how

to prioritize spectral efficiency versus the number of users that can be supported.

5. Traditional approaches to minimum rate QoS constrained scheduling focus on

prioritizing users either based on their QoS deficit or their completion time

to satisfy QoS. Our approach provides a balanced trade-off by exploiting good

wireless channel quality as long as there is enough slack available to meet the

aggregate QoS deficit of all users.

6.2 Future Work

A few interesting directions for future research on wireless scheduling algo-

rithms are listed below.
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6.2.1 Intelligent coordination under stochastic interference

Our proposed opportunistic delay constrained schedulers rely on accurate em-

pirical estimation of the wireless channel rate distribution for achieving better perfor-

mance. However, stochastic interference from neighboring BSs can lead to obsolete

or erroneous CQI reports, potentially leading to increased transmission errors. While

elastic traffic can recover from such errors through HARQ, this may not be feasible for

real time traffic with low latency constraints. A more systematic analysis is required

to understand the amount of coordination required across BSs to isolate (if feasible)

or protect delay constrained users across the network.

6.2.2 Mitigating URLLC outages due to mobility

We have considered packet level delay constrained scheduling when neighbor-

ing base stations produce dynamic interference from stochastic user loads. Users can

move from one base station to another, which can cause outages in connectivity and

change the spatial distribution of load across the network leading to heterogeneity in

interference across BSs. An approach that proactively predicts mobility based drops

in signal strength and makes delay constrained transmission decisions anticipating

such outages could provide a more seamless user experience. In addition, a future

research direction might involve power control of base stations with redistribution of

cell edge users efficiently across base stations when the spatial distribution of user

load is not homogeneous.

6.2.3 Joint resource optimization across Heterogeneous QoS classes

This thesis addresses the problem of joint resource allocation for URLLC and

eMBB users on the downlink with appropriate admission control techniques. However,
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massive machine type communications on the uplink are characterized by a large

number of users/devices relaying short packets of critical/periodic information to

the base station. The key metric of importance is the number of devices that can

be supported (unlike URLLC or eMBB devices) with little or no knowledge of the

channel state information. It would be interesting to see how efficiently resources can

be shared among all three classes of users (URLLC, eMBB, mMTC).
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Appendix A: Chapter 2 Proofs

A.1 Proof of Lemma 2.5.1

The current channel rate realization cn is considered good for opportunistic

scheduling if,
max

i=1,...,τn+1
Cn+i < cn,

⇐⇒ FC

(
max

i=1,...,τn+1
Cn+i

)
(a)
< FC(cn),

⇐⇒ max
i=1,...,τn+1

FC (Cn+i)
(b)
< FC(cn),

⇐⇒ max
i=1,...,τn+1

Ui

(c)
< FC(cn).

(A.1)

Where step (a) follows from the monotonicity of the cumulative distribution function

(CDF) FC(·) of the wireless channel strength and step (b) follows from the commu-

tative property of the max function with CDF FC(·). Step (c) follows from the fact

that FC(Cn+i) ∼ Ui are i.i.d. Uniform[0, 1].

One could design a dynamic threshold so as to ensure that the probability of

not seeing a better channel rate realization in the next τn + 1 time slots is greater

than a pre-specified δ ∈ (0, 1). Such a design criterion would lead to the following,

P
(

max
i=1,...,τn+1

FC (Cn+i) < FC(cn)

)
≥ δ ,

P
(

max
i=1,...,τn+1

Ui < FC(cn)

)
≥δ ,

(FC(cn))
τn+1

(a)

≥ δ ,

(τn + 1) logFC(cn) ≥ log δ ,

=⇒ FC(cn) ≥ δ
1

τn+1

(A.2)

where step (a) follows from the CDF of the maximum of τn+1 independent uniformly
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distributed random variables. Consequently, the threshold is chosen to be,

γπ
n = F−1

C

(
δ

1
τn+1

)
. (A.3)

A.2 Proof of Theorem 2.6.1

Let MWGRS
n and MOGRS

n denote the (possibly fractional) number of resource

blocks used to serve the user queue at time n, under WGRS(s) and OGRS(s)-DTE

scheduling policies, respectively. Without loss of generality, let the system start with

an empty queue and let (0, N ] denote a busy cycle of the WGRS policy. We compare

the performance of WGRS and OGRS schedulers under a coupled queueing system,

where both queues see the same arrival and channel rate processes but one is serviced

by schedulingdling policy and the other by OGRS. First, we will show that in any

WGRS busy cycle, the resource requirement for WGRS stochastically dominates that

of OGRS, i.e.,
N∑

n=1

MWGRS
n ≥st

N∑
n=1

MOGRS
n . (A.4)

Then we will prove that,a in steady state, the average resource requirement under

WGRS is greater than that required by OGRS using the stochastic dominance result.

As long as the user queue is sufficiently backlogged, WGRS provides a deter-

ministic service rate s throughout it’s busy cycle. The only nondeterministic part of

the WGRS scheduling policy is at the end of it’s busy cycle N , when there might

not be enough data in the queue to utilize service rate s fully. Let us partition the

interval (0, N ] based on time instants when the channel rate exceeds the adaptive

threshold. Define T1 ∈ (0, N ] as the first time the channel rate exceeds the threshold

γT1 of the OGRS policy, i.e.,

T1 = min
(
N,min

t>0
(t : Ct > γt)

)
, (A.5)
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where γ is the OGRS-DTE threshold as previously defined in 2.5.1.3. Note by defi-

nition, the user queue length and the number of RBs utilized to schedule data under

both WGRS and OGRS policies will be the same until T1, i.e.,

MWGRS
n = MOGRS

n a.s. ,∀n ∈ (0, T1), and

QWGRS
n = QOGRS

n a.s. ,∀n ∈ (0, T1].
(A.6)

Consider a particular realization of T1 = t1. Denote by Qt1 (same for WGRS and

OGRS) the amount of data available to be transmitted at time t1 and note that this

is the same for both policies.

Now we shall compare the number of RBs that will be used by both the policies

to service Qt1 . Since the channel rate exceeds the DTE threshold at time t1, OGRS

will use MOGRS
t1

=
Qt1

Ct1

RBs to clear the entire queue. However, the WGRS policy

will require ∆1 =
⌈
Qt1

s

⌉
time slots to service the same amount of bits in the queue

Qt1 . Clearly, Qt1 ≤ s∆1, therefore, one can conclude that,

MOGRS
t1

≤ s
∆1

γt1
a.s. (A.7)

We will show that the number of RBs allocated by OGRS-DTE policy in the interval

(0, t1] is stochastically dominated by that allocated by WGRS policy in the interval

(0, t1+∆1). Since the number of RBs utilized by both the WGRS and OGRS policies

is the same in the interval (0, t1), it is sufficient to compare their resource allocations

in the interval [t1, t1 +∆1).

Recall Lemma A.2.1 to obtain,

P(Ct1 > Ct1+i|Ct1 ≥ γt1) ≥ P(Ct1 < Ct1+i|Ct1 ≥ γt1) , (A.8)

where i = 1, . . . ,∆1 − 1. Now consider the distribution of the number of RBs that

WGRS requires to clear the same queue. The only way that WGRS could require
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fewer RBs than s∆1, 1 ≤ ∆1 ≤ d is if all the channel realizations between [t1+1, t1+

∆1) are greater than Ct1 , i.e., for any particular realization of the random variable

∆1 = k,

P

(
k−1∑
n=0

MWGRS
t1+n ≤ s

k

γ

∣∣∣∣∣Ct1 ≥ γt1

)
= P ((Ct1+1 ≥ Ct1) ∩ . . . (Ct1+k ≥ Ct1|Ct1 ≥ γt1)) ,

=
k−1∏
i=1

P (Ct1+i ≥ Ct1|Ct1 ≥ γt1 ,∆1 = k) ,

(a)

≤
k−1∏
i=1

P (Ct1+i < Ct1|Ct1 ≥ γt1 ,∆1 = k) ,

(b)
= qk−1 < 1 = P

(
MOGRS

t1
≤ s

k

γ

∣∣∣∣Ct1 ≥ γt1

)
,

(A.9)

where inequality (a) follows from equation (A.8). By definition of t1 note that Ct1 ≥

γt1 , where the channel rate threshold is at least as large as the median, i.e., γt1 ≥

F−1
C (1/2) always, since γt1 = F−1

C (1− 1
∆1+2

) and 1
x+2

≤ 1
2
,∀x ≥ 0. So it follows that

each of the probabilities in the product of step (a) has a value of q ≤ 1
2
. Therefore,

based on equations (A.6) and (A.9), we have, ∀t > 0,

P

(
∆1−1∑
n=0

MWGRS
t1+n ≤ t

∣∣∣∣∣∆1 = k

)
≤ P

(
MOGRS

t1
≤ t
∣∣∆1 = k

)
. (A.10)

Consequently, we draw the following conclusion applying theorem [60, Theorem

1.2.15] about the preservation of the stochastic order of two random variables, if

there exists an order when conditioned on a dependent random variable, i.e.,

MOGRS
t1

≤st

∆1−1∑
n=0

MWGRS
t1+n . (A.11)

Note that the above equation holds for any realization t1 of the random variable

T1, so it must hold for all realizations of T1. Moreover, recall (A.6) where the number

of resources utilized by both policies are equal until T1, so summarizing the previous
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equation and (A.6) we have,

T1∑
n=0

MOGRS
n ≤st

T1+∆1−1∑
n=0

MWGRS
n . (A.12)

Finally, note that if T1 = N , we are done with the proof. Otherwise, we shall

partition the WGRS busy cycle (0, N ] for each of the scheduling policies based on the

number of occurrences of the channel rate exceeding the threshold,

OGRS :(0, T1], (T1, T2] . . . (TP , N ],

WGRS :(0, T1 +∆1), [t1 +∆1, T2 +∆2) . . . [TP +∆p, N ].
(A.13)

Here the times Ti are defined as follows,

Ti = min

(
N, min

t>Ti−1

(t : Ct > γt)

)
. (A.14)

For the subsequent WGRS cycle (t1, T2], if T2 > t1+∆1−1 then by OGRS algorithm

design, the number of RBs allocated by OGRS in the interval (t1, t1+∆1) is zero and

we can repeat the same analysis as we did for interval (0, t1] to establish stochastic

dominance. In case T2 ≤ t1+∆1−1, we know that γt ≥ F−1
C (1− 1

3
),∀t ∈ [t1+1, t1+∆1).

Therefore we have γT2 > γt1 , and the occurrence of any future rate realizations for

WGRS to be better than CT2 will be governed by,

q = P (CT2+i > CT2 |CT2 > γT2) < 1/3 , (A.15)

which has to be satisfied by WGRS over multiple time slots according to ∆2 =
⌈
QT2

s

⌉
a.s., in order to utilize lesser resources than OGRS-DTE. Stochastic dominance of

the number of resources allocated by WGRS over that allocated by OGRS can be

derived as in equation (A.9), now using q as in (A.15).

Finally, to complete the proof let us define the following random variables,

Xi =

Ti+1∑
n=1+Ti

MOGRS
n and Yi =

Ti+1+∆i+1−1∑
n=Ti+∆i

MOGRS
n , (A.16)
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where T0 = 0 and ∆0 = 0. We have shown that Xi≤stYi, 1 ≤ i ≤ I, where I is the

number of time instances that the channel rate exceeds the adaptive threshold over

the interval (0, N ]. The result in (A.4) follows from [60, Theorem 1.2.17], because

I∑
i=1

Xi =
N∑

n=1

MWGRS
n and

I∑
i=1

Yi =
N∑

n=1

MOGRS
n . (A.17)

We provide simulation results in Sec.3.6.7 that establish the stochastic dominance

of the number of resource blocks allocated by both OGRS-DTE policy over WGRS,

during a WGRS busy cycle.

If we let the time n → ∞, and (Ni)i∈N denote the WGRS busy cycle lengths,

then the average number of RBs per time slot required by WGRS is given by,

E[MWGRS] = lim
n→∞

1

n

n∑
k=1

MWGRS
k

= lim
n→∞

1

n

∑
i:Ni≤n

Ni∑
n=1

MWGRS
n

≥st

1

n

∑
i:Ni≤n

Ni∑
n=1

MOGRS
n = E[MOGRS].

(A.18)

Lemma A.2.1. For any two positive random variables X1, X2 and a constant γ >

median(X2), the following inequality holds,

P(X1 ≥ X2|X1 ≥ γ) ≥ P(X1 < X2|X1 ≥ γ) , (A.19)

as long as X1 has a non-zero probability of taking values higher than γ, i.e., P(X1 ≥

γ) > 0.

Proof. The Left Hand Side (LHS) of equation (A.19) can be written as,

P(X1 ≥ X2|X1 ≥ γ) = E[1(X1≥X2)|X1 ≥ γ], (A.20)
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where 1E is the indicator function of the event E. Similarly expressing the right-hand

side of the equation as an expectation and then finding the difference yields,

P(X1 ≥ X2|X1 ≥ γ)− P(X1 < X2|X1 ≥ γ)

= E[1(X1≥X2)|X1 ≥ γ]− E[1(X1<X2)|X1 ≥ γ]

= E[1(X1≥X2) − 1(X1<X2)|X1 ≥ γ].

(A.21)

Whenever a realization of X1 is below γ, the RHS above is 0. Otherwise, the

right hand side of (A.21) becomes,

E[1(x≥X2) − 1(x<X2)] = E[1(x≥X2)]− E[1(x<X2)]

= P[(x ≥ X2)]︸ ︷︷ ︸
≥ 1

2

−P[(x < X2)]︸ ︷︷ ︸
< 1

2

≥ 0. (A.22)

From (A.21) and (A.22), it is clear that for any realization of X1, the LHS of (A.21)

is greater than or equal to 0, leading to the result in (A.19). It should be noted that

while we have provided proof for only OGRS-DTE, the same proof would hold for

any fixed percentile threshold α ≥ 0.5. ■
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Appendix B: Chapter 3 Proofs

B.1 Proof of Theorem 3.5.1

For any policy π satisfying the delay constraint d, it must be the case that the

An bits arriving to the user queue at time n are served within the next d slots. Thus,

in particular, if we let Sπ,n
n+j denote the number of bits of An that are served on slot

n + j, we have that the possibly fractional number of resource blocks required must

satisfy,

Nπ
n =

d∑
j=0

Sπ
n+j

Cn+j

, where
d∑

j=0

Sπ
n+j = An,

≥ An min
0≤j≤d

[
1

Cn+j

]
a.s.

(B.1)

It is easy to establish the following inequalities,

1

n

n−d∑
τ=1

Nπ
τ ≤ 1

n

n∑
τ=1

Mπ
τ ≤ 1

n

n∑
τ=1

Nπ
τ , (B.2)

because on the one hand, the total RBs allocated across the first n time slots is lower

bounded by the total number that was allocated to serve the traffic that arrived

within (0, n − d]; indeed given the delay constraint, all such traffic should be served

prior to time n. On the other hand, the total number of RBs allocated in the first

n time slots can at most be the total RBs used to serve all the traffic that arrived

within (0, n]. Taking the limit as n → ∞ in (B.2) and the additional assumptions

stated in the theorem, it is clear that the time average of (Mπ
n )n converges to M̄π and

M̄π = N̄π. The lower bound in (3.8) then follows from (3.7) under the assumptions

on arrivals and channels being stationary and independent.
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Appendix C: Chapter 4

C.1 QoS classes in LTE

4G LTE identifies the following classes of QoS types, with each Guaranteed

Bit Rate (GBR) type service associated with a minimum and maximum flow bit rate.

QCI Type Priority PDB Error Example Services

1

GBR

2 100 ms 10−2 Conversational voice

2 4 150 ms 10−3 Conversational video (Live streaming)

3 3 50 ms 10−3 Real Time Gaming

4 5 300 ms 10−6 Non-Conversational Video

5

Non-GBR

1 100 ms 10−6 IMS Signalling

6 6 300 ms 10−6 Video (Buffered Streaming)

7 7 100 ms 10−3 Video (Buffered Streaming)

8 8
300 ms 10−6

Video (Buffered Streaming)

9 9 TCP-based (e-mail, chat, FTP, p2p)

Table C.1: QoS Class Indicator for various heterogeneous user types in LTE.
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Appendix D: Chapter 5 Proofs

D.1 Proof for Theorem 5.4.1

We have a non cooperative Markov game where each BS agent determines

its optimal policy in response to the either the sum reward as in (G1) or a proxy

as in (G2), in (G3) that reflects the reward of all BSs in the network. This is an

B-player general sum stochastic game known as the Nash Q learning algorithm [51].

The convergence of Nash Q learning has been established in [51, Sec 3.2], when the

following three conditions are satisfied: (i) each action state is visited infinitely often,

(ii) the learning rate step size satisfies 0 ≤ αt < 1,
∑

αt = ∞,
∑

α2
t < ∞ and (iii) the

game has either a global optimum or a saddle point. While the first two conditions

can be easily satisfied by the choice of learning hyper parameters, the last condition

follows from the fact that an n-player game with finite actions has at least one Nash

equilibrium with mixed strategy [45]. Note that both (G2) and (G3) use the relative

downlink rate in (5.10) as the training reward which indirectly reflects on how well

other BSs in the network are doing. Specifically, a smaller relative downlink rate

over a prolonged time duration implies that the neighboring BSs are causing more

interference due to their users’ queues being active.

D.2 Proof of Lemma. 5.5.1

For a frequency reuse policy π and static split rule ϕ consider the standard

Lyapunov function V (Q) =
∑

b∈B(q
b)Tqb. Note that the Lyapunov drift of this

network is at least as the large as that of the case where all user queues in the

network are infinitely backlogged. One can easily check for Foster’s stability criterion
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(in the infinitely backlogged users case) to show that V (Q) has a negative drift when

∃µ(π,ϕ) ∈ C∞ such that λ < µ(π,ϕ).

D.3 Proof of Lemma 5.5.2

Max weight scheduling algorithm [104] is throughput, i.e., stabilizes the user

queue lengths, whenever feasible. Stability of max weight scheduler for a single base

station has been established for iid arrivals and Markovian channel variations in

[98]. The channel variations as seen at BS b in our setting are iid across all BSs in

the network and the frequency reuse policy π which determines the availability of

resources at each BS is Markovian. Therefore, the channel variations seen at BS b are

Markovian. Furthermore arrivals at user queues are assumed independent throughout

the network, allowing us to invoke result [98], to show stability.

D.4 Proof of Theorem 5.5.1

Suppose λ ∈ (C∞
π )◦, by Lemma 5.5.2 we know that each base station operating

under max weight with the neighbors saturated would be stable, as shown by defining

a quadratic Lyapunov function [10, Section 5] and showing it has negative drift outside

a finite set of queue states. We note that if neighboring BSs are not saturated the drift

at the base station would only be larger, because this would reduce the interference

seen at the base station. To prove stability of the overall network we can consider a

sum of the Lyapunov functions across BSs, since the state of the network as a whole

is Markovian. Note that the sum of the Lyapunov functions has a larger service

rate and thus a larger negative drift as compared to that of the same network with

infinitely backlogged users. Thus it should be clear that user queues at each BS are

stable even when the neighboring BSs are not saturated.
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D.5 Proof of Theorem 5.5.2

Suppose we can pick a specific local Nash Equilibrium frequency reuse policy

πl for our network, let us choose a particular BS in the network. This selected BS

is then allowed to learn a frequency reuse policy based on the global reward of the

network. Clearly, this can only improve the rewards of the BS and hence the overall

network, since the BS agent is now able to learn a policy based on rewards for it’s

actions using the overall network reward, i.e., vπ
∗
g (s) ≥ vπ

∗
l (s). Therefore, for every

π∗
l one can construct a global policy π∗

g that achieves better rewards.

D.6 Proof of Theorem 5.5.3

We ignore the trivial case where none of the BSs are interfering with each other

(because we would not need an interference mitigation policy) and instead consider

a tightly coupled network. More specifically, we assume that ∃ũ ∈ Ub1 such that

cũk(s1, g, q) < c̄ũ, where s1 = {1}N and c̄ũ is the data rate that can be supported for

user ũ under no interference. Without loss of generality let k = N and ũ ∈ Ub1 .

In order to prove this theorem, let us construct a frequency reuse policy vector

πδ = (πb1πb2 . . . πB), such that π′bi(s) = 1 ∀i ̸= 2 and πb2(s2) = δ and πb2(s1) = 1−δ

for some δ ∈ (0, 1). The frequency reuse state s2 denotes that BS b2 can choose to

transmit on all resources except resource N . We denote by cuN(s1) the rate for user

u on resource N under frequency reuse 1, i.e., state s1 at all BSs. Let ϵuk be the

additional downlink data rate for a scheduled user ũ at BS b1 when BS b2 abstains

from using resource N , note that ϵuN > 0 due to lesser interference on resource N

from BS b2. Then for any ũ ∈ Ub1 if ϕhb

uk(·) is the fraction of time resource k is
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allocated to user u then,

µũ(h,π
′)

= Eν,γ

[
N∑
k=1

ϕhb

uk(s1,G,Q)cũk(s1,G,Q)

]
(∵ π′b1(s1) = 1)

= Eν,γ

[
(1− δ)

N∑
k=1

ϕhb

uk(s1,G,Q)cũk(s1,G,Q)

+ δ

N∑
k=1

ϕhb

uk(s1,G,Q)cũk(s1,G,Q)

]

< (1− δ)Eν,γ

[
N∑
k=1

ϕhb

uk(s1,G,Q)cũk(s1,G,Q)

]

+ Eν,γ

[
δ
N−1∑
k=1

ϕhb

uk(s1,G,Q)cũk(s1,G,Q)

]
+ (cũN(s1) + ϵũN)

= µũ(h,πδ)

(D.1)

It remains to be shown that u ∈ Ub2 also have increased downlink rates as a

result of adopting πδ. Note that user queues at BSs b1 and b2 have coupled downlink

rates. Preliminaries on queues with coupled service rates have been provided in

Appendix 5.6. It has also been shown there that a frequency reuse policy πδ helps to

stabilize higher arrival rates at both queues, when one of the queues backs off from

transmission for a fraction of time.

D.7 Proof of Corollary 5.5.1

The results for global reward game follows from the fact that each BS has

access to the rewards of all BS in the network. When the RL agents use local reward

as a training metric, it has to be noted that the local metric indirectly reflects on

the potential future rewards of other BSs in the network. For example, a low proxy
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metric (read effective capacity) indicates that the other BSs in the network are causing

very high interference, which in turn implies poor interference coordination among

the BSs. A low reward also indicates heavily loaded user queues and longer network

delays. Hence the local reward serves as proxy metric for the expected rewards of

other BSs in the network, leading to a frequency reuse policy that performs better

than π′. For the random action game setting, we use the same local reward with the

only change being a reduced action space. Hence the capacity region of (G3) also

dominates Cπ′ .

D.8 Proof of Theorem 5.6.1

Consider the case where one of the BSs (say b) has stable user queues under

Max Weight scheduling. Users at BSs b′ ∈ B \ b will fall into one of the following two

categories:

1. High impact users who see interference from BS b will achieve higher downlink

rates whenever BS b is idle.

2. No impact users who are not impacted by BS b, and hence see no change in

downlink rates

Hence, the overall network stability holds, in spite of the fact that λ > µ(π,ϕ) ∀µ(π,ϕ) ∈

(C∞
π )◦, because of the larger Lyapunov drift as long as λ ∈ (Cπ)

◦.

A similar sequence of arguments can be applied for each BS in the network,

establishing that a Max Weight scheduler can stabilize users if λ ∈ (Cπ)
◦.
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