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In the near future it is envisaged that there will be a proliferation of disruptive

applications combining sensing capabilities with cutting-edge wireless technologies.

The wide deployment and availability of sensing nodes as well as the large amounts

of data being collected will call for the design of “smarter” ways of gathering and

processing such data. Such networks will be driven by the need to extract the most

relevant data/information that is of interest to possibly multiple agents/nodes, while

optimizing the allocation of the shared limited available resources to adapt to the

heterogeneity of the interests of the different nodes as well as the heterogeneity

in their network conditions. Indeed, the timely sharing of relevant information is

shaping to be crucial in applications where real-time decisions are to be constantly

made. In the automotive industry for example, it is expected that vehicles equipped

with sensing nodes could collaborate by sharing sensed information which would

allow for vehicles with obstructed views to make safer decisions and/or enhance

the capacity of roadways. In the infotainment industry, and more specifically in
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the case of Virtual Reality (VR) applications that require large amounts of data to

be constantly streamed, users at proximity of each other and that are part of the

same VR experience may largely benefit from sharing resources such as edge caches

that could be leveraged for the timely computation and delivery of the needed

data especially in settings where different users may request the same data. The

optimization of information sharing in communication constrained systems will thus

be a fundamental problem underlying such systems. The focus of our work is on the

modeling and analysis of these classes of problems and their implications in practical

sensing systems. This thesis is composed of two main parts. In the first one, we

explore the optimization of applications where timely sharing of information leads

to enhanced safety and more accurate real-time decisions. We investigate novel

metrics and algorithms aimed at achieving a high degree of real-time situational

awareness in applications with distributed sensing nodes. In the second part of this

thesis, we explore the timely sharing of information in a multi-user VR setting that

would provide immersive VR experiences among the users. In particular, we explore

how to support 360◦ VR video applications where the prediction of users’ future

viewings orientation is a major component as well as how to leverage overlaps in

users’ predictions in order to relieve the load on the shared communication network

resources. Such applications face major challenges mainly tied to the heterogeneity

in users’ devices, predictions, network conditions, etc., which we propose to tackle

through the careful design of metrics and policies robust to such heterogeneity and

aimed at enhancing while achieving fair VR performance among the users.
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Chapter 1

Introduction

Timely sharing of information over limited network resources is a key re-

quirement for time-sensitive applications such as autonomous cars/robots, Aug-

mented/Virtual Reality (AR/VR) domains, etc. Wireless systems today are specifi-

cally designed to support timely sensing networks unlocking new potentials for more

accurate and efficient real-time decision-making. The emergence of autonomous

cars/UAVs/robots for instance have leveraged the wide deployment of collaborative

sensing capabilities to improve the exchange of real-time sensed data regarding crit-

ical events which leads to enhanced safety and smoother navigation. Additionally,

the timely delivery of data in multi-user AR/VR settings that has become possible

using high-throughout LTE and 5G wireless technologies has played a major role

in converting such applications to untethered settings largely contributing to the

improvement of the users’ quality of experience.

In this thesis, we study two domains that have largely benefited from timely

sharing of information. The first is pertinent to distributed sensing applications

where sensors exchange information about dynamic environments to achieve a high

level of real-time situational awareness. The second domain pertains to multi-user

VR applications sharing constrained network resources, where large amounts of data

are needed to be streamed to the user’s headsets to guarantee enhanced users’ VR
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experiences.

1.1 Optimizing Timely Sharing of Updates in Collaborative Sens-
ing Systems

In our first research thrust, we investigate three different sensing scenarios.

The first two consist of a fixed set of distributed sensing nodes persistently requesting

timely updates whereas the third consists of a setting where requests for updates

arrive at arbitrary time and the system has only a short period of time to deliver

the updates regarding a time-varying environment. We investigate and propose

new metrics and novel algorithms that capture and allow for the timely sharing of

updates for various time-sensitive applications.

We explore the optimization of applications where a distributed set of nodes/sensors,

e.g., automated vehicles, collaboratively exchange information over a network to

achieve real-time situational-awareness. This involves exploring reasonable prox-

ies for the usefulness of possibly delayed sensor updates and their sensitivity to

the availability of network resources devoted to such exchanges. A key enabler to

timely sharing of updates in such systems is tied to the joint optimization of (1)

the application-level update rates, i.e., how often and when sensors update other

nodes, and (2), the transmission resources allocated to, and resulting delays associ-

ated with, exchanging updates. We explore two different relevant scenarios tied to

such applications, where the first one consists of an ad hoc wireless setting where a

cluster of nodes share information by broadcasting on a single collision domain, and

the second one additionally allows for such clusters to also exchange information via
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a base station. We provide for both settings solutions that characterize the inter-

play between network congestion and situational awareness amongst heterogeneous

nodes.

Collaborative sensing systems have promised to offer major advantages to-

wards enhancing real-time situational awareness in communication constrained set-

tings such as for instance, collaborative sensing amongst vehicles to improve safety-

critical decisions. In such applications, nodes may be modeled as both consumers

and producers of sensed information. Consumers express an interest in information

about particular locations, e.g., obstructed regions and/or road intersections, whilst

producers broadcast updates on what they are currently able to see. To accommo-

date for such consumer-producer information-sharing platforms, we introduce and

explore the optimization of trade-offs between the coverage and the space-time inter-

est weighted average “age” of the information available to consumers. We initially

propose a novel sensor selection approach that’s driven towards selecting a subset of

producers that maximizes the coverage of the consumers preferred regions and min-

imizes the time average age of these regions given that producers provide updates

at a fixed rate. This approach would ensure one meets the consumers’ demand for

updates regarding their regions of interest, and further provides them with frequent

updates about the covered regions. We further propose minimizing the interest

weighted average age achieved by a fixed subset of producers with possibly overlap-

ping coverage by optimizing their update rates. We prove that such problems have

specific underlying properties and are thus amenable to efficient solutions.

Finally, we investigate in this research thrust the setting where time-sensitive
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applications with requests for updates arrive at arbitrary times, are short-lived and

share a limited communication medium. An interesting application of such systems

is one where vehicles driving at different speeds and heading towards an obstructed

intersection may express interest in accurate information on the state of the intersec-

tion right before they reach it and thus generate requests for timely updates about

the same intersection. Such requests have finite time windows in which updates

will be relevant, reflecting the urgency at which they require updates regarding the

time-varying processes they are interested in. The end of the window corresponds

to the time at which a decision is to be made by the request, while the start of the

window models the earliest possible time at which an update could be usefully sent.

Thus, updates scheduled “just in time”, i.e., as near to the end of the window as

possible are deemed to be the best, since they reflect the most timely information

about the environment’s state. This is modelled through a reward depending on

the time difference between the decision point and the last received update. The

scheduling of updates in response to different requests at a time is not always sup-

ported. We hence investigate a setting where a single response to a single request

can be scheduled at a time, which results in a challenging scheduling problem since

not all requests’ decisions can be delivered at the best possible time. With that

in mind, we propose a novel update scheduling policy which maximizes the overall

reward-rate in an adversarial setting and show through numerical evaluations that

it outperforms natural baseline policies.

Part I of this thesis is devoted to exploring the timely sharing of updates in

sensing settings. Results are included in part in [1], [2], [3], and submitted to ACM
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Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems

(MSWiM’23).

1.2 Optimizing Timely Sharing of Data in Multi-User Virtual Re-
ality Settings

In our second research thrust, we investigate the critical importance of timely

sharing of data in time-sensitive applications where multiple users share limited

resources, such as the edge server and wireless network capacity, etc., and where the

main goal is to achieve an overall high but fair quality of experience among such

users.

In particular, we consider a multi-user 360◦ Virtual Reality (VR) video set-

ting where users equipped with VR headsets are served by a nearby edge server

at proximity of a Base Station (BS). We introduce a Statistical Model Predictor

(SMP) based on Deep Recurrent Neural Networks that estimates through recursive

executions a statistical model for a user’s viewing process which captures the dif-

ferent viewing paths that the user may follow during its VR session, along with the

probabilities associated with each path. We propose a 360◦ VR video streaming

approach aimed at achieving robustness to both view prediction error and to net-

work capacity fluctuations which (1), prioritizes the delivery of the low-definition

version of the entire video watched by a user, and (2), enhances the users’ VR ex-

perience through the proactive scheduling and caching of high-definition predicted

video portions through a policy πF that leverages multicasting to a subset of users

with similar predicted views. We evaluate SMP+πF ’s performance against other
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baseline policies and find that it achieves high and fair VR performance across users.

We finally explore through a preliminary analysis the advantages provided by both

high predictability in a typical user’s viewing process and low network capacity

fluctuations on the user’s VR experience.

Part II of this thesis is devoted to exploring the advantages tied to timely

and proactively sharing predicted data to users in a multi-user VR setting. Results

in this part are in preparation for future submission.
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Part I

Optimizing Timely Sharing of
Updates in Sensing Systems
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Chapter 2

Optimizing Networked Situational Awareness

This chapter 1 studies the fundamental characteristics of systems aimed

at achieving real-time situational-awareness based on distributed sensing resources.

In particular we explore the joint selection of sensor update rates/policies and the

allocation of communication resources towards optimizing Networked Situational-

Awareness (NSA).

As an example of such a system, we consider automated vehicles leverag-

ing collaborative sensing. Each car has access to on-board sensing resources, e.g.,

mmwave radar, LIDAR, cameras which provide a local perspective on their dynamic

environment. Unfortunately such sensing modalities are tied to the availability of

Line-of-Sight (LOS) views, meaning that certain key regions may be obstructed,

e.g., a vehicle may not be able to see what is in front of the vehicle ahead of it, or a

vehicle may wish to have redundant points of view of its environment to provide im-

proved tracking and/or detection reliability. To overcome this challenge one might

consider enabling vehicles to engage in collaborative sensing, wherein they exchange

raw (or processed) sensor data with each other towards improving each vehicle’s

1Publications based on this chapter: [1] J. Abou Rahal, G. De Veciana, T. Shimizu, and H. Lu,
“Optimizing networked situational awareness,” in 2019 International Symposium on Modeling and
Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOPT). IEEE, 2019, pp. 1–8.
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situational-awareness [4]. Such an approach would potentially involve sharing sub-

stantial amounts of information amongst nearby vehicles, possibly overloading com-

munication resources. Network congestion or other transmission/processing delays

in turn reduce the timeliness of the shared information, compromising the ability

of automated vehicles to make reliable real-time decisions. Indeed the sensitivity

of collaborative sensing systems to both the latency and capacity of the underlying

communication network has motivated the industry to develop 5G wireless standards

for Ultra-Reliable Low Latency Communications (URLLC).

The challenges of achieving real-time situational awareness through collabo-

rative sensing in a communication constrained setting are many and involve several

fundamental questions, including:

1. How often and when should sensing nodes update their neighbors regarding

their respective environments?

2. What is an appropriate metric (or proxy thereof) to quantify situational-

awareness and help drive the fair allocation of resources?

3. How should network resources be allocated among competing nodes’ updates

so as to optimize the overall nodes’ situational awareness?

In order to study such systems, we require a well-defined metric. As discussed

in more detail below, the Age-of-Information (AoI) has emerged as a simple intuitive

metric: it measures how old relative to current time is the most recently received

sensor update. This is, of course, only loosely tied to situational-awareness. Other
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more traditional metrics are tied to the achievable distortion/error, e.g. the Mean

Square Error (MSE) of an estimated sensor node’s “state” at a remote node. As

we will see, these metrics are roughly aligned and provide the starting point of this

chapter.

2.1 Related Work

There has been substantial interest in modeling systems involving the timely

monitoring of remote processes over a network. The novelty of our work lies in the

study of optimizing networked situational-awareness.

Age-of-Information (AoI), as discussed in [5], was introduced in the early 2010s as

a measure which quantifies the freshness of the information a node has about a

remote node’s state. This metric became popular because it better represents the

information freshness versus traditional latency/delay. Techniques to quantify and

minimize AoI, or simply Age have been extensively studied in previous work, see

examples, [6], [7], [8], [9] and [10]. In particular [7] studies how to optimally manage

the freshness of information updates sent from a single source node to a destination,

via a channel.

The recent work of [11] focuses on what is perhaps a more natural metric

for tracking scenarios. The setting considered involves a single node monitoring a

process (Brownian motion) and sending updates over a network (single queue) to a

remote node which creates its best estimate for the process based on the received

updates. The work poses and solves the problem of determining an optimal update

strategy subject to a constraint on the long term rate of updates, where the cost
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is given by the time average MSE of the remote site’s estimate for the process.

Although this is an extremely simplified model, it gives a fundamental characteri-

zation of the problem at hand, and will serve to motivate our networked problem

formulation.

The general approach proposed in this chapter is based on ideas underlying

resource allocation in today’s communication networks. Specifically work connecting

the allocations achieved by transport protocols such as TCP to utility maximiza-

tion, see e.g., [12], [13] and [14] for an in depth survey. However, our work differs

from this body of work in that it addresses the joint optimization of sensor nodes’

update policies and network resource allocation. As we shall see, the setting involves

congestion constraints that are not easily decomposable but capture the underlying

character of the problem at hand.

2.2 Chapter Contributions and Organization

In this chapter we propose a framework to explore the optimization of

networked situational awareness. We study the joint optimization of both the

application-level update rate, i.e., how often and when sensors update other nodes,

and the transmission resources allocated to, and resulting delays associated with,

sharing nodes’ updates. We first consider a network scenario where nodes share a

single resource, e.g., an ad hoc wireless setting where a cluster of nodes, e.g., platoon

of vehicles, share information by broadcasting on a single collision domain, and find

closed form expressions for both the update and transmission rates associated with

this scenario. We then extend this to a setting where such clusters can in addi-
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tion exchange information via a base station. In this setting we characterize the

optimal solution and develop a natural distributed algorithm based on exchanging

congestion prices associated with sensor nodes’ update rates and associated network

transmission rates. We conclude with a set of preliminary numerical evaluations to

explore the algorithm’s convergence and character of the resources’ allocations.

The chapter is organized as follows. In Section 2.3 we motivate and propose

an appropriate utility function for situational awareness. Section 2.4 describes our

system model for a cluster of nodes broadcasting updates to each other over a shared

ad-hoc wireless network. Section 2.5 expands our model to include clusters of nodes

which can further communicate through network infrastructure. In Section 2.6, we

design a dual decomposition algorithm used to jointly optimize sensor nodes’ update

rates and network transmission rates. Section 2.7 provides preliminary numerical

results and analysis, and finally Section 2.8 concludes the chapter.

2.3 Modeling Networked Situational-Awareness

In this section we develop a simplified model for real-time situational aware-

ness in a collaborative sensing system. We focus on a setting where sensing nodes

are monitoring “independent” processes and updating their peers accordingly.

As a starting point we consider the AoI metric in a simple idealized setting.

Suppose a sensor node periodically generates updates every 1/f seconds and each

one is delayed by exactly d seconds before reaching the remote node. The time-

varying AoI at the remote node is shown in Fig.2.1.

This model is idealized in that (1) updates are generated periodically while
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Figure 2.1: Transition from AoI to situational awareness metric

in practice they could have been generated opportunistically, e.g. based on the

degree of change in the underlying process, and (2) network delays are assumed to

be fixed, and (3) the focus is on AoI being the appropriate metric. The time average

AoI for this idealized process is given by

AoI =
1

2f
+ d. (2.1)

To address these limitations, let us consider the stylized result in [11]. The

setting is as follows: a sensing node monitors and samples from a Brownian Mo-

tion (Wt, t ≥ 0) with variance σ2. This nodes updates another remote node of

the observed processes’ changing state, which it does by transmitting an update

over a communication link. The updates are known to have i.i.d. service times

(Yi, i = 1, 2, . . .) with the same distribution as a random variable Y . Further the

sensor node is aware of the state of the link, i.e., busy or not. The key result de-

veloped in [11] is a characterization of an optimal update strategy, i.e., one that

minimizes the time average MSE at the remote node subject to a constraint f on

the long term frequency of updates. The optimal updating policy is parameterized

by a parameter θ and can be described as follows. The optimal policy generates
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updates at times (Si, i = 1, 2 . . .), given by

Si+1 = inf{t ≥ Si + Yi : |Wt −WSi | ≥
√
θ}, (2.2)

i.e., the policy waits until the previous update was successfully transmitted, and

then sends an update once the change in the process exceeds
√
θ. The optimal θ is

characterized by the following theorem.

Theorem 2.3.1 [11] For a given constraint on the update rate f and distribution

for the i.i.d. packet service times Y , the optimal θ is given by the solution to the

following equation

E[max(θ,W 2
Y )] = max

[
σ2

f
,
E[max(θ2,W 4

Y )]

2θ

]
, (2.3)

where WY corresponds to the distribution of a Brownian Motion (Wt, t ≥ 0) sampled

at a random time Y. The optimal MSE is then given by

MSEopt =
E[max(θ2,W 4

Y )]

6E[max(θ,W 2
Y )]

+ σ2E[Y ]. (2.4)

This explicit elegant characterization of an optimal updating policy captures

both the role of variability of the observed process as well as the impact of packet

delays. Also underlying this result is the basic observation that the sensor node

should never generate an update when the channel is busy, as the update would

simply wait in the queue for transmission. The limitations of this result should

also be clear. In particular only a single sensor node is considered with a dedicated

transmission link, along with a possibly artificial constraint on the long-term rate

of updates f the node can generate.
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Suppose that the update service times/delays are fixed to d, then one can

show after some somewhat intricate approximations that the optimal threshold θ

and associated MSE in Theorem 2.3.1 are roughly

θ ≈ σ2

f
and MSEopt ≈ σ2

( 1

6f
+ d
)
. (2.5)

Note that this update threshold θ matches the optimal sampling threshold

derived in [15] for the case where d = 0. These approximate results make explicit

the role played by various system parameters. As can be seen, the achievable MSE

is lower bounded by σ2d, i.e., no matter how high the sensor update rate f is, it

can not overcome the MSE arising due to the delay (service time) d to communicate

with the remote node. This brings into focus the critical role that latency plays in

networks supporting real-time situational awareness. Still as the allowable update

rate f increases the optimal updating policy can make the MSE close to this lower

bound. Indeed the reduction in MSE is inversely proportional to f .

Note that for the AoI model discussed earlier, if the observed process were a Brown-

ian Motion, the MSE is equal to σ2×AoI. Following from Eq.(2.1), we have that the

MSE = σ2
(

1
2f + d

)
. Thus the advantage of having an opportunistic update policy

as exhibited in Eq.(2.2), versus a periodic updating policy with the same frequency

of updates is the change in the factor multiplying 1/f from 1
2 to 1

6 .

Motivated by the above results, we propose the following parametric model

for situational-awareness. Suppose that a sensor update has a size ν bits, and

suppose that the sensor has a dedicated link with capacity r bps. Then the delay

d to transmit an update is given by d = ν
r . Also note that if the update rate is f
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(Hz), then the associated average bit rate ρ (bps) generated by the sensor node is

given by ρ = fν. With these new variables the approximate optimal MSE given in

Eq.(2.5) is

MSEopt =

(
σ2ν

6

)
1

ρ
+ (σ2ν)

1

r
,

with a similar functional result for AoI. This captures the impact of allowing an

increased update rate ρ and/or provisioning a link with an increased capacity r on

the MSE/AoI. Note that ρ ≤ r.

Based on these observations we propose the following proxy metric that

captures the situational-awareness cost.

Definition 2.3.1 Given an update data rate ρ (bps) and link transmission rate r

(bps), we model the Situational Awareness Error (SAE) of a node, s(., .) as follows:

s(ρ, r) =
a

ρ
+

b

r
, (2.6)

where b ≥ a > 0 are constants.

Remark 2.3.1 Through the parameters a and b, this model can capture the salient

characteristics of the underlying system. For example, the variability of the underly-

ing process (captured by σ2) that a sensor node is monitoring would scale a, b. Also,

different types of sensor nodes, e.g. video/imaging, LIDAR, might generate updates

of different sizes, which would also scale a, b. Finally, the relative values of a, b

model the nature of the update policy being used, e.g., deterministic, opportunistic,

or other.
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Figure 2.2: System model: sensor update process and SAE model

The figure below exhibits the “on/off” dynamics of the dedicated transmis-

sion link. A simple Corollary to the result developed to prove Theorem 2.3.1 gives

the characteristics of this process.

Corollary 2.3.1 Under the optimal policy given in both Theorem 2.3.1 and Eq.(2.2)

for an update rate constraint f and deterministic packet service times d = ν/r, the

stationary dynamics of the communication link correspond to an “on/off” alternating

renewal process which has an average “on/off” cycle time of 1/f and “on” period

of length d during which the link transmits at rate r. Whence the fraction of time

the link is busy is ρ/r < 1.

In the next section, we shall leverage this basic result to study a more general

setting.

2.4 NSA Optimization on a Shared Broadcast Network

As a first step, we consider a cluster of sensor nodes N sharing a single

broadcast resource (single collision domain). Each node broadcasts updates to all

the other nodes. Since different nodes within the cluster are located in different

positions, the broadcast rate, µn of each node n ∈ N may be different, e.g., a node
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more centrally located within the cluster might have a higher broadcast rate .

Below we consider the problem of jointly optimizing the sensor nodes’ update

rates ρ = (ρn : n ∈ N ) where ρn = fnνn and transmission rates r = (rn : n ∈ N ).

To that end, we define an appropriate cost function along with appropriate capacity

constraints.

Objective function. The situational awareness error SAE of node n is

modeled as

sn(ρn, rn) =
an
ρn

+
bn
rn

,

where bn ≥ an > 0, ∀n ∈ N . The network’s overall SAE is then given by

g(ρ, r) =
∑
n∈N

sn(ρn, rn) =
∑
n∈N

an
ρn

+
bn
rn

.

As should be clear, increasing a sensor node’s update rate ρn and/or transmission

rate rn decreases the SAE as seen at the nodes that it is updating, leading to

an improved network situational awareness. Further, note that the overall SAE is

convex encoding a degree of fairness across the SAE’s of the cluster’s nodes.

Congestion constraints. As seen in Corollary 2.3.1, if nodes operate on

dedicated links, each will act as a stationary alternating renewal process. At any

random time, sensor node n could be “on” with probability ρn/rn and transmitting

at rate rn. Otherwise it is “off”. We model the state of a sensor node n at a

typical time via a Bernoulli random variable Xn ∼ Bernoulli (ρn/rn), where ρn/rn

represents the fraction of time the link is busy sending node n’s update, as described

in Corollary 2.3.1. We shall further make the following assumption.
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Assumption 2.4.1 (Independence of sensor nodes’ processes). We shall assume

that the sensor nodes’ states are independent, e.g., the underlying processes they

observe are independent.

In our model, if at some point in time a sensor node is transmitting at rate

rn, it will require a fraction of the shared broadcast resource, rn/µn, and if all

the nodes were active, to ensure all the nodes’ transmissions can be supported, we

require that ∑
n∈N

rn
µn
≤ 1.

However since not all the nodes are active all the time, we will impose a relaxed

chance constraint [16] which ensures that with high probability, 1 − ϵ (for ϵ very

small), the sensor nodes’ update transmissions can be supported. In particular, we

require

P

(∑
n∈N

Xn
rn
µn

> 1

)
< ϵ. (2.7)

Using the Hoeffding bound, one can show (see Appendix A.1) that a sufficient

condition for the above constraint to be satisfied, is given in the following Lemma.

Lemma 2.4.1 Under Assumption 2.4.1, the network congestion constraint Eq.(2.7)

is satisfied if

∑
n∈N

ρn
µn

+ ω ∥ r ∥µ,2≤ 1, (2.8)

where ω =
√
−1

2 ln(ϵ) and ∥ x ∥µ,q:=

(∑
n∈N

(
xn
µn

)q) 1
q

which for q ≥ 1 is a

weighted, by positive reciprocals of µ−1, norm.
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Given Lemma 2.4.1, one can formulate the following optimization problem

of NSA, and solve for both the update and transmission rates.

Problem 2.4.1 (NSA optimization - single shared resource)

min
ρ,r
{g(ρ, r) |

∑
n∈N

ρn
µn

+ ω ∥ r ∥µ,2≤ 1, ρ ≤ r ≤ µ}. (2.9)

Proposition 2.4.1 The NSA optimization Problem 2.4.1 is convex with a unique

solution, which for ϵ small enough, e.g., e−72 ≤ ϵ ≤ e−2, is given by:

ρ∗n =
αn

∥ α ∥1 +
√
ω ∥ β ∥ 4

3

µn, r∗n =
1√
ω

βn
αn

(∥ β ∥ 4
3

βn

) 1
3

ρ∗n,

for all n ∈ N , and where α = (αn =
√

an
µn

: n ∈ N ) and β = (βn =
√

bn
µn

: n ∈ N ).

Proposition 2.4.1 is proven in Appendix A.2.

The relatively simple closed form given above, is obtained by relaxing the constraint

ρ ≤ r ≤ µ and verifying that under the congestion constraint and the assumption

that both bn ≥ an > 0, ∀n ∈ N , and 0 < ω ≤ 1, it will be satisfied.

Remark 2.4.1 To get further insight on the NSA problem, consider the homoge-

neous case, where all the nodes share the same an, bn parameters and broadcast

capacity µ. In this case the optimal sensor node update and transmission rates are

given by

ρ∗ =

(
1

1 +
√
ω
√

b
aN

− 1
4

)
µ

N
and r∗ =

√
b

a

1√
ω
N

1
4 ρ∗,

where N = |N |.
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Figure 2.3: Infrastructure assisted intra-cluster update exchanges.

As can be seen, for fixed µ, as N grows, the update rate ρ∗ behaves as

µ
N while the optimal transmission rate r∗ behaves as 1

N
3
4
. Intuitively, we might

argue that as the number of sensing nodes in the network increases, optimizing

NSA requires that the probability of each node staying “on” decreases as 1

N
1
4
, while

the transmission rate allocated to each user experiences a less stringent decrease,

i.e., as 1

N
3
4
, i.e., each user still transmits at a high rate to reduce update delays.

Another interesting setting is one where the broadcast capacity scales in N , i.e.,

µ = κN , where κ > 0 is a constant. In that case, ρ∗ converges to κ, while r∗ increases

on the order of N
1
4 . Intuitively, when the broadcast capacity scales linearly, each

node can increase its transmission rate, which reduces both its probability of being

‘on’ and the update delay.

2.5 NSA Optimization for Infrastructure Assisted Inter-Cluster
Communication

In this section, we extend our previous model to include multiple clusters

which can further exchange updates via a base station. The setting is exhibited in

Fig. 2.3.
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In particular the sensor nodes distribute their updates as follows: (1) Intra-

Cluster broadcast : Sensor nodes within the same cluster communicate among them-

selves via a local broadcast. (2) Inter-Cluster broadcast : Clusters can share updates

with each other by transmitting up to the BS which in turn can broadcast them

down to other clusters. We will assume that inter-cluster and intra-cluster com-

munications do not interfere with each other, i.e., operate on orthogonal frequency

bands, and that clustering is such that inter-cluster broadcasts do not interfere with

each other.

Let C denote a set of clusters, and Nc be the set of nodes in cluster c ∈ C.

We provide further discussion regarding the network under consideration.

• Broadcasting is inherently unreliable, thus the intra-cluster and base station

inter-cluster broadcast could provide an additional level of reliability for intra-

cluster update sharing.

• The uplink transmissions to the base station could be performed in various

ways. One possibility is that each sensing node directly sends the update to

the base station. Another one is that each cluster selects a cluster head which

is in charge of forwarding the updates generated by any node in the cluster

to the base station. The cluster head might be selected to have either a good

connectivity to the nodes in the cluster and/or a good uplink capacity to the

BS, thus reducing congestion on the BS uplink.

• For base station downlink transmissions, one could consider either an omni-

directional broadcast, where all the nodes in the network receive the update
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forwarded from the BS instantaneously, or, one could assume that the BS

uses a directional type of broadcasting, where it directs its broadcast to a

single cluster, one cluster at a time. This might be necessary to ensure better

reliability and higher transmission rates from the BS to the nodes. Doing so

would require the base station to use several transmissions on the downlink

(in fact, one for each cluster).

While the above options can be handled in our framework, below we proceed

with a simple and straightforward version: each node n ∈ Nc shares its update to

all the other nodes in the network. The nodes within the same cluster receive the

update via both intra-cluster and base station level broadcast. The nodes in other

clusters receive the update via the BS broadcast alone. Each node sends its updates

to the BS which then broadcasts them to all the nodes in N . We also make the

following assumption:

Assumption 2.5.1 (Cut-through assumption). We assume that BS uplink/downlink

relaying of an update incurs no relaying delay.

Below we consider the problem of jointly optimizing the sensor nodes’ update rates

ρ = (ρn : n ∈ N ) and transmission rates r = (rn : n ∈ N ). We shall also define

ρc = (ρn : n ∈ Nc) and rc = (rn : n ∈ Nc).

The overall cost function SAE, g(ρ, r), is the same as that defined earlier.

We denote the intra-cluster broadcast rate of a sensor node n to the nodes in its

cluster by µa
n, and the uplink/dowlink peak rates from/to particular nodes by µu

n

and µd
n, respectively. We let µa = (µa

n : n ∈ N ). Similarly µu = (µu
n : n ∈ N ), and
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µd = (µd
n : n ∈ N ). We assume that µd

n is the same for all the nodes and hence

equal to µd.

Congestion constraints. As seen in Corollary 2.3.1, if nodes operate in

isolation, each will act as a stationary alternating renewal process.

In our infrastructure assisted network model, if at some point in time, node

n ∈ Nc is transmitting an update at rate rn, three main constraints need to be

satisfied. The first one is dictated by each cluster’s resources: each node will require

a fraction of its cluster’s resources, given by rn/µ
a
n, and to ensure all the nodes’

transmissions can be supported, we require that

∑
n∈Nc

rn
µa
n

≤ 1.

The second and third constraints are set to avoid congestion at the base station,

i.e. the activity at the base station (which is receiving/broadcasting updates) must

be supported for all nodes n ∈ N on both the uplink and the downlink, and must

satisfy ∑
n∈N

rn
µu
n

≤ 1 and
∑
n∈N

rn
µd
≤ 1.

However, since not all nodes are active at the same time, we shall, once

again, impose a chance constraint [16] which ensures with high probability that the

sensor node’s update transmissions can be supported. In particular, we require that,

P

( ∑
n∈Nc

Xn
rn
µa
n

> 1

)
< ϵ, ∀c ∈ C,
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P

(∑
n∈N

Xn
rn
µu
n

> 1

)
< ϵ and P

(∑
n∈N

Xn
rn
µd

> 1

)
< ϵ,

where Xn ∼ Bernoulli (ρn/rn) for all n ∈ N . As shown in Lemma 2.4.1, sufficient

constraints for these to be satisfied can be found based on the following norms:√√√√∑
n∈Nc

(
rn
µa
n

)2

=∥ rc ∥µa,2,

√√√√∑
n∈N

(
rn
µu
n

)2

=∥ r ∥µu,2 and

√√√√∑
n∈N

(
rn
µd

)2

=∥ r ∥µd,2 .

The joint NSA optimization problem with infrastructure assistance can be formu-

lated as follows.

Problem 2.5.1 (NSA optimization for infrastructure assisted setting).

min
ρ,r
{g(ρ, r) |

∑
n∈Nc

ρn
µn

+ ω ∥ rc ∥µa,2≤ 1, ∀c ∈ C,

∑
n∈N

ρn
µu
n

+ ω ∥ r ∥µu,2≤ 1,

∑
n∈N

ρn
µd

+ ω ∥ r ∥µd,2≤ 1}.

Proposition 2.5.1 Under Assumption 2.4.1, Problem 2.5.1 is convex with a unique

solution characterized by first order optimality conditions which gives the following

solution: For all n ∈ N ,

ρ∗n =

√
an

λa
c

µa
n
+

λu
b

µu
n
+

λd
b

µd

, (2.10)

r∗n = 3

√√√√ bn

ω
( λa

c
(µa

n)
2∥rc∥µa,2

+
λu
b

(µu
n)

2∥r∥µu,2
+

λd
b

(µd)2∥r∥
µd,2

) , (2.11)
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where λa
c , c ∈ C, are Lagrange multipliers associated with the intra-cluster conges-

tion constraint and λu
b and λd

b are associated with BS uplink and downlink congestion

constraints, respectively.

Remark 2.5.1 An interesting observation is that while ρ∗n depends only on conges-

tion prices, r∗n depends also on other nodes’ transmission rates.

In the next section, we propose a distributed algorithm to determine the

optimal joint sensor node update and transmission rates’ allocation across the sensor

nodes.

2.6 NSA Algorithm

The algorithm works as follows. Each cluster of nodes c ∈ C updates its

Lagrange multiplier λa
c which we refer to as cluster price, while the base station

updates the Lagrange multipliers, λu
b and λd

b corresponding to the uplink/downlink

prices, respectively. Meanwhile each sensor node n ∈ N responds by updating its

sensor update and transmission rates ρn and rn, respectively.

Suppose that each cluster elects a single node to serve as the cluster head.

Its main role will be to compute the cluster price and establish a direct connection

to exchange price information with the base station. λa
c is updated at the cluster

head, while λu
b and λd

b are updated at the base station. λu
b and λd

b are shared with

the cluster heads, who forward λa
c , λ

u
b and λd

b to the corresponding clusters’ nodes.

The optimal form for the sensor node update and transmission rates given in Eq.
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(2.10) and (2.11) can be re-written as

ρn =

√
an
pn

and rn = 3

√
bn
ωqn

, (2.12)

where pn and qn can be interpreted as nodal update rate price and nodal transmission

rate price given respectively by

pn =
λa
c

µa
n

+
λu
b

µu
n

+
λd
b

µd
,

qn =
1

(µa
n)

2

λa
c

γac
+

1

(µu
n)

2

λu
b

γub
+

1

(µd)2
λd
b

γdb
,

and are computed once the Lagrange multipliers are known.

Remark 2.6.1 We shall assume that the cluster head knows the broadcast rates µa
n

of all n ∈ Nc, while the base station knows the uplink/downlink peak rates, µu
n and

µb respectively, of all n ∈ N .

We summarize the algorithm as follows. Each node computes pn and sends

an
pn

to the cluster head which forwards it to the base station. The cluster head

computes a cluster quantity γac that we refer to as the “spare capacity” and which

is defined as follows,

γac =
1

ω
max

[
1−

∑
n∈Nc

1

µa
n

√
an
pn

, δ

]
,

for some small δ > 0. The base station uses the quantity an
pn

to compute up-

link/downlink quantities, γub and γdb respectively, also referred to as BS’s uplink and

downlink “spare capacity”, and defined as,

γub =
1

ω
max

[
1−

∑
n∈N

1

µu
n

√
an
pn

, δ

]
,
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γdb =
1

ω
max

[
1−

∑
n∈N

1

µd

√
an
pn

, δ

]
.

Note that γac depends on the update rate prices of all the nodes in cluster c, while γub

and γdb depend on the update rate prices of all the nodes in sharing the BS. Given

the nodal update prices and spare capacities, each cluster head node determines a

cluster price on transmission rate given by λa
c/γ

a
c , while the base station determines

the uplink/downlink rate transmission prices given by λu
b /γ

u
b and λd

b/γ
d
b , and then

shares them with the corresponding clusters’ heads. Note that the higher the spare

capacity the lower the price of adopting a higher transmission rate for sensor nodes

updates at node n. The transmissions’ prices are then distributed from the cluster

head amongst the cluster nodes. Each node in the network can now compute their

own qn. At this point, given that each node have their pn and qn, they update their

ρn and rn according to Eq.(2.12), then send them to the corresponding cluster heads

who share them with the BS. Cluster heads update their respective prices according

to

λa
c (t+ 1) = [λa

c (t)− κ(1−
∑
n∈Nc

ρn(t)

µa
n

− ω ∥ rc(t) ∥µa,2)]
+,

where [x]+ = max[x, 0]. Similarly, base station prices are updated at each time step

(at the base station itself), as follows

λu
b (t+ 1) = [λu

b (t)− κ(1−
∑
n∈N

ρn(t)

µu
n

− ω ∥ r(t) ∥µu,2)]
+,

λd
b(t+ 1) = [λd

b(t)− κ(1−
∑
n∈N

ρn(t)

µd
− ω ∥ r(t) ∥µd,2)]

+.
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The proposed algorithm is based on the natural dual decomposition approach [12]

and [14], but accounts for the non-linear coupling on congested network resources.

A such algorithm will naturally converge to the appropriate Lagrange multipliers,

i.e., prices associated with the problem at hand.

2.7 Numerical Results

We conducted various preliminary numerical evaluations to explore the al-

gorithm’s convergence and character of the resources’ allocations. We considered a

network with three clusters of sensing nodes sharing a single base station.

2.7.1 Convergence of the NSA Algorithm

We first show that the NSA algorithm we designed in Section 2.5 converges

fairly quickly. The representative results shown in Fig.2.4 correspond to the case

where there are 3 clusters, each having 5 nodes. The intra-cluster broadcast capacity

of each node is 100 Mbps. The uplink capacity from each node to the base station

is also 100 Mbps, while the downlink capacity is 100 Mbps. Under homogeneous

assumptions (i.e. model parameters an and bn are the same across all clusters in

the network, where an = 1 and bn = 6), we exhibit the convergence of the resource

allocations for a single node. We note that this algorithm can in principle adapt to

changing network capacities and topologies.
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Figure 2.5: Update and transmission rates vs cluster size.

Figure 2.4: Convergence of our designed NSA algorithm.

2.7.2 Increasing the cluster size

Next, we studied how the nodes’ update and transmission rates vary as a

function of the number of sensing nodes (assuming again homogeneous conditions).

For this purpose, we increase the number of nodes per cluster, N, from 2 to 10.

The intra-cluster broadcast rate of each node is 100 Mbps, while the uplink and

downlink capacities (from each node to BS and vice-versa) are both 50 Mbps. We

plot below the optimal nodal update and transmission rates, as well as the overall

network SAE. As expected, the transmission and propagation rates decrease as N

increases.
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Figure 2.6: Heterogeneous Setting: Leading cluster has higher SAE sensitivity.

2.7.3 Cluster heterogeneity in nodal SAE

Another feature we explored is the impact of giving a higher priority (or

SAE sensitivity) to all the nodes in a particular cluster. This time we considered

a network with two clusters, each having five nodes. We assign a higher sensitivity

(higher weight) to all the nodes of one cluster (say Cluster 1), while keeping the

same weight to all the nodes of Cluster 2. An example of this scenario is when a

cluster of cars is moving faster than another one. We implement this scenario as

follows: Starting with an = 1 and bn = 6 for all nodes in Cluster 1, we multiply

them by some constant, say ζ, which we keep increasing. We then plot the rates for

both clusters in function of the constant. All capacities are 100 Mbps. As expected,

more rate is allocated to Cluster 1, showing that NSA optimization requires more

updates and faster transmission rates to these nodes.

2.7.4 Increasing the imbalance of nodes across clusters

Finally, we are interested in understanding the effect of increasing the num-

ber of nodes in one of the clusters. For this purpose, we considered a network with
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Figure 2.7: Clusters with imbalanced number of nodes.

two clusters, 1 and 2, and a single base station. The number of nodes in Cluster

1 is kept fixed at 5, while we vary the number of nodes in Cluster 2 from 2 to 10.

Below, we plot the resulting update and transmission rates, as well as the overall

network SAE. We observe that our algorithm achieves fairness, which results in an

equal allocation of resources among all nodes.

2.8 Chapter conclusion

We proposed in this chapter a framework to study distributed collaborative

sensing of a dynamic environment based on sharing information over limited network

resources. A proposed model for situational awareness, SAE, was introduced. It is

dependent on both the environment variability and the sensor heterogeneity. The

main goal was to establish key trade-offs among sensors’ update and transmission

rates.

We considered first a simple setting where a cluster of nodes are sharing updates over

a single communication resource, which we referred to as intra-cluster broadcast,

then we extended the model to include multiple clusters sharing updates via a
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single base station, referred to as inter-cluster broadcast. We also developed a

new algorithm, NSA algorithm, geared at jointly minimizing the SAE, which could

optimize the allocation of resources to heterogeneous sensor nodes and time varying

network capacity (and topology).

In our future work, we would like to explore more in depth a more general network

setting where path routing and resource allocation decisions need to be made. This

would follow from the extension of the current model to include the impact of

relaying delays at the base station on SAE, along with the impact of the geographical

positioning of the sensor nodes relatively to the cluster head, which will directly

affect the SAE model.
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Chapter 3

Optimizing Timely Coverage in Communication
Constrained Collaborative Sensing Systems

In the near future it is envisaged that there will be several disruptions and

challenges to the automotive and wireless industries. Amongst these, an intriguing

and challenging one will be the emergence of automated cars (also UAVs, robots,

etc.) with the ability to collaboratively navigate through complex environments.

In order to enable such functionality, it is expected that nodes will collaborate by

sharing sensed information, e.g., cars share their views of obstructed locations in

their environment. The aim is to achieve a high degree of “real-time situational-

awareness,” i.e., to detect/recognize and then effectively track dynamic objects in

their vicinity so as to improve safety-critical decisions. To that end, it is expected

that vehicles will not only rely on on-board multimodal sensing, but also share (raw

or fused) sensing information with each other, with the goal of facilitating coordi-

nation. This may require the transport of substantial volumes of data among cars,

as well as to/from the network edge and/or cloud. The optimization of information

sharing in a communication constrained system will thus be a fundamental prob-

lem underlying such systems. The focus of this chapter 1 is on the modeling and

1Publications based on this chapter [2] J. Abou Rahal, G. de Veciana, T. Shimizu, and H. Lu,
“Optimizing timely coverage in communication constrained collaborative sensing systems,” in 2020
18th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
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analysis of this problem and its implications for collaborative sensing systems.

A key step in this direction is to identify appropriate/usable metrics to

assess how well an information sharing policy is performing. This involves at least

two concerns. On the one hand, one is interested in coverage, i.e., the fraction of

the relevant region that a set of collaborating nodes (producers) is able to view. On

the other hand, for dynamic environments, one is interested in the timeliness of the

available information across space, e.g., the Age of Information (AoI), when sensors

periodically share what they see. Intuitively high coverage is achieved by ensuring

that all sensors disseminate their (possibly redundant) information to all the other

relevant nodes while the minimization of age may involve giving some well positioned

sensors/nodes a higher update rate or leveraging overlaps among sensors’ coverage

sets. Additionally it is of interest to incorporate contextual information in that nodes

may want to have a higher awareness of the on-goings in close proximity or uncertain

regions on their path, e.g., it is more critical for a car to have fresh information of on-

goings in its neighborhood or of obstructed regions at intersections they are about

to enter rather than receiving frequent updates about distant locations. Roughly

speaking optimizing the “timely coverage” for a collaborative sensing system requires

modeling the relative value/usefulness of each sensor’s updates, e.g., in terms of the

overall coverage, importance, and timeliness.

We focus on four major intertwined questions:

Networks (WiOPT). IEEE, 2020, pp. 1–8.; and [3] J. Abou Rahal, G. de Veciana, T. Shimizu, and
H. Lu, “Optimizing timely coverage in communication constrained collaborative sensing systems,”
IEEE Transactions on Control of Network Systems, 2022.

29



1. Can one provide a model and metrics to evaluate the coverage/timeliness trade-

offs achieved by a given information sharing policy for a set of collaborative

sensors?

2. Assuming that a fixed number of sensing nodes broadcast information at a fixed

rate regarding their overlapping coverage, can one determine the best subset to

participate in information exchanges so as to meet the overall nodes’ demand

for timely updates about the regions of most interest?

3. Assuming a subset of sensors is chosen, can one jointly optimize their update

rates to minimize the interest weighted (space-time) average age over their

coverage set?

4. How do optimized information sharing policies compare to simple policies as

a function of the sensor/node density, i.e., inherent overlap, and system com-

munication capacity?

3.1 Related Work

A key motivating application for this work is collaborative sensing in support

of automated vehicles. The basic idea is to facilitate real-time exchanges of sensor

information among vehicles and/or road side units to enhance their ‘situational

awareness’ in obstructed and dynamic environments, see e.g., [17–21] and recent

work in [22, 23] which leverage stochastic geometry to model and analyze collabo-

rative sensing coverage in obstructed environments as a function of the penetration

of vehicles with sensing capabilities.
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When addressing real-time situational awareness, it is key that the decision-

making nodes have access to timely information. The modeling and delivery of

timely information has recently received substantial attention, see e.g., [24,25]. The

newly proposed metric, Age of Information (AoI) became popular since it better

captures information freshness as compared to the traditional delay metric. AoI has

been extensively studied in the literature, see e.g., [7, 26–28]. A close work to ours

is that of [29] where the goal is to design an update policy that allows a single cache

to update stored files one at a time by accessing the server. A policy geared at

minimizing the average AoI of all the files stored in the cache is derived, given that

the update duration time depends on the file size. The work in [30] is perhaps the

closest to that in this chapter in that it addresses the issue of optimizing the overall

AoI by carefully choosing sensors’ update rates and allocating network resources.

However, by contrast with these works, in this chapter, we model and explore the

impact that updates from multiple sensors with possibly overlapping fields of view

will have on the AoI, as well as trade-offs between coverage and timeliness.

Many instances of coverage and sensor selection problems, see e.g., [31] are

known to be submodular which in turn are amenable to greedy approximations, see

e.g., [32]. To our knowledge, this chapter is distinct from previous work in that it

introduces and explores a new fundamental trade-off between coverage and AoI in

a collaborative sensing system.
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3.2 Chapter Contributions and Organization

Given a set of sensors periodically broadcasting updates (at possibly different

rates) regarding their coverage sets we define and characterize the interest weighted

(space-time) average age for the information exchanged. To the best of our knowl-

edge this is the first work addressing the “timely coverage” for a set of collaborative

sensors. We model our network of sensing nodes as a set of information producers

and consumers and explore the resource allocation and performance trade-offs in

such systems. In particular we formulate and study two possible settings.

The first captures a trade-off between maximizing the interest weighted cov-

erage and minimizing the interest weighted average age of the spatial information re-

quested by consumers about regions where they lack timely updates, e.g., obstructed

regions or regions with high uncertainty, when all the sensors have the same update

rate. We show that this weighted coverage-age trade-off optimization problem has

a submodular structure which leads to efficient greedy optimization algorithms. In

the second setting we fix the subset of sensors, e.g., all that are available or those

selected in the first setting, which now act as producers of information, and explore

the benefits of jointly optimizing their periodic update rates towards minimizing the

interest weighted average age. When producers have non-overlapping coverage sets,

we show that their optimal periodic update rates are proportional to the square root

of their coverage’s weights. However, more generally, the interest weighted average

age minimization problem has a non-convex/non-concave structure. We explore the

use of the Frank-Wolfe gradient method to show the potential benefits of update

rate optimization for collaborative sensing.
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A numerical evaluation of the benefits of these approaches from the point

of view of coverage and interest weighted average age achieved by consumers is

conducted. It exhibits the possible advantages that constraining both the number

of active producers as well as the resource allocation amongst these active nodes in

a collaborative sensing setting should play, particularly in congested environments

with limited communication resources.

The chapter is organized as follows. In Section 3.3 we introduce our system

model. In Section 3.4, we develop metrics for collaborative sensing based on the

AoI. In Section 3.5 we introduce and study the problem of selecting a subset of

sensors that achieves maximal coverage of the consumers’ preferred regions, as well

as minimal weighted age of the covered regions, while in Section 3.6 we consider the

minimization of the weighted age function by jointly optimizing the update rates

for a fixed set of sensors. Section 3.7 presents our numerical results and analysis

of the underlying characteristics of collaborative sensing, and Section 3.8 concludes

the chapter.

3.3 System Model

We shall begin by formally describing our model for a collaborative sensing

system and the associated notation.

3.3.1 Sensor coverage sets, consumers, producers and interest weighted
measures

Without loss of generality we consider a set of sensors V in a given overall

region R ⊂ R2. Sensors are indexed by their locations v ∈ V and the coverage (field-
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of-view) of sensor v in a given environment is denoted by a subset Cv ⊆ R. Given

a subset of sensors X ⊆ V , we denote X’s overall coverage by C(X) :=
⋃

v∈X Cv.

In the remainder of the chapter, we assume that the sensors’ coverage regions are

fixed, e.g., sensors installed on fixed road-side units or base stations, and that the

underlying setting of interest is one where they observe a dynamic environment.

The coverage sets for a subset of sensors X, i.e., (Cv, v ∈ X) induce a

partition of the overall coverage set C(X) which we denote by PX = {PX
i , i =

1, ..., |PX |}. Each subset of the partition PX
i is such that each location x ∈ PX

i

can be seen by the same subset of sensors V X
i ⊆ V , i.e., such that x ∈ PX

i if and

only if x ∈ Cv for all v ∈ V X
i . It should be clear that if i ̸= j then PX

i ∩ PX
j = ∅.

Further it should be clear that ∪|P
X |

i=1 PX
i = C(X), thus we have a partition of C(X).

In fact, assuming it is nonempty, if we further include an additional set R \ C(X)

corresponding to the locations which are not covered by X, we get a partition of

the overall region R. It is also possible that the coverage sets of two or more sensors

intersect on a set of measure zero. For simplicity, and to avoid unnecessary bur-

dens, we assume that all sets of the partition have non-zero area, or remove sets of

measure zero.
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Figure 3.1: Three sensors observing their environments.

Fig. 3.1 illustrates three sensors X = {v1, v2, v3} which for simplicity have

each an unobstructed disc coverage set. Sensors v1 and v2 have overlapping coverage

regions. The figure also exhibits the four subsets in the induced partition, PX =

{PX
1 , PX

2 , PX
3 , PX

4 }.

Without loss of generality we suppose each sensor node is simultaneously

a consumer and a producer of information which may broadcast periodic updates

regarding regions it is able to see. A consumer indicates its interest in information

regarding various locations through a spatial interest measure. In turn the sum of the

consumers’ spatial interest measures captures the aggregate interest of consumers.

These are formally defined below.

Definition 3.3.1 (Consumer’s interest measure) A consumer v ∈ V indicates

interest in timely information about the environment via a spatial interest measure

wv(.) on R.

Definition 3.3.2 (Aggregated consumers’ interest measure) The aggregated
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consumers’ interest measure w(.) is given by the sum of the consumers’ interest

measures, i.e., w(.) =
∑

v∈V wv(.) on R.

Definition 3.3.3 (Weighted coverage) The overall weighted coverage of the re-

gion covered by a subset of sensors X, i.e., C(X), is given by w(C(X)) =
∑

v∈V wv(C(X)).

For example, if w(.) corresponds to the area measure, then w(C(X)) denotes

the area covered by the sensors in X, and if normalized, w(C(X))/w(R) represents

the fraction of the region R which is covered. The weight measure provides a flexible

means to model the importance of various locations, and/or to model the relative

importance of a region from the perspective of information sharing. Note that in

general the weight measure could be continuous or discrete. In the latter case we

envisage a measure placed at discrete locations corresponding to anchor points which

based on the known geometry of the environment may have higher importance, e.g.,

intersections for incoming vehicles or locations obstructed by other vehicles.

Figure 3.2: Region of interest and coverage of a consumer/producer node.

In some practical settings, a consumer v’s interest may be limited to a smaller

region, say Rv. For example, a vehicle with a response time of tinterest moving at a
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speed s would primarily care about what is happening in a region s · tinterest around

it. Thus Rv might be modelled as a rectangle (centered at v’s location) of length

2 · s · tinterest and width typically covering the road and surrounding areas. Fig. 3.2

illustrates the coverage of a sensor v (green region), obstructed by neighbouring

vehicles (red region behind the vehicles), as well as its rectangular region of interest

Rv. In this case, v’s spatial interest measure would be supported by the red region.

Assuming that sensor v’s location on the road is v = (xv, yv), where xv and yv stand

for the x − y coordinates of v in 2-D, and the origin 0 is at the center of R, then

Rv is defined as, Rv := R ∩
([
−wroad

2 , wroad
2

]
× [xv − s · tinterest, xv + s · tinterest]

)
,

where wroad denotes the width of the road.

In some settings, consumers may only express an interest in obstructed

regions corresponding to regions where they have significant uncertainty or blind

spots, as depicted in Fig. 3.3. Thus for example, consumer v might place a point

mass/anchor point in front of the truck. In the shown example, this anchor point

falls in the coverage regions of the two other sensors (blue and green), which can

thus in principle help out.

Figure 3.3: Consumer requesting timely updates about the obstructed anchor point.
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3.3.2 Network capacity, sensor updates, and AoI

We shall assume that each producer v generates periodic updates regarding

its coverage set Cv at a rate of rv updates per second, i.e., the update interval is

thus 1
rv

seconds. The updates are either broadcast to the other sensors or shared

with a central controller. For any subset X ⊆ V we let r(X) = (rv : v ∈ X) denote

the vector of update rates for the sensors in X. The delay for sensor v to access a

shared communication medium and transmit its update is assumed to be exactly,

or at most, dv. Thus the fraction of time sensor v holds the medium is dv over the

update interval 1/rv, i.e., dvrv. The selected update rates for a set of sensors X

must then satisfy a “capacity” constraint,

∑
v∈X

dvrv ≤ 1, (3.1)

ensuring the medium is not overbooked. Note in practice, depending on the char-

acter of the medium, one would require a back off
∑

v∈X dvrv ≤ 1 − ϵ for some

ϵ > 0 to ensure minimal queuing and contention delays. The required back off will

depend on the details of channel access and/or scheduler. For simplicity we will

suppress ϵ in the sequel, and use (3.1) as the capacity constraint while assuming no

overlapped/collided transmissions.

A natural metric that captures the freshness of the received updates is the

Age of the Information (AoI) available at the consumers. Fig. 3.4 exhibits the

time-varying AoI at a consumer for such a periodic update process from a single

producer at rate rv and with transmission delay dv. In the sequel, we will consider

both average age and the probability that the age exceeds a pre-specified threshold
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at a random time at a consumer v. For example the average age for the process

shown in Fig. 3.4 is given by,

average age of sensor v = dv +
1

2rv
. (3.2)

To keep things simple we will assume dv = d for all v ∈ V , i.e., they are

either identical or bounded by d.

Figure 3.4: Time-varying age of information.

However since producers’ coverage sets may overlap, consumers may receive

updates from multiple producers for the same location, which may result in a re-

duction in the age of the available information. We define a generic age function for

such overlapping regions as follows.

Definition 3.3.4 (Age of regions with overlapping sensor updates) Suppose

a set of producers X transmit periodic updates at rates r(X) = (rv, v ∈ X). Recall

that X induces a partition where the locations in PX
i are covered by a set of sensors

V X
i . The age of PX

i thus depends on the update rates of these sensors, i.e., r(V X
i ).

With a slight abuse of notation we will define an age function which captures a
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proxy for the age (e.g., average or probability of exceeding a threshold) of the set PX
i

as

age(PX
i ) = age(r(V X

i )), (3.3)

with the intention of emphasizing its dependence on the associated sensors’ update

rates.

In the next section we shall explore the characteristics of the age as a function

of the number of sensors and their associated update rates.

The age of a region as introduced in Definition 3.3.4 can be viewed as a

dis-utility (cost) function that is tied to the resources allocated to the set of sensors

observing this region. Consumers express interest in specific locations while sensor

nodes having direct access to these regions become potential producers. We define

the weighted age function as being an aggregated dis-utility function based on a

linear combination of the aggregated consumers’ spatial interest in particular regions

and the age of these regions.

Definition 3.3.5 (Aggregated interest weighted age for a set of sensors)

Given a weighted coverage measure vector w = (w(PX
i ), PX

i ⊆ PX , i = 1, . . . , |PX |)

on partition PX induced by a set of sensors X, where ∪|P
X |

i=1 PX
i = C(X), and sensor

update rates r(X), the aggregated interest weighted age of the coverage set C(X)

associated with X is given by,

a(X, r(X)) :=

|PX |∑
i=1

w(PX
i )age(PX

i ) =

|PX |∑
i=1

w(PX
i )age(r(V X

i )).
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If w(.) is a measure corresponding to the area, we say a(X, r(X)) is the area

weighted age of C(X). If it is further divided by w(C(X)) it will be referred

to as the normalized weighted age.

For simplicity we shall write a(X, r(X)) as a(X).

3.3.3 Problem formulation

There exists different approaches to achieving trade-offs between the weighted

coverage of a subset of sensors and its associated aggregated interest weight. Our

goal in the remainder of the chapter is to investigate one particular trade-off sum-

marized as follows. We consider the setting where the target is to first meet the

overall consumers’ demand for updates about their regions of interest, and then to

provide them with frequent updates about the covered regions. For that purpose

in Section 3.5 we devise an algorithm that selects producers in V to first maximize

the weighted coverage of the consumers’ regions of interest and then once maximal

weighted coverage is achieved, proceeds with selecting producers to minimize the

weighted age of the covered regions.

3.4 Characterizing the Age Function

In this section we define and characterize the properties of two possible age

functions, as introduced in Definition 3.3.4.

3.4.1 Definition and computation of the age function

We first consider two simple motivational examples. Recall that the age

function depends on a vector of update rates of sensors which see a given location.
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As discussed in the previous section, if periodic updates from only a single sensor

at rate r1 are available, then the average age, denoted age depends on the scalar r1

and is given by,

age(r1) = d+
1

2r1
.

Let A1 be a random variable denoting the age of the saw-tooth function when viewed

at a random time (see Fig. 3.4). Given the saw-tooth function’s linear age growth,

it should be clear that A1 ∼ d+ 1
r1
U1, where U1 ∼ Unif[0, 1].

We now define two age functions, the average age, age, and the γ-age violation,

ageγ , given by,

age(r1) = E[A1] and ageγ(r1) = P(A1 > γ),

where γ ≥ 0 is a target age one would not wish to exceed.

Definition 3.4.1 (Age functions) Consider a region observed by n sensors gen-

erating periodic updates at rates r = (r1, . . . , rn) and with associated transmission

delays d such that d ≤ 1
rv

for all v = 1, . . . , n. Assuming the phases of the sensors’

periodic updates are independent and uniformly distributed then the average age

and γ-age violation functions of locations in a region seen by sensors with update

rates r are

age(r) = E[A] and ageγ(r) = P(A ≥ γ),

where A = minv=1,...,n[Av] and Av ∼ d+ 1
rv
Uv and Uv ∼ Unif[0, 1] are independent

of each other.

Suppose there are in fact updates from two sensors covering a given set in

the partition, e.g., as shown in Fig. 3.1, sensors v1 and v2 are providing updates of
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region PX
4 with update rates r = (r1, r2). Without loss of generality, assume r1 ≥ r2.

As shown in Fig. 3.5, the dashed and dotted saw-tooth functions correspond to the

updates of the two sensors. Assuming that the phases of the saw-tooth curves are

randomly distributed, and no transmission fail, it is easy to see that the average age

at a typical time is given by the minimum of the two functions, i.e.,

age(r) = E [min[A1, A2]] = d+
1

r1

(
1

2
− 1

6

r2
r1

)
,

where A1 ∼ d+ 1
r1
U1 and A2 ∼ d+ 1

r2
U2, and where U1, U2 are uniformly distributed

and assumed to be i.i.d., and A1, A2 correspond to the ages of the updates from

Sensors 1 and 2 observed at a random time. The reduction in age due to redundancy

in the sensors’ updates is clear. The probability of γ-age violation shares similar

properties as the average age.

Figure 3.5: Age of partition PX
4 is the minimum of both age functions age(r1) and

age(r2).

We now characterize the age functions.
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Theorem 3.4.1 (Characterization of the age functions) Consider a region

observed by n sensors which generate periodic updates at rates r = (rv : v =

1, . . . , n). Without loss of generality, let r1 ≥ r2 · · · ≥ rn, then the average age

function is given by

age(r) = E[A] = d+

∫ d+ 1
r1

d

n∏
v=1

zv(y) dy, (3.4)

where zv(y) = 1− rv(y − d), for v = 1, . . . , n. The γ-age violation function is given

by

ageγ(r) = P (A ≥ γ) =


1, if 0 ≤ γ ≤ d,∏n

v=1 zv(γ), if d < γ ≤ d+ 1
r1
,

0, if d+ 1
r1

< γ.

(3.5)

The proof of Theorem 3.4.1 is relegated to the Appendix.

Theorem 3.4.1 exhibits closed-form expressions of both the average age and

γ-age of a region observed by multiple sensors that generate periodic updates about

this region. The average age in Eq. (3.4) has two terms, d and
∫ d+ 1

r1
d

∏n
v=1 zv(y) dy.

The latter decreases as n increases, which is aligned with the fact that the larger

the number of sensors periodically updating about a region, the lower the average

age of the region. As n goes to infinity, the right term converges to 0, and thus the

average age converges to d. This confirms that the average age of a region cannot

drop below the transmission delay d no matter the number of producers updating

about it.

As we will see, these age functions and coupling across sensors with overlap-

ping coverage regions are somewhat complex, thus we will first characterize a few

of their properties.
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3.4.2 Properties of the age functions

The following corollary further characterizes the age functions.

Corollary 3.4.1 (Properties of the age functions). Suppose that r = (rv : v =

1, . . . , n), where rv = r, then the average age function is given by,

age(r) = d+
1

n+ 1

1

r
, (3.6)

and the γ-age violation function is given by,

ageγ(r) =


1, if 0 ≤ γ ≤ d,

(1− r(γ − d))n, if d < γ ≤ d+ 1
r ,

0, if d+ 1
r < γ.

(3.7)

Suppose now that r is such that r1 ≥ r2 ≥ ... ≥ rn, and let r̄ = (r̄v : v =

1, . . . , n), where r̄v = r̄ = 1
n

∑
rv. We then have that

age(r̄) ≥ age(r) ≥ age(nr̄), (3.8)

ageγ(r̄) ≥ ageγ(r) ≥ ageγ(nr̄). (3.9)

The proof of this corollary is relegated to the appendix.

This corollary characterizes the decrease in the age in the number n of sensors

with overlapping covered regions and a fixed update rate r. Indeed both the aver-

age/violation age functions decrease (as convex functions) to lower bounds d and 0

respectively. Naturally no matter how many sensors send updates about a location

one can not reduce the average age below the delay d. The corollary also suggests

that if sensors with equal update rates view the same location, it is preferable, in

order to minimize the age, to replace them by a single sensor and shift the resources
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to it. For example, if two sensors with the same update rate r̄ share the exact same

coverage area, then the age will be minimized by having only one of the sensors send

updates at twice the rate i.e., 2r̄. However in general, sensors will have only partial

overlaps, making the optimization of rate allocation amongst sensors more subtle.

We consider such trade-offs in the next two sections.

3.5 Sensor Selection: Weighted Coverage-Age Trade-offs

In this section, we consider a setting where sensors send/broadcast updates

at the same fixed rate r to a centralized observer/each other. We assume that only

a maximum number k out of N available sensors can be active. Based on Eq. (3.1)

and for equal transmission delays d and fixed sensor update rate r, it should be

clear that k ≤ N ≤ ⌊ 1
rd⌋. The goal is to select a subset of sensors which realizes

a good compromise between ensuring good coverage of the consumers’ regions of

interest and minimizing the weighted age of these covered regions. There exist

multiple approaches to achieving such trade-offs. We propose and explore the one

that attempts to achieve both maximal aggregated weighted coverage and minimal

weighted average age of the covered regions. Before devising the algorithm that

achieves this goal, we first introduce a modified average age function given by,

b(r) = −age(r) + d+
1

r
=

n

n+ 1

1

r
, (3.10)

where age(r) corresponds to the age function with equal rates r = (rv : v = 1, . . . , n),

where rv = r, as determined in Eq. (3.6). Note that b(r) is strictly positive, upper-

bounded, concave and increasing with respect to n. We further introduce the fol-
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lowing “utility” function:

u(X) :=

|PX |∑
i=1

w(PX
i )b(r(V X

i )). (3.11)

We re-write the aggregated interest weighted age introduced in Definition 3.3.5

as a function of the average age. With slight abuse of notation, we let a(X) =∑|PX |
i=1 w(PX

i )age(r(V X
i )) be the aggregated interest weighted average age for a set

of sensors X. From Eq. (3.10), given that d and r are constants, it should be clear

that maximizing b(r) is equivalent to minimizing age(r). Therefore minimizing

the weighted average age a(X) is equivalent to maximizing the utility function in

Eq. (3.11), i.e.,

min
X⊆V

a(X) ≡ max
X⊆V

u(X).

This transformation is useful because u(.) can be shown to be a submodular set

function as supported by the following result.

Theorem 3.5.1 (Characterization of the utility function) The utility func-

tion u(.) satisfies the following properties:

(Monotonicity) It is monotonically increasing, i.e., if X ⊂ Y ⊂ V then, u(X) ≤

u(Y ).

(Submodularity) It is submodular, i.e., if X ⊂ Y ⊂ V and v /∈ Y then,

u(X ∪ {v})− u(X) ≥ u(Y ∪ {v})− u(Y ). (3.12)

The proof of this theorem can be found in the appendix.
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We now propose Algorithm 1 that prioritizes the selection of the subset of

producers that first maximizes the overall weighted coverage motivated by safety

concerns, and then second maximizes the utility to further enhance the timeliness

of the generated updates. The order in which the objectives are maximized is

important because the target is to first meet the overall consumers’ coverage demand

and then to provide them with frequent updates about their interest regions.

Algorithm 1: Selecting sensors in V that maximize the weighted
coverage of the consumers’ regions of interest and minimize the
weighted age of the covered regions.

1 S0 = ∅
2 t = 0
3 while |St| < k do
4 V ′ = {v′ ∈ argmax

v∈V \St

(w(C(St ∪ v))− w(C(St)))}

5 v′′ ∈ argmax
v′∈V ′

(u(St ∪ v′)− u(St))

6 St+1 = St
⋃
{v′′}

7 if St+1 = St then
8 break
9 end

10 t← t+ 1;

11 end
12 return St+1

As can be seen the algorithm begins with an empty set of selected sensors

and proceeds by iteratively selecting producers. In each iteration, it first greedily

selects the subset of sensors V ′ that achieve a maximal increase in weighted coverage

(Line 4) then out of the sensors in V ′, it selects that which further maximizes the

overall utility u(.) (Line 5). If the maximal weighted coverage is achieved and the

total number of selected producers is less than k, say k′ ≤ k, the algorithm proceeds

to select k − k′ producers that will further improve on the utility function (Line
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5). We thus distinguish two phases for the algorithm. In Phase 1 it greedily selects

k′ ≤ k sensors so as to maximize the weighted coverage while breaking ties by

maximizing the utility function. In Phase 2, once the maximal weighted coverage

is achieved and if k′ < k, the focus switches to solely selecting k − k′ sensors to

further maximize the utility function (Line 5). We point out that if the consumers’

aggregated interest measure is uniform, the weighted coverage maximization phase

simplifies to a coverage maximization problem. We further define the following

notation.

• Sk′ : Denotes the set of sensors of size k′ selected by Algorithm 1 in phase 1.

• S∗
k′ : Denotes the optimal set of sensors of size k′ achieving a maximal weighted

coverage and maximal utility.

• Sk(Sk′): Denotes a set of sensors of size k returned by Algorithm 1 by the end

of phase 2 given that k′ sensors were selected in phase 1. For simplicity we

will write Sk(Sk′) as Sk.

• S∗
k(Sk′): Denotes the optimal set of sensors that achieves maximal utility given

that k′ sensors were already selected by Algorithm 1 in phase 1. For simplicity

we will write S∗
k(Sk′) as S

∗
k .

• â(X): Denotes the normalized weighted average age of the region covered by

sensors X, i.e., â(X) := 1
w(C(X))a(X).

This proposed algorithm is guaranteed to achieve both good weighted cover-

age and normalized overall consumer interest weighted age. The following theorem
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formalizes these performance guarantees.

Theorem 3.5.2 (Performance guarantees for Algorithm 1) Given a set of

sensors V of size N ≥ k, and equal update rate r per sensor, Algorithm 1 satisfies the

following lower and upper bounds on both the weighted coverage and the normalized

weighted average age respectively,

w(C(Sk)) ≥
(
1− 1

e

)
w(C(S∗

k)),

and

â(Sk) ≤
(
1− 1

e

)
â(S∗

k)

+
1

e

[(
1− 1

e

)
â(S∗

k′) +
1

e

(
d+

1

r

)]
− 1

e
λ

[
w(C(Sk))−

(
1− 1

e

)
w(C(S∗

k))

]
.

where e is the base of the natural logarithm. It should be clear that w(C(Sk)) =

w(C(Sk′)) and w(C(S∗
k)) = w(C(S∗

k′)), given that maximal coverage has been

reached with k′ sensors. We provide a detailed proof of this theorem in the ap-

pendix.

The derived upper bound on â(Sk) is closely tied to the coverage performance

(through the third term on the right). Achieving a good coverage by selecting

k′ < k producers leaves room to selecting k − k′ producers in Phase 2 of the al-

gorithm to further improve the weighted age of the covered regions. On the other

hand, if maximal coverage was not achieved after selecting k producers, then a high

age of the covered regions is expected, given that the algorithm did not reach Phase
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2 and therefore did not select producers to solely improve the age of the covered

regions.

3.6 Optimization of Sensor Update Rates

In this section, we consider a setting where the set of active sensors, say

without loss of generality V is fixed, but their update rates r = (rv : v ∈ V ) can be

jointly optimized subject to the communication constraint Eq. (3.1). Given a fixed

set of sensors V , we let the weighted average age of the covered set C(V ) be,

a(V, r(V )) :=

|PV |∑
i=1

w(P V
i )age(r(V V

i )). (3.13)

as introduced in Definition 3.3.5. Note that this section will focus on the case where

age = age, i.e., on selecting the sensor update rates so as to minimize the weighted

age which can be formally stated as follows:

Problem 3.6.1 (Age minimization)

min
r
{a(V, r(V )) | r ≥ 0,

∑
v∈V

drv ≤ 1}. (3.14)

In the producer-consumer setting, solving Problem 3.6.1 is equivalent to having a

third party optimally redistribute the resources amongst the selected producers sub-

ject to communication constraints, in an attempt to minimize the overall consumer

interest weighted average age of these regions.

Proposition 3.6.1 (Age minimization for sensors with disjoint coverage)

Suppose the sensor coverage sets (Cv, v ∈ V ) are disjoint then the age minimization
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Problem 3.6.1 is convex and reduces to,

min
r
{
∑
v∈V

w(Cv)(d+
1

2

1

rv
) | r ≥ 0,

∑
v∈V

drv ≤ 1},

whose optimal joint update rates r∗ are given by

r∗v =

√
w(Cv)∑

u∈V
√

w(Cu)
× 1

d
.

The proof of this proposition follows from standard convex optimization

tools and so is left out. The solution reveals the first basic insight that for sensors

with disjoint coverage sets, the age minimizing rate allocation is proportional to

the square-root of the weight (e.g., area) of the coverage set each sensor is tracking.

Thus sensors covering disjoint regions with equal weights would lead to equal update

rate allocations. The general case where sensors have overlapping coverage sets is

more complex.

Proposition 3.6.2 (Characterization of the age minimization problem)

For the general age minimization Problem 3.6.1 where coverage sets may overlap,

the objective function given in Eq. (3.13) is a weighted sum of a convex function

and a non-convex/non-concave function, and hence belongs to the family of non-

convex/non-concave functions.

It is easy to see this by noting that the average age of a partition as given

in Eq. (3.4) can be re-written as,

age(r) = d+

∫ d+ 1
r1

d

n∏
v=1

zv(y) dy

= f(r) + g(r),
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where f(r) = d+ 1
2r1

and where

g(r) = −
∫ d+ 1

r1

d
z1(x)

[
1−

n∏
i=2

zi(x)

]
dx.

It is clear that f(r) is convex in r1, while g(r) is non-convex/non-concave in r

which can be proved by finding the Hessian of the function g(.) with respect to r,

H ∈ Rn×n, and either showing thatH has a mix of positive and negative eigenvalues,

or that yTHy, for all y ∈ Rn×1 can either be positive or negative. We can then show

that age(r) is a non-convex function, and since it is part of the objective function

in Eq. (3.13), then the latter belongs as well to the same family of functions. It

should be clear by now that in the case of a single sensor v observing a partition

and updating at a rate rv, the age of this partition is convex in rv and given by

d+ 1
2

1
rv
. But whenever more than one sensor are observing the same partition, the

function capturing the age of this partition belongs to the family of non-convex/non-

concave functions. There exists a family of algorithms that addresses this type

of optimization problems, from which we pick the Frank-Wolfe algorithm [33–35],

described in Algorithm 2.

We summarize the FW algorithm for both the cases of convex and non-

convex objective functions. In [33], under the assumption of a convex and con-

tinuously differentiable function, and a compact convex domain D, the algorithm

computes at each iteration t the maximal step it can take in the direction of the

gradient of the function while satisfying the constraint s ∈ D, and then moves in

the direction of this maximizer. This process, as explained in [33], intuitively makes

sense since the algorithm finds the direction in which it can maximize the improve-

ment in the function value while remaining feasible. Additionally, one key advantage
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Algorithm 2: Frank-Wolfe Algorithm (with adaptive step sizes) [34]

1 Let r(0) = (rv, v ∈ V) ∈ D
2 Let D = {

∑
v∈V drv ≤ 1}

3 for t = 0, . . . , T do

4 Compute s(t) := argmins∈D⟨ s,∇a(r(t))⟩
5 Let dt := s(t) − r(t)

6 Compute gt := ⟨dt,−∇a(r(t))⟩
7 if gt ≤ ϵ then return r(t)

8 Line-search: γt ∈ argminγ∈[0,1] a(r
(t) + γdt)

9 Update r(t+1) := r(t) + γtdt

10 return r(T )

of this algorithm is that it does not need to project back into the constraint set, given

that it never leaves it. On the other hand, Theorem 1 in [34] gives a simple proof

that the Frank-Wolfe algorithm obtains a stationary point at a rate of O
(
1/
√
t
)

on non-convex objectives with a Lipschitz-continuous gradient. We refer the reader

to [34] for more details on the convergence of FW on non-convex objectives.

3.7 Numerical Results

We develop a simulation framework to explore the optimization of coverage

vs. normalized interest weighted average age trade-offs in a collaborative sensing

application and present some results in this section.

3.7.1 Model

We shall present results for two representative road scenarios. In the first

one, we consider a one-way highway which we model as a rectangular region R of

length 500m and width 20m (which corresponds to 5 lanes). In the second one
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we consider a road intersection which we present later in this section. Vehicles

are modeled as 4.8 × 1.8m2 rectangles with omnidirectional sensors placed at the

vehicle’s center (rooftop). The unobstructed coverage set for each sensor is a disc

of radius r = 50m with area πr2. The coverage area of a sensor does not include

the regions off the road, and the only obstructions present are those associated with

vehicles blocking each others’ field-of-view. We assume that vehicles are randomly

placed in lanes, with spacings of at least 10m between any two vehicles in the same

lane. We assume vehicles (consumers) have an interest in specific locations which

might be obstructed. We refer to these as anchor points. Specifically, we will define

the consumers’ interests as associated with particular anchor points on the highway.

Our simulation results represent averages over randomly generated sensor locations.

We ran 100 Monte-Carlo (MC) simulations and plotted the mean weighted coverage

and weighted age as well as the confidence intervals corresponding to the standard

deviation of the estimator resulting from the MC simulations.

3.7.2 Communication model

We assume that each vehicle/sensor is equipped with a 360◦ camera which

samples at 30 frames per second with a corresponding data rate of 1 Mbyte/sec.

Additionally, V2X technology is used to share sensor updates. We assume that

a single producer accesses the medium at a time and broadcasts its update to all

the consumers in the system. For simplicity we assume an operational bandwidth

achieving a data rate of 6 Mbps, which results in a transmission delay of 44.44 msec

per image frame. We combine both the channel access time (∼ 20 msec) and update
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transmission time into a single deterministic value, d, and find d = 64.44 msec. We

further assume no transmission failures so broadcasts are reliable.

3.7.3 Coverage and normalized interest weighted average age of the an-
chor points

We define the coverage of a typical consumer v as the percentage of v’s anchor

points that are covered. We say an anchor point is covered if either v directly sees it

or if it receives updates about this anchor point from active producers that directly

see it. The normalized interest weighted average age of a typical consumer v is the

weighted average age of v’s covered anchor points, normalized by their weighted

coverage. We note that we will be interested in the coverage of a typical consumer

and not in the weighted coverage. By contrast we use the weights when considering

the weighted age.

3.7.4 Comparison of algorithms

We assume that there are N available sensors in R, all of them acting as

both consumers and producers of information. We will evaluate the performance of

three main algorithms.

• The baseline selects all N sensors to act as both producers and consumers of

information, each of which has the same (possibly low) update rate to meet

the capacity constraint. One would expect that this technique achieves the

best coverage but performs poorly in terms of the normalized interest weighted

average age of a typical consumer.
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• The sensor selection algorithm selects k ≤ N producers, allowing for a higher

update rate per sensor and hence fresher and more frequent updates for con-

sumers. We point out that all N sensors are consumers of information.

• The age minimization algorithm optimally allocates the update rates amongst

k ≤ N selected producers to further minimize the interest weighted average

age of the covered regions.

We define and make use of the following three notions of aggregated consumers’

interest measures.

• The Uniform Discrete (UD) aggregated consumer interest measure places equal

weight on a set of discrete anchor points to reflect the same level of interest

of consumers in those locations.

• The General Discrete (GD) aggregated consumer interest measure places un-

equal weights on a set of discrete anchor points to reflect different levels of

consumer interest in those locations.

• The Uniform Continuous (UC) aggregated consumer interest measure corre-

sponds to an interest weight corresponding to the area measure on the region

R.

The UD sensor selection algorithm selects a set of producers that cover the con-

sumers’ anchor points which further keeps their interest weighted average age low.

The GD sensor selection algorithm selects producers that cover the consumers’ an-

chor points, given different weights on the anchor points. This algorithm exhibits
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the advantage of having consumers indicate their degrees of interest in locations by

assigning weights proportional to their interest. It should be clear that when all

the anchor points have an equal weight, the GD sensor selection algorithm reduces

to the UD sensor selection algorithm. Finally, the UC sensor selection algorithm

chooses a set of producers so as to cover as much as possible of the overall region R,

while trying to keep the average age of the covered regions as low as possible, given

a uniform consumer interest across the whole region R. This can only be achieved

by judiciously optimizing producers’ coverage overlaps. This existing tension be-

tween spreading producers across space and overlapping their coverage sets is what

makes this optimization challenging. With such a weight measure, the algorithm

selects the producers independently of the consumers’ preferences, i.e., it is not con-

sumer oriented, but it provides a choice of producers which is robust across possible

consumer interests.

3.7.5 Highway Scenario

We randomly generate 5 anchor points on the highway and assign them equal

weight to express an equal consumer interest in each.

We verify in our simulation results the robustness of the UD sensor selection

algorithm in achieving a good coverage-age trade-off per typical consumer.

3.7.5.1 Effect of increasing the number of selected producers by UD and
UC sensor selection algorithms on both age and coverage

In Figure 3.6, we fix the number of available sensors in R at N = 70, and plot

the normalized interest weighted average age of the covered anchor points of a typical
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Figure 3.6: Normalized interest weighted average age vs. coverage of a typical
consumer with anchor points having equal weight, for a fixed number of available
sensor N = 70 and an increasing number of selected producers k by UD and UC
algorithms from 1 to 70.

consumer versus the coverage of a typical consumer, as defined earlier. The baseline

(blue dot at 100% coverage and 630 msec) achieves the highest coverage per typical

consumer but also the largest age, as expected. For both UD and UC sensor selection

algorithms, we increase the number of selected producers k from 1 to N which results

in an increase in both the coverage and the age of a typical consumer until they

saturate at the same coverage and age achieved by the baseline. We clearly see that

for all k, the UD sensor selection algorithm (red circles) achieves an overall better

coverage and age compared to the UC sensor selection algorithm (purple diamonds),

with a remarkable 23% larger coverage and an age improvement of around 40 msec

for k = 5. As should be expected, matching producers with consumers based on

their demands achieves both good coverage and age, even when a small number of

producers are selected. Optimizing the update rate allocation amongst the selected
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producers in the UD sensor selection algorithm (yellow triangles) further minimizes

the age, which saturates at around 150 msec for all k ≥ 4.

3.7.5.2 Advantage of using a consumer-oriented scheme when a fixed
small number of producers is selected

We now consider the case where the number of available sensors N on the

highway increases from 5 to 70. We plot the coverage and normalized interest

weighted age of a typical consumer in Figures 3.7 and 3.8 respectively.
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Figure 3.7: Coverage of a typical consumer with anchor points having equal weight,
when there is an increasing number of available sensors N but a fixed number of
selected producers k = 5 by both UD and UC algorithms.
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Figure 3.8: Normalized interest weighted average age of a typical consumer with
anchor points having equal weight, when there is an increasing number of available
sensors N but a fixed number of selected producers k = 5 by both UD and UC
algorithms.

Without any collaboration, i.e., without any information sharing between

the sensors, the coverage of a typical consumer is the lowest at around 20%, and

decreases due to increased obstructions, while being the largest when all sensors are

collaborating. We assume that UD and UC sensor selection algorithms select only

k = 5 producers. In Figs. 3.7 and 3.8, we clearly see that the UD algorithm achieves

both maximal coverage and minimal age (yellow dotted curves) as compared to the

other algorithms. And with further optimization of the update rates among the

selected producers, the age is further minimized (dotted red curve in Fig. 3.8). An

interesting observation in Fig. 3.7 is the increase in the coverage achieved by the UC

algorithm (purple curve) until N = 22, followed by a constant decrease, due to the

fact that there is a larger set of available producers to select from, and hence this
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Figure 3.9: Road intersection with 7 pre-set anchor points.

scheme will focus on maximizing the coverage of the highway and unintentionally

shift away from covering the consumers’ anchor points.

3.7.6 Road Intersection Scenario

In the highway scenario, we assumed that all anchor points had an equal

weight. We now consider a higher spatial correlation between the interest locations

of different consumers reflected through different weights assigned to different lo-

cations. This results in a clear improvement in the age of the consumers’ covered

anchor points when the algorithm that selects the producers is oriented towards

meeting the consumers’ interest in timely updates. We therefore consider a second

scenario which consists of a road intersection as depicted in Fig. 3.9. The horizontal

two-way road has a width of 40m (corresponding to 10 lanes) and length of 450m,

the vertical road has a width of 16m (4 lanes) and length equal to 250m. There

are 7 pre-set anchor points in total. A consumer is interested in the anchors that

fall within its own colored section and in the anchor at the intersection, as can be
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Figure 3.10: Coverage and normalized interest weighted average age of a typical
consumer with anchor points having unequal weights, when there is a fixed number
of available sensors N = 70 but an increasing number of selected producers k by
GD, UD and UC algorithms from 1 to 70.

seen in Fig. 3.9. For example, vehicles falling in the green region express interest

in the two green anchor points with coordinates (−225, 125) and (−113, 125) and in
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Figure 3.11: Coverage and normalized interest weighted average age of a typical
consumer with anchor points having unequal weights, when there is an increasing
number of available sensors N from 10 to 70 but a fixed number of selected producers
k = 10 by GD, UD and UC algorithms.

the red one falling at the origin. A consumer assigns a weight equal to 5 to the red

anchor point at the intersection versus a weight of 1 to any other anchor point in
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its own section, which expresses the consumers’ higher urge for updates about the

intersection.

We once again assume there are N randomly placed vehicles equipped with

360o cameras on any of the highways’ lanes with a minimum distance of at least

10m between them.

We mainly compare the GD and UD sensor selection algorithms. Once

producers are selected, we evaluate the coverage and normalized interest weighted

average age of a typical consumer, assuming the aggregated interest measures are

assigned according to the consumers’ interests.

3.7.6.1 Effect of increasing the number of selected producers by GD, UD
and UC sensor selection algorithms on both age and coverage

In Figure 3.10, we assume there are N = 70 available sensors. We increase

the number of selected producers k from 1 to 70 for all of GD, UD and UC sensor

selection algorithms. We see that the GD sensor selection algorithm achieves both

a better coverage than all the others algorithms for k ≤ 6 (Fig. 3.10a) and a major

age improvement for 6 ≤ k ≤ 60 (Fig. 3.10b). The clear drop in age achieved

by the GD algorithm for 6 ≤ k ≤ 15 is the result of selecting the sensors that

solely minimize the age once maximal coverage is achieved. We also clearly see that

both the UD and UC algorithms achieve a worse age than the one achieved by the

baseline, and this occurs after the number of selected producers k achieves maximal

coverage, which confirms that these two schemes are not consumer oriented. Finally,

an interesting observation is that for N = 70, optimizing the rates among the 70
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selected producers reduces the age by ∼ 140 msec.

3.7.6.2 Advantage of using a consumer-oriented scheme when a fixed
small number of producers is selected

Finally, in Fig. 3.11, we increase the number of available sensors from 10

to 70. GD, UD and UC sensor selection algorithms only select 10 producers at

all time. As expected, the coverage achieved by all algorithms (except for the

no-collaboration algorithm) are somewhat similar and maximal, with a clear age

improvement achieved by the GD algorithm. With further optimization of the pro-

ducers’ update rates, the age achieved by this algorithm is itself further improved

by around 30 msec for N = 70.

3.8 Chapter Conclusion and Future Work

In this chapter we have exhibited an approach to achieving trade-offs between

coverage and timeliness in communication constrained collaborative sensing settings

wherein spatially distributed sensor nodes can serve dual roles as producers and

consumers of sensed information. The proposed framework allows quite a bit of

flexibility in terms of capturing the underlying characteristics of information sharing,

and suggests the development of a possible market place for sharing real-time sensor

data in a context dependent manner, i.e., matching nodes’ current interest, in order

to minimize situational uncertainty so as to enhance vehicular flow and safety. A

key aspect is the design of strategies to match consumers spatial interest in timely

information to producers’ overlapping coverage, subject to communication network

capacity constraints. A key part of our future work is to make the sensor selection
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and update rate optimization more scalable to start addressing heterogeneous and

dynamic environments.
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Chapter 4

Scheduling “Last-Minute” Updates for Timely
Decision-Making

The emergence of applications relying on networked systems has revolution-

ized the sensing industry and led the way towards modeling systems that rely on the

timely sharing of information to support real-time decision making. Among these,

a challenging set of examples is tied to automated vehicles, robots, UAVs, etc., that

are constantly traveling through complex environments and requiring updates to

smoothly navigate with a high degree of situational awareness. Such applications

are often best supported when updates are delivered right on time. In the vehic-

ular setting for example, cars driving at different speeds and heading towards an

obstructed intersection may express interest in accurate information on the state

of the intersection right before they reach it and thus generate requests for timely

updates about such intersections. Sending an update to a vehicle early on may not

accurately represent the state of the intersection by the time it gets there and will

lead to poor decisions. On the other hand, scheduling an update transmission to the

vehicle when it is close to the intersection is likely to be advantageous and results

in better decisions.

A major challenge in such systems is the dynamic aspect of requests for

timely updates. Requests may not only arrive arbitrarily but may also be short-
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lived, i.e., such that one can receive updates only for a finite length time window

before making a critical decision at the end of the window preferably based on the

freshest information update.

A key step in this direction is to define appropriate metrics that capture

the freshness and timeliness of the last received update to ensure that it accurately

represents the state of the time-varying process that the request is interested in.

To that end, the Age of Information (AoI) has been proposed as a metric that

measures the freshness of the updates at the receiver [7,24,25,27]. In contrast to prior

work on AoI, we propose a novel setting where a request can only receive updates

within a finite time window, which we refer to as the request’s active window. The

importance of scheduling an update transmission to a request close to the end of

its active window is modelled through a reward function which depends on the time

difference between the end of the request’s active window and the time at which the

last update was received. Such a reward model is therefore tied to the age of the

last received update within the request’s active window which reflects the freshness

of this update. In this chapter 1 , we study scheduling policies that aim to optimize

the rewards associated with scheduling such updates.

4.1 Related work

There has been substantial work on the scheduling of requests with dead-

lines. The Earliest Deadline First (EDF) policy [36] is the most well-known policy

1Part of the results in this chapter are submitted to ACM Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems (MSWiM’23).
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for scheduling in real-time systems. It was proved to maximize the fraction of cus-

tomers served prior to their respective deadlines when the service time is equal to a

single slot. EDF requires that the customer with the earliest deadline be scheduled

first and at most once. Meanwhile [37] considers a real time queuing system where

packets have deadlines and the processing time of a packet is known upon its arrival.

A predetermined fixed reward is associated with servicing each packet and the goal

is hence to design a scheduling policy that maximizes the cumulative reward. Other

works, e.g., [38], [39], introduce scheduling policies in systems with strict bounds on

the service delays. In contrast to prior work, we allow a request to be scheduled

more than once before the end of its active window, and we define a reward function

that is tied to the time difference between the request’s decision time and its last

scheduled update.

More recent work addresses scheduling in collaborative sensing settings in an at-

tempt to achieve real-time situational awareness and can be found in [1, 2, 40–42].

We extend on the prior works by assuming that requests for timely updates arrive

arbitrarily and can only receive updates within a limited period of time before mak-

ing a critical decision. Other recent work investigate scheduling sensing nodes to

update a remote node under communication constraints with requirements on the

AoI [43–46]. They consider applications where the AoI has to meet some freshness

threshold, i.e., they impose either a hard or soft upper bound on the worst case

AoI that can be achieved by any sensing node and devise policies that can sched-

ule at most one node per slot to satisfy the constraints. On the other hand, [47]

and [48] consider the setting where packets arrive arbitrarily over time and the al-
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gorithms only have access to information about packet arrivals. In particular, [47]

devises a policy to minimize the energy consumption under the peak AoI constraint

at all times, while [48] introduces a resource allocation problem that captures the

trade-off between AoI, quality and energy associated with packet transmission and

proposed a policy to minimize the three costs. Finally, [49] develops and implements

a scheduling algorithm that enables the customization of WiFi networks to the needs

of time-sensitive applications. They propose a scheduling approach which makes use

of the most up-to-date data as opposed to all past sampled data points, similarly to

the one suggested in our work. We differentiate ourselves from [49] by considering

a setting where requests arrive arbitrarily over time, as opposed to having a fixed

number of nodes requesting information, and additionally consider that the requests

can receive updates only in a short period of time before making decisions based on

the last received update.

4.2 Chapter Contributions

We explore a new class of scheduling problems associated with delivering

information updates “just in time”. We consider a setting where requests for timely

updates arrive arbitrarily and we assume that requests can receive updates within a

finite-time window, which we refer to as the request’s active window. Our goal is to

ensure that requests have updates that are as fresh as possible by the end of their

active windows to enable accurate decisions to be made based on the states of the

time-varying processes they are interested in. We hence define a reward function

that captures the importance of scheduling an update transmission to a request
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as close to the end of its active window as possible. We propose to maximize the

reward-rate under the assumption that only a single request can be scheduled at a

time. In this setting, we investigate an adversarial setting where the number of new

requests’ arrivals as well as the length of a request’s active window are unknown

a-priori and only revealed once requests arrive, and thus use the competitive ratio

as our performance metric. We derive a lower bound on the reward-rate achieved

by any non-idling causal policy. We then propose two causal scheduling policies πa

and πg, referred to as the adversarial and greedy policies respectively and further

derive the competitive ratio of πg with respect to the optimal genie-based policy.

Finally, we validate our theoretical analysis with numerical evaluations.

4.3 System Model

4.3.1 Model for timely information requests

Consider requests for timely updates about time-varying processes that ar-

rive arbitrarily to a time-slotted system. We let ρ = (ρi)i∈N denote the sequence of

request arrivals, where the tuple ρi = (ai, si, ei) is the ith request, characterized by,

• ai: Arrival time of request i,

• si ≥ ai: Release (or start) time of request i, which reflects the earliest time

after which updates about the time-varying process become relevant to i,

• ei: End time after which request i is no longer active,

• [si, ei]: Active window within which updates in response to request i are per-

missible.
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In particular, we let ρT denote the truncated sequence of requests that have end

times prior to T . Updates scheduled for request i outside of [si, ei] have no value to

i. We point out that one or more updates for a request can be scheduled while it is

active. However, requests end up using only the most recent update they received

within their active windows. It follows that an update scheduled closer to the start to

service time of a request may age by the end of the active window and become stale

and not accurately reflect the actual status of the time-varying process. Therefore,

scheduling an update for active request i in a slot close to ei is more beneficial than

scheduling an update in a slot close to si. We further let wi = ei − si + 1 be the

length of request i’s active window and wmax be an upper bound on the length of

the active window, i.e., for all i we have that 1 ≤ wi ≤ wmax.

4.3.2 Scheduling updates

We consider a time-slotted system where the length of a time slot corresponds

to the duration it takes to transmit an update. Further, we consider for simplicity a

setting where a policy can schedule a single update per time slot. That said, recall

that multiple updates can be scheduled sequentially for the same request within its

active window. Below, we formally introduce the notation to be used in this chapter.

Definition 4.3.1 (Servicing a request) We say that a policy π has serviced a

request i if i is no longer active and π scheduled one or more updates for i within

its active window [si, ei].

We shall use the following notation.
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• (Nt)t≥1, where Nt := {i : i ∈ N , ai = t}, is the set of new requests arriving

at the beginning of slot t.

• Qt is the set of active requests in slot t.

• xπi,t is an indicator variable that takes value 1 if an update for an active request

i is scheduled in slot t under a policy π and 0 otherwise.

• T π
i,t := {τ : si ≤ τ ≤ t ≤ ei , xπi,τ = 1} is the set of time slots in which updates

for active request i are scheduled prior to and including t under a policy π.

• Ht := {i : i ∈ N , ei ≤ t− 1} is the set of requests which are no longer active

at t.

• Sπ
t := {i : i ∈ Ht , T π

i,ei
̸= ∅} is the set of requests in Ht that have been

serviced by policy π.

4.3.3 Reward and age of last update

We let rπi denote the reward obtained for a request i that was serviced under

policy π. It depends on the last slot in which an update for i was scheduled when

it was active. Assume the last update for an active request i is scheduled in a slot

close to its start time si, then the “age” of the update would increase by the end

of the active window and the update would not provide timely information to i as

would an update scheduled in a slot close to ei. Therefore scheduling an update

for request i in a slot closer to its end time ei is deemed advantageous. We let dπi

denote the time difference between the end time of active request i and the last slot

in which an update is scheduled for i under policy π, i.e., dπi = ei − max
t∈[si,ei]

xπi,tt+ 1.
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Definition 4.3.2 (Reward obtained from servicing i) The reward rπi obtained

from servicing request i under a policy π depends on the last slot in which an update

for i was scheduled and is collected when i is no longer active, i.e., at the end of slot

ei. It is modelled as,

rπi =

{
f(dπi ), if T π

i,ei
̸= ∅,

0, otherwise,
(4.1)

where f(·) is a non-decreasing upper-bounded function of dπi .

Scheduling an update for an active request i under a policy π in a slot close to its

end time ei results in a smaller ei −maxt∈[si,ei] x
π
i,tt and thus in a larger reward rπi .

The cumulative reward at slot t under policy π is denoted by,

rπ(Sπ
t ) =

∑
i∈Sπ

t

rπi . (4.2)

In the rest of the chapter, we consider both linear and convex reward func-

tions f(·).

Definition 4.3.3 (Linear reward function) A positive linear reward function

f(x) = α + β(wmax − x + c) associated with servicing request i under a policy π is

given by,

rπi = α+ β(wmax − dπi + c), (4.3)

where α, β, c ≥ 0.

The linear reward associated with servicing a request i under a policy π as defined

above consists of two main components, α and β(wmax − dπi + c). The second
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component is bounded below and above as follows, ∀i ∈ N,

β(wmax − wi + c) ≤ β(wmax − dπi + c) ≤ β(wmax + c).

Definition 4.3.4 (Convex reward function) A positive convex function f(x) =

α + h(−β(x − c)) models the reward associated with servicing a request i under a

policy π if,

rπi = α+ h(−β(dπi + c)), (4.4)

where α, β, c ≥ 0 and h(·) is a positive convex function.

Paralleling the way we defined the linear reward, the convex reward has two main

components, α and h(−β(dπi + c)), where the second term is bounded above and

below as follows, ∀i ∈ N,

h(−β(wi + c)) ≤ h(−β(dπi + c)) ≤ h(−βc).

4.3.4 Characterization of the scheduling problem

Our objective is to maximize the reward-rate obtained from servicing a se-

quence of requests ρT in a finite time window [1, T ], where without loss of generality,

t = 1 corresponds to the first slot in which there are any arrival of new requests and

T is the last slot after which there are no longer any active requests. For a sequence

of requests ρT , we let g(π,ρT ) =
rπ(Sπ

T+1)

HT+1
be the reward-rate obtained under policy

π. Formally, the problem is defined as follows.
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Problem 4.3.1

max
π∈Π

g(π,ρT ) = max
π∈Π

rπ(Sπ
T+1)

|HT+1|
(4.5)

s.t.
∑
i∈Qt

xπi,t ≤ 1,∀t ∈ [1, T ], (4.6)

xπi,t ∈ {0, 1},∀i ∈ Qt,∀t, (4.7)

where |HT+1| corresponds to the number of requests in HT+1, where Equation (4.6)

limits the number of users that can be scheduled at a time to at most 1, and where

Π is the set of causal non-idling policies defined as follows.

Definition 4.3.5 (Non-idling policy) A policy π ∈ Π is said to be non-idling if

it only idles when there are no active requests.

Our goal is to design a causal non-idling scheduling policy that maximizes

the reward-rate in Problem 4.3.1.

Assumption 4.3.1 In the remainder of the chapter we consider the regime where

α > β(wmax + c) and α > h(−βc) for both linear and convex reward functions

respectively.

Discussion. An interesting regime for both the linear and convex reward functions

in Definitions 4.3.3 and 4.3.4, is that where α > β(wmax+ c) and α > h(−βc). Then

a large reward of value α is obtained if an update to an active request i is scheduled

in any slot within its active window and in addition to a smaller reward of value

β(wmax−dπi +c) which depends on how close to ei is the last slot in which an update
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to i was scheduled. Therefore, a policy whose target is to maximize the reward-

rate defined in Problem 4.3.1 is driven to first maximizing the number of scheduled

requests then, if possible, to schedule these requests as close as possible to the ends of

their associated update windows. In particular, if β = 0, the linear reward function

in Definition 4.3.3 reduces to rπi = α and Problem 4.3.1 corresponds to maximizing

the fraction of updates scheduled within their active windows. Hence, an optimal

policy π that solves this problem when β = 0 needs to schedule at most one update

per active request, in any time slot within its active window. An optimal policy

for this setting is the Earliest Deadline First (EDF) policy [36]. From Definition

4.3.2, the reward obtained from servicing a request i under a policy π depends on

both the last slot in which an update for i is scheduled as well as on i’s release time

si, and is hence independent of its arrival time ai. Therefore, and without loss of

generality, we assume in the rest of the chapter that a request’s release time is equal

to its arrival time, i.e., for all i ∈ N we have that si = ai.

4.4 Optimal offline policy

In this section we characterize the optimal offline policy π∗ that solves Prob-

lem 4.3.1.

Definition 4.4.1 (Optimal genie-based offline policy π∗) A policy π∗ is opti-

mal for Problem 4.3.1 if it maximizes the reward-rate.

Policy π∗ has knowledge of the requests’ arrivals in the entire timeline and can

therefore optimally service requests. Optimal offline policies are useful since they
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provide an upper bound on the reward-rate that can be achieved by causal policies.

π∗ schedules at most a single update transmission per active request, since an active

request requires at most a single update being scheduled as close as possible to its

end time.

4.5 Causal scheduling policies

The limitation of causal policies Π is that they have no knowledge of future

request arrivals. Our goal is to devise online causal policies which have provable

performance guarantees in terms of Competitive Ratio (CR) with respect to the

optimal offline policy, defined as follows.

Definition 4.5.1 (Competitive ratio of a policy π) The competitive ratio of a

policy π is given by,

CRπ = min
ρT∈PT

g(π,ρT )

g(π∗,ρT )
, (4.8)

where PT is the set of all possible request arrivals in a time window of length T , π∗

is the optimal offline policy that solves Problem 4.3.1, and g(π,ρT ) and g(π∗,ρT )

are the reward-rate expressions achieved by both π and π∗ respectively. An online

algorithm is q-competitive for some q ≥ 1 if it achieves at least 1/q of the optimal

offline value in the worst case, i.e., for all ρT ∈ PT , we have that g(π,ρT ) ≥

1
q g(π

∗,ρT ).

We shall begin by providing a lower bound on the competitive ratio for any causal

non-idling scheduling policy in Π.

79



4.5.1 Lower bound on the competitive ratio of any policy in Π

The following theorem states that any causal non-idling policy π ∈ Π achieves

a competitive ratio of at least 1
wmax

.

Theorem 4.5.1 For any causal non-idling policy π ∈ Π, and with a reward function

that satisfies the condition in Assumption 4.3.1, the competitive ratio of π satisfies

CRπ ≥
1

wmax
.

Proof 4.5.1 Consider a causal non-idling policy π ∈ Π. According to Assumption

4.3.1, the worst scheduling strategy that π can follow is to schedule the same active

request every slot until it is no longer active. Let [1, T ] be a time window of length

T ≥ wmax, where T corresponds to the slot after which there are no longer any

active requests. A lower bound on the cumulative reward rπ(Sπ
T+1) obtained under

π is rπ(Sπ
T+1) ≥

T
wmax

f(0). The cumulative reward rπ
∗
(Sπ∗

T+1) obtained under the

optimal offline policy π∗ is upper bounded by Tf(0). Therefore, ∀ T ≥ wmax, the

competitive ratio of π is lower bounded as follows, CRπ ≥
rπ(Sπ

T+1)

rπ∗ (Sπ∗
T+1)

= 1
wmax

, which

concludes the proof.

4.5.2 Greedy policy πg

The causal greedy policy πg presented in the Algorithm 3 panel schedules

in every slot, the request that would maximize the marginal increase in cumulative

reward, and if need be, breaks ties arbitrarily (Line 5).

Theorem 4.5.2 (πg maximizes the ratio of serviced requests) Policy πg
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Algorithm 3: Greedy policy πg.

1 Q0 ← ∅; E0 ← ∅; Sπg

1 ← ∅; H1 ← ∅;
2 for t = 1, 2, ... do
3 Nt := set of new request arrivals;
4 Qt ← (Qt−1 \ Et−1)

⋃
Nt;

5 i∗ ∈ argmax
i∈Qt

f(ei − t)− f(ei − max
τ∈[ai,t−1]

xπg

i,ττ); break ties arbitrarily;

6 xπg

i∗,t ← 1; Tπg

i∗,t ← Tπg

i∗,t−1

⋃
{t};

7 Et := {i : i ∈ Qt, ei = t} ;
8 Dπg

t := {i : i ∈ Et, T
πg

i,t ̸= ∅} ;
9 Sπg

t+1 ← Sπg

t

⋃
Dπg

t ;
10 Ht+1 ← Ht

⋃
Et ;

maximizes the ratio of serviced requests when the linear and convex reward functions

satisfy the conditions in Assumption 4.3.1.

Proof 4.5.2 The proof of this theorem follows from the optimality of the Earliest

Deadline First (EDF) policy in maximizing the ratio of serviced requests for the

discrete time G/D/1−G queue where the service time is exactly one unit of time [36].

Following from Assumption 4.3.1, πg prioritizes scheduling requests that have not

been scheduled yet. If in a time slot t there are more than one active requests that

have not been scheduled prior to t, πg, similarly to EDF, schedules in slot t an update

transmission to the request with the earliest end time. Otherwise, in the case where

all active requests at time t have already been scheduled prior to t, πg schedules the

request that maximizes the marginal increase in the cumulative reward, which does

not affect the ratio of serviced requests. This concludes the proof.

Theorem 4.5.3 (Competitive ratio of policy πg) The competitive ratio of πg
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is

CRπg =
f(wmax)

f(0)
.

Proof 4.5.3 According to Theorem 4.5.2, πg maximizes the ratio of serviced re-

quests. Let N = |Sπg

T+1| be the total number of requests that have been serviced under

πg in a finite time window of length T . It follows that a lower bound on the cumula-

tive reward rπ
g
(Sπg

T+1) obtained under πg is rπ
g
(Sπg

T+1) ≥ Nf(wmax). The cumulative

reward rπ
∗
(Sπ∗

T+1) obtained under the optimal offline policy π∗ is upper bounded by

Nf(0). Therefore, for all T ≥ wmax, the competitive ratio of πg is lower bounded as

follows, CRπg ≥ rπ
g
(Sπg

T+1)

rπ∗ (Sπ∗
T+1)

= f(wmax)
f(0) , which concludes the proof.

4.5.3 Our proposed causal scheduling heuristic policy πa

We propose a causal scheduling policy πa. We shall refer to it as the adver-

sarial policy.

During every slot t, πa assigns to every slot in the interval [t,maxi∈Qt ei] a

single request that is active during this slot. We say that at time t, πa tentatively

schedules updates for active requests in slots within the interval [t,maxi∈Qt ei]. By

the end of slot t, an update is sent to the request scheduled in t, while the remaining

slots in (t,maxi∈Qt ei] are freed from any tentative schedules.

Definition 4.5.2 (Tentatively scheduling updates for an active request)

Policy πa tentatively schedules updates to an active request i ∈ Qt if during slot

t it assigns slots within the interval [t, ei] to potentially transmit updates to request

i in those slots.
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We clearly define additional notation specific to πa.

• x̂π
a

i,t,t′ is an indicator that takes value 1 if at slot t, an update for active request

i is tentatively scheduled in slot t′ ∈ [t, ei].

• T̂ πa

i,t,t′ := {τ : t ≤ t′ ≤ τ ≤ ei , x̂π
a

i,t,τ = 1} is the set of time slots within

the interval [t′, ei] for any t′ ∈ [t, ei], in which active request i is tentatively

scheduled.

Note. As long as a request i is active, no reward is yet collected for request i. A

reward associated with servicing a request i is only obtained when i is no longer

active. We introduce a specific notion for the reward associated with active request

i under policy πa which we refer to as the tentative reward, defined as follows.

Definition 4.5.3 (A request’s tentative reward under policy πa) The tenta-

tive reward r̂π
a

i,t,t′ of an active request i ∈ Qt on slot t is a function of the slots in

T πa

i,t−1 in which i was actually scheduled prior to t under πa and the slots T̂ πa

i,t,t′ in

which i is tentatively scheduled after t′ ∈ [t, ei] under πa, and is given by,

r̂π
a

i,t,t′ =


f

(
ei −max( max

τ∈[ai,t−1]
xπ

a

i,ττ, max
τ∈[t′,ei]

x̂π
a

i,t,ττ)

)
,

if T πa

i,t−1 ∪ T̂ πa

i,t,t′ ̸= ∅,
0, otherwise.

At any time t, an active request i may have been actually scheduled one or

many times prior to but not including t, and may have been tentatively scheduled

after t. Hence from Definition 4.5.3, the tentative reward depends on the latest time

slot in which i is either tentatively scheduled or has been actually scheduled.

We similarly define the aggregate reward associated with a set of active requests.
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Definition 4.5.4 (Requests’ aggregate tentative reward under policy πa)

The aggregate tentative reward at slot t associated with the set of active requests

Qt under policy πa, is the sum of the requests’ tentative rewards and is given by

r̂π
a

t,t′(Qt) =
∑

i∈Qt
r̂π

a

i,t,t′.

We consider the setting where the reward obtained from servicing a request is either

linear or convex as introduced in Definitions 4.3.3 and 4.3.4 respectively. πa is

presented in Algorithm 4, which proceeds as follows.

Algorithm 4: Policy πa.

1 Q0 ← ∅; E0 ← ∅; Sπa

1 ← ∅; H1 ← ∅;
2 for t = 1, ... do
3 Nt := set of new request arrivals;
4 Qt ← (Qt−1 \ Et−1)

⋃
Nt;

5 xπa

i,t′ ← 0,∀t′ ∈ [t, ei],∀i ∈ Nt;

6 Tπa

i,t ← ∅,∀i ∈ Nt;

7 x̂πa

i,t,t′ ← 0,∀t′ ∈ [t, ei],∀i ∈ Qt;

8 T̂πa

i,t,t ← ∅,∀i ∈ Qt;

9 τ ← max
i∈Qt

ei;

10 while τ ≥ t do
11 Aτ ← {i : i ∈ Qt, τ ∈ [ai, ei]};
12 Go to Tentative schedule ▷ Get i∗;

13 x̂πa

i∗,t,τ ← 1; T̂πa

i∗,t,τ ← T̂πa

i∗,t,τ+1

⋃
{τ};

14 if τ = t then
15 xπa

i∗,t ← 1; Tπa

i∗,t ← Tπa

i∗,t−1

⋃
{t};

16 τ ← τ − 1;

17 Et := {i : i ∈ Qt, ei = t} ;
18 Dπa

t := {i : i ∈ Et, T
πa

i,t ̸= ∅} ;
19 Sπa

t+1 ← Sπa

t

⋃
Dπa

t ;
20 Ht+1 ← Ht

⋃
Et ;

For every slot t, πa operates in a backwards manner starting from the last

slot in which it can tentatively schedule an update, maxi∈Qt ei, all the way back
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Algorithm 5: Tentative schedule.

1 Input: (x̂π
a

i,t,t′ , ∀t′ ∈ [τ + 1, ei],∀i ∈ Qt), (T̂
πa

i,t,τ+1,∀i ∈ Qt),

(xπ
a

i,t′ ,∀t′ ∈ [ai, t− 1],∀i ∈ Qt).

2 Output: i∗.
3 for i ∈ Aτ do
4 for j ∈ Aτ \ {i} do
5 T̃πa

i,t,τ ← T̂πa

i,t,τ+1

⋃
{τ};

6 x̃πa

i,t,t′ ← x̂πa

i,t,t′ ,∀t′ ∈ [τ + 1, ei]; x̃
πa

i,t,τ ← 1;

7 mπa

t,τ (i, j) =
f(ei− max

t′∈[τ,ei]
x̃πa

i,t,t′ t
′)+f(ej− max

t′∈[aj,t−1]
xπa

j,t′ t
′)

f(ej−τ)+r̂π
a

i,t,τ+1

;

8 i∗ ∈ argmax
i∈Aτ

[
min

j∈Aτ\{i}
mπa

t,τ (i, j)

]
; break ties by selecting i∗ with smallest ei∗ ;

break ties arbitrarily;

to t. For every slot τ between t and maxi∈Qt ei, π
a first determines Aτ , the subset

of active requests in Qt that can be tentatively scheduled in slot τ . Let i ∈ Aτ

and j ∈ Aτ \ {i} be two requests that will be active in slot τ . In Algorithm 5, for

every τ , πa evaluates mπa

t,τ (i, j) (Line 7). The reasoning behind mπa

t,τ (i, j) is intuitive

and described as follows. πa evaluates through mπa

t,τ (i, j) if it is more advantageous

in terms of aggregate tentative reward to tentatively schedule request i in slot τ

instead of request j. Slots between τ + 1 and ej in which updates to request j are

tentatively scheduled under πa are ignored when evaluating mπa

t,τ (i, j), in an attempt

to characterize the importance of tentatively scheduling an update to request j solely

in slot τ . A detailed derivation of mπa

t,τ (i, j) is provided as follows. The numerator

of mπa

t,τ (i, j) corresponds to the sum of the following two components:

• Tentative reward of request i if i is tentatively scheduled in any slots in

T̂ πa

i,t,τ+1

⋃
{τ}.
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• Tentative reward of request j if j was only scheduled prior to slot t.

The denominator of mπa

t,τ (i, j) corresponds to the sum of the following two compo-

nents:

• Tentative reward of request j if j is tentatively scheduled in slot τ .

• Tentative reward of request i if i is tentatively scheduled in any slots in T̂ πa

i,t,τ+1

and/or scheduled in any slots in T πa

i,t−1.

Therefore, mπa

t,τ (i, j) evaluates the ratio between the aggregate tentative re-

wards resulting from (1) tentatively scheduling request i at least once after and in-

cluding slot τ while only considering slots in which request j was actually scheduled

prior to t and (2) tentatively scheduling request j only in slot τ while considering all

slots strictly greater than τ in which i was tentatively scheduled to receive updates

and/or all slots prior to t in which updates to request i were scheduled.

πa then evaluates mπa

t,τ (i, j) for every request i ∈ Aτ , and for all j ∈ Aτ \ {i}

(Lines 3-7 of Algorithm 5), and determines the request j ∈ Aτ \ {i} for which

the ratio mπa

t,τ (i, j) is minimized, i.e., πa’s potential decision to tentatively schedule

request i in slot τ instead of request j deemed the least advantageous.

πa finally tentatively schedules in slot τ the request i∗ such that minq∈Aτ\{i∗}m
πa

t,τ (i
∗, q) ≥

maxj∈Aτ\{i∗}minq∈Aτ\{j}m
πa

t,τ (j, q) (Line 8 of Algorithm 5).

Figure 4.1 provides an example of requests scheduled and tentatively sched-

uled to receive updates under policy πa. Requests i3 and i4 became active at the

beginning of slot t = 3. We observe in the left subfigure of Figure 4.1 that requests
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Figure 4.1: Scheduling and tentatively scheduling under policy πa of requests with
maximal update window of wmax = 3 and receiving a linear reward as defined in
Definition 4.3.3, with α = 1, β = 0.1, c = 0.

i1 and i2 were scheduled to receive updates under πa in slots t = 1 and t = 2 re-

spectively. Additionally at t = 3, requests i4, i3 and i1 are tentatively scheduled to

receive updates under πa in slots t = 5, t = 4 and t = 3 respectively. Once all slots

in the interval [3, 5] have been reserved to tentatively schedule updates for active

requests, πa then schedules an update to request i1 in slot t = 3 (right subfigure

of Figure 4.1). The same scheduling process is repeated as long as there are active

requests.

4.5.4 Discussion of πg and πa

We provide insights on both proposed causal policies, πg and πa. We first

define mπg

t,t (i, j) for two active requests i and j in Qt as follows,

mπg

t,t (i, j) =

f(ei − t) + f(ej − max
t′∈[aj ,t−1]

xπ
g

j,t′t
′)

f(ej − t) + f(ei − max
t′∈[ai,t−1]

xπ
g

i,t′t
′)
. (4.9)
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If πg schedules request i ∈ Qt in slot t then the following corollary applies.

Corollary 4.5.1 Policy πg schedules an update transmission in slot t to active

request i ∈ Qt if and only if minj∈Qt\{i}m
πg

t,t (i, j) ≥ 1.

Proof 4.5.4 Since πg schedules an update transmission in slot t to active request
i ∈ Qt, it follows that ∀j ∈ Qt \ {i}, f(ei − t) − f(ei − maxt′∈[ai,t−1]x

πg

i,t′t
′) ≥

f(ej − t)− f(ej −maxt′∈[aj ,t−1]x
πg

j,t′t
′), which implies that,

∀j ∈ Qt \ {i},
f(ei − t) + f(ej − max

t′∈[aj ,t−1]
xπg

j,t′t
′)

f(ej − t) + f(ei − max
t′∈[ai,t−1]

xπg

i,t′t
′)
≥ 1.

This is equivalent to saying that,

min
j∈Qt\{i}

f(ei − t) + f(ej − max
t′∈[aj ,t−1]

xπg

j,t′t
′)

f(ej − t) + f(ei − max
t′∈[ai,t−1]

xπg

i,t′t
′)
≥ 1.

We can similarly prove the other direction of the condition, which concludes the
proof.

It follows from Corollary 4.5.1 that πg schedules in every slot the request i∗ ∈

argmax
i∈Qt

[
min

j∈Qt\{i}
mπg

t,t (i, j)

]
. In comparison with πa, if we set ∀t,∀i ∈ Qt, T̂

πa

i,t,t+1 = ∅,

then ∀i, j ∈ Qt, mπa

t,t (i, j) is equal to mπg

t,t (i, j) and πa becomes equivalent to πg. In

other words, if πa does not tentatively schedule requests, then it is equivalent to the

greedy request scheduling policy πg.

According to the above derivation, πg does not tentatively schedule active

requests at time t and takes a restrictive approach by prioritizing the scheduling of

any active requests that have not been scheduled prior to t. On the other hand, πa

allows for more flexibility in rescheduling active requests, where an active request

that has already been scheduled prior to some slot t, can be rescheduled in t, even
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if this might be at the expense of not scheduling other active requests that have not

been scheduled yet prior to t. It follows that πa does not make any assumptions

about the future load of requests’ arrivals and its implications on the tentative

schedules. We therefore expect πa to achieve a higher reward-rate than πg in systems

with small loads and requests with large active window’s lengths. On the other hand,

we expect that both πa and πg would achieve a similar reward-rate rate in systems

with high-loads and with requests that have small active windows, balanced on the

one hand by πg’s urgency to schedule new requests as soon as they become active,

and on the other hand by πa attempting to schedule/reschedule requests as close as

possible to the end of their active windows.

4.6 Numerical evaluations

We conducted numerical evaluations to explore the performance of our pro-

posed policies πa and πg in maximizing the reward-rate introduced in Problem 4.3.1

and evaluate their results with respect to other baseline policies which we introduce

below.

4.6.1 Model

We shall present results for a convex reward function that satisfies the con-

ditions in Assumption 4.3.1. We let h(x) = ex in Definition 4.3.4 and set α = 1,

β = 2 and c = −1
2 ln(0.9). It follows that the convex exponential reward obtained

after servicing request i under policy π is rπi = 1 + 0.9e−2(ei−maxt∈[si,ei]
xπ
i,tt). The

maximal achievable reward in this setting is equal to 1.9 whereas the smallest reward
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obtained after servicing a request is 1 + 0.9e−2wmax . We consider the setting where

the number of new request arrivals at the beginning of every slot is drawn from a

Poisson distribution with intensity λ, whereas a request’s active window length is

generated from a discrete uniform distribution ∼ U [1, wmax]. We run simulations

over a finite-time of length T = 1000, where T is the last slot after which there are

no longer any active requests in the system. Our simulation results represent aver-

ages over randomly generated requests’ arrivals as well as requests’ active windows

lengths. We ran 100 Monte-Carlo (MC) simulations and plotted both the mean

ratio of serviced requests for any policy π, i.e.,
|Sπ

T+1|
|HT+1| , and the reward-rate as well

as the confidence intervals corresponding to the standard deviation of the estimator

resulting from the MC simulations.

4.6.2 Scheduling policies

In addition to presenting the results for all of πa and πg, we consider two

baseline policies. πr is a causal policy that randomly schedules an active request in

a slot. πRR schedules active requests in a round-robin-like fashion which we describe

as follows. At the beginning of every slot, the set of new requests is considered for

scheduling right after the set of requests that arrived prior to this slot and have not

been scheduled yet.

Due to the brute-force nature of the optimal offline policy π∗ we provide

instead an upper bound (UB) on the maximal achievable reward-rate, which is

equal to the product between the maximal ratio of serviced requests (achieved by

πg) and the maximal achievable reward which is equivalent to 1.9 in this setting,
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(b) Reward-rate vs. λ.

Figure 4.2: Ratio of serviced requests and reward-rate when the reward is convex,
wmax = 30 and λ is increasing.

normalized by the total number of requests HT .

4.6.3 On the impact of the load of requests with fixed maximal window
length

We fix wmax = 30 and increase λ from 0.1 to 2.5. A first interesting obser-

vation is that all of πa, πg and πRR maximize the ratio of serviced requests in both

regimes where λ ≤ 0.4 and λ ≥ 1.6. Whereas for 0.4 ≤ λ ≤ 1.6, πg maximizes the

ratio of serviced requests. Another interesting observation is that for λ ≤ 0.7, the

ratio of serviced requests achieved by πg is constant and equal to 1, whereas the

reward-rate achieved by πg is significantly decreasing in that range. The following
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behavior is due to the fact that πg maximizes the number of serviced requests at the

expense of scheduling requests closer to the end of their active windows. Therefore,

this justifies that πg is not suitable for the reward-rate maximization in low-load

systems.

On the other hand, πa achieves the largest reward-rate among all proposed

causal policies for λ ≤ 2.1 even if it is linearly decreasing as λ increases. The linear

decrease in the reward-rate is justified since πa may reschedule active requests in

slots closer to their end times in an attempt to maximize the cumulative reward,

which may come at the expense of servicing requests that have not been scheduled

yet.

Finally, for λ ≥ 2.1, both πa and πg achieve the largest reward-rate, close

to the maximal achievable reward-rate, which is aligned with our previous analysis

suggesting that while πa is superior in systems with low-loads, both πa and πg

achieve similar performance in systems with high requests’ arrival rate.

4.6.4 On the impact of increased update window flexibility

We fix λ = 1 and increase wmax from 2 to 40. The results are shown in Figure

4.3. A first observation is that as wmax increases, the ratio of serviced requests

under πa, πg and πRR increases because of the additional flexibility in scheduling

requests in more slots. For wmax ≤ 3, we observe that both πa and πg achieve the

same reward-rate. For wmax ≥ 4, πa achieves in a higher reward-rate than any of

the other proposed causal policies. An interesting observation is that the reward-

rate achieved by πg is clearly decreasing as wmax increases. There are two factors
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that concurrently lead to the following phenomenon, the first one being that for

wmax ≥ 4, the ratio of serviced requests under πg slowly increases as wmax increases,

and the second one being that the minimal reward obtained from servicing a request

is decreasing as wmax increases.

That said, and as aligned with our previous discussions, πa is superior to

πg in such settings with fixed arrival rate but requests with large active windows,

since it allows for more flexibility in scheduling updates as close as possible to the

requests’ end times, whereas πg is driven towards maximizing the ratio of scheduled

requests with less priority to scheduling those requests closer to their end times.
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(a) Ratio of serviced requests vs. wmax.
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Figure 4.3: Ratio of serviced requests and reward-rate when the reward is convex,
λ = 1 and wmax is increasing.
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4.7 Chapter Conclusion and Future Work

In this chapter we have developed a model where updates are required by

requests prior to making timely decisions regarding time-varying processes they’re

interested in. Requests can receive updates only within time windows of finite

length. A key aspect is the design of a reward function that captures the importance

of scheduling the freshest update transmission to a request as close as possible to the

decision time as well as scheduling policies that achieve high rewards in adversarial

settings. A key part of our future work is to extend our model to a real-time

information market that includes multiple servers and allows for multiple updates’

transmissions per slot by matching requests to servers through efficient algorithms.
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Part II

Timely Information Sharing in
Multi-User 360◦ Virtual Reality
Communication Constrained

Settings
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Chapter 5

Robust Multi-User 360◦ Virtual Reality Video Delivery

The ability that Virtual Reality (VR) systems have to deliver immersive

experiences to customers is increasingly becoming attractive and has shifted high-

end VR manufacturers from designing wired head-mounted devices (HMDs) to en-

abling fully wireless solutions, which have leveraged the advantages of edge servers

to meeting VR systems’ demands. Such approaches have unlocked the advantages of

wireless technologies with high-throughput in providing timely delivery of massive

amounts of data to users’ VR devices and have paved the way towards more in-

teractive VR experiences among multiple users. But with such advancements come

major challenges. Providing customers with such VR experiences is burdensome

from multiple perspectives. For instance, the variability in users’ wireless chan-

nels may lead to disappointment in the overall users’ experience by limiting the

transfer of data streams, e.g., users traveling in a car/train watching VR videos

on their headsets may be more prone to Quality-of-Experience (QoE) disruptions.

Further, high-quality 360◦ VR videos require massive amounts of data to be con-

stantly streamed, which may overwhelm shared communication resources and result

in poor user experience. Motivated by the fact that users only view a portion of the

360◦ video content, viewport-adaptive streaming solutions that only stream in high

quality what the users are viewing or likely to view have emerged as a key technique
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to efficiently serve users and save on communication resources.

With that in mind, we propose in this chapter 1 a new approach to users’

viewing predictions, which we refer to as a statistical model for the users’ viewing

processes in 360◦ VR video applications that not only predicts the portion of the

video content that’s most likely to be viewed in the future, but predicts as well a

set of possible viewports over a future time-window along with their probabilities

of being viewed by the users. The advantage of such a model is that it captures

in a more detailed manner the level of certainty regarding the users’ viewport pre-

dictions which may support more robust decision-making in deciding how to serve

users. General settings may include users with high and/or low uncertainty regard-

ing their predicted viewing patterns. Users with high prediction uncertainty may

burden the communication medium due to the huge amount of data sent which may

still result in poor users’ QoE due to a small hit rate of their viewports. On the

other hand, users with low uncertainty may have overall better VR experiences due

to the small amount of data required to achieve such good VR performance. The

question of VR QoE fairness arises in such settings where users with different lev-

els of uncertainty regarding their predictions and experiencing potentially different

network conditions share the same resources. Such challenges encountered in fully

immersive VR systems need to be tackled through careful design of metrics and

policies that account for the variability in the network channel and prioritizes QoE

fairness while servicing multiple users sharing the same resources.

1Part of the results in this chapter are in preparation for future submission.
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5.1 Related work

Recent VR systems have shifted from tethered connections between the edge

server and the users’ VR devices to untethered designs. Such designs require high

data rate transmissions over congested wireless resources which induces new chal-

lenges that should be taken into consideration such as users’ mobility, wireless block-

ages, etc., and therefore require careful design of the wireless system model [50–53].

360◦ VR videos have emerged as a popular use case of VR applications.

Viewport prediction [54–57] has become a core research topic for such VR applica-

tions as a means to relieve the load on the communication medium by only trans-

mitting portions of the video that are most likely to be viewed by the users. Most

of the literature considers predicting the viewport that is most likely to be viewed

in the next video frame, or the sequence of viewports most likely to be viewed in

future video frames. By contrast, we propose predicting statistical models for users’

viewing processes which capture the different possible future viewing paths that a

user might take, with their associated probabilities. Further, the emerging role of

the edge for wireless VR in untethered VR settings has been extensively studied in

the literature. For instance, prediction of users’ future viewports can be offloaded

to the edge server. In fact, [58–63] explore fundamental trade-offs between caching

at the edge, computing and communication in wireless VR applications.

Tile-based video streaming [64–66] has become popular since only tiles that fall in

a user’s viewport are streamed to the user’s VR device. The end-to-end delay in

real-time streaming of tile-based viewports is significant due to the fact that the

edge server needs to predict the users’ future viewports based on their past 3DoF
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poses and transmit the predicted tiles in a timely manner to the VR headsets, where

stitching of the tiles occur before being displayed. A more recent work, [67], proposes

an alternative streaming approach, CoRE, that samples video frames non-linearly

in both the spatial and temporal domains. A CoRE frame samples a user’s pre-

dicted field-of-view with full resolution and gradually decreasing resolution at the

periphery. A CoRE chunk additionally consists of a main part at full frame rate and

an extension part at a gradually decreasing frame rate. Our proposed approach to

predicting users’ statistical models for their viewing processes can be incorporated

in such VR video streaming approaches to further enhance their robustness to both

view prediction errors and to network fluctuations.

Multi-user VR settings have also recently attracted a lot of attention. For in-

stance, [57, 65, 68–70] consider multi-user VR settings where multiple users share

the same Access Point (AP). Different users’ Quality-of-Experience (QoE) metrics

have been proposed, to either capture the ratio of the correctly predicted and dis-

played tiles [68,69], or the quality of the displayed tiles to the users [57], or a linear

combination of the quality of the perceived content, the average VR content de-

livery delay and the variance of the perceptual quality [70]. The above mentioned

work aim to maximize the users’ QoE subject to communication and computation

constraints. We propose in our work a QoE metric that accounts for the proportion

of high quality tiles viewed by the users as well for the QoE fairness among all users

sharing the same edge.
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5.2 Chapter Contributions.

We consider a multi-user VR setting where users can initiate service at any

time and select a 360◦ VR video to watch and are serviced by a nearby edge/BS.

We propose a viewport-adaptive tile-based video streaming approach compatible

with the Dynamic Adaptive Streaming over HTTP (DASH) protocol, that sched-

ules tiles for transmission based on the directions the users are predicted to look

at. We introduce a novel viewport predictor that estimates the statistical model

for users’ viewing paths represented as trees which consist of different sequences of

viewports that a user may view in the future, along with the viewports’ predicted

probabilities of being viewed. We propose a video-streaming framework that prior-

itizes the delivery of the low-definition content of the videos to guarantee that all

users’ possible viewports are covered, and then aims at enhancing the users’ VR ex-

perience through the delivery of the high-definition predicted tiles. A user’s quality

of experience (QoE) is hence tied to the availability in its VR device of the fraction

of HD tiles that fall in its current viewport. We further propose a multi-user sys-

tem utility function that accounts for QoE fairness among users sharing the same

resources and devise an HD tile scheduling policy that proactively schedules the

transmission of users’ predicted future views which achieves a degree of robustness

to network capacity fluctuations. The scheduling policy further leverages multicast

services provided by the BS to transmit users’ predicted overlapping views. Simula-

tions based evaluations showcase the robustness of our proposed viewport prediction

model and scheduling policy against heterogeneity in users’ predicted viewings and

network fluctuating capacities. Finally we explore through preliminary theoretical
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Figure 5.1: BS, edge and two users equipped with VR mobile devices viewing the
same video frame and having overlapping viewports.

analysis in idealized settings, the impact of both the users’ predictability in their

viewings and their network capacities on their mean QoE.

We consider a setting where a catalog of 360◦ VR videos are stored at a edge

node co-located with a wireless Base Station (BS). Users equipped with mobile VR

headsets initiate viewing sessions at random times by selecting the 360◦ VR video

they wish to watch. For simplicity we assume that users are served by the same fixed

edge/BS but more generally mobile users, e.g., within a car/bus, would be handed

off to other edge/BS resources when appropriate. Figure 5.1 depicts an example of

edge, BS and associated users equipped with VR headsets.

All 360◦ VR videos at the edge have a frame rate of 1
β frames per second, i.e.,

the time between two successive video frames is β seconds. The user’s mobile VR

device tracks its 3DoF pose and reports it to the edge every β seconds as well. We

shall consider a time-slotted system where each slot corresponds to a video frame

which is indexed by τ and is of length β seconds. Users initiate 360◦ VR video

viewing sessions at possibly different times and leave the network when the VR
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video they are watching ends. We let au be the time at which user u starts watching

its selected video and we let wu be the length of user u’s viewing session in terms

of the number of slots. We refer to users watching a 360◦ VR video on their VR

headsets as active users. We let Uτ denote the set of active users at the start of slot

τ .

Remark 5.2.1 For simplicity, we assume that new users can become active only at

the beginning of a slot τ .

For simplicity, we do not consider the pausing/rewinding of the 360◦ VR

videos, but they are natural extensions of our model.

5.2.1 User’s viewport and video compression model

A user’s viewport v in a 360◦ VR video frame is a 3-D vector with its

components being the pitch, roll and yaw angles respectively, which corresponds

to the direction in which the user is looking at. We let V denote the set of all

viewports/viewing directions that any user can look at. The viewport viewed by an

active user u in slot τ is denoted by vu,∗
τ .

Remark 5.2.2 In the sequel we refer to a user’s viewport as the direction in which

the user is, or may be, looking at.

Each 360◦ VR video is temporally segmented into video chunks in a manner

which is compliant with the DASH paradigm [71], and each video chunk is spatially

divided into tiles. Temporal video segmentation facilitates temporal compression by
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Figure 5.2: Video chunk, tiles and tile frames.

exploiting redundancy and allows for the efficient delivery of relevant content [72].

Each tile has the same duration and same number of frames as a video chunk.

An example of a video frame, video chunk, its constituent tiles and tile frames is

illustrated in Figure 5.2.

VR video encoding is performed using a layered approach [73,74], where the

availability of the lower layer tile encoding results in Low-Definition (LD) content

and the additional availability of the higher layer tile encoding results in High-

Definition (HD) content. Both low/high encodings of all tiles are available at the

edge.

We let Fu
τ denote the set of tile frames in the video frame to be displayed

to user u at time τ . We let hu(v, τ) be the function that maps viewport v ∈ V

that is viewed, or may be viewed by user u in slot τ to a subset of tile frames in

Fu
τ . We note that a user’s viewport maps to different sets of tile frames in different

video frames of the same video. We let duf for f ∈ Fu
τ , be the time at which tile

frame f may be viewed by user u and we refer to this as the viewing deadline of f .
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Hence, for f ∈ Fu
τ , d

u
f = τ . We further let T u

τ denote the set of tiles that belong to

the video chunk that u is watching at time τ . We let g(·) be a one-to-one mapping

function that maps a tile frame to the tile it belongs to. We finally let bt denote the

size in bits of HD tile t ∈ T u
τ .

5.2.2 VR video delivery and user’s Quality of Experience model

The edge/BS coordinates the delivery of VR video tiles in each slot τ , i.e.,

in between the time to display two successive video frames to active users Uτ . The

edge/BS schedules the transmissions at the granularity of LD and HD tiles rather

than scheduling LD and HD tile frames or video chunks. Every slot τ the edge server

prioritizes the delivery of the LD tiles which are sent sequentially using a traditional

video streaming protocol, e.g., DASH [71]. The edge guarantees the transmission

of all LD tiles that belong to the next video chunk of each active user, motivated

by the small size of the LD tiles and to provide robustness to fast changes in users’

viewports. The edge/BS then predicts the set of viewports that users may view in

future slots, maps them to the corresponding set of tiles and finally opportunistically

schedules the transmission of a subset of the HD tiles to the users depending on the

available capacity at the BS. HD tiles are sent to users to further enhance their VR

experience. The delivery of HD tiles is supported by low-latency transport protocol

such as QUIC [75], which can be utilized for streaming video content. We assume

that users’ headset devices have two buffers, one that caches LD tiles and another

that caches HD tiles. For the remainder of this work, we will solely focus on the

scheduling of HD tiles’ transmissions from the edge/BS to the users, as only HD
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tiles cached in a user’s device’s buffer will account for the user’s QoE. black

We let Qu,π
τ denote the set of HD tiles cached in user u’s device buffer at

time τ under HD tile scheduling policy π, and assume that u’s buffer can cache in

slot τ at most luτ bits tied only to HD tiles. We hence propose to model a user’s

QoE in a VR session as a function of the set of HD tiles cached in its device’s buffer

and available prior to their viewing deadlines.

Definition 5.2.1 (User’s QoE) A user’s QoE is defined as a function of the frac-

tion of HD tile frames whose tiles are cached in the user’s device’s buffer at their

deadline and that fall in the viewport viewed by the user. User u’s QoE under an

HD tile scheduling policy π is defined as,

QoEu,π =
1

wu

au+wu∑
τ=au

q

 1

|hu(vu,∗
τ , τ)|

∑
f∈hu(vu,∗

τ ,τ)

1{g(f)∈Qu,π
τ }

 ,

where 1{g(f)∈Qu,π
τ } takes value 1 if HD tile g(f) is in Qu,π

τ and 0 otherwise, |hu(vu,∗
τ , τ)|

is the number of tile frames in vu,∗
τ and where q(·) is a strictly increasing concave

function which provides some flexibility in modeling a user’s QoE in 360◦ VR ap-

plications.

So, a user’s QoE marginal gain for a time slot may decrease as the instantaneous

hit rate of tiles cached in the user’s buffer increases. This is captured through the

q(·) function.

We now propose a multi-user system utility function that realizes QoE trade-

offs across dynamic users and defined as follows.
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Definition 5.2.2 (Multi-user system utility) The multi-user system utility is
defined as the sum of the natural logarithmic function of the users’ QoEs. The utility
function under an HD tile scheduling policy π is defined as

v(QoEπ) =
∑
u∈U

log (QoEu,π) ,

where QoEπ := (QoEu,π : u ∈ U) and U =
⋃

τ Uτ .

The natural logarithmic function encourages a degree of QoE fairness across users.

5.2.3 Edge/BS resources

The BS provides both unicast and multicast transmission services. Its re-

sources may be shared with other high priority traffic as well and thus possibly only

limited congested wireless resources are available to transmit HD tiles. We assume

that the edge has a rough estimate of the available wireless resources to transmit

HD tiles in slot τ once LD tiles and other high priority traffic are delivered. We let

θuτ denote the estimate of the maximal number of bits that the edge can transmit

to user u throughout slot τ if all available network resources are allocated to u. We

further let ρτ ≤ 1 be the fraction1 of the available resources that can be used for

multicast transmissions. The edge/BS finally proactively schedules the transmission

of a subset of HD tiles to their corresponding users based on its estimate of the avail-

able resources, and receives feedback regarding their successful delivery. The edge

guarantees that no tile is delivered more than once to the same user. If an HD tile t

is scheduled in slot τ for multicast transmission to a subset of active users Aτ ⊆ Uτ ,

the edge/BS estimates the maximal number of bits that it can transmit to all users

1For example, up to 60 percent of a Long-Term Evolution (LTE) frequency carrier may be
dedicated to Multimedia Broadcast/Multicast Service (MBMS) [76,77]
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in Aτ . For simplicity, we shall assume that the edge/BS adapts the transmission

rate to match that of the user with the worst transmission rate in Aτ . Hence, the

proportion of resources reserved for the multicast transmission of t to users in Aτ

in slot τ is maxu∈Aτ
bt
θuτ
.

Finally at the beginning of slot τ + 1, the edge discards any HD tiles that

were not successfully transmitted in slot τ to their corresponding users. Note that

tiles cached in the user’s buffer and that belong to a specific video chunk are deleted

once frames therein are done being viewed by the user.

5.3 Multi-user system utility maximization

We define the following notation to properly account for unicast and multi-

cast transmissions at the BS.

• µπ,u
τ ≤ θuτ , is the unicast transmission rate assigned to user u ∈ Uτ under

policy π in slot τ .

• Bπ
τ is the set of HD tiles that are multicast to subsets of users in Uτ in slot τ

under π.

• Mπ
τ,t ⊆ Uτ is the subset of users to which HD tile t ∈ Bπ

τ is multicast to in slot

τ under π.

• Rπ
τ,t ⊆ Uτ is the subset of users to which HD tile t is unicast to in slot τ under

π.

We now formulate the multi-user system utility maximization problem.
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Problem 5.3.1 (Multi-user system utility maximization).

max
π∈Π

v(QoEπ)

s.t.
∑
t∈Bπ

τ

max
u∈Mπ

τ,t

bt
θuτ
≤ ρτ , ∀τ, (5.1)

∑
u∈Uτ

µu,π
τ

θuτ
≤ 1−

∑
t∈Bπ

τ

max
u∈Mπ

τ,t

bt
θuτ

, ∀τ, (5.2)

∑
t∈Qu,π

τ

bt ≤ luτ ,∀u ∈ Uτ ,∀τ, (5.3)

where Π denotes the set of all policies that schedule the transmission of HD tiles to users.

Equation (5.1) enforces a constraint on the proportion of available resources that

can be used for multicasting, while Equation (5.2) is a constraint on the fraction of

time that a user’s channel can be reserved for unicasting. Equation (5.3) enforces a

constraint on the number of HD tiles that can be cached in a user’s buffer.

5.4 Proposed algorithm for Problem 5.3.1

We now propose an algorithm geared at maximizing the multi-user system

utility in Problem 5.3.1. It comprises of three steps repeated every slot τ as follows.

First, the edge predicts the set of viewports that the user may view in future slots

through a predictor which we refer to as a Statistical Model Predictor (SMP) for-

mally described in Subsection 5.4.1, then maps the tile frames in future predicted

viewports to their corresponding sets of HD tiles (Subsection 5.4.2). Second, the

edge/BS predicts the communication resources available in slot τ for the transmis-

sion of predicted HD tiles. For simplicity, we will assume that a crude estimate of

the available resources is available at the edge/BS every slot τ . Third, the edge/BS

leverages its viewports and capacity predictions to schedule the HD tiles to be either
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unicast or multicast. We refer to our policy as πF as it is geared at achieving a fair

allocation of QoE across users. πF is described in detail in Subsection 5.4.3. We

refer to our proposed algorithm as SMP+πF .

5.4.1 Statistical model for a user’s viewing process

We propose to predict a statistical model for a user’s future viewing process

given the past viewing history. The model corresponds to a tree of depth ω and

branching factor of at most α, where each tree node corresponds to a possible

viewport seen at a future time slot– to reduce the model’s complexity and recognizing

that viewports may shift relatively slowly as compared to a frame duration, the tree’s

nodes at different depths correspond to viewports sampled every γ slots.

Figure 5.3 exhibits an estimated statistical model for user u’s viewing process

with α = 2, ω = 2 and γ = 5 given the viewing history up to and including slot τ .

We shall let V̂uτ := {nu
τ,i : i ∈ {1, . . . ,mu

τ }} denote the set of nodes in the

tree for user u’s statistical model as estimated at time τ whence for future slots

τ +γ, . . . , τ +ωγ, which comprises of mu
τ nodes, and where nu

τ,i = (v̂u
τ,i, k

u
τ,i, p̂

u
τ,i) is a

node indexed by i and characterized by (1) a predicted viewport v̂u
τ,i ∈ V; (2) a slot

kuτ,i ∈ {τ + γ, . . . , τ + ωγ}; and (3) an estimated probability p̂uτ,i given the viewing

process history from τ−δ+1 up to τ for δ > 1. We note that two nodes in the same

tree level may have the same characteristics, but different viewing trajectories.

We propose a predictor which we refer to as the Statistical Model Predictor

(SMP) that any given slot say τ takes as input the sequence of δ most recently viewed

viewports, i.e., V u,∗
[τ−δ+1,τ ] = (vu,∗

τ−δ+1,v
u,∗
τ−δ+2, . . . ,v

u,∗
τ ), and outputs a statistical
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Figure 5.3: Past and present viewed viewports and the estimated statistical model
for user u’s viewing processes at time τ = m with α = 2, ω = 2 and γ = 5.
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model for the user’s viewing process for slots τ + γ, . . . , τ + ωγ. Note that the

overall prediction window is ωγ. Ideally to obtain accurate predictions of the future,

ω should be large and γ should be small. The SMP ’s main block is a Deep Recurrent

Neural Network (DRNN) that takes as input a sequence of δ viewports up to the

most recent slot τ and estimates the probability of viewing each possible viewport

in slot τ + γ.

The statistical model is predicted through recursive executions of the DRNN.

In slot τ , the first execution of the DRNN estimates the viewports’ probabilities of

what is viewed in slot τ + γ. Next, for each of the α viewports with the highest

estimated probabilities of being viewed in slot τ + γ is concatenated to V u,∗
[τ−δ+2,τ ].

Each newly formed sequence of viewports is then fed to the DRNN to estimate the

statistical model for the viewing process in slot τ+2γ. This process is repeated over ω

time slots delivering the tree model for the user’s viewing process. Details regarding

the architecture of the DRNN and SMP are provided in Appendix C.1.1. The

number of recursive DRNN executions the SMP requires to estimate a statistical

model of depth ω and branching factor α is thus at most αω−1
α−1 . This structure

permits one to increase the value of γ while reducing ω so as to increase the depth

of the future predictions while reducing the complexity of the SMP.

Recall that a viewport at a given time maps to a set of tile frames. We let

F̂u
τ denote the set of tile frames corresponding to the tuples, i.e., viewports at given

times, in V̂uτ . Further we let T̂ u
τ denote the set of tiles that tile frames in F̂u

τ map

to. Additional notation is provided in Table 5.1.
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V Set of viewports/viewing directions.

Fu
τ Set of tile frames in the video frame displayed to active user u at time τ .

T u
τ

Set of tiles that belong to the video chunk that active user u is watching at
time τ .

duf
Deadline of tile frame f ∈ Fu

τ . We let d := (duf : f ∈ Fu
τ , τ ∈

{au, . . . , au+wu}, u ∈ Uτ ).

vu,∗
τ Viewport looked at by user u in slot τ .

hu(V, τ)
Function that maps viewport V that is looked at, or may be looked at by user
u in slot τ to a subset of tile frames in Fu

τ .

V u,∗
[τ−n+1,τ ] Sequence of viewports looked at by user u between slots τ − n+ 1 and τ .

V̂uτ
Set of nodes in the tree for user u’s statistical model as estimated at time τ
whence for future slots τ + γ, . . . , τ + ωγ, which comprises of mu

τ nodes.

nu
τ,i =

(v̂u
τ,i, k

u
τ,i, p̂

u
τ,i)

Node indexed by i and characterized by (1) a predicted viewport v̂u
τ,i ∈ V; (2)

a slot kuτ,i ∈ {τ + γ, . . . , τ + ωγ}; and (3) an estimated probability p̂uτ,i given
the viewing process history from τ − δ + 1 up to τ for δ > 1.

F̂u
τ

Set of tile frames that viewports and time tuples in V̂uτ map to. We let F̂τ :=
(F̂u

τ : u ∈ Uτ ).

T̂ u
τ Set of tiles that tile frames in F̂u

τ map to. We let T̂ τ := (T̂ u
τ : u ∈ Uτ ).

ηuτ,f Weight of HD tile frame f ∈ F̂u
τ . We let ητ := (ηuτ,f : f ∈ F̂u

τ , u ∈ Uτ ).

λu
τ,t Weight of HD tile t ∈ T̂ u

τ . We let λτ := (λu
τ,t : t ∈ T̂ u

τ , u ∈ Uτ ).

euτ,t Deadline of HD tile t ∈ T̂ u
τ . We let eτ := (euτ,t : t ∈ T̂ u

τ , u ∈ Uτ ).

Qu,π
τ

Set of HD tiles cached in active user u’s device buffer at time τ under selection
and scheduling policy π ∈ Π. We let Qπ

τ := (Qu,π
τ : u ∈ Uτ ).

Table 5.1: Notation.
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5.4.2 Weights and deadlines of predicted HD tile frames and tiles

Given a constraint on the resources available for the transmission of HD tiles,

the edge can schedule only a subset of the predicted tiles and so the most relevant

HD tiles will need to be selected and scheduled. We hence propose to associate

a weight with each predicted tile frame based on the probabilities associated with

predicted viewports that map to this tile frame, in an approach that would simply

capture its priority/importance in comparison with other tile frames. Note that a

tile frame may fall in more than one viewport predicted to be viewed by a user in a

particular video frame and hence the weight of a tile frame is defined as follows.

Definition 5.4.1 (Weight of a predicted HD tile frame) The weight of a

predicted HD tile frame f ∈ F̂u
τ is defined as follows,

ηuτ,f =
∑

i:nu
τ,i∈V̂u

τ

puτ,i
|hu(v̂u

τ,i, k
u
τ,i)|

1{hu(v̂u
τ,i,k

u
τ,i)}.

Note that not all viewports will map to the same number of tile frames in a specific

video frame [64].

Remark 5.4.1 In general, the viewport’s probability of being viewed may be dis-

tributed non-homogeneously over the tile frames that belong to the viewport, based,

for example, on their proximity to the center of the viewport. In Definition 5.4.1,

for simplicity we assume that the viewport’s probability of being viewed is divided

uniformly over all such tile frames.

In turn, the weight of a tile is formally defined below.
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Definition 5.4.2 (Weight of a predicted HD tile) The weight of an HD tile

t ∈ T̂ u
τ is the sum of the weights of all HD tile frames in F̂u

τ that map to tile t and

defined as follows,

λu
τ,t =

∑
f∈F̂u

τ

ηuτ,f1{g(f)=t}.

The viewing deadlines of HD tile frames can be used to define deadlines for

HD tiles. The viewing deadline of a predicted HD tile is defined below.

Definition 5.4.3 (Viewing deadline of a predicted HD tile) The viewing

deadline of an HD tile t ∈ T̂ u
τ is tied to the earliest tile frame deadline among all

tile frames in F̂u
τ that map to t and is given as,

euτ,t = min
f∈F̂u

τ :g(f)=t
duf .
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5.4.3 Our proposed HD tiles scheduling policy πF

Algorithm 6: πF

Input : τ, ϵ, ω, γ, Uτ , θτ , ρτ , lτ , r
πF

τ−1, Q
πF

τ , F̂τ , T̂ τ , d, ητ , λτ , eτ

1 Let SπF

τ ← ∅, BπF

τ ← ∅ ;
2 Let RπF

τ,t ← ∅, MπF

τ,t ← ∅, ∀t ∈ T̂ τ ;

3 Let LπF

τ ← ∅ ▷ Queue of tuples of HD tiles and their associated users ;

4 Let T̃ τ ← T̂ τ ;

5 ru,π
F

τ ←
(1− ϵ)ru,π

F

τ−1 + ϵ · q
(

1
|hu(V u,∗

τ ,τ)|
∑

f∈hu(V u,∗
τ ,τ) 1{g(f)∈Qu,πF

τ }

)
, ∀u ∈ Uτ

6 while T̃ τ is non-empty do
7 Go to Algorithm 7 ▷ Get u∗, t∗

8 if MπF

τ,t∗ is non-empty then

9 if Adding u∗ to MπF

τ,t∗ satisfies Constraints 5.1, 5.2, 5.3 then

10 MπF

τ,t∗ ←MπF

τ,t∗
⋃
{u∗};

11 Update lu
∗

τ ;

12 T̃ τ ← T̃ τ \ {t∗};
13 continue;

14 else if RπF

τ,t∗ is non-empty then

15 if Adding both u∗ and a user u′ ∈ RπF

τ,t∗ to MπF

τ,t∗ satisfies

Constraints 5.1, 5.2, 5.3 then

16 MπF

τ,t∗ ←MπF

τ,t∗
⋃
{u∗, u′}, BπF

τ ← BπF

τ {t∗},
RπF

τ,t∗ ← RπF

τ,t∗ \ {u′};
17 Update µπF ,u′

τ , lu
∗

τ ;

18 T̃ τ ← T̃ τ \ {t∗};
19 continue;

20 if Adding u∗ to RπF

τ,t∗ satisfies Constraints 5.2, 5.3 then

21 RπF

τ,t∗ ← RπF

τ,t∗
⋃
{u∗};

22 Append (t∗, u∗) to LπF

τ ;

23 Update µπF ,u∗
τ , lu

∗
τ ;

24 T̃ τ ← T̃ τ \ {t∗};

25 Tuples in LπF

τ are popped from the head of the queue. If tile t in the

tuple (t, u) is in BπF

τ , then it is multicast to all users in MπF

τ,t . Else t is

unicast to user u;
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Algorithm 7: Select the next HD tile and user.

Input : τ, ϵ, Uτ , r
πF

τ , QπF

τ , F̂τ , T̃ τ , d, ητ , λτ , eτ
Output: u∗, t∗

1 Evaluate ∇̂u,πF

τ,t ▷ Equation (C.2) in Appendix C.2;

2 Let r̂π
F

τ ← rπ
F

τ ;

3 r̂u,π
F

euτ,t−1 is computed for all t ∈ T̃ u
τ , for all u ∈ Uτ as;

4 for i ∈ {τ + 1, · · · , euτ,t − 1} do

5 r̂u,π
F

i ← (1− ϵ)r̂u,π
F

i−1 + ϵ · q
(∑

f∈F̂u
τ
ηuτ,f1{g(f)∈Qu,πF

τ ,duf=i}

)
6 u∗, t∗ ← argmax

u∈Uτ ,t∈T̃ u
τ

∇̂u,πF

τ,t · 1

r̂u,π
F

euτ,t−1

Every slot τ , our policy πF schedules a subset of predicted HD tiles for either

unicast or multicast transmissions based on the estimate of the available resources

at the BS, namely θτ := (θuτ : u ∈ Uτ ) and ρτ , with the intent of maximizing the

multi-user QoE utility while achieving QoE fairness among users.

πF keeps track of an estimate of the experienced QoE up to time τ for every

user u ∈ Uτ denoted ru,π
F

τ . Every τ , πF updates ru,π
F

τ for all u ∈ Uτ as a weighted

average between ru,π
F

τ−1 and the concave function q(·) of the fraction of HD tile frames

cached in u’s device’s buffer that fall in the viewport viewed by u in slot τ (Line 5).

πF next selects an HD tile t∗ and the user u∗ it has to be sent to (Line

7), and then determines whether t∗ can be multicast to u∗ and other active users

in the set MπF

τ,t∗ if Constraints 5.1, 5.2 and 5.3 in Problem 5.3.1 are satisfied (Lines

8-20). Otherwise, πF unicasts tile t∗ to user u∗ if Constraints 5.2 and 5.3 in Problem

5.3.1 are satisfied (Lines 23-27). Else, tile t∗ is not scheduled for transmission to u∗.

A queue LπF

τ keeps track of the order in which selected tiles will be scheduled for
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transmission to their corresponding users which is tied to the order in which they

were selected (Line 30).

We let ĉuτ (·) be the function that evaluates user u’s expected future cumula-

tive QoE over sampled slots τ + γ, . . . , τ + ωγ, given the set of HD tiles cached in

Qu,πF

τ and let Xu
τ be a random variable that denotes the viewport viewed by user u

in slot τ . It follows that

ĉuτ (Q
u,πF

τ )

=

ω∑
α=1

Êτ

q
 1

|hu(Xu
τ+αγ , τ + αγ)|

∑
f∈hu(Xu

τ+αγ ,τ+αγ)

1
{g(f)∈Qu,πF

τ }

 ,

where Êτ [·] denotes the expectation taken with respect to the predicted

process over sampled times and given the set of HD tiles cached in Qu,πF

τ , where

hu(Xu
τ+αγ , τ +αγ) corresponds to the set of tile frames that fall in viewport Xu

τ+αγ

in slot τ + αγ, and where g(f) maps tile frame f to its corresponding tile.

The marginal increase in the expected future cumulative QoE of user u over

sampled slots after scheduling HD tile t to user u and given the set of HD tiles cached

in u’s device’s buffer is denoted as ∇̂u,πF

τ,t (Qu,πF

τ ) = ĉuτ (Q
u,πF

τ
⋃
{t})− ĉuτ (Q

u,πF

τ ). For

simplicity, we will suppress the argument of ∇̂u,πF

τ,t (Qu,πF

τ ) and refer to it as ∇̂u,πF

τ,t .

(An approximation of ∇̂u,πF

τ,t is provided in Appendix C.2). We point out that if

q(·) is a linear function such that q(x) = x, then ∇̂u,πF

τ,t = λu
τ,t, i.e., it is equivalent

to the weight of HD tile t evaluated in slot τ .

In Algorithm 7, πF greedily selects the tile t∗ and the user u∗ that maximizes

∇̂u∗,πF

τ,t∗ /r̂u
∗,πF

eu
∗

τ,t∗−1
(Line 7), where r̂u

∗,πF

eu
∗

τ,t∗
is the estimated QoE of user u∗ at the deadline
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of t∗, i.e., at eu
∗

τ,t∗ , which is geared at achieving a fair allocation of QoE across users.

A detailed explanation of the derivation of r̂u,π
F

eu
∗

τ,t∗
is relegated to Appendix C.3.

Remark 5.4.2 πF schedules HD tiles in a manner similar to the traditional pro-

portional fairness [78] with the main difference that πF ’s goal is to maximize the

multi-user system utility instead of maximizing the sum of the logarithmic values of

the rate allocations of all the users.

5.5 Simulations

We conducted simulation based evaluations to explore the performance of

our proposed policy SMP+πF . We evaluate SMP+πF ’s performance with respect

to other baseline policies which we introduce in Subsection 5.5.4. We assume in our

simulations that all LD tiles are successfully delivered to the active users’ headsets

prior to their deadlines and only focus on scheduling HD tiles. We further assume

that the scheduled HD tiles under any policy are successfully transmitted to their

corresponding users, i.e., the prediction of network resources is accurate.

5.5.1 Dataset Preparation

We consider the dataset made available by [79] which provides the 3DoF

poses of 50 different users tracked while they were watching HD 360◦ VR videos

from a catalog of 10 videos. The videos are encoded at 30 fps, are 60 seconds long

and have a 4K resolution each. The equirectangular (EQR) projection of each of

the video frames is divided into 200 square tiles of 192x192 pixels. The dataset also

provides the ground-truth mapping of the users’ 3DoF poses in each video frame to
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the corresponding set of observed tile frames. For each user and each 360◦ VR video,

there is hence a sequence of 1800 3DoF poses and the corresponding tile frames they

map to. We consider 35 users from the dataset for training.

5.5.2 Video segmentation

We assume that each 360◦ VR video is segmented into video chunks of 1

second each. It follows that each tile in a video chunk comprises of 30 tile frames.

5.5.3 SMP parameters

We set α = 2, γ = 5 and ω = 2 and 4.

5.5.4 Baseline algorithms

In addition to SMP+πF we consider three other baseline algorithms, namely

ML+πG, SMP+πG and SMP+πRR. All baseline policies differ from SMP+πF in

the HD tile and user selection, i.e., the way they select t∗ and u∗ in Line 7 of

Algorithm 6 but otherwise proceed similarly to SMP+πF . ML+πG additionally

differs from SMP+πF in the viewports’ prediction methodology.

• ML+πG: Determines among the predicted viewports which is most-likely to

be viewed in slots τ + γ, . . . , τ + ωγ and uses a greedy scheduling policy, i.e.,

prioritizes scheduling (1) tiles with earliest deadlines and (2) tiles with the

largest weights. Every slot τ , the sequence of viewports most-likely to be

viewed in slots τ+γ, . . . , τ+ωγ is predicted for all active users. The predictor

proposed for this approach is inspired by the DRNN proposed in [57] with
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(b) Users’ average QoE for ω = 4, γ = 5
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(e) Average number of HD tiles scheduled at
the MEC for ω = 2, γ = 5
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(f) Average number of HD tiles scheduled at
the MEC for ω = 4, γ = 5

Figure 5.4: Users’ average QoE and standard deviation as well as average number
of HD tiles scheduled at the MEC per slot for ω = 2, 4 and fixed γ = 5, when users
are watching the same 360◦ VR video and experience the same network capacity.
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(a) User’s QoE results in “landscape” video
for ω = 4, γ = 5
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(b) User’s QoE results in “diving” video for
ω = 4, γ = 5

Figure 5.5: Users’ QoE results for ω = 4 and γ = 5 when users are watching
“landscape” and “diving” videos respectively while experiencing the same network
capacity.

the main difference summarized as follows. The input to the DRNN in [57]

consists of the n most recent 3DoF poses and its output consists of the set

of tile frames predicted to be viewed in slots τ + γ, . . . , τ + ωγ, whereas our

ML predictor consists of a DRNN that takes as an input the n most recently

observed viewports and outputs the viewport that is most-likely to be viewed

in any of the future slots.

All predicted viewports are then assigned a probability of 1 and the HD tiles’

weights and deadlines are evaluated as in Definitions 5.4.2 and 5.4.3 respec-

tively. When selecting a subset of the predicted HD tiles, ML+πG prioritizes

the set of predicted tiles with the earliest deadline, then selects for each ac-

tive user the tile with the largest weight and finally selects the tile t∗ and its

associated user u∗ that maximize ∇̂u∗,πG

τ,t∗ /r̂u
∗,πG

eu
∗

τ,t∗−1
.

• SMP+πG: Estimates a user’s statistical model for its viewing process and

selects t∗ and u∗ under policy πG.

• SMP+πRR: Estimates a user’s statistical model for its viewing process and
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(e) Average number of HD tiles scheduled at
the MEC for ω = 2, γ = 5
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(f) Average number of HD tiles scheduled at
the MEC for ω = 4, γ = 5

Figure 5.6: Users’ average QoE and standard deviation as well as average number
of HD tiles scheduled at the MEC per slot for ω = 2, 4 and fixed γ = 5, when users
are watching the same 360◦ VR video and experience different network capacities.
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(a) User’s QoE results in “landscape” video
for ω = 4, γ = 5
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(b) User’s QoE results in “diving” video for
ω = 4, γ = 5

Figure 5.7: Users’ QoE results for ω = 4 and γ = 5 when users are watching
“landscape” and “diving” videos respectively while experiencing different network
capacities.

selects active users in a round-robin-like fashion then selects for each selected

user u∗ the HD tile t∗ with the largest weight.

5.5.5 Network conditions

In our simulation, we will use the traces for users’ time-varying capacity pro-

vided in [80], which were collected by [81]. These provide millisecond level wireless

capacity accuracy. We use the file named “Verizon-LTE-driving.down” which pro-

vides traces for around 1400 seconds, and evaluate the maximal transmission rate

for every slot τ , i.e., over successive 33 milliseconds time windows.

5.5.6 Model

We consider a setting where 4 randomly selected users from the testing

dataset u1, . . . , u4, start watching 360◦ VR videos at the same time and for a du-

ration of 30 seconds. We thus simulate our results for the first 30 seconds of any

VR video that the users are watching. We further assume that each HD tile has a

size of 0.1 Mbits and set ϵ = 10−3. We finally let q(·) be a linear function where
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q(x) = x. We provide bar plots for the users’ QoE results, users’ average QoE and

QoE standard deviation achieved under the proposed policies. We further provide

bar plots for the average number of HD tiles scheduled per slot by each policy.

5.5.7 Users watching the same 360◦ VR video

We first consider the setting where all active users are watching the same

360◦ VR video and we provide results for 5 different VR videos, namely “landscape”,

“diving”, “sport”, “coaster” and “pacman”.

5.5.7.1 Homogeneous network capacity

We assume that the maximal number of bits available for the transmission of

HD tiles is the same for all active users throughout their VR sessions, i.e., θui
τ = θτ

for all τ and for all i ∈ {1, · · · , 4}. We further set ρτ = 0.6 for all τ . We use the

network capacity trace from time 800 to 830 seconds since it exhibits fluctuations

and has a mean capacity of 25.01 Mbps or an equivalent of 0.833 Mbits per slot.

The results are provided in Figure (5.4).

We first observe that as ω increases from 2 to 4, the average number of

HD tiles scheduled per slot increases for all VR videos and all proposed policies

due to the increased number of predicted HD tiles and the available capacity to

support their transmissions (Figs. (5.4e) and (5.4f)). All policies achieve somewhat

similar average number of transmissions per slot. This phenomenon is accompanied

by an increase in the users’ average QoE (Figs. (5.4a) and (5.4b)) which confirms

that proactively scheduling HD tiles whose tile frames are predicted to be viewed
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the MEC for ω = 4, γ = 5

Figure 5.8: Users’ average QoE and standard deviation as well as average number
of HD tiles scheduled at the MEC per slot for ω = 2, 4 and fixed γ = 5, when users
u1, u2, u3 and u4 are watching different 360◦ VR videos, namely “diving”, “coaster”,
“sport” and “landscape” respectively and experience same network capacity.
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Figure 5.9: Users’ QoE results for ω = 4 and γ = 5 when users u1, u2, u3 and u4
are watching different 360◦ VR videos, namely “coaster”, “sport”, “landscape” and
“diving” respectively and experience same network capacity.

in future slots provides robustness to network capacity fluctuations. Further, the

increase in ω has resulted in an increase in the number of overlapping predicted HD

tiles across users. As a result, SMP+πF , SMP+πG and SMP+πRR have leveraged

multicast services to achieve a more fair QoE among the users which has resulted

in a decrease in the standard deviation of users’ QoEs achieved under those policies

(Figs. (5.4c) and (5.4d)). On the other hand, we observe that for some videos, the

standard deviation of users’ QoEs for ML+πG has increased as ω increased. One can

deduce that some users have benefited from the increase in the depth of predictions

more than others.

For ω = 4 in Figs. (5.4b) and (5.4d), SMP+πF achieves an overall higher

average QoE and a lower standard deviation of users’ QoE as compared to SMP+πG

and ML+πG. This observation has showcased that neither solely scheduling HD

tiles whose tile frames belong to viewports along the most-likely viewport path nor

greedily scheduling HD tiles by prioritizing predicted tiles with earliest deadlines

have proven to achieve best performance. Since SMP+πG is expected to achieve
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Figure 5.10: Users’ average QoE and standard deviation as well as average number
of HD tiles scheduled at the MEC per slot for ω = 2, 4 and fixed γ = 5, when users
u1, u2, u3 and u4 are watching different 360◦ VR videos, namely “diving”, “coaster”,
“sport” and “landscape” respectively and experience different network capacities.
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Figure 5.11: Users’ QoE results for ω = 4 and γ = 5 when users u1, u2, u3 and u4
are watching different 360◦ VR videos, namely “coaster”, “sport”, “landscape” and
“diving” respectively while experiencing different network capacities.

highest QoE in settings where users have a higher unpredictability in their viewing

paths while ML+πG is expected to achieve highest QoE in settings where users

have high predictability in their viewing paths, we can conclude from our previous

observations that some users have experienced throughout their VR sessions high

unpredictability in their viewing paths while others have had more predictable paths.

In fact, one can clearly see in Fig. (5.5a) that users u2 and u3 have had a higher

QoE under SMP+πG than underML+πG, which showcases that u2 and u3 have high

unpredictability in their viewings in the “landscape” VR video, while users u1 and

u4 have had high predictable paths which resulted in similar QoE achieved under

SMP+πG and ML+πG for these two users. On the other hand, in Fig. (5.5b),

we clearly see that u2 experienced a higher QoE under ML+πG as compared to

SMP+πG, which showcases that u2 has higher predictability in its viewing process

in the “diving” VR video. Another interesting observation in Fig. (5.4d) is that

SMP+πG achieved a higher standard deviation as compared to SMP+πF which

confirms that some users have benefited from greedily scheduling their predicted

128



tiles more than others.

The heterogeneity in the unpredictability in users’ viewings has boosted the

role of SMP+πF in maximizing the average QoE while guaranteeing a fair QoE

allocation among all users.

5.5.7.2 Heterogeneous network capacities

We now assume that users experience different variations in their network

capacities and that θu1
τ = θu2

τ and θu3
τ = θu4

τ . We further set ρτ = 0.6 for all τ . We

use the network capacity trace from time 90 to 120 seconds with a mean capacity of

13.94 Mbps or an equivalent of 0.46 Mbits per slot, as the maximal number of bits

that can be sent per slot for users u1 and u2 and the network capacity trace from

time 800 to 830 seconds as the maximal number of bits that can be sent per slot for

users u3 and u4. The results are provided in Fig. (5.6).

For ω = 4, we observe that the average number of HD tiles scheduled per slot

has naturally dropped between Figs. (5.4f) and (5.6f) for all policies and all videos.

A drop in the average QoE is observed as well between Figs. (5.4b) and (5.6b). On

the other hand, we observe an increase in standard deviation between Figs. (5.4d)

and (5.6d) as a result of the different network capacities experienced by the users,

which has led to a higher QoE for users with good capacity and lower QoE for users

with lower capacity, and has therefore increased QoE unfairness among the active

users.

Fig. (5.6b) clearly shows that the users’ average QoE achieved under SMP+πF

is higher than the one achieved under any other policies, which confirms that
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SMP+πF is robust to the heterogeneity in users’ network conditions.

We further observe in Fig. (5.6d) that the standard deviation of users’

QoEs achieved under SMP+πRR is the worst among all policies followed by ML+πG

for similar reasons provided in subsection 5.5.7.1. An interesting observation is

that SMP+πG achieves an overall smaller standard deviation in users’ QoEs than

SMP+πF . This observation is supported in Fig .(5.7).

5.5.8 Users watching different 360◦ VR videos

We now consider the setting where users u1, u2, u3 and u4 are watching VR

videos “coaster”, “sport”, “landscape” and “diving” respectively. Such a setting

explores the performance of the proposed scheduling policies when only unicast

transmissions can take place.

5.5.8.1 Homogeneous network capacity

We consider the same parameter values as in Subsection 5.5.7.1. The results

are provided in Fig. (5.8).

For ω = 4 in Fig. (5.8), we observe that SMP+πF schedules on average the

same number of HD tiles per slot but achieves the highest average QoE among all

policies and the lowest standard deviation of users’ QoEs as compared to the one

achieved under SMP+πG and ML+πG. We further provide the results for users’

QoE in Fig. (5.9).
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5.5.8.2 Heterogeneous network capacity

We consider the same parameter values as in Subsection 5.5.7.2. The results

are provided in Fig. (5.10) and Fig. (5.11).

For ω = 4, we clearly observe that SMP+πF achieves once again the highest

average QoE and the lowest standard deviation of users’ QoEs.

A key observation in our results is that SMP+πF schedules approximately

on average the same number of HD tiles per slot as any of the other proposed baseline

policies, but achieves an overall higher average QoE and a lower standard deviation

of the users’ QoEs in almost all settings. We deduce that SMP+πF is robust to the

heterogeneity in users’ video selections and is robust to both the heterogeneity and

the fluctuations in the users’ network capacities.

5.6 Analysis of the impact of unpredictability in a user’s viewing
and network capacity on mean QoE

We consider in this section a single user setting and provide some key in-

tuitive results on the impact of network capacity variability and the uncertainty in

the user’s viewing process have on the user’s mean QoE.

5.6.1 Stationary Viewing Processes

In this subsection, we introduce a family of idealized statistical models which

we refer to as stationary viewing processes that we define as follows.

Definition 5.6.1 (Stationary Viewing Process) User u is said to have a Sta-

tionary Viewing Process with parameters nu, bu, qu, denoted SVP(nu, bu, qu), with
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Figure 5.12: Stationary viewing process with n = 2.

bu := (bui : i ∈ {1, . . . , nu}) and qu := (qui : i ∈ {1, . . . , nu}), if at each slot a node

branches to nu nodes representing viewports where the size of the tile frames asso-

ciated with the ith node’s viewport is bui bits for i ∈ {1, · · · , nu}, and the ith branch

is taken with probability qui . Without loss of generality, qu1 ≥ qu2 ≥ . . . ≥ qunu.

Figure 5.12 provides an example of a stationary viewing process.

Assumption 5.6.1 For the remainder of the section, we will assume that each

node’s viewport maps to a single unique tile frame in the tree which in turn maps to

a unique tile in the tree. A viewport’s probability of being viewed is hence equal to the

weight of the tile frame (and therefore the tile) it maps to (check Definitions 5.4.1

and 5.4.2). We will further assume that all tiles have the same size, i.e., bui = bu

for i ∈ {1, . . . , nu}. With some abuse of notation, we let SVP(nu, bu, qu) denote the

stationary viewing process of user u for the remainder of the section.
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5.6.2 Typical user’s mean QoE and Greedy-by-Level scheduling policy
πG

Given that a user u’s viewing process is characterized by an SVP(nu, bu, qu),

one can define the mean QoE of u as follows. Let Xu
τ be a random variable that

denotes the viewport viewed by user u in slot τ . With some abuse of notation, and

following from Assumption 5.6.1, we let Xu
τ be the random variable that denotes

the tile frame/tile that falls in user u’s viewport in slot τ . We let QoE
u,π

denote

the user’s mean QoE achieved under policy π,

QoE
u,π

=
1

wu
E

[
wu∑
τ=1

1{Xu
τ ∈Q

u,π
τ }

]
. (5.4)

We propose in what follows an HD tile scheduling policy which we refer to

as greedy-by-level policy πG. In a single active user setting, πG schedules HD tiles

associated with the viewports in the user’s stationary viewing process by prioritizing

(1) tiles with the earliest deadlines and (2) tiles with the largest weights, i.e., prob-

abilities of being viewed. We use πG as the tile scheduling policy for the remainder

of the section due to the simplicity it provides in the theoretical analysis.

Assumption 5.6.2 For the remainder of the section, we consider a communication

constrained setting where the maximal number of bits that can be transmitted to a

user u with SVP(nu, bu, qu) does not exceed nubu bits per slot.

It follows from Assumptions 5.6.1 and 5.6.2 that policy πG can only schedule

in slot τ to user u, tile frames/tiles predicted to be viewed in slot τ +1. As a result,

E

[
1
{Xu

τ ∈Q
u,πG
τ }

]
is equal for all τ , since only tiles scheduled to user u in slot τ−1 and
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available inQu,πG

τ will account towards the evaluation ofE
[
1
{Xu

τ ∈Q
u,πG
τ }

]
. Therefore

the mean QoE of a user u with SVP(nu, bu, qu) achieved under πG is given as,

QoE
u,πG

= E

[
1
{Xu

τ ∈Q
u,πG
τ }

]
. (5.5)

5.6.3 Preliminary analysis

Suppose that all HD tiles scheduled for transmission subject to the available

capacity are successfully received at the corresponding user. We provide in what

follows two key claims capturing the impact that variability in a user’s viewing

process as well as variability in the user’s available capacity have on its overall VR

experience. Under πG,

• a user experiencing a capacity with lower variability sees better performance.

• a user with lower variability in both its viewing process and capacity sees

better performance.

We provide two results that support these claims.

Theorem 5.6.1 Consider a user u with viewing process modeled as SVP(nu, bu, qu)

experiencing a time-varying capacity modeled by i.i.d. random variables with the

same distribution as K, such that K ≤ nubu almost surely. Let E[K] = κ bits/slot

and where m∗ ∈ {0, · · · , nu} is such that m∗bu ≤ κ < (m∗ + 1)bu. Then QoE
u,πG

is

maximized if

K =

{
m∗bu, w.p. (m∗+1)bu−κ

bu ,

(m∗ + 1)bu, w.p. 1− (m∗+1)bu−κ
bu ,
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The proof of Theorem 5.6.1 is relegated to Appendix C.4.

Theorem 5.6.2 Consider two users u1 and u2 with viewing processes modeled

as SVP(nu1 , bu1 , qu1) and SVP(nu2 , bu2 , qu2) respectively, such that nu1 = nu2 =

n, bu1 = bu2 = b and qu1 ≻ qu2, i.e., for any m ∈ {1, · · · , n},
∑m

j=1 q
u1
j ≥

∑m
j=1 q

u2
j .

Consider two network regimes with i.i.d. random variables with the same capacity

distributions as K1 and K2 respectively, such that 0 ≤ K1,K2 ≤ nb, and K2 ≥icx K1.

Let QoE
u1,πG

1 and QoE
u2,πG

2 be the mean QoE of users u1 and u2 achieved un-

der πG in the networks with capacity distributions K1 and K2 respectively. Then

QoE
u1,πG

1 ≥ QoE
u2,πG

2 .

The proof of Theorem 5.6.2 is relegated to Appendix C.5.

Theorem 5.6.1 clearly states that under the assumption of a stationary view-

ing process and network constraints on both the mean and peak capacity of a user,

the mean QoE of the user under policy πG is maximized if the capacity is constant

and equal to its mean. Further, Theorem 5.6.2 suggests that higher predictability

in a user’s viewing process and lower capacity fluctuations in its network enhances

the user’s VR performance.

5.7 Chapter Conclusion

In this chapter, we proposed various 360◦ VR video delivery algorithms based

on estimating statistical models for users’ future viewing paths. This allows us to

consider going beyond myopic approaches that focus only on the next most-likely

viewport, and to build strategies that are robust to uncertainty in users’ viewing
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processes, estimation errors and users’ capacity variations. We also observe that

some video content exhibit higher unpredictability in users’ viewing processes which

along with the heterogeneity in the users’ capacity may lead to unfair QoE alloca-

tions across users. To overcome these challenges, we propose and compare various

delivery algorithms exhibiting the possible benefits of leveraging a deeper predic-

tion of the future towards achieving improved and fairer QoE across users with

time-varying capacities. We further provided insights on the advantages tied to the

predictability in a user’s viewing process coupled with reduced capacity variations

in maximizing a user’s VR experience. Such insights open the door towards fur-

ther exploration of more interactive VR applications where users’ future viewing

processes are more prone to unpredictability and may lead to a higher number of

tile transmissions that do not benefit the users’ VR performance, i.e., not actually

viewed. A key aspect of our future work lies in the need to devise scheduling poli-

cies that account for the depth of users’ predictions in such highly unpredictable

settings and their impact on both the network utilization as well as on the users’

VR experiences.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis, we explored the advantages of algorithms and metrics ad-

dressing the timely sharing of information updates in a multitude of applications

that rely on real-time information. We mainly focused on two classes of networks,

the first consisted of sensing nodes requesting timely updates to enhance their sit-

uational awareness regarding their environments and the second consisted of users

sharing constrained resources in multi-user 360◦ VR applications and proactively

sending data regarding their predicted future viewing directions to enhance their

QoEs. We showed how different techniques and novel algorithms can be leveraged

to optimize resource allocation, situational awareness, overall QoE and QoE fair-

ness among nodes/users in a wide variety of networks and scenarios. We proposed

several new approaches towards addressing today’s growing problems in wireless

sensing systems that service providers could rely on to enhance their users’ safety

in navigation applications and users’ QoEs in the infotainment industry.

Several valuable insights can be drawn from the two parts of this thesis.

In the first part, we demonstrated that there is potentially great value in enabling

sensor nodes (road-side units, vehicles) to share timely information on the state of

a dynamic environment in order to reduce situational uncertainty so as to enhance
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vehicular flow and safety. We further established that considerable gains are achiev-

able in terms of (1) improved network situational awareness in heterogeneous sensor

nodes experiencing time-varying network capacity and topology, and (2) improved

matching between producers and consumers of information in non-homogeneous

spatial interest settings.

In the second part of this thesis, we showcased the importance of characteriz-

ing the perceptual relevance of users’ predicted views in 360◦ VR video applications

through the estimation of their probabilities of being viewed. Such characterization

allowed for a proactive scheduling and caching of views that are most likely to be

viewed by users which has led to enhanced VR performance.

6.2 Future Work

The work conducted in this thesis contributes to the current state of the art

research whose focus lies in sensing applications and opens new doors for further

investigation in what is likely to be a vast field of future applications. Sensing tech-

nologies promise to be fundamental in shaping the capabilities and advancements

in both 6G wireless networks and the autonomous cars/robots towards enabling

safer, more efficient and intelligent systems, as well as enhanced user experience.

We propose in what follows three directions of interest for future research.

First, collaborative sensing systems in real-world settings such as in au-

tonomous vehicular applications involve a higher degree of motion tied to the dy-

namic aspect of the sensing nodes. Some of the theoretical analysis in this thesis,

even if mainly proven for static and fixed sets of sensing nodes, paves the way to-
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wards investigating more practical settings that account for the interplay between

both dynamic spatial and temporal dimensions. A first attempt at capturing such

dynamic aspects in both the heterogeneity in the arrival time of requests and the

finite time window in which they can be updated was conducted in this thesis which

builds the foundation towards further generalization to more real-life scenarios.

Second, throughout this thesis we have been drawing on objective models

tied to the delay and “age” of the timely information. A key area of future work

is tied to the design of better metrics that capture the value of timely information,

for example in terms of saving time, energy, relevance of the information, increasing

safety on a transportation network, etc. Better metrics would allow for more rel-

evant direct optimization of such systems. However, such connections/metrics are

very difficult to design, hence the focus of this thesis on more natural performance

metrics.

Third, the VR/AR field is gaining increasing interest. In particular, inter-

active VR/AR applications are possibly going to be computationally draining while

requiring more communication efficient techniques to allow for the timely sharing

of data with the users. The role and optimization of the edge is hence likely to be

of increasing interest. Computationally expensive jobs might best be offloaded to

the edge which can coordinate intelligently the data transmissions among users and

possibly share/cache computational tasks. Further, the needed depth of predictions

of users’ viewing patterns should be carefully investigated, as users with high un-

predictability in their viewings will overload the network in both computations and

communication, and may lead to large amount of wasted data. Such observations
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call for the investigation of the trade-offs between the depth in users’ predictions

and the associated computation, network utilization and users’ VR performance,

especially in such applications where large amounts of predicted data has to be

constantly streamed.
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Appendix A

Chapter 2 Proofs

A.1 Proof of Lemma 2.4.1

P
( ∑
n∈N

Xn
rn
µn

> 1
)
= P

(∑
n∈N

Xn
rn
µn
− E

[ ∑
n∈N

Xn
rn
µn

]
> 1− E

[ ∑
n∈N

Xn
rn
µn

])
(a)
= P

( ∑
n∈N

Xn
rn
µn
−
∑
n∈N

ρn
µn

> 1−
∑
n∈N

ρn
µn

)
(b)
≤ exp

(
−

2
(
1−

∑
n∈N

ρn
µn

)2∑
n∈N ( rnµn

)2

)
where,

(a) follows from E[Xn] =
ρn
rn
, for all n ∈ N .

(b) Follows from the independence of Xn’s and Hoeffding upper bound.

Constraining the upper bound to be less than ϵ results in the constraint given in

Equation (2.8).

A.2 Proof of Proposition 2.4.1

One can verify that the cost function is jointly convex in ρ and r. The

congestion constraint corresponds to a convex set in both ρ and r. We shall initially
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relax the constraint ρ ≤ r ≤ µ and define the Lagrangian associated with the

relaxed Problem 2.4.1.

L(ρ, r;λ) =

[∑
n∈N

(an
ρn

+
bn
rn

)]
+ λ

(
1−

∑
n∈N

ρn
µn
− ω ∥r∥µ,2

)
where λ ≥ 0 is the dual variable. Let

f(λ) ≜ min
ρ,r

L(ρ, r;λ).

The Lagrangian dual problem is defined by

h ≜ max
λ≥0

f(λ)

Taking the partial derivative of L(ρ, r;λ) w.r.t. ρn and rn respectively and setting

them equal to 0 gives

ρ∗n =

√
anµn

λ
, r∗n = µn

3

√
bn ∥r∗∥µ,2

λωµn

Given optimal r∗, we solve for ∥r∗∥µ,2

r∗n = µn
3

√
bn ∥r∗∥µ,2

λωµn( r∗n
µn

)2
=

(
bn

µnλω

)2/3

∥r∗∥2/3µ,2∑
n

( r∗n
µn

)2
=
(∑

n

( bn
µn

)2/3)( 1

λω

)2/3

∥r∗∥2/3µ,2

∥r∗∥2µ,2 =
(∑

n

( bn
µn

)2/3)( 1

λω

)2/3

∥r∗∥2/3µ,2

(A.1)

which leads to

∥r∗∥µ,2 =
√
∥b∥µ, 2

3

(
1

ωλ

)1/2
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We plug-in ρ∗n and ∥r∗∥µ,2 into the constraint function and solve for λ

λ =

[√
∥a∥µ, 1

2
+
√
ω ∥b∥µ, 2

3

]2

We finally find ρ∗n and r∗n,

ρ∗n =

√
an/µn√

∥a∥µ, 1
2
+
√

ω ∥b∥µ, 2
3

µn ,

∥r∗∥µ,2 =
1√
ω

( √
∥b∥µ, 2

3√
∥a∥µ, 1

2
+
√
ω ∥b∥µ, 2

3

)
, and

r∗n =
1√
ω

(
bn
an

) 1
2

(
∥b∥µ, 2

3

bn/µn

) 1
6

ρ∗n

We re-write ρ∗n and r∗n in terms of α and β as defined in Proposition 2.4.1,

ρ∗n =
αn

∥ α ∥1 +
√
ω ∥ β ∥ 4

3

µn, r∗n =
1√
ω

βn
αn

(∥ β ∥ 4
3

βn

) 1
3

ρ∗n,

Next, we verify that the solution to the relaxed problem will satisfy the constraints

we have relaxed. Recall that bn ≥ an,∀n ∈ N and 1 ≤ ω ≤ 6 (or e−72 ≤ ϵ ≤ e−2).

Note that

r∗n
ρ∗n

=
1√
ω

βn
αn

(∥ β ∥ 4
3

βn

) 1
3 (a)
≥ 1√

ω

βn
αn
≥ 1√

ω

√
bn
an
≥ 1,

where (a) follows from

(
∥β∥ 4

3
βn

) 1
3

being always greater than 1. The above shows

that the relaxed constraint is satisfied under specific assumptions.
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Appendix B

Chapter 3 Proofs

B.1 Proof of Theorem 3.4.1

Proof B.1.1 Given the saw-tooth character of the time varying age per sensor and

the randomization of the update phases, the age at a random time is given by A =

minv=1,...,n[Av], where Av = d + 1
rv
Uv and Uv, for v = 1, . . . , n are i.i.d. Unif[0, 1]

and independent, and age(r) = E[A] ,while ageγ(r) = P(A ≥ γ). It is easy to see

that given Av is a shifted and scaled uniform random variable such that

P (Av > y) =


1, if 0 ≤ y ≤ d,

1− rv(y − d), if d ≤ y ≤ d+ 1
rv
,

0, if d+ 1
rv

< y,

and given that P (A > y) =
∏n

v=1 P (Av > y) , and further given that r1 ≥ r2 ≥

. . . ≥ rn, we have

P (A ≥ y) =


1, if 0 ≤ y ≤ d,∏n

v=1 zv(y), if d < y ≤ d+ 1
r1
,

0, if d+ 1
r1

< y,

(B.1)

where zi(y) = 1− rv(y − d) for v = 1, . . . , n. Thus the γ-age violation function for

γ such that d < γ ≤ d+ 1
r1

is given by,

ageγ(r) =

n∏
v=1

zv(γ).

We can compute the average age function as follows

age(r) =

∫ ∞

0
P (A > y)dy = d+

∫ d+ 1
r1

d

n∏
v=1

zv(y) dy.
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The result in the theorem follows by further brute force integration polynomial func-

tion in the above integration.

B.2 Proof of Corollary 3.4.1

Proof B.2.1 The first result follows through a straight forward calculation. Specif-

ically since r = (rv : v = 1, . . . , n), where rv = r, then,

age(r) = E[ min
v=1,...,n

Av]

= d+
1

r
E[ min

v=1,...,n
Uv] = d+

1

n+ 1

1

r
,

where the last equality follows from Uv’s being i.i.d. and Unif[0, 1]. The result for

the γ-age violation function ageγ follows directly from Theorem 1.

The second result is a bit more subtle. Suppose that r is such that r1 ≥ r2 ≥

... ≥ rn, ∀v ∈ V , and let r̄ = (r̄v : v = 1, . . . , n) where r̄v = r̄ = 1
n

∑n
v=1 rv, then we

will show that

age(r̄) ≥ age(r) ≥ age(nr̄),

ageγ(r̄) ≥ ageγ(r) ≥ ageγ(nr̄).

Consider the average age function, then these inequalities can be rewritten as,

E[ min
v=1,...,n

d+
1

r̄
Uv︸ ︷︷ ︸

A

] ≥ E[ min
v=1,...,n

d+
1

rv
Uv︸ ︷︷ ︸

B

]

≥ E[ d+
1

nr̄
U︸ ︷︷ ︸

C

],

where U and Uv for v = 1, . . . , n are i.i.d. Unif[0, 1] and independent. We will show

that in fact the random variables A,B and C are stochastically ordered, i.e., such
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that for all x we have,

P (A > x) ≥ P (B > x) ≥ P (C > x),

which implies the desired result for the γ-age violation functions, and then by inte-

grating the desired inequalities for the average age.

Let us first show P (A > x) ≥ P (B > x). We shall consider three cases.

Case 1: Suppose x ≤ d then P (A > x) = 1 and thus P (A > x) ≥ P (B > x).

Case 2: Suppose d < x ≤ d+ 1
r1

then,

P (A > x) =

n∏
v=1

P (Uv > r̄(x− d)) = (1− r̄(x− d))n = an

P (B > x) =
n∏

v=1

P (Uv > rv(x− d))

=
n∏

v=1

(1− rv(x− d)) =
n∏

v=1

bv.

Note that
∑n

v=1 bn = na, and it is easy to show that the volume of a rectangle whose

sides sum to na is maximized when the sides have equal length, i.e., length a, whence

it follows P (A > x) ≥ P (B > x).

Case 3: Suppose d+ 1
r1

< x then P (B > 0) = 0. So clearly P (A > x) ≥ P (B > x).

Let us now show P (B > x) ≥ P (C > x). We can write these explicitly as

follows,

P (C > x) =


1, if 0 ≤ x ≤ d,

1− nr̄(x− d), if d ≤ x ≤ d+ 1
nr̄ ,

0, if d+ 1
nr̄ ≤ x,
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and

P (B > x) =


1, if 0 ≤ x ≤ d,∏n

v=1 zv(x), if d < x ≤ d+ 1
r1
,

0, if d+ 1
r1

< x,

where zv(x) = 1− rv(x− d). The result follows if we can show that

n∏
i=v

zv(x) ≥ 1− nr̄(x− d) = 1− (
∑
v

rv)(x− d).

It is easy to verify this is the case for n = 2, i.e.,

2∏
i=v

zv(x) = (1− r1(x− d))(1− r2(x− d))

= 1− (r1 + r2)(x− d) + r1r2(x− d)2

≥ 1− (r1 + r2)(x− d).

Now multiplying both sides by 1− r3(x− d), one obtains

3∏
v=1

zv(x) ≥ (1− (r1 + r2)(x− d))(1− r3(x− d))

≥ (1− (r1 + r2 + r3)(x− d)) +

+ (r1 + r2)(x− d))(r3(x− d))

≥ 1− (r1 + r2 + r3)(x− d).

The general result follows similarly.

B.3 Proof of Theorem 3.5.1

Proof B.3.1 Suppose X ⊂ Y ⊂ V. Note if we add Y \X to the subset X, it follows

that for any location x ∈ R, the number of sensors observing x, i.e. n, must either

increase or stay put. Recall that the modified average age function b(.) at location x
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is an increasing concave function of the number of sensors n that see it, given equal

rates r = (ri = r, i = 1, . . . , n), in particular it is given by b(n) = n
n+1

1
r for n ≥ 1.

Hence u(.) must increase, which in turn implies that u(X) ≤ u(Y ).

Suppose X ⊂ Y ⊂ V and v /∈ Y then submodularity requires that,

u(X ∪ {v})− u(X) ≥ u(Y )− u(Y ∪ {v}).

Let n(x,X) denote the number of sensors in X which see location x and define

n(x, Y ) in the same way for Y . Clearly n(x,X) ≤ n(x, Y ). Also adding the sensor v

can increase these by at most 1. Then using the definition of b(.), for n = 0 we have

b(0) = 0 and it is easy to show that for n = 0, 1, . . ., we have that b(n + 1) − b(n)

is increasing in n. Knowing that the weights are positive, we conclude that u(.) is a

non-decreasing submodular set function.

B.4 Proof of Theorem 3.5.2

Proof B.4.1 We first linearly combine both the weighted coverage and normalized

utility function through a positive parameter λ as shown below,

gλ(X) =
1

w(C(X))

|PX |∑
i=1

w(PX
i )b(r(PX

i )) + λw(C(X)) (B.2)

= û(X) + λw(C(X)). (B.3)

where û(X) = 1
w(C(X))u(X).

Theorem B.4.1 (Characterization of the weighted coverage-normalized util-

ity function) If λ ≥ 0 then the weighted coverage-normalized utility linear combi-

nation function gλ(.) satisfies the following properties,
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(Monotonicity) It is monotonically increasing, i.e., if X ⊂ Y ⊂ V then gλ(X) ≤

gλ(Y ).

(Submodularity) It is submodular, i.e., if X ⊂ Y ⊂ V and v /∈ Y then,

gλ(X ∪ {v})− gλ(X) ≥ gλ(Y ∪ {v})− gλ(Y ). (B.4)

The proof is similar to the proof of Theorem 3.5.1.

We can now clearly state our weighted coverage-age optimization problem as follows

Problem B.4.1 (Weighted coverage-normalized utility optimization prob-

lem) The weighted coverage-normalized utility optimization problem is a submodular

optimization problem with a cardinality constraint,

S∗ ∈ argmax
X⊆V

{ gλ(X) | |X| ≤ k }.

Such combinatorial problems are NP hard, but may satisfy submodularity properties

that make greedy approaches quite effective. Although this is a complex combinatorial

problem, the classical greedy algorithm shown in Algorithm 8 panel requires O(|V |k)

function evaluations to determine a subset Sk which is (1− 1/e) constant factor of

the optimal [32], i.e.,

gλ(Sk) ≥
(
1− 1

e

)
gλ(S⋆) +

1

e
g(S0), (B.5)

where S0 is the initial set of selected elements with g(S0) = 0 if S0 = ∅.

Algorithm 8: Greedy submodular optimization [32]

1 Let S0 = ∅
2 for i=0,. . . ,k-1 do
3 j ← argmaxj g

λ(Si ∪ {j})− gλ(Si) ; Si+1 ← Si ∪ {j} ;
4 end
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There are computationally less costly possibly distributed versions of the al-

gorithm leveraging random sampling. There is a growing line of work to design

possibly distributed algorithms with sub-linear cost which have shown to be be simi-

larly effective [82–88].

The choice of λ in gλ(.) is tied to the weighted coverage-normalized utility approach

one desires to apply. We provide below a λ value that meets our desired target in

maximizing the weighted coverage first then breaking ties by minimizing the weighted

age.

Proposition B.4.1 (Characterization of λ for the maximal weighted coverage-

minimal weighted average age problem) Given a subset of sensors X ⊆ V

updating at the same rate r, and given that the smallest aggregated consumers’ inter-

est measure on a region of interest covered by sensors in X is wmin = min
x∈X

w(C(x)),

then for λ = 1
wmin

1
6r + ϵ, ϵ > 0 very small, maximizing gλ(.) corresponds to first

maximizing the weighted coverage of the consumers’ regions of interest while min-

imizing their weighted average age, then to solely minimizing the weighted average

age of the covered regions once maximal coverage is achieved.

We provide a sketch of the proof of this proposition. It is easy to show that for λ

satisfying the condition in the theorem, greedily maximizing gλ(.) prioritizes select-

ing a sensor that covers the uncovered region weighted by the smallest consumers’

aggregated interest measure over a sensor that covers a previously covered region

weighted by the maximal consumers’ aggregated interest measure. Once maximal

coverage is achieved and given the submodularity properties of the normalized utility
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function û(X) 1 then the focus switches to greedily maximizing û(X) or equivalently

minimizing the weighted average age.

Our proposed Algorithm 1 is greedy in nature. It proceeds with greedily selecting the

sensor that provides the largest marginal gains for both weighted coverage and the

utility function. We make use of this property in the following lemma.

Lemma B.4.1 For λ = 1
wmin

1
6r + ϵ, ϵ > 0 very small, Algorithm 1 greedily approx-

imates the solution of Problem B.4.1.

Lemma B.4.1 directly follows from Theorem B.4.1 and Proposition B.4.1. Using the

submodular greedy maximization nature of Algorithm 1 and Lemma B.4.1, and given

the submodularity property of weighted coverage [89], we lower bound w(C(Sk′)) as

shown below

w(C(Sk′)) ≥
(
1− 1

e

)
w(C(S∗

k′)). (B.6)

As already discussed, Algorithm 1 operates in two phases. Following Lemma B.4.1,

the tightest lower bound on gλ(Sk′) after greedily selecting k′ sensors in phase 1 is

gλ(Sk′) ≥
(
1− 1

e

)
gλ(S∗

k′),

which by definition of gλ(X) in Eq.(B.2) gives

û(Sk′) ≥
(
1− 1

e

)
û(S∗

k′)

− λ

[
w(C(Sk′))−

(
1− 1

e

)
w(C(S∗

k′))

]
. (B.7)

1û(X) is submodular when maximal coverage is achieved, i.e., w(C(X)) is maximal and a con-
stant.
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Phase 2 of the algorithm consists of greedily maximizing û(.) over the remaining

unselected sensors in V , given k′ selected sensors achieving maximal weighted cov-

erage. A lower bound on the normalized utility function by the end of the algorithm

is

û(Sk) ≥
(
1− 1

e

)
û(S∗

k) +
1

e
û(Sk′)

≥
(
1− 1

e

)
û(S∗

k) +
1

e

(
1− 1

e

)
û(S∗

k′)

− 1

e
λ

[
w(C(Sk′))−

(
1− 1

e

)
w(C(S∗

k′))

]
,

where the first inequality follows from Eq. (B.5) and the second inequality follows

from Eq. (B.7). Using the fact that â(X) = −û(X) + d + 1
r , we finally derive an

upper bound on the normalized weighted average age,

â(Sk) ≤
(
1− 1

e

)
â(S∗

k)

+
1

e

[(
1− 1

e

)
â(S∗

k′) +
1

e

(
d+

1

r

)]
− 1

e
λ

[
w(C(Sk′))−

(
1− 1

e

)
w(C(S∗

k′))

]
,

which concludes the proof of Theorem 3.5.2.
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Appendix C

Chapter 5 Proofs and Supplementary Material

C.1 Statistical Model Predictor

C.1.1 Statistical model predictor based on Gated Recurrent Units

We describe in this subsection our proposed Statistical Model Predictor

(SMP) based on a Deep Recurrent Neural Network (DRNN) architecture with its

main block being the Gated Recurrent Unit (GRU), [90] which is a variant of the

original Recurrent Neural Networks (RNNs). For more details on the internal oper-

ations of a GRU, we refer the reader to [57,90]. Our DRNN architecture is inspired

by the DRNN proposed in [57], with two main differences consisting of adding an

additional GRU layer and using a Softmax function as the output layer to generate

probabilities. Our SMP estimates every slot τ each active user’s statistical model

for its viewing process.

C.1.2 DRNN architecture

We first let Ξ denote the total number of possible viewports. Our proposed

DRNN architecture is presented in Figure C.1. We implement it using PyTorch [91].

Input representation. The DRNN takes as input a sequence of δ viewports.

Sequence processing. The first three DRNN layers consist of GRU layers with δ cells

of 512 memory units each per layer. V u
[τ−δ+1:τ ] is processed through the first GRU
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Figure C.1: Our proposed DRNN takes as input in every slot τ a sequence of δ
viewports and outputs a vector x̂u which corresponds to the probability of viewing
each viewport in a set of Ξ viewports.
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Figure C.2: SMP architecture with γ = 5 and ω = 2 based on the DRNN architec-
ture presented in Figure C.1.

layer which then feeds its output into the 2nd GRU layer whose output is finally fed

into the 3rd GRU layer. The output of the 3rd layer goes through a Rectified Linear

Unit (ReLu) which only outputs positive values and sets negative values to 0. The

output then goes through a Fully Connected Dense layer which outputs Ξ values.

Output representation. The output of the Fully Connected Dense layer is fed to a

Softmax layer which outputs a vector x̂u := (x̂uξ : ξ ∈ {1, . . . ,Ξ}) of length Ξ where

x̂uξ is the estimated probability that the viewport in the ξ’s entry is viewed by user

u. We note that all entries of x̂u sum to 1.
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C.1.3 SMP architecture

The SMP architecture presented in Figure C.2 estimates in a given slot τ a

user’s statistical model for its viewing process for slots τ+5 and τ+10, i.e., for γ = 5

and ω = 2 with at most α viewports branching out of each predicted viewport.

We let V u,∗
[τ−δ+1,τ ] = (vu,∗

τ−δ+1,v
u,∗
τ−δ+2, . . . ,v

u,∗
τ ) be the input to our SMP,

which consists of the sequence of δ viewports observed by user u between slots τ−δ+1

and τ . With a slight abuse of notation, we let x̂u
1,1 := (x̂u1,1,ξ : ξ ∈ {1, . . . ,Ξ}) denote

the output vector of the first DRNN which corresponds to the set of probabilities

estimated for viewports with deadline at τ + 5. Next, the α entries in x̂u
1,1 with

the highest estimated probabilities are selected and the corresponding viewports are

denoted as v̂u
τ,1, . . . , v̂

u
τ,α. Each of the predicted viewports is concatenated to the

most recent δ−1 entries in V u
[τ−δ+1:τ ] and the resulting vectors are then fed into new

DRNNs. Hence, the probability vectors estimated for slot τ + 10 are x̂u
2,1, . . . , x̂

u
2,α.

The above process is repeated ω times which results in user u’s desired estimated

statistical model for its viewing process.

C.1.4 SMP training

We train our proposed SMP in a supervised manner. The ground-truth label

yu
w := (yuw,ξ : ξ ∈ {1, . . . ,Ξ}) for slot τ +wγ is such that yuw,ξ takes a value of 1 if the

viewport in the ξth entry of yu
w is viewed by user u in slot τ +wγ, and 0 otherwise.

It follows that a single entry in yu
w for w ∈ {1, . . . , ω} takes value 1. Our proposed

loss function is based on the cross-entropy loss available in the PyTorch library and
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is given as follows,

Loss =
α− 1

αω − 1

ω∑
w=1

α(w−1)∑
i=1

Ξ∑
ξ=1

exp (x̂uw,i,ξ)∑Ξ
ξ′=1 exp (x̂

u
w,i,ξ′)

yuw,ξ.

Adam algorithm is used to optimize the gradients. Adam parameters are set to

β1 = 0.9 and β2 = 0.999 with no decay, and the learning rate is set to 0.001. The

gradient backpropagation is performed over data batches of size 512 and during 350

training epochs.

C.2 Expected marginal increase in a user’s QoE

We first derive the expression for the expected marginal increase in user

u’s QoE over slot τ + γ if tile t ∈ T̂ u
τ is scheduled in slot τ under policy π for

transmission to user u. The expression is given in Equation (C.1). The crude ap-

proximation in Equation (C.1) is a result of the Taylor expansion of the function

q
(

1
|hu

τ+γ(X
u
τ+γ)|

∑
f∈hu

τ+γ(X
u
τ+γ)

1{g(f)∈Qu,π
τ

⋃
{t}}

)
around 1

|hu
τ+γ(X

u
τ+γ)|

∑
f∈hu

τ+γ(X
u
τ+γ)

1{g(f)∈Qu,π
τ },

under the assumption that
1{g(hu(Xu

τ+γ,τ+γ))∩{t}≠∅}

|hu(Xu
τ+γ ,τ+γ)| is small, and q′(·) is the first deriva-

tive of q(·).

Let ∇̂u,π
τ,t (Q

u,π
τ ) denote the expected marginal increase in user u’s QoE over

sampled slots τ + γ, . . . , τ + ωγ, if tile t ∈ T̂ u
τ is scheduled in slot τ under policy π

for transmission to user u, and given the set of HD tiles cached in u’s device buffer
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Êτ

q
 1

|hu(Xu
τ+γ , τ + γ)|

∑
f∈hu(Xu

τ+γ ,τ+γ)

1{g(f)∈Qu,π
τ

⋃
{t}}


− Êτ

q
 1

|hu(Xu
τ+γ , τ + γ)|

∑
f∈hu(Xu

τ+γ ,τ+γ)

1{g(f)∈Qu,π
τ }


≈ Êτ

q
 1

|hu(Xu
τ+γ , τ + γ)|

∑
f∈hu(Xu

τ+γ ,τ+γ)

1{g(f)∈Qu,π
τ }


+ Êτ

1{g(hu(Xu
τ+γ ,τ+γ))∩{t}≠∅}

|hu(Xu
τ+γ , τ + γ)|

· q′
 1

|hu(Xu
τ+γ , τ + γ)|

∑
f∈hu(Xu

τ+γ ,τ+γ)

1{g(f)∈Qu,π
τ }


− Êτ

q
 1

|hu(Xu
τ+γ , τ + γ)|

∑
f∈hu(Xu

τ+γ ,τ+γ)

1{g(f)∈Qu,π
τ }


= Êτ

1{g(hu(Xu
τ+γ ,τ+γ))∩{t}≠∅}

|hu(Xu
τ+γ , τ + γ)|

· q′
 1

|hu(Xu
τ+γ , τ + γ)|

∑
f∈hu(Xu

τ+γ ,τ+γ)

1{g(f)∈Qu,π
τ }


=

∑
i:nu

τ,i∈V̂u
τ

puτ,i1{kuτ,i=τ+γ}
1{g(hu(v̂u

τ,i,k
u
τ,i))∩{t}≠∅}

|hu(v̂u
τ,i, k

u
τ,i)|

· q′
 1

|hu(v̂u
τ,i, k

u
τ,i)|

∑
f∈hu(v̂u

τ,i,k
u
τ,i)

1{g(f)∈Qu,π
τ }

 .

(C.1)
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in slot τ , Qu,π
τ . Then,

∇̂u,π
τ,t (Q

u,π
τ ) =

ω∑
α=1

∑
i:nu

τ,i∈V̂u
τ

puτ,i1{kuτ,i=τ+αγ}
1{g(hu(v̂u

τ,i,k
u
τ,i))∩{t}≠∅}

|hu(v̂u
τ,i, k

u
τ,i)|

· q′
 1

|hu(v̂u
τ,i, k

u
τ,i)|

∑
f∈hu(v̂u

τ,i,k
u
τ,i)

1{g(f)∈Qu,π
τ }


=

∑
i:nu

τ,i∈V̂u
τ

puτ,i
1{g(hu(v̂u

τ,i,k
u
τ,i))∩{t}≠∅}

|hu(v̂u
τ,i, k

u
τ,i)|

· q′
 1

|hu(v̂u
τ,i, k

u
τ,i)|

∑
f∈hu(v̂u

τ,i,k
u
τ,i)

1{g(f)∈Qu,π
τ }

 . (C.2)

Note that if q(·) is a linear function such that q(x) = x, then ∇̂u,π
τ,t (Q

u,π
τ ) = λu

τ,t, i.e.,

to the weight of HD tile t evaluated in slot τ .

C.3 Expected QoE of user u

We let r̂u,πi for i ≥ τ + 1, be the estimate QoE of user u in slot i evaluated

based on r̂u,πτ = ru,πτ as well as on both the set of HD tile frames whose tiles are

cached in u’s device buffer in slot τ and on their weights that account for their

probability of being viewed. For every active user u ∈ Uτ and every predicted HD

tile t that has neither been scheduled for transmission yet nor is cached in u’s device’s

buffer, r̂u,πeuτ,t−1 is evaluated in Line 5 of Algorithm 7 through iterative computations

described as follows. r̂u,πi is computed as a weighted average between r̂u,πi−1 and the

concave function q(·) of the sum of the weights of the HD tile frames that are cached

in u’s device’s buffer and with deadlines in slot i.
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C.4 Proof of Theorem 5.6.1

Proof C.4.1 We introduce cui , for i ∈ {0, · · · , nu}, and we let cui = i · bu. We

let fu,πG
(cui ) =

∑i
j=0 q

u
j , with qu0 = 0, be the function that evaluates the sum

of the weights of tiles scheduled under policy πG and capacity value cui , for i ∈

{0, · · · , nu}. It should be clear that fu,πG
(cui ) is increasing in cui , with fu,πG

(0) = 0

and fu,πG
(nubu) = 1.

Given that qu1 ≥ qu2 · · · ≥ qunu, the marginal gain of fu,πG
(cui ) decreases as cui in-

creases. Therefore, fu,πG
(cui ) is a discrete concave function of cui .

User u’s mean QoE in Eq. (5.5) can be re-written as,

QoE
u,πG

= E

[
1
{Xu

τ ∈Q
u,πG
τ }

]
=

nu∑
i=0

fu,πG
(ci)P (K ∈ [cui , c

u
i+1))

= fu,πG⊺xu,

where fu,πG

i := (fu,πG
(cui ) : i ∈ {0, · · · , nu}) and xu := (P (K ∈ [cui , c

u
i+1)) : i ∈

{0, · · · , nu}) .

We formulate the following linear program to solve for the capacity allocation that

maximizes QoE
u,πG

.

Problem C.4.1

max
xu,cu

fu,πG⊺xu

s.t. cu⊺xu = κ,

1
⊺xu = 1,
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where cu := (cui : i ∈ {0, . . . , nu). The first constraint corresponds to E[K] = κ and

the second constraint guarantees that
∑nu

i=0 P (K ∈ [cui , c
u
i+1)) = 1.

Given that m∗bu ≤ κ < (m∗ + 1)bu, for m∗ ∈ {1, · · · , nu} and that fu,πG
(cui ) is dis-

crete concave in cui for i ∈ {0, · · · , nu}, it follows from standard convex optimization

tools that setting xu =
[
(m∗+1)bu−κ

bu , 1− (m∗+1)bu−κ
bu

]⊺
and cu = [m∗bu, (m∗ + 1)bu]⊺

satisfies the set of constraints and maximizes fu,πG⊺xu and therefore maximizes

QoE
u,πG

, which concludes the proof.

C.5 Proof of Theorem 5.6.2

The proof of this theorem comprises of three main parts.

Part 1. We first prove that QoE
u1,πG

j ≥ QoE
u2,πG

j for j ∈ {1, 2}.

We introduce ci, for i ∈ {0, · · · , n}, and we let ci = i · b. We let fu1,πG
(ci) =∑i

j=0 q
u1
j and fu2,πG

(ci) =
∑i

j=0 q
u2
j as the functions that evaluate the sum of

weights of tiles scheduled under πG and capacity value ci, for i ∈ {0, · · · , n}, for users

u1 and u2 respectively. It should be clear that ful,π
G
(ci), for l ∈ {1, 2}, is increasing

in ci, with ful,π
G
(0) = 0 and ful,π

G
(nb) = 1. It follows that ful,π

G
(ci) =

∑i
j=0 q

ul
j ,

for l ∈ {1, 2}, with qul
0 = 0.

Given that qul
1 ≥ qul

2 · · · ≥ qul
n , for l ∈ {1, 2}, it follows that the marginal gain of

ful,π
G
(ci) decreases as ci increases. Therefore, f

ul,π
G
(ci), for l ∈ {1, 2}, are discrete

concave functions of ci.

Since q1 ≻ q2, it follows that fu1,πG
(ci) ≥ fu2,πG

(ci), for i ∈ {0, · · · , n}. The mean
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QoE of users u1 and u2 in Eq. (5.5) are written as follows,

QoE
ul,π

G

j = E

[
1
{Xul

τ ∈Qul,π
G

τ }

]
=

n∑
i=0

ful,π
G
(ci)P (Kj ∈ [ci, ci+1))

=
n∑

i=0

ful,π
G
(ci)P (a(Kj) = ci)

= E[ful,π
G
(a(Kj))],

where l, j ∈ {1, 2} and a(x) = ci if x ∈ [ci, ci+1).

By linearity of the expectation, it follows that E[fu1πG
(a(Kj))] ≥ E[fu2,πG

(a(Kj))],

which results in QoE
u1,πG

j ≥ QoE
u2,πG

j , for j ∈ {1, 2}. This concludes Part 1.

Part 2. We now prove that for user ul, for l ∈ {1, 2}, it holds that QoE
ul,π

G

1 ≥

QoE
ul,π

G

2 under networks with capacity distributions K1 and K2 respectively. We

use the same notation as in Part 1.

Since K2 ≥icx K1 and following from the definition of increasing convex ordering of

random variables (See Theorem 3.A.1 in [92]) and the discrete concavity of ful,π(Kj)

for l, j ∈ {1, 2}, we have that E[ful,π
G
(a(K1))] ≥ E[ful,π

G
(a(K2))], for l ∈ {1, 2},

which leads to QoE
ul,π

G

1 ≥ QoE
ul,π

G

2 for l ∈ {1, 2}. This concludes Part 2.

Part 3 follows from both Parts 1 and 2 where

QoE
u1,πG

1 = E[fu1,πG
(a(K1))]

≥ E[fu2,πG
(a(K1))] ≥ E[fu2,πG

(a(K2))] = QoE
u2,πG

2 ,

where the first inequality follows from Part 1 and the second inequality follows from

Part 2. This concludes the proof.
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