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Wireless resources are scarce, shared and time-varying making resource allocation

mechanisms, e.g., scheduling, a key and challenging element of wireless system design. In

designing good schedulers, we consider three types of performance metrics: system capac-

ity, quality of service (QoS) seen by users, and the energy expenditures (battery lifetimes)

incurred by mobile terminals. In this dissertation we investigate the impact of scheduling

policies on these performance metrics, their interactions, and/or tradeoffs, and we specifi-

cally focus on flow-level performance under stochastic traffic loads.

In the first part of the dissertation we evaluate interactions among flow-level per-

formance metrics when integrating QoS and best effort flows in a wireless system using

opportunistic scheduling. We introduce a simple flow-level model capturing the salient fea-

tures of bandwidth sharing for an opportunistic scheduler which ensures a mean throughput

to each QoS stream on every time slot. We show that the integration of QoS and best effort

flows results in a loss of opportunism, which in turn results in a reduction of the stability

region, degradation in system capacity, and increased file transfer delay.
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In the second part of the dissertation we study several ways in which mobile ter-

minals can backoff on their uplink transmit power (thus slow down their transmissions)

in order to extend battery lifetimes. This is particularly effective when a wireless system

is underloaded, so the degradation in the users’ perceived performance can be negligible.

The challenge, however, is developing a mechanism that achieves a good tradeoff among

transmit power, idling/circuit power, and the performance customers will see. We con-

sider systems with flow-level dynamics supporting either real-time or best effort (e.g., file

transfers) sessions. We show that significant energy savings can be achieved by leveraging

dynamic spare capacity. We then extend our study to the case where mobile terminals have

multiple transmit antennas.

In the third part of the dissertation we develop a framework for user association

in infrastructure-based wireless networks, specifically focused on adaptively balancing flow

loads given spatially inhomogeneous traffic distributions. Our work encompasses several

possible user association objective functions resulting in rate-optimal, throughput-optimal,

delay-optimal, and load-equalizing policy, which we collectively denote α-optimal user as-

sociation. We prove that the optimal load vector that minimizes this function is the fixed

point of a certain mapping. Based on this mapping we propose an iterative distributed user

association policy and prove that it converges to the globally optimal decision in steady

state. In addition we address admission control policies for the case where the system

cannot be stabilized.
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Chapter 1

Introduction

Wireless cellular systems are evolving towards supporting both best effort (data) and

real time (voice and video) traffic so as to meet the growing demands of multiple services over

a single platform. Since wireless channels are shared, limited and time-varying, resource

allocation, e.g., scheduling users’ transmissions, is a key and challenging element in the

design of such systems. In designing good schedulers, we need to consider at least three

key performance metrics: system capacity, quality of service (QoS) seen by users, and the

energy expenditure (or battery lifetime) incurred by mobile terminals, and it is desirable to

have a high degree of control over tradeoffs associated with these metrics. Fig.1.1 shows the

design space in terms of performance metrics such as QoS, capacity and energy efficiency.

Roughly speaking a specific scheduling policy is represented as a point in this design space.

The scope of this dissertation concerns the impact of scheduling policies on these

performance metrics, their interactions, and/or associated tradeoffs. We focus on flow-

level performance considering stochastic traffic loads. New flows, either real-time sessions

and/or file transfer requests, are initiated at random and leave the system after being

served. As a consequence the number of ongoing flows dynamically changes in time. This

is usually referred to as the flow-level dynamics. Studying dynamic systems is helpful to

better understand performance in real systems, but, in general, it is hard to do and has not

been pursued as extensively as the static versions, i.e., with a fixed set of backlogged users.

Each flow is an abstraction of a stream of packets corresponding to a new file,
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Figure 1.1: Design space of wireless systems

web page or real-time voice/video session. Poisson processes have generally been used

to model flows generated by large population of (independent) customers, or new web

page download patterns from populations of web browsing sessions, see e.g., [20,21,37,45].

Recently, flow-level models have been considered in studying statistical bandwidth sharing

in wired networks [20, 37, 45]. In the context of wireless systems, it was observed that

throughput seen by dynamic user populations can be substantially different from that of

a fixed number of users [21]. In this dissertation we will also encounter various cases

where flow-level performance with a dynamic user population is very different from that

of a static user population. Specifically, we mostly focus on capacity (or equivalently flow

delay) and energy-efficiency. Below we give a brief overview of the tradeoffs considered in

this dissertation.
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1.1 QoS-capacity tradeoff in an opportunistic wireless system

Time-varying channels are a distinguishing characteristic of wireless systems rel-

ative to wired ones and can potentially result in poor system capacity. To overcome

this difficulty, channel-aware scheduling (so called opportunistic scheduling) was proposed,

where one chooses to serve users who currently see good channel conditions. Opportunistic

scheduling has been shown to substantially increase system capacity and been implemented

in current systems supporting data services [12]. However, unlike what is typically the case

in wired systems, more capacity does not necessarily imply better user-perceived QoS in

an opportunistic system. This is because the maximum achievable capacity in an oppor-

tunistic system is constrained by the individual users’ QoS requirements. Specifically, in

order to sustain a minimum bandwidth for users, one may need to sometimes compromise

opportunism by scheduling users whose current capacity is not the highest. In Chapter 2 we

investigate the tradeoff between QoS and system capacity when integrating services (QoS

and best effort) in an opportunistic wireless system. We will see that the integration of QoS

and best effort flows compromises the benefits of opportunism in crucial aspects; stability

region reduction, system throughput degradation and increased file transfer delay. All of

these negative impacts are referred to as a loss in opportunism due to integration.

1.2 Energy-conservation leveraging spare capacity

Not unlike most networking infrastructure (particularly that supporting data), wire-

less access networks are unlikely to be fully utilized all the time. Indeed as a result of time

varying, non-stationary loads, or unpredictable bursty loads these networks are often overde-

signed to be able to support a peak load condition, and so are often underutilized. Thus, if

a system has spare capacity, which we will interpret as excess capacity relative to a desired

user-perceived performance, one may consider slowing down transmissions (so called ‘lazy
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scheduling’ [95]). This can be beneficial in terms of conserving mobile terminals’ energy

expenditures.

In Chapter 3 of this dissertation we address energy conservation techniques for real-

time sessions and file transfers, respectively. In the case of real-time sessions, the sojourn

time of the flows are independent of energy saving mechanism but the system must satisfy

a minimum rate requirement. We show that the energy-optimal transmission strategy for

real-time sessions is determined by solving a convex optimization. An iterative approach

exhibiting superlinear convergence achieves a substantial energy savings, e.g., more than

50% for a system where session blocking probability is 0.1% or less.1 The case of file

transfers is more subtle because power backoff (and thus the slowing down of transmissions)

changes the system flows’ dynamics. For such “best effort” traffic we study energy-efficient

transmission strategies to realize energy-delay tradeoff. The proposed mechanism achieves a

35–75% in energy savings depending on the traffic load and file transfer target throughput.

A key insight, relative to previous work focusing on static scenarios, is that idling power

has a significant impact on energy-efficiency, while circuit power has a limited impact as

the load increases.

In Chapter 4 we further extend our energy saving approach to the case of multiple

antenna systems. We propose a mechanism to switch between multiple-input multiple-

output (MIMO) with two transmit antennas and single-input multiple-output (SIMO) to

conserve mobile terminals’ energy. The key idea is simple. When the system is underutilized,

the MT operates in the SIMO mode at a low spectral efficiency to save energy, but when

congested, the MT operates in the MIMO mode achieving high spectral efficiency to increase

throughput. This is done in an adaptive way considering two aspects – the dynamics of

1Note the session blocking probability is an indicator of the amount of spare capacity in the system.
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network traffic and the channel variations. Extensive flow-level simulations under dynamic

loads confirm that the proposed technique can reduce the transmission energy by more than

50% and enables an effective tradeoff between file transfer delay and energy conservation.

1.3 α-optimal user association and cell load balancing

While Chapters 2–4 focused on the operation of single cells, in Chapter 5 we consider

a multiple cell scenario. One of the important problems in multi-cell data networks is

properly associating mobile terminals with serving base stations. This problem is usually

called user association. In Chapter 5 we develop a framework for user association specifically

focused on flow-level cell load balancing under spatially inhomogeneous traffic distributions.

Our work encompasses several different user association policies: rate-optimal, throughput-

optimal, delay-optimal, and load-equalizing, which we collectively denote α-optimal user

association. Interestingly, this problem can be viewed as a simple routing problem among

queues, but until our work had not been fully studied in the context of dynamic systems.

The optimal load vector minimizing our objective function is shown to be a fixed point of

a certain mapping, and the fixed point equation can be iteratively solved in a distributed

manner. This leads to a simple adaptive approach to the user association problem. In

addition we address admission control policies for the case where the system is overloaded

and thus cannot be stabilized.

1.4 Summary

As mentioned earlier this dissertation covers a wide range of problems associated

with wireless networks: QoS, energy conservation and capacity. The central theme is a

focus on stochastic loads, flow-level performance and tradeoffs amongst these key metrics.
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Chapter 2

Evaluating Service Integration in an Opportunistic Wireless
Systems

2.1 Introduction

Wireless networks are evolving towards supporting multiple services, e.g., both best

effort and QoS streaming traffic. Since the integration of different services on a single

platform is expected to generate new revenue and reduce network management cost, in-

tensive research efforts have been devoted towards designing such networks. However,

because wireless resources are limited and shared by users experiencing time-varying chan-

nels, service integration may be quite challenging. A key element in such systems is

the traffic scheduler and complementary resource management component that can as-

sure users appropriate QoS. In addition, such schedulers may be designed to be oppor-

tunistic, i.e., serve users whose current channel capacities are high. Attempting to be

opportunistic while meeting users’ QoS requirements presents significant new challenges,

see [12,21,53,70,71,87–90,106,107].

Opportunistic scheduling schemes developed so far are mostly packet-level algo-

rithms [12,53,70,71,87–89,106,107] focusing on the case where the user population is static

and their queues are backlogged. This assumption is meaningful in short time scales where

the user population does not change much. Under this assumption, [70,71] propose strate-

gies that maximize system throughput under temporal and utilitarian fairness criteria. The

work in [87, 89] proposes a scheduling scheme based on a history of channel information.

However, static approaches may not capture the flow-level dynamics in which new flows
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come to the system randomly and leave after being served. In a real system, user popu-

lation changes over time and it is of interest to know system performance such as average

throughput and average file transfer delays. This problem was first addressed by Borst who

proposed flow-level analysis using multi-class processor sharing model [21]. However, this

work did not deal with the mixes of QoS and best effort traffic. Other attempts to integrate

QoS and best effort in wireless opportunistic systems have been recently done by [89, 106].

But, these studies focused on packet-level performance only.

Hence, we are motivated to study a new model that addresses the interaction of

heterogeneous traffic at the flow-level. In wired network case, there had been several studies

on this topic [2,10,11,19,38,54,66,78]. To analyze the interaction of elastic and streaming

flows, researchers have used a 2-dimensional Markovian model [2, 54, 66]. The work of Key

et al. suggests that the integration of heterogeneous traffic has a positive consequence,

i.e., stabilizing effect [54]. The work in [38] highlights that such systems are likely to see

transient, or local, instability. Specifically when there are too many QoS sessions, the

best effort flows may accumulate, but subsequently subside once more bandwidth becomes

available, i.e., QoS sessions leave the system. In [10,11] the authors propose an integrated

admission control for both of streaming and elastic traffic to guarantee QoS. Note that

these studies were done at a higher level, i.e., considering the integration of TCP and UDP

and where the service rate of wired network is constant. The major difference that arises

in wireless networks, however, lies in that the service rate of a wireless network is time-

varying, and, furthermore, may be shared in an opportunistic manner making the analysis

somewhat challenging. The main goal of this chapter is to model and study the flow-level

characteristics for an opportunistic wireless system shared by a traffic mix of QoS streaming

and best effort traffic.
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To this end, we propose a new flow-level model for such a system. The scheduler is

designed to guarantee a mean throughput to streaming media irrespective of the number of

ongoing flows by borrowing/lending bandwidth from/to best effort flows. Thus, QoS flows

have a fixed average throughput per slot which might be set to roughly meet their QoS

requirements. Other QoS metrics such as delay or jitter are not considered here to keep the

model simple. By contrast, the performance metric for best effort flows will be the average

delay to finish a finite size of file transfer using HTTP or FTP. Our QoS definition is simple

but it gives us an insight of evaluating service integration.

Contributions: The following are the key contributions of this chapter.

1. To our knowledge, this work is the first to attempt to investigate the flow-level inter-

action between QoS and best effort traffic in systems exploiting opportunism. Our

model is simplistic but significant in that it incorporates the essential ingredients of

flow-level behaviors such as QoS requirements, opportunistic sharing, stability and

evaluation of the stationary distribution. We also identify the necessary and sufficient

stability condition of 2-dimensional Markov chain.

2. We show how the integration of QoS and best effort flows compromises the benefits of

opportunism in crucial aspects; stability region reduction, system throughput degra-

dation and increased file transfer delay. All of these negative impacts are called loss in

opportunism of integration. Our analysis shows that, for example, introducing a single

QoS user requesting 300kbps would degrade by 33% the maximum system capacity in

the CDMA/HDR system described in [12]. We will show that such losses increase in

proportion to the opportunistic gains, the number of QoS users and the guaranteed

bandwidth, but is inversely proportional to SNR in Rayleigh fading channel model.
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3. As in the wired case [38, 66], even if the system is stable, it may exhibit local in-

stability for best effort users. However it appears to be a more crucial phenomenon

in wireless systems exploiting opportunism. To circumvent this problem, we suggest

that admission control of best effort flows is necessary.

This chapter is organized as follows. In Section 2.2 we describe our flow-level model

for mixed traffic based on bandwidth borrowing and lending among traffic types. We also

build up a compact model and analysis tool to investigate flow-level dynamics. Section 2.3

is devoted to the stability of the system. Section 2.4 evaluates the opportunistic losses of

integration by quantifying the reduction in the stability region, throughput degradation and

increase in delay. Section 2.5 deals with the performance impact of local instability and the

necessity of call admission control, and is followed by conclusions in Section 2.6.

2.2 System model

2.2.1 Assumptions

We consider a wireless access point shared by multiple mobile users. Wireless access

point is assumed to accommodate multiple users by Time Division Multiple Access (TDMA)

scheme where time is divided into equal-sized slots and at most one user gets served per slot.

We assume that channel capacity for each user is a stationary ergodic process and these

processes are independent, identically distributed (i.i.d.) across users. This assumption

allows us to adopt max rate scheduling as a basic scheduling policy. It maximizes total

capacity or throughput of the system [63]. (We will use the term capacity or throughput

interchangeably in the sequel.) The scheduling policy will be revised to model the need to

meet QoS session requirements. For simplicity, we divide users into two groups: QoS and
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best effort users.1 The channel capacity for each user is independent across slots and remains

constant during a slot, i.e., we assume fast fading channel, with a slot time corresponding

to coherence time. In the sequel we assume time slots are small relative to flow dynamics

and time-scale, and we will model the system dynamics based on a continuous-time model.

A sustained throughput is one of the basic requirements for QoS, so we assume that

QoS users are guaranteed a mean throughput b̄ per time slot irrespective of the number of

best effort users. Our notion of QoS, however, does not guarantee delay constraints. In fact,

one might argue that this assumption is not realistic because real-time interactive applica-

tions such as voice or video communication will require delay constraints. Nevertheless, if

every time slot, QoS users get an average throughput b̄, it is very unlikely that QoS user is

starved for long period of time slots, which implies decent delay performance. This simple

model roughly captures the throughput loss in the system – it is likely to be worse if a

more sophisticated scheduling scheme meeting QoS requirements is used. Furthermore, for

non real-time one-way streaming media such as video on demand, our QoS notion makes

sense because we can assume that end-user devices have buffer space to compensate delay

or jitter occurred during transmission.

2.2.2 Flow-level model of mixed traffic

In our flow-level model, QoS and best effort flows arrive randomly and leave after

being served. We assume that the arrivals of QoS flows follow a Poisson process with arrival

rate λq and have a holding time which is exponentially distributed with mean µ−1
q . The

maximum number of QoS flows is limited to n∗ in order to guarantee a bandwidth b̄. We

also assume that the arrivals of best effort flows follow an independent Poisson process with

1Even under this assumption, each user can still receive both QoS and best effort services using TDMA.
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arrival rate λb and have file sizes which are exponentially distributed with mean µ−1
b .

Let Nq(t) be the number of QoS flows and Nb(t) be the number of best effort flows

in the system. Then, (Nq(t), Nb(t)) is a 2-dimensional Markov process with state space

{0, . . . , n∗} × Z+. Since our model is an opportunistic system, the available capacity for

QoS and best effort flows depends on how they are scheduled. Let g(nq, nb) denote the

average system capacity given (nq, nb). Then, the total capacity required for QoS flows is

nq b̄ and the capacity available to best effort flows is gb(nq, nb) := g(nq, nb)− nq b̄. The rate

matrix for the chain is then given by:

q
(
(nq, nb), (nq + 1, nb)

)
= λq1{nq<n∗};

q
(
(nq, nb), (nq, nb + 1)

)
= λb;

q
(
(nq, nb), (nq, nb − 1)

)
= gb(nq, nb)µb1{nb≥1};

q
(
(nq, nb), (nq − 1, nb)

)
= nqµq. (2.1)

Note that the number of QoS sessions follows an M/M/m/m-like system so the stationary

distribution of QoS flows πq(nq) is independent of nb and given by

πq(nq) = πq(0)ρnq
q

1
nq!

(2.2)

where ρq = λq

µq
and πq(0) =

[∑n∗
nq=0 ρ

nq
q

1
nq !

]−1. The blocking probability of QoS flows is

given by Erlang-B formula as πq(n∗) [14]. Meanwhile the dynamics of the number of best

effort flows follow a processor sharing system with varying capacity.

2.2.3 Proposed opportunistic scheduling

Suppose that at a given time we have total number of flows n. The total number

of flows is the sum of nq QoS flows and nb best effort flows. Let Xi, i ∈ {1, . . . , n} be a

random variable representing channel capacity of user i. Since all users are symmetric, the
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maximum system capacity is given by g(n) := E[X(n)] where X(n) , max[X1, · · · , Xn] and

is shared equally among the users. So the bandwidth per user h(n) := g(n)
n is decreasing in

n while g(n) is increasing in n as shown in Fig. 2.1. Now, for every time slot, we want to

guarantee b̄ to QoS flows. If n ≤ n∗ where

n∗ := max{n|h(n) ≥ b̄, n ∈ Z+},

every user has a bandwidth of at least b̄ and we satisfy the QoS requirement. We refer to

{(nq, nb)|nq + nb ≤ n∗} as the normal regime.

However, if nq + nb > n∗, QoS users will not meet their requirement b̄. How can

we guarantee b̄ to QoS flows in the overloaded regime {(nq, nb)|nq + nb > n∗}? To do this,

we propose to use bandwidth borrowing as follows. If h(n) is below b̄, i.e., n > n∗, then

QoS flows borrow time slots from best effort flows. Similarly, if h(n) is over b̄, then QoS

flows lend their time slots to best effort flows. As a consequence, the average throughput of

QoS is b̄ in every time slot. Under this model we still need admission control for QoS flows

to ensure nq ≤ n∗. These borrowing and lending mechanisms are described in more detail

below.

2.2.3.1 Capacity balance equation in the overloaded regime

The balance equation is given by

h(nq + nb) +
α(nq, nb)

nq
E[X(nq)|X(nb) > X(nq)]Pb = b̄ (2.3)

where Pb := P
(
X(nb) > X(nq)

)
and α(nq, nb) is the borrowing probability. The intuition

for the equation is as follows. The amount of bandwidth each QoS flow must borrow is

b̄−h(nq +nb). To compensate this deficiency, we will randomly, with probability α(nq, nb),

give a best effort slot, i.e., one where X(nb) > X(nq), to the QoS user currently seeing the
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Table 2.1: Notation Summary

nq number of QoS flows in a system
nb number of best effort flows in a system
n∗ maximum number of QoS flows
b̄ average throughput of QoS flows

Xi a random variable representing channel capacity of user i.
X(n) max[X1, · · · , Xn]
g(n) E[X(n)]
h(n) g(n)

n
g(nq, nb) the system capacity for nq QoS and nb best effort flows.

gb(nq, nb) g(nq, nb)− nq b̄, the capacity of best effort users.
hb(nq, nb)

gb(nq ,nb)
nb

, the individual capacity of best effort user.
ḡ(nq) limnb→∞ g(nq, nb)

ḡb(nq) limnb→∞ gb(nq, nb)
g∗b (nq, nb) g(nq + nb)− nq b̄
α(nq, nb) bandwidth borrowing probability
β(nq, nb) bandwidth lending probability

ξ(b̄, nq) the capacity gap at b̄ and nq

C maximum system capacity
κ C

E[X] , opportunistic gain
η call blocking probability

best channel. Thus, the total borrowed bandwidth is α(nq, nb)E[X(nq)|X(nb) > X(nq)]Pb

and it is shared by nq QoS flows to meet the guaranteed bandwidth b̄.

Note that, in the overload regime, to maintain the average throughput b̄, at some

time slots, a best effort user which currently has the best channel amongst all users may

have to give the time slot to QoS user. Thus, meeting QoS requirements inevitably degrades

the overall system throughput. We will study this in detail in Section 2.4.

2.2.3.2 Capacity balance equation in the normal regime

Assuming QoS users do not need more bandwidth than b̄, we reallocate the excess

bandwidth of QoS flows to best effort flows, and the capacity balance equation in the normal
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regime is given by

h(nq + nb)− β(nq, nb)
nq

E[X(nq)|X(nb) ≤ X(nq)]Pq = b̄ (2.4)

where β(nq, nb) is the lending probability and Pq := P
(
X(nb) ≤ X(nq)

)
. 2

Solving (2.3) and (2.4) we can obtain the opportunistic system capacity of g(nq, nb).

Since QoS users always have average throughput b̄, the capacity of best effort flows at

(nq, nb) state is gb(nq, nb) = g(nq, nb)− nq b̄.

2.2.4 Capacity of best effort flows in overloaded regime

To solve the capacity balance equation of (2.3) and (2.4), we first compute the

conditional capacity of QoS users E[X(nq)|X(nb) > X(nq)]. We will do this as follows:

E[X(nq)|X(nb) > X(nq)]Pb + E[X(nq)|X(nb) ≤ X(nq)]Pq = E[X(nq)] (2.5)

where Pb = P (X(nb) > X(nq)) = nb
nq+nb

and Pq = 1− Pb. Note that

E[X(nq)|X(nb) ≤ X(nq)] = E[X(nq+nb)]. (2.6)

Combining (2.3), (2.5), (2.6), we obtain

h(nq + nb)(1− α(nq, nb)) + h(nq)α(nq, nb) = b̄

which means that the system in overloaded regime is identical to one operating as if it

had only nq flows with probability α(nq, nb) and one with nq + nb flows with probability

1− α(nq, nb). So, the borrowing probability is

α(nq, nb) =
b̄− h(nq + nb)

h(nq)− h(nq + nb)
.

2Since we assume that Xi is a continuous random variable, the equality of X(nb) = X(nq) can be placed
either in Pb or Pq. In a discrete case which is more likely in the case in practice, we need a tie-breaking rule.
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The numerator of α(nq, nb) is bandwidth deficit for individual QoS flow. So, as nq increases

to n∗, α(nq, nb) goes to 1 and QoS flows have to borrow more time slots while best effort

flows are starved. If nb goes to ∞, α(nq, nb) goes to b̄
h(nq) which is less than or equal to 1.

Since best effort flows lose their slots with probability α(nq, nb), the total capacity

available to best effort flows is gb(nq, nb) = g(nq + nb)(1− α(nq, nb))Pb, and so

gb(nq, nb) = h(nq + nb)nb
h(nq)− b̄

h(nq)− h(nq + nb)
. (2.7)

2.2.5 Capacity of best effort flows in normal regime

From (2.4), we can determine the lending probability β(nq, nb):

β(nq, nb) =
(
h(nq + nb)− b̄

) nq + nb

E[X(nq)|X(nb) ≤ X(nq)]

= 1− b̄

h(nq + nb)
.

Rearranging the above formula yields (1 − β(nq, nb))h(nq + nb) = b̄, which is intuitively

correct; each QoS flow balances its bandwidth to exactly b̄.

Then, the capacity of best effort flows in the normal regime is

gb(nq, nb) = h(nq + nb)nb + β(nq, nb)E[X(nb)|X(nb) ≤ X(nq)]Pq.

Using the same approach as in (2.5) and (2.6), we have

gb(nq, nb) = g(nq + nb)Pb + (1− b̄

h(nq + nb)
)× (

g(nb)− Pbg(nq + nb)
)
.

Now, given the total capacity of best effort flows in overloaded and normal regime we can

analyze 2-D Markov chain given in (2.1). To do so we only need to characterize g(n) (or

h(n)).
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Example 1. In Rayleigh fading channel, signal strength has Rayleigh distribution, and

random variable Y representing channel SNR has exponential distribution with mean ν−1.

Let Z = Y (n). Then, Shannon (or ergodic) capacity using max rate scheduling is calculated

as

E[X(n)] = E[log(1 + Z)] (2.8)

=
∫ ∞

0
n(1− e−νz)n−1νe−νzlog(1 + z)dz.

Using the integral with incomplete gamma function Γ(0, x),

∫ ∞

0
e−kzlog(1 + z)dz =

ekΓ(0, k)
k

(2.9)

where Γ(0, x) =
∫∞
x

e−t

t dt and using the binomial theorem, g(n) = E[X(n)] is computed from

(2.8) as

g(n) = n
n−1∑

k=0

(−1)k
( n− 1

k

)eν(k+1)Γ
(
0, ν(k + 1)

)

k + 1
.

Otherwise, g(n) can be approximated by numerical calculation of (2.8). Fig. 2.1 shows an

example of g(n) and h(n) in 0dB Rayleigh fading channel.

2.3 Stability

In this section we address stability of our system model. First we discuss the stability

in case the maximum capacity of system is unbounded, i.e., g(n) → ∞ as n → ∞. Ideal

Rayleigh fading channel falls into this category. We show that the system is stable in this

case. Then, we deal with the system that has finite capacity C and identify the necessary

and sufficient condition of stability. Practical systems will of course fall in this second

category.
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Figure 2.1: Plot of the total capacity g(n) (a) and individual capacity h(n) (b) of 0dB
Rayleigh fading channel.

2.3.1 Unbounded case

Theorem 1. If g(n) is unbounded as n goes to ∞, e.g., in ideal Rayleigh fading channel,

then the system is stable for any offered load.

Proof of Theorem 1. Let χt =
(
Nq(t), Nb(t)

)
denote the state of our irreducible, ape-

riodic, continuous time 2-D Markov chain on S = {(nq, nb)|nq ∈ {0, · · · , n∗}, nb ∈ Z+}.

Based on Foster theorem [41], since g(n) is unbounded, for any offered load of best effort

flows ρb = λb
µb

, we can find an ∃l < ∞ such that gb(nq, nb) > ρ for ∀nb > l, which means the

drift is negative with the corresponding Lyapunov function ϕ(χt) = nb.

2.3.2 Bounded case

Theorem 2. Suppose C := limn→∞ g(n) < ∞ and the maximum number of QoS users is

limited to n∗. Then, the system is stable if and only if there exists ∃l < ∞ such that

E[g(Nq(t), l)] > ρq(1− ηq)b̄ + ρb (2.10)
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where ρq = λq

µq
, ρb = λb

µb
and ηq = πq(n∗), i.e., blocking probability of QoS flows.

Proof of Theorem 2. Since the number of QoS flows is bounded we need only consider

the stability of best effort flows. We model this system as 1-D queueing system where the

service rate is a state dependent random process gb(Nq(t), nb).

The necessary condition is clear in that the total influx rate should be less than

the average service rate. To prove the sufficient condition, we shall use the Saturation

Rule [6]. Let Tnb
denote the time of the last departure from a system given it starts with

nb customers at time 0 and there are no more arrivals thereafter. The Saturation Rule says

that Tnb
satisfies the strong law of large numbers, so limnb

nb
Tnb

exists a.s. and the system is

stable for the input process λb if limnb→∞
nb
Tnb

> λb, i.e., the departure rate for a saturated

system exceeds the arrival rate. Let T l
nb

denote the stopping time from state nb > l to state

l < ∞. Then, Tnb
= T l

nb
+ T 0

l . Since T 0
l is finite, limnb

nb
Tnb

= limnb

nb

T l
nb

, a.s. Let si be the

file size of best effort customer i. Since the total served bits on [0, T l
nb

] is less than
∑nb

i=1 si,

nb

T l
nb

≥ nb

∫ T l
nb

0 gb(Nq(t), l)dt

T l
nb

∑nb
i=1 si

=

1
T l

nb

∫ T l
nb

0 gb(Nq(t), l)dt

1
nb

∑nb
i=1 si

. (2.11)

Then, limnb
1

T l
nb

∫ T l
nb

0 gb(Nq(t), l)dt = E[gb(Nq(t), l)], a.s. since gb(Nq(t), l) is an ergodic

process and T l
nb
→∞, a.s. as nb →∞ since service capacity is bounded by C. Also, by the

strong law of large numbers, limnb
1
nb

∑nb
i=1 si = µ−1

b , a.s. So, taking limit of (2.11) yields

lim
nb

nb

Tnb

= lim
nb

nb

T l
nb

≥ E[gb(Nq(t), l)]µb, a.s.

Hence, if there exists ∃l < ∞ such that

E[gb(Nq(t), l)] > ρb, (2.12)
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then limnb

nb
Tnb

> λb. From (2.2), adding E[Nq]b̄ = ρq(1− ηq)b̄ to (2.12) makes (2.10) which

completes the proof.

Corollary 1. Let ḡ(nq) := limnb→∞ g(nq, nb). In the case where g(n) is bounded, E[ḡ(Nq)]

is less than C. So the maximum allowable influx rate into the system gets reduced by the

integration of QoS and best effort flows.

Proof. Corollary 1 is obvious from the capacity gap described in the next section.

2.4 Loss in opportunism

In this section we address the negative impacts of integrating QoS and best effort

traffic. We shall refer to these as the loss in opportunism of service integration. The

fundamental reason for losing throughput from opportunism comes from balancing QoS

requirements vs. opportunism. To maximize system capacity we need to schedule users

with high channel rate all the time. However, if we need to meet QoS requirements, at

some time slots we are forced to select sub-optimal users resulting in loss of opportunism.

Hence, we have a trade-off between guaranteeing QoS and maximizing capacity.

2.4.1 Capacity gap

Suppose that the system has a maximum capacity C and is supporting nq QoS flows.

Then, best effort traffic might expect its capacity to be C − nq b̄. However, the maximum

opportunistic capacity that best effort flows achieve is ḡb(nq) := limnb→∞ gb(nq, nb). This

limit is determined from (2.7) as C
(
1 − b̄

h(nq)). So, we have a gap between C − nq b̄ and

ḡb(nq). We call this quantity the capacity gap. Given nq active QoS sessions each of which

requires an average throughput of b̄, the capacity gap ξ(b̄, nq) is given by

ξ(b̄, nq) = b̄nq

( C

g(nq)
− 1

)
> 0, nq = 1, . . . , n∗. (2.13)
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The importance of investigating this gap lies in that it affects not only the stability region

of the system as stated in Corollary 1, but also degrades the performance of best effort

flows because active QoS sessions deprive best effort sessions of available capacity, more

than what is expected, resulting in local instability for best effort traffic. Local instability

means that conditioned on a fixed number of QoS streams nq, the arrival rate for best

effort traffic λb exceeds the maximum service rate ḡb(nq)µb and so traffic would temporarily

accumulate. This usually happens when nq remains high, and as a consequence best effort

flows would experience long delays. Performance implications of this will be addressed in

the next section.

Let us consider some characteristics of the capacity gap. From (2.13) we see that

ξ(b̄, nq) is proportional to the guaranteed bandwidth per QoS flow, and as a corner case, if

b̄ = g(1), then n∗ = 1 and ξ(1) = C − b̄, which means the system can support only one QoS

flow and no best effort flows. The shape of nq

(
C

g(nq) − 1
)

depends on g(n). In turn, g(n)

is determined by the probability density function of the channel capacity. For example,

for uniformly distributed channel capacity, g(n) = C n
n+1 and ξ(b̄, nq) = b̄, which means

the system experiences a constant capacity gap, i.e., independent of nq. But usually the

capacity gap will be an increasing function of nq in the domain of interest. 3

Example 2. This example will show that the capacity gap can be quite large in a real

system. Let us define the opportunistic gain as the ratio of system capacity with and without

opportunism, i.e.,

κ := lim
n→∞

g(n)
g(1)

=
C

E[X]
. (2.14)

3If b̄ is very small so n∗ can be large enough, then it can be shown not to be an increasing function, i.e.,
eventually decreases in nq.
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Then, the capacity gap of introducing a single QoS user is given by

ξ(b̄, 1) = b̄(κ− 1).

Suppose that we have sufficient number of best effort users so that system capacity is close

to C. In the CDMA/HDR system described in [12], C = 2457kbps and E[X] = 659kbps, so

κ = 3.75. If we want to guarantee 300kbps per QoS flow, then capacity gap is ξ(300, 1) =

300× (3.75−1) = 825kbps, which is 33 % drop in capacity from 2457kbps. For b̄ = 200kbps,

the gap is 550kbps corresponding to 22% drop. Fig. 2.2 shows capacity gaps for various b̄ and

nq. Note that each plot has different range of nq for different b̄ because the maximum number

of QoS streams we can admit depends on b̄. From the figure, we see that if b̄ > 100kbps,

capacity gap increases as nq grows but the slopes are decreasing in nq. Thus, the capacity

gap impacts the system mostly when the first few QoS flows are admitted. However, if b̄ is

small such as 100kbps, the capacity gap has a smooth peak and starts to decrease. This is

because if b̄ is small, the system can admit a sufficient number of QoS flows to generate the

opportunistic capacity gain among the QoS flows. The next example illustrates the capacity

gap of Rayleigh fading channels.

Example 3. Under a Rayleigh fading channel model, the impact of the capacity gap is more

severe in low SNR than high SNR. Fig. 2.3 shows plots of capacity gap divided by b̄ so as

to only reflect the effect of nq. We assume that a maximum of 1000 users can exist in the

system and each SNR has a different bounded capacity. We see that the capacity gap of low

SNR increases faster than that of high SNR. Considering the maximum capacity of low SNR

is even less than high SNR, we see that the effect on capacity gap in the low SNR case is

severe. This is consistent with what we see in the opportunistic gain from (2.14): κ is 3.57

at 0dB, 2.14 at 10dB, 1.62 at 20dB, 1.41 at 30dB. Thus we see that high opportunistic gains

21



0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

number of QoS flows

ca
pa

ci
ty

 g
ap

 (
%

)

100kbps 

200kbps 

300kbps 

400kbps 

600kbps 

500kbps 

Figure 2.2: Percentage of capacity gap ξ(b̄,nq)
C for the CDMA/HDR model describe in [12]:

b̄ = 100, . . . , 600Kbps.

will be associated with high loss in opportunism for integration. This is further reflected in

the delay performance considered in next subsection.

2.4.2 Delay increase

In this section, we investigate the effect of the capacity gap on the delay performance

of best effort flows. In a mixed user system, the ideal capacity that best effort flows could

see under an opportunistic scheduling scheme would be

g∗b (nq, nb) = g(nq + nb)− nq b̄,

i.e., the overall maximum opportunistic capacity minus that given to QoS streams. How-

ever, the actual capacity seen in our model when attempting to meet QoS stream’s re-

quirements is gb(nq, nb), so the difference is g∗b (nq, nb) − gb(nq, nb), which converges to the

capacity gap as nb → ∞. In a dynamic system, as long as the best effort flows remain

stable, offered load ρb will be served, yet delay will depend on the character of gb(nq, nb).
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Figure 2.3: Normalized capacity gap ξ(b̄,nq)

b̄
for various SNR under Rayleigh fading channel.

We will start, for simplicity, by evaluating the average delay of best effort users

conditioned on a fixed number of active QoS sessions. In this case the distribution of best

effort flows given nq active QoS sessions is given by

πb(nb|nq) = πb(0|nq)Π
nb
i=1

ρb

gb(nq, i)

E[D|nq] =
1
λb

∞∑

nb=1

nbπb(nb|nq). (2.15)

As a baseline delay performance, we substitute gb(nq, nb) with g∗b (nq, nb), and we will com-

pare the delay under various SNR, b̄ and nq. We shall only consider the case where best

effort flows are locally stable, i.e.,

ḡb(nq) > ρb. (2.16)

Even though the channel is Rayleigh fading, we assume that the range of X is finite since

practical system can support only a finite number of users and they generate only finite

opportunism. So, the delay of (2.15) is divided by 1 − ηb where ηb is blocking probability

of best effort flows. We assume that up-to 1000 users can share the system.
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Figure 2.4: Probability density function of Channel capacity under Rayleigh fading chan-
nel(bps/hz) for 0dB, 10dB, 20dB, 30dB.

Fig. 2.5 to Fig. 2.7 show the average delay for various b̄ and nq = 1 and 5. The

figures show two curves, ‘real’ and baseline delay associated with gb(nq, nb) and g∗b (nq, nb),

respectively. Here, λb = 1/sec and µ−1
b = 60Kbytes as in [21]. The baseline delay represents

an ideal delay performance under mixed traffic to show the delay penalty of the integration

of QoS and best effort flows, conditioned on a fixed number of active QoS sessions.

In Fig. 2.5 (a) we see that as b̄ grows, real and baseline delays increase and after

some point the system is unstable. In Fig. 2.5 (b) we present delay difference ratio of real

and baseline delays. Even for nq = 1, we see penalty in performance. For example, with

SNR = −3dB, C = 1240kbps, g(1) = 290kbps and b̄ = 120kbps, we see that real average

delay is over 10 sec where as the baseline delay is around 5 sec. This is more than 100%

increase. A single QoS flow can substantially increase average delays of best effort flows. If

nq = 5, the delay difference ratio grows more rapidly.

Comparing Fig. 2.5 through Fig. 2.7, one can see that the delay difference ratio is
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Figure 2.5: Delay comparison at -3dB, Rayleigh fading channel. (a) real delay (∗) and
baseline delay (◦). (b) Delay difference ratio.

improved as the SNR increases. For example, if we compare SNR = -3dB, 0dB, 10dB at

nq = 1 and b̄ = 0.4× g(1), then the ratios are 100% at -3dB, 15% at 0dB and 1% at 10dB.

Remark 2.4.1. From the above delay performance comparison, we can infer that guaran-

teeing bandwidth to a fixed number of QoS users will make the delay of best effort longer

than one might expect. This becomes severe for lower SNR, higher b̄ and large nq.

2.5 Admission control for best effort flows

In this section we consider admission control for best effort flows to improve delay

performance. We propose a simple admission control strategy to reduce the impact of local

instability where the number of best effort flows might temporarily grow.
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Figure 2.6: Delay comparison at 0dB, Rayleigh fading channel. (a) real delay (∗) and
baseline delay (◦). (b) Delay difference ratio.

2.5.1 Delay and local instability

In the previous section we considered the delay performance of best effort flows given

a fixed number of active QoS sessions and saw that it deteriorates quickly in the number of

QoS flows. Delays get higher as nq increases and eventually may be locally unstable. Thus,

if QoS flows remain in the system for a long time, best effort flows are not served much and

their numbers may grow until best effort flows recover their capacity, i.e., QoS sessions leave

the system. As mentioned earlier this phenomenon is called local instability [38]. It is not

unique to wireless network. It is common in bandwidth sharing systems where best effort

flows are preempted by QoS flows. However, it is more serious in opportunistic wireless

systems. Suppose that both of wired and wireless system have a maximum capacity C. For

some given nq, it is possible that a wired system does not experience local instability while

wireless system does. This is because the wireless system needs a large number of flows

to achieve opportunistic capacity. Clearly for every value of nb, the capacity of best effort
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Figure 2.7: Delay comparison at 10dB, Rayleigh fading channel. (a) real delay (∗) and
baseline delay (◦). (b) Delay difference ratio.

flows is smaller than that of a wired system. Furthermore, no matter how large nb is, we

have a capacity gap ξ(b̄, nq) that prevents gb(nq, nb) from reaching the capacity of the wired

network.

Fig. 2.8 illustrates a typical example of local instability for a Rayleigh fading channel

at offered load / C = 0.79 with b̄ = 100kbps, C = 1.31Mbps and n∗ = 10. The joint

distributions were computed numerically for the 2-dimensional Markov chain [85]. Since

nb is finite in a real system, this example assumes that nb is limited by 30. Then, local

instability results in accumulation of best effort flows at the boundary. In Fig. 2.8 (b) and

(c) we see two peaks in the stationary distribution π(nq, nb). The first peak at (nq, nb) '

(2.5, 2.5) is preferred while the second peak at (nq, nb) ' (7, 30) is problematic. For λq =

0.023/sec, µ−1
q = 180 sec, λb = 1.3/sec, µ−1

b = 60Kbytes, we see that the state (nq, nb) is

oscillating between two peaks along with drift arrow. If we decrease λb or λq, then the first

peak becomes dominant and the second peak diminishes. Conversely, if we increase λb or
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Figure 2.8: An example of local instability (a) πb(nb) (b) π(nq, nb) contour and drift vector
(c) π(nq, nb) in 3-D view (d) πq(nq) : λq = 0.023/sec, µ−1

q = 180sec, λb = 1.3/sec, µ−1
b =

60Kbyte, load ratio = 0.79, b̄ = 100kbps, C = 1.31Mbps, SNR 0dB Rayleigh fading channel.

λq, the first peak gradually disappears and the second peak dominates. This appears as to

be a weak form of metastability, i.e., where the system sees two operating regimes that are

likely to jumps between them. This type of behavior is undesirable in practice, particularly

if one of the modes corresponds to a poor performance, e.g., long delay for best effort.

2.5.2 Admission control for best effort flows

One way to preclude such metastable behavior is to ensure that the capacity of best

effort flows is always greater than the offered load, i.e., (2.16). However, this approach is

not preferred because we need to block QoS flows before nq reaches n∗. Another way is to

apply admission control for best effort flows [10, 11]. For example, if the system state is
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Figure 2.9: An example of admission control applied for Fig. 2.8 for best effort flows (a)
πb(nb) (b) π(nq, nb) contour and drift vector: θ = 0.5µ−1

b .

(nq, nb), a new best effort flow might be blocked if

ρb > θ + gb(nq, nb + 1)

where θ is an admission control threshold. So, if the net influx rate of best effort flows is

below some threshold, we admit all of them. As shown in Fig. 2.9 this simple admission

control can alleviate the performance impact of local instability effectively – we see that the

undesirable peak is eliminated.

Another importance of admission control is the expansion of capacity region. We

define the capacity region as the amount of admitted load of best effort flow under a given

average delay constraint. Fig. 2.10 exhibits the capacity region and call blocking probability

of QoS flows for a fixed offered load of QoS traffic ρq b̄. The maximum average delay

constraint is 20 sec. We see that the capacity region under the delay constraint is reduced

relative to the theoretical limit of C−ρq b̄(1−ηq) assuming no capacity gap. Nevertheless the

capacity region expands considerably. In this plot, the maximum number of best effort flows

is assumed to be 100. The expansion of capacity region is meaningful, in that the service

provider can in principle achieve more throughput under the same delay constraint and thus

generate more revenue. Note that admission control strategy enhances the capacity region
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Figure 2.10: Capacity region expansion by admission control at delay constraint = 20 sec for
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with an increased blocking probability for best effort flows.

2.6 Conclusion

We have explored the flow-level dynamics and performance seen by a mixture of

QoS and best effort flows sharing an opportunistic wireless system. In doing so, we pro-

posed a new opportunistic scheduling scheme/model based on the concept of bandwidth

borrowing/lending from/to best effort flows which enables the scheme to ensure a mean

throughput in every time slot to QoS streams which is pertinent for the case where users

see roughly homogenous channel variations. We evaluated the stability and the flow-level

performance in this system. The results suggest that integrating QoS and best effort flows

may degrade system performance in crucial aspects; reduction of the stability region, a gap

in the capacity available to best effort traffic and increased file transfer delay. These nega-
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tive impacts are referred to as loss in opportunism, and we found them to be proportional

to the opportunistic gains, the guaranteed bandwidth, and to the number of QoS flows. We

note, however, that these losses would be reduced in a system with a high SNR, assuming

a Rayleigh fading channel model.
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Chapter 3

Leveraging Dynamic Spare Capacity to Conserve Mobile
Terminals’ Energy

3.1 Introduction

In Chapter 2 we investigated tradeoffs between flow-level performance (QoS and

capacity) in a wireless network integrating services. In this Chapter we consider tradeoffs

between flow-level energy expenditure and capacity. Though future wireless systems promise

to support higher capacity, this will be achieved, in most cases, at the expense of higher

energy consumption resulting in shorter battery lifetimes for mobile terminals. So, work

on energy conservation has become a critical and active research area. Unlike previous

research on energy conservation in sensor and wireless local area networks (LAN) [34, 35,

39,73,93,95,97], we focus on energy saving techniques for broadband cellular systems, e.g.,

WiMAX or 3GPP-LTE. Specifically, we focus on reducing uplink RF transmission energy

recognizing it is one of the main contributors to battery consumption (e.g., 60% in time

division multiple access (TDMA) phones [97]). Other energy consumption such as display

or microprocessor, etc., are not considered.

Not unlike most networking infrastructure (particularly that supporting data), wire-

less access networks are unlikely to be fully utilized all the time. Indeed as a result of time

varying, non-stationary loads, or unpredictable bursty loads these networks are often overde-

signed to be able to support a peak load condition, and so often underutilized. For example

Internet service providers’ networks see a long term utilization as low as 20% [64]. Similarly

a substantial fraction of Wi-Fi hotspot capacity is unused [49]. More generally, due to the
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high variations in capacity that a wireless access system can deliver to various locations in

its coverage area, e.g., up to three orders of magnitude difference, one can also expect high

variability in the system load [4, 98]. Furthermore in some cases, e.g., cellular networks, a

substantial amount of bandwidth is set aside to ensure that calls are not dropped during

handoffs; for example, a 0.5% of call dropping probability requires 30% of system capacity

to be reserved [86]. This further contributes to underutilization of the system, even when

the loads are heavy. The central premise of our work is that wireless access networks whose

resources are occasionally underutilized can provide their users a better service/value by

reducing mobile terminal energy consumption while causing a controlled or imperceptible

impact on user’s perceived quality of service (QoS).

The basic idea towards conserving energy is as follows. As a rough model for the

relationship between power and capacity, consider Shannon’s capacity formula

x = w log
(
1 +

pout g

σ2

)
⇔ pout =

(
exp

( x

w

)
− 1

) σ2

g
(3.1)

where x is the transmission rate, w is the spectral bandwidth, pout is the output power of

the RF power amplifier, g is the channel gain and σ2 is the noise power. Note that the

output power (defined as the power dissipated into the air) is an exponential function of the

transmission rate. Thus a small back off in the transmission rate x results in an exponential

reduction in output power. The cost of doing so is a slow down in transmissions. So if users

are insensitive to such slow downs a system can realize beneficial tradeoffs.

Users or applications are insensitive to slow downs if the expected quality of service is

met. For real-time or streaming services this means meeting the required transmission rates.

Thus when a wireless access point is underloaded one can back off from a user’s individual

instantaneous peak transmission rate without impacting the perceived performance. By

contrast, for file transfers, reducing transmission rates will impact file transfer delays, yet
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may still be desirable if noticeable energy savings can be achieved. Specifically, for the

downlink, fast transmission may be critical to ensure users’ satisfaction with web browsing

applications or file download speeds. However, on the uplink, e.g., uploading of files such

as pictures or emails, users may be quite delay-tolerant, so much so that transfers could

be carried out as background processes. For best effort traffic it makes sense to set a

target average throughput users might expect over a given time window. This recognizes

the fact that file transfer delays depend on average throughput rather than instantaneous

transmission rate. The time window reflects the time scales on which such averages make

sense, e.g., seconds to minutes. The bigger the time windows the more flexibility a wireless

system has in exploiting transient underloads to conserve energy.

In this work, we focus on dynamic user populations and traffic loads in a cellular

system where new flows, either real-time sessions or file transfers, are initiated at random

and leave the system after being served – these are referred to as flow-level dynamics [21],

see Fig. 3.1. Dynamic systems are, in general, hard to analyze and have not been studied

as extensively as the static versions, i.e., with a fixed set of backlogged users.

To better understand the challenges involved, consider a TDMA system supporting,

a stationary dynamic load, of file transfer requests. If one slows down the uplink trans-

mission rate to save energy then the number of users in the system may grow, resulting

in excess power consumption associated with users that idle while awaiting transmission.

Indeed although ideally idling users turn off their transmission chains, in practice they still

consume power due to leakage current1 [57, 94]. Hence, in a dynamic system, if the trans-

mission rates are excessively reduced, the number of users that are idling may accumulate

resulting in excessive overall idling power consumption. This makes tradeoffs between en-

1Idling power consumption depends on the specific power amplifier design. For example, power amplifier
for WiMAX from Analog Devices consumes 2.5 to 25 mW during idling period [94].

34



ergy conservation and delay somewhat complex. Another challenge is to capture the power

consumptions from several components in RF transmission chain of active users (as opposed

to idling users). Even though the power amplifier is the main consumer of power, other

analog devices such as mixers, filters, local oscillators, D/A converters, may also consume

non-negligible power called circuit power [34,57].

Earlier research on power control mainly focused on controlling interference rather

than reducing energy consumption, i.e., sustaining a required signal to interference ratio

(SIR) for reliable voice connections [8, 44, 121]. Energy-efficient power control was first

explored in the context of sensor networks [39,95]. The authors proposed ‘lazy scheduling’

where packets are transmitted as slowly as possible while meeting packet delay constraints.

Lazy scheduling performs smoothing on arriving packets and thus makes output packet

flows less ‘bursty.’ This leads to significant energy savings.

The work in [13, 30], [97] further explore energy-delay tradeoffs under various sce-

narios; they study minimizing the average transmit power subject to average buffer delay

constraints under two state Gilbert-Elliot channels, fading channels, and additive white

Gaussian noise (AWGN) channels, respectively. In fading environments, the use of oppor-

tunistic transmission to save energy was studied in [48, 68, 116, 124]; i.e., when the channel

is good, transmit power is increased. However, the above work neglects circuit power, idling

power and flow-level dynamics.

Recent results show that if circuit power is taken into account, circuit energy con-

sumption increases monotonically as the transmission time grows [34, 76, 93, 123]. Thus,

we cannot slow down the transmission rate arbitrarily, and indeed, there exists an energy-

optimal transmission rate. In solving this optimization problem, the work in [34] focuses

on the physical modulation techniques with a single sender and receiver pair for sensor
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Figure 3.1: Flow-level model for uplink transmission in a dynamic system. One user corre-
sponds to one flow.

networks. Cross-layer optimizations are also proposed with a view on capturing the phys-

ical and medium access control (MAC) layer in small scale sensor networks [35] and in

wireless LANs [93], and further up-to the routing layer [73]. Energy-efficient transmission

strategy for orthogonal frequency division multiple access (OFDMA) system considering

circuit power was proposed in [80]. However, previous work has addressed static systems,

not dynamic systems, and thus could not capture the coupling between power backoff and

its impact on system dynamics. For example, idling power consumption may become huge

when the number of users accumulate, e.g., 10–100, albeit only occasionally [57].

Contributions. We highlight the contributions of this chapter as follows.

First, based on a detailed transmit power model, we show that idling power has

a substantial impact on energy efficiency when reducing transmission rate changes the

system dynamics, e.g., in the case of file transfers. Previous work has focused on static

systems, thus only the impact of circuit power was exhibited. However, we show that, as

the load increases, circuit power is asymptotically negligible in the case of dynamic systems.

Nevertheless, circuit power remains important in the case of systems supporting real-time
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sessions.

Second, we show how energy savings scale with the average load in a stationary

system. Our flow-level queueing model captures the dynamic behavior of real systems and

indicates that energy can be significantly saved when the system is underloaded. For ex-

ample, in the case of real-time sessions, when the call blocking probability is less than

0.1%, more than 50% of energy can be saved without compromising user-perceived perfor-

mance. In the case of file transfers, we demonstrate that 35–75% of the energy can be saved

depending on the loads and target throughput.

Third, we propose two practical energy saving techniques for real-time sessions and

file transfers, respectively. In the case of real-time sessions, we formulate the problem as a

convex optimization and solve it in an iterative fashion exhibiting superlinear convergence.

Our energy-optimal transmission policy minimizes the adverse impact of circuit power while

reducing the output power level of mobile terminals at the cell edge, e.g., by 15 dB. This in

turn can be beneficial in mitigating inter-cell interference. In the case of file transfers, we

propose an energy-efficient algorithm that exploits energy-delay tradeoff considering users’

preferences. The proposed algorithm addresses the possibly unfavorable impact of idling

power.

Our work is significant in its wide applicability to future broadband wireless systems,

which promise to support higher capacity but, in most cases, at the expense of much higher

energy expenditures.

Organization. This chapter is organized as follows. In Section 3.2, we describe

our system model and assumptions. Section 3.3 is devoted to the optimization for energy-

efficiency for real-time sessions. We address the energy savings for file transfers in a dynamic

system in Section 3.4 and conclude the work with Section 3.5.
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3.2 System model

3.2.1 Assumptions

We consider a centralized wireless communication system where a base station serves

multiple mobile terminals, e.g., WiMAX or 3GPP-LTE. For simplicity, we assume that the

system is shared via TDMA. Note, however, that the same approach is applicable in the

context of frequency division multiple access (FDMA), and furthermore, already applied

to multiple input multiple output (MIMO) systems [56]. We define a time frame as the

fixed time period during which every user is scheduled once. We use t to denote the

time frame index and s for continuous time. Since energy savings are more important at

mobile terminals than at the base station, we focus on uplink transmissions as shown in

Fig. 3.1. Our framework is also applicable to downlink transmissions to conserve the energy

consumption at the base station.2

Our goal is to reduce the energy consumed in uplink RF transmission of mobile

terminals. We assume that the transmission rate is continuous, and the power/rate mapping

function is convex and differentiable.

For the channel models in this chapter, we shall use both static and fading models

for different purposes. In particular, when we conduct a stationary analysis of the dynamic

system we assume homogeneous users that have the same static channel gain for analytical

tractability. This static channel assumption is in place for queuing analysis performed

in Section 3.4.2 to Section 3.4.5 and is dropped in Section 3.4.6 where we describe the

energy saving algorithms. In Section 3.4.8, the proposed algorithms are evaluated assuming

i.i.d. Rayleigh fading channels. Note that Rayleigh fading channel is used for analytical

2However, saving energy at the base station may increase the energy consumption at the mobile terminals.
This is because power consumption at reception is roughly independent of the receiving data rate, and fast
transmission is more beneficial in saving energy at mobile terminals by reducing the circuit and idling energy
consumption.
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purpose, but it is not a good model for practical systems; Rayleigh fading model is valid

only for narrowband channel with a sufficiently large number of multipath components,

which make both in-phase and quadrature terms independent and identically distributed

Gaussian random variables by central limit theorem. Then, the amplitude of the signal can

be modeled as a random variable having Rayleigh distribution. Note that Rayleigh fading

channel is an ideal model, and real systems usually have correlated channels.

3.2.2 Flow-level model for system dynamics

We will study a dynamic system where the number of ongoing users varies with

time. User sessions/flows arrive to the system according to a Poisson process with rate

λ and leave after being served. Such models are traditionally used in modeling flow-level

dynamics in communication networks, see [20, 21, 45, 59]. We will separately consider the

case where a flow corresponds to real-time session or a file transfer, in Section 3.3 and

Section 3.4 respectively. The system dynamics are captured by a flow-level queueing model

shown in Fig. 3.1 which tracks the arrival and departure process of users (or flows), see

e.g., [21]. We will assume each user corresponds to a single flow, and so user and flow are

used interchangeably. We refer to the number of flows in the system n as the system’s state

in the sequel.

3.2.3 Minimizing energy consumption in a stationary system

Our objective is to minimize the energy consumption of a typical3 flow in a station-

ary system. Let (F (s), s ∈ [0, T ]) be a random process modeling the power consumption of

a typical flow, starting at 0 and whose typical sojourn time is modeled by a random variable

3For simplicity we define performance metrics for typical flows directly in terms of appropriate random
variables rather than introducing Palm probabilities.
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T. Letting J denote the energy consumption of a typical flow, our goal will be to minimize

E[J ] = E

[∫ T

0
F (s)ds

]
(3.2)

subject to either sustaining minimum rate requirements for real-time sessions or achieving

an average throughput for file transfers. Minimizing (3.2) is not straightforward because

both T and F (s) may depend on system dynamics; in particular in the case of file transfers

they are not independent, i.e., power backoff may reduce F (·) but increase T . However

for a stationary system, minimizing the average energy consumption of a typical flow is

equivalent to minimizing the average system power consumption. This is akin to Little’s

law and formally stated as follows.

Theorem 3 (Energy-power equivalence). Let P be a random variable denoting the

stationary system power consumption, J be a random variable denoting the energy consumed

to serve a typical user’s flow, and λ be the arrival rate of users/flows to the system. Then,

if the system is stationary,

E[P ] = λE[J ]. (3.3)

Proof. This result is intuitive and can be shown via Brumelle’s theorem [65], which is a

generalized version of Little’s law.

Based on Theorem 3, we below focus on minimizing the average system power

consumption which in turn minimizes the average energy consumed by a typical mobile

terminal.

3.2.4 Transmission power model

A key element of our work is to have a proper transmit power model. The power

consumption in a real transmission chain depends on various factors such as drain efficiency
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Table 3.1: Notation Summary

t time frame index (discrete)
s time variable (continuous)
i user index (can be a subscript)
A a set of ongoing users (= flows)
n := |A|, the number of flows in A

x instantaneous transmission rate
w spectral bandwidth
η drain efficiency
g channel gain
σ2 noise power (=N0w).
γ := ηg

σ2 , SNR with unit transmit power
pdc circuit power
pidle idling power
ξ := pdc − pidle

λ arrival rate of files
µ−1 mean file size
ρ := λ

µ , traffic load
q a desired or target throughput per user
cmax maximum system capacity
pmax maximum output power

of the RF power amplifier and associated circuit blocks [34,57]. It also depends on classes of

power amplifiers, modulation schemes and power-saving mechanisms [74]. To have a realistic

but also analytically tractable power model, we assume that the power consumed by the

power amplifier is linearly dependent on output power of power amplifier, i.e., constant

drain efficiency [34]. Then, the power equation f(x) at transmission rate x can be derived

from (3.1) to give

f(x) =

{(
exp( x

w )− 1
)

σ2

ηg + pdc (active, x > 0)

pidle (idling, x = 0),
(3.4)

where η is the drain efficiency, which is defined as the ratio of the output power and the

power consumed in the power amplifier; pdc is the circuit power; and pidle is the idling

power [34,57]. To simplify our notation, we let γ = ηg
σ2 , i.e., the signal-to-noise ratio (SNR)
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Figure 3.2: Transmission power model in TDMA systems.

when the transmit power, defined below, is 1. We summarize our terminologies as follows.

3.2.4.1 Active power

When a user is transmitting, the active power is the collective power consumption

in the transmission chain, i.e., the sum of the transmit power and circuit power as shown

in Fig 3.2.

3.2.4.2 Transmit power

We refer to exp( x
w

)−1

γ as the transmit power which captures the power consumed

in the power amplifier. Transmit power is the main factor of power consumption in the

transmission chain and equal to the output power divided by the drain efficiency.

3.2.4.3 Circuit power pdc

The circuit power pdc includes several circuit blocks in the transmission chain and

remains almost constant irrespective of the transmission rate x. It is modeled in [34,57], by

pdc = pdac + pmix + pfilt + psyn, where pdac, pmix, pfilt, psyn stand for the power consumption

from a digital-to-analog converter, a mixer, a filter, a frequency synthesizer, respectively.
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Table 3.2: System Parameters
pdac = 15.6 mW η = 0.2
pmix = 30.3 mW pmax = 27.5 dBm
pfilt = 20.0 mW w = 1 MHz
psyn = 50.0 mW time frame = 5 ms
pdc = 115.9 mW N0 = −174 dBm
pidle = 25 mW µ−1 = 60 kbytes

3.2.4.4 Idling power pidle

Recall that our focus herein is on TDMA systems; one user transmits at any time

instance, and all other users wait to be scheduled. Users who do not transmit but wait

are said to be idling, as opposed to active. As shown in Fig. 3.2, idling users turn off their

transmission circuits and power amplifier to save energy, but they still consume idling power

pidle, ranging from a few to tens of mW, due to leakage currents [94]. Even though pidle could

be negligible in a static system, it remains non-negligible in a dynamic system [57]. We

will see the impact of idling power, particularly for the case of file transfers in Section 3.4.

Notation are summarized in Table 3.1.

3.2.5 Discussion about practical issues

Power-related parameters: The power-related parameters in our model are sum-

marized in Table 3.1. Note that these parameters can vary depending on the deployment

scenario, the power amplifier design technologies, and specific implementation details, etc.

For the case of cellular systems, which is the main focus of this dissertation, the above

parameters are similar to those suggested by other researchers in the literature. For ex-

ample, the Intel wireless standard group has studied improvement of client’s energy effi-

ciency for WiMAX terminals assuming the following: circuit power 100 mW and pmax = 33

dBm [52, 82]. Note that wireless LAN have somewhat different parameters numbers, see
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Table 3.3: System Parameters
pdac = 15.6 mW η = 0.2
pmix = 30.3 mW pmax = 27.5 dBm
pfilt = 20.0 mW w = 1 MHz
psyn = 50.0 mW time frame = 5 ms
pdc = 115.9 mW N0 = −174 dBm
pidle = 25 mW µ−1 = 60 kbytes

Table 3.4: WLAN transceiver parameters
Mode 802.11b 802.11a 802.11g
Sleep 132 mW 132 mW 132 mW
Idle 544 mW 990 mW 990 mW

Receive 726 mW 1320 mW 1320 mW
Transmit 1089 mW 1815 mW 1980 mW

Table 3.4 quoted from [93]. The lack of a centralized controller makes the sleep and idle

power consumption much higher versus that of cellular systems.

Power function f(x): Our power function f(x) is continuous. However, a step-

wise continuous function of f(x) that reflects adaptive modulation and coding (AMC) would

better capture the characteristics of a system. The work in [32, 34] considers this for the

case of a single transmitter/receiver pair. Since we address the problem in a dynamic

system, we abstract for simplicity the rate-power tradeoff achievable at the physical layer

as a continuous function based on Shannon’s capacity formula as in [52, 81, 82]. Note that

the spectral efficiency of AMC is a function of SNR and BER as given for example, by [48]:

R

B
= log2

(
1 +

−1.5
ln(5BER)

SNR

)

where R is the rate and B is the spectral bandwidth. So, the power function can be well

captured by an exponential function of the transmission rate, with a constant power gap

K = −1.5
ln(5BER)

between the ideal Tx power vs the real Tx power. Since practical systems

and ideal systems are related by a scaling factor K, energy saving principle is not changed

by such a scaling, see [34,35,80]. Hence, we use Shannon capacity for simplicity.
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Low SNR case: Exponential relationship between the power and rate is a key

characteristic enabling energy saving. It should be noted that energy savings can be achieved

only if the SNR is relatively high. In our simulations we found that we can exploit the

energy-delay tradeoff when SNR was at least 7 dB. This is because the power and rate

relationship becomes roughly linear in low SNR regime (e.g., around 0 dB). When the

relationship is exactly linear, then there is no energy saving to be had from reducing the

transmission rate. In fact, faster transmission is beneficial as it minimizes the circuit energy

consumption.

Implications of energy savings: To translate the energy savings in transmit

chain into an extension of the battery lifetime – which is the ultimate objective of energy

savings for mobile terminals – we need to know how much energy is consumed from trans-

mission versus other energy consumption on the device including display, microprocessor,

etc. While it has been reported that in a typical TDMA phone, approximately 60% of

the battery consumption can be attributed to the transmission RF amplifier, it depends

on the transmission technology as well. Generally, it has been shown that the radio inter-

faces, including bluetooth, Wi-Fi, and cellular communications, account for more than 50%

of the overall system energy budget [3, 82], but of course this depends on the usage sce-

nario. Hence, in describing the overall benefit of energy saving technique, we only consider

the reduction in the transmit energy. We use a mean file size of 60 kbytes, which is sug-

gested in the work of [21] modeling wireless systems. Another way of expressing the energy

consumption/savings is using the notion of energy-per-bit rather than energy-per-flow, or

bit-per-Joule as in [52,82].

Ideal vs real power amplifier: For analytical tractability, we have assumed a

constant drain efficiency η, which is commonly assumed in other work [32, 34, 52, 81, 82].
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However, the efficiency of real power amplifiers is not constant. The efficiency and linearity

of the power amplifier depend on the class of the power amplifier (PA), and generally

speaking, efficiency is high when the output power is also high. Active research is still

going on to improve the efficiency and linearity of the PA and also make the efficiency

constant. For example, adaptive bias and supply of the RF PA provides good efficiency

over the output power range of roughly 0 ∼ 30 dBm [74]. Without this technique, the range

is roughly 10 ∼ 30 dBm. We expect the efficiency will be progressively improved, in which

case the energy saving techniques developed in [32, 34, 52, 56, 58, 81, 82] including our work

become more promising.

3.3 Energy Savings for Real-time Sessions

In this section, we consider realizing energy savings in systems supporting real-time,

e.g., video/voice, sessions on the uplink. We show that the energy-optimal transmission

policy is given by a dynamic policy determined by convex optimization problems associated

with fixed user populations.

3.3.1 Problem formulation

We assume that the arrivals of real-time sessions follow a Poisson process with arrival

rate λs and have holding times which are identical, independent with mean µ−1
s . (Note that

the distribution of the holding time is not necessarily exponential.) Let ri be the session

rate requirement and xi be the instantaneous uplink transmission rate of user i. Then, in a

TDMA system, the fraction of time user i is active is ri/xi. Let ci be the maximum feasible

transmission rate for user i, which depends on the maximum output power pmax. Then,

ci = wlog
(
1 + pmaxgi

σ2

)
.

We assume that call admission control allows a new user into the system only if
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there are resources to support the request, e.g.,

∑

i∈A∪{k}

ri

ci
≤ 1 (3.5)

where A denotes the set of ongoing users and k is a new user (either new call or handoff). Let

n∗ be the maximum number of users determined by a proper call admission control. From

the insensitivity property, irrespective of the distribution of holding times, the stationary

distribution is the same as that of an M/M/m/m- queue, i.e., the distribution πs(n) is

simply given by [114]

πs(n) = πs(0)
ρn

s

n!
, for n = {0, · · · , n∗} (3.6)

where ρs := λs
µs

and πs(0) =
[∑n∗

n=0 ρn
s

1
n!

]−1
. The blocking probability of real-time sessions

is given by Erlang-B formula as πs(n∗) [14].

From Theorem 3, our objective is to minimize the average system power consumption

E[P ] while satisfying ri for all i ∈ A. Note that in this case backing off on transmit power

will not change πs(n) since allocating more bandwidth does not imply real-time users would

leave the system earlier. We refer to this as a decoupling property.4 Thus, the problem

reduces to one of optimizing power consumption for a static user population.

Now, we consider the convex optimization associated with minimizing power for a

static user population. In every time frame t, we solve

min
xÂ0

∑

i∈A

ri

xi


exp(xi

w )− 1
γi

+ pdc,i +
∑

j∈A\{i}
pidle,j




+

(
1−

∑

i∈A

ri

xi

)∑

i∈A

pidle,i

s.t.
∑

i∈A

ri

xi
≤ 1, (3.7)

4In Section 3.4 we will see that decoupling property does not hold for system dynamics of file transfers.
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where x is a vector whose elements are xi and γi = ηgi

σ2 , i ∈ A. We solve the optimization

problem when the system is underutilized, i.e., when ri for all i ∈ A are achievable. We put

the subscript i for pdc, pidle, g and γ to accommodate the heterogeneous users.

Note that γi and A may vary over different frames t yet for simplicity we drop the

time dependence. The optimization needs to be redone when γi or A changes. As we will

see in the sequel, the superlinear convergence speed and reuse of the previously determined

optimal values make this optimization quickly computable on the fly.

The interpretation of the above optimization is as follows. When user i transmits,

the system power consumption is (exp(xi/w)− 1) /γi + pdc,i +
∑

j∈A\{i} pidle,j . This is

weighted by ri
xi

, the fraction of time user i transmits. The sum over all users gives the

average system power consumption. In addition, for a fraction of time 1 − ∑
i∈A

ri
xi

, all

users consume idling power
∑

i∈A pidle,i.

By manipulating the above we have an equivalent but simpler optimization problem

given by,

Problem O1:

min
xÂ0

∑

i∈A

ri

xi

(
exp(xi

w )− 1
γi

+ ξi

)
(3.8)

s.t.
∑

i∈A

ri

xi
≤ 1, (3.9)

where ξi := pdc,i−pidle,i. Note that Problem O1 is a convex optimization with an inequality

constraint because the objective function is a weighted sum of convex functions of xi.

Because the circuit power is higher than the idling power in practice, we assume ξi ≥ 0. We

note that it can be shown through a change of variables, yi = ri
xi

and setting pidle,i = pdc,i,

the original optimization problem also represents the optimal spectral bandwidth allocation
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problem in a frequency-flat fading FDMA system where yi is the fractional bandwidth for

user i having the required rate ri.

3.3.2 Solution: An Energy Optimal Transmission Policy

We propose an energy optimal transmission strategy for real-time sessions based

on an iterative solution to Problem O1. Given γi, ξi and ri, the base station solves the

convex optimization problem using Lagrangian method. The optimal Lagrange multiplier is

then computed by Newton’s method, which guarantees superlinear convergence (faster than

exponential). The base station then broadcasts the optimal Lagrange multiplier to mobile

terminals, which, in turn, independently determine an associated transmission rate/power

level. This makes for a scalable implementation.

Let κ denote the Lagrange multiplier associated with the constraint in Problem O1.

The Lagrangian function is then given by

L(x, κ) =
∑

i∈A

ri

xi

(
exp(xi

w )− 1
γi

+ ξi

)
+ κ

(∑

i∈A

ri

xi
− 1

)
.

This is a convex optimization so the necessary and sufficient conditions for optimality are

given by Karush-Kuhn-Tucker (KKT) conditions [24], i.e., for all i ∈ A

∂L

∂x∗i
= 0 and κ∗

(∑

i∈A

ri

x∗i
− 1

)
= 0 (3.10)

where κ∗ denotes the optimal multiplier and x∗i is the optimal xi. From ∂L
∂x∗i

= 0, we have

that

κ∗ =
1
γi

(
exp

(
x∗i
w

)(
x∗i
w
− 1

)
+ 1

)
− ξi, ∀i ∈ A. (3.11)

Suppose that κ∗ is known; the algorithm to compute κ∗ will be provided in Ap-

pendix I. Then the base station broadcasts κ∗, and mobile terminals solve (3.11). Unlike
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the previous work which approximated the solution assuming high transmission rate [120]

or used interior point method [33], we directly use the Lambert W function and obtain a

closed form solution. Lambert W function also contributes to computing κ∗ in an efficient

way combined with Newton’s method, see Appendix I. Recall W (z) is defined as [31]

W (z)eW (z) = z, (3.12)

and a concave, monotone increasing and differentiable function. We assume that mobile

terminals have tabulated or can compute W (z). The solution to (3.11) is then given by

x∗i =
(

W

(
(κ∗ + ξi)γi − 1

e

)
+ 1

)
w, i ∈ A (3.13)

and, the optimal output power level for i ∈ A is given by

p∗i =
(

exp
(

W

(
(κ∗ + ξi)γi − 1

e

)
+ 1

)
− 1

)
σ2

gi
. (3.14)

Let us consider two simple examples capturing the character of such uplink power

control.

Example 4 (Homogeneous Case 1). Suppose γi = γ, and ξi = 0, then we have that

x∗i =
∑

j∈A rj for all i ∈ A, i.e., the sum of all required rates. This yields the same

power allocation across all users irrespective of their individual rate requirements, but a

time allocation to each user is proportional to ri.

Example 5 (Homogeneous Case 2). Suppose still that γi = γ, but now that ξi = ξ > 0.

In this case (3.13) implies that x∗i = x∗ for all i ∈ A, but x∗ may be greater than
∑

i∈A ri.

This will occur when the circuit power is large, so transmitting quickly and then idling is

more beneficial than fully utilizing the time resource.
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Figure 3.3: Energy saving for real-time sessions under various loads. ri = 150 kbps for all
users, n∗ = 23, cmax = 3.49 Mbps, µ−1

s = 180 sec, received SNR with full power transmit =
15 dB, other parameters are shown in Table 3.3.

3.3.3 Energy-savings under various loads

So far, we considered the optimization for a fixed number of users. Recall that our

objective is to minimize the per-flow energy in a dynamic system, and it is of interest to

see how energy saving benefits scale under various loads. To demonstrate this, we consider,

for simplicity, homogeneous users with identical γ and rate requirement r, so user index

i is dropped. We compare three transmission policies. The baseline policy is such that

each terminal transmits at the maximum rate, i.e., the instantaneous transmission rate is

x = cmax. The second policy simply scales with the number of users, so x = nr, which fully

utilizes the time resource. The third policy is our energy optimized one where x∗ is given

by (3.13). Let p(n) denote the system power consumption in state n; it is given by

p(n) =
nr

x
(f(x) + (n− 1)pidle) +

(
1− nr

x

)
npidle. (3.15)

Then, the average system power consumption is E[P ] =
∑n∗

n=1 p(n)πs(n) where πs(n) is

given in (3.6). From Theorem 3 and considering the call blocking probability πs(n∗), the
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average per-flow energy is given by

E[J ] =
E[P ]

λs(1− πs(n∗))
. (3.16)

Representative results for the three policies are shown in Fig. 3.3. As can be seen, the

optimal policy (solid line) significantly saves energy with respect to the baseline (dashed

line). Per-flow energy is reduced by more than 50% when the call blocking probability

is 0.1% or less. The energy saving benefits become more significant when the loads are

low. Recall that energy savings come at no cost in terms of compromising user perceived

performance.

Remark 3.3.1. The second policy x = nr (dash-dot line) exhibits an interesting behavior in

Fig. 3.3; this policy is asymptotically optimal as the loads grow, however, far from optimal

when the loads are low. This is because of the impact of circuit power. When the loads

are low, and n is usually small, the circuit energy may dominate the transmit energy.

Thus, transmitting faster than the required rate (i.e., x∗ > nr) saves energy. Recall that

Example 5 demonstrated this effect in a static system; here we see the analogous effect for

the dynamic system.

3.3.4 Spatial power smoothing and fair energy savings

A further gain of our energy-optimal transmission policy is that both the output

power levels and total power consumptions of mobile terminals are spatially smoothed. Let

us consider an example. A base station is placed at (0, 0) and 100 mobile terminals are

placed every 30 m on a 10 by 10 square grid. We consider both of large and small scale

fading; specifically path loss with exponent 3 and i.i.d. Rayleigh fading channels. Fig. 3.4

(a) exhibits the output power levels when all terminals are allocated an equal fraction of

time. As can be seen, the output powers generally increase with the distance from the
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Figure 3.4: Spatial power smoothing, (a) Equal time fraction allocation (b) Optimized rate
and time fraction (c) Side view of (a), (d) Side view of (b): ri = 50 kbps, path loss exponent
= 3, cell radius = 300 m, 100 users, carrier frequency = 1 GHz, other parameters are shown
in Table 3.3.

base station. Fig. 3.4 (b) exhibits the output powers after applying our energy optimal

transmission policy; the power levels are significantly smoothed and almost same across the

cell. Fig. 3.4 (c) and (d) are the side views of (a) and (b), which reveal that the deviation of

output powers are reduced significantly, i.e., from 40 dB to 5 dB. Furthermore, at the cell

edge, the optimization reduces the output power levels by up to 15 dB. Even though we do

not consider inter-cell interference here, reduced output power at the cell boundary suggests

that our energy-saving mechanism could contribute to reducing inter-cell interference in

multiple cell scenario.
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3.4 Energy Savings for File Transfers

In this section, we consider energy savings in the context of uplink file transfers.

Our focus is again on flow-level dynamics, and understanding how energy-savings can ex-

ploit times when the system is underloaded. A practical algorithm is proposed to achieve

energy-efficiency and target throughput. The approach is then combined with opportunistic

scheduling to exploit time-varying channels.

There are three key differences between achieving energy savings in system sup-

porting real-time sessions versus file transfers. First, real-time sessions have strict rate

requirements that must be achieved, otherwise, the sessions may be dropped. By contrast,

file transfers are delay-tolerant, and users can specify a target throughput considering their

preferences between energy savings and fast transmission. For example, a user with suffi-

cient residual battery may prefer fast transmission, but another user with scarce battery

may prefer slow transmission to benefit from the energy-delay tradeoff. Second, in the case

of real-time sessions, the stationary distribution of the number of users is independent of

the power control policy; we called this the decoupling property. In the case of file trans-

fers, however, power control changes the stationary distribution, which makes the problem

more challenging. Third, in determining energy-efficient transmission, circuit power was

important for real-time sessions, but, as we will see, idling power plays a more crucial role

in the case of file transfers.

3.4.1 Energy savings in an underutilized system

Recall our claim that energy can be saved without substantially impacting user

perceived performance in an underutilized system. For purposes of developing some insight,

consider two simple examples from the perspective of different time scales.
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Figure 3.5: Time varying number of users in a dynamic system with offered load 30%.
Individual target throughput is (a) 5.10 Mbps (b) 1,275 kbps (c) 318 kbps, and the arrival
processes are identical. Simulation setup is given in Section 3.4.8.

Example 6 (Long-term time scale). If an M/M/1 processor sharing system is stationary,

the average file delay is given by d = 1
µc−λ where µ−1 is the average file size, λ is the file

arrival rate, and c is the system capacity (or equivalently, system throughput.5) So, the

system capacity to achieve an average delay d is given by c = λ
µ + 1

µd . Suppose that the

arrival rate over a long time scale is reduced to λ′. Then, c could in principle be adapted to

this and reduced to λ′
µ + 1

µd and energy can be saved without impacting average file delay.

Example 7 (Short-term time scale). Fig. 3.5 exhibits n(t) = |A(t)| when the mean offered

load is 30%. Unlike the previous case, let us consider short term dynamics. As can be seen

in Fig. 3.5 (a), the base station frequently experiences periods when the system is idle, i.e.,

no users, corresponding to periods when the resources are essentially unused. These periods

can be leveraged to save energy, by having users can backoff on their transmit power and

rate as long as the resulting performance is acceptable. As shown in Figs. 3.5 (b) and (c)

when such a strategy is used the system utilization increases, yet energy may be conserved.

5System capacity in this chapter is not the same notion as the information theoretic capacity.
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One might think that a backoff on transmit power decreases the SNR which may

in turn increase the link error rate. This could lead to packet losses, which would be bad

for our real-time sessions and bad for file transfers because TCP performance deteriorates

over lossy wireless channels. However, adaptive modulation and coding (AMC) are used in

real systems, and the transmission rate can be reduced accordingly as the SNR decreases

while preserving the target bit error rate (BER) [4, 48]. In addition, Hybrid Automatic

Repeat reQuest (HARQ) is used at the physical layer in cellular systems such as WiMAX,

3GPP-LTE, HSDPA, HSUPA, etc. to hide local link errors from TCP senders [4, 5]. As

a consequence TCP performance is not likely to be degraded by using the energy saving

techniques we present hereafter.

3.4.2 Problem formulation

Let us go back to the system model shown in Fig. 3.1 to formulate the problem in

a dynamic system. Our objective is to minimize E[J ], see (3.2), while achieving a target

throughput per user denoted by qi; qi can be thought of as a tuning parameter controlling

the tradeoff between fast transmission and energy savings.

In minimizing E[J ] in a stationary system, the two key elements are the system

capacity, and how it is shared among ongoing flows. The system capacity not only de-

termines the departure rate of flows but also controls the energy consumption of mobile

terminals. We describe three models for the system capacity as a function of n, denoted by

c(n). We assume for simplicity that users have the same target throughput and experience

homogeneous channels, so the user index i is dropped.

Baseline policy: Suppose all users are scheduled for an equal fraction of time and

transmit at the full power to achieve the maximum achievable throughput. In this case the
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system capacity is not state dependent, and given by

c(n) = cmax, (3.17)

where cmax is the maximum uplink capacity achievable by any individual user, and the

scheduling discipline can be modeled as a processor sharing queue. Among the “fair”

policies we consider, this one minimizes the file transfer delay, but expends the most power.

State-dependent policy: Alternatively, consider a state-dependent transmission

policy where the system capacity is given by

c(n) = min(nq, cmax). (3.18)

The intuition underlying (3.18) is as follows. Assuming once again a processor sharing

scheduling discipline, as long as the system is not overloaded, capacity is allocated so that

each user sees its target throughput q, but no more than that. Thus the system capacity

grows linearly in n, i.e., c(n) = nq until it reaches the maximum system capacity cmax. This

policy represents a simple model for exploiting dynamic spare capacity to conserve energy

by allowing the transmit power (and also the rate) to backoff.

Opportunistic policy: If channels are time-varying, we may use opportunistic

scheduling. In the simplest case where users are homogeneous, the system capacity us-

ing max-rate scheduling [63] would

c(n) = E[max(R1, · · · , Rn)] (3.19)

where Ri, i ∈ A is a random variable denoting the channel capacity of user i. Note that

under max-rate scheduling for a homogeneous system each user would be served an equal

fraction of time, thus processor sharing is again roughly a good approximation for how users

are scheduled.
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3.4.3 Flow-level dynamics

Given the above three simple models for system capacity we now obtain a Markov

chain model for the number of ongoing flows in the system. We assume that the arrivals

of file transfer requests follow an independent Poisson process with arrival rate λ and have

independent file sizes with mean µ−1. Note that we do not assume the file sizes are ex-

ponentially distributed. Let N = (N(s), s ≥ 0) denote a random process representing the

number of ongoing file transfers at time s. Then, if file sizes are exponentially distributed,

N is a Markov process with state space Z+ and rate matrix Q is given by

q(n, n + 1) = λ

q(n + 1, n) = µc(n + 1) for n ≥ 0.

The stationary distribution π, if it exists, is given by

π(n) = π(0)
ρn

Πn
m=1c(m)

, (3.20)

where ρ := λ
µ is the traffic load (bits per second) and π(0) =

(
1 +

∑∞
n=1

ρn

Πn
m=1c(m)

)−1. Note

that the insensitivity property for Processor sharing queue ensures this distribution also

holds for general file size distributions [18]. In the sequel we let N be a random variable

with distribution π. In steady state, the average system power consumption is given by

E[P ] =
∑∞

n=0 p(n)π(n) where p(n) is a function which captures the overall system power

expenditure in state n and given by

p(n) = f(c(n)) + (n− 1)pidle, (3.21)

because, at any time instance, one user is transmitting at the instantaneous rate c(n) and

n− 1 users are idling. Finally, from Theorem 3, the average energy per flow is given by

E[J ] =
1
λ

∞∑

n=1

(
f(c(n)) + (n− 1)pidle

)
π(n). (3.22)
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Note that π(n) depends on the system capacity c(n), i.e., these are coupled together, see

(3.20). Hence, the subtlety here is that, by backing off on transmit power one likely increases

the number of flows in the system making the overall optimization of the dynamic system

more challenging.

3.4.4 Energy-delay tradeoffs: Numerical results

Next, we investigate how changing the tuning parameter q in (3.18) impacts the

energy and delay performance; specifically, by reducing q from cmax, different performance

pairs for delay and energy are obtained; these are shown in Fig. 3.6. When q = cmax, the

state-dependent policy is identical to the baseline; the delay is the smallest but the energy

consumption is the highest. This baseline is exhibited by ◦ in Fig. 3.6. Then, as q is reduced,

energy is saved but average delay increases. We consider three power models, differing in

whether they include the effect of circuit and/or idling power. As can be seen, Power

Model 1 comprises both circuit and idling power and significant amount of energy, e.g.,

up-to 60% relative to the baseline, can be saved as q is reduced (solid line). Interestingly,

however, if q is excessively reduced, the energy consumption grows again. This is because

further reducing q results in an increased number of idling users expending excessive idling

energy. Thus there exists an energy-optimal target throughput where the most benefit is

achieved.

Example 8 (Energy-power equivalence). To better understand the relationship between

energy and power in a dynamic system, here we provide an example based on Theorem 3,

E[P ] = λE[J ]. Fig. 3.6 shows the average energy consumption of a typical file transfer,

which is measured during “file transfer time.” The arrival rate λ of file transfer requests

3.65/sec with average file size 60 kbytes gives traffic load of 1,752 Mbps (= 3.65× 60× 8).

Since cmax = 5.84 Mbps, 1.752 Mbps divided by 5.84 Mbps gives 30% of offered load. Then,
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here is a small calculation to provide intuition. The baseline with 240 mJ per file corresponds

to the system power consumption 876 mW (= 3.65/sec × 240 mJ). The energy optimal point

in Fig. 3.6 consumes 90 mJ per file, which corresponds to system power consumption 328

mW (=3.65/sec × 90 mJ). Then the reduction of system power consumption is 876-328 =

547.5 mW, which can be also computed by 3.65/sec × (240 - 90) mJ. So, we can compute

the reduction of system power consumption by multiplying the reduction of energy per flow

by the arrival rate. In this example, the total energy saving per file (or equivalently, the total

system power saving) including circuit and idle power is 62%, but the file transfer delay is

increased, which is called ”energy-delay tradeoff”.

Before investigating energy optimal throughput, we first provide a lemma empha-

sizing the weak impact of circuit power on the energy consumption.

Lemma 1 (Bounded circuit energy). If a dynamic system is stationary, the impact of

circuit energy per flow is monotonically increasing as the delay grows, but bounded by pdc
λ .

Proof. The average circuit power consumption in the system is
∑∞

n=1 pdcπ(n) = pdc (1− π(0)).

From Theorem 3, the average circuit energy per flow denoted by φc is given by φc =

pdc(1−π(0))
λ ≤ pdc

λ . Since π(0) is decreasing in delay, φc is monotonically increasing as delay

grows, but bounded by pdc
λ .

Theorem 4 (Asymptotically negligible circuit energy). If a dynamic system is sta-

tionary, the impact of circuit energy per flow becomes asymptotically negligible as the load

grows.

Proof. From Lemma 1, the bound pdc
λ is decreasing as λ grows, and thus the circuit energy

becomes asymptotically negligible as the load grows.

60



0 0.5 1 1.5 2 2.5 3 3.5

40

60

80

100

120

140

160

180

200

220

240

Average file transfer delay (sec)

A
ve

ra
ge

 e
ne

rg
y 

pe
r 

flo
w

 (
m

J)

Power Model 1 

Power Model 2 

Power Model 3 

O 
Baseline: q = cmax 

Circuit energy 

Idling energy

Energy−optimal point

O

Reducing q

Figure 3.6: Energy-delay tradeoff for various throughput q. (λ = 3.65/sec, cmax = 5.84
Mbps, offered load = 30%, received SNR with maximum rate transmission = 17.5 dB.
Model 1: pdc = 115.9 mW, pidle = 25 mW, Model 2: pdc = 115.9 mW, and pidle = 0 mW,
Model 3: pdc = pidle = 0 mW. Other parameters are given in Table 3.3.)

Although Lemma 1 and Theorem 4 are simple, they demonstrate a key difference

between static and dynamic systems. Here are two supporting examples.

Example 9. To focus on the circuit energy effect, we set the idling power as zero in this

example. We compare Power Model 2 (with transmit and circuit power) with Model 3 (with

transmit power only). Fig. 3.6 shows that Model 2 consumes more energy than Model 3

by the amount of circuit energy. As can be seen, the energy gap between Model 2 and 3 is

monotonically increasing as the delay grows, but quickly saturates to pdc
λ . As a result, the

energy decreases monotonically in delay.

This result is surprising because it is the opposite of what happens in static systems,

i.e., long delay ultimately increased the energy consumption and thus there existed an

energy-optimal throughput (or delay), see [34,76,93,123].

Example 10. To have an insight on diminishing impact of circuit energy, we plot the energy

consumption for Model 2 for various offered loads. In Fig. 3.7, we exhibit the energy and

61



0 0.5 1 1.5 2 2.5 3 3.5
50

100

150

200

250

Average file transfer delay (sec)

A
ve

ra
ge

 e
ne

rg
y 

pe
r 

flo
w

 (
m

J)

Single user (static) 

Offered load = 5%

Offered load = 10%

Offered load = 30%

Offered load = 50 %

Figure 3.7: The weak impact of circuit power in energy-delay tradeoff: pdc = 115.9 mW,
pidle = 0 mW, cmax = 5.84 Mbps, received SNR with maximum rate transmission = 17.5
dB. Other parameters are given in Table 3.3.

delay in the case of single user; the energy increases linearly when the delay is large (and

the slope becomes identical to circuit power pdc). However, for stationary systems, as the

offered loads grow (5% to 50%), the impact of circuit energy is gradually diminishing, and

finally, we see the monotonically decreasing energy consumption in delay. This confirms

that for dynamic systems circuit energy is asymptotically negligible as the load grows.

3.4.5 Stationary analysis

To enable a more quantitative analysis, we consider a regime where cmax À q,

i.e., the maximum system capacity far exceeds individual users’ target throughput, and

the system load is light. This captures the system dynamics as q goes to zero (or delay

goes to ∞). Then (3.22) can be simplified using the approximation c(n) ≈ nq. The queue’s

stationary distribution π(n) in (3.20) is then roughly Poisson with parameter λ
µq . Let φ(λ, q)

denote the energy per flow at (λ, q), i.e.,

φ(λ, q) :=
∞∑

n=1

(exp(nq
w )− 1
γ

+ pdc + (n− 1)pidle

)e
− λ

µq ( λ
µq )n

λn!
.
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Recognizing the first term as the moment generating function of a Poisson random

variable, one obtains

φ(λ, q) =
exp

(
λ
µq (exp( q

w )− 1)
)
− 1

λγ
+ (3.23)

pdc

1− exp(− λ
µq )

λ
+ pidle

(
1
µq

−
1− exp(− λ

µq )

λ

)
.

Note that, as λ → 0, (3.23) also captures the energy expenditure for a single user which

sees no other flows than itself:

lim
λ→0

φ(λ, q) =
1
µq

(
exp( q

w )− 1
γ

+ pdc

)
. (3.24)

The first term in (3.23) accounts for transmit energy, which increases exponentially

in λ given a fixed q. This implies if λ is reduced (i.e., the system load is reduced), significant

energy can be saved while maintaining the same q. The second term in (3.23) accounts for

circuit energy. As mentioned in Lemma 1 and Theorem 4, as q goes to zero, the circuit

energy goes to pdc
λ . Furthermore as the load grows, it becomes asymptotically negligible.

The third term in (3.23) accounts for idling energy that plays a crucial role in

determining the energy-efficiency. As can be seen, as q is decreasing, the idling energy is

increasing while the transmit energy (the first term) is decreasing. Hence, φ(λ, q) has an

energy-optimal throughput for a given λ, which we denote by

e := argmin
q>0

φ(λ, q). (3.25)

One can attempt to determine e by solving ∂
∂qφ(λ, q) = 0, yet this equation does not have

a closed form solution. Instead, to get a sense of its characteristics, we will use a linear

approximation around q = 0, i.e., φ(λ, q) ≈ s1q+s2 + pidle
µq , where s1 and s2 are Taylor series
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coefficients of φ(λ, q). Simple calculus gives the following approximation for the energy-

optimal per-flow throughput:

e ≈ w

√
2 exp

(
− ρ

w

)
pidleγ. (3.26)

Remark 3.4.1 (Throughput region). Eq. (3.26) suggests the throughput region {q|q ≥ e}

where the throughput can be traded off with energy. Otherwise, both of the average delay

and the energy performance are bad.

Interestingly, e is an increasing function of SNR γ; so transmitting faster when

channels are good indeed saves energy. In addition, fast transmissions are beneficial when

idling power pidle is high; otherwise accumulated users will consume too much idling energy.

3.4.6 CUTE algorithm

Although we derived the energy-optimal throughput for a stationary system, it is

not straightforward to apply this result in real system. Users experience heterogeneous

and time-varying channels, the number of users will change, and the system may not be

stationary; even if quasi stationary, it may not be easy to correctly estimate ρ in (3.26). In

this section we propose a simple practical algorithm that does not use the prior knowledge

of the traffic load but simply relies on the current system state n(t).

Energy-efficient rate: The key idea is to replace the energy-optimal throughput

(3.26), obtained in a stationary regime, with state-dependent one associated with each time

frame t. Consider an uplink which is equally time shared by n(t) users. The average

energy per bit for user i ∈ A(t) to achieve throughput x during one time frame is given

by
(

1
n(t)fi(n(t)x) + n(t)−1

n(t) pidle,i

)
/x where fi(·) is a user-indexed version of (3.4). Note that

each user uses only a fraction 1
n(t) of time frame and so the instantaneous rate must be
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n(t)x. The most energy-efficient individual throughput ei(t) can be determined based on

ei(t) := argmin
x≥0

{
fi(n(t)x) + (n(t)− 1)pidle,i

x

}
(3.27)

i.e., the throughput that minimizes the average energy per bit. Since (3.27) is differentiable

and convex, ei(t) is given by simple calculus such as

ei(t) =
w

n(t)

[
W

(
pdc,i + (n(t)− 1)pidle,i

e
γi(t)− 1

e

)
+ 1

]
. (3.28)

Using (3.28), each mobile can determine its own energy efficient rate ei(t) given n(t).

Remark 3.4.2 (Energy-opportunistic transmission). Note that ei(t) is energy-opportunistic

in the sense that ei(t) is an increasing function of γi(t); if the channel is good, increasing

the transmission rate saves energy (and vice versa). This is similar to the time-domain

water filling, which is known to be the optimal transmission policy over a time-varying

channel [48].

Constraints: Two additional constraints play a role. First the maximum instanta-

neous transmission rate of a user is in practice bounded, say by ci(t). Thus when there are

n(t) users sharing the system, the highest achievable user throughput is ci(t)/n(t). Second

users can specify their own target throughput qi considering their residual batteries and fast

transmission. Thus, energy-efficient rate is upper and lower bounded, and the throughput

for user i is given by

ri(t) = min
[
max [ei(t), qi] ,

ci(t)
n(t)

]
, i ∈ A(t). (3.29)

Relaxing target throughput: Since file transfers are delay tolerant, we do not

need to achieve qi instantaneously. Instead, we might consider achieving it over a reasonable
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Figure 3.8: Additional energy saving by relaxed target rate in Rayleigh fading channels. qi

= 320 kbps (1.5 second delay for 60 kbyte file), cmax = 5.1 Mbps, 30 % offered load. (a)
average energy per file, (b) target delay (◦), and the achieved delay (¦). Parameters are
same to the simulations in Section 3.4.8

averaging window. We define the exponentially averaged throughput r̄i(t) as

r̄i(t) = νr̄i(t− 1) + (1− ν)ri(t), i ∈ A(t) (3.30)

where ν ∈ (0, 1) corresponds to weight on the past. To meet qi on average, we choose qi(t)

such that

qi = νr̄i(t− 1) + (1− ν)qi(t), i ∈ A(t)

which yields

qi(t) =
qi − νr̄i(t− 1)

1− ν
, i ∈ A(t). (3.31)

This relaxes the time scale over which the performance target should be met and contributes

to further energy savings. Fig. 3.8 exhibits how such averaging time scales save energy

while keeping the average file delays almost the same (solid ¦). In summary the proposed

algorithm realizes the following throughput

ri(t) = min
[
max [ei(t), qi(t)] ,

ci(t)
n(t)

]
, i ∈ A(t). (3.32)
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We refer to this transmission policy as CUTE meaning Conserve User Terminals’ Energy.

In a run time CUTE alternates among three transmission modes– energy-efficient mode at

ei(t), target mode at qi(t) and capacity-constrained mode at ci(t)/n(t) – in accordance with

the system state, throughput history and channel fluctuations so that CUTE achieves (or

exceeds) a target throughput while saves energy.

Remark 3.4.3 (Energy-efficient mode). The energy-efficient mode is the most ‘desirable’;

indeed when ei(t) ≥ qi(t) and feasible, user i is served faster than its target and saves energy

as well. If the system is underutilized, or channels are good, users are more likely to operate

in this mode because ei(t) can be high, see (3.28).

Otherwise, if qi(t) > ei(t), the user defers energy-saving and is served at qi(t) in order

to meet the target throughput. Users with low SNR tend to operate in the target mode. If

the system is congested or SNR is bad, that user may be in the capacity-constrained mode.

The motivation for the study of convergence of CUTE: We developed the

CUTE algorithm to be practically applicable for real, dynamic systems where channels are

time-varying and the number of users changes. Note that CUTE depends on attending

to meet a relaxed target rate qi(t) which also varies as the number of users and channel

gains change. However, when the channels and the number of users vary relatively slowly

as compared to the length of the adaptation time frame, it is worthwhile to establish that

the CUTE algorithm converges, i.e., in a quasi-static regime would quickly converge to a

new stationary transmission rate. Such convergence is particularly meaningful when n(t)

and also the channel change slowly as compared to the length of the time associated with

transmission frames, and also, when the file sizes are large enough. The following results

are shown in the Appendix II.

Theorem 5 (Convergence of CUTE). Suppose that the number of users and channel
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Figure 3.9: Energy-delay tradeoffs with round-robin scheduling. (a) CUTE algorithm to
mitigate the impact of circuit/idling power on energy-delay tradeoff: λ = 3.2, offered load
= 30 %. (b) Without energy-efficient rate. (c) With energy-efficient rate.

gains are fixed, and consequently ei(t) = ei and ci(t)
n(t) = ci

n are fixed. Then, the average

throughput r̄i(t) and the transmission rate ri(t) both converge to min(max(qi, ei), ci
n ). Thus,

if feasible, CUTE converges to the greater of qi and ei, otherwise, to ci
n .

Theorem 6 (Convergence speed). Both of r̄i(t) and ri(t) converge to the equilibrium

rate at least exponentially fast.
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3.4.7 CUTE with opportunistic scheduling

Opportunistic scheduling is desirable to enhance users’ throughput when they see

time-varying channels. Opportunistic scheduling for power control was first proposed in [68],

but the authors exploited opportunism not to save energy but to enhance throughput.

Clearly, opportunistic scheduling can serve both purposes. CUTE is compatible with various

types of opportunistic scheduling such as [63,71,87,89,106]. The benefit of backing off the

transmit power is more apparent when opportunistic scheduling is used versus round-robin

scheduling because scheduled users are more likely to be experiencing high SNRs, and

operating at energy-efficient mode, see Remark 3.4.3

To this end, we consider modifying our time sharing discipline. Consider the case

where rather than serving all users in each frame, we schedule only a single user and assume

the frame length is reduced to the channel coherence time. Let sθ(t) denote the index of

the scheduled user under an opportunistic policy θ on frame t. The proposed transmission

policy under an opportunistic scheduling for user i ∈ A(t) is

ri(t) = min (max (ei(t), qi(t)) , ci(t))1{i=sθ(t)}, (3.33)

where 1{} is the indicator function and ei(t) is redefined as

ei(t) = argmin
x≥0

{
fi(x) + (n(t)− 1)pidle,i

x

}

Note that we use fi(x) instead of fi(n(t)x) because only one user is scheduled per time

frame. Also, note that ci(t) is used instead of ci(t)
n(t) , and qi(t) is modified giving

qi(t) =
n(t)qi − r̄i(t− 1)ν

1− ν
, i ∈ A(t) (3.34)

where r̄i(t) is computed during the time frames where user i has been served.
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Figure 3.10: Energy-delay tradeoffs with opportunistic scheduling. (a) CUTE algorithm to
mitigate the impact of circuit/idling power on energy-delay tradeoff: λ = 3.2, offered load
= 30 %. (b) Without energy-efficient rate. (c) With energy-efficient rate.

3.4.8 Simulation results

To validate the effectiveness of the CUTE algorithm, we estimated the average

energy consumption per file transfer versus the average delay using flow-level event-driven

simulations. On each time frame, new user requests arrive according to a Poisson process

with rate λ. Each user requests exactly one file that is log normally distributed with mean

60 kbytes [21]. Users are assumed to experience independent Rayleigh fading channels. Our
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simulation parameters are ν = 0.95, path loss = −124 dB, and an ergodic channel capacity

is 5.1 Mbps. Other parameters are given in Table 3.3. The average received SNR at the

base station when the mobile terminal transmits at its maximum output power is 17.5 dB.

When mobile terminals reduce the target throughput, and power backoff is used, the average

received SNR decreases. The number of time frames per simulation is 1,000,000. We plot

the energy-delay tradeoff curves for qi = (1, 1
2 , 1

4 , 1
8 , 1

16 , 1
32 , 1

64 , 1
128)× 5.1 Mbps to show how

the user’s preference on energy savings against fast transmission impacts the energy-delay

tradeoff.

Fig. 3.9 demonstrates energy-delay tradeoffs under round-robin scheduling. Fig. 3.9

(a) exhibits four curves: transmit power only (dashed ♦), transmission and circuit power

(dashed ◦), transmission, circuit and idling power (solid ◦), and CUTE algorithm (solid ).

As expected, idling and circuit power increase the average energy. Furthermore, the impact

of idling energy dominates when delay is large. This is because the accumulated users

result in high idling energy consumption. By contrast, circuit energy becomes bounded by

pdc
λ = 36.2 mW as stated in Lemma 1. Comparing solid ◦ line with solid line shows how

the CUTE algorithm significantly improves the energy-delay performance in the presence

of idling and circuit power. Perhaps surprisingly, CUTE dominates the case where the

system energy expenditures involve only transmit power. This is because as mentioned in

Remark 3.4.2 transmitting at rate ei(t) is energy-opportunistic.

Fig. 3.9 (b) shows the average energy and delay when

ri(t) = min
[
qi(t),

ci(t)
n(t)

]
, i ∈ A(t) (3.35)

i.e., without the energy efficient rate ei(t). The three curves correspond to offered loads of

10%, 30%, and 50% of the ergodic capacity. Without using ei(t), power backoff cannot fully

realize energy-delay tradeoffs, moreover the adverse effect of idling power emerges when
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delay is high. Interestingly, the curve for the offered load of 10% is different from the other

two cases. This is because the circuit energy effect is relatively dominant when λ is low, see

Theorem 4 and Example 10.

Finally, Fig. 3.9 (c) shows the performance of CUTE when (3.35) is replaced by

(3.32). Not only are undesirable energy-delay pairs removed but also energy savings can be

seen to be significant– as much as 70%. We simulated various offered loads demonstrating

that energy saving benefits are higher when the offered load is lower. Comparing subfigure

(b) with (c) we see that CUTE significantly improves both energy and delay performance.

For example, at an offered load 30%, the delay/energy pair at (3 sec, 225 mJ) in Fig. 3.9

(b) moves to (0.9 sec, 116 mJ) in Fig. 3.9 (c); the delay is reduced more than three times

and energy consumption is cut by half. This is not surprising because the energy-efficient

mode will serve a user faster than the target to save energy, see Remark 3.4.3.

Results for the case where opportunistic scheduling is used are shown in Fig. 3.10.

The availability of perfect channel state information is assumed in simulating opportunistic

scheduling. We reduce the time frame length to 1 msec. As with the case of the round-

robin scheduling, energy consumption increases as the delay grows but CUTE successfully

removes the undesirable energy and delay pairs. The energy consumption is, however, a

lot less than the case of round-robin scheduling. For example, comparing Fig. 3.9 (a) and

Fig. 3.10 (a) shows that, when the delay is 0.5 second, CUTE with round-robin consumes

140 mJ while CUTE with opportunistic scheduling expends 70 mJ. Comparing Fig. 3.9 (c)

and Fig. 3.10 (c) with offered load 50% also shows that both of the energy and delay become

less than half.

Energy-saving of CUTE and interference: We expect that our energy saving

algorithm CUTE is also beneficial in reducing the inter-cell interference. Even though
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we did not directly address this problem in the dissertation, reducing the transmission

rate contributes to reducing the output power level and thus other cell interference is also

reduced. We observed that this was the case when we considered the energy savings of

real-time sessions in Section 3.3.

3.4.9 What happens in high loaded systems?

As can be seen in Fig. 3.9 (c), when the offered load is 70%, when qi ≤ qmax

16 the

energy/delay curve of the CUTE algorithm starts growing again. This highlights the fact

that optimizing user-perceived energy consumption based on considering what is optimal

for fixed numbers of users need not by optimal in the dynamic regime. Specifically the

energy optimal rate ei(t), is specified given a fixed number of users, and is a monotonically

decreasing function of n(t), see (3.28). Thus when the offered load is high, and so is n(t),

users throughputs max[ei(t), qi(t)] may be too slow leading to increased numbers of users

in the system and increased idling power consumption. As a consequence, operating at the

static energy-optimal rate might not be good for a heavily loaded system. Note, in this

respect, the work of [34,35,80,93] may be also problematic.

To circumvent this potential problem one can restrict users from setting their target

throughputs qi too small. Alternatively the energy efficient rate ei(t) can be modified so it

has a lower bound; for example, w
n(t) in (3.28) can be replaced by w

min(n(t),n̄) where n̄ is given

by n̄ = ū
1−ū . Here ū is the utilization when the system is declared to be highly loaded. Note

that n̄ is the average number of users when the average utilization is ū in M/GI/1 processor

sharing system. Roughly speaking, when the load is less than ū, ei(t) operates as before,

but when the load exceeds ū, ei(t) is increased by n
n̄ for fast processing. Figs. 3.9 (c) and

3.10 (c) show the results when n̄ = 8 (dashed lines) and exhibit monotonically decreasing

energy/delay curves (and also better performance) even when the system is overloaded.
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3.5 Conclusion

This work is, to our knowledge, the first to study energy saving techniques for wire-

less systems subject to dynamic loads. The key idea is simple: to reduce uplink transmit

power, but, to do so in a manner that neither leads to excessive idling/circuit power, nor

degrades user perceived performance. We found that idling power, which was previously

neglected in static systems, plays a crucial role in energy-efficiency when systems are dy-

namic, specifically for file transfers. By contrast, the impact of circuit power, which has

been addressed in previous work, is limited and asymptotically negligible as the system load

grows. Future broadband wireless systems promise to deliver much higher capacity, but in

some cases at a much higher energy cost. As such, given the importance of battery lifetimes

for mobile terminals, and potential savings in the uplink transmit energy on the order of

more than 50% for real-time sessions and 35–75% for file transfers exhibited in this thesis,

our approach appears to be quite promising.

Appendix I

Finding the optimal Lagrange multiplier

We determine the optimal Lagrange multiplier κ∗ based on an iterative method that

exhibits superlinear convergence. Let δ denote the uplink utilization of the system, i.e.,

δ =
∑

i∈A

ri

xi
. (3.36)

By substituting (3.13) into (3.36), we have

δ(κ) =
1
w

∑

i∈A

ri

W
(

(κ+ξi)γi−1
e

)
+ 1

. (3.37)

Note that δ(κ) is a convex and monotone decreasing function of κ. From KKT conditions

in (3.10), the optimal x satisfies δ < 1 if and only if κ∗ = 0. Otherwise δ = 1. So consider

setting the initial value as κ0 = 0 and let us check two possible cases for δ(κ0).
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Case 1) If δ(κ0) ≤ 1, then κ∗ = 0 and x∗i and p∗i are determined from (3.13) and (3.14).

This is the case for Example 5.

Case 2) If δ(κ0) > 1, the rate vector x is not feasible, and κ should be increased until δ(κ)

equals 1. Since δ(κ) is convex and monotonically decreasing in κ, Newton’s method can be

used to solve δ(κ) = 1 iteratively, i.e.,

κm+1 = max
[
κm − δ(κm)− 1

δ′(κm)
, κmin

]
(3.38)

where

δ′(κ) = − 1
w

∑

i∈A

riW
′
(

(κ+ξi)γi−1
e

)

(
W

(
(κ+ξi)γi−1

e

)
+ 1

)2

γi

e
(3.39)

and W ′(z) = W (z)
z(1+W (z)) if z 6= 0, and W ′(0) = 1 [31]. Although κm converges to κ∗

superlinearly (because it is Newton’s method [24]), a good initial value further reduces the

number of iterations. In particular we start the iteration at κmin where

κmin =


min

i




(
exp(v)(v − 1) + 1

)

γi
− ξi







+

(3.40)

and v =
∑

i∈A ri

w . Because δ(κmin) > 1, limκ→∞ δ(κ) < 1, and δ(κ) decreases monotonically,

δ(κ) finally hits 1. The iteration ends when δ(κm) enters the interval (1− ε, 1) where we set

ε = 10−6. The number of iterations to convergence is mostly less than 10. If starting with

an optimal multiplier obtained in the previous time frame, the iterative optimization was

found to converge after 3 – 5 iterations in a system with time-correlated Rayleigh fading

channels.

Appendix II

Proof of Theorem 5. If r̄i(t) converges, then, from (3.30), it is obvious that ri(t) also con-

verges to the same value. So, we only show that r̄i(t) converges to min(max(qi, ei), ci
n ). By
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substituting (3.32) into (3.30),

r̄i(t) = νr̄i(t− 1) + (1− ν)min
(

max
(qi − νr̄i(t− 1)ν

1− ν
, ei

)
,
ci

n

)

= min
(

max
(
qi, νr̄i(t− 1) + (1− ν)ei

)
, νr̄i(t− 1) + (1− ν)

ci

n

)
.

Let f(x) = min
(
max

(
qi, νx + (1 − ν)ei

)
, νx + (1 − ν) ci

n

)
. Then, r̄i(t) = f(r̄i(t − 1)), and

we show that r̄i(t) converges to min(max(qi, ei), ci
n ) by considering the fixed point equation

f(x) = x and the geometry of the iteration. In Fig. 3.11 (a) where qi ≥ ei, if qi is feasible,

i.e., ci
n ≥ qi it is obvious from the figure that the convergence point is M = (qi, qi), i.e.,

the intersection of y = x and line (e) y = max(qi, νx + (1 − ν)ei). If ci
n < qi as plotted by

line (c3), the convergence point is K = ( ci
n , ci

n ). So, r̄i(t) converges to min(qi,
ci
n ). Similarly,

in Fig. 3.11 (b) where qi < ei, if ei is feasible, i.e., ci
n ≥ ei it is obvious from the figure

that the convergence point is M = (ei, ei), i.e., the intersection of y = x and line (e)

y = max(qi, νx + (1 − ν)ei). If ci
n < ei as plotted by line (c2), the convergence point is

K = ( ci
n , ci

n ). So, r̄i(t) converges to min(ei,
ci
n ). Combining these two results completes the

proof.

Proof of Theorem 6. If y = x intersects y = qi, r̄i(t) converges in one iteration. If y = x

intersects y = νx + (1− ν)zi where zi is either ci
n or ei, r̄i(t) converges to zi exponentially

fast because

r̄i(t + 1) = f(r̄i(t)) = νr̄i(t) + (1− ν)zi

∣∣∣ r̄i(t + 1)− zi

r̄i(t)− zi

∣∣∣ = ν,

and 0 < ν < 1. Thus, large ν means slow convergence.
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(a) In the case of qi ≥ ei, r̄i(t) converges to min(qi,
ci
n

).

(b) In the case of qi < ei, r̄i(t) converges to min(ei,
ci
n

).

Figure 3.11: Geometric proof of convergence theorem.
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Chapter 4

Energy-Efficient Adaptive MIMO Systems Leveraging Spare
Capacity

4.1 Introduction

In Chapter 3 we showed that by exploiting dynamic spare capacity one can achieve

significant energy savings at mobile terminals. In this chapter we further extend previous

study for the case where mobile terminals have multiple antennas. As we have seen in

Chapter 3, circuit power is one of the important factors to consider in achieving energy-

efficient transmission. The impact of circuit power on energy efficiency is more critical

when the mobile terminal (MT) has multiple transmit antennas because of the multiplicity

of associated circuits such as mixers, synthesizers, digital-to-analog converters, filters, etc.

The circuit power for a multiple-input multiple-output (MIMO) system is thus higher than

that of a single-input multiple-output (SIMO) system by approximately Nt times where Nt

is the number of transmit antennas. It is generally accepted that MIMO achieves better

energy-efficiency than SIMO thanks to spatial multiplexing gain [46]. Altogether when

circuit power is considered, however, MIMO may consume more power than SIMO at low

spectral efficiency, thus circuit power hinders the use of MIMO on the uplink. This is

one of the reasons why several emerging standards do not use MIMO for the uplink [40].

Mitigating the adverse impact of circuit power remains crucial to enabling the use of MIMO

for the uplink.

Towards addressing the circuit power problem of MIMO systems, we identify a

crossover point on the transmission rate (or spectral efficiency) below which SIMO is more
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energy efficient than MIMO. We will focus on the case where Nt = 2 at the MT, which is

perhaps the most practical assumption at this point given the antenna configurations of the

IEEE802.16m standard [1]. We propose an adaptive switching mechanism between MIMO

and SIMO. The key idea is simple. When the system is underutilized, the MT operates with

SIMO at low spectral efficiency to save energy, but when congested, the MT operates with

MIMO at high spectral efficiency to increase throughput. This is done in an adaptive way

considering two aspects – dynamic network traffic and channel variations. In determining

the crossover point, the circuit power is the main factor, but we will see that two other

factors, the number of receive antennas and channel correlation also increase the crossover

point and make mode switching more beneficial.

Prior work on adaptive MIMO techniques [26, 43, 51] has not specifically addressed

energy conservation. The authors in [51] proposed mode selection criteria to improve link

level bit error rate (BER) performance for a fixed rate. To increase throughput, several

adaptive MIMO and link adaptation techniques have been proposed [27, 28, 43], but the

authors mainly focused on the physical layer. Power-efficient MIMO systems were studied

in terms of transmit diversity [83] and input covariance [117]. By contrast, our work is

a cross-layer energy saving approach considering the role of circuit power at the circuit

level, multiple antennas at the physical layer, and dynamic user load at the medium access

control (MAC) layer and above.

One of the challenges in saving energy lies in the tradeoff between transmit energy

and circuit energy; slowing down the transmission rate reduces transmit energy [95] but

in turn increases circuit energy [23, 32, 34, 80, 93]. Thus, the total energy consumption

becomes a convex function of the transmission rate, and an energy-optimal transmission

rate exists. Previous work towards achieving energy-optimal transmission, e.g., [34], is
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limited to physical layer modulation techniques with a single sender and receiver pair for

sensor networks. A link-level multiantenna approach was proposed in [23], which adapts the

transmission mode packet-per-packet among space-division multiplexing, space-time coding,

and single antenna transmission in a wireless local area networks. The work in [35, 93]

addresses multiple users including the MAC layer, but only for a fixed number of users in

a wireless local area network. Unlike previous work [23, 32, 34, 35, 80, 93], our focus is on

dynamic multi-users in a cellular system where new file transfers are initiated at random

and leave the system after being served, i.e., “flow-level dynamics” [21].

Our contributions. This chapter makes three main contributions. First, we propose a

mechanism for adaptively switching between MIMO and SIMO to conserve mobile termi-

nals’ energy. In a practical MIMO system with two transmit antennas at the MT and many

receive antennas at the BS, we demonstrate that adaptive switching can save uplink trans-

mission energy by more than 50% as compared to MIMO without substantially changing

user-perceived performance. In addition our asymptotic analysis shows that the crossover

point scales as O(log2Nr) where Nr is the number of receive antennas at the BS, and thus

increasing Nr may improve mode switching benefits.

Our second contribution is to show that mode switching benefits are more significant

when channels are correlated. Based on the exponential correlation model [75,91], a closed

form expression for the crossover point is provided as a function of a correlation coefficient.

If MIMO uses a zero forcing receiver, the benefit of mode switching further increases because

SIMO is more robust in ill-conditioned channels.

Our third contribution lies in that we are the first to consider exploiting dynamic

spare capacity to realize energy savings in MIMO systems. Dynamic spare capacity is

available when the system is underutilized, occasionally, due to changes in user population
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and/or bursty traffic loads. Energy is saved by slowing down transmission rates when the

system is underutilized. Circuit and idling power, however, deteriorate the energy saving

benefit, and the total energy consumption may increase if the user’s target throughput is

too low. The proposed algorithm effectively avoids this problem by exploiting an energy-

optimal transmission rate. We also propose an energy-opportunistic scheduler exploiting

both multi-user and multi-mode diversity to further enhance the energy efficiency.

This chapter is organized as follows. In Section 4.2 we describe our system model

and assumptions. Section 4.3 analyzes the impact of channel correlation and Nr on the

crossover point mainly from static single user scenario. We address the dynamic multi-user

scenario and develop a practical energy-efficient adaptive MIMO algorithm in Section 4.4.

Section 4.5 provides simulation results followed by conclusion in Section 4.6.

4.2 System model

4.2.1 Assumptions

We consider a centralized wireless communication system with one BS serving mul-

tiple MTs. Target systems could be, but are not limited to, WiMAX or 3GPP-LTE. We

assume that the system is based on MIMO and shared via time division multiple access

(TDMA). Since energy savings are more important at the MTs than at the BS, we focus

on uplink transmissions. Our work is, however, also applicable to saving downlink energy

at the BS. We assume that the channels experience flat fading1 and the dimension of chan-

nel matrix H is Nr × Nt where Nr is the number of receive antennas at the BS and Nt

is the number of transmit antennas at the MT. We focus on the case where Nr ≥ 2 (at

the BS) and Nt = 2 (at the MTs). The assumption of two transmit antennas at the MTs

1Flat fading can be obtained in practice using multiple input multiple output orthogonal frequency
division multiplexing (MIMO-OFDM).
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is in accordance with the antenna configurations of the IEEE802.16m standard [1].2 One

might question that current practical systems only use single transmit antenna on the up-

link because of the implementation issues such as antenna spacing and circuit power [40].

In that case, our study becomes more meaningful because adaptive mode switching resolves

the adverse impact of circuit power and justifies the use of two transmit antennas on the

uplink.

We consider MIMO systems where the transmitter does not have channel state

information (CSI), i.e., no instantaneous channel feedback. Thus, the transmission mode

decision, either MIMO or SIMO, is made at the BS and fed back to the MS, which requires

1 bit of feedback. In addition, in the case of SIMO, the BS informs the MT of the index for

the antenna with the highest channel gain, which requires an additional 1 bit of feedback.

Our focus is on delivering delay-tolerant (best effort) traffic.

Concerning the MIMO channel model used in this chapter, we will derive the trans-

mission power equation in Section 4.2.3 based on a general channel matrix. Then, we assume

Rayleigh fading channel in Section 4.3 for the analysis of the crossover point and also for

our simulations in Section 4.5. Note that Rayleigh fading is the most popular analytically

tractable stochastic channel model where the components of the channel matrix coefficients

are i.i.d. complex Gaussian random variable with zero mean and unit variance. We further

consider the correlated channel based on a Kronecker correlation structure with transmit

correlation [75, 91]. Even though Rayleigh fading gives analytical tractability, intensive

research is still ongoing to better understand fading channels considering, for example,

antenna depolarization, co- and cross-polarization isolations and mutual coupling, etc [15].

2Even though the 3GPP LTE considers two antennas at the MT but only one antenna is used for uplink.
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Figure 4.1: Transmission chain for a MIMO system with two antennas.

4.2.2 Problem definition

The key questions addressed in this chapter are 1) how to change transmission mode

between MIMO and SIMO to save energy in a system supporting dynamic user populations

(mode switching), and 2) how to determine the appropriate transmission rate considering

circuit and idling power consumption3 as well as the average target throughput of each user

(rate selection).

4.2.3 Transmission power models

Fig. 1 (redrawn from [32]) illustrates the transmission chain for MIMO. A key

element of our work is to have a reasonably accurate transmission power model, which we

discuss next.

4.2.3.1 MIMO power model

Assuming the MTs do not have access to CSI, we consider equal power allocation to

each antenna, and thus do not consider precoding. Nevertheless for the actual transmission,

the MS requires another kinds of feedback, for example, to implement the adaptive modu-

lation and coding, and to adjust the tranmist power level in accordance with the pathloss.

3The definition and the impact of idling power, which plays a crucial role in dynamic systems, will be
addressed in Section 4.4 in detail.
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Our work is also applicable to closed loop MIMO, but it is harder to derive a closed form

expression for the transmission power as a function of the rate. Let φ1 and φ2 be the

eigenvalues of H∗H where H∗ is a complex conjugate of the channel matrix H. Then, the

achievable spectral efficiency of MIMO using equal power allocation into each antenna given

H is expressed as [46]

C =
Nt∑

k=1

log2

(
1 +

Po

N0Nt
φk

)
(4.1)

where Nt = 2 and Po is the output power (from the power amplifier) that is dissipated into

the air, and N0 is the noise power. We assume that H has a rank of min(Nt, Nr) = Nt.

Note that the channel matrix H is general. For example, if H = R
1
2
r Hw where Rr is a

receive correlation matrix, then H captures the correlated channels at the receiver [91]. If

H = Hw where the elements of Hw are independent complex Gaussian random variables

with zero mean, H models uncorrelated Rayleigh fading channels.

The MIMO transmission power model is derived from (4.1) as follows. With Nt = 2,

we have

C =
2∑

k=1

log2

(
1 +

Po

N0Nt
φk

)
(4.2)

= log2

[(
Po

2N0

)2

φ1φ2 +
φ1 + φ2

2N0
Po + 1

]
, (4.3)

which leads to the following quadratic equation of Po,

φ1φ2

(
Po

2N0

)2

+ (φ1 + φ2)
Po

2N0
+ (1− 2C) = 0. (4.4)

The feasible solution to the above quadratic equation is given by

Po =
2N0

φ1φ2

[√[
φ1 + φ2

2

]2

+ φ1φ2(2C − 1)− φ1 + φ2

2

]
. (4.5)
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Assuming that the power consumed by the power amplifier is linearly dependent on the

output power [32], the power consumed in the power amplifier can be modeled as Po
η where

η is the drain efficiency of the power amplifier. Drain efficiency is the ratio of the output

power, i.e., the electromagnetically radiated power into the air versus the power consumed

in the power amplifier. The transmission power equation fm(r) for MIMO at transmission

rate r with spectral bandwidth w and circuit power consumption pdc,m is then given by

fm(r) =
2N0

ηφ1φ2

(√(
φ1 + φ2

2

)2

+ φ1φ2(2r/w − 1)− φ1 + φ2

2

)
+ pdc,m (4.6)

where the subscript m stands for MIMO. For simplicity, we assume that possible transmis-

sion rates are continuous.4

Note that (4.1) and (4.6) are based on an ideal MIMO receiver. As an example of a

practical linear receiver, we here consider a zero forcing receiver which gives us analytical

tractability. Then as shown in [91], under an independent coding and detection assumption,

(4.1) can be rewritten as,

C =
Nt∑

k=1

log2

(
1 +

Po

N0Nt

1
[(H∗H)−1]k,k

)
(4.7)

where [(H∗H)−1]k,k denotes kth diagonal element of (H∗H)−1. Thus, if φk is replaced by

1/[(H∗H)−1]k,k in (4.6), we obtain a transmission power model of MIMO with a zero forcing

receiver. In the case of MIMO with a minimum mean square error (MMSE) receiver, we

can obtain a transmission power model in a similar way, so for simplicity we only consider

a zero forcing receiver.

In computing the circuit power, we assume that MIMO requires Nt transmission

blocks, but that the frequency synthesizer, i.e., local oscillator (LO), is shared by multiple

4For the discrete transmission rate, i.e., finite modulation order with BER constraint, see [32].
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antennas [4, 32] as can be seen in Fig. 4.1. Then, the total circuit power consumption of

MIMO is given by

pdc,m = Nt(pdac + pmix + pfilt) + psyn (4.8)

where pdac, pmix, pfilt, psyn stand for the power consumption from a digital-to-analog con-

verter, a mixer, a filter, and a frequency synthesizer, respectively. Our notation is summa-

rized in Table 4.1.

4.2.3.2 SIMO power model

The SIMO power equation can be derived from (1) with Nt = 1 and φk = h∗khk =
∑Nr

`=1 |h`,k|2 where hk is the k-th column vector of H, and k = 1, 2. Then, in selecting the

transmit antenna out of the two, hk with higher φk is chosen for the transmission. This

decision is made at the BS, which implies 1 bit feedback from the BS to the MS is required.

Then, the capacity can be expressed as

C = log2

[
1 +

Po

N0

Nr∑

`=1

|h`,k̂|2
]

(4.9)

where k̂ denotes the index for the selected antenna. From (4.9), we have

Po =
2C − 1∑Nr
`=1 |h`,k̂|2

N0, (4.10)

and substituting C with r
w and introducing the drain efficiency η and the circuit power of

SIMO, pdc,s, the transmission power fs(r) where the subscript s stands for SIMO, is given

by

fs(r) =
1
η

2r/w − 1∑Nr
`=1 |h`,k̂|2

N0 + pdc,s. (4.11)
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Figure 4.2: Transmission power consumption of mobile terminals including circuit power.

4.3 Analysis of the crossover point

4.3.1 Motivation for mode switching

Fig. 4.2 exhibits the transmission powers for both MIMO and SIMO in the case of

Rayleigh fading channels. Note the crossover around r/w = 3 bps/Hz below which SIMO

is more energy-efficient than MIMO. (This figure is an example of one realization for an

uncorrelated Rayleigh fading channel – different realizations will give different results.) In

addition, as an example of MIMO with a linear receiver, we plot the transmission power of

MIMO with a zero forcing receiver. It is noticeable that the crossover point is higher than

that for the ideal receiver, i.e., r/w = 3.9 bps/Hz. The crossover points exhibit the need

for a smart switching policy between MIMO and SIMO considering the transmission rate,

user-perceived throughput and energy efficiency.
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4.3.2 The impact of channel correlation on the crossover point

Besides the circuit power, another important factor determining MIMO energy ef-

ficiency is spatial correlation among antennas. Since channel correlation degrades the ca-

pacity of MIMO systems [91], it further motivates mode switching. The rate regime where

SIMO is more energy-efficient than MIMO expands further and thus mode switching be-

comes more plausible. To capture correlated channels, consider a channel model

H = R
1
2
r Hw (4.12)

where Rr is an Nr × Nr receive correlation matrix whose elements are [Rr]i,j = ξ|i−j|,

0 ≤ ξ < 1. This model, called exponential correlation model, is extensively used in the

literature [75, 91]. Since receive antennas at the BS are not surrounded by many scatters,

it is reasonable to assume spatial correlation at receive antennas. By contrast, we assume

that transmit antennas at the MT are not correlated for simplicity; otherwise, MIMO

capacity is further degraded, and we have more chance to switch into SIMO. Even though

we consider generally the case where Nt = 2 and Nr ≥ 2, here we shall focus on the case

where Nt = Nr = 2 to allow simple analysis. In this case, we can explicitly compute the

crossover point in a high SNR regime. This result is given in the following proposition.

Proposition 4.3.1. Assuming high received SNR, when a correlated channel matrix H is

given by (4.12) with Nt = Nr = 2, the crossover point is explicitly given by

r∗ ≈ 2log2

{
ϕ√

φw1φw2(1− ξ2)
+

√
ϕ2

φw1φw2(1− ξ2)
+ ∆pdc

ηϕg

N0

}
w (4.13)

where ξ is the correlation coefficient, φw1 and φw2 are the eigenvalues of HwH∗
w, ϕ := h∗h,

h = R
1
2 hw and hw is 2×1 vector whose elements are independent complex Gaussian random

variables.
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Proof. The achievable spectral efficiency of MIMO with H in (4.12) and equal power allo-

cation is given by

C = log2

∣∣∣∣I +
Pog

N0Nt
R

1
2
r HwH∗

wR
∗ 1

2
r

∣∣∣∣ . (4.14)

Since the correlation matrix Rr has full rank, (4.14) is approximated under the high SNR

regime by [91]

C ' Ntlog2

Pog

N0Nt
+ log2 |HwH∗

w|+ log2|Rr|. (4.15)

Note log2|Rr| = (Nr − 1) log2

(
1− ξ2

)
. Thus, the more correlated (i.e., ξ is close to 1), the

more the capacity is degraded. Since φw1 and φw2 are the eigenvalues of HwH∗
w, |HwH∗

w|

is given by φw1φw2. Then, in the case of Nt = Nr = 2, the power equation for MIMO is

given by

fm(r) =
N02
ηg

2
r

2w√
φw1φw2(1− ξ2)

+ pdc,m. (4.16)

Similarly, the power equation for SIMO is given by

fs(r) =
N0

ηg

2
r
w

ϕ
+ pdc,s. (4.17)

Then, the crossover point shown in (4.13) is obtained by equating fm(r) and fs(r).

Thus, r∗ is an increasing function of ξ, and channel correlation makes the crossover

point higher. Note that even if the circuit power is not factored, and thus ∆pdc = 0, the

crossover point still exists such as r∗ = 2log2

(
2ϕ√

φw1φw2(1−ξ2)

)
w, which further emphasizes

the importance of mode switching in correlated channels.

4.3.3 The impact of the number of receive antennas on the crossover point

The number of receiver antennas at the BS also has an impact on the crossover

point. To obtain an analytically tractable result we assume uncorrelated Rayleigh fading

channels with many receive antennas at the BS. We first provide the following Lemma.
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Lemma 2. Suppose that H is an Nr ×Nt matrix whose elements are independent complex

Gaussian random variables with zero mean and variance g, i.e., H represents uncorrelated

Rayleigh fading channels. Then, as Nr goes to infinity, 1
NrgH

∗H converges to an identity

matrix by the law of large numbers.

Proof. Let A = 1
NrgH

∗H. Let [A]i,j denote the (i, j) element of A. Then, [A]i,j =
∑Nr

`=1
1

Nrg [H∗]i,`[H]`,j =
∑Nr

`=1
1

Nrg ([H]`,i)
∗ [H]`,j . When i = j, [A]i,i = 1

Nr

∑Nr
`=1 | [H]`,i√

g |2,

which is the mean of the square of Nr independent normal complex Gaussian random vari-

ables. Then, as Nr goes to infinity [A]i,i converges to 1 by the law of large numbers. When

i 6= j, [A]i,j is the average of Nr independent zero mean complex random variables. By the

law of large numbers, [A]i,j converges to zero as Nr goes to infinity. Thus A converges to

an identity matrix as Nr goes to infinity.

Then, two eigenvalues of H∗H are asymptotically given by Nrg, and we have the

following proposition.

Proposition 4.3.2. Assuming uncorrelated Rayleigh fading channels, when Nr is large

enough (and Nt is 2), the energy efficiency crossover point between SIMO and MIMO scales

with O(log2Nr) as Nr grows. When Nr goes to infinity, the ratio between the crossover point

and the maximum achievable rate of MIMO converges to 1
2 .

Proof. Assuming large Nr and thus substituting φ1 = φ2 = Nrg in (4.6), the power equation

is given by

fm(r) =
N0

ηg

2
Nr

(
2

r
2w − 1

)
+ pdc,m. (4.18)

Similarly, (4.11) can be rewritten as

fs(r) =
N0

ηg

1
Nr

(
2

r
w − 1

)
+ pdc,s. (4.19)
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The crossover point r∗ satisfies fs(r∗) = fm(r∗). Solving this equation gives

r∗ = 2log2

(
1 +

√
∆pdc

ηNrg

N0

)
w (4.20)

where ∆pdc = pdc,m − pdc,s. Thus, r∗ scales with O(log2Nr). The maximum transmission

rate for MIMO is given by

rmax = 2log2

(
1 +

Po

2
Nrg

N0

)
w. (4.21)

Thus, the ratio of r∗ and rmax is

r∗

rmax
=

log2

(
1 +

√
∆pdc

ηNrg
N0

)

log2

(
1 + Po

2
Nrg
N0

) . (4.22)

Since ∆pdc > 0, as Nr goes to infinity, r∗
rmax

converges to 1
2 .

Proposition 4.3.2 implies that as the number of receive antennas at the BS grows,

the rate regime where SIMO is more energy-efficient than MIMO expands. This is because,

as can be seen in (4.18) and (4.19), increasing Nr makes fm(r) and fs(r) grow more slowly in

r, and thus the impact of circuit power becomes dominant, which makes SIMO more energy-

efficient. Finally, if Nr is sufficiently large, the system operates at SIMO for the lower half

of the feasible rates and then switched to MIMO for the higher half of the feasible rates.

4.3.4 Asymptotic analysis for many receive antennas using flow-level dynamics

So far we have focused on the link level performance, i.e., single user scenario. To

better understand the impact of large Nr on energy efficiency, we now proceed to a multi-

user scenario and assume the number of ongoing users varies with time, i.e., a dynamic

system. For large Nr, we have shown that the eigenvalues of H∗H are approximately Nrg.

Then, we perform stationary analysis as follows.
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Users randomly arrive to the system according to a Poisson process and leave the

system after finishing the file transfer. We are interested in the average energy consumption

per file. To capture this, we use a flow-level queuing model [21], see Fig. 4.3. Flow-level

analysis tracks the arrival and departure process of users. We will assume that each user

arrives with exactly one file and thus corresponds to a single flow. We refer to the number

of flows in the system n as the system’s state in the sequel.

Our objective is to minimize the average energy per file by switching between MIMO

and SIMO transmission modes. For analytical simplicity, we assume that users have the

same target throughput q and are served via temporally fair TDMA scheduling. Then, the

system capacity5 in state n is given by

c(n) = min(nq, rmax). (4.23)

The system capacity increases linearly to satisfy the individual targets until the system

is overloaded, i.e., c(n) = rmax. Assuming a processor sharing scheduling discipline, if the

system is not overloaded each user should see his target throughput q. This policy represents

a simple approach towards exploiting dynamic spare capacity to conserve energy; when the

system is congested, it operates at the maximum rate rmax, however, when underutilized,

the overall transmit power and the system capacity are reduced with n.

Given the above simple model for system capacity, we now obtain a Markov chain

model for the number of ongoing flows in the system. We assume that the arrivals of

file transfer requests follow an independent Poisson process with arrival rate λ and have

independent file sizes with mean µ−1. Let N = (N(u), u ≥ 0) denote a random process rep-

resenting the number of ongoing file transfers at time u. Then, if file sizes are exponentially

5System capacity c(n) is not the same as the information theoretic capacity but implies the system
throughput.
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distributed, N is a Markov process with state space Z+ and the rate matrix Q is given by

q(n, n + 1) = λ

q(n + 1, n) = µc(n + 1) for n ≥ 0.

The stationary distribution π, if it exists, is given by

π(n) = π(0)
ρn

Πn
m=1c(m)

, (4.24)

where ρ := λ
µ is the traffic load (bits per second) and π(0) =

(
1 +

∑∞
n=1

ρn

Πn
m=1c(m)

)−1. Note

that the insensitivity property for processor sharing queue ensures this distribution also

holds for general file size distributions. In the sequel we let N be a random variable with dis-

tribution π. Let P be random variable denoting the stationary system power consumption.

In steady state, the average system power consumption is given by E[P ] =
∑∞

n=0 p(n)π(n)

where p(n) is a function which captures the overall system power expenditure in state n

and is given by

p(n) = min [fm(c(n)), fs(c(n))] . (4.25)

Note that, from the crossover point r∗ in (4.20), if nq ≤ r∗ then SIMO is more energy-

efficient, and vice versa. Thus,

p(n) =

{
fs(c(n)) if n ≤ n∗

fm(c(n)) if n > n∗
, (4.26)

where n∗ = b r∗
q c. Thus if the number of users is small, e.g., less than or equal to n∗, then

SIMO is selected, otherwise, MIMO.

Let J be a random variable denoting the energy consumed to serve a typical user’s

flow. Then, energy-power equivalence in a stationary system given in Theorem 3 in Chap-

ter 3 gives that

E[J ] =
1
λ

E[P ]. (4.27)

93



Figure 4.3: Flow-level model for uplink transmission in a dynamic system. One user corre-
sponds to one flow.

Fig. 4.4 shows that E[J ] for a system with mode switching decreases faster than that of

MIMO as Nr grows. This result can be also anticipated from (4.20), i.e., r∗ scales with

O(log2Nr). Although practical systems would not be able to employ a large number of

antennas at the BS, we expect that our results provide an insight on the impact of receive

antennas at the BS in designing practical systems, i.e., increasing Nr improves the energy-

saving benefit of mode switching.

4.4 Energy-efficient adaptive MIMO in dynamic user populations

In this section we investigate the mode switching combined with rate selection con-

sidering multi-user scenario in dynamic systems and propose a practical solution to realize

energy-efficient adaptive MIMO systems. Energy-opportunistic scheduling exploiting multi-

mode and multi-user diversity is also proposed to further enhance the energy efficiency.
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4.4.1 Simple mode switching

If SIMO and MIMO use the same transmission rate r, it is straightforward to choose

the best transmission mode; we pick the transmission mode that consumes least power at

rate r, and the selected mode ẑ at rate r is

ẑ(r) = argmin
z∈{m,s}

fz(r). (4.28)

Let us call this simple mode switching, where m and s denote MIMO and SIMO respectively.

4.4.2 Challenges in mode switching and rate selection

In each mode z, however, we need to be careful to choose the transmission rate r

considering the tradeoff between transmit and circuit power consumption. As can be seen

in (4.6) and (4.11), MIMO and SIMO have different transmit and circuit powers, and thus

different energy-optimal transmission rates.
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A dynamic user population makes realizing such energy-delay tradeoffs more chal-

lenging. To better understand the challenges involved, consider a TDMA system supporting

a stationary dynamic load of file transfer requests. If one slows down the uplink transmission

rate to save energy then the number of users in the system may grow, resulting in excess

power consumption associated with users that idle while awaiting transmission. Indeed al-

though ideally idling users turn off their transmission chains, in practice they still consume

power due to leakage current6 [57, 94]. Hence, in a dynamic system, if the transmission

rates are excessively reduced, the number of users that are idling may accumulate resulting

in excessive overall idling power consumption. Consequently, we need to judiciously select

the transmission rate to avoid excessive idling power consumption. This makes tradeoffs

between energy conservation and delay somewhat complex.

4.4.3 Proposed algorithm: CUTE

Next, we describe our proposed rate selection and mode switching algorithm for

multiple users with time varying MIMO channels. This algorithm is named CUTE7, which

stands for Conserving User Terminals’ Energy. The CUTE algorithm resolves two objec-

tives: saving energy and achieving (or exceeding) a target user-perceived throughput. The

underlying principle is to switch between SIMO and MIMO adaptively in accordance to

the number of users, throughput history and channel fluctuations. In a TDMA system, we

assume that time is divided into equal-sized frames. A frame is defined as the time period

during which all users are scheduled once.

Rate selection: Let t denote the frame index. Let vi(t) denote the fraction of

6Idling power consumption depends on the specific power amplifier design. For example, power amplifier
for WiMAX from Analog Devices consumes 2.5 to 25 mW during idling period [94].

7This is an extended version of CUTE introduced in Chapter 3, which was for single-input single-output
(SISO) system, but we use the same name here.
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time allocated to user i, and
∑

i vi(t) = 1. Suppose that n(t) users are sharing the uplink

channel based on round-robin scheduling with weight vi(t). If temporally fair scheduling is

used, vi(t) is simply 1
n(t) . Let ri,z(t) be the transmission rate of user i using transmission

mode z ∈ {m, s}. We specify the maximum possible transmission rate as ci,z(t), which is

determined by the time varying MIMO channel matrix H and the maximum output power.

Since each user is only allocated a fraction vi(t) of the time frame, the maximum achievable

rate of user i is vi(t)ci,z(t). Let qi(t) denote the target rate of user i. Since file transfers

are delay-tolerant, users can specify their own target rate considering their preferences

between energy savings and fast transmission. For example, a user with sufficient residual

battery may prefer fast transmission, but another user with scarce battery may prefer

slow transmission to benefit from the energy-delay tradeoffs. Note that the target rate

should be independent of z, so we do not have a subscript z in qi(t). Finally, we define

an energy-optimal transmission rate as ei,z(t), which captures the circuit and idling power

consumption. Then, the transmission rate ri,z(t) is given by

ri,z(t) = min [max [ei,z(t), qi(t)] , vi(t)ci,z(t)] , (4.29)

which means that we pick up the maximum of the energy-optimal rate and the target rate

(if feasible). The specification of ei,z(t) and qi(t) are given later.

Mode switching: To achieve ri,z(t) on average during one time frame, the instan-

taneous rate should be ri,z(t)/vi(t) because user i only uses a vi(t) fraction of a time frame,

and the corresponding transmission power is fi,z

(
ri,z(t)/vi(t)

)
. So, the energy per bit is

given by
fi,z

(
ri,z(t)/vi(t)

)
ri,z(t)/vi(t)

, and the transmission mode of user i is selected as that with the

least energy per bit, i.e.,

ẑi = argmin
z∈{m,s}

fi,z

(
ri,z(t)/vi(t)

)

ri,z(t)/vi(t)
. (4.30)
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Note that ri,z(t) might be different for MIMO and SIMO because of different ei,z(t), vi(t)

or ci,z(t). If ri,m(t) = ri,s(t), then the rule in (4.30) is identical to simple mode switching

in (4.28). After we determine the mode, the service rate of user i is

ri(t) = ri,ẑi(t). (4.31)

Fig. 4.5 shows the overall operation of the proposed algorithm.

Target rate qi(t): Suppose that user i wants to achieve a throughput qi. Since we

focus on best effort traffic, which is assumed to be tolerant to transmission rate variation,

we do not need to achieve qi instantaneously. Instead, we consider achieving qi on average.

Based on an exponential averaging of ri(t), let us define the average rate r̄i(t) seen by user i

up to time frame t as r̄i(t) = r̄i(t−1)ν+ri(t)(1−ν) where 0 < ν < 1 corresponds to averaging

weight on the past. We define a relaxed target rate qi(t) to satisfy qi = r̄i(t−1)ν+qi(t)(1−ν)

so qi(t) is given by

qi(t) =
qi − r̄i(t− 1)ν

1− ν
, (4.32)

which relaxes the time scale over which the performance target should be met. It is shown

in Chapter 3 that the use of a relaxed target rate enables additional energy savings.

Energy-optimal rate ei,z(t): Given fz(r) and idling power consumption pidle, we

define the energy-optimal transmission rate ei,z(t) as that which minimizes the energy per

bit during a time frame such as

ei,z(t) = argmin
r

[
vi(t)fi,z

(
r/vi(t)

)
+ (1− vi(t)) pidle

]
1
r
, (4.33)

which means that user i consumes fi,z

(
r/vi(t)

)
power for vi(t) fraction of time and pidle

for (1 − vi(t)) fraction of time. Note that pidle is independent of z. The proposed algo-

rithm converges exponentially fast to an equilibrium rate given a fixed vi(t) = 1/n(t) (i.e.,

temporally fair scheduling) and channel gains – the proof is given in Chapter 3.
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4.4.4 Extension to energy-opportunistic scheduling

In order to further reduce transmit energy, CUTE algorithm can be easily extended

to exploit multi-user diversity. In addition to the conventional opportunistic scheduling

that selects the user who experiences the best channel condition [63], we need to consider

the spatial transmission mode and the energy efficiency. The proposed energy-opportunistic

scheduler selects the pair (the user and its transmission mode) that consumes the minimum

energy per bit. To this end we slightly change the definition of the time frame. While in

round-robin scheduling all users are scheduled a fraction vi(t) of each time frame, in energy-

opportunistic scheduling only one user is selected and that user takes whole time frame.

Hence, the length of time frame needs to shrink to a channel coherence time. Assuming

users experience the same average channel gain (small-scale fading) and temporally fair

scheduling, we use the following energy-opportunistic scheduling,

(i∗, ẑi∗) = argmin
(i∈A(t), z∈{m,s})

fi,z

(
ui,z(t)

)

ui,z(t)
(4.34)

where A(t) is a set of all active users and ui,z(t) is defined by

ui,z(t) = min [max [ei,z(t), qi] , ci,z(t)] . (4.35)

Note that vi(t)ci,z(t) in (4.29) is replaced by ci,z(t) because the selected user takes the whole

time frame. In addition, (4.32) is modified to

qi(t) =
n(t)qi − r̄i(t− 1)ν

1− ν
(4.36)

where r̄i(t) is computed during the time frames where user i has been served, and (4.33) is

modified to

ei,z(t) = argmin
r

fi,z

(
r
)

+ (n(t)− 1) pidle

r
. (4.37)
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Figure 4.5: Flow chart of the proposed algorithm.

Finally, the service rate of user i is given by

ri,z(t) = ui,z(t)1{(i,z)=sθ(t)}, (4.38)

where sθ(t) denotes the pair of the scheduled user and the transmission mode; i.e., (i∗, ẑi∗).

4.5 Simulation results

To validate the proposed algorithm, we estimate the average energy consumption

per file transfer versus the average delay using flow-level event-driven simulations [21]. On

each time frame, new user requests arrive according to a Poisson process. Each user requests

exactly one file that is log normally distributed with mean 60 kbyte [21]. Users are assumed

to experience Nr × 2 spatially correlated Rayleigh fading channels. Our simulation param-

eters are η = 0.2, ν = 0.95 for round-robin scheduling and ν = 0 for energy-opportunistic

scheduling, ξ = 0.7, w = 1 MHz, N0 = −114 dBm, g = −124 dB, pmix = 30.3 mW,
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psyn = 50.0 mW, pfilt = 20.0 mW, pidle = 25 mW, pdac = 15.6 mW, and the maximum

output power of power amplifier is 27.5 dBm [4,32,94].8 The duration of a time frame is 5

ms [4], and the number of time frames for the simulation is 1,000,000.

We choose vi(t) = 1
n(t) , i.e., temporally fair scheduling for our flow-level simulations.

Interestingly in a dynamic system, temporally fair scheduling eventually gives more time

resource to users with large files. This is because users with large files remain in the system

for a long while users with small files quickly finish their uploads and leave the system. For

example, suppose that user 1 with 1 Mbyte file and user 2 with 100 kbyte file share the

uplink. As soon as user 2 finishes uploading, user 1 takes the whole time resource.

We plot the energy-delay tradeoff curves for qi = (1, 1
2 , 1

4 , 1
8 , 1

16 , 1
32) of maximum

achievable rate to show how user’s preference on energy savings versus fast transmission

impacts energy-delay tradeoff. The offered load is 30% of the maximum system capacity.

Fig. 4.6 to Fig. 4.9 show simulation results for MIMO with zero forcing receivers.

Fig. 4.6 plots the pair of average delay and average energy per file transfer when circuit

or idling power are not present. Three curves correspond to SIMO with antenna selection,

MIMO with zero forcing receivers, and simple mode switching (SMS). Interestingly, we see

significant energy savings with SMS even though circuit or idling power are not factored.

This is because spatial correlation at the receive antennas makes the channel ill-conditioned

and degrades the energy efficiency of MIMO. To compare the impact of spatial correlation

we also plot the uncorrelated case (dotted lines). We see that energy efficiency of MIMO

is greatly affected by the channel correlation while SIMO and SMS are not. Fig. 4.7 shows

the result when Nr is changed from 2 to 4. Comparing Fig. 4.7 with Fig. 4.6 exhibits that

8Since the value of pfilt in [34] is too low for cellular systems, we adjust it from 2.5 to 20 mW, but the
simulation results are almost the same.
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increasing Nr alleviates the impact of channel correlation on MIMO. We still see that SMS

reduces the energy per file significantly against MIMO, e.g., more than 60% when the delay

is 0.5 sec or larger. A dotted line represents SMS with random antenna selection for SIMO,

which demonstrates additional energy savings by 1 bit antenna selection indicator.

Fig. 4.8 shows the energy-delay curves when circuit and idling power are factored.

As can be seen, SMS saves energy significantly against MIMO. An interesting observation

is that three energy curves of SIMO, MIMO and SMS go up again as the delays grow.

This is because the effect of idling energy emerges when the file transfer delay is long.

Hence, we cannot fully exploit energy-delay tradeoff. This problem is effectively solved

by the proposed algorithm CUTE; CUTE removes the undesirable points, (i.e., long delay

and large energy consumption) by incorporating the energy-optimal transmission rate; even

if the user specifies an excessively low target throughput (and large delay), the proposed

algorithm automatically sends faster than the user’s requirement to save energy. We see

that energy savings of CUTE versus MIMO are significant, e.g., more than 50% at 0.5

second delay. Fig. 4.9 shows the energy-delay curves when Nr is changed from 4 to 8. We

see that MIMO performance is improved because increasing Nr alleviates the impact of

channel correlation. However, still the SMS and CUTE algorithm substantially improve

the energy-delay performance.

Fig. 4.10 illustrates the results for MIMO with ideal receivers when Nr = 2. Com-

paring Fig. 4.6 and Fig. 4.10 shows that the energy-delay performance of MIMO is better

than that of MIMO with zero forcing receivers. Nevertheless, the performance of SMS and

CUTE are almost the same as before, which implies that SIMO plays a major role in energy

saving. In Fig. 4.10, we see that SMS performs better than MIMO even without circuit or

idling power. This gain comes from SIMO antenna selection and MIMO channel correlation.
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Figure 4.6: Energy-delay tradeoff curves without circuit and idling power: zero forcing
receiver for MIMO, Nr = 2, Nt = 2, traffic load ρ = 2.51Mbps, rmax = 8.35Mbps, correlation
coefficient ξ = 0.7 (solid line), ξ = 0 (dotted line).

In Fig. 4.11, we also see that CUTE removes the undesirable delay and energy pairs and

further improves the energy efficiency.

Fig. 4.12 shows the results under the same environment of Fig. 4.11 except that

energy-opportunistic scheduling is adopted instead of round-robin scheduling. Comparing

two figures shows substantial performance improvement. For example, the delay/energy

pair of (0.54 sec, 46.2 mJ) in Fig. 4.11 shifts to (0.37 sec, 35.3 mJ) in Fig. 4.12, i.e., shorter

delay and smaller energy consumption. Furthermore, considering the lower bound of the

energy consumption is determined by the circuit energy consumption 22.2 mJ in the case of

SIMO, the energy-opportunistic scheduling achieves additional 45% reduction of transmit

energy at least.
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Figure 4.7: Energy-delay tradeoff curves without circuit and idling power: zero forcing
receiver for MIMO, Nr = 4, Nt = 2, traffic load ρ = 3.70Mbps, rmax = 12.34Mbps. Dotted
line shows SMS with random antenna selection, i.e, without using 1 bit antenna selection
indicator for SIMO.

4.6 Conclusion

In this chapter, we showed that significant energy-saving is achieved by transmission

mode switching between MIMO and SIMO under dynamic loads. Even though MIMO is

more energy-efficient than SIMO thanks to multiplexing gains, this may not be true when

circuit power is factored. This is because circuit power can be dominant at low transmission

rates, and MIMO consumes more circuit power than SIMO. Mode switching saves more

energy for the case of MIMO with a zero forcing receiver, which occasionally suffers from

ill-conditioned channels. In addition, spatial correlation among receive antennas further

requires the mode switching because the energy efficiency of MIMO is degraded due to

channel correlation. For large Nr we showed that crossover point scales as O(log2Nr)

and thus the benefit of mode switching increases with Nr. To capture the dynamic user

population, we performed flow-level simulations under Rayleigh fading channels. In doing
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Figure 4.8: Energy-delay tradeoff curves with circuit and idling power: zero forcing receiver
for MIMO, Nr = 4, Nt = 2, traffic load ρ = 3.70Mbps, rmax = 12.34Mbps.

this, we considered the effect of idling power consumption, which led us to investigate the

energy-optimal transmission rates, and solved the mode switching problem combined with

rate selection. The proposed algorithm CUTE not only exhibited significant energy savings

but also eliminated the undesirable operating points with excessive delay and/or energy

consumption. Finally, we proposed the energy-opportunistic scheduling to further enhance

the energy efficiency. Investigating the optimality of energy-delay tradeoff in a dynamic

system remains for future research.
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Figure 4.9: Energy-delay tradeoff curves with circuit and idling power: zero forcing receiver
for MIMO, Nr = 8, Nt = 2, traffic load ρ = 4.51Mbps, rmax = 15.04Mbps.
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Figure 4.10: Energy-delay tradeoff curves without circuit and idling power: ideal receiver
for MIMO, Nr = 2, Nt = 2, traffic load ρ = 2.51Mbps, rmax = 8.36Mbps.
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Table 4.1: Notation Summary.

H Nr ×Nt uplink channel matrix
Nr the number of receive antennas at the BS (≥ 2)
Nt the number of transmit antennas at the MT (= 2)
φk the eigenvalue of H∗H, k = 1, 2
N0 noise power
Po output power dissipated into the air from power amplifier
w spectral bandwidth (Hz)
pdc,m circuit power consumption of MIMO
pdc,s circuit power consumption of SIMO
η drain efficiency of power amplifier
Hw complex Gaussian random matrix with mean 0 and variance g
g path loss
r∗ crossover point below which SIMO is more energy-efficient

than MIMO
q target throughput per user
rmax maximum system throughput
λ file arrival rate
µ−1 average file size
ρ :=λ

µ traffic load (bps)
R receive correlation matrix
ξ correlation coefficient
z transmission mode index
i user index
t time frame index
n(t) number of flows (users) at time frame t
vi(t) the fraction of time allocated to user i
ν exponential average parameter
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Figure 4.11: Energy-delay tradeoff curves with circuit and idling power: ideal receiver for
MIMO, Nr = 2, Nt = 2, traffic load ρ = 2.51Mbps, rmax = 8.36Mbps.
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Figure 4.12: Energy-delay tradeoff curves based on energy-opportunistic scheduling (circuit
and idling power included): ideal receiver for MIMO, Nr = 2, Nt = 2, traffic load ρ =
2.51Mbps, rmax = 8.36Mbps, ν = 0.
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Chapter 5

α-Optimal User Association and Cell Load Balancing in
Wireless Networks

5.1 Introduction

While Chapters 2–4 focused on tradeoffs in single cell environments, in Chapter 5

we consider multiple cell scenario. One of the important problems in multi-cell data net-

works is properly associating mobile terminals (MTs) with serving base stations (BSs); this

problem is usually called user association. In selecting the serving BS, two metrics - instan-

taneous achievable rate at the physical layer and cell load - should be considered. Since the

achievable rate is computed from the received signal-to-interference-plus-noise ratio (SINR),

the simplest (and thus widely accepted) rule is to choose the BS that gives the strongest

downlink pilot signal. However, this rule is naive in the sense that it does not consider

either inter-cell interference or cell load balancing.

In the literature, there have been many efforts towards developing user association

rules considering interference avoidance and/or cell load balancing [17, 25, 36, 50, 69, 84, 99,

100,102,108,127]. To avoid interference when frequency is universally reused and inter-cell

interference is severe, centralized approaches have been considered [17, 69, 99, 108]. The

basic idea is to schedule users across cells so that they do not severely interfere with each

other. This is called inter-cell coordinated scheduling. Earlier work on load balancing also

mostly assumed a centralized controller that governs the BSs and the MTs with access

to all the necessary information [25, 36, 50, 84, 127]. However, centralized approaches, for

either interference avoidance and/or load balancing, may require excessive computational
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complexity and message overhead, which increase exponentially in the size of the network.

Such centralized functionality is usually implemented in a server deep in the core network,

which only allows slow adaptation at relatively long time scales. To avoid relying on a

centralized controller, current systems are usually based on fractional frequency reuse or

interference randomization [1, 40]. Distributed cell load balancing is also being considered

as a basic requirement in upcoming standards. For example, IEEE 802.16m WiMAX2

recently included parameters such as cell load and cell type in the system information

broadcast [1, 62].

In this chapter we investigate distributed user association policies. We will not

consider interference avoidance that requires inter-cell coordinated scheduling. So, our

approach is reasonable when fractional frequency reuse or interference randomization are

being used. We focus on developing a theory and algorithms for user association that

adapt to spatially inhomogeneous traffic. We consider stochastic traffic loads where new file

transfers, or equivalently flows, are initiated at random and leave the system after being

served – this is sometimes referred to as flow-level dynamics [17, 21].

Interestingly, even though user association in a dynamic setting can be viewed as

a routing problem among queues, it is still not well understood; most work to date, is ad

hoc in nature, and does not address dynamic systems [16,36,50,84,102,108,112]. The work

in [17, 69, 127] explores flow-level dynamics for load balancing, but assumes a centralized

controller. In particular none of these efforts fully explore the role of load balancing under

spatially inhomogeneous traffic distributions.

One of the main challenges in developing a distributed user association policy is

achieving global performance optimum without relying on a centralized controller, and

doing so to track changes in traffic distributions; for example, day and night have quite
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different spatial traffic distributions as may traffic on an hourly (or faster timescale) basis.

Our proposed mechanism, denoted α-optimal user association, effectively overcomes these

challenges.

Contributions. We highlight the contributions of this chapter as follows. First,

we provide a theoretical framework for user association, specifically focused on load balanc-

ing under spatially inhomogeneous traffic distributions in an infrastructure-based wireless

network. We formulate the user association problem as a convex optimization problem.

Then we show a fixed point optimality condition characterizing the spatial partitions (cell

coverage areas) associated with minimizing a general system-level performance function.

The optimal spatial partition is shown to be unique up to a set of traffic measure zero – this

will be explained in the sequel. The optimality condition reveals many interesting facts,

e.g. : cell loads are not interchangeable, and balancing loads to minimize delay does not

imply equalizing loads at the BSs; Voronoi cells need not be delay optimal even if the traffic

loads are spatially homogeneous; and cell coverage areas need not be contiguous, i.e., can

be fragmented.

Second, we present a distributed algorithm and prove its convergence to a global

optimum irrespective of the initial condition. Our algorithm could in principle track slowly

varying traffic loads. It is also very simple and easily implementable; one need only im-

plement a simple greedy behavior by MTs to achieve a global optimum. The proposed

algorithm supports a family of load balancing objectives as α ranges from 0 to ∞: rate-

optimal (α = 0), throughput-optimal (α ≥ 1), delay-optimal (α = 2), and equalizing BS

loads (α = ∞). Our work is general and applicable to various scenarios. For example, our

model for achievable rate at the physical layer can capture shadowing. We do not assume

the Tx power of BSs are the same, so our work is also applicable to heterogeneous BS
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Figure 5.1: User association problem considering the capacity and the traffic loads.

deployments such as macro, micro, pico and even femto cells. Finally, our user association

rule can easily address handoffs [62].

Third, we consider possible admission control policies when the system cannot be

stabilized or is subject to excessively high loads. The work in [10,11] suggests that admission

control is indeed required for best effort traffic in these circumstances. The optimal policy

that minimizes our generalized system-level performance function plus blocking cost, results

in blocking flows around the boundaries of BS coverage areas. In practice this may not be

desirable, so we propose a policy that admits flows at the cell edge with a fixed probability,

giving a minimum level of “connectivity” to all users.

Organization. This chapter is organized as follows. In Section 5.2, we describe our

system model and assumptions. Section 5.3 is devoted to the distributed algorithm and fixed

point optimality condition of user association under inhomogeneous traffic distribution. We

prove the convergence of our algorithm in Section 5.4. We consider admission control in

Section 5.5, and conclude the chapter in Section 5.6.
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5.2 System Model

5.2.1 Assumptions

We consider an infrastructure based wireless communication system with multiple

base stations. Target systems could be, but are not limited to, WiMAX2 or 3GPP-LTE.

For simplicity, we focus on downlink communications but our method is also applicable

to the uplink. We assume that other cell interference is static, and can be considered as

noise. We consider a region L ∈ R2 which is served by a set of base stations B. Let x ∈ L

denote a location and i ∈ B be a BS index. We assume that file transfer requests follow

an inhomogeneous Poisson point process with arrival rate per unit area λ(x) and file sizes

which are independently distributed with mean 1/µ(x) at location x ∈ L, so the traffic

load density is defined by γ(x) := λ(x)
µ(x) ; we assume γ(x) < ∞ for x ∈ L. This captures

spatial traffic variability. For example, a hot spot can be characterized by a high arrival

rate and/or possibly large file sizes.

Definition 1 (traffic load measure). We define the traffic load measure, m(·), of a Borel

set G as m(G) =
∫
G γ(x)dx.

Assumption 5.2.1 (capacity function). We assume the physical capacity each BS i ∈ B can

deliver to location x, ci(x), is a Borel measurable function and for any η > 0 and i, j ∈ B,

the set

Dij(η) = {x ∈ L|ci(x)/cj(x) = η} (5.1)

has traffic load measure zero, i.e., m(Dij(η)) = 0. Also to avoid unnecessary technicalities

we assume ci(x) > 0 for all i ∈ B and x ∈ L.

As will be seen in the sequel this implies that cell ‘boundaries’ have zero traffic load

measure. Note this model allows for a fairly general but deterministic capacity function.
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Remark 5.2.1. When ci(x) is discrete valued, Dij(η) may not have traffic load measure zero,

so non-trivial tie breaking rules are necessary.

For simplicity, we use Shannon capacity function to model the transmission capacity

that can be achieved from the BS i to a user at location x, i.e.,

ci(x) = log2(1 + SINRi(x)) (5.2)

where SINRi(x) is the received signal to interference plus noise ratio at location x for

the signal from BS i. Since we assumed that interference is randomized and/or fractional

frequency reuse is used to mitigate interference, the sum of total interference power seen by

the MT can be simply treated as another Gaussian-like noise [1,40], and thus SINRi(x) is

given by

SINRi(x) =
Pigi(x)

σ2 + I(x)
(5.3)

where Pi denotes the transmission power of the BS i, gi(x) denotes the total channel gain

from the BS i to the MT at location x, including path loss, shadowing, and others if any.

Note that, however, fast fading is not considered here because the time scale for measuring

gi(x) is much larger. σ2 is noise power and I(x) is the average interference seen by the

MT at location x. It should be noted that ci(x) is location-dependent but not necessarily

determined by the distance from the BS i. For example, ci(x) can be very small in a

shadowed area where gi(x) is very small. Hence, ci(x) can capture shadowing as well.

The system-load density %i(x) is then defined by %i(x) := γ(x)
ci(x) , which denotes the

fraction of time required to deliver traffic load γ(x) from BS i to location x. We assume

that mini %i(x) is finite, i.e., at least one BS has physical capacity to location x ∈ L that is

not arbitrarily close to zero. Our notation is summarized in Table 5.1.
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Table 5.1: Notation Summary

x location in continuous space L

i ∈ B BS index
b :=|B|, the number of the BSs
λ(x) flow arrival rate per unit area
1/µ(x) average file size at x

γ(x) := λ(x)
µ(x) , inhomogeneous traffic load density

ci(x) the physical capacity at x from BS i

%i(x) := γ(x)
ci(x) system-load density (fractional time)

pi(x) the routing probability to BS i at x
p(x) :=(p1(x), · · · , pb(x))
ρi :=

∫
L %i(x)pi(x)dx or

∫
Li

%i(x)dx

ρ := (ρ1, · · · , ρb)
Li the coverage of BS i
P :={L1, · · · , Lb}, the spatial partition
qi(x) the binary-valued routing probability to i at x
F a set of feasible ρ
∂Fo a set of T (ρ), ρ ∈ F

(k) iteration index in the superscript

5.2.2 Problem formulation

Our problem is to find an optimal user association policy considering the physical

capacity and cell load so as to minimize the system cost function given below. In doing this

we introduce a routing function pi(x), which specifies the probability that a flow at location

x is associated with BS i. We will see that for our system model and Assumption 5.2.1 the

optimal routing policy is deterministic, i.e., p∗i (x) ∈ {0, 1}, which also uniquely determines

spatial cell coverage areas {Li}.
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Definition 2 (Feasibility). The set F of feasible BS loads ρ = (ρ1, · · · , ρb), is given by

F =
{

ρ | ρi =
∫

L
%i(x)pi(x)dx, (5.4)

0 ≤ ρi ≤ 1− ε, (5.5)
∑

i

pi(x) = 1, (5.6)

0 ≤ pi(x) ≤ 1,∀i ∈ B and ∀x ∈ L
}

, (5.7)

where ε is an arbitrarily small positive constant.

Lemma 3. The feasible set F is convex.

Proof. Consider two load vectors ρ1 ∈ F and ρ2 ∈ F, ρ1 6= ρ2. Then, there exist associated

p1(x) = (p1
1(x), · · · , p1

b(x)) and p2(x) = (p2
1(x), · · · , p2

b(x)) such that ρ1
i =

∫
%i(x)p1

i (x)dx

and ρ2
i =

∫
%i(x)p2

i (x)dx for all i ∈ B. Now we make ρ as a convex combination of ρ1 and

ρ2, i.e., for θ ∈ [0, 1], ρi = θρ1
i + (1− θ)ρ2

i =
∫

%i(x)[θp1
i (x) + (1− θ)p2

i (x)]dx for all i ∈ B.

Let p(x) be the routing probability associated with ρ. Then, pi(x) = θp1
i (x) + (1− θ)p2

i (x),

and it satisfies (5.4) to (5.7). Hence ρ is feasible, and so F is a convex set.

We formulate our problem as a convex optimization as follows.

Problem 1:

min
ρ

{
φα(ρ) =

∑

i

(1− ρi)1−α

α− 1

∣∣∣ ρ ∈ F

}
(5.8)

where α ≥ 0 is a parameter specifying the desired degree of load balancing. When α = 1

the objective function is defined as
∑

i log( 1
1−ρi

). Problem 1 is said to be feasible if F

is non-empty. Otherwise we shall consider admission control, which will be discussed in

Section 5.5.
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Figure 5.2: Flow-level queueing model for user association problem.

5.2.3 Motivation for the objective function

Optimizing φα(ρ) for the case α = 2 corresponds to minimizing the overall average

flow delay in the system if MTs that are associated with a BS are served by a temporally

fair scheduler. Consider a dynamic system where new flows (or file transfer requests) arrive

randomly (Poisson) into the system and leave after being served. The dynamics of this

system are captured by a flow-level queuing model as shown in Fig. 5.2 which tracks the

arrival and departure processes of users (or flows, file requests), see e.g., [20, 45,59].

Let Ni = (Ni(t), t ≥ 0) denote a random process representing the number of ongo-

ing file transfers served by BS i at time t. Then, if the system is stationary, the stationary

distribution πi of Ni is identical to that of an M/GI/1 multi-class processor sharing sys-

tem [114], and given by πi(ni) = (1 − ρi)ρni
i . Multi-class reflects the fact that users see

different service rates and file sizes based on their locations. We consider infinitely many

classes because we address this problem in a continuous space L. The average number

of flows at BS i is then simply given by E[Ni] = ρi

1−ρi
and total number of flows in L is

E[N ] =
∑

i E[Ni] =
∑

i
ρi

1−ρi
. From Little’s formula, minimizing the average number of

flows is equivalent to minimizing the average delay experienced by a typical flow. Minimiz-

ing
∑

i
ρi

1−ρi
is equivalent to (5.8) when α = 2 because

∑
i

(
ρi

1−ρi
+ 1

)
=

∑
i

1
1−ρi

, which
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does not change the optimization problem.

5.2.4 α-optimal user association

Before discussing the optimal user association and how to achieve it, we first discuss

the implications of this framework. The solution to Problem 1 gives a unified approach

that allows the mobile terminals to select the BS considering signal strength (a user point

of view) and the degree of load balancing (the network point of view). Throughout this

chapter we will see that if Problem 1 is feasible, the optimal decision made by the mobile

terminal located at x is to join BS i(x) given by

i(x) = argmax
j∈B

cj(x)(1− ρ∗j )
α, ∀x ∈ L (5.9)

where ρ∗ = (ρ∗1, · · · , ρ∗b) denotes an optimal load vector, i.e., solution to Problem 1.

Remark 5.2.2 (Tie-breaking). A location x ∈ L is called a cell boundary if a tie of argmax

operation in (5.9) happens at x. Based on Assumption 5.2.1, cell boundaries have traffic

load measure zero; nevertheless, for completeness if a tie happens, we shall hereafter assume

that the MT at such a location chooses the lower indexed BS.

From (5.9) the mobile terminal chooses a BS that provides the highest physical

capacity weighted by a power of BS’s idle time. By a BS’s idle time we refer to the fraction

of time it is inactive, i.e., 1− ρi. Depending on the value of α we categorize α-optimal user

association policies into four cases.

5.2.4.1 Rate-optimal policy

When α = 0, the decision is purely based on user’s perspective, i.e., based on the

physical capacity only (or SINR), and oblivious of network traffic condition. In this case

one can show that α-optimal user association maximizes the arithmetic mean of the BSs’
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idle times.

5.2.4.2 Throughput-optimal policy

As α increases, the BS selection criteria gradually shifts from user’s perspective to

network perspective, and α = 1 is a critical point. This is because φα(ρ) goes to infinity

with loads close to 1 only if α ≥ 1 and ensures a stable behavior as long as Problem 1 is

feasible. When α = 1, it can be shown that the geometric mean of the BSs’ idle time is

maximized.

5.2.4.3 Delay-optimal policy

When α = 2, average file transfer delay is minimized as we have seen. In addition,

one can show that the harmonic mean of the BSs’ idle time is maximized.

5.2.4.4 Equalizing-load policy

As α further increases, the rule is such that more emphasis is placed on the traffic

loads rather than the physical capacity. One can show that as α → ∞, α-optimal user

association minimizes the maximum utilization, i.e., min-max utilization, and furthermore

it equalizes the utilization of all the BSs.

5.3 Distributed Iteration Achieving Optimality

In this section we propose a distributed adaptive user association algorithm that

achieves the global optimum of Problem 1 in an iterative manner. The algorithm is simple;

BSs periodically share their time average loads with MTs, and MTs use this information to

make decisions over these periods. We will show that if spatial loads are temporally station-

ary, the load vector eventually converges to the unique solution of Problem 1, which in turn
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determines spatial coverage areas associated with each BS. However to show convergence

we shall assume the following simplifying assumption.

Assumption 5.3.1 (Separation of time scales). We shall assume the flow arrival and de-

parture process is very fast relative to the period on which BSs advertise their loads. In

particular, once the BSs advertise their load vector, prior to the next update the BSs are able

to measure the new steady state loads associated with MT decisions under the advertised

vector.

5.3.1 Distributed-decision algorithm

The algorithm involves two parts.

Mobile terminal : At the start of the k-th period MTs receive the load vector ρ(k),

e.g., through broadcast control messages from BSs.1 Then, a new flow request for a MT

located at x simply selects the BS i(x) using the deterministic rule given by (5.9) where ρ∗

is replaced by ρ(k). Let L
(k)
i denote the coverage area of BS i at k-th period. Then, a new

spatial partition P(k) = {L(k)
1 , · · · , L

(k)
b } is determined by ρ(k) and given by

L
(k)
i =

{
x ∈ L|i = argmax

j
cj(x)

[
1− ρ

(k)
j

]α
}

, ∀i ∈ B. (5.10)

Base station: During the k-th period BSs measure their average utilizations. Due

to Assumption 5.3.1, the measured utilization converges to Ti(ρ(k)) given by

Ti(ρ(k)) = min

[∫

L
(k)
i

%i(x)dx, 1− ε

]
, ∀i ∈ B. (5.11)

Note that the measured utilization, i.e., average busy fractional time of the BS i cannot

exceed 1. To avoid unnecessary technicalities we introduce an arbitrarily small positive

1IEEE 802.16m facilitates this type of message structure [1, 62].
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constant ε. It can be shown that T (ρ) = {Ti(ρ)} is a continuous mapping defined on

[0, 1− ε]b to itself.

After T (ρ(k)) is measured, BSs compute and advertise their next broadcast message

ρ(k+1) given by

ρ(k+1) = β(k)ρ(k) + (1− β(k))T (ρ(k)) := S(ρ(k)) (5.12)

where β(k) ∈ [0, 1) is an exponential-averaging parameter. It should be noted that T (ρ(k))

corresponds to the average loads seen during the k-th period while ρ(k) is an exponential

average of T (ρ(`)) across periods, i.e., ` = 0, · · · , k − 1 with some initial loads ρ(0) ∈ F.

5.3.2 Fixed point achieves optimality

Note that if ρ(k) converges it must converge to a fixed point of (5.12), i.e., a solution

to

ρ∗ = T (ρ∗). (5.13)

The convergence of (5.12) will be shown in Section 5.4. Below we will show that T (·) has a

unique fixed point ρ∗ corresponding to the optimal load vector associated with Problem 1.

Theorem 7. Suppose that Problem 1 is feasible. Then, T has a unique fixed point which

is the optimal solution to Problem 1. In addition, under Assumption 5.2.1 this fixed point

determines a unique optimal spatial partition P∗ up to a set of traffic measure zero.

Proof. Since T is a continuous mapping defined on compact set [0, 1 − ε]b to itself, by

Brouwer’s fixed point theorem, a solution of T (ρ∗) = ρ∗ must exist. Now we prove that ρ∗

is the optimal solution of Problem 1. Since φα(ρ) is a convex function over a convex set, if

ρ∗ satisfies the following condition

〈∇φα(ρ∗), ∆ρ∗〉 ≥ 0 (5.14)
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for all ρ ∈ F where ∆ρ∗ = ρ− ρ∗, then ρ∗ is the optimal solution of Problem 1.

Let p(x) and p∗(x) be the associated routing probabilities for ρ and ρ∗, respectively.

From (5.10), we have

p∗i (x) = 1

{
i = argmax

j
cj(x)

(
1− ρ∗j

)α

}
, (5.15)

and the inner product is computed such as

〈∇φα(ρ∗), ∆ρ∗〉 =
∑

i

1
(1− ρ∗i )α

(ρi − ρ∗i )

=
∑

i

∫
L %i(x) (pi(x)− p∗i (x)) dx

(1− ρ∗i )α

=
∫

L
γ(x)

[∑

i

pi(x)− p∗i (x)
ci(x)(1− ρ∗i )α

]
dx. (5.16)

Note that
∑

i

pi(x)
ci(x)(1− ρ∗i )α

≥
∑

i

p∗i (x)
ci(x)(1− ρ∗i )α

holds because p∗i (x) in (5.15) is an indicator for the maximizer of cj(x)(1 − ρ∗j )
α, for all

j ∈ B. Hence, 〈∇φα(ρ∗), ∆ρ∗〉 ≥ 0. When α > 0 Problem 1 is strictly convex, and ρ∗

should be unique, and so is the fixed point. When α = 0, the optimal policy selects the

BS that gives the highest ci(x) without considering load. Hence T (ρ) is independent of the

load vector ρ and a constant function, which ensures that ρ∗ is unique.

In addition we can show that ρ∗ has a corresponding spatial partition P∗ = {L∗i , i ∈

B} which is unique up to a set of traffic measure zero. Suppose that there are two such

partitions P∗1 and P∗2 associated with ρ∗, and there exists a set M ⊂ L with non-zero

traffic measure where P∗1 and P∗2 differ, i.e., user associations are different. In particular,

without loss of generality on M, under P∗1, users at those locations associated with BS 1,

while under P∗2 they associate with BS 2. It follows that on M there must be a tie, yet by
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Figure 5.3: Voronoi cells vs Delay-optimal cells (a–b), and spatial distribution of conditional
average delay (dB scale) in each case.

Assumption 5.2.1 such sets have traffic measure zero. This is then a contradiction. It follows

that the induced partition P∗ is unique except on sets which have zero traffic measure.

5.3.3 Examples

We provide four examples to exhibit the properties of α-optimal user association.

Example 11 (Spatial delay smoothing). The first example shows the BS coverage areas and

geographical distribution of average file transfer delays. Five BSs are randomly placed in

1000m × 1000m region. As an example of inhomogeneous traffic loads, a linearly increasing

load in the diagonal direction is considered. The Tx power of all the BSs was normalized

to 1. We assume hereafter that the Tx power is 1, unless otherwise specified, throughout

this chapter. In addition, ci(x) is computed using pathloss exponent 3. Fig. 5.3 (a) shows

the partition when α = 0 (Voronoi cells), and Fig. 5.3 (b) shows the partition when α = 2
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(delay-optimal cells). Fig 5.3 (c) and (d) show the conditional average file transfer delays

(dB scale) at x, which is given by

E[Di|X = x] =
1

λ(x)
%i(x)

ρi

ρi

1− ρi
=

1
µ(x)ci(x)(1− ρi)

in the case of an M/GI/1 multi-class processor sharing system model. For simplicity, we

set 1/µ(x) = 1 and show the average 1-bit transmit time. The benefit of delay-optimal load

balancing is clearly shown in Fig. 5.3. A slight modification of the cell coverages significantly

improves the delay performance, specifically, of the congested cell at the right lower corner.

Example 12 (Voronoi cells vs delay-optimal cells). One might think that Voronoi cells

are delay-optimal for homogeneous traffic loads. However, that is not generally true. We

consider a case where the traffic loads are homogeneous, i.e., λ(x) = λ. Then, from (5.15),

the delay optimal cell boundary `ij for two adjacent cells, Li and Lj is given by

`ij =
{
x|ci(x)(1− ρ∗i )

2 = cj(x)(1− ρ∗j )
2
}

. (5.17)

Since ci(x) = cj(x) at the Voronoi cell boundaries, (5.17) is satisfied when ρ∗i = ρ∗j . How-

ever, two adjacent Voronoi cells do not necessarily have the same loads in their Voronoi cells

so ρ∗i = ρ∗j is not guaranteed. In fact Voronoi cells are delay-optimal only if in addition

Voronoi cells have the same loads. Fig. 5.4 shows an example of delay-optimal cells that

are far from Voronoi cells even though the traffic loads are homogeneous.

Example 13 (Fragmented cells). One might think that coverage areas associated with BSs

should be contiguous. However, optimal BS coverage areas may be fragmented. Fig. 5.5 (a)

shows an example of fragmented delay-optimal cells. For illustrative purposes λ(x) here is

given by a quadratic function as shown in Fig. 5.5 (b). Fragmented cells can exist because

(1−ρ∗i )
α and (1−ρ∗j )

α in (5.17) play a role in determining the boundary. Fig. 5.6 illustrates

ci(x)(1−ρ∗i )
α and cj(x)(1−ρ∗j )

α in 1-D and shows how non-contiguous coverage areas may
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Figure 5.4: Voronoi cells are not delay-optimal even if the traffic loads are homogeneous.

exist depending on ρ∗i and ρ∗j . Fig. 5.5 (c) and (d) show the overall average delay and

utilization converge to the delay-optimal ones when the proposed iteration is used.

Example 14 (Delay for various α). Fig. 5.7 shows the average delay performance for

different α. For illustrative purposes λ(x) is same as Fig. 5.5 (b) and four BSs are randomly

placed on 1000m × 1000m. We exclude the results when α < 1 because they result in

excessive delays. It can be clearly seen that α = 2 minimizes the average delay.

Remark 5.3.1. Utilizations can be estimated by measuring the average number of flows as

well. In an M/GI/1 queue, the average number of flows is given by E[Ni] = ρi

1−ρi
, which in

turn yields ρi = E[Ni]
E[Ni]+1 . Replacing ρi = E[Ni]

E[Ni]+1 into (5.9) when α = 1 gives

i(x) = argmax
j

cj(x)
E[Nj ] + 1

. (5.18)

This rule is a special case of α-optimal user association and was earlier proposed as a

heuristic in [102,108] and [50].

5.4 Convergence of Distributed Iteration

In this section we prove the convergence of the proposed distributed algorithm, i.e.,

the convergence of ρ(k). When α = 0, T (ρ) is constant and (5.12) with β = 0 converges in
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Figure 5.5: Cell coverage areas can be fragmented.

one iteration, so hereafter we focus on the case when α > 0.

5.4.1 Proof of convergence

As seen earlier the proposed algorithm can be interpreted as iteratively applying a

mapping S to an initial load ρ(0). We shall prove the convergence of the loads by first con-

sidering the characteristics of T mapping. If T were a contraction mapping, then iterating T

would guarantee convergence to the unique fixed point associated with the global optimum.

However, T is not necessarily a contraction mapping, in particular when the system is highly

loaded. So the proposed algorithm is a damped version of T , i.e., S(ρ) = βρ + (1− β)T (ρ).

We first show the following two lemmas associated with the T mapping, and then prove the

convergence of the S mapping.

Lemma 4. If ρ ∈ F, then T (ρ) is on the boundary of F that faces the origin, see e.g.,

Fig 5.8.
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Figure 5.6: Illustration of fragmented cell coverage areas.
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Figure 5.7: Average delay obtained for different values of α.

The proof is included in that of Lemma 5.

In the case of two BSs, the fixed point of T can be visualized as shown in Fig. 5.8.

The dashed line denotes a set ∂Fo = {T (ρ)|ρ ∈ F}, i.e., the boundary of F facing the origin.

Since the level sets of φα(ρ) are concave functions (solid lines), ρ∗ is the point where the

level set touches a convex set F. Note that the shape of F and ρ∗ depend on the spatial

traffic distribution.

Remark 5.4.1. From (5.11), T (ρ) is associated with deterministic BS coverage areas, and

the routing probability that specifies T (ρ) is binary, i.e., either 1 or 0. Hence in describing

the routing probability associated with T (ρ) we will use the notation qi(x) ∈ {0, 1} instead
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of pi(x).

Next we show two interesting properties of T mapping. The first is that T (ρ) − ρ

is a descent direction of φα(ρ). The second is that T (ρ)− ρ is a vector that minimizes the

inner product with ∇φα(ρ). This is formally stated in the following lemma.

Lemma 5 (Descent direction). For ρ ∈ F and ρ 6= ρ∗, T (ρ) gives a descent direction at ρ,

i.e.,

〈∇φα(ρ), T (ρ)− ρ〉 < 0.

In addition, T (ρ) is the feasible load vector that minimizes the inner product with the gra-

dient at ρ, i.e.,

T (ρ) = argmin
ρ̂∈F

〈∇φα(ρ), ρ̂− ρ〉. (5.19)

Proof. Let p(x) and q(x) be the routing probability associated with ρ and T (ρ), respectively.

From (5.11) Ti is associated with deterministic cell coverage area Li, and thus its routing

probability qi(x) is given by binary, i.e.,

qi(x) = 1

{
i = argmax

j
cj(x)(1− ρj)α

}
, ∀i ∈ B, ∀x ∈ L, (5.20)

with ties broken in favor of lowest index BS. Let ∆ρ = T (ρ)− ρ. Then, 〈∇φα(ρ), ∆ρ〉 can

be computed as follows:

〈∇φα(ρ),∆ρ〉 =
∑

i

Ti(ρ)− ρi

(1− ρi)α

=
∑

i

∫
L %i(x) (qi(x)− pi(x)) dx

(1− ρi)α

=
∫

L
γ(x)

(∑

i

qi(x)− pi(x)
ci(x)(1− ρi)α

)
dx.
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Figure 5.8: Convergence property of S mapping.

By definition qi(x) satisfies

∑

i

qi(x)− pi(x)
ci(x)(1− ρi)α

≤ 0. (5.21)

Since ρ 6= ρ∗ it must be that p(x) 6= q(x) on a set which has non-zero traffic load measure.

Then, multiplying (5.21) by γ(x) and integrating over L gives 〈∇φα(ρ), ∆ρ〉 < 0.

Furthermore, we have the following property,

qi(x) = argmin
p̂i(x)

∑

i

p̂i(x)− pi(x)
ci(x)(1− ρj)α

, (5.22)

because (5.21) holds for arbitrary pi(x) 6= qi(x). Then, multiplying (5.22) with γ(x) and

integrating (5.22) over L proves (5.19). Finally, (5.19) implies that T (ρ) is on the boundary

of F, and Lemma 4 is proved.

Fig. 5.8 exhibits T (ρ). Suppose that v is the opposite direction of ∇φα(ρ) and

L is the tangent line of the level set at ρ. Then, the feasible vector that maximizes the

inner product with v can be found by drawing a line L′ which is parallel to L and tan-

gent to the boundary ∂Fo; the tangent point is then T (ρ). In Fig. 5.8 we see the case of
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φα(T (ρ)) > φα(ρ), which implies that T (ρ) gives a descent direction, but it does not neces-

sarily result in a monotonic decreasing sequence φα(ρ(k)). Indeed T mapping can overshoot

along the descent direction, in particular when the loads are high. Introducing the weight-

ing parameter β in (5.12) alleviates such overshooting. Fig. 5.8 shows φα(S(ρ)) < φα(ρ) if

S(ρ) is selected between ρ and ρ̄, where ρ̄ is the intersection of T (ρ) − ρ and the level set

at ρ. Based on this we prove the convergence of S iteration in Lemma 6 and Theorem 8.

Lemma 6. For ρ ∈ F and ρ 6= ρ∗, there exists β ∈ [0, 1) such that φα(S(ρ)) < φα(ρ).

Proof. Since S(ρ)− ρ = βρ+(1−β)T (ρ)− ρ = (1−β)(T (ρ)− ρ), S(ρ)− ρ is also a descent

direction. Since the level sets of φα(ρ) are strictly concave functions when α > 0 and S(ρ)

gives a descent direction at ρ, there exists a β ∈ [0, 1) that makes φα(S(ρ)) < φα(ρ).

Theorem 8 (Convergence). Suppose that Problem 1 is feasible. If ρ(0) ∈ F and β(k) is

chosen so that φα(S(ρ(k))) < φα(ρ(k)), then ρ(k+1) = S(ρ(k)) converges to ρ∗.

Proof. φα(ρ(k)) is a monotonically decreasing sequence in k and also lower-bounded by 0,

so φα(ρ(k)) converges. Suppose that φα(ρ(k)) converges to something other than φα(ρ∗).

Then S produces a descent direction again, and by Lemma 6, φα(ρ(k)) can further decrease

in next iteration. This contradicts the convergence assumption and ρ(k) should converge to

ρ∗.

Remark 5.4.2. A fixed β close to 1 generally works well for the convergence. However, the

magnitude of β guaranteeing convergence depends on the network load. When the system

is not congested, even β = 0 can guarantee convergence as T (ρ) may be a contraction

mapping. However, when the system is congested, β needs to be close to 1, e.g., 0.95 to

0.99. The convergence speed also depends on β. When the loads are low, β can be small
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Figure 5.9: Level sets of φα(ρ) when α = 10 (two BSs case).

and exhibits fast convergence. In practice β is a design parameter that should be selected

to balance speed of convergence vs. stable system behavior.

Remark 5.4.3. As stated earlier without proof, the optimal solution equalizes ρi for all i ∈ B

when α = ∞. This can be easily proven when the level sets of φα(ρ) are plotted. Fig. 5.9

shows the level sets when α = 10. In fact the level sets become more and more sharp as α

grows, and thus the optimal utilization where the level set touches F occurs when ρi are all

equal.

5.4.2 The convergence independent of initial condition

So far we assumed ρ(0) ∈ F, and then ρ(k) remains in the feasible set F during the

iteration. One can however show that the iteration converges to the optimal point as long

as ρ(0) ∈ [0, 1− ε]b. This property is important in real implementation because it makes the

algorithm robust to changes in the traffic spatial distribution. As an example, suppose that

at time t = t0, the stationary file arrival process with λ1(x) changes to another stationary

process with λ2(x). However, the optimal solution for λ1(x) may not be in the feasible set
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Figure 5.10: Example of convergence: (a) delay-optimal partition (b) average delay (c)
T (ρ(k)) (d) ρ(k).

associated with λ2(x). Nevertheless, our algorithm would converge to new optimal point.

Using an affine-invariant property of the T mapping given below, we prove the convergence

of the iteration irrespective of the feasibility of the initial condition.

Definition 3 (Affine set of ρ). For ρ ∈ [0, 1 − ε]b, we define an affine set A(ρ) = {ρ̃ ∈

[0, 1− ε]b|ρ̃ = θρ + (1− θ)e, θ ≥ 0} where e = (1, · · · , 1). Hence A is a set of points on the

line connecting ρ and e, see Fig. 5.11.

Lemma 7 (Affine invariance of T ). For ρ ∈ [0, 1− ε]b and ρ̃ ∈ A(ρ), we have T (ρ) = T (ρ̃),

which implies that all the points in the affine set yield the same partition by T . In fact T

is not a one-to-one mapping but many-to-one, and thus non-invertible.

Proof. From (5.10) we see that scaling of (1− ρ) does not change the partition P because

the decision metrics for all BSs are scaled in the same way. Hence T (ρ) = T (ρ̃).

132



Lemma 8. For ρ ∈ [0, 1 − ε]b ∩ Fc, there exist ρ̃ ∈ A(ρ) and β, β̃ ∈ [0, 1) such that

φα(S(ρ̃)) < φα(ρ̃) where S(ρ̃) = β̃ρ̃ + (1− β̃)T (ρ̃), see Fig. 5.11.

Proof. We consider a mirror image of ρ, denoted by ρ̃, such that ρ̃ ∈ F ∩ A(ρ). Then,

T (ρ) = T (ρ̃) by Lemma 7. Note that ρ̃ is not unique. Let L̃ denote a line connecting ρ̃

and T (ρ̃). Similarly, let L denote a line connecting ρ and T (ρ). We pick up S(ρ) with some

β on line L and determine S(ρ̃) as an intersection of L̃ and A(S(ρ)). From Lemma 6, if

β is sufficiently close to 1, which in turn implies β̃ is also sufficiently close to 1, we have

φα(S(ρ̃)) < φα(ρ̃).

Theorem 9. Suppose that Problem 1 is feasible. If ρ(0) ∈ [0, 1− ε]b and β(k) is chosen so

that φα(S(ρ̃(k))) < φα(ρ̃(k)), then ρ(k+1) = S(ρ(k)) converges to ρ∗.

Proof. If β(k) is chosen so that φα(S(ρ̃(k))) < φα(ρ̃(k)), then ρ̃(k) converges to ρ∗ as like

Theorem 8. Since T (ρ(k)) = T (ρ̃(k)), T (ρ(k)) also converge to ρ∗. Since T is a continuous

mapping, ρ(k) also converges to ρ∗.

Example 15. Fig. 5.10 shows the convergence of two different utilizations: T (ρ(k)) and ρ(k).

The iteration can start at any ρ(0) ∈ [0, 1−ε]b, so we simply pick up ρ(0) = (0.5, 0.5, 0.5, 0.5),

which gives Voronoi cells at the first iteration. In this example, traffic loads are chosen so

that Voronoi cells cannot stabilize the system. Hence the delays would be infinite for the

first few iterations, see Fig. 5.10 (b) and (c). Nevertheless, our algorithm converges quickly

to the optimal point. For illustrative purposes λ(x) here is given by a quadratic function

and β = 0.95 is used.

Remark 5.4.4 (Throughput-optimality). The proposed algorithm is throughput-optimal

when α ≥ 1. This is because φα(ρ) goes to infinity when ρi approaches 1. Then, if the sys-

tem can be stabilized, there exists a partition P and corresponding ρ such that φα(ρ) < ∞.
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Figure 5.11: Convergence property starting from arbitrary ρ.

Then, φα(ρ∗) ≤ φα(ρ), i.e., φα(ρ∗) is also finite. Since the algorithm converges to ρ∗ for any

ρ(0) ∈ [0, 1− ε]b, it stabilizes the system if the system can be stabilized.

5.5 Admission Control

So far we have assumed that Problem 1 is feasible, i.e., the system can be stabilized

and Problem 1 has a solution. However, when the traffic loads are too high, the system

may not be stabilizable, or may perform very poorly so admission control is required. In

this section we consider admission policies for such regimes. Our objective is to minimize

a system cost function which includes a cost associated with flow blocking. We assume

that blocking cost is proportional to the volume of the blocked traffic. Since the flow

blocking determines the user’s satisfaction and unsatisfied users may switch operators, such

admission control policies may reflect operators’ business concerns.
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5.5.1 Optimality condition

We assume that the flows that are blocked go to a sink, or null BS. Let B0 denote

a set of all BSs including BS 0, i.e., the null BS and redefine ρ as ρ = (ρ0, ρ1, · · · , ρb). It

should be noted that ρ0 is not a utilization; it is defined as ρ0 :=
∫
L γ(x)p0(x)dx where

p0(x) is the flow blocking probability at location x. Hence, ρ0 can be greater than 1. The

total blocking cost is given by ξρ0 where ξ is a blocking cost parameter per bit. Parallelly

Problem 1, we define a feasible set F0 including ρ0 as

F0 =
{

ρ | ρ0 =
∫

L
γ(x)p0(x)dx,

ρi =
∫

L
%i(x)pi(x)dx, ∀i ∈ B,

0 ≤ ρi ≤ 1− ε, ∀i ∈ B,
∑

i∈B0

pi(x) = 1, ∀x ∈ L,

0 ≤ pi(x) ≤ 1, ∀i ∈ B0 and ∀x ∈ L
}

.

It can be shown that F0 ∈ Rb+1 is a convex set. Our objective function is then given by

Problem 2:

min
ρ

{
φξ

α(ρ) =
∑

i∈B

(1− ρi)(1−α)

α− 1
+ ξρ0

∣∣∣ρ ∈ F0

}
. (5.23)

Note that Problem 2 is a simple convex generalization of Problem 1; if the system can

be stabilized, Problem 2 is equivalent to Problem 1 as ξ goes to infinity. An optimality

condition for this Problem based on which we can develop adaptive admission control and

user association policy is proposed next.

An iterative algorithm to Problem 2 and its behavior are similar to (5.9) to (5.12);

at the start of the k-th period, MTs choose their serving BSs using (5.9) where ρ∗ is replaced
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with ρ(k), and BSs update their load vector using (5.12). However, the BS may block a MT

based on a threshold; so (5.10) is replaced by

L
(k)
i =

{
x ∈ L|i = argmax

j∈B0

ν
(k)
j (x)

}
, ∀i ∈ B0 (5.24)

where

ν
(k)
j (x) =





1
ξ , if j = 0,

cj(x)
(
1− ρ

(k)
j

)α
, if j ∈ B.

(5.25)

Note that a BS blocks flows that do not see good performance as compared to 1/ξ. For

example if α = 1, the expected throughput of a MT at x, i.e., maxj cj(x)(1− ρ
(k)
j ) needs to

exceed 1/ξ in order not to be blocked. The meaning of a threshold 1/ξ depends on α: when

α = 0, 1/ξ is simply the minimum achievable rate; when α = 2, ξ corresponds to a maximum

marginal 1 bit transmit time. In addition to (5.11), we define T0(ρ(k)) :=
∫
L

(k)
0

γ(x)dx, and

T is redefined on [0,M ]×[0, 1−ε]b to itself where M < ∞. One can show that ρ(k) converges

to ρ∗, i.e., a fixed point of T .

Theorem 10. T has a unique fixed point which is the optimal solution to Problem 2.

In addition, under Assumption 5.2.1 this fixed point determines a unique optimal spatial

partition up to a set of traffic measure zero.

Proof. Since T is a continuous mapping defined on compact set to itself, by Brouwer’s fixed

point theorem, a solution of T (ρ∗) = ρ∗ must exist. Now we prove that ρ∗ is the optimal

solution of Problem 2. Since φξ
α(ρ) is a convex function over a convex set, if ρ∗ satisfies the

following condition

〈∇φξ
α(ρ∗), ∆ρ∗〉 ≥ 0 (5.26)

for all ρ ∈ F where ∆ρ∗ = ρ− ρ∗, then ρ∗ is the optimal solution of Problem 2.
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Let p(x) and p∗(x) be the associated routing probabilities for ρ and ρ∗, respectively.

From (5.24), we have

p∗i (x) = 1

{
i = argmax

j
ν∗j (x)

}
, (5.27)

where ν∗(x) is given by (5.25) with the optimal ρ∗. Then, the inner product is computed

such as

〈∇φξ
α(ρ∗), ∆ρ∗〉 =

∑

i∈B0

∂φξ
α

∂ρi
(ρi − ρ∗i )

=
∑

i∈B

∫
L %i(x) (pi(x)− p∗i (x)) dx

(1− ρ∗i )α
+ ξ

∫

L
γ(x)(p0(x)− p∗0(x))dx

=
∫

L
γ(x)

[∑

i∈B

pi(x)− p∗i (x)
ci(x)(1− ρ∗i )α

+ ξ(p0(x)− p∗0(x))

]
dx

=
∫

L
γ(x)

[ ∑

i∈B0

pi(x)− p∗i (x)
ν∗i (x)

]
dx

(a)

≥ 0 (5.28)

where (a) follows from that p∗i (x) is the maximizer of ν∗i (x) for i ∈ B0 (or the minimizer of

their inverses). The uniqueness of the spatial partition can be proven similarly as that of

Problem 1.

It is also reported in [17] that admission control under heavily congested system

blocks the flows around the cell edge. This is because users at the cell edge consume most

of the system resources, i.e., time.

5.5.2 Minimal connectivity

Fig. 5.12 shows an example of admission control policy when the traffic load is

heavy. For illustrative purposes, four BSs are placed at the four corners and one at the
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center. λ(x) is given by a quadratic function as shown in Fig. 5.5 (b) and is such that the

system is not stabilizable. Fig. 5.12 (a) shows the coverage areas of five BSs. As can be

seen, the flows around the cell edge are blocked (bright gray areas). In practice, however,

allowing some level of minimal connectivity might be beneficial from a higher layer QoS

perspective, i.e., the tradeoff between delay and service outage probability; providing such

minimum connectivity will compromise overall delay performance and lead to additional

blocking for customers closer to the BSs. To capture this tradeoff we add the following

constraint

0 ≤ p0(x) ≤ 1− δ (5.29)

in F0 where δ specifies the minimum connectivity probability.

Corollary 2. An optimal user association policy of Problem 2 with additional constraint

(5.29) is still (5.9), but with probability 1− δ the flow is blocked if maxi∈B ci(x)(1− ρ∗i )
α <

1/ξ.

Proof. Since F0 is still a convex set with additional constraint of (5.29), it is sufficent to

show that (5.28) is satisfied when ρ∗ and its associated p∗(x) are given as follows:

if maxi∈B ν∗i (x) ≥ 1
ξ ,

p∗i (x) = 1

{
i = argmax

j∈B
ν∗j (x)

}
, ∀i ∈ B0, (5.30)

otherwise,

p∗0(x) = 1− δ, (5.31)

p∗i (x) = δ × 1

{
i = argmax

j∈B
ν∗j (x)

}
, ∀i ∈ B. (5.32)
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The proof is essentially same to the proof of Theorem 10, and condition (a) in (5.28)

is satisfied when p∗i (x) is chosen as stated in (5.30) to (5.32) because p∗i (x) gives most of its

weight on at most two ν∗i (x) under the constraint of (5.29).

Fig. 5.12 (b) shows the areas where the flows are partially admitted with a fixed

probability (denoted by PA i, i = 1, · · · , 5) and completely admitted (denoted by A i). In

this example δ = 0.5 is used. Comparing Fig. 5.12 (a) and (b) shows that areas where

flows are admitted with probability 1 shrinks as δ increases from 0 to 0.5. In addition,

increasing δ also degrades overall system performance. Fig. 5.12 (c) shows its trade off;

as δ grows, φξ
α(ρ) increases. Hence, δ should be carefully chosen considering the tradeoff

between minimum connectivity and performance degradation.

Remark 5.5.1. The addition of a minimal connectivity (or admission probability) δ irrespec-

tive of location, means once more that the network may not be stabilizable. That is, even if

flows are blocked with probability 1− δ everywhere, there may not exist a user association

policy that stabilizes the remaining load. We envisage the service provider having sufficient

knowledge of the traffic loads on its network to balance the selection of the two parameters

ξ and δ: balancing blocking (and stability) vs. flow-level performance.

5.6 Conclusion

In this chapter we proposed a theoretical (and also practical) framework for user as-

sociation problem in wireless networks. We specifically focused on distributed load balancing

under spatially inhomogeneous traffic distributions and showed the optimality condition of

cell coverage areas that minimizes generalized system performance function. Interestingly,

the optimal user association policy, i.e., routing of flows to appropriate BSs is determinis-

tic even though probabilistic routing is allowed. This deterministic property enables us to
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develop a simple distributed-decision algorithm at the MTs, which is easily implementable

and compliant with upcoming standards, e.g., WiMAX2. Our distributed algorithm was

shown to converge to the global optimum and also robust to changes of traffic distributions.

Finally, our work was extended to the case where system cannot be stabilized due to exces-

sive traffic loads. Under such heavy traffic regimes, we proposed optimal admission control

policies considering tradeoffs between two QoS metrics: average delay vs. maintaining a

minimum level of connectivity to users independent of their location.
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Figure 5.12: Cell coverage areas under admission control. (a) δ = 0 (b) δ = 0.5: each cell
has completely admitted area A i and partially admitted area PA i. (c) tradeoff between δ
and performance.
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Chapter 6

Conclusion and Future Work

6.1 Summary

In this dissertation we studied flow-level performance under stochastic traffic loads

with specific focus on tradeoffs amongst QoS, capacity and energy-efficiency. The emphasis

on flow-level dynamics is driven by the desire to better capture user-perceived performance

in real systems and reveal properties that cannot be observed in static systems.

We first evaluated the tradeoff between QoS and system capacity when integrating

QoS and best effort flows in an opportunistic wireless system. We showed that integration of

QoS and best effort flows results in loss in opportunism, which in turn results in a reduction

of the stability region, degradation in system throughput, and increased file transfer delay.

This occurs because guaranteeing a minimum average bandwidth for a subset of users may

compromise opportunism by requiring that users be scheduled that do not currently have

good channels. These losses were shown to be proportional to opportunistic gains, the

guaranteed bandwidth and the number of QoS flows, but inversely proportional to SNR

under a Rayleigh fading channel model.

Second, we proposed and investigated an approach to exploit dynamic spare capac-

ity in wireless system in order to conserve mobile terminals’ energy. Mobile terminals adapt

their data transmission rate in accordance to the current work utilization; when networks

are underutilized, an energy saving mechanism slows down the transmission rates, but does

so judiciously in order to prevent network congestion. We considered systems with flow-level
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dynamics supporting either real-time or best effort sessions. The energy-optimal transmis-

sion strategy for real-time sessions was determined by solving a convex optimization and

was shown to achieve a substantial energy savings, e.g., more than 50% when the session

blocking probability is 0.1% or less. The case of file transfers proposed to be more subtle be-

cause power backoff changes the system dynamics. We studied energy-efficient transmission

strategies that enable energy-delay tradeoffs. The proposed mechanism achieved a 35–75%

energy savings depending on the load and file transfer target throughput. A key insight,

relative to previous work focusing on static scenarios, is that idling power has a significant

impact on energy-efficiency, while circuit power has limited impact as the load increases.

We then extended our energy saving technique to multiple antenna systems. We

proposed a mechanism to switch between MIMO with two transmit antennas and SIMO in

order to conserve mobile terminals energy. We showed that there exists a crossover point

for the transmission rate, below which SIMO consumes less power than MIMO when circuit

power is included. The crossover point was an increasing function of the circuit power, the

number of receive antennas and channel correlation, all of which increased the potential

energy savings resulting from mode switching. We proposed an adaptive mode switching

algorithm combined with rate selection to maintain users’ target throughput while achieving

energy efficiency. Extensive flow-level simulations under dynamic loads confirmed that the

proposed technique reduced the transmission energy by more than 50% and enabled an

effective tradeoff between file transfer delay and energy conservation.

Finally, we developed a framework for user association in infrastructure-based wire-

less networks, specifically focused on flow-level cell load balancing under spatially inho-

mogeneous traffic distributions. We proved that the optimal load vector that minimizes a

generalized system performance function is the fixed point of a certain mapping. An itera-
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tive distributed adaptive user association policy was proposed and was shown to converge

to a globally optimal policy in steady state. We further addressed admission control policies

for the case where the system is overloaded. For an appropriate system level cost function

the optimal admission control policy blocks all flows at cell’s edges. However, providing

a minimum level of connectivity to all spatial locations might be desirable, to this end a

channel and load dependent random blocking and user association policy were proposed.

6.2 Future Work

Energy-conservation and interference. Our energy saving techniques were

mainly based on TDMA for multiple access scenario. However, we expect our approach

to be suitable for a broader set of multiple access technologies, e.g., beyond TDMA, FDMA

to OFDMA, and extended to multiple cell scenarios. Another interesting observation is that

such energy saving techniques effectively reduce the output power level of mobile terminals

and this in turn might be beneficial to mitigating inter-cell interference. Thus one might

expect to achieve even better energy savings, higher system capacity and/or, in the case of

file transfers, to see an improved energy-delay tradeoffs.

Coexistence of two types of users and energy-conservation. In Chapter 3

we have deliberately partitioned users into two types: real-time sessions and file transfers.

A question then arises as to whether it is possible to consider them joint optimization of

energy and performance criteria. Considering the difficulty of optimizing the case of file

transfers alone, this remains an open question, particularly in a dynamic system. One

possible way is to use time-scale separation. Assuming the time scale of real-time sessions

is much larger than that of file transfers, the state-dependent algorithm for file transfers

and the optimization for real-time sessions can be done at the same time, but “separately”.

This requires dividing the time frame into two subframes, one for real-time and the other
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for file transfers. The ratio between two subframes can be judiciously determined from the

engineering point of view by service providers considering the reliability of real-time sessions

and energy saving benefits of each type. One might try to find the optimal subframe ratio

– we leave this as a problem for further research.

Future work on energy saving for MIMO. So far we have studied the energy

saving technique that is applicable to the single-cell uplink scenario. One possible future

research direction is devising energy efficient uplink MIMO transmissions for multi-cell

scenarios. Specifically, the MT at the cell edge can transmit to only one of the BSs or

transmit simultaneously to multiple BSs to exploit macro diversity. In either case, the

MT also can choose one out of the three possible modes: spatial multiplexing, diversity or

antenna selection as similar to what we proposed in Chapter 4. We will, therefore, design

a new uplink MIMO transmit algorithm to save energy.

Implementing load balancing. There are several factors to consider in imple-

menting our proposed adaptive load balancing algorithm in real systems. First, the load

vector should be estimated, but estimation errors may in turn affect system performance.

Though we have not addressed the impact of estimation errors on the algorithm, this is an

interesting topic for future research. For example, while α = 2 should give delay-optimal

user association, it is not clear using α = 2 would be robust against the estimation errors

because (1− ρi)2 amplifies errors particularly when ρi is close to 1.

Second, we considered the case where synchronous updates of ρ(k) were being made

while assuming a separation of time scales between such updates and the flow-level dynam-

ics; BSs update their utilizations periodically after they see stationary traffic distributions,

and MTs then follow the new association rule. In real systems one need not enforce such

synchronous behavior; the load vector, say ρ(t), can be continuously updated in time. This
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modified algorithm would work well in real systems because our original synchronous update

algorithm achieves optimality when β is close to 1, i.e., when there are no abrupt changes

in ρ(k).

Third, we have not considered the case where users see discrete valued rates. In

real systems the rates are quantized because of a finite number of modulation orders and

code rates. As a consequence, there exists non-zero probability of tie-breaking, which may

require appropriate tie-breaking rule.

Overall the work in this dissertation suggests that the design space of wireless sys-

tems offers a variety of practically interesting tradeoffs one can realize in designing such

systems. The critical challenge however remains appropriately gauging the relative im-

portance of various performance metrics to the application/user and to the provider. For

example, a simple question such as quantifying the impact of blocking request vs offering

poor performance to a population of users is critical in designing an appropriate call ad-

mission policy for best effort flows. Providers have a great concern with losing customers

(churn) due to poor coverage or performance, yet the central question of how the system

should be optimized (if possible) to minimize such losses cannot be resolved until the con-

nection between user perceived performance and choice of (change of) provider behaviors

are understood.
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