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Online learning, and more specifically, multi-armed bandit algorithms,

has recently garnered significant interest across diverse fields. Within an online

learning framework, agents can leverage past interactions with their environ-

ment to optimize future decisions, making it an ideal mechanism for use in

applications such as recommendation systems. Driven by these advantages, we

believe that the online learning approach can be effectively employed to address

resource allocation and scheduling challenges in wireless systems, with the

potential to enhance the adaptability and robustness of system performance. In

this dissertation, we explore the applications of multi-armed bandit algorithms

in various wireless settings, showcasing their efficacy through both theoretical

analysis and empirical demonstrations.

We first studied the multi-user scheduling problem for the wireless down-

link with instantaneous channel rate and queue information. We introduced the
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concept of ”meta-scheduling”, which formulates the task of selecting an optimal

wireless scheduler as a bandit problem, and proposed a UCB-type bandit algo-

rithm designed to adapt to the dynamics of a queueing system. Expanding on

the meta-scheduling concept, we then studied a model of hierarchical scheduling

in the context of network slicing, in which the base station learns the optimal

option among infinitely-many arms. Our approach involves formulating the

problem as a blackbox optimization and addressing it using an HOO-type

bandit algorithm adaptive to random queueing cycles. Lastly, we transitioned

into a multi-agent setting, where decisions of learning agents in close proximity

are coupled with each other through interference. Within this context, we

identified a low-complexity structure termed the ”weakly-coupled system”,

and developed a decentralized bandit algorithm to facilitate the learning of

optimal collective actions. Throughout each of these segments, we presented

rigorous theoretical proofs demonstrating that the proposed algorithms exhibit

the desired sub-linear regret compared to an idealized genie. Furthermore, we

validated the efficacy of the algorithms through a series of experiments using

simulation.
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Chapter 1

Introduction

This chapter aims to establish the context and drive behind the research

underlying this dissertation, as well as to outline our primary contributions.

Section 1.1 delves into the background of the problems, while Section 1.2

highlights the motivation that propels the proposed research. In Section 1.3,

the dissertation statement is presented alongside a summary of the research

contributions. Lastly, Section 1.4 addresses the organization of this dissertation.

1.1 Background

Efficient resource allocation is a crucial part of the design of wireless

systems, which encompasses dynamic scheduling of various resources such

as time slots, frequency sub-channels, power, and more. It is a particularly

challenging task that involves real-time decisions that need to be optimized

over a wide variety of scenarios and objectives, such as diverse performance

goals/requirements, heterogeneous traffic loads and channel conditions, inter-

ference, etc. For instance, in the multi-user downlink scheduling problem, a

base station may choose which user or users to serve for each time slot based

on queue backlogs, time-varying service rates, and users’ QoS requirements.
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Previous research has emphasized developing policies tailored to specific

application use cases – for example, Log-Rule [1] was introduced for multi-user

scheduling to optimize packets’ mean delay. Despite the numerous scheduling

policies/algorithms proposed for each specific task, however, manually selecting

a policy based on domain knowledge is not a systematic solution, and can lead

to several drawbacks. First, the effectiveness of an algorithm for a particular

scenario is contingent on several factors, such as heterogeneous traffic loads

and user channel conditions, which can fluctuate across different time scales.

Furthermore, with the increasing diversity of service requirements in modern

wireless systems to cater to varying needs, it may not be straightforward to

map the application scenario to any well-studied performance metric and apply

good strategies accordingly. Therefore, it is of significant interest to develop

a general approach that helps decision-making agents deploy well-behaved

policies that address the system’s complexity and adapt to changes in the

environment.

Reinforcement learning (RL) based solutions have recently gained much

attention in both academia and industry. One approach is to frame resource al-

location as a Markov Decision Process (MDP) problem and apply a data-driven

method to train/learn the optimal strategy for a specified reward/performance

metric. However, in order to be robust to the change of environments, this

method requires considerable exploration of various regimes as well as a sig-

nificant computational effort, which is not suitable to be conducted online. It

is crucial to properly model the performance metric and traffic environment

2



where the scheduler will be deployed during the offline training. This further

raises safety concerns due to the potential mismatch between the training and

deployment environments.

1.2 Motivation of Proposed Research

Given the constraints of current approaches, we believe that multi-

armed bandit (MAB) frameworks can be applied as an online learning scheme

to address wireless resource allocation problems and have great potential to

improve the adaptivity and robustness of the performance of a scheduling

system. In a bandit framework, the agent or agents (e.g., base stations, APs,

etc.) explore multiple (sometimes infinitely many) possible options, collect

reward feedback regarding the performance of the corresponding decisions, and

adaptively adjust further actions (regarding which option to explore) based on

the feedback history.

It is worth noting that, unlike general RL methods where an MDP is

formulated, there is no state transition in bandit frameworks — this may seem

contradictory to the settings of typical scheduling problems, as the decisions

are usually dependent on system states such as queues and channels. We tackle

this issue by carefully choosing new timescales and action (aka arm) sets such

that each action corresponds to a single reward. In particular, we propose the

concept of “meta-scheduling”, where pre-defined policies are viewed as bandit

arms, and the action reward is measured by the performance of each policy

over a period of time, ensuring that each policy starts from the same system

3



state.

This approach has the following advantages. Firstly, meta-scheduling

allows the agents to benefit from existing policies (which can be either manu-

ally designed or fine-tuned RL policies) without additional design complexity.

Secondly, in the context of wireless systems, this framework is more computa-

tionally efficient to implement in an online manner compared to the data-driven

RL approach, and can quickly adapt to environment change without additional

training. Lastly, it allows a thorough mathematical analysis, which can lead to

rigorous performance guarantees.

1.3 Summary of Contributions

The thesis statement for this dissertation is as follows:

Wireless resource allocation problems can be approached by multi-armed

bandit algorithms to systematically address the complexity of systems

and improve the robustness to changing environments.

First, we study online learning-assisted multi-user scheduling for the

wireless downlink. We propose the notion of meta-scheduling — given a diverse

collection of schedulers, we develop a bandit-based overlay algorithm (meta-

scheduler) that learns which is the “best” for the current deployment scenario.

Our meta-scheduler algorithm is based on a variant of the Upper Confidence

Bound (UCB) algorithm, but adapted to interrupt the queuing dynamics at the

base station so as to avoid schedulers that might render the system unstable.

4



We show that the algorithm has a poly-logarithmic regret in the expected

reward with respect to a genie that chooses the optimal scheduler for each

scenario. Using simulation, we show that the meta-scheduler is able to quickly

learn the best choice of schedulers to best adapt to the deployment scenario

(e.g. load conditions, performance metrics).

Second, we build on the meta-scheduling idea and study a model of

hierarchical scheduling for use in conjunction with network slicing, in which

the base station learns the optimal option among infinitely many arms in a

continuously-valued parameter set. In network slicing applications, wireless

users are grouped into “slices”, and a hierarchical scheduler is implemented by

combining an inter-slice scheduler allocating resources amongst slices (which

can be parameterized by a weight vector), and intra-slice schedulers which

opportunistically allocate resources to users/services within slices. We formulate

the problem of optimizing the inter-slice scheduler to maximize system utility as

an online black-box optimization — The goal is to learn the best weight vector.

We develop a bandit algorithm operating across queueing cycles by building

on Hierarchical Optimistic Optimization (HOO) [2]. Theoretical analysis of

our algorithm shows a sub-linear regret with respect to an omniscient genie.

We validate our approach via simulations, showing that the algorithm quickly

learns the optimal weight vectors when combined with opportunistic and/or

utility-maximizing intra-slice schedulers.

Finally, we further extend our work to a multi-agent setting. We propose

and evaluate a bandit framework to address resource allocation in coupled

5



wireless systems. In particular we consider, multiple agents that choose from

a set of resource allocation options towards achieving their own performance

objectives/requirements, and where the performance observed at each agent

is further coupled with the actions chosen by the other agents, e.g., through

interference, channel leakage, etc. The challenge is to find the best collective

action. Our focus is on systems that are “weakly-coupled” wherein the best

arm of each agent is invariant to others’ arm selection the majority of the time

– this majority structure enables one to develop lightweight efficient algorithms.

We develop a bandit algorithm based on the Track-and-Stop strategy [3],

which shows a logarithmic regret with respect to a genie. Through simulation,

we exhibit the potential use of our model and algorithm in several wireless

application scenarios.

We summarize our main contributions as follows.

• Chapter 2: Meta-Scheduling for the Wireless Downlink through Learning

with Bandit Feedback.

1. We propose “meta-scheduling”, a multi-armed bandit framework

that aims at dynamically selecting the best scheduler amongst a

candidate set.

2. We introduce a meta-scheduler algorithm based on the Upper Confi-

dence Bound (UCB) algorithm and cycle interruptions, in adaptive

to queueing system settings.
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3. We provide theoretical guarantees of the algorithm: the regret scales

as O(log n) with respect to the optimal scheduler, and the expected

number of packets dropped due to interruptions scales as O(log2 n).

4. We simulate the algorithm under varying conditions such as different

loads and performance metrics, showing the algorithm’s adaptability

in choosing different schedulers that maximize the reward.

This work has been published in [4].

• Chapter 3: Online Learning for Hierarchical Scheduling to Support

Network Slicing in Cellular Networks

1. We consider hierarchical schedulers for network slicing parameterized

by a slice-level allocation weight, and formulate the scheduler selec-

tion as a blackbox optimization problem under a bandit framework.

2. We propose the Cycle-Based HOO with Clipping (CHOOC) al-

gorithm, a modified Hierarchical Optimistic Optimization (HOO)

algorithm adapting to queueing systems.

3. We conduct a theoretical analysis on the cumulative regret of

CHOOC, which is shown to scale in the same order as HOO.

4. We empirically evaluate the algorithm in various wireless settings.

Our results highlight the power of CHOOC to handle performance

tradeoffs across slices.

This work has been published in [5].
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• Chapter 4: Online Learning for Multi-Agent Based Resource Allocation

in Weakly Coupled Wireless Systems

1. We develop a bandit framework to address the multi-agent resource

allocation problem. In particular, we formally define weak-coupling,

and discuss its properties and potential application usage.

2. We propose a decentralized bandit algorithm designed for weakly

coupled systems based on Track-and-Stop.

3. We show that the algorithm has a low communication cost and is

efficient with a logarithmic cumulative regret.

4. We demonstrate two wireless systems with potential weak-coupling

properties. In simulation, our algorithm successfully learns the best

collective action with reasonable cost.

This work has been published in [6].

1.4 Organization

In the subsequent chapters of this dissertation, we elaborate on our

contributions. Chapter 2 covers our study on meta-scheduling for wireless

downlink problems through an online learning framework. Chapter 3 discusses

our work on bandit learning-based hierarchical network slicing in cellular

networks. Chapter 4 elucidates our work on online learning multi-agent based

resource allocation in weakly coupled wireless systems. Lastly, Chapter 5

concludes this report and outlines potential directions for future research.

8



Chapter 2

Meta-Scheduling for the Wireless Downlink

through Learning with Bandit Feedback

In this chapter, we study learning-assisted multi-user scheduling for the

wireless downlink1. There have been many scheduling algorithms developed that

optimize for a plethora of performance metrics; however a systematic approach

across diverse performance metrics and deployment scenarios is still lacking.

We address this by developing a meta-scheduler – given a diverse collection of

schedulers, we develop a learning-based overlay algorithm (meta-scheduler) that

selects that “best” scheduler from amongst these for each deployment scenario.

More formally, we develop a multi-armed bandit (MAB) framework for meta-

scheduling that assigns and adapts a score for each scheduler to maximize

reward (e.g., mean delay, timely throughput etc.). The meta-scheduler is based

on a variant of the Upper Confidence Bound algorithm (UCB), but adapted to

interrupt the queuing dynamics at the base-station so as to filter out schedulers

that might render the system unstable. We show that the algorithm has a

poly-logarithmic regret in the expected reward with respect to a genie that

1The content of this chapter is based on Song, Jianhan, et al. ”Meta-Scheduling for the
Wireless Downlink through Learning with Bandit Feedback.” IEEE/ACM Transactions on
Networking, 2021. The author, Jianhan Song, took on most of the responsibility for the
problem formulation and the theoretical analysis, and performed all of the simulations.
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chooses the optimal scheduler for each scenario. Finally through simulation, we

show that the meta-scheduler learns the choice of the scheduler to best adapt

to the deployment scenario (e.g. load conditions, performance metrics). This

work is completed and has been published in [4].

2.1 Introduction

Multi-user scheduling for wireless downlink systems is a particularly

challenging task for two key reasons. First, mobile users and services may

have diverse performance goals/requirements that should ideally be optimized

over a wide variety of traffic loads/mixes and heterogeneous user service rates

that can vary by over an order of magnitude. Second, because mobile users

see time-varying service rates, it is desirable to incorporate some form of

opportunistic scheduling, favoring scheduling users when their service rates are

high. To address these challenges wireless schedulers use a combination of the

current channel conditions (e.g., obtained through channel quality feedback

from mobile users) and current queue backlogs to dynamically assign users

to channel resources so as to meet the desired various performance objectives

including, e.g., throughput optimality (stability), mean packet/flow delay, delay

tails, timely throughput, the video quality of experience, etc.

Although a substantial number of scheduling algorithms have been

proposed, solutions that are able to systematically address the above-mentioned

challenges are still lacking. Indeed, an algorithm best suited for a given

scenario may depend on a variety of factors including traffic load/mix and
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users’ channels, or more generally on the usage patterns associated with the

time of day.2 Moreover, in some cases the desired performance metrics for a

subset of users may not be easily pre-specified, e.g., measures of video quality,

whence it is not clear what type of scheduler to deploy. Furthermore, even

if one has access schedulers that are fine-tuned to particular scenarios (e.g.,

learned through a reinforcement learning (RL) algorithm), we typically have

no performance guarantees over the wide range of settings typical of wireless

systems. Whence it is unclear that it is safe to deploy such scheduling policies.

In this chapter, we propose ameta-scheduler – an online learning (bandit)

algorithm which for a given operational scenario dynamically selects the best

scheduler from a set of predefined policies (e.g., MaxWeight, Log rule, Exp

rule, Priority rule, RL schedulers, etc.). The scheduler in turn, determines

user-to-channel assignments. In our approach, scheduling policies are viewed

as bandit arms, and the meta-scheduler dynamically chooses the scheduler (aka

plays an arm) based on the mobile users’ feedback. The goal is to provide

a learning framework that efficiently identifies the best among a pre-selected

set of state-of-the-art policies for a given underlying scenario (characterized by

traffic, channel states, user metrics, etc.)

In adapting the bandit framework to our queueing setting, we need

to address two challenges: (i) Arbitrarily switching among schedulers over

2As an example, consider a set of users with different latency requirements. When the
traffic load is low, it may be desirable to give scheduling priority to users with stricter packet
deadlines without degrading other users’ performance; when the load increases, however, a
fairer scheduler may be preferred.
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time can lead to queue instability, even if each of the schedulers is stable.

Indeed, one can show that switching between two MaxWeight schedulers with

different weights can lead to unstable queues. (ii) If one or more of the possible

schedulers is unstable for a given scenario (e.g. a round-robin scheduler in a

high-load wireless setting), then a poor choice may lead to long-term instability.

Our approach uses the fact that stable queueing systems typically

exhibit cyclical sample paths associated with busy periods for the overall

system. Under appropriate assumptions, the queue dynamics in a busy period

are conditionally (given the scheduling policy) independent. Our meta-scheduler

thus determines which scheduler (arm to play) only at the beginning of cycles

and the chosen scheduler is maintained for the duration of the cycle ensuring

independent reward samples across cycles). Further to ensure that cycles do

not have infinite durations, the meta-scheduler interrupts3 cycles that have

exceedingly long durations. These decisions have to be properly designed such

that cycles due to unstable schedulers (which have unbounded cycle lengths)

are played infrequently, and when played, get interrupted (truncated) as soon

as possible. Further “good” cycles associated with stable schedulers should not

get interrupted. As we will see, designing a sound interruption mechanism in

conjunction with online learning through bandit feedback is crucial in designing

a meta-scheduler that achieves a low regret with respect to a genie algorithm

(baseline that always plays the best/highest-reward scheduler for a particular

3A cycle is interrupted by forcibly making all queues to be zero, e.g., by dropping packets
in the buffers.
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scenario).

Finally, it is worth noting that there are possibly two parallel method-

ologies to systemically address the scheduling problem for various environ-

ments/applications. The first one is to formulate scheduling as an MDP

problem for any given performance metric and utilize a data-driven method

to train and learn the optimal strategy for the given model, i.e., the rein-

forcement learning approach. Although this is a powerful method to generate

new schedulers, the training process typically requires considerable exploration

of different regimes and a large computational effort and is often conducted

offline (i.e., before deployment). Therefore, it is essential to properly model

the performance metric and traffic environment where the scheduler will be

deployed, which further raises difficulty and safety concerns (due to the mis-

match between the training and deployment environments). By contrast, in

this chapter, we tackle the problem from the second perspective. We will

answer the following question: Given a set of existing policies (which could

include one or more pre-trained RL schedulers optimized for specific settings),

how one can determine the best scheduler among these candidates without

assuming prior knowledge on the current environment/performance metric. Our

bandit framework learns in an online manner with lightweight computation and

relatively low convergence time needed, and can in principle keep re-optimizing

to changing scenarios (through re-running the meta-scheduling algorithm when

the environment significantly changes). When the optimal policy is unclear,

which is common in many real applications given all the uncertainties, our
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approach transfers the burden of choosing the best-suited environment-specific

state-of-the-art scheduler to a learning algorithm.

2.1.1 Contribution

Our main contributions are the following:

• Meta-scheduler: We develop a meta-scheduler algorithm based on (UCB

+ Interruptions). At the beginning of each queuing cycle, the meta-

scheduler determines a scheduler to be used for that cycle using a variant

of the Upper Confidence Bound (UCB) Algorithm. This consists of (i)

determining a score for each scheduler (empirical reward + confidence

bonus) that is multiplied by a indicator that estimates if each scheduler

is stable (meaning the cycle times are finite), and choosing the scheduler

with the highest score; and (ii) determining an interrupt threshold for

the cycle, at which time all packets in the queues are dropped if the cycle

has not ended before then.

• Theoretical guarantees: For the meta-scheduler, we show that the regret

(expected cumulative difference in reward) with respect to a genie al-

gorithm that chooses the optimal (highest expected reward) scheduler

scales as O(log n), where n is the number of cycles4 and correspond-

ingly O(log2 τ) where τ is the time-slot index. Further, the expected

4The regret scaling is slightly weaker under weaker assumptions on the cycle tail distribu-
tions, please see Section 2.4 for details.
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number of packets dropped due to interruptions also scales as O(log2 τ).

When packet drop is forbidden, an alternative mechanism to clear up the

queueing system is introduced at a slight expense of the total regret.

• Simulation Results: We simulate the meta-scheduler in a variety of wireless

settings. These include different rewards for performance metrics such

as mean delay, delivering packets on time, and penalizing bursty service,

and various schedulers including the MaxWeight, Exp, Log, max-rate

and round-robin and opportunistic priority, and different load conditions.

Our simulations show that as conditions vary (e.g. different loads, or

different performance metrics), the meta-scheduler adapts to choose a

different scheduler that maximizes the reward for each scenario.

2.1.2 Related Work

Wireless Scheduling. The design of multi-user wireless schedulers has

received substantial attention, see e.g., [7] and references therein. For infinitely

backlogged user queues researchers have devised various classes of opportunistic

schedulers that optimize the sum user utility (fairness criteria) of their long-

term throughputs or so-called timely throughput, see e.g., [8, 9, 10, 11, 12].

For settings where user queues are subject to stochastic arrivals e.g., packet

streams, initial work focused on characterizing throughput-optimal schedulers

which ensure queue stability if indeed stability can be achieved without prior

knowledge of the traffic load and service capacity. These include, for example,

the MaxWeight rule [13, 14], Exp rule [15] and Log rule [1], which in addition
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to throughput optimality achieve different user-level performance objectives.

Meanwhile, non-throughput-optimal policies can in certain load scenarios

provide better performance, e.g., max-rate, proportionally fair, round-robin,

and priority-based rules. Although there is substantial work in this area, the

question of how to realize the best performance tradeoffs among heterogeneous

users with diverse performance goals remains open and challenging.

Not surprisingly recently, reinforcement learning (RL) approaches have

been proposed to address complex scheduling problems, including job scheduling

for data centers [16] and wireless scheduling in various settings [17, 18, 19, 20].

RL algorithms provide a general approach to determining good schedulers for

specific scenarios and possibly, but substantially more challenging, ones that

are good for a range of scenarios in terms of user traffic, service capacity, and or

performance objectives. Despite showing great potential in several applications,

providing theoretical performance guarantees for RL-based schedulers remains

an open question. Limited success has been achieved in some simple settings (in

terms of traffic model or user metrics) – see e.g., [21, 22, 23]. However, advanced

RL methods, especially those involving neural networks that have attracted

the most attention in practice, typically lack rigorous performance guarantees,

and thus it is unclear whether they are safe to deploy. The goal of this chapter

differs from the common focus of designing practically or theoretically good RL

schedulers in current RL-networking literature. Instead, our framework aims at

better utilizing the knowledge of existing schedulers (including RL schedulers)

to address various scheduling scenarios (in particular those with complicated
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performance metrics or traffic models), while ensuring queueing stability.

In the literature, some authors proposed scheduling policies that utilize

online statistical learning, e.g., [24, 25], which involve learning system statistics

online to improve the performance of certain schedulers. We note that the

above methodology is different from the bandit-based online learning framework

we propose in this chapter. Our framework is adaptive to statistics, but by

learning the best scheduler among a predefined candidate set of policies for a

specific scenario, instead of refining specific policies.

Multi-armed Bandits. Multi-armed Bandits (MAB) problems have been

studied for many decades, with applications to clinical trials, recommendation

systems and online advertising; see [26] and [27] for a comprehensive discussion

on the state-of-art. In our model, each time we choose a new arm, the

corresponding (random) cycle time can be interpreted as a cost. Such problems

where each action costs a non-unit amount of resources is referred to as budgeted

bandits. Unlike classical MAB settings, the regret is not parameterized by a

time horizon; instead, the regret parameterization (and thus, the best arm)

involves both the reward and cost variables, which significantly increases the

complexity of the problem. This line of work was started by [28] and has been

followed in many directions by [29, 30, 31].

A recent study on budgeted bandits in [32] introduces the idea of MAB

with interruptions. At each time, a server works on a single task that has a

heavy-tailed service completion time. A task can be interrupted if it is taking

too long (but with loss in reward). The authors in [32] develop a variant of the
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Upper Confidence Bound (UCB) algorithm [33] that selects over (a finite set of)

tasks as well as a finite set of task interrupt thresholds to discard ongoing tasks,

i.e. arms are (task, interrupt-threshold) pairs. Their motivation is to interrupt

a task that takes too long so as to start a new one to collect more rewards,

and thereby benefit the total reward. Our model is inspired by their work but

significantly differs in the way that we deal with interruptions. In contrast to

[32], our goal is to eventually avoid any interruptions, thus, we do not treat

interruptions as the arms of a bandit. Instead, we dynamically increase the

threshold for each task (aka scheduling policy) to ensure we quickly filter out

unstable policies for which the cycle times are infinite while leaving stable

policies (eventually) uninterrupted. Algorithmically, our approach modifies

UCB with a multiplicative censoring that penalizes interruptions from occurring

too often, which ensures that unstable arms (with infinite expected cycle

completion times) are aggressively eliminated.

Finally, bandit algorithms have also been applied to wireless resource

allocation problems more broadly. These include studies in cognitive radio

probing [34], spectrum access [35], decentralized wireless computing[36, 37]

and most recently, cellular scheduling [38].

2.1.3 Notation

Throughout this paper, we use characters in bold font to denote vectors

and normal font to denote scalars. Random variables are indicated by capital

letters unless stated otherwise. We adopt the following technical abbreviations:
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“w.h.p.” for “with high probability”, “a.s.” for “almost surely” and “i.i.d.” for

“independently and identically distributed”. Finally, we use 1 for the {0, 1}

indicator function.

2.2 Model Settings

In this section, we consider a multi-arm bandit model for the wireless

scheduling problem. The goal is to formulate a meta-scheduler that can explore

different scheduling policies and learn in an online manner which among the

candidate policies is the best, given a certain performance metric. Before

introducing the meta-scheduler in detail, we first describe the traffic model

and then describe the system from a perspective of regenerative processes. We

will see it is natural to allow the meta-scheduler to switch policies only when

the system “regenerates”. Formal definitions of a meta-policy (policy of a

meta-scheduler) and its regret are given at the end of this section.

2.2.1 Traffic and Service Model

We consider a packet-based queuing system with a set of u different

users, denoted by U, and a single server (base station). The system operates

in discrete time slots. For simplicity, suppose all packets have the same size.

At any time t, define the random vector Q[t] = (Q1[t], · · · , Qu[t]) ∈ Zu
+, where

Qi[t] denotes the number of packets of the i-th user at the beginning of time

slot t.

The random packet arrivals at time t are denoted by A[t] = (A1[t], · · · ,
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Au[t]) where Ai[t] has a integer-valued distribution bounded by ā for any user

i ∈ U. We assume (A[t])t≥0 are i.i.d. across time and denote its expectation

by λ. The wireless channels’ service rates at time t are modeled by a random

vector S[t] = (S1[t], · · · , Su[t]) where Si[t] denotes the service rate available to

the i-th user at t. (S[t])t≥0 are i.i.d. over time and also independent of the

queue lengths and arrival process. A scheduling policy will decide which user

to serve at each time slot based on the queue and channel state.

Let C denote the long-term capacity of the system (see [7]). This means

for any arrival rate that lies in Co (the interior of C), there exists at least one

policy that stabilizes the system (the average queue lengths are finite). We

require λ ∈ Co. We say a policy is stable (with respect to λ) if it stabilizes the

system.

Now suppose there is a finite set of scheduling policies (or arms in the

bandit context), denoted by A. For a fixed λ ∈ Co, A consists of both stable

and unstable policies, denoted by As(λ) and Au(λ). Assume that As(λ) ̸= ϕ.

2.2.2 Regenerative Dynamics

Suppose the arrival always occurs right after the beginning of a slot

while the transmission happen right before the end of a slot. We say the system

returns idle when the sum of users’ queue lengths is down to 0 from some

positive value at the end of a time slot. A cycle is defined as the interval of

time slots between two consecutive points in time when the system returns
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idle.5 Further, without loss of generality, we assume the system starts empty

at the beginning of the first slot. We can describe the system’s dynamics based

on such cycles as follows. The notation and definitions in this section follows

[32], with appropriate modifications to reflect our setting.

Each arm k is associated with a stochastic process ((C(k)(n),U (k)(n)))n≥1

where n denotes the index of cycles. If arm k is implemented after n-th time

the system returns idle, the system observes a random cycle length C(k)(n)

(before it returns idle again), and receives a sequence of non-negative rewards

U (k)(n) = (U (k)(n, i) : i = 1, 2, · · · , C(k)(n)) for each time slot in the cycle.

Note that C(k)(n) for n ≥ 1 are i.i.d. and C(k)(n) ≥ 1 a.s. .

Remark 1. To be precise, in order to make C(k)(n) i.i.d. over cycles, in

addition to i.i.d. arrivals and channels assumed in our traffic and service

model, it is necessary to assume the scheduling policy k only uses information

associated with its current cycles. For example, a Markovian policy which

chooses a service vector at time t only based on the current system states

(e.g., S[t] and Q[t]), such as MaxWeight, Log rule, etc., naturally satisfies this

requirement. For a policy that keeps internal states which utilize information

from the past, e.g., a proportionally fair scheduler using an exponential moving

average of past throughput, we need to additionally reset internal states when a

cycle begins.

5In technical terms, a cycle consists of an idle period plus a busy period. When the system
stays empty for a whole time slot, this slot is part of the idle period rather than a new cycle.
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We consider a reward scheme where the generated rewards are i.i.d.

over cycles and grow no faster than linearly with corresponding time, which is

formally stated in the next assumption.

Assumption 1. The cycle reward sequence (U (k)(n))n≥1 for all k ∈ A are

i.i.d. over n, and such that for l = 1, . . . , C(k)(n),

0 ≤
l∑

i=1

U (k)(n, i) ≤ r̄l, almost surely (2.1)

for some r̄ > 0.

Remark 2. This assumption holds, for instance, if each packet is associated a

bounded reward (e.g., over [0, 1]) upon reception, and the cumulative reward

over a time period is thus bounded by the maximal number of packets transmitted

within that period, i.e., r̄ = āu. In practice, for example, the cycle reward

evaluated by a latency-sensitive user can be the number of packets that arrive

on time within a cycle. It should be noted that the manner in which rewards

are calculated/defined is not necessarily known by the base station in our model,

which allows for more flexible user-customized reward schemes.

We denote the (total) cycle reward by U (k)(n) =
∑C(k)(n)

i=1 U (k)(n, i).

Thus, it follows that U (k)(n) for n ≥ 1 are i.i.d. across cycles and bounded as

follows:

0 ≤ U (k)(n) ≤ r̄C(k)(n), almost surely. (2.2)

One question regarding the process is how frequently a policy forces

the system to finish a cycle, i.e., the distribution of C(k)(n), which is vital for
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the meta-scheduler discussed in the sequel. When k is a stable arm, we have

P(C(k)(n)<∞)=1 and the system will start a new cycle infinitely often. In

addition, we have the following assumption on the cycle length of a stable arm.

Assumption 2. For a given λ ∈ Co, we assume if arm k ∈ As(λ), C(k)(n)

is a sub-exponential random variable. This implies that, there exist (possibly

λ-dependent) non-negative parameters (ν2k , αk), such that for all n ≥ 1,

P(|C(k)(n)−E[C(k)(n)]|≥ε) ≤

{
2e−ε2/(2ν2k) 0 < ε ≤ ν2k

αk
,

2e−ε/(2αk) ε >
ν2k
αk
.

(2.3)

Remark 3. This assumption implies that for stable arms k ∈ As(λ), C(k)(n)

has a light tail on the right (the left side is bounded). When the system

has bounded arrival and channel distributions, and the policies considered are

Markovian, this assumption holds true following an argument of [39]. One

can then show that the empirical average (1/n)
∑n

i=1C
(k)(i) is sub-exponential

with parameters (ν2k/n, αk/n). By Assumption 1, i.e., (2.2), U (k)(n) is also

sub-exponential (with possibly larger parameters). Without loss of generality,

we will assume both C(k)(n) and U (k)(n) are (ν2k , αk)-sub-exponential, assuming

the rewards are properly normalized.

If an unstable arm is applied, however, the system is transient and there

is a chance that the system will never start a new cycle as P(C(k)(n)=∞)>0

for all k ∈ Au(λ). This suggests that an additional stopping mechanism is

needed when an unstable arm is explored by the meta-scheduler.

When k ∈ As(λ), observe that
(
(C(k)(n), U (k)(n))

)
n≥1

form a well-

defined renewal-reward process. We next define the renewal reward rate of a
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stable policy.

r(k) =
E[U (k)(1)]

E[C(k)(1)]
∀k ∈ As(λ). (2.4)

By Renewal Theory, this rate captures the rate of rewards generated by a

policy.

2.2.3 Meta-Scheduler, Feedback and Interruptions

A meta-scheduler makes decisions on which arms to use and when, so

as to maximize the rate of rewards of the system. In this chapter, we will only

consider meta-schedulers that comply with the following rules:

(1) A meta-scheduler can switch to another arm when the system returns

idle;

(2) A meta-scheduler can interrupt a cycle, i.e., discarding all packets

currently in the system and forcing the system to start a new cycle, so as to

prevent unstable arms from occupying the system indefinitely. Furthermore, as

in [32], we only consider conditions triggering such interruptions solely based

on cycle time: a cycle gets interrupted when its length exceeds a threshold

pre-selected before the cycle starts.

Remark 4. To allow for simpler analysis, we require that all packets to be

discarded when a cycle is interrupted. As is shown later, a good meta-scheduler

should be designed such that this event occurs rarely. If such packet drops are

unacceptable, instead of interrupting and dropping, we can switch to a default

policy that is guaranteed to be stable (e.g., MaxWeight) when an interruption
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is triggered, and a cycle can be restarted when the system returns to the idle

state. Later we will show that the loss of rewards induced by this extra process

grows logarithmically in time.

There are several advantages in adopting those two rules. First, even

scheduling policies that might result in unstable queues can be added to

the mix, since the interruptions ensure that cycle times remain bounded.

Moreover, they simplify the design of a meta-scheduler, since the system can

be fully characterized by cycle lengths and rewards, i.e., the collection of

processes {((C(k)(n),U (k)(n)))n≥1 : k ∈ A}, from the meta-scheduler’s point of

view regardless of how the actual queues and channels vary with time. This

guarantees the independence of statistics for different arms and allows us

to apply classical MAB methodologies. Furthermore, such a meta-scheduler

preserves properties of regenerative processes that help analysis.

According to the rules mentioned above, a meta-scheduler can only make

a decision when the system returns idle, which consists of two selections: the

arm and the interruption threshold. Formally, we let π = (πn)n≥1 be a meta-

policy (policy of a meta-scheduler), where πn = (An, Ln) ∈ A× (Z+ ∪ {+∞}).

A decision πn = (k, l) implies that arm k is selected for n-th cycle, and the

cycle will be interrupted immediately if it lasts over l time slots.

In order to model cycles under our interruption policy, we let Ĉ(k,l)(n) =

min[C(k)(n), l] and Û (k,l)(n) = (U (k)(n, i) : i=1, 2, · · · , Ĉ(k,l)(n)). The observed

(total) cycle reward Û (k,l)(n) =
∑Ĉ(k,l)(n)

i=1 U (k)(n, i). Note that it still holds that
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...

...

Figure 2.1: Illustration of a meta-policy selecting arms from A = {k, k′}. At
the start of the process, the meta-scheduler makes decision π1 = (k, l1), and
receives feedback Z1 after the system experiences a full cycle. Then the meta-
scheduler decides π2 = (k′, l2), but has to interrupt the cycle as the system
does not return idle before the cycle time reaches l2. The meta-scheduler then
collects feedback Z2 and starts a new cycle with π3 = (k, l3).

0 ≤ Û (k,l)(n) ≤ r̄Ĉ(k,l)(n) almost surely.

If πn = (k, l), we assume stochastic feedback Zn is received for n-th

cycle by the meta-scheduler as follows,

Zn = (Ĉ(k,l)(n), Û (k,l)(n),1{Ĉ(k,l)(n)<C(k)(n)}).

An illustration of the meta-policy dynamics is shown in Figure 2.1. Note that

the reward for each single time slot is not required in the feedback. This suggests

that if performance is evaluated at the user side, additional communication

cost only occurs at the end of a cycle.

We assume πn is solely based on the history of actions and feedback up

to the decision. Thus, an admissible meta-policy considered in this chapter is

formally defined as follows. This is analogous to a similar notion in [32].
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Definition 1 (Admissible Meta-Policy). We call a meta-policy π = (πn)n≥1

admissible if πn ∈ Fn where Fn := σ(π1, Z1, π2, Z2, · · · , πn−1, Zn−1) is the σ-field

induced by all the random decisions and feedback before n-th cycle.

Our goal is to design a good meta-policy that satisfies the following two

objectives: (1) it suffers negligible throughput loss, i.e., the number of packets

discarded due to interruptions by the meta-scheduler is sub-linear in time, and

(2) it has a sub-linear regret over a given time horizon. We will define the

regret in the next section.

2.2.4 Regret

As in the traditional MAB setting, we are interested in the regret of

a meta-policy as compared to an optimal over a given time horizon τ . The

regret for the meta-policy π stems from two reasons: (i) playing suboptimal

arms (schedulers), and (ii) interrupting ongoing cycles. To formally define the

regret, we follow a similar approach as in [32]. First, note that the number of

cycles within a time horizon τ is a random variable, which can be viewed as a

counting process.

Definition 2 (Counting Process). Consider a meta-policy π that is admissible.

The total time of the first n-th cycle can be written as

Sπ
n =

n∑
i=1

∑
(k,l)∈A×Z+

1{πs=(k,l)}Ĉ(k,l)(i).

Define a counting process (Nπ[τ ])τ≥1 as follows.

Nπ[τ ] = max{n : Sπ
n ≤ τ}.
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Note that Nπ[τ ] indicates the number of completed cycles within time horizon

τ .

Definition 3 (Cumulative Reward). Given a time horizon τ , the cumulative

reward for an admissible meta-policy π is a random variable given as follows.

(Denote Ñ := Nπ[τ ] for notation simplicity.)

Rewπ[τ ] =
Ñ∑
i=1

∑
(k,l)

1{πi=(k,l)}Û (k,l)(i)

+
∑
(k,l)

1{πÑ+1=(k,l)}

τ−Sπ
Ñ∑

j=1

U (k)(Ñ+1, j).

(2.5)

The cumulative reward is the sum of (observed) cycle rewards from the first

Nπ[τ ] completed cycles and the reward from the next uncompleted cycle up to

time τ .

We call a meta-policy simple-static if the meta-scheduler consistently

selects an arm with no cycle interruption. Let π(k) be the simple-static meta-

policy selecting arm k, i.e., π
(k)
n = (k,+∞),∀n ≥ 1. In this chapter, we define

the regret with respect to the best simple-static meta-policy πopt that is stable

and generates the most rewards (in expectation) within a given time. By

the renewal theorem, limτ→∞Rewπ(k) [τ ]/τ = r(k) a.s. for all k ∈ As(λ). This

implies that πopt = π(k∗) where k∗ = argmaxk∈As(λ) r
(k). The regret is formally

defined as follows.

Definition 4 (Cumulative Regret). Let πopt be the optimal simple-static meta-
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policy, i.e.

πopt
n = (k∗,∞), ∀n ≥ 1 (2.6)

where k∗ = argmaxk∈As(λ) r
(k). The regret of meta-policy π with respect to πopt

over any time horizon τ is defined as

Regπ[τ ] = E[Rewπopt [τ ]− Rewπ[τ ]]. (2.7)

In the remaining sections, we will simply refer to k∗ as the optimal arm

(assumed to be unique). For notation simplicity, we suppress k∗ as a single

asterisk in the superscript when there is no ambiguity (e.g., r(∗) := r(k
∗)).

2.3 UCB Meta-Scheduler with Interruption

To guarantee negligible throughput loss and a sub-linear regret as

discussed in Section 2.2, the meta-scheduler should wisely select the arms and

interruption thresholds such that the optimal arm is being applied at most

of the time, and the packet discard hardly occurs. This implies the following

guidelines when designing the algorithm: 1) the number of times a suboptimal

arm (either unstable or stable) gets selected should be sub-linear in time; and

2) the unstable arms’ (possibly infinitely) long cycles must be stopped, while

the cycles of the optimal arm should be preserved with little interruption.

Motivated by these guidelines, we propose a UCB-type meta-scheduler with a

properly-designed interruption rule.

To simplify notation and avoid ambiguity, let C
(k)
s and Ĉ

(k,l)
s (U

(k)
s and

Û
(k,l)
s ) be the full and observed cycle length (reward) of arm k when it is selected
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the s-th time (we call it s-th sample of k). Denote by T
(k)
n as the number of

times arm k has been chosen in the first n decisions. Thus, if An = k,

(C
(k)

T
(k)
n

, U
(k)

T
(k)
n

) = (C(k)(n), U (k)(n)).

Similar to a classical UCB algorithm, the meta-scheduler learns the

arm statistics by keeping track of the empirical averages of cycle lengths and

rewards. We formally define the empirical rate of arm k after s samples as

R̂
(k)
s . For all s ≥ 1,

R̂(k)
s =

s∑
i=1

Û
(k,F

(k)
i )

i

s∑
i=1

Ĉ
(k,F

(k)
i )

i

, (2.8)

where F
(k)
i denotes the threshold level for arm k’s i-th sample. As a convention,

the empirical rate equals 0 when s = 0. Let R̂(k)(n) := R̂
(k)

T
(k)
n

be the empirical

rates for the k-th arm after n-th cycle in the system.

As an overview, we present a simplified version of our meta-scheduler

in Algorithm 1. The mathematical design of key variables will be discussed

in a rigorous manner in the next section. Before that, let us first give some

intuition as follows.

First, we observe that to avoid constantly interrupting a stable arm, it is

necessary (and sufficient) to apply an interruption rule where the threshold of

each arm is set to slowly grow with the number of samples (note that otherwise

a fixed threshold will always result in linear throughput loss). Hence, we define

a threshold function fs as in line 2. For any arm k, we will use fs as the
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Algorithm 1 UCB based Meta-Scheduler with Interruption

1: Input: Set of scheduling policies A.
2: Threshold Function: fs := β + κ log s.

▷ β and κ to be defined

3: Initialization: Run every arm k ∈ A once with interruption threshold β,
then initialize empirical rate R̂

(k)
1 .

4: for n = |A|+ 1, |A|+ 2, · · · do
5: [before cycle n]
6: for all k ∈ A do
7: Compute Exploration Bonus ∆

(k)
n .

8: Compute Stability Indicator I
(k)
n .

▷ I
(k)
n : a Boolean variable

9: Arm decision:

An ∈ argmax
k∈A

I(k)n × (R̂(k)(n−1) + ∆(k)
n ).

10: Cycle interruption decision:

Ln = f
T

(An)
n

.

11: [after cycle n]
12: Observe cycle feedback Û (An,Ln)(n), Ĉ(An,Ln)(n), then update R̂(An)(n).

interruption threshold for its s-th sample. With this design, the expected

number of interruptions imposed on the optimal arm can be bounded by a

constant if β and κ are large enough.

The meta-scheduler starts with running each policy once with an initial

interruption level β and initializing the empirical rate R̂
(k)
1 for any k ∈ A.

After this initialization phase, before each decision, the meta-scheduler will

compare the “score” (i.e., upper confidence bound) for each of its arms. The

score is the sum of its empirical reward rate and an exploration bonus (line 7).
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The exploration bonus is used to compensate for possibly under-performing

empirical rate estimates in order to ensure adequate exploration before finding

committing to optimal arm. We will show that w.h.p., R̂(∗)(n−1) +∆
(∗)
n > r(∗)

for any n ≥ |A|+ 1. Meanwhile, the score of a suboptimal stable arm will be

below r(∗) after it is sufficiently explored.

Moreover, we design a stability indicator (line 8) to eliminate unstable

arms by utilizing accumulated interruptions as a signal indicating whether an

arm frequently induces long cycles. We keep track of the number of times each

arm is interrupted, and I
(k)
n is set 0 only if the total number of interruptions

exceeds a limit (which is a function of n).

After computing the exploration bonus and the stability indicator, the

meta-scheduler will pick the arm with the best score B
(k)
n := R̂(k)(n−1) + ∆

(k)
n

and a positive value of I
(k)
n (line 9), and the threshold of that cycle is determined

by the threshold function (line 10). A new cycle then starts according to this

decision. When the cycle is finished, the meta-scheduler observes the (possibly

clipped) cycle length and reward before updating the empirical rate for the

selected arm. The updated statistics are then used to determine the next

decision.

2.4 Main Results and Discussion

Compared with previous works in the literature, our UCB-type algo-

rithm tackles more challenging assumptions on cycle variables (sub-exponential

instead of sub-Gaussian), and further the cycle lengths can be unbounded with
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positive probability, due to unstable schedulers. Thus, it requires several novel

design choices such as dynamic interruption thresholds, a stability indicator,

and a suitably modified exploration bonus. In this section, we will discuss

these key design choices that differ from the classical UCB, followed by the

result of the regret analysis.

2.4.1 Analysis of Key Design Choices

2.4.1.1 Hyper-Parameters

Before discussing the details of the meta-scheduler, let us first introduce

several parameters used in our algorithm in the following assumption.

Assumption 3. We assume parameters µmin, µmax, rmax and (ν2, α) are given

a priori such that there exists a subset of arms A0 satisfying

{k∗} ⊆ A0 ⊆ As(λ)

and for all k ∈ A0,

(1) µmin ≤ E[C(k)(1)] ≤ µmax.

(2) E[U (k)(1)|C(k)(1) = l] ≤ rmax l for all l ≥ 1. Note that rmax exists

by Assumption 1, and rmax ≥ r(∗).

(3) C(k)(1), U (k)(1) are both (ν2, α)-sub-exponential random variables as

described in Assumption 2. In addition, we assume that the l-interrupted cycle

reward Û (k,l)(1) is (ν2, α)-sub-exponential for all l ≥ 2E[C(k)(1)].

In the algorithm, these parameters serve as hyper-parameters that need

to be further tuned. To remove ambiguity, for a given set of hyper-parameters
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used in implementation, we will refer to A0 as the largest set of arms which

satisfy these conditions with respect to those hyper-parameters. We assume

k∗ ∈ A0 (as the weakest notion) to achieve sub-linear regret.

Remark 5. For technical reasons, we also require Û (k,l)(1) to be sub-exponential

under the same parameters6 (ν2, α) as those of U (k)(1) when l is sufficiently

large. This does not make the assumption significantly stronger, since one

can always pick the parameters large enough to satisfy this condition. The

condition l ≥ 2E[C(k)(1)] is chosen for simplicity. Indeed, the condition can be

replaced by l ≥ (1 + γ)E[C(k)(1)] for any γ > 0 (the algorithm parameters will

be changed accordingly), which will be explained in Section 2.4.1.4.

2.4.1.2 Threshold Function

Recall that the interruption threshold for arm k’s s-th sample is given

by

fs := β + κ log s. (2.9)

We require β and κ satisfy that

β > µmax + ν2/α, κ/α ≥ 4.

Under these conditions, and by Assumption 2, it is easy to verify that the

interruption probability for the best arm P(C(∗)
s > f

(∗)
s ) ≤ 1/s2. This implies

6Note that Û (k,l)(1) is sub-exponential (indeed bounded). However, the fact that U (k)(1)
is (ν2, α)-sub-exponential does not imply the same parameters suffice Û (k,l)(1).
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that, under our threshold function, the expected number of interruptions of

the best arm is bounded by a constant (since
∑∞

s=1 1/s
2 = π2/6), and thus

packet drops induced by the “wrong” interruptions do not grow faster than

O(log n) over n cycles.

2.4.1.3 Stability Indicator

The stability indicator is defined as follows:

I(k)n =

1 if
T

(k)
n−1∑
i=1

1{C(k)
i >fi}< π2

6
+

√
2T

(k)
n−1logn,

0 otherwise.

(2.10)

The Bernoulli random variable 1{C(k)
s >fs} denotes whether the s-th

sample for arm k is clipped by its threshold. The value E[
∑s

i=11{C(k)
i >fi}] is

bounded by π2/6 for the optimal arm as previously discussed, but grows linearly

for the unstable arms (since they are frequently clipped).

This motivates us to distinguish unstable arms by comparing the total

number of interruptions of each arm to π2/6 plus a concentration bound. By

McDiarmid’s inequality, the optimal arm’s indicator I
(∗)
n is equal to 1 w.h.p.

for any n ≥ 1. In contrast, for any unstable k, the value of
∑s

i=1 1{C(k)
i >fi} will

eventually exceed the limit.

2.4.1.4 Upper Confidence Bound

As discussed in the last section, an exploration bonus term is designed

to compensate the empirical reward rates of arms for arm selection. Specifically,
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at least for the best arm, the empirical rate plus its exploration bonus should

be above the true rate w.h.p., which ensures the best arm gets sufficiently

explored.

The exploration bonus is formally defined as follows:

∆(k)
n = ∆(ϵ(k)n , ϵ′(k)n ) (2.11)

where

∆(ϵ, ϵ′) :=
ϵ(1 + rmax) + ϵ′

µmin + ϵ
, (2.12)

and

ϵ(k)n =


√

6ν2 logn

T
(k)
n−1

√
6ν2 logn

T
(k)
n−1

≤ ν2

α
,

6α logn

T
(k)
n−1

otherwise,
(2.13)

ϵ′(k)n =
1

T
(k)
n−1

T
(k)
n−1∑
i=1

rmax

iκ/2α
e−β/4α(β+2α+κ log i+1). (2.14)

To see why this term works, first let us suppose every arm is stable and

there is no interruption, i.e., fs =∞. As in [32], we can introduce the following

term,

∆̄(ϵ) :=
ϵ(1 + rmax)

µmin + ϵ
≥ r(∗) − E[U (∗)

1 ]− ϵ
E[C(∗)

1 ] + ϵ
. (2.15)

By simple observation, we have that

{R̂(∗)
s + ∆̄(ϵ) ≤ r(∗)} ⊂

{1
s

s∑
i=1

Ĉ
(∗,fi)
i >E[C(∗)

1 ]+ϵ}
⋃
{1
s

s∑
i=1

Û
(∗,fi)
i ≤E[U (∗)

1 ]−ϵ}.
(2.16)
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These two events at the bottom allow us to use the concentration properties

stated in Assumption 2 to bound the probability of the original event. Following

a trick in [40], let ϵ = ϵn,s where

ϵn,s =

{√
6ν2 logn

s

√
6ν2 logn

s
≤ ν2

α
,

6α logn
s

otherwise.
(2.17)

We can then show that both of those two events happen with probability 1/n3

for all s ≤ n. Hence, by taking a union bound on all possible T
(∗)
n−1 ≤ n, we

have that w.h.p. the exploration bonus ∆̄(ϵ
n,T

(∗)
n−1

) suffice to compensate the

best arm’s empirical rate R̂(∗)(n) such that R̂(∗)(n) + ∆̄(ϵ
n,T

(∗)
n−1

) > r(∗), which

is as desired.

When we consider the threshold fs as defined in (2.9), however, ∆̄ is

not sufficient to compensate for R̂
(∗)
s to exceed r(∗). This is due to the bias of

estimating E[U (∗)
1 ] by the average truncated reward (1/s)

∑s
i=1Û

(∗,fi)
i , and the

second bottom event in (2.16) is no longer with a negligible probability. This

motivates us to adjust ϵ to account for the additional bias.

When β>(1+γ)(µmax+ν
2/α), by simple algebra, we have that the bias

is bounded as follows (see the detailed derivation in Appendix A.1).

E[U (∗)
1 ]− 1

s

s∑
i=1

E[Û (∗,fi)
i ]

≤ ϵ′n,s :=
1

s

s∑
i=1

rmax

iκ/2α
(β+2α+κ log i+1)e−βγ/2(1+γ)α.

(2.18)

For simplicity, we let γ = 1 in our algorithm. Note that ϵ′n,s ∼ O(log s/s) when

κ/α ≥ 4.
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Now we can define an updated exploration bonus ∆(ϵ, ϵ′) as in (2.12).

Note that

∆(ϵ, ϵ′) :=
ϵ(1 + rmax) + ϵ′

µmin + ϵ
≥ r(∗) − (E[U (∗)

1 ]− ϵ′)− ϵ
E[C(∗)

1 ] + ϵ
. (2.19)

Following the same logic as in (2.16), we can conclude7 that w.h.p., R̂(∗)(n) +

∆(ϵ
n,T

(k)
n−1
, ϵ′

n,T
(k)
n−1

) > r(∗).

As a sanity check, if T
(k)
n grows faster than O(log n) for any stable arm

k, then its exploration bonus will converge to 0. Thus, the UCB-compensated

empirical rate of a stable suboptimal arm will eventually fall short of r(∗) after

sufficient explorations.

2.4.2 Main Results

In this part we present the main theorem, which justifies that the meta-

scheduler given in Algorithm 1 satisfies our requirements regarding negligible

packet loss and a sub-linear regret. Before that, let us first introduce a key

lemma, stating that the number of sub-optimal decisions under our algorithm

grows quasi-logarithmically.

For simplicity, let d(k) := r(∗) − r(k) denote the gap of reward rates

between arm k and the optimal arm. We will use symbols ∧ and ∨ as the

shorthand notations for min and max functions respectively.

Lemma 1. A meta-scheduler implementing Algorithm 1 satisfies the following

regarding E[T (k)
n ].

7The proof requires the technical assumption in item (3) of Assumption 3.
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(1) For all unstable arms k ∈ Au(λ),

E[T (k)
n ] ≤ ⌈K(k)

1 log n⌉+ π2

6
+ 1

where

K
(k)
1 =

18

P(C(k)
1 =∞)2

.

(2) For stable suboptimal arms that lie in set A0 \ {k∗}, we have that

E[T (k)
n ] ≤ ⌈K(k)

2 log n ∨M(k)
1 ∨M

(k)
2 ⌉+π2+1

where

K
(k)
2 =

24(1+rmax)
2ν2(µmin+1)2

(d(k))2µ2
min

∨ 12(1+rmax)α(µmin+1)

d(k)µmin

and M
(k)
1 ,M

(k)
2 are (smallest possible) constants such that

M
(k)
1 ≥

4

d(k)
r̄ (E[C(k)

1 ]+6αk logM
(k)
1 )(

π2

6
+

√
M

(k)
1 logM

(k)
1 ),

M
(k)
2 ≥

4

d(k)
rmax ·

π2

6
e−β/4α(β + 2α + κ logM

(k)
2 + 1).

(3) For stable suboptimal arms that lie in As(λ) \A0, we have that for

any δ > 0 and χ > 1,

E[T (k)
n ] ≤ ⌈K(k)

3 log n ∨ J
(k)
1 log1+δ n ∨ χ ∨M

(k)
2 ⌉+ π2 + 1

where

K
(k)
3 =

24(1+rmax)
2ν2k(µmin+1)

2

(d(k))2µ2
min

∨ 12(1+rmax)αk(µmin+1)

d(k)µmin
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and J
(k)
1 is a constant (up to δ and χ) such that

J
(k)
1 ≥

4

d(k)
r̄
(E[C(k)

1 ]+6αklog(J
(k)
1 log1+δχ))(π

2

6
+

√
2J

(k)
1 log2+δχ+1)

log1+δ χ
.

Note that M
(k)
1 , J

(k)
1 are roughly O((1/d(k))2) and M

(k)
2 is roughly O(1/d(k)).

To summarize,

E[T (k)
n ]=


O(log n) ∀k ∈ Au(λ),

O(log n) ∀k ∈ A0 \ {k∗},
O(log1+δ n) ∀δ > 0 ∀k ∈ As(λ) \A0.

Proof of Lemma 1. Here we will present a proof sketch. The complete proof

can be found in Appendix A.2.

The proof consists of two parts. First, we prove the case when arm

k is unstable. Observe that for any k ∈ Au(λ), pk := P(C(k)
1 = ∞) > 0.

Thus, w.h.p., the value
∑T

(k)
n−1

i=1 1{C(k)
i >fi} grows no slower than pkT

(k)
n−1 minus a

concentration bound
√

2T
(k)
n−1 logn (by Bernstein’s inequality). Therefore, if the

n-th arm decision An = k ∈ Au(λ), by the stability indicator, we have that

pkT
(k)
n−1 −

√
2T

(k)
n−1 logn<π

2/6 +
√

2T
(k)
n−1 logn. This implies E[T (k)

n ]=O(log n).

Next, we study the case for any stable suboptimal arm. If An = k ∈

As(λ) \ {k∗}, either of the following two events will happen: (a) the stability

indicator of the best arm is 0; or (b) the UCB score (empirical rate plus UCB) of

arm k is larger than the best arm’s score. As discussed in 2.4.1.3, the first event

has a negligible chance to happen. For the second event, we already guarantee

that w.h.p., R̂(∗)(n)+∆(ϵ
(∗)
n , ϵ

′(∗)
n ) > r(∗) by the design of the exploration bonus

in 2.4.1.4. Then to show the second event cannot occur either, it suffices to show
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that R̂(k)(n) + ∆(ϵ
(k)
n , ϵ

′(k)
n ) < r(∗). Observe that R̂(k)(n) ≈ r(k) < r(∗) and that

∆(ϵ
(k)
n , ϵ

′(k)
n ) can be arbitrarily small when T

(k)
n > C log n for a sufficiently large

C. This suggests T
(k)
n cannot grow faster than O(log n). When k ∈ As(λ) \A0,

an additional 1+δ is needed in the exponent of log n. This is caused by a

technical issue8 due to the bias of (possibly) overestimating r(k) by R̂(k)(n).

Now we present the main theorem as follows.

Theorem 1. Let fτ = (κ+ α log τ) and

g
(k)
1 (τ) = ⌈K(k)

1 log τ⌉+ 1,

g
(k)
2 (τ) = ⌈K(k)

2 log τ ∨M
(k)
1 ∨M

(k)
2 ⌉+ 1,

g
(k)
3 (τ) = ⌈K(k)

3 log τ ∨ J
(k)
1 log1+δ τ ∨ χ ∨M

(k)
2 ⌉+ 1,

where K
(k)
1 , K

(k)
2 ,K

(k)
3 , J

(k)
1 ,M

(k)
1 and M

(k)
2 are defined as in Lemma 1. The

meta-policy π induced by Algorithm 1 has the following properties.

(1) For the expected number of packets discarded over the time horizon

8If the hyper-parameters, in particular β and α, do not suffice the conditions in Assump-
tion 3 for a stable suboptimal arm k, the number of interruptions of k is no longer well
bounded under our threshold function. This leads to an additional bias between r(k) and
R̂(k)(n).
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τ , denoted by E[Dπ[τ ]], we have for any δ > 0 and χ > 1,

E[Dπ[τ ]] ≤ āufτ

(∑
k∈A0

π2

6

+
∑

k∈Au(λ)

(
((
π2

6
+

√
2g

(k)
1 (τ) log τ+2)∧g(k)1 (τ))+

π2

6

)

+
∑

k∈As(λ)\A0

(
((
π2

6
+

√
2g

(k)
3 (τ) log τ+2)∧g(k)3 (τ))+π2

))
.

(2) For the regret Regπ[τ ], we have for any δ > 0 and χ > 1,

Regπ[τ ] ≤
∑

k∈Au(λ)

(r(∗) − r̃(k))(g(k)1 (τ) +
π2

6
)fτ

+
∑

k∈As(λ)\A0

(r(∗) − r̃(k))(g(k)3 (τ) + π2)fτ

+
∑
k∈A0

(r(∗)−r(k))(g(k)2 (τ) + π2)µmax

+ r(∗)fτ + r(∗)
E[(C(∗)(1))2]

E[C(∗)(1)]
+
∑
k∈A0

h(τ),

where

r̃(k) = inf
l≥β

E[Û (k,l)(1)]

E[Ĉ(k,l)(1)]
, h(τ) = rmax

π2

6
e−β/4α(fτ + 2α + 1).

This theorem implies that if A0 = As(λ), i.e, all the stable arms satisfy

the conditions in Assumption 3 with respect to the hyper-parameters used in

the algorithm, then

E[Dπ[τ ]] = O(log2(τ)), Regπ[τ ] = O(log2 τ).

Otherwise,

E[Dπ[τ ]] = O(log2+δ(τ)), Regπ[τ ] = O(log2+δ(τ)),∀δ > 0.
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Proof of Theorem 1. The complete proof can be found in Appendix A.3.

Claim (1) of the theorem: The expected number of interruptions on

arms in A0 is bounded by π2/6 due to the threshold design. For any arm

not in A0, the expected number of interruptions is bounded by the number of

arm selections E[T (k)
τ ] (note that Nπ[τ ] ≤ τ), but a nicer bound can be given

since some of the cycles might not be interrupted. For each interrupted cycle,

the number of packets dropped is bounded by āufτ = O(log τ), where fτ is a

(coarse) bound on the longest possible cycle before time τ . This concludes the

claim.

Claim (2) of the theorem: For this part we follow a similar approach

as in the budgeted bandit literature [30, 32]. We first bound the number of

sub-optimal actions that have been taken in order to bound regret. Intuitively,

the expected cumulative reward for the optimal meta-policy is roughly r(∗)τ ,

and the regret of π is due to the reward loss during the period of suboptimal

decisions, where the loss in reward rate is either r(∗) − r(k) (for k ∈ A0 \ {k∗})

or bounded by r(∗) − r̃(k) (for k /∈ A0)
9. We can show that

Reg[τ ] ≤
∑
k∈A0

E[T (k)
τ ]µmax(r

(∗) − r(k))

+
∑
k/∈A0

E[T (k)
τ ]fτ (r

(∗) − r̃(k)) +O(log τ).

The value of E[T (k)
τ ] is then bounded using Lemma 1.

9When k ∈ A0, the expected reward rate of arm k’s period (which may include interrupted
cycles) is roughly r(k), since only few cycles are interrupted; otherwise, we use a weaker
bound r̃(k) instead.
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As described in Remark 4, if packet dropping is unacceptable in the

system, one can instead switch to a queue-stablizing (throughput-optimal)

policy like MaxWeight to clear out the queues. This process introduces a small

extra cost to the total regret.

Corollary 1. Once a cycle is interrupted, if the meta-scheduler switches to

a MaxWeight (instead of dropping packets) until the system returns idle, the

total regret Regπ[τ ] satisfies the following:

Regπ[τ ]=

{
O(log3 τ) if A0 = As(λ),

O(log3+δ τ), ∀δ > 0 otherwise.

Proof. By Lyapunov stability, it can be shown that the average time required

for MaxWeight to clear out queues of a total length q is in the order of O(q2).

Recall that when a cycle is interrupted before the horizon τ , the total queue

length is bounded by C · log τ for some constant C. Therefore, it takes O(log2 τ)

time slots for each queue-clearing process to end, and the extra regret induced

is thereby in the order of O(r(∗) · log2 τ) since r(∗) is the rate of the optimal

policy. Then the claim is shown by utilizing Lemma 1 and combining with

Theorem 1. A complete proof is presented in Appendix A.4.

2.5 Extension: System with Constraints

In the previous sections, we introduced a UCB-type meta-scheduler that

determines the best stable policy optimizing the renewal reward rate of the

system. In some applications, the system might be also interested in satisfying

a certain performance guarantee besides maximizing the main reward. For
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Algorithm 2 UCB Meta-Scheduler with Interruption for System with Con-
straints

1: Input: Set of scheduling policies A.
2: Threshold Function: fs := β + κ log s.

3: Initialization: Run every arm k once with interruption threshold β, then
initialize empirical rates R̂

(k)
1 and Ŵ

(k)
i,1 ,∀i = 1, 2, · · · , h.

4: for n = |A|+ 1, |A|+ 2, · · · do
5: [before cycle n]
6: for all k ∈ A do
7: Compute Exploration Bonus ∆

(k)
n .

8: Compute Stability Indicator I
(k)
n .

▷ ∆
(k)
n and I

(k)
n as defined in Section 2.4.

9: Compute Constraint Indicator J
(k)
n .

10: Arm decision:

An ∈ argmax
k∈A

I(k)n × J (k)
n × (R̂(k)(n−1) + ∆(k)

n ).

11: Cycle interruption decision: Ln = f
T

(An)
n

.

12: [after cycle n]

13: Observe Ĉ(An,Ln)(n), Û (An,Ln)(n) and V̂
(An,Ln)
i (n).

14: Update R̂(An)(n) and Ŵ
(An)
i (n),∀i.

instance, the system may attempt to minimize mean packet delay of all traffic

but also promise that certain users get sufficient service (e.g., 80% of packets

must arrive within 5 ms). If the guarantee can be described as a constraint

on the reward rate of another renewal-reward process (other than the main

reward), we can extend Algorithm 1 to locate the optimal constraint-satisfying

policy with a simple modification.

First let us generalize the basic model as follows. For arm k, the n-

th cycle C(k)(n) is associated with 1 cycle reward U (k)(n) and h auxiliary
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rewards V
(k)
1 (n), · · · , V (k)

h (n). Both the main and auxiliary rewards satisfy

Assumption 1. If πn = (k, l), a stochastic feedback Zn is observed for n-th

cycle as follows,

Zn =(Ĉ(k,l)(n), Û (k,l)(n),

V̂
(k,l)
1 (n), · · · , V̂ (k,l)

h (n),1{C(k)(n)>l}).

As in (2.4), let w
(k)
i := E[V (k)

i (1)]/E[C(k)(1)] be the renewal reward rate

for i-th auxiliary reward of arm k. We call a scheduling policy acceptable if it

guarantees that the reward rates for the h auxiliary rewards exceed a given

threshold ξ = (ξ1, · · · , ξh), which is known a priori by the meta-scheduler. The

optimal arm k∗ is thus defined as

k∗ = argmax
k

r(k)

s.t. k ∈ As ∩ {k′|w(k′)
i ≥ ξi,∀i = 1, 2, · · · , h}.

Inspired by the stability indicator, the constraints can also be handled

by an indicator that eliminates unacceptable arms with high probability. Since

auxiliary rewards still satisfy Assumption 1, we can use the same UCB bound

as defined in (2.19), and an arm’s constraint indicator is set to be false when

its empirical rate of auxiliary rewards compensated by the exploration bonus

is below ξ. Denote Ŵ
(k)
i (n) as the (observed) empirical rate (see (2.8)) of i-th

auxiliary reward after n cycles. Formally, the constraint indicator J
(k)
n is as

follows,

J (k)
n =

h∏
i=1

1{Ŵ (k)
i (n−1)+∆

(k)
n ≥ξi}

.

The algorithm is formally presented in Algorithm 2.
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Table 2.1: A summary of policies used in our simulations. Here we omit all
time indices, and Qi, Hi, Si denote the current queue length, head-of-line delay
and available service rate of user i at the time of decision for each packet
(remind that user scheduling is done packet by packet sequentially in a time
slot). Unless specifically mentioned we will set policy parameters as below.
Note that the policies are all weighted (i.e., bi) by the inverse of mean rate of
each user, which is a common practice suggested in [1].

Policy Rules Parameter Settings

MaxWeight argmaxi∈U biSiQi bi = 1/E[Si]

Exp-Rule
argmaxi∈U biSi exp (

aiQi

c+(u−1
∑

j∈U ajQj)η
) bi = 1/E[Si], ai = 1,
c = 0.3, η = 0.6

Log-Rule argmaxi∈U biSi log(c+ aiQi)
bi = 1/E[Si], ai =
2, c = 1

MaxWeight-
HOL

argmaxi∈U biSiHi bi = 1/E[Si]

Max-Rate argmaxi∈U biSi bi = 1/E[Si]

Table 2.2: User profile in the simulation system of Chapter 2.

User Indices 1,2 3,4 5,6 7,8 9,10
11,
12

Distance to BS (m) 50 80 110 140 170 200

Mean Rate (packets/slot) 9.16 6.54 4.84 3.62 2.71 2.04

2.6 Performance Evaluation

In this section, we evaluate the performance of our meta-scheduler

algorithms. The simulation setting is based on the IMT Advanced evaluation

guidelines for urban macro-cell deployments [41]. We consider a wireless

47



network consisting of a single base station (BS) and u = 12 down-link users.

The BS is located at the center of the cell with a radius of 250 m, and the

user terminals are located in the cell. We assume the total channel bandwidth

is 10 MHz. Further, the bandwidth can be divided into 200 resource units of

0.05 MHz each, which can be assigned to different users within a time slot.

Scheduling decisions, which consist of the allocation of each resource unit, are

made once in each time slot of duration 0.5 ms.

We assume that the size of packets in the system is fixed at 5 kb. At

each slot, each users’ packets arrive as i.i.d. binomial random variables. For

simplicity we do not allow one packet to be transmitted across several time

slots. The user scheduling within one slot is done in a sequential manner: one

of the users is first scheduled for 1 packet based on current queue and rate

values, then the updated queues and rates (of the remaining resource units)

are used to determine the next user. The process is iterated until remaining

resource units cannot support another packet transmission.

The Signal-to-Interference-Noise ratio (SINR) at time t is modeled as

SNRi[t] = Pbgi[t]/(σ
2 + Ii[t]) where Pb is the transmit power of BS, gi[t] denotes

the channel gain of user i, σ2 and Ii[t] denote the noise and the interference level

respectively. The channel gain is a combination of path loss, fast fading and

antenna gain, Following [41], we set Pb = 47 dBm, σ2 = −104 dBm, path loss

(in dB) computed as 39.1 log10(dist) + 13.5 + 20 log10(fc) where fc = 2.0 GHz

and dist denotes the user distance, and antenna gain of 17 dBi. Fast fading

follows a Rayleigh distribution and is independent over users. For simplicity,
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we assume the interference is identical to all users and Ii[t] = −56 dBm. In

any time slot t, the channel state (rate supported by the channel) of the user i

is given by

Si[t] = BW× log2(1 + 100.1(SNRi[t]−L)) bps

where the parameter L = 3dB describes a loss to Shannon capacity.

In the following simulations, we will fix the locations of 12 users. The

location profile and the mean data rates are given in Table 2.2. Several classical

scheduling policies we use are summarized in Table 2.1.

2.6.1 Meta-scheduler behavior and reward design

In this experiment we select various types of rewards and show that

the meta-scheduler can indeed pick the optimal policy. We set i.i.d. random

arrival Ai[t] ∼ Binomial(3, 0.12) for each i ∈ U described in Table 2.2. Under

this arrival rate (λi = 0.36 packets/slot), cycle lengths induced by the policies

in Table 2.1 are no more than 60 ms.

Suppose each packet of the system is associated with a reward and the

cycle reward is simply defined as the sum of all packet rewards with proper

normalization such that rmax = 1 (see Assumption 3). Three types of packet

rewards are considered as follows:

Type-1: Mean delay: The reward of each packet equals (1− delay ∗

0.1)+. To optimize this type of reward is equivalent to minimize the mean

delay of packets provided the delays are smaller than 10 time slots.
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(a) Mean Delay (b) Deadline Requirement (c) Burstiness

Figure 2.2: Mean policy selection ratio of Algorithm 1 for 3 types of rewards
defined in Section 2.6.1, after simulating 40 times in each case. The area
between 10% and 90% quantile of the best arm is shaded.

Type-2: Deadline requirement: Each packet receives a reward of ’1’

only if its delay is less than ddl slots. Otherwise the packet receives ’0’ reward.

We use ddl = 8 in this experiment.

Type-3: Burstiness: This reward favors spreading the service allo-

cations to a user across slots rather than serving a user multiple packets in

a single slot. If a user receives a single packet within one slot, this packet is

associated with a reward of ’1’. If two or more packets are received in the same

slot, it will be considered as “bursty” and no rewards are given to any of the

packets.

Besides the policies given in Table 2.1, we also consider a Round-Robin

scheduler as a baseline which may not be stable even if the traffic loads are

within the capacity region. In Table 2.3, we list the average cycle length and

reward rates induced by each policy. We set the parameters of Algorithm 1

as α = 4, ν2 = 1, κ = 50, β = 200, µmin = 20, rmax = 1 and run 40 simulations

for each type of rewards. Define the selection ratio of arm k after n cycles as
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(1/n)
∑n

i=11{Ai=k}. Figure 2.2 exhibits the mean selection ratios of all arms

for the three types of rewards (with 10% and 90% quantile shown for the

best arms). In each case, Algorithm 1 correctly determines the optimal policy.

We observe the rate of convergence largely depends on the performance gap

between the best and second best arms: Type-2 reward takes the longest time

to separate between Log-Rule and Max-Rate since they have the least gap. As

we would expect, Round-Robin scheduler gets discarded quickly in all cases.

Table 2.3: A summary of mean cycle lengths and reward rates for 3 types of
rewards considered induced by each policy used in Section 2.6.1. The reward
rate of the optimal arm for each reward type is in bold font.

Mean Cycle
Length (ms)

Average Reward per Packet

Type 1 Type 2 Type 3

MaxWeight 37 0.717 0.887 0.589

Log-Rule 22 0.805 0.954 0.557

Exp-Rule 57 0.627 0.796 0.599

MW-HOL 48 0.694 0.931 0.567

Max-Rate 20 0.832 0.949 0.484

Round-Robin +∞ N/A N/A N/A

2.6.2 Meta-scheduler behavior dependence on the load

In this experiment, we show the robustness of Algorithm 1 over variations

in the traffic load. We design a case where the best policy shifts from one

to another when we adjust the load of the system. The goal is to verify the

optimal arm is picked by our algorithm in all scenarios.
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Suppose Users 6, 12 are two reward Type-2 users with ddl = 2 (as

defined in the last experiment) that are quite strict with packet deadlines,

while other users are Type-1 users. The cycle reward is still defined as the sum

of packet rewards of all users. We consider two policies: 1) Log-Rule and 2)

Priority Rule. The second policy is defined as follows: at each slot, Type-2

users are always scheduled first using a Max-Rate policy; Type-1 users are

scheduled using Log-Rule only when there are no more Type-2 packets that

can be transmitted. Clearly, the second policy provides better performance for

Type-2 users.

We consider a system where each user has random arrivals Ai[t] ∼

Binomial(3, λi/3). We increase the traffic load from λi = 0.32 to 0.36 for each

i ∈ U. Figure 2.3a shows the reward per packet under the two policies as a

function of the traffic load. When the load is relatively light, the priority-based

scheduler outperforms Log-Rule; however, when the load is larger than 0.34,

the reward boost of Priority Rule for Type-2 users does not compensate the

loss in mean delay for Type-1 users and Log-Rule prevails instead. Indeed,

Priority Rule is not even stable for even higher loads (see Figure 2.3b).

Figure 2.3d to 2.3f exhibit the simulation results for λi = 0.32, 0.34 and

0.36. Algorithm 1 correctly locates the optimal policy in the low and high load

scenario. When λi = 0.34, the selection ratio of two policies barely separate as

the performance gap is almost 0. This is not an issue for any MAB algorithm

as both arms can be viewed as the best arm in this scenario.

Remark 6. Figure 2.3d-2.3f illustrate each arm’s selection ratio over the
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(a) Load vs Reward Rate. (b) Load vs Cycle Length. (c) Load vs Sum-Queue
Length.

(d) λi = 0.32 (e) λi = 0.34 (f) λi = 0.36 (g) Regret vs Load.

Figure 2.3: Results for the experiment in Section 2.6.2. (a-c) Reward rate,
mean cycle length and mean queue length induced by Log-Rule and Priority
under changing traffic loads. (d-f) Mean policy selection ratio (40 simulations)
of the meta-scheduler when arrival rate λi = 0.32, 0.34, 0.36 respectively, where
the area between 10% and 90% quantile of the best arm is shaded. (g) Mean
reward loss (aka regret) of meta-scheduler π for time horizon τ = 10k over
varying traffic loads. Let µ̄ be the mean (non-opportunistic) service rate and
µ̄ = 0.4 packet/user/slot. We focus on the high load region of λ = 0.36 to
0.39 (i.e., relative arrival rate > 0.9) where the best policy is Log-Rule. As the
load increases, the expanding performance gap of two policies and the growing
cycle lengths have opposing effects on the regret, and thus it does not grow
monotonically.

number of cycles. Indeed, the meta-scheduler’s rate of convergence in real

time scale also depends on cycle lengths. In general, two factors affect the

rate of convergence. First, the larger is the performance gap between the best

and second best arm, the easier it is to learn. Thus, as load increases, it is

indeed possible that the instance becomes easier due to the increased gap between
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the best and second best schedulers. Second, the longer is the system’s cycle

time, the slower the learning process is. With this effect, in general, the system

with higher loads will exhibit longer cycle times. To get some insight on the

load-cycle relation, consider for simplicity a standard M/M/1 queue with λ̄

and µ̄ as the mean arrival and service rate respectively. For a stable queue, we

have the load parameter ρ := λ̄/µ̄ < 1. From standard analysis of such queues,

the mean cycle length is µ̄/(1 − ρ) + 1/λ̄ and the sub-exponential parameter

α roughly scales as O(1/ log ρ−1) ≈ O(ρ/(1− ρ)). Recall that the regret scales

linearly in these parameters, and thus, the regret has an inverse dependence in

(1− ρ), assuming the performance gap is fixed. The system we consider is more

complex, and includes opportunism, multi-user scheduling and a non-stationary

schedule, thus making it hard to analytically quantify the effect.

In Figure 2.3g, we numerically explore how the regret varies with load

and indeed see a mixed impact – as the load increases, the regret does not change

monotonically due to the different effects of enlarging performance gaps and

growing cycle lengths.

2.6.3 Meta-scheduler behavior with performance constraints

In this experiment, we consider the case where additional constraints are

imposed on the system. Let λi = 0.36 packet per slot for any i ∈ U. Let User

6 and User 12 be Type-2 users. Suppose we impose the following performance

guarantee: 75% of packets for user 6 and 12 must arrive with a delay less than

5 slots (ddl = 5). And the target is to pick the policy that minimizes the mean
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delay of the other 10 users while satisfying this constraint.

We are given 3 Log-Rule schedulers with different weight parameters bi

(See Table 2.1): bi =
1

E[Si]γ
where γ = 0.8, 1 and 1.2. Here γ roughly tunes the

fairness of each user, and a larger γ is good for users with low average rates.

Table 2.4 summarizes the reward rates for the constraints and main objective.

Only the policy with γ = 1.2 satisfies the constraints.

We run Algorithm 2 40 times using the same parameters as in the

first experiment. Figure 2.4a shows the policy selection ratio over number of

cycles with the constraints described above. As a comparison, we drop the

constraint (by setting ξ = 0) and the result is shown in Figure 2.4b. In both

cases, Algorithm 2 locates the best constraint-satisfying policy.

To clearly show the behavior of Algorithm 2, we manually slow the

convergence of learning by increasing hyper-parameter α from 4 to 20, which

corresponds to a more conservative upper confidence bound. As shown in

Figure 2.4c, the third policy prevails the selection ratio after the other two

policies sequentially get dropped by the constraint indicators.

2.7 Conclusion

In this chapter, we move from the traditional approach of designing a

good downlink wireless scheduler given a scenario and/or rewards to that of

determining which amongst a set of possible (good) schedulers is the best for the

given context, e.g., user loads, service capacity, and performance requirements.
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(a) System with a constraint(b) System without con-
straints

(c) System with a constraint
(slow convergence)

Figure 2.4: Results for the experiment in Section 2.6.3 using Algorithm 2. (a)
The meta-scheduler finds the best policy (γ = 1.2) subject to the performance
constraint defined in Section 2.6.3. (b) The meta-scheduler finds the best policy
(γ = 0.8) when the constraint does not exist. (c) Repeating (a) with α = 20 to
see clear convergence behavior of the meta-scheduler.

Our, so-called, meta-scheduler, provides a systematic approach to achieve

robustness to uncertainty in the demand, environment, or users’ needs. This is

accomplished by leveraging a budgeted multi-armed bandit framework, which

uses the queuing system’s regeneration cycles as natural times to make choices

amongst arms (scheduling policies), but also by introducing a cycle interruption

policy that is shown to ensure that eventually only stable policies are chosen.

We provide a theoretical analysis that shows two objectives are met: (1) the

approach has sub-linear regret, and (2) the losses due to interruptions are

negligible. Our simulations show the meta-scheduler approach is effective, and

exhibits the ability to achieve robust decisions in selecting a context-dependent

best scheduling policy.

Finally, there has been a renewed interest in using Reinforcement Learn-

ing (RL) algorithms for wireless resource allocation. However, designing the

ideal wireless scheduler that will achieve optimal performance in all possible
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Table 2.4: A summary of mean renewal reward rates for the main and auxiliary
rewards induced by each policy used in Section 2.6.3. Only the last policy is
acceptable when ξ = [0.75, 0.75].

Average Reward per Packet

User 6 User 12
Others (Main

Reward)

γ = 0.8 0.855 0.577 0.808

γ = 1.0 0.810 0.725 0.803

γ = 1.2 0.772 0.834 0.787

settings is likely an impossible goal, even with current RL techniques. Our

meta-scheduler framework provides an approach to leverage a collection of

state-of-art schedulers (possibly even RL-based) which are known to be good

for specific settings, and achieve “universality” by learning which amongst

these provides the best results for the given operational scenario.
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Chapter 3

Online Learning for Hierarchical Scheduling to

Support Network Slicing in Cellular Networks

In this chapter, we study a learning-based hierarchical scheduling frame-

work in support of network slicing for cellular networks. 1 This addresses

settings where users and/or service classes are grouped into slices, and resources

are allocated hierarchically. The hierarchy is implemented by combining a

slice-level scheduler which allocates resources to slices, and flow-level sched-

ulers within slices which opportunistically allocate resources to users/services.

Optimizing the slice-level scheduler to maximize system utility is typically

hard due to underlying heterogeneity and uncertainty in user channels and

performance requirements. We address this by reformulating the problem as

an online black-box optimization where slice-level schedulers (parameterized by

a weight vector) combined with flow-level schedulers result in user/service level

stochastic rewards representing performance fitness; the goal is to learn the

best weight vector. We develop a bandit algorithm based on queueing cycles

by building on Hierarchical Optimistic Optimization (HOO). The algorithm

1The content of this chapter is based on Song, Jianhan, et al. ”Online learning for hierar-
chical scheduling to support network slicing in cellular networks,” Performance Evaluation,
vol. 152, p. 102237, 2021. The author, Jianhan Song, took on most of the responsibility for
the problem formulation and the theoretical analysis, and conducted all of the simulations.
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guides the system to improve the choice of the weight vector based on observed

rewards. Theoretical analysis of our algorithm shows a sub-linear regret with

respect to an omniscient genie. Finally through simulations, we show that the

algorithm adaptively learns the optimal weight vectors when combined with

opportunistic and/or utility-maximizing flow-level schedulers. This work is

completed and has been published in [5].

3.1 Introduction

The increasing complexity of cellular wireless networks has led to network

slicing as a popular paradigm for resource sharing [42]. Network slicing is a

coarse resource allocation mechanism that partitions traffic flows into groups

(slices) and allocates network resources (e.g. spectrum) to each of these slices.

Network slicing typically operates hand-in-hand with a finer-grain resource

manager (flow-level scheduler) that allocates resources among the flows within

each slice. Slicing can be used for various reasons including isolating groups

from each other in the presence of traffic load fluctuations, or grouping flows

with similar Quality of Service (QoS) requirements so that flow-level schedulers

can operate across groups of flows with roughly homogeneous requirements.

For example, a network operator might provision a slice for a Mobile

Virtual Network Operator (MVNO), e.g., a cheaper cellular provider, or to

an autonomous driving service (for map downloads to cars and over-the-air

software upgrades). Each slice could then be virtually allocated network

resources with some guarantees on availability and/or isolation from traffic
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fluctuations from other traffic sharing the network. As another example, a

carrier might create a slice to support mobile users requiring real-time video

flows for which the desired QoS metric is tied to meeting packet deadlines,

and a slice for users carrying out file downloads for which QoS is better tied

to mean delays and/or flow throughput. Since the QoS requirements within

each slice are similar, such grouping allows simpler flow-level (within each slice)

scheduling algorithms.

In this paper, we adopt a hierarchical online learning approach to

network slicing that is driven by user feedback in the form of rewards. Given a

collection of slices (each slice defined through a collection of flows, and with

QoS and spectrum-share requirements), we develop a slice-level scheduler (top

of the hierarchy) that dynamically allocates resources to each slice based on the

observed rewards from mobile users within each slice. This slice-level scheduler

allocates resources by dynamically selecting weights for each slice, with these

weights specifying a share of spectrum for each slice through an allocation

mechanism such as a Generalized Processor Sharing (GPS) scheduler [7].

Further, within each slice, a flow-level scheduler (such as the MaxWeight

rule [13]) allocates channel resources to individual flows. Thus, the reward

obtained from a slicing allocation depends both on the sharing of spectrum

for each slice and the individual allocations within each slice. By treating the

transformation from weight selection to reward accumulation2 as a blackbox

2This transformation from weights to rewards occurs through a multi-step process: The
weights define spectrum shared to each slice through the slice-level GPS scheduler. Within
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function, we build on bandit-based blackbox optimization methods to develop

adaptive slicing mechanisms. Our main contributions are as follows:

1. Hierarchical Scheduling through Blackbox Optimization: We

consider a hierarchical scheduling framework in which a slice-level scheduler is

parameterized by a weight vector w. For any choice of the weight vector w, the

system observes a mean reward rate associated with users’ performance/utility

– this mapping from weights to reward rates is represented as a function f(w).

Due to the complexity and dynamics of such systems, f(w) is analytically hard

to optimize and the problem can be better studied as a blackbox optimization.

Using a multi-armed bandit framework, where the (continuous-valued) weights

correspond to the arms of the bandit and the corresponding arm-rewards accrue

from (noisy) user feedback, we develop algorithms that explore the choice of

weights to adaptively optimize the blackbox function.

2. CHOOC Algorithm and Analysis: We propose Cycle-Based HOO with

Clipping (CHOOC) algorithm, a modified Hierarchical Optimistic Optimization

(HOO) algorithm [2] to determine the best weight vector for our blackbox

optimization problem. CHOOC operates at the time-scale of queueing cycles

(idle + busy period); the queue dynamics and rewards are conditionally (given

the weight parameter) independent over cycles under proper assumptions.3 A

each slice, the flow-level scheduler opportunistically (based on the current channel realization)
allocates channel resources to individual flows. The mobile nodes, upon receiving the packets
from the flows generate rewards (e.g. meeting delay deadlines), which are aggregated at the
slice level and then across slices to result in the instantaneous (noisy) reward for a weight
selection.

3Note that naively applying HOO by periodically (regardless of the queueing backlogs)
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single exploration sample of f(·) corresponds to selecting a weight vector w,

using these weights to allocate spectrum resources (to slices) via the associated

slice-level scheduler, in turn, allow predetermined flow-level schedulers to assign

resources to individual users, and finally collecting the aggregate reward from

active users over a queueing cycle.

From a technical perspective, as compared to HOO we address two

additional challenges: (i) Ratio of Rewards: Since the length of queueing cycles

is random and depends on the action (the weight vector w), our reward rate is

described through a ratio of two random summations – reward accrued over

cycles divided by the cumulative cycle lengths – thus, we need to control the

associated uncertainty which does not directly fit the standard HOO model

(because ratios of sums differ from the sum of ratios). (ii) Sub-Exponential

Rewards and Unstable Queues: Unlike the sub-Gaussian reward setting of HOO,

queueing cycle lengths are either sub-exponential (if w results in stable queues),

or can be infinite if the queues become unstable. Thus, we need to clip cycles

(i.e. truncate overly long cycles by dropping packets), but must do so with a

negligible rate of clipping (to minimize drops). By properly addressing these

issues, our theoretical analysis recovers a sub-linear regret, which is of the same

order as HOO.

3. Empirical Evaluation: We simulate our algorithm in various wireless

settings, which include different slice partitions and and heterogeneous per-

exploring new weights/collecting feedback will not work due to the lack of (conditional)
independence of feedback.
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formance metrics of user packets, such as mean delay, deadline requirement,

and total throughput (for infinitely backlogged users). The experiments show

our algorithm is able to locate the optimal weight after a reasonable amount

of exploration, and in particular, demonstrate its potential to solve difficult

problems, where simple heuristics are either hard to design or under-perform.

The simulation examples exhibit the power of our framework in tackling the

optimization of performance tradeoffs via hierarchical scheduling across slices,

including scenarios where slices’ flow-level opportunistic schedulers are designed

to optimize the sum utility of infinitely backlogged users share resources with

users that use queue-based opportunistic schedulers meet queue stability and/or

deadline requirements.

3.1.1 Related Work

Wireless Scheduling and Network Slicing. Multi-user wireless scheduling

has been studied for decades with numerous designs developed to meet various

needs (see [7] for a survey). Meanwhile, network slicing has received substantial

attention recently [43, 42], introducing new research topics regarding wireless

scheduling [44, 45, 46]. In this paper, we consider a hierarchical scheduling

model for network slicing, which is aligned most to the network virtualization

substrate (NVS) architecture proposed in [44].

Not surprisingly, attempts at using machine learning (and in partic-

ular, reinforcement learning) techniques are made to address the network

slicing/scheduling problem due to its complex nature. Some successes have
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been reported in several application settings, mostly from a practical perspective

– see e.g. [47, 48, 49, 50, 51] for some recent developments.

Multi-Armed Bandits and Blackbox Optimization. Multi-armed ban-

dits (MAB) are an online learning model with rich literature on theory and

applications [26, 27]. In particular, MAB settings have been applied to the

problem of blackbox optimization, where an algorithm optimizes a function f

by sequentially selecting actions (aka inputs to f) and receiving feedback (aka

function evaluations). Early works include Zooming [52], HOO [2], DOO [53],

StoSOO [54], etc, with recent studies focusing on more refined theoretical

guarantees and/or various applications, e.g., [55, 56, 57, 58].

Finally, bandit algorithms have also been studied in various wireless

problems, such as [35, 34, 37, 38]. Furthermore, rewards in the form of ratios

appear naturally in queueing settings [32]. This chapter uses clipping similar

to Chapter 2 to truncate cycles to ensure the stability of queues (clipping

was originally proposed in [32] for handling heavy tails to improve rewards

in budgeted bandits with queueing), but our focus here is on weight-choice

over a continuum (infinite arms) for the higher-level slicing problem; thus, our

challenges and algorithmic approach are different (a more detailed comparison

will be discussed in Section 3.3).

3.1.2 Notation

In this chapter, we use bold font characters for vectors and normal

font for scalars. Unless stated otherwise, random variables are denoted by
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capital letters. We denote 1 as the {0, 1}-indicator function and [n] as the

set {1, 2, · · · , n}. Finally, we use “i.i.d.” for “independently and identically

distributed” and “a.s.” for “almost surely”.

3.2 System Model

In this section, we formally present a multi-armed bandit framework

to address the parameterized network slicing problem. For convenience, the

notation introduced in this section is summarized in Table 3.1.

3.2.1 Traffic and Service Model

We consider a queueing system with a single server (base station) and a

set of u users, denoted by U = [u]. The users are further grouped into s slices.

For each j ∈ [s], denote Uj as the set of user indices associated with slice j.

Each user has an associated packet queue. At any time t, the queue

lengths of users in the system are denoted by a random vector Q[t] = (Qi[t])i∈U,

where Qi[t] is the number of packets of the i-th user at the beginning of time slot

t. Suppose the system may also include a set of users with infinitely-backlogged

queues, denoted by Ub. Thus, for any i ∈ Ub, Qi[t] =∞ for all t. For users in

Unb := U\Ub, we assume (Qi[0])i∈Unb = 0, and packet arrivals are modeled as a

random process (A[t])t≥0. Here, A[t] = (Ai[t])i∈Unb where Ai[t] has a bounded

distribution for any i ∈ Unb. We assume (A[t])t≥0 are i.i.d. across time and

denote the expectation by λ (λ ∈ R|Unb|).

Wireless channels are time-varying. We model the service rates at t
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Table 3.1: Notations used in Chapter 3.

U set of users in the system.

Uj, j ∈ [s] set of users in slice j, so U = ∪j∈[s]Uj.

Ub,Unb sets of users with/without infinitely-backlogged queues.

Q[t] = (Qi[t])i∈U queue vector denoting the queue lengths at the start of slot
t.

S[t] = (Si[t])i∈U service rate vector for time slot t.

A[t] = (Ai[t])i∈Unb packet arrival vector for time slot t.

λ mean arrival rate across non-backlogged queues (λ ∈ R|Unb|).

w = (wj)j∈[s] weight vector with wj denoting the resource allocation of
slice j.

HS(w) hierarchical scheduling policy with parameter choice w.

W set of permissible weight parameters.

W(λ) subset of W in which any weight choice for HS(w) is able
to stabilize the system with an arrival rate λ.

C long-term capacity region such that any λ ∈ C◦ is stabiliz-
able.

CW capacity region achieved by the class of schedulers {HS(w) :
w ∈W} (we assume λ ∈ (CW)

◦).

C(w)(n), U (w)(n) random variables denoting the cycle length and reward for
the n-th cycle if HS(w) scheduler is selceted.

π an adaptive policy to determine weight and clipping choices.

Ĉπ
n , Û

π
n observed (possibly truncated) cycle length and reward of

n-th cycle under policy π.

f(·) reward rate function defined for w ∈W.

w∗ unique best weight vector, i.e., w∗ := argmaxw∈W f(w).

f ∗ optimal reward rate, i.e., f ∗ := f(w∗).

T tree structure into which W is partitioned.

(h, i) node of T at depth h with index i ∈ [2h].

Ph,i subset of W with which node (h, i) is associated.

f ∗
h,i supremum of reward rates in node (h, i), i.e, f ∗

h,i =
supw∈Ph,i

f(w).

i∗h node index such that (h, i∗h) contains w
∗.

d(ν, ρ) near-optimality dimension with respect to parameters
(µ, ρ).
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as a random vector S[t] = (Si[t])i∈U where Si[t] denotes the service per plot

available to the i-th user at t. We assume (S[t])t≥0 are i.i.d. over time and

also independent of the queue lengths and the arrival process. Without loss

of generality, we assume Unb ̸= ϕ throughout this chapter4. Let C (C ⊂ R|Unb|)

denote the long-term capacity of the system (see [7]), induced by the distribution

of S[t]. This suggests for any arrival rate λ ∈ C◦ (the interior of C), there

exists at least one scheduling policy that stabilizes the system (i.e., the average

queue lengths are finite).

3.2.2 Hierarchical Scheduler

We consider a hierarchical scheduler operated by the system, which

consists of a slice-level scheduler and s flow-level schedulers, one for each

slice. The slice-level scheduler determines how many resources (e.g., number of

resource blocks) are allocated to each slice for each time slot, which is typically

not channel-aware (i.e., opportunistic). The flow-level scheduler of each slice

decides which user flows to serve within that slice using the resources allocated

by the slice-level scheduler, and is typically opportunistic to time-varying

channels.

In this chapter, we consider a parameterized Slice-Level Scheduler,

denoted by SLS(w). The vector w = (wj)j∈[s] indicates the weights of slices

for resource allocation. Roughly speaking, wj determines in some sense the

4If Unb = ϕ, the system is such that there are no queueing stability concerns, which makes
the problem simpler.

67



Algorithm 3 GPS Slice-Level Scheduler

1: Parameters: weight vector w, number of resource blocks per slot RB
2: for t = 0, 1, 2, · · · do
3: For any slice c ∈ [s] which is non-idle, allocate (γ · RB) resource blocks

(with proper discretization) where

γ =
wc∑

c′∈[s] 1{c′ is non-idle}wc′

4: Do the previous step on remaining unused resource blocks (some slices
may not exhaust allocated blocks), until all the blocks are used or all
packets are transmitted.

proportion of resources that is to be allocated to j-th slice. A larger wj implies

users in Uj are allocated more resources. Here, we present a simple Generalized

Processor Sharing (GPS) slice-level scheduler in Algorithm 1 as a driving

example.

Isolating Slices through Share Guarantees: Without loss of generality,

we assume w ∈ W := {w′ ∈ [0, 1]s : |w′|1 = 1,w′ ⪰ ζ} where ζ ∈ [0, 1]s

indicates a pre-specified system constraint on the lowest resource allocation for

each class, and thus provides a natural way to encode protection (guarantees

on resource share) to each slice.

Remark 7 (General Isolation Constraints for Slices). We let W to have

a simplex shape under the constraint w ⪰ ζ. This is to simplify the tree-

partitioning procedure which will be discussed in Section 3.2.6. In general, more

complex isolation constraints (e.g. guarantees on the sum of weights of slices

for a service controlling multiple slices) can be considered; we skip details for

ease of exposition.
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We assume j-th slice (j ∈ [s]) pre-specifies its own Flow-Level Scheduler,

denoted by FLSj, for its specific needs. The scheduler FLSj is channel- and

queue-aware (for example, a MaxWeight scheduler).

Denote the parameterized Hierarchical Scheduler as HS(w), and HS(w)

:= (SLS(w), (FLSj)j∈[s]). The class of schedulers {HS(w) : w ∈W} induces a

capacity region CW ⊂ C, i.e, for any λ ∈ (CW)
◦ there exists w ∈W such that

HS(w) stabilizes the system. We assume a fixed λ ∈ (CW)◦ for the rest of this

chapter. The goal is to find the best parameter w that generates the largest

rate of rewards, where the rewards are defined through regenerative cycles

which will be discussed later. We denote W(λ) ⊂W as the set of weights such

that for any w ∈W(λ), HS(w) stabilizes the system.

Remark 8. In this work, we fix the flow-level schedulers (which can be seen

as good state-of-the-art approaches, or may be independently decided by the

tenant ”owning” the slice) but optimize the slice-level scheduling to reduce the

learning complexity. We believe this is a practical approach to adopt. It is

worth noting that the joint optimization of both slice- and flow-level schedulers

is an interesting direction to further investigate. If the flow-level scheduler can

be well parameterized as was done for the slice-level counterpart, one could

theoretically still approach the problem based on the same bandit framework

proposed in this chapter, but this would introduce a higher complexity for the

parameter space and may result in longer convergence time. Other ideas for

joint optimization can also be considered, e.g., multi-level bandit frameworks,

but this is beyond the scope of this chapter.
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3.2.3 Reward Model and Regenerative Dynamics

A queueing system with stochastic arrivals and departures consists

of alternate idle and busy periods, i.e., periods of the system without/with

packets.5 A consecutive (idle + busy period) is called a cycle.6 Next, we describe

the system dynamics through such cycles before introducing the adaptive

scheduler model in the next sub-section. We mostly follow assumptions from

Section II-B of [59].

If HS(w) is implemented for the n-th cycle, suppose that the system ob-

serves a cycle length denoted by C(w)(n) (possibly-infinite if HS(w) is unstable),

and receives a sequence of non-negative rewards (U (w)(n, i))1≤i≤C(w)(n). Denote

by U (w)(n) the cycle reward of the n-th cycle, i.e., U (w)(n) equals the sum of

U (w)(n, i) for 1 ≤ i ≤ C(w)(n). We make the following model assumptions on

the process ((C(w)(n), U (w)(n)))n≥1:

(1) The cycle length variables C(w)(n) are i.i.d. over n. This is auto-

matically true due to the i.i.d. arrival/service model in Section 3.2.1 if HS(w)

is Markovian, i.e., making decisions solely based on current system states. If

HS(w) leverages past information (e.g., a proportionally-fair flow-level sched-

uler), we require the past information is cleared before a new cycle – note that

this is solely an implementation choice so as to ensure that the rewards of each

5To be precise, a system is idle when there are no packets excluding infinitely-backlogged
queues. Without loss of generality, we assume arrivals occur at the start of a slot while
departures occur at the end.

6A weaker notion will be introduced in Remark 13 (Section 3.4) for practical use in
high-load systems, where the queues may not be strictly idle to restart a cycle.
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cycle are w-conditionally independent, otherwise a fair comparison of different

weight choices would not be possible.

(2) The cycle rewards U (w)(n) are also i.i.d. for n ≥ 1. In addition, we

assume that for any w ∈W, 0 ≤ U (w)(n) ≤ r̄C(w)(n) for some r̄ > 0, i.e., the

cumulative rewards generated by HS(w) do not grow faster than linearly over

time.

Remark 9 (Reward Model). A wide range of user requirements or performance

metrics can be captured with our reward model. For instance, suppose each

packet is associated a bounded reward (e.g., over [0, 1]) upon reception, and

the cycle reward U (w)(n) equals the sum of the packet rewards delivered within

the n-th cycle under scheduler HS(w). For a latency-sensitive user with strict

packet deadlines, each packet reward can be set as 1 only if it meets the deadline;

for a user that prefers a smaller mean packet delay, the per packet reward

may be set as (1− c · delay, 0)+ for a proper coefficient c. It is worth noting

that the manner in which rewards are calculated/defined is not necessarily

known by the base station in our model, which allows for very general (possibly

user-customized) reward structures.

Finally, we assume that for any stable weight w ∈W(λ), cycle length

C(w)(n) and thereby U (w)(n) are sub-exponentially-distributed.

Assumption 4 (Cycle Length Distribution). If w ∈ W(λ), C(w)(n) is a

sub-exponential random variable. This implies that, there exist (λ-dependent)
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parameters (ξ2w, αw), such that for all n ≥ 1,

P(|C(w)(n)−E[C(w)(n)]|≥ε) ≤

{
2e−ε2/(2ξ2w) 0<ε≤ ξ2w

αw
,

2e−ε/(2αw) ε > ξ2w
αw
.

(3.1)

As pointed out in [59], this assumption holds true if the system has

bounded arrival and channel distributions, and the policies considered are

Markovian, which follows an argument of [39].

3.2.4 Adaptive Hierarchical Scheduler, Clipping and Feedback

We are interested in designing an online algorithm that learns the

optimal weight parameter inducing the best rate of rewards. For this purpose,

we model the problem as a multi-armed bandit (operating over cycles) and

each choice of parameters as an arm (the arm set is continuous). At each cycle

n, the bandit algorithm, referred to as the Adaptive Hierarchical Scheduler

(AHS), chooses a weight w ∈W, (action of bandit from a continuum) based

on past rewards and collects rewards using the Hierarchical Scheduler HS(w).

Clipping and Motivation: As in [59], the AHS makes decisions to change

the weight w ∈W only at the end of queueing cycles (i.e. when the system is

empty for users with finite backlogs). It can also choose to terminate a queueing

cycle while it is progressing, meaning discard all packets and force the system

to become empty. We refer to this operation as clipping a cycle. Clipping is

used to ensure that a “bad” weight choice (e.g. when the resources allocated

to a slice are too small and lead to queue instability within the slice) does not

result in arbitrarily long cycles. Furthermore, rewards from a clipped cycle
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should be properly penalized, ensuring that bad weight choices are eliminated

as the algorithm adapts over time.

We represent AHS by the sequence π = (πn)n≥1, where πn = (W π
n , L

π
n) ∈

W× (Z+∪{+∞}). A decision πn consists of selecting both a weight parameter

and a clipping threshold. In other words, in the n-th cycle, if πn = (w, l), then

AHS will use HS(w) to collect rewards, and will clip the cycle if its duration

exceeds l time-slots. The stochastic feedback that is received by AHS at the

end of the n-th cycle is represented by Zπ
n . Formally,

Zπ
n = (Ĉπ

n , Û
π
n , 1{C(w)(n)>l}),

where Ĉπ
n and Ûπ

n denote the (random) observed length and reward for the

n-th cycle, i.e., Ĉπ
n = min(C(w)(n), l) and Ûπ

n =
∑Ĉπ

n
j=1 U

(w)(n, j).

Remark 10 (Soft Clipping). It is worth noting that the clipping discussed

above is an implementation choice (rather than a necessary assumption) which

we use to simplify the interpretation of the framework. For some applications

it may be unacceptable to drop packets. In this case, it is possible to use an

alternative soft clipping strategy as follows: whenever a cycle is clipped, instead

of dropping packets, a default stabilizing policy HS(w0) is implemented until

the system becomes idle again (we assume some w0 ∈W(λ) is known a priori).

By applying Theorem 2.3 of [39], it can be proven that the time taken by each

queue-clearing process is polynomial to the total length of queues at clipping

(which is at the same order of the clipping threshold). As we will show in

the next section, the threshold only grows logarithmically, therefore, the extra
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reward loss resulting from this process is poly-logarithmic. Orderwise, this does

not affect the main theoretical result in Section 3.3.4.

3.2.5 Reward Rates, Optimal Weight and Regret

As discussed above, the goal of AHS is to locate the optimal weight

parameter leading to the highest rate of rewards, which will be formally-defined

in this section.

First, for AHS (denoted by) π, denote by Mπ(n) the total number of

slots for first n (possibly-clipped) cycles and by Nπ[τ ] the number of completed

cycles before time τ , i.e., Nπ[τ ] = max(n : Mπ(n) ≤ τ). Let Rewπ[τ ] be the

cumulative rewards collected under π over the first τ slots, i.e.,

Rewπ[τ ] :=

Nπ [τ ]∑
n=1

Ûπ
n + Ũ(τ),

where Ũ(τ) is the shorthand notation for the sum of rewards of the first

τ −Mπ(Nπ[τ ]) slots of the (Nπ[τ ]+1)-th cycle.

For any w ∈W, we define a static non-clipping policy π(w) such that

π
(w)
n = (w,∞) for any n ≥ 1. Then we can define a reward rate function f

where

f(w) = lim sup
τ→∞

1

τ
E[Rewπ(w) [τ ]].

This function f indeed maps each weight choice to the rate of rewards generated

by HS(w), and is to be optimized. Note that by Renewal Theory, for any stable

weight w ∈W(λ),

f(w) =
E[U (w)(1)]

E[C(w)(1)]
. (3.2)
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This motivates us to use (empirical reward / empirical length), or the empirical

reward rate, as the estimator of f .

Denote the optimal weight by w∗ := argmaxw∈W f(w) and the optimal

rate of rewards as f ∗ := f(w∗). For the analysis of our algorithm, we will

assume w∗ to be unique and lie in the stable weight region W(λ). In practice,

an unstable system is typically unwelcome and should be penalized in rewards,

which makes this assumption reasonable.

Finally, we define the cumulative regret of AHS π with respect to the

best static non-clipping Hierarchical Scheduler, i.e., π(w∗) = (w∗,∞)n≥1, as

follows,

Regπ[τ ] = E[Rewπ(w∗) [τ ]− Rewπ[τ ]].

3.2.6 Tree-based Partitioning and Structural Assumption

In this chapter we will present a tree search-type algorithm for the

blackbox optimization of f . Let us first define a tree-based partitioning on W

and a joint structural assumption on f and the partitions. This is a standard

approach adopted in recent studies on bandit algorithms with a continuous

arm set.

Assume that W is partitioned into an infinite binary tree T, represented

by T = {(h, i)h≥0,1≤i≤2h}. The index pair (h, i) represents the i-th node at the

depth h of the tree, which is associated with a region Ph,i ⊂W. The collection

(Ph,i)h≥0,1≤i≤2h is referred to as a “tree of coverings”, which satisfies P0,1 = W
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Algorithm 4 Subroutines for Tree Partitioning

procedure Split(Ph,i)
(v1, · · · ,vs)← Ph,i ▷ Retrieving vertices of Ph,i

(j, k)← argmax(j′,k′) ||vj′ − vk′ ||2
v′ ← (vj + vk)/2
Ph+1,2i−1 ← Replace vertex vj of Ph,i by v′

Ph+1,2i ← Replace vertex vk of Ph,i by v′

return Ph+1,2i−1,Ph+1,2i

procedure Select(Ph,i)
(v1, · · · ,vs)← Ph,i

return wh,i := (1/s)
∑s

j=1 vs

and Ph,i = Ph+1,2i−1 ∪ Ph+1,2i for all (h, i) ∈ T. In this chapter, we will use a

“normal” partition: The coverings (Ph,i)h≥0,1≤i≤2h is determined by sub-routine

Split exhibited in Algorithm 4, i.e., starting from the root W, iteratively

halving each node simplex into two child simplices.

Let f ∗
h,i = supw∈Ph,i

f(w). The sub-optimality of node (h, i) is denoted

by ∆h,i := f ∗ − f ∗
h,i. The unique node at depth h that contains w∗ is denoted

by (h, i∗h), i.e., f
∗
h,i∗h

= f ∗. For purposes of performing regret analysis, we will

make the following assumption on function smoothness of f with respect to W.

This assumption follows that used in [56].

Assumption 5 (Function Smoothness). There exists ν > 0 and ρ ∈ (0, 1)

such that the following holds: If a node (h, i) is such that ∆h,i ≤ cνρh for some

constant c ≥ 0, then f(w) > f ∗ −max{2c, c+ 1}νρh for all w ∈ Ph,i.

This assumption implies that, for any optimal node (h, i∗h), we have that

f ∗ − infw∈Ph,i∗
h
f(w) < νρh for some µ and ρ,, i.e., the worst loss in reward
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rates of an optimal node contracts geometrically with h. A related notion is

near-optimality dimension with respect to (ν, ρ). Here we use the definition

originally stated in [55].

Definition 5. The near-optimality dimension of function f with respect to pa-

rameters (ν, ρ) is given by d(ν, ρ) := inf{d′ ∈ R+ : ∃C(ν, ρ),∀h ≥ 0,Nh(2νρ
h) ≤

C(ν, ρ)ρ−d′h}, where Nh(ϵ) is the number of nodes (h, i) such that f ∗
h,i ≥ f ∗− ϵ.

Roughly speaking, d(ν, ρ) measures the difficulty of the problem: The

larger the dimension is, the larger is the number of “near-optimal” nodes which

are hard to distinguish from the optimal node, implying that more exploration

is needed. This notion will be used in regret analysis.

3.3 Algorithm Design and Analysis

In this section, we introduce our main result – Cycle-based HOO with

Clipping (CHOOC), an HOO-type bandit algorithm to determine the optimal

weight parameter w∗. Compared with the original HOO in [2], we need to

address two main challenges. First, each action (arm decision) is fixed over an

entire (stochastic) cycle time, and the function to be optimized is a ratio of the

cumulative reward across cycles divided by the cumulative cycle time. Thus, the

exploration bonus used for the upper confidence bound has to account for the

double stochasticity in both rewards and durations. Second, the distributions of

cycle variables cannot be described by homogeneous sub-Gaussian parameters;

instead, the length (and reward accordingly) of a cycle can be as large as
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infinite for some weight choices, suggesting that a proper cycle clipping rule is

necessary (which does not drop an excessive number of packets).

As discussed in the Related Work, a similar bandit problem setting was

tackled in Chapter 2, but with a finite (discrete) set of arms. In that setting, the

arms that generate ‘short’ cycles (whose lengths are exponentially distributed

under specific parameters) can be differentiated from those generating ‘long’

cycles by designing an appropriate exploration bonus, and thus the regrets

can simply be computed separately in the analysis. In our work, as we

have an infinite collection of arms (more precisely a continuum of arms),

the discretization of arms via a tree-like structure complicates the design of

an exploration bonus (due to the continuity of the reward ratio) and the

aforementioned separation in regret analysis (since there is no clear border

between stable and unstable weights). Thus, additional effort is needed to ensure

that the algorithm still yields a logarithmic regret with cycles and clipping. In

the following, we will present our proposed algorithm and introduce several

key assumptions and design elements.

3.3.1 Hyper-parameters and Algorithm Design

Let us first discuss necessary hyper-parameters to be used in our al-

gorithm. Before that, denote W(λ; ξ2, α) ⊂ W(λ) as the largest set of arms

such that for any w ∈ W(λ; ξ2, α), variables C(w)(1) and U (w)(1) are both

(ξ2, α)-sub-exponentially distributed.

Assumption 6 (Hyper-parameters). We assume that the hyper-parameters
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are chosen to satisfy the following conditions:

(a) (ν, ρ) that satisfies the condition in Assumption 5.

(b) (ξ2, α) and z ≥ 1 such that Pz,i∗z ⊂W(λ; ξ2, α),

(c) µmin, µmax such that for any w ∈ Pz,i∗z , µmin ≤ E[C(w)(1)] ≤ µmax,

(d) rmax such that E[U (w)(1)|C(w)(1) = l] ≤ rmax l for all w ∈ Pz,i∗z and

l ≥ 1.

Remark 11. We assume a depth z is known such that the optimal node (z, i∗z)

and its descendants are purely (ξ2, α)-sub-exponential (in terms of corresponding

cycle length/reward variables). A “pure” node provides necessary concentration

properties such that the exploration bonus, a term we will formally discuss later,

sufficiently compensates the empirical rewards used to approximate f , which

may be under-performing due to the stochasticity of feedback. This condition

can be met by setting z to be large enough.

With the exception of z, the other parameters described above are used

for defining the exploration bonus. Parameters of type (a) and (b) are standard

in HOO-type algorithms. Parameters similar to those in (c) and (d) are

commonly used in bandit algorithms where each action costs non-unit amount

of resources (cycle time in our model), e.g., [60, 32]. Note that f ∗ ≤ rmax ≤ r̄

(see Section 3.2.3 and Eq. (3.2)). While Assumption 6 is needed for our regret

analysis, it is worth noting that none of the assumptions are “hard constraints”;

indeed empirically selecting those parameters (instead of formally verifying

that the conditions are satisfied) is sufficient in practice, as we observe good
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robust performance in our simulations. We refer to Section 3.4 (in particular,

Remark 12) for details.

The full algorithm is presented in Algorithm 5. In the sequel, the term

“explore node (h, i)” means “select a representative weight wh,i inside Ph,i and

run HS(wh,i)”, where wh,i is determined by subroutine Select described in

Algorithm 4. Each node is associated with an upper confidence bound (or

“B-value”), which is an optimistic estimate of f ∗
h,i that equals the corresponding

empirical reward rate plus an exploration bonus, both to be defined later.

The AHS first partitions W into (Pz,i)1≤i≤2z , and initializes the B-values

of depth-z’s nodes as ∞ (line 3-8). The algorithm starts by exploring nodes

at depth z. This is to guarantee that the selected weights for the optimal

nodes always induce (ξ2, α)-sub-exponential cycles and thus, the optimal nodes

(of depth ≥ z) are associated with well-behaved B-values as commented in

Remark 11, which is essential to the theoretical success of the algorithm.

The AHS starts with no explored nodes (except the virtual parent

(z− 1, ∗)) in Texp (the “explored tree”). Before each cycle (line 10-18), the AHS

traverses Texp along a path P in which each node has the better B-value among

its siblings. This procedure ends until an unexplored node is reached. This

node will be explored for this cycle with Texp expanded accordingly (line 19-20).

After a cycle ends, the AHS collects feedback and updates the empirical

reward and cycle length for each node in P (line 23-25). The empirical reward

rate is the quotient of the two (line 26), aligned with Eq. (3.2). Finally
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Algorithm 5 Cycle-Based HOO with Clipping (CHOOC)

1: Inputs: Schedulers HS(·), Set of Available Weights W, Tree Partitioning
Subroutines Split and Select

2: Hyper-parameters: Smoothness Parameters: (ν, ρ), Sub-Exponential
Parameters: (ξ2, α), Initial Depth z, Other Parameters: µmin, rmax, β, κ (β>
max(2µmax, µmax+ξ

2/α), κ>4α)
3: Initialization: P0,1 ← W, then partition the arm space hierarchically

until depth z:
4: for 0 ≤ h ≤ z − 1 do
5: for 1 ≤ i ≤ 2h do
6: Ph+1,2i−1,Ph+1,2i ← Split(Ph,i)
7: Establish a node (z−1, ∗) as the parent of nodes {(z, i) : 1 ≤ i ≤ 2z}
8: Texp ← {(z−1, ∗)}, Bz,i ←∞, Tz,i ← 0∀1 ≤ i ≤ 2z

9: for cycle index n = 1, 2, · · · do
10: (h, i)← (z−1, ∗), P ← ϕ
11: while (h, i) ∈ Texp do
12: if h = z−1 then
13: j ← argmax1≤j≤2z Bz,j (with a tie-breaker)
14: (h, i)← (z, j)
15: else
16: j ← argmaxj∈{0,1}Bh+1,2i−j (w/ tie-breaker)
17: (h, i)← (h+1, 2i−j)
18: P ← P ∪ {(h, i)}
19: (H, I)← (h, i),Texp ← Texp ∪ {(H, I)}
20: w ← Select(PH,I), l← β + κ log n
21: Run n-th cycle using HS(w) with threshold l.

22: Observe cycle length/reward Ĉ and Û .
23: for all (h, i) ∈ P do
24: Th,i ← Th,i + 1

25: µ̂Ch,i ← (1− 1/Th,i)µ̂
C
h,i + Ĉ/Th,i, µ̂Uh,i ← (1− 1/Th,i)µ̂

U
h,i + Û/Th,i

26: R̂h,i ← µ̂Uh,i/µ̂
C
h,i

27: PH+1,2I−1,PH+1,2I ← Split(PH,I)
28: For j = {0, 1}, BH+1,2I−j ←∞, TH+1,2I−j ← 0
29: Backward update from leaves to the root in Texp:
30: Φh,i ← Compute according to (3.3)

▷ specially-designed exploration bonus
31: Bh,i ← R̂h,i + Φh,i + νρh

32: Bh,i ← min(Bh,i,max(Bh+1,2i−1, Bh+1,2i))81



(line 29-32), for all nodes (h, i) in Texp, new exploration bonuses (Φh,i + νρh)

are computed and B-values are updated, which can be further refined using

the fact that the optimistic estimate of a node is no larger than the maximal

estimate of its children.

3.3.2 Clipping

It is essential to design a proper clipping rule such that all the “bad”

weights leading to queue instability are penalized without blocking the learning

process while “good” weights are preserved with little clipping. In our algorithm,

we apply the clipping threshold ln = β+κ log n for n-th cycle, where we require

κ > 4α and β reasonably large. This rule guarantees that any unstable cycle is

clipped while cycles induced by w∗ (and its neighborhood) are rarely affected,

implying negligible performance loss. Indeed, by the property in (3.1), we have

that for any w ∈W(λ; ξ2, α),

E[
∞∑
n=1

1{C(w)(n)>ln}] ≤ C0 (a constant).

Instead, a constant threshold rule inevitably results in a linear number of

clippings.

Denote by Ĉ(w,l)(n), Û (w,l)(n) the observed cycle variables given πn =

(w, l). For the purpose of regret analysis, we set the initial threshold β to be

large enough: β > max(2µmax, µmax+ξ
2/α). In addition, we make the following

technical assumptions on cycle clipping.
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Assumption 7 (Technical Assumptions). (a) For any w ∈W \W(λ; ξ2, α),

sup
l≥β

E[Û(w,l)(1)]

E[Ĉ(w,l)(1)]
≤ f ∗ − δ for some δ > 0.

(b) For any w ∈ Pz,i∗z , the l-interrupted cycle reward Û (w,l)(1) is (ξ2, α)-

sub-exponential for all l ≥ β.

Assumption 7(a) says that for any w ∈W\W(λ; ξ2, α), where the effect

of clipping is not negligible, clipping does not significantly boost the reward

rate to exceed f ∗. The underlying intuition is that an unstable system typically

receives much poorer rewards7. Assumption 7(b) requires that the clipping

does not hurt the sub-exponential property of reward variables for w ∈ Pz,i∗z .

Both (a),(b) can be met if the initial threshold β is sufficiently large, since as

l→∞, we have E[Û (w,l)(1)]/E[Ĉ(w,l)(1)]→ f(w) and Û (w,l)(1)→ Û (w)(1) a.s.

3.3.3 Upper Confidence Bound

For a better description, denote (Hn, In), (Ĉn, Ûn), (Cn, Un) as the

selected node, the observed length/reward and the unclipped length/reward for

cycle n. Let D(h, i) be the descendants of (h, i) including itself. The number

of samples of (h, i) for first n cycles is thereby Th,i(n) =
∑n

t=1 1{(Ht,It)∈D(h,i)}.

The empirical reward rate of (h, i), once explored, is given by

R̂h,i(n) :=
µ̂Uh,i(n)

µ̂Ch,i(n)
=

(1/Th,i(n))
∑n

t=1 Ût1{(Ht,It)∈D(h,i)}

(1/Th,i(n))
∑n

t=1 Ĉt1{(Ht,It)∈D(h,i)}
.

To ensure sufficient exploration of various weights, the upper confidence

bound used for comparing nodes’ performance is defined as Bh,i(n) := R̂h,i(n)+

7In practice, one can simply set the reward for any clipped cycle to be 0.
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νρh + Φh,i(n),
8 where

Φh,i(n) =
(1 + rmax)ϵh,i(n) + ϵ′h,i(n)

µmin + ϵh,i(n)
, (3.3)

and

ϵh,i(n) =


√

8ξ2 logn
Th,i(n)

√
8ξ2 logn
Th,i(n)

≤ ξ2

α
,

8α logn
Th,i(n)

otherwise,

ϵ′h,i(n) =
π2

6
rmax

(β+2α+κ log Th,i(n)+1)

Th,i(n)
e−β/4α.

The term (νρh+Φh,i(n)) is referred to as the exploration bonus. Parallel-

ing the HOO algorithm, the exploration bonus is designed such that the optimal

nodes of any depth (almost) always have a sufficiently optimistic estimate,

which is a key to the success of UCB-type algorithms. Unlike HOO, however,

additional effort is exerted to account for the fact that R̂h,i(n) is a ratio of two

random variables (i.e., to deal with the concentration of the empirical reward

rate rather than the reward itself) as well as the clipping error. We formally

present the discussion in the Lemma below.

Lemma 2. For all optimal nodes (h, i∗h), h ≥ z, and all n ≥ 1, we have that

P
(
Bh,i∗h

(n) ≤ f ∗) ≤ 2n−3.

Proof Sketch. Let i∗ be the shorthand of i∗h when there is no ambiguity.

The first part of the bonus, νρh, compensates for the gap of f ∗ −

infw∈Ph,i∗ f(w). Suppose there is no stochasticity of feedback or clipping error,

8We do not consider the last-step refinement of Bh,i(n), since it does not affect the
correctness of the regret analysis.
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then R̂h,i(n) is equivalent to:

µU,†h,i(n)

µC,†h,i(n)
:=

(1/Th,i(n))
∑n

t=1 E[Ut]1{(Ht,It)∈D(h,i)}

(1/Th,i(n))
∑n

t=1 E[Ct]1{(Ht,It)∈D(h,i)}
,

i.e., replacing Ût, Ĉt as in the original R̂h,i(t) by E[Ut],E[Ct]. By (3.2) and

the remark of Assumption 5, for any optimal node (h, i∗), we have that

µU,†h,i∗(n)/µ
C,†
h,i∗(n) + νρh > f ∗.

The term Φh,i∗(n) is used to compensate for stochasticity of cycle

rewards and lengths as well as clipping, i.e., the gap between µ̂Uh,i∗(n)/µ̂
C
h,i∗(n)

and µU,†h,i∗(n)/µ
C,†
h,i∗(n). By manipulating terms, we have that

µU,†h,i∗(n)

µC,†h,i∗(n)
−
µU,†h,i∗(n)−(ϵh,i∗(n)+ϵ′h,i∗(n))

µC,†h,i∗(n) + ϵh,i∗(n)
≤ Φh,i∗(n).

Therefore, combining the discussions above, it follows that

P
(
R̂h,i∗(n) + Φh,i∗(n) + νρh ≤ f ∗

)
≤ P

(
µU,†h,i∗(n)− ϵ

′
h,i∗(n)− ϵh,i∗(n) ≥ µ̂Uh,i∗(n)

)
+ P

(
µC,†h,i∗(n) + ϵh,i∗(n) ≤ µCh,i∗(n)

)
Here, term ϵ′h,i∗(n) is used to rectify the clipping-induced gap µU,†h,i∗(n)−

µ̂U,†h,i∗(n).
9 By algebra, we can show that

µU,†h,i∗(n)− µ̂
U,†
h,i∗(n) ≤ ϵ′h,i∗(n),

given that β > max(2µmax, µmax+ξ
2/α). The term ϵh,i∗(n) serves as the high-

probability bound of |µ̂Uh,i∗(n)− µ̂
U,†
h,i∗(n)| and its cycle length counterpart, fol-

lowing Azuma-Hoeffding inequality for Martingale differences (sub-exponential

version), Assumption 6(b) and 7(b). This concludes the proof.

9The term µ̂U,†
h,i(n) is defined as µU,†

h,i(n) with Ut replaced by Ût.
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3.3.4 Main Theoretical Result

Theorem 2. Given that the hyper-parameters satisfy Assumption 6 and 7, the

cumulative regret of π induced by Algorithm 5 has the following upper bound:

Regπ[τ ] ≤ CReg (C(ν, ρ))
1

d(ν,ρ)+2 τ
d(ν,ρ)+1
d(ν,ρ)+2 (log τ)

1
d(ν,ρ)+2

+ O(log4 τ)

for a universal constant CReg.

This result is of the same order of HOO in spite of the cyclic behavior of

the algorithm and clipping. Before giving a proof sketch on the main theorem,

let us introduce another key lemma, stating that the number of visits to “not-

near-optimal” nodes is sub-linear. First, we define a modified reward rate

function f̃ where

f̃(w) =

f(w) w ∈ (W(λ; ξ2, α))◦,

sup
l≥β

E[Û(w,l)(1)]

E[Ĉ(w,l)(1)]
otherwise.

The function value for w /∈ (W(λ; ξ2, α))◦ represents an upper bound on the

reward rate under clipping (see Assumption 7(a)). The gap ∆̃h,i is defined

accordingly.

Lemma 3. For all suboptimal nodes (h, i) such that ∆̃h,i > νρh, we have that

for all n ≥ 1,

E[Th,i(n)] =

{
O(log n/(∆̃h,i−νρh)2) if (h, i)∈D(z, i∗z),

O(log3 n/(∆̃h,i−νρh)2) otherwise.
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Proof Sketch. By Lemma 14 of [2], we have that for any u ≥ 1,

E[Th,i(n)] ≤ u+
n∑

t=u+1

P(
⋃t

s=1
{Bs,i∗s(t) ≤ f ∗}︸ ︷︷ ︸

E1(t)

⋃
{Bh,i(t) > f ∗} ∩ {Th,i(t) > u}︸ ︷︷ ︸

E2(t)

).

By Lemma 2, we have that
∑n

t=1 E1(t) ≤ π2/6. It suffices to show when

Th,i(t) > u for a reasonably large u, the event {R̂h,i(t) + Φh,i(t) > f ∗ − νρh}

is unlikely to happen. For (h, i) ∈ D(z, i∗z), the observed cycle length/reward

variables are (ξ2, α)-sub-exponential by Assumption 6(b). Accordingly, we can

find a high-probability upper bound f ∗
h,i +Φ′

h,i(t) for R̂h,i(t), where the term

Φ′
h,i(t) is similar to Φh,i(t) with a slight adjustment on the clipping, and both

Φ′
h,i(t) and Φh,i(t) are of the order O(

√
log t/T

(t)
h,i ). This suggests that it suffices

to find u such that Th,i(t) > u and Φ′
h,i(t)+Φh,i(t) ≤ f ∗−f ∗

h,i−νρh = ∆h,i−νρh,

which implies the constant u ∼ O(log t/(∆h,i − νρh)2).

For (h, i) /∈ D(z, i∗z), a looser bound for Φ′
h,i(t) can be shown in the order

of O(
√

log t/T
(t)
h,i ·log t). This concentration is given by the boundedness (instead

of sub-exponentiality) of clipped cycles, where the bounds grow logarithmically,

which accounts for the extra log t.

Proof Sketch of Theorem 2. Denote T(z) as the collection of nodes in T with

depth greater than or equal to z. Let T(z) = T1 ∪ T2 where T1 = D(z, i∗z) and

T2 = T(z) \ T1.

It is simple to show that Rewπ(w∗) [τ ] = f ∗τ + O(1). Hence,

Regπ[τ ] ≤ f ∗τ − E[
Nπ [τ ]∑
n=1

Ûn] + O(1)
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≤ E[
Nπ [τ ]∑
n=1

f ∗Ĉn − Ûn] + O(log τ)

≤
2∑

j=1

E[
Nπ [τ ]∑
n=1

(f ∗Ĉn − Ûn)1{(Hn,In)∈Tj}]︸ ︷︷ ︸
Regπ,j [τ ]

+O(log τ).

We can prove that for T1,

Regπ,1[τ ] ≤ µmaxE[
τ∑

n=1

1{(Hn,In)∈T1}(f
∗−f(W π

n ))]+ O(log τ).

Applying Lemma 2 and techniques used in the original HOO analysis [2], we

show that

Regπ,1[τ ]=CReg (C(ν, ρ))
1

d(ν,ρ)+2 τ
d(ν,ρ)+1
d(ν,ρ)+2 (log τ)

1
d(ν,ρ)+2

for a universal constant CReg. This involves further partitioning T1 in terms

of whether or not a node is “near-optimal” with respect to its depth and

smoothness parameters (ν, ρ), and handling subsets of T1 respectively.

For T2, we have that

Regπ,2[τ ] ≤ lτE[
Nπ [τ ]∑
n=1

1{(Hn,In)∈T2}]f ∗ + O(log n).

Note that any cycle before time τ is bounded by lτ . The expected number of

visits to T2 is at the order of O(log
3 n) as a result of Assumption 7(a), implying

that the number of “near-optimal” nodes is finite, and Lemma 3.

Full proofs of the lemmas and the main theorem can be found in

Appendix.
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3.4 Performance Evaluation

In this section, we evaluate CHOOC from two experimental perspectives:

(1) how well the algorithm converges (i.e., correctness and speed) in different

settings, and (2) a series of useful scenarios the system might benefit from the

CHOOC framework.

Basic Model Settings for Simulation: For experiments introduced in

this section, we first model a simplified cellular wireless network to emulate

stochastic channel and arrival processes. Suppose the CHOOC AHS is deployed

at a Base Station (BS), located at the center of a circular cell of radius 250

m, which serves 10-20 active users. We assume the total bandwidth (BW) is 10

MHz which can be subdivided into 200 resource blocks. Each time slot lasts

0.5 ms.

For the arrival process of each user, we assume Ai[t] has a binomial

distribution. Each packet has a fixed size 5 kb. The signal-to-interference

ratio (SIR) of user i at time t is modeled as SIRi[t] = Pbgi[t]/Ii[t], where

Pb, gi[t], Ii[t] denote the transmit power of the BS, channel gain, and interference

level respectively. We set Pb = 47 dBm, and consider the channel gain as a

combined effect of path loss, Rayleigh fast fading and an antenna gain of 17

dBi. Denote the user distance to BS by disti, the path loss is then modeled as

39.1 log10(disti) + 13.5 + 20 log10(fc) where fc = 2.0 GHz.10 For simplicity, we

assume the interference level is homogeneous to all users in the cell at −56 dBm.

10The SIR-related parameters stated above follow [41].
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Table 3.2: Service rate vs User distance in our simulation system.

Distance to BS (m) 50 100 150 200 250

Mean Rate (packets/slot) 9.16 5.34 3.28 2.04 1.28

The service rate of user i is given by Si[t] = BW × log2(1 + 100.1(SIRi[t]−L)) bps

where L = 3dB describes a gap relative to the ideal Shannon capacity. In the

following simulations, we adjust the user distance to the BS to vary the channel

distribution seen by users. Table 3.2 exhibits the mapping of a user’s distance

to mean service rates.

Suppose each transmitted packet is associated a reward, which is de-

termined by the user type. Denote delay as the packet delay in slots for any

non-backlogged users’ packet. We consider users of the following types:

(a) Mean-Delay Type (MD): The reward of each packet is given by

(1− delay ∗ 0.1)+.

(b) Deadline-(t) Type (DDL(t)): The packet reward equals the value of

1{delay<t}, i.e., each packet has a deadline t.

(c) Backlogged Type (BL): The reward for each transmitted packet of

an infinitely-backlogged queue is 1.

The cycle reward is defined as the sum of packet rewards of all users

within a cycle, which is further normalized such that the cycle length/reward

variables are of the same order. We set the cycle reward to be 0 if a cycle is

clipped in order to penalize unstable systems. We use GPS as the slice-level

scheduler throughout the simulation.
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3.4.1 Convergence Behavior of CHOOC

We explore the convergence behavior of CHOOC in our first experiments.

We have observed that CHOOC always locates the neighborhood of the best

weight within a reasonable time (note that one can only expect the algorithm

to reach a certain level of optimality in limited time), accompanied with

logarithmically-growing regret, which validates the main theorem of the last

section. Below we consider convergence in the context of a 2-slice and a 3-slice

setting.

3.4.1.1 A 2-slice system

We start with a simple 2-slice system, where each slice is associated

with 6 users whose distances to the BS equal 50, 80, · · · , 200 m. Let U1 be MD

users while U2 be DDL(7) users. The arrival process Ai[t] is identical for all

users, and is Binomial(3, 0.1), i.e., λi = 0.3. The Log-Rule [1] is implemented

as the flow-level scheduler for each slice. Let W = {w : |w|1 = 1,w ⪰ 0}.

To implement CHOOC, we set α = 4, ξ2 = 1, ν = 0.1, ρ = 0.5, β =

300, κ = 50, µmin = 10, rmax = 1 and z = 1. Note that these parameter choices

may be overly aggressive (to favor exploitation over exploration) to the extent

that Assumption 3 may not hold. However, this is a common practice in

UCB-type algorithms in order to see good convergence rate.

The top-left panel in Figure 3.1 shows the (Monte Carlo-simulated)

reward rate f(w) and the number of clippings after simulating each of {HS(w) :

w1 = 0.05, · · · , 0.95} for 10k cycles under our proposed clipping rule ln =
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Figure 3.1: Simulation results on experiments in Section 3.4.1. (Top-Left)
Reward rate function f(w) (left axis) and the number of clippings over 10000
cycles for the set of schedulers {HS(w) : w1 = 0.05, · · · , 0.95} (right axis).
(Top-Middle) Selection ratio for w1 ∈ (w∗

1 ± δ) over the number of cycles:
median, 0.25/0.75 quantile are shown after simulating CHOOC 20 times. (Top-
Right) Total regret over time (20 simulation runs). (Bottom) Explored tree
Texp after running CHOOC for 2k, 5k and 10k cycles respectively. Each dot in
the scatter plots represents a weight selection at the corresponding depth of
the tree.

β + κ log n. The optimum is roughly w1 = 0.42. We then run CHOOC for 10k

cycles. In the bottom panels of Figure 3.1, we show how the explored tree Texp

evolves from cycle index n = 2k to 10k, where each dot in the scatter plots

represents a weight selection at the corresponding depth. As expected, the

tree grows deeper around the optimum, implying that CHOOC is focusing on

exploring near-optimal weights.

Next, we repeatedly simulate the same setting for 20 times and plot the

median “near-optimal selection ratio” over cycles (exhibited at the top-right of

Figure 3.1), where the ratio at cycle index n is defined as the fraction of w1

selections lying in (w∗
1 − δ, w∗

1 + δ) for the first n cycles. We set δ = 0.05 or
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0.075. The AHS consistently finds the optimum’s neighborhood. (Note that

since f is relatively flat around w∗, it is hard to concentrate the selections

exactly at w∗.) Convergence is further verified by the time-vs-regret plot in

Figure 3.1 (Top-Right), which shows a logarithmic growth. Recall that 1 second

is equivalent to 2000 time slots.

Remark 12 (Hyper-Parameter Choices). The convergence behavior is faster

but more error-prone, if the parameters are set more “aggressively” to favor

exploitation. For example, setting relatively-small µ and ρ (to accelerate contrac-

tion of the exploration bonus) has the benefit of “faster pruning”, i.e., dropping

out “obviously bad” regions more quickly, but risks ending up with sub-optimal

solutions. In practice, one can use Assumption 3 as a (conservative) baseline

when picking parameters and then adjust them properly.

Remark 13 (Convergence in a High-Load System). In the above simulation,

we simulated a moderately-loaded system (the load was 3.6 packets/slot vs a

mean service rate ∼4.8) and the cycles were short (∼10 ms). With higher

loads, the set of system-stabilizing weights W(λ) contracts while the cycle time

grows. The former effect helps the algorithm converge faster, since unstable

weights induce much lower rewards (either intrinsically or penalized by clipping)

and get eliminated sooner in terms of the number of cycles used. The

latter effect delays the exploration of new weights, however, in practice it is

possible to weaken the definition of cycles to further shorten the convergence

time. For instance, one can require a cycle to terminate at time t such that

t = argmint′{t′ ≥ t0 + τ0 : Q[t′] ∈ B}, where t0 is the cycle start time, τ0 is
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Figure 3.2: Simulation results on experiments in Section 3.4.1.2. (Left) Reward
rate f . (Middle) Heatmap for CHOOC’s weight selections (6k cycles). (Right)
Regret vs Time (averaging over 20 simulation runs).

a constant and B is a pre-specified bounded set in the queueing space. This

means we only require the queues to return to a bounded region (rather than to

the idle state) to finish a cycle, and an ideally-small B with a proper τ0 (both

serving as hyper-parameters) ensures that rewards are only weakly correlated

across cycles. Later in Section 3.4.2.1, we will conduct an experiment using

this relaxation and exhibit its performance.

3.4.1.2 A 3-slice system

In this part, we set up a 3-slice system to test the convergence of

CHOOC in a more general weight space. Suppose each slice contains a mix of

MD, DDL and BL type users (5 per slice) but the distributions are non-identical.

The BS-to-user distance ranges from 50 to 200 m and the arrival rate is 0.25

packets/slot per user. We set W = {w : |w|1 = 1, wi ≥ 0.15, ∀i}.

The simulation-estimated function f is exhibited in Figure 3.2 (Left).

The optimal weight is close to [0.22, 0.33, 0.45], and the peripheral area with 0

reward rate indicates unstable weights. We run CHOOC (following the hyper-
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parameters in Section 3.4.1.1) for 6k cycles and draw a heatmap for its weight

choices. As is shown in Figure 3.2 (Middle), CHOOC faithfully concentrates

on the optimal region, and those several layers around the optimum reflect the

tree-based exploration process.

The regret over time is plotted as in Figure 3.2 (Right). As a side

note, there is no direct relation between the number of slices and CHOOC’s

convergence rate. The hardness of learning is determined explicitly by smooth-

ness of f , which is measured by the near-optimality dimension d(µ, ρ) and its

corresponding constant C(µ, ρ). Roughly speaking, however, a higher dimension

of W tends to induce a larger C(µ, ρ), provided that the “curvature” of the

function near its optimum (i.e., d(µ, ρ)) is the same. This contributes to a

larger coefficient term in the regret (see the main theorem).

3.4.2 Further Motivating Application Scenarios

In this section, we showcase several scenarios where the best weight is

hard to pre-determine due to the heterogeneity of user traffic, reward types or

slicing structures, but all of which can be easily be optimized by our CHOOC

framework. These experiments further exhibit the potential of CHOOC for

learning the best weights for hierarchical scheduling in complicated environ-

ments.
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Table 3.3: Simulation results on experiments in Section 3.4.2.1. For each setting,
we list the f values for 4 weights: CHOOC-estimated weights for S1, S2, S3,
and w0 = [0.25, 0.25, 0.25, 0.25] (naive partition).

Grouping
Strategy

CHOOC-Estimated
Weight w̃∗ f ∗ Reward Rates f(·)

w̃∗(S1) w̃∗(S2) w̃∗(S3) w0

S1 [0.33, 0.27, 0.28, 0.12] 0.772 0.771 0.752 0.768 0.755

S2 [0.18, 0.28, 0.29, 0.25] 0.686 0.635 0.686 0.680 0.664

S3 [0.20, 0.33, 0.28, 0.19] 0.689 0.650 0.659 0.687 0.661

Figure 3.3: Regret plots on experiments in Section 3.4.2.1.

3.4.2.1 Different Grouping Strategies

Sometimes users are grouped into slices based on similar traits, but the

criteria for grouping may vary. In the following, we set up a 4-slice, 16-user

system and apply CHOOC over varied grouping strategies of heterogeneous

users into slice partitions.

There are 4 types of users: DDL(2), DDL(3), DDL(4), DDL(5). Associated

with each type there are 4 users whose distances to the BS are 50, 80, 110, 140 m

respectively. The arrival process is homogeneous for each user i and λi = 0.32.

Since this system contains more users with higher loads, we adopt the weakened

cycle notion proposed in Remark 13 to ensure faster convergence, and set

B = {Q : maxiQi ≤ 2} and τ0 = 40. (As a result, cycles under the best
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weights take ∼ 50 ms.)

When setting up the hierarchical scheduler, we consider three grouping

strategies for slice partitioning: (S1) users with the same distance to BS

are grouped together; (S2) users with the same deadline requirement are

grouped together; (S3) mixed – each slice contains users with 4 different

distances/deadlines. We set W = {w : wi ≥ 0.1,∀i}, providing a level of

isolation among slices.

We first estimate the best reward rate f ∗ of each scenario by grid

searching the simplex W and Monte-Carlo simulations. Then we run CHOOC

in the three settings respectively for 720k time slots (equivalent to 360 s), and we

define the CHOOC-estimated weight w̃∗ as the mean of weight parameters for

last 2k cycles.11 Finally, we compute f(w̃∗) by numerical simulation to validate

the correctness of CHOOC. The results of f ∗, w̃∗ and f(w̃∗) are summarized

in Table 3.3.

As one can expect, the best weight (or say the set of near-optimal

weights), despite being easily learned by the CHOOC algorithm, is highly

unpredictable due to the complicated trade-offs among users with different

service rates and requirements. For example in S1, the optimal weight allocation

11When approximating the f function of this 4-slice system, we observe that for each
setting there exists a subset of weights that all correspond to “near-optimal” reward rates,
and it is computationally-hard to estimate the exact best weight w∗ by numerical simulation
due to stochastic error and the complexity of f (compared to the previous 2-slice system
where f is a simple concave 1D function). For the same reason, the CHOOC-estimated weight
indeed varies over simulation runs (within a near-optimal region), and here in Table 3.3 we
only display one representation.
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Figure 3.4: Simulation results on experiments in Section 3.4.2.2. For each sce-
nario, the reward rate function and the corresponding weight density heatmap
selected by CHOOC are displayed. Note that the simple heuristic |U1|/|U|
(dashed line) does not always match the optimal weight.

indeed sacrifices users with the worst service rates (Slice 4) so as to achieve

a higher rate of sum rewards. To further validate this observation, for each

setting, we compare f values of all three CHOOC-estimated weights as well as

a naive choice w0 = [0.25, 0.25, 0.25, 0.25]. It turns out the naive partition is

far from ideal and the best weights cannot be transferred across settings.

For each setting, we plot the regret over time (averaged over 20 CHOOC

simulation runs) as shown in Figure 3.3. It is worth noting that S1 has a much

better regret mainly due to the fact that the stable set W(λ) for S1 is larger

(i.e., lower chance to explore low-reward unstable weights inducing long cycles).
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3.4.2.2 Imbalanced Number of Users across Slices

In the next set of simulation, we test the performance of CHOOC under

variations in the number of users in each slice. We set up an 8-user, 2 slice

system. All users are of type MD with arrival rates being 0.58 packets/slot and

the distances to BS equaling 120 m. Both slices implement a Log-Rule scheduler.

We assign the number of users to the two slices as being (1, 7), (2, 6), (3, 5), (4, 4).

In Figure 3.4, we plot the simulation-approximated f values for each scenario.

We observe that, except in the last scenario, the optimal weight w∗
1 is not

|U1|/|U| (proportional to the number of users) as one might suggest as a

reasonable heuristic. This is due to the joint effect of the asymmetry in the

number of users per slice and opportunistic scheduling within slices. 12

For each case, we run CHOOC for 10k cycles and the convergence is

shown by a density heatmap (see Figure 3.4). As one can imagine, the selected

weights are less concentrated around w∗ for the first case, since f is flatter.

3.4.2.3 Tradeoffs between Backlogged and Non-backlogged Users

In this set of simulations, we set up a scenario exhibiting the ability of

CHOOC to realize tradeoffs among slices of backlogged and non-backlogged

users. We include these results in Appendix B.4.1.

12Note that a GPS scheduler will re-assign unused resources by U1 to U2. Thus, w1 = 1
does not mean that U2 receives no resources; instead, it implies U1 is given the full priority.
This explains why in the top left panel in Fig. 3.4, f is almost flat for w1 > 0.2 as U1 already
receives sufficient resources.

99



3.4.2.4 Different Scheduler Choices in CHOOC Framework.

We investigate the performance of CHOOC under various scheduler

implementations. These results are included in Appendix B.4.2.

3.5 Conclusion

In this chapter, we study a hierarchical scheduling model for network

slicing where the optimal resource allocation among slices, parameterized by a

weight vector, is to be determined. To address the complexities of the problem

(diversity in user traffic or service requirements), we formulate this through an

MAB blackbox optimization framework. We propose the CHOOC algorithm

(an adaptive hierarchical scheduler) that builds on the classical HOO with

algorithmic/theoretic modifications to account for cycles with clippings and

thus is applicable in a queueing-based slicing/scheduling wireless system. Our

simulations show that our algorithm has the ability to find the best weight in

various scenarios. Although a GPS-based hierarchical scheduler is considered

in this chapter, we note that the CHOOC algorithm can be generalized to

other parameterized scheduling models with cycles. It is thus of interest to

explore its benefits in other related settings.
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Chapter 4

Online Learning for Multi-Agent Based

Resource Allocation in Weakly Coupled

Wireless Systems

In this chapter, we propose and evaluate a learning-based framework

to address multi-agent resource allocation in coupled wireless systems. 1 In

particular, we consider multiple agents (e.g., base stations, access points, etc.)

that choose amongst a set of resource allocation options towards achieving their

own performance objective/requirements, and where the performance observed

at each agent is further coupled with the actions chosen by the other agents,

e.g., through interference, channel leakage, etc. The challenge is to find the

best collective action. To that end we propose a Multi-Armed Bandit (MAB)

framework wherein the best actions (aka arms) are adaptively learned through

online reward feedback. Our focus is on systems which are “weakly-coupled”

wherein the best arm of each agent is invariant to others’ arm selection the

majority of the time – this majority structure enables one to develop light weight

1The content of this chapter is based on Song, Jianhan, et al. ”Online learning for multi-
agent based resource allocation in weakly coupled wireless systems,” in Proceedings of the
Twenty-Third International Symposium on Theory, Algorithmic Foundations, and Protocol
Design for Mobile Networks and Mobile Computing, 2022, pp. 111–120. The author, Jianhan
Song, took on most of the responsibility for the problem formulation and the theoretical
analysis and conducted all of the simulations.
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efficient algorithms. This structure is commonly found in many wireless settings

such as channel selection and power control. We develop a bandit algorithm

based on the Track-and-Stop strategy, which shows a logarithmic regret with

respect to a genie. Finally through simulation, we exhibit the potential use of

our model and algorithm in several wireless application scenarios. This work is

completed and has been published in [6].

4.1 Introduction

Dynamic resource allocation, including the allocation of time slots,

frequency sub-channels, power, etc., is a key part of the design of wireless

systems. In a multi-cell setting, resource allocation is especially challenging due

to the triad of (i) heterogeneity and uncertainty of the network environment

(e.g., time-varying loads, channel states, interference, etc.), (ii) distributed

decision-making (separate controller/agent in each base-station), and (iii)

availability of only partial state information at each agent (e.g., only local

channel states). In such settings, if each agent selects their own allocation

strategy/action without consideration of other agents’ decisions, the collective

can suffer a significant loss in total utility.

We can view the multi-agent resource allocation problem through the

following abstraction. Each agent is allowed an action from among a collection

of actions (e.g., choice of frequency sub-band in the channel selection problem).

Its choice of action has two consequences: (a) the agent accrues a reward for

itself (e.g., average throughput/delay for users in its cell), and (b) the action
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induces an environment that affects all other agents (e.g., transmitting on

a frequency sub-band generates strong interference to other agents in that

frequency sub-band, and weaker interference in nearby frequency sub-bands).

In a multi-agent setting, the goal then is to find an action for each of the agents

(equivalently, a collective of actions across agents), which in turn induces a

collective of environments, such that the utility of the collective is maximized.

The immediate search-based solution to this problem – attempting every

action at each agent for a sufficiently long duration, empirically estimating

the collective reward, and choosing the collective that has the highest utility –

can scale poorly due to the super-linear growth in search space. Indeed, even

with two users, the number of environments scales as k2 if each user has k

possible actions, making it computationally impractical to learn the best actions

within a reasonable time. In general, with no assumptions about the actions

and the resulting environments, it is not hard to see that such complexity is

unavoidable.

However, in many resource allocation settings that we are interested in,

there are additional properties of the overall system that can be used to reduce

this complexity. Specifically in this chapter, we focus on systems that are

weakly coupled. We say a system is weakly-coupled if it satisfies the majority

condition: we suppose that the optimal action of an agent is also the best

action in a majority of environments, where each environment corresponds to

a distinct action tuple that can be chosen by the other agents. The intuition is

that under moderate interference levels, most of the time, the performance of
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one agent’s action does not fluctuate much when actions taken by nearby agents

are changed. The majority condition holds in several wireless settings. For

example, in the channel selection problem, once an agent selects a frequency

sub-band, only a small set of adjacent channels will be significantly interfered

with due to channel leakage. Another example is one where each base-station

can choose a scheduler from among a candidate set [4]. Different schedulers

trade-off for different performance metrics within the cell (e.g. MaxWeight for

stability, vs. round robin for jitter); however, they have different impact on

neighboring cells. In this setting, good schedulers tend to incur low interference

to nearby agents (cells) since they typically schedule opportunistically and use

channels more efficiently (therefore, the majority condition holds provided that

most of the schedulers are “good”).

The majority condition is especially useful for algorithm design because

we show that it has the following three properties. (1) Local greedy property:

For each agent, it suffices to learn its best action in each of the environments

and choose the “majority best” as its overall best action; (2) Avoiding hard

environments: Identifying each agent’s best action can be cast as k separate

multi-armed bandit best-arm identification instances, where k is the number of

possible environments. Some of these environments might be especially hard,

e.g., strong interference/poor channel quality, thus all actions of the agent in

this “hard” environment have low reward, making this best arm identification

instance difficult. Crucially however, the majority conditions enable one to

avoid solving such hard environments, once the best actions from the easiest k/2
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environments have been learned; (3) Sub-sampling property: When the number

of environments k is large, it is possible to sample a subset of environments

and still learn the best action (with high probability).

Building on these properties, we develop a decentralized algorithm for

multi-agent resource allocation with bandit feedback. The algorithm proceeds

episodically with each episode consisting of an exploration and an exploitation

phase. During the exploration phase, one agent runs a collection of best-

arm-identification subroutines to learn the optimal arm (aka action) in each

environment based on local reward feedback, while the other agents cycle

over actions from a randomly chosen subset (of all the actions) in a round-

robin fashion until the first agent learns the “majority best arm” with a fixed

confidence (crucially, not all environments have to be “solved”). Once each

agent learns the best collective arm using the above procedure, it is applied

in the exploitation phase. As the episode index grows, the confidence level is

made increasingly tight as the increment of regret converges to zero. We build

on Track-and-Stop [3], which is designed for best arm identification with fixed

confidence, as the subroutines used in the main algorithm. Track-and-Stop

focuses on exploring arms with good rewards and is known to be asymptotically

optimal in terms of the number of plays needed to determine the best arm. This

further accelerates the exploration and improves the overall performance (in

particular, compared to the vanilla Explore-Then-Commit (ETC) approach).

Our main contributions are summarized as follows:

1. Weakly Coupled Systems under the Majority Condition: We
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develop a multi-armed bandit framework to address the multi-agent resource

allocation problem for weakly coupled systems. In these systems, the best arm

of each agent is invariant to other agents’ arm choices in the majority of sce-

narios. We believe this assumption is reasonable in many wireless applications,

and allows the design of an algorithm with manageable computational and

communication costs.

2. Track-and-Stop Based Decentralized Algorithm: We develop

a decentralized bandit algorithm using Track-and-Stop as a building block.

For systems satisfying the majority condition, this algorithm has two main

advantages over classical bandit algorithms: (1) Low communication cost: the

decision-making is decentralized as no reward/action information is exchanged

and the only coordination needed is when one agent signaling others the end

of a Track-and-Stop subroutine. Note that for centralized algorithms such as

UCB or the vanilla Track-and-Stop (i.e., best arm identification among all the

collective arms), a central controller who has access to all the reward feedback

has to be introduced to determine the action for each agent. (2) Efficient with

a logarithmic regret: it can be shown that with high probability the regret

scales as O((m− 1)k log k log T ) where T is the time horizon, m is the number

of agents and k is the (max) number of arms of each agent — this is much

improved compared to any classical algorithm which equally views all the km

collective arms in implementation, with the regret scaling as O(km log T ).

3. Empirical Evaluation: We simulate the algorithm in two wireless

applications to show the potential usage of our model: (1) channel selection with
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power leakage and (2) best scheduler selection for wireless queueing systems.

In both cases, we show the systems are indeed weakly-coupled such that our

algorithm can be applied. Furthermore, our simulations show that the agents

can correctly learn the best collective action in reasonable time with a sub-linear

regret.

4.1.1 Related Work

Multi-Agent Resource Allocation in Wireless Settings. Many well-studied

wireless applications are by nature multi-agent resource allocation problems,

such as power control and cognitive spectrum access. A classical theoretic

approach is to study the problems through a game theory perspective, e.g.,

[61, 62] on power control, [63, 64] on dynamic spectral access and cognitive radio,

[65, 66, 67] on wireless sensor networks, [68] on edge computing, etc. Moreover,

due to the complexity of the problem, machine learning/reinforcement learning

techniques have recently be proposed to address related problems, see e.g.,

[69, 70, 71].

Decentralized Multi-Agent MABs. Multi-agent decision making has

been formulated as decentralized multi-armed bandit problems, where multiple

players simultaneously pull their arms at each round. In a collaborative setting,

the agents learn the same stochastic bandit instance in a decentralized manner,

and the goal is to minimize individual regret via information sharing, see, e.g.,

[72, 73, 74]. Recent works [75, 76] further consider the tradeoffs between regret

minimization and communication cost.
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More aligned with this chapter is the study on multi-agent MABs with

collision. In those problems, agents receive normal reward feedback only if other

agents do not choose the same arm (“collision”) — otherwise, zero rewards

are observed by colliding agents. Several settings have been studied in this

line of work, including [77, 78, 79] on the homogeneous reward setting (agents

observe the same reward distributions on the same arm), and [80, 81, 82] on the

heterogeneous reward setting. A recent work [83] further explores the scenario

when agents observe non-zero rewards on collisions. Compared to these works,

our model is more general regarding the impact of interference on rewards —

we do not restrict to a collision-based model and the reward distribution of an

arm may be different when nearby agents change to any arm (not necessarily

the “colliding arm”). Instead, we explore a special arm-reward structure, i.e.,

weakly coupled systems under the majority condition, and develop efficient

decentralized bandit algorithms.

4.1.2 Notation

Throughout this chapter, we use [n] to denote the set {1, 2, · · · , n}, and

1 for the {0, 1} indicator function. The symbols ⌈a⌉ and ⌊a⌋ represent the

ceiling and floor function over the value a.
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4.2 Problem Formulation

4.2.1 Two-Agent Weakly Coupled Systems

For simplicity let us first focus on a 2-agent system and introduce the

notion of weak coupling. Here on, we use the standard bandit terminology of

‘arm’ to denote an agent’s action. In this system, Agent 1 and Agent 2 can

choose one over k1 and k2 arms respectively for each play (round). We call

any pair of arms (i1, i2) a collective arm. The joint rewards for two agents

choosing (i1, i2) ∈ [k1]× [k2] are independently and identically distributed over

multiple plays, and the average rewards are denoted as (µ
(1)
i1,i2

, µ
(2)
i1,i2

). Note that

the rewards are “coupled” and changing either arm of (i1, i2) might affect both

rewards (µ
(1)
i1,i2

, µ
(2)
i1,i2

).

As usual the goal of a bandit framework is to find the best (collective)

arm. Let the arm pair (i∗1, i
∗
2) satisfy that µ

(1)
i∗1,i

∗
2
+ µ

(2)
i∗1,i

∗
2
> µ

(1)
i1,i2

+ µ
(2)
i1,i2

for

all (i1, i2) ∈ [k1]× [k2]. Simply applying classical bandit algorithms (such as

UCB) in this problem can be challenging and problematic, since it requires

a centralized controller observing rewards from both agents and exploring all

k1k2 arms, leading to high communication and computational cost.

Therefore, in this paper, we consider weakly coupled systems, which have

a special arm-reward structure such that only minimal communication between

agents is needed — in particular, no reward/action information is required to

be shared — and that fewer arm pairs are necessarily explored to locate the best

collective arm. Before formally define the condition regarding weak coupling, we

introduce several notations as follows: Denote i∗1(j) as the best arm for Agent 1
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when Agent 2 plays arm j for any j ∈ [k2], i.e., i
∗
1(j) = argmaxi′ µ

(1)
i′,j . Similarly,

let i∗2(j) = argmaxi′ µ
(2)
j,i′ for any j ∈ [k1]. Let c1(i) =

∑
j∈[k2] 1{i=i∗1(j)} (i.e., the

number of Agent 2 choices, aka “environments”, resulting in arm i being the

best arm for Agent 1) and similarly, c2(i) =
∑

j∈[k1] 1{i=i∗2(j)}.

We call a system weakly coupled if it satisfies the following majority

condition:

Assumption 8 (Majority Condition). Suppose there exist an arm pair (iM1 , i
M
2 ) ∈

[k1]× [k2] such that c1(i
M
1 ) ≥ (1 + γ)k2/2, and c2(i

M
2 ) ≥ (1 + γ)k1/2 for some

0 < γ ≤ 1. Furthermore, assume that µ
(1)

iM1 ,iM2
> µ

(1)
i1,i2

and µ
(2)

iM1 ,iM2
> µ

(2)
i1,i2

for any

(i1, i2) ∈ [k1]× [k2].

Arm iM1 of Agent 1 is the best choice for him for majority of Agent 2’s

selections, and analogously for iM2 (an illustration is given in Figure 4.1.). We

call iM1 , i
M
2 the majority arms of both agents (hence the notation). Clearly, the

majority arm pair is the optimal, i.e., (i∗1, i
∗
2), if the condition holds.

To understand the intuition of this condition, first consider the case

when there is no coupling, i.e, µ
(1)
i1,i2

is a constant for any i2 ∈ [k2] when fixing

i1 (similar for µ
(2)
i1,i2

when fixing i2). The majority condition holds with γ = 1.

In this case, each agent can locate the best arm solely based on the observed

rewards itself.

With more coupling, the mean rewards observed by one agent are no

longer constant as the other agent changes arms — however, in a weakly-coupled

system, we assume the change of arm at the other agent will not affect the
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By Majority Condition, (1,1) is the optimal arm pair

Figure 4.1: An illustration of the majority condition.

best arm majority of time. In other words, only a small number of actions by

the other agent make a significantly negative impact on the best arm (actually

a stronger condition would be that only a few arm pairs lead to significant

reward degradation, but we focus on the best arm exclusively). As we will see,

with more robustness this arm-reward structure still preserves the property

that local reward feedback is sufficient for the best arm identification of each

agent.

Remark 14 (Weakly Coupled Wireless Systems). Weak coupling can be found

in several wireless settings. Two examples that we consider in this paper are: (i)

channel selection across multiple base stations, with coupling due to interference

leakage across adjacent channels, and (ii) scheduler selection at multiple base

stations, with coupling due to the out-of-cell interference resulting from the

transmission patterns induced by the chosen scheduler. We study both these

settings in Section 4.4, where we discuss the nature of coupling, as well as the
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efficiency benefits of our approach.

4.2.2 An Alternative Condition, Regret

Condition 8 naturally captures the weak-coupling nature of some appli-

cations. In Condition 8, both agents are “symmetric”. Here, we introduce a

non-symmetric, weaker notion as follows.

Assumption 9 (Weaker Majority Condition). Suppose there exist an arm iM1

such that c1(i
M
1 ) ≥ (1+γ)k2/2. Furthermore, assume that µ

(1)

iM1 ,i∗2(i
M
1 )
+µ

(2)

iM1 ,i∗2(i
M
1 )
≥

µ
(1)
i∗1,i

∗
2
+ µ

(2)
i∗1,i

∗
2
.

Note that Condition 8 strictly implies Condition 9 since iM2 must be

i∗2(i
M
1 ) under Condition 8 — therefore, it is better to adopt a more general

notion. Consider the channel selection example: with some small probability,

the majority arms of both agents might happen to “collide” with each other

(i.e., being adjacent channels). Then it is preferred to aim at finding the arm

pair (iM1 , i
∗
2(i

M
1 )) rather than (iM1 , i

M
2 ) when we design an algorithm so as to avoid

the collision (when there is no collision, Condition 9 becomes Condition 8).

In practice, even when Condition 9 is not held, the pair (iM1 , i
∗
2(i

M
1 )) still gives

acceptable “near-optimal” rewards for similar settings which involve collision

avoiding.

The goal is to develop an efficient and communication-light bandit

algorithm to minimize regret. We define the regret as the loss of rewards
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with respect to the arm pair (iM1 , i
∗
2(i

M
1 )) in accordance with Condition 2.2 Let

(I1(t), I2(t)) denote the arm pair selected by the two users at time t. The regret

with horizon T is defined as

RegretT = E

[
T∑
t=1

(µ
(1)

iM1 ,i∗2(i
M
1 )
− µ(1)

I1(t),I2(t)
) +

T∑
t=1

(µ
(2)

iM1 ,i∗2(i
M
1 )
− µ(2)

I1(t),I2(t)
)

]
.

When Condition 2 holds, the regret expression above reduces to the normal

definition (i.e., with respect to the best pair (i∗1, i
∗
2)).

4.2.3 Generalization to Multi-Agent Systems

The model described above can be generalized to systems with more

than 2 agents. For notation simplicity we consider a 3-agent system in this

subsection. Let i∗1(·, i2, i3) ∈ [k1] be the best arm for Agent 1 when Agent 2

and Agent 3 play i2 ∈ [k2] and i3 ∈ [k3] respectively. (Arm i∗2(i1, ·, i3) and arm

i∗3(i1, i2, ·) are analogously defined.) The majority condition is stated as follows:

Assumption 10 (Majority Condition: 3-Agent System). Suppose there exist

an arm iM1 ∈ [k1] such that∑
(i2,i3)∈[k2]×[k3]

1{iM1 =i∗1(·,i2,i3)} ≥ (1 + γ)(k2k3)/2,

and an arm i
M,i1=iM1
2 ∈ [k2] such that∑

i3∈[k3]

1{iM,i1=iM1
2 =i∗2(i

M
1 ,·,i3)} ≥ (1 + γ)k3/2.

2Indeed, with slight modification our algorithm can minimize a regret that is defined with
respect to (iM1 , i

M
2 ). We use the current definition in accordance with Condition 9 for the

benefit previously discussed.
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Furthermore, assume that (iM1 , i
M,i1=iM1
2 , i∗3(i

M
1 , i

M,i1=iM1
2 , ·)) is the best collective

arm in terms of sum (mean) rewards.

Note that we follow the non-symmetric pattern of the alternative condi-

tion in Section 4.2.2. Accordingly, the regret is defined as the loss with respect

to the triplet (iM1 , i
M,i1=iM1
2 , i∗3(i

M
1 , i

M,i1=iM1
2 , ·)).

4.3 Algorithm Design and Analysis

4.3.1 Building Block: Track-and-Stop

Our algorithm applies the Track-and-Stop (T-a-S) algorithm [3] as

subroutines to locate the best arm in each environment. Track-and-Stop is a

single-agent bandit algorithm for the purpose of best arm identification — the

goal is to learn the best arm with a fixed confidence δ using the least number

of plays. The T-a-S agent explores arms and collects feedback until a certain

criterion is met, and outputs a “recommended” arm such that it is the best

arm w.p. 1− δ. In each round, the agent computes the “optimal proportion”

of arms needed for exploration based on observed mean rewards3, and chooses

the arm which better matches (“tracks”) the proportion.

Compared to the “pure exploration” approach (i.e., exploring the arms

in a round-robin fashion), a T-a-S agent spends more effort on exploring arms

with better reward feedback, which is significantly more efficient. Indeed, for

3For example, if an arm shows much worse reward feedback than others after some initial
exploration, the proportion assigned to this arm should be lower.
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some structured bandit environments, it has been shown that Track-and-Stop

is asymptotically optimal in terms of the number of explorations needed for

the fixed-confidence best arm identification problem. We present the following

result (taken from [27]) which will be used in our regret analysis.

Let Ek be the set of k-armed Gaussian bandit environments. For any

ν ∈ Ek, denote νi as the reward distribution of arm i ∈ [k] (which is normally

distributed) and µi as its mean. We denote Ek,alt(ν) as the set of bandits

whose best arms are different from the one in ν, i.e., Ek,alt(ν) = {ν ′ ∈ Ek :

i∗(ν) ∩ i∗(ν ′) = ϕ} where i∗(ν) = argmaxi∈[k] µi(ν).

Lemma 4 ([27], Theorem 33.6). For any bandit environment ν ∈ E, the

stopping time of a Track-and-Stop instance with a confidence parameter δ,

τ(δ; ν), satisfies that

lim
δ→0

E[τ(δ; ν)]
log(1/δ)

= ρ∗(ν) := sup
α∈Pk−1

(
inf

ν′∈Ek,alt(ν)

(
k∑

i=1

αid(νi, ν
′
i)

))

where Pk−1 is the (k − 1)-probability simplex and d(·, ·) denotes the Kullback-

Leibler divergence of two distributions.4

Note that the value ρ∗(ν) is the asymptotic lower bound.

4.3.2 Algorithm for Weakly Coupled Systems

In this section, we introduce the main result — a decentralized bandit

algorithm for weakly coupled systems using Track-and-Stop as a building block.

4A similar result on exponential family bandits is given in [3] (Theorem 14).
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Agent 1: Fix Arm 
Agent 2: Run Track-and-Stop

Stop -- Subroutine                     finish and 
             output      (ideally                    )                     

Agent 1 (Fix Arm     )

For each episode l = 0, 1, 2…

Both agents run             until end of episode ( episode length:                          )  

Figure 4.2: An illustration of the main algorithm.

As we will see, our algorithm exploits three properties: (1) Local greedy property,

where there is no sample sharing across agents and decision-making is based

on local majority; (2) Avoiding hard environments, where the T-a-S algorithm

is initially deployed on a larger set of environments, but is stopped early on

those environments that are hard (meaning the gap between the means of the

best and second-best arms is small), and (3) Sub-sampling property, where only

a limited set of environments are ever explored by any agent. The complete

algorithm is presented in Algorithm 6, and an illustrative figure is exhibited in

Figure 4.2.

Let TAS(i,·)(δ) denote a sub-routine as follows: Agent 1 plays arm i

repeatedly; Agent 2 implements T-a-S with respect to the confidence parameter
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δ based on her own feedback. The sub-routine TAS(·,i)(δ) is defined analogously.

Before implementation, let Agent 2 randomly choose a sample set of arms

S(2) ⊂ [k2] such that |S(2)| = s(k2), where s(k2) is a global constant which

is known to both users. By choosing each of the arms in S(2), Agent 2 will

generate s(k2) environments for Agent 1 where Agent 1 can learn its “majority

best” arm iM1 , i.e., which maximizes its local rewards in a majority of the

environments. Sampling is important when k2 is large — we will discuss its

impact in the analysis section later.

The algorithm proceeds by episodes. Each episode l lasts Tl :=
1
2
T0 · 22

l

rounds (arm pulls), and is split into two phases: the exploration phase which

consists of phase (1a) and (1b), and the exploitation phase (phase (2)).

In phase (1a), Agent 2 selects i2 ∈ S(2) in a round-robin fashion while

Agent 1 runs Track-and-Stop instances (with respect to corresponding Agent

2’s arms) under a confidence parameter δ′l = h(δl) where δl := 2δ0 · (12)
2l . The

definition of h will be discussed later in Lemma 5. Once TAS(·,j)(δ′l) stops (i.e.,

Agent 1 outputs an arm recommendation D(·,j)), Agent 1 will inform Agent 2

to skip choosing j in the following rounds. Phase (1a) stops when 1) Agent

1 learns D(·,j) for all j ∈ S(2) or when 2) more than (1− γ)|S(1)|/2 Track-and-

Stop instances output the same (non-ϕ) arm recommendation. Note that this

latter step corresponds to avoiding hard environments that we discussed earlier.

Phase (1a) ends with Agent 1 choosing an arm I1 which is most frequently

recommended (and ideally iM1 ). In Phase (1b), Agent 1 chooses I1 while Agent

2 runs subroutine TAS(I1,·)(δl) until Agent 2 outputs a recommended arm I2
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(ideally i∗2(i
M
1 )).

Finally, in phase (2), Agent 1 and Agent 2 select I1 and I2 respectively

for the remaining time slots in episode l. Note that there is possibility that

phase (1a) or (1b) is not finished by the end of episode l — in this case, we

start a new episode nevertheless. In practice, this scenario could be avoided by

properly choosing parameters T0 and δ0.

Note that the constant γ is pre-selected as a hyper-parameter to reflect

the degree of coupling of the system — the less coupling there is (as one

assumes), the larger γ can be set, and the less exploration is needed. In an

extreme case, when γ = 1 (i.e., iM1 is the best with respect to any arm choice

of Agent 2), only one sample is needed in [k2] for the exploration of arm I1 in

phase (1a).

Remark 15 (Communication Cost). In this algorithm, communication occurs

when one agent signals the other the end of a Track-and-Stop instance or the end

of phase (1a) or (1b), and no other information requires exchange. Furthermore,

in phase (1a) and (1b), the agent who implements the Track-and-Stop instance

does not need to know which arm the other agent selects since the other agent

chooses arms in a round-robin manner — the only knowledge needed is s(k2)

for Agent 1. (In Algorithm 6, for notation simplicity we use D(·,j) as Agent 1’s

local variables to denote the outputs of Track-and-Stop subroutines, although

the exact indices j are not needed.)

Remark 16 (Non-Weakly Coupled Systems). When the system is not weakly-

coupled, the recommended arms (I1, I2) can be suboptimal — in some settings,
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Algorithm 6 Decentralized Bandit for Weakly Coupled Systems

Initialization: Agent 2 randomly select S(2) ⊂ [k2], such that |S(2)| = s(k2).
for l = 0, 1, 2, · · · do

Global clock t← 1
Tl ← 1

2
T0 · 22

l
, δl ← 2δ0 · (12)

2l , δ′l ← h(δl)
[Phase 1a]
[Agent 1] Set local variables: D(·,j) ← ϕ for all j ∈ S(2)

[Agent 2] Set local variable: i2 ← lowest index in S(2)

while NOT phase 1a stop AND t ≤ Tl :=
1
2
T0 · 22

l
do

Proceed TAS(·,i2)(δ′l) by one time slot
if TAS(·,i2)(δ′l) stops (observed by Agent 1) then

[Agent 1] D(·,i2) ← Output of TAS(·,i2)(δ′l)
Agent 1 informs Agent 2 that D(·,i2) ̸= ϕ

[Agent 2] i2 ← the next arm (in a round-robin fashion) in
S(2) where D(·,i2) = ϕ

t← t+ 1

[Agent 1] I1 ← Mode((D(·,i2))i2∈S(2))

[Phase 1b]
[Agent 2] Set local variable: D(I1,·)

while NOT phase 1b stop AND t ≤ Tl :=
1
2
T0 · 22

l
do

Proceed TAS(I1,·)(δl) by one time slot
if TAS(I1,·)(δl) stops (Observed by Agent 2) then

[Agent 2] D(I1,·) ← Output of TAS(I1,·)(δl)
Agent 2 informs Agent 1 that D(I1,·) ̸= ϕ

t← t+ 1

[Agent 2] I2 ← D(I1,·)

[Phase 2]
Agent 1 and Agent 2 choose (I1, I2) repeatedly until t = Tl

Definition (Phase Stopping Criteria):
phase 1a stop = {∃j ∈ S(1) such that

∑
i2∈S(2) 1{D(·,i2)=j} > (1 −

γ) |S
(2)|
2
} or {D(·,i2) ̸= ϕ,∀i2 ∈ S(2)}.

phase 1b stop = {D(I1,·) ̸= ϕ}.
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“greedy choices” may have a negative impact on each other. When this happens

(e.g., the rewards observed in phase (2) are much smaller than expected), one

solution is for both agents to switch to a pre-agreed arm pair or a centralized

bandit algorithm. For instance, an Explore-Then-Commit (ETC) approach is a

reasonable centralized algorithm — all of the k1 × k2 arm pairs are selected in

a round-robin fashion for a fixed length of time, and the best arm pair (after

exchanging the information regarding mean rewards) is used in the exploitation

phase.

Remark 17 (Extension to 3-Agent Systems). This algorithm can be easily

extended to systems with more than 2 agents. For example, when there are

are 3 agents, phase (1) is split into 3 sub-phases: in phase (1a), Agent 2 and

Agent 3 first select a subset of arms in [k2]× [k3] and rotate arms accordingly,

while Agent 1 runs Track-and-Stop subroutines to identify the majority arm I1

(ideally iM1 ); in phase (1b), Agent 1 fixes his arm choice I1, while Agent 2 and

Agent 3 follow the procedure as in the original phase (1a) of Algorithm 6 such

that Agent 2 learns I2 (ideally i
M,i1=iM1
2 as defined in Section 4.2.3); finally, in

phase (1c), Agent 3 learns the recommended arm I3 when Agent 1 and Agent 2

play (I1, I2). The exploitation phase remains the same.

4.3.3 Regret Analysis

In this section, we present the regret analysis of our main algorithm. For

simplicity, we assume the distribution of rewards (for each arm) observed by

each agent is Gaussian, such that the theoretical guarantee of Track-and-Stop
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can be applied.

4.3.3.1 Soundness of Phase (1)

The first result states the soundness of the exploration phase, i.e., the

best collective arm is identified with high probability. We will focus on the

soundness of phase (1a) since the result for phase (1b) is straightforward (as

only one Track-and-Stop instance is involved).

Lemma 5. Assume that
∑

j∈S(2) 1{iM1 =i∗1(j)} ≥
s(k2)
2

, i.e., the sample set S(2)

preserves the majority condition. Let τ
(1a)
l denote the stopping time of phase

(1a) in episode l (and suppose episode l can run indefinitely). It satisfies that

P({τ (1a)l <∞} ∩ {I1 = iM1 }) ≥ 1− δl

provided that

h−1(δ) = 1−
⌈s(k2)/2⌉∑

n=⌊(1−γ)s(k1)/2⌋+1

(
⌈s(k2)/2⌉

n

)
(1− δ)nδ⌈s(k2)/2⌉−n.

Proof. The intuition is as follows: Let Event A be “more than (1− γ)s(k2)/2

Track-and-Stop instances will eventually choose Arm iM1 if running indefinitely”.

Let Event B be “the majority-stopping criterion phase 1a stop is reached, and

Arm iM1 is chosen when phase 1a stop is reached”. Clearly we have that A

implies B. Thus, it suffices to compute the error probability of event A to get

the error bound for Event B.

Let Dj[t] be the random variable denoting the decision (“output”) for

instance TAS(·,j)(δ′l) at time t. Thus, Dj[t] ∈ {ϕ} ∪ [k1]. Let S̃(1) ⊂ S(1) be

121



the set of “good” arms for Agent 2 such that iM1 = i∗1(j) for all j ∈ S̃(2) (by

assumption, |S̃(2)| ≥ ⌈s(k2)/2⌉ ≥ ⌊(1 − γ)s(k2)/2⌋ + 1). Therefore, by the

soundness of Track-and-Stop, for any j ∈ S̃(2), limt→∞ 1{Dj [t]=iM1 } = Yj, a.s.

where Yj is a Bern(1− δ′l) random variable. Furthermore, since {Di[t]}t≥0 and

{Dj[t]}t≥0 are independent from each other for any i ̸= j, we have that Yi are

independent for all i ∈ S̃(2).

Let N [t] =
∑

i∈S(2) 1{Di[t]=iM1 } and Ñ [t] =
∑

i∈S̃(2) 1{Di[t]=iM1 }. Note that

phase (1a) is good if and only if there exists t > 0 such thatN [t] > (1−γ)s(k2)/2.

Now observe that,

{∀t, N [t] ≤ (1− γ)s(k2)/2} =⇒ { lim
t→∞

N [t] ≤ (1− γ)s(k2)/2}

=⇒ { lim
t→∞

Ñ [t] ≤ (1− γ)s(k2)/2}.

Note that limt→∞N [t] and limt→∞ Ñ [t] both exist due to monotonicity and

N [t] ≥ Ñ [t] for all t ≥ 0.

Now observe that limt→∞ Ñ [t] =
∑

i∈S̃(2) Yi. Therefore, we have that

P({τ (1a)l =∞} ∪ {I1 ̸= iM1 }) ≤ P( lim
t→∞

Ñ [t] ≤ (1− γ)s(k2)/2)

≤ 1−
|S̃(2)|∑

n=⌊(1−γ)s(k2)/2⌋+1

(
|S̃(2)|
n

)
(1− δ′l)nδ′l

|S̃(2)|−n

≤ h−1(δ′l) = δl.

The last inequality holds true for any possible S̃(2), considering |S̃(2)| ≥ s(k2)/2

by assumption.
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4.3.3.2 Regret

To compute the cumulative regret, let us first give a bound on the

expected length of the exploration phase. Note that for any fixed arm j ∈ S(2),

Agent 1 operates a k1-armed bandit in instance TAS(·,j)(δ′l). Let ν(·,j) ∈ Ek1

denote the corresponding environment in which Agent 1 plays. We have the

following result.

Lemma 6. Rank the elements in S(2) as (j1, j2, · · · , j|S(2)|), such that ρ∗(ν(·,j1)) ≤

ρ∗(ν(·,j2)) ≤ · · · ≤ ρ∗(ν
(·,j|S(2)|)). For any ϵ > 0, there exists δ0 such that for all

l ≥ 0,

E[τ (1a)l ] ≤ (1 + ϵ)(log
1

δ0
+ 2l log 2)C(1a)

where

C(1a) =

(
s̃∑

m=1

ρ∗(ν(·,jm)) + (s(k2)− s̃) · ρ∗(ν(·,js̃))

)
and s̃ = ⌊(1− γ) s(k2)

2
⌋+ 1.

Remind that δl = 2δ0 · (12)
2l . The above is a direct result from Lemma 4

and the phase stopping criterion. Analogously, we can derive a similar (and

simpler) result for phase (1b) using another constant C(1b), which can be defined

as C(1b) = maxj∈[k1] ρ
∗(ν(j,·)).

We have the following regret bound for the main algorithm.

Theorem 3. Provided that
∑

j∈S(2) 1{iM1 =i∗1(j)} ≥ s(k2)/2, we have that for any

ϵ > 0, there exists δ0 such that

RegretT ≤ 4(1 + ϵ)∆max(C
(1a) + C(1b)) ·max(log((T/T0) · 2), 1) + o(log T )
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where ∆max = max(i1,i2)

(
(µ

(1)
i∗1,i

∗
2
+ µ

(2)
i∗1,i

∗
2
)− (µ

(1)
i1,i2

+ µ
(2)
i1,i2

)
)
, and the constants

C(1a) and C(1b) are defined as in Lemma 6.

Proof. Let l(T ) be the index of the episode at the horizon T . By observation

we have that

l(T ) = 0 or (T0/2) · 22
l(T )−1 ≤ T

=⇒ l(T ) ≤ max(0, log2 log2((T/T0) · 2)) + 1.

The regret can be split into two parts: the loss of rewards due to the

exploration in phase (1a) and (1b), and the loss of rewards due to the “wrong”

recommendation in phase (2). Therefore, using the bound on l(T ), we have

that

RegretT ≤
l(T )∑
l=0

(E[τ (1a)l + τ
(1b)
l ]∆max + (2δl) · Tl)

≤
l(T )∑
l=0

(
(1 + ϵ)(C(1a) + C(1b))∆max(log

1

δ0
+ 2l log 2) + 2δ0T0

)
≤ 4(1 + ϵ)∆max(C

(1a) + C(1b)) ·max(log(
2T

T0
), 1) + o(log T ).

Note that the first inequality applies the soundness guarantee given in Lemma 5.

4.3.3.3 Sampling

Note that the constant C(1a) in the above theorem scales as O(s(k2)).

Thus, when S(2) = [k2] (no sampling), we have that RegretT = O(k1k2 log T ).
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When the number of arms is large, sampling is typically needed to reduce the

computational cost. Using standard concentration techniques which bound the

probability of the event {
∑

j∈S(2) 1{iM1 =i∗1(j)} ≥ s(k2)/2}, we have the following

corollary.

Corollary 2. When Condition 9 holds, there exist β2 > 0 such that when the

sample size s(k2) = β2 log k2, the regret satisfies that RegretT = O(k1 log k2 log T )

with probability 1/k2 for sufficiently large k2.

Corollary 2 can be extended to systems with more than two agents.

Suppose there are m agents, each with k arms. Using the procedure discussed

in Remark 17, and letting the size of sample sets in phase (1) scaling as O(log k),

we have that the regret scales as O((m − 1)k log k log T ) w.p. O(1/k). Note

that the term (m− 1) stems from the number of sub-phases needed in phase

(1).

4.4 Performance Evaluation

In this section, we discuss the potential applications of our main al-

gorithm and evaluate its performance. We consider two wireless scenarios:

channel selection and best scheduler selection.

4.4.1 Multi-Channel Selection

4.4.1.1 A Two-AP Example

We first consider an application example in the wireless channel selection

problem. Suppose two access points (APs) are located within a close range,
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each serving a nearby mobile user. The APs decide amongst a set of channels

(frequency bands) which one to use to serve the respective users. Due to some

environment effects (such as shadowing or exogenous interference), the best

channels are unknown to the APs. Furthermore, the decisions of each AP

will interfere with the rewards received by the other due to channel leakage.

However, since the leakage mainly affects a small number of adjacent channels,

it is reasonable to believe that the majority condition holds, and one can apply

our algorithm to locate the best channel at each AP.

Experiment Settings: Suppose each AP chooses among (the same) n

frequency bands which are indexed 1, 2, · · · , n for each time slot (which lasts

0.5 ms). We set n = 13. The Signal-to-Interference ratio (SIR) at time slot t is

modeled as SIR[t] = Pag[t]/I[t] where Pa is the transmit power of the AP, g[t]

denotes the channel gain at the user and I[t] denotes the interference level. We

set Pa = 23 dBm for both APs. The channel gain is determined through the

path loss, fading properties (Rayleigh fast fading) and a channel-dependent

shadowing gain. We assume the channel-dependent gains (in dB) are drawn

from Gaussian distribution N(0, 6) and constant through the simulation.

Assume that the interference I[t] is exclusively caused by channel leakage

from the nearby AP. We adopt the following simplified power leakage model

for AP s (s = 1, 2): when channel i ∈ [n] is chosen, the relative power leakage

(in dB) in channel j ∈ [n] equals min(0,max(−βs|i − j|,−φs) + γi,j). This

reflects the nature of common channel leakage, i.e., adjacent channels experience

significantly higher interference (subject to channel-dependent “noise” γi,j). In
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our simulation, we set βs = 33 dB, φs = 90 dB and γi,j is randomly chosen

from Gaussian distribution N(0, 4). Note that we do not assume the agents

(APs) have any prior knowledge of the leakage model, and our algorithm can

easily address more complicated models (e.g., with APs using different sets of

channels or abnormal non-adjacent channel leakage). Furthermore, we assume

each mobile user is closer to its corresponding AP, and the relative gain due to

path loss is 20 dB for both users.

Suppose the users have infinitely backlogged queues and the rewards

received by each user equal the number of packets transmitted, i.e., the in-

stantaneous service rate. For any time slot t, the rate at any user i is given

by

Si[t] = BW× log2(1 + 100.1(SIRi[t]−L)) bps (4.1)

where BW is set to be 20 MHz and the parameter L = 3dB describes a loss to

Shannon capacity.

Results : We first run Monte-Carlo simulations to compute mean rewards

received by both APs under different (i1, i2) pairs. Figure 4.3a and 4.3b show a

typical realization of channel rewards (note that the results vary by simulations

due to randomness), where the adjacent channel leakage negatively affects the

rewards in the diagonal squares. In Figure 4.3a, we use red boxes to denote

the best AP-1 arm under each AP-2 arm choice i2, and AP-1 arm 10 is the

majority arm iM1 (under this simulation). Similarly, AP-2 arm 5 is shown as

the majority arm iM2 by Figure 4.3b (which is also i∗2(i
M
1 )).
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Figure 4.3: Simulation results on experiments in Section 4.4.1.1.

We then run the main algorithm to find the best collective arm. For

simplicity, we apply a computationally-efficient version of Track-and-Stop,

assuming the rewards are normally distributed (see [3], Section 2). In particular,

we are interested in the TAS sub-routines in phase (1a) of the algorithm.

Figure 4.3c shows the number of explorations for each arm pair in phase (1a) in

the first episode. As expected, for each sub-routine TAS(·,i2)(δ′l) (corresponding

to each column), typically only the top two arms are heavily explored to

determine the best one — this shows a major advantage of Track-and-Stop
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compared to a naive round-robin exploration. In addition, we use blue boxes

to denote decisions made by each sub-routine. The larger is the reward gap

between the top two arms, the less exploration is required (e.g., when i2 = 13).

Note that phase (1a) stops once the stopping criterion has been met, and not

all of the sub-routines are needed to output a recommendation.

Finally, in Figure 4.3d, we exhibit the cumulative regret over time, which

grows logarithmically with an episodic behavior. We compare our algorithm to

the classical explore-and-commit (ETC) algorithm, which utilizes round-robin

exploration. Our algorithm exhibits a much-improved regret in the exploration

phase, suggesting that the majority-based algorithm with Track-and-Stop

subroutines better exploits the structure of the system.

4.4.1.2 A Three-AP Example

In this experiment, we extend our multi-channel selection example to a

3-AP setting. We follow the channel leakage model introduced in the previous

section, and set βs = 33, 39, 45 dB for s = 1, 2, 3 respectively. The relative

path loss gain ranges from 20 to 40 dB among different pairs of users. Other

parameters remain the same.

Figure 4.4a shows the best arm for AP-1 when each (i2, i3) pair is

selected (for one realization of the channel model). For the simulation we

present here, the majority arm iM1 = 5. Figure 4.4b further exhibits the reward

gap between the majority arm and the second-best in each environment (we set

the gap as 0 when the majority arm 5 is not the best arm in that environment).
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When implementing phase (1a) of the algorithm, we sample 20 (i2, i3)

pairs (otherwise, the number of sub-routines needed significantly grows with

more APs). The total number of explorations of each sampled sub-routine

in the first episode is shown in Figure 4.4c, with orange boxes denoting the

sub-routines that output arm recommendations before phase (1a) finishes — as

expected, “easy” sub-routines with larger reward gap complete faster. A regret

plot is presented in Figure 4.4d for completeness. The regret is computed with

respect to the best collective action (5, 11, 2).

4.4.2 Best Scheduler Selection

In this section, we explore a potential application of our algorithm for

best scheduler selection in wireless queueing systems, which is first proposed

as the “meta-scheduling” problem in [4, 5] (i.e., Chapter 2 and Chapter 3).

Wireless scheduling with queues is a challenging task — many schedulers are de-

veloped (e.g., MaxWeight, Log Rule, Exp Rule, etc.) for specific settings/goals,

however, there lacks a systematic approach to find a good scheduler across

diverse performance metrics and deployment scenarios. A “meta-scheduler” is

introduced as a multi-armed bandit framework which selects the best scheduler

from a set of predefined policies through users’ feedback evaluating the perfor-

mance. This is a flexible model which allows complicated and user-customized

reward schemes to be considered.

The algorithm proposed in Chapter 2 is designed for single-agent sce-

narios. When there are multiple nearby base stations, reward feedback at each
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Figure 4.4: Simulation results on experiments in Section 4.4.1.2.

agent is coupled with decisions from other agents due to signal interference.

Furthermore, different scheduler combinations might lead to heterogeneous

interfering behaviors. Therefore, it can be problematic to run a single-agent

bandit algorithm individually at each station without effective coordination.

Under reasonable interference levels and typical reward schemes, we

believe the systems are weakly coupled. The intuition is that effective scheduling

policies tend to schedule users opportunistically (i.e., making use of good
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channels to improve transmission efficiency), and as a byproduct incur less

interference to other agents (since less power/time is needed to transmit the

same users’ packet flows). Therefore, the majority condition should hold if

the candidate set consists of mostly “good” schedulers. In the following, we

will set up a simple downlink scheduling system and showcase the usage of our

algorithm.

Experiment Settings: Suppose there exists 2 base stations (BS-1 and

BS-2), each serving 4 downlink users. For each base station, we follow a packet

transmission model used in [4]: The instantaneous SINR of user i at time t

equals Pbgi[t]/(σ
2 + Ii[t]), where the transmit power of BS Pb is set to be 47

dBm and the noise level σ2 = −104. The channel gain gi[t] is a combination

of path loss and Rayleigh fast fading, and the path loss (in dB) is computed

as 39.1 log10(dist) + 13.5 + 20 log10(fc) where fc = 2.0 GHz and dist denotes

the user distance. The interference level Ii[t] is a result of packet transmission

of the nearby base station, and Ii[t] = 0 when the other base station is idle.

The instantaneous service rate of each user is computed according to (4.1) with

BW = 10 MHz. Each time slot lasts 0.5 ms and each packet has a fixed size 5

kb.

Let the 4 users served by BS-2 close to their base station (subject to

small interference) with a light load — the arrival rate for each user is set as

0.3 packets/slot. For the 4 users served by BS-1, we set the arrival rate as 0.6

packets/slot and focus on two scenarios: (S1) For each user, the distance to BS-1

(dist1) equals 150 m and the distance to BS-1 (dist2) ranges from 300± 10
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Table 4.1: Mean rewards observed by BS-1 and BS-2 in Scenario (S1) of Section
3.2. The best policy in each environment (row or column) is highlighted in
bold font. The best collective arm is (C, C).

B
S
-1

M
ea
n
R
ew

ar
d
s BS-1 Arms (Policies)

A) B) C) D) E) F)
B
S
-2

A) 0.773 0.549 0.785 0.311 0.768 0.760
B) 0.769 0.508 0.781 0.264 0.764 0.755
C) 0.776 0.571 0.787 0.337 0.771 0.763
D) 0.745 0.046 0.757 0.019 0.739 0.724
E) 0.773 0.541 0.784 0.303 0.768 0.759
F) 0.749 0.117 0.761 0.027 0.744 0.730

B
S
-2

M
ea
n
R
ew

ar
d
s BS-1 Arms (Policies)

A) B) C) D) E) F)

B
S
-2

A) 0.945 0.945 0.944 0.945 0.941 0.943
B) 0.937 0.936 0.933 0.932 0.932 0.930
C) 0.948 0.952 0.953 0.952 0.952 0.951
D) 0.632 0.682 0.633 0.636 0.640 0.634
E) 0.940 0.936 0.941 0.940 0.938 0.941
F) 0.878 0.861 0.871 0.872 0.862 0.875

m. (S2) For each user, dist1 = 150 m and dist2 ∈ 250± 10 m. The second

scenario sees a higher interference level. Each agent chooses over 6 scheduling

policies: A) MaxWeight, B) Max-Queue, C) Max-Rate, D) Round-Robin, E)

Log-Rule, F) Exp-Rule, and collect reward feedback every 200 time slots (aka

one “round”). Packets not transmitted at the end of each round are dropped

to ensure the reward feedback are conditionally independent.5 We define the

5Note that if there is no packet drop, then a “bad” non-stable policy resulting in long
queues will skew the reward feedback for the next round, even if a “good” queue-stabilizing
policy is chosen. Ideally, only good policies are selected after some initial exploration, and
thus the impact of packet drop is minimal. A detailed discussion on this issue is given in [4],
which introduces a queueing cycle-based algorithm to avoid packet drop; adapting it to our
multi-agent setting is of future interest.
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Table 4.2: Mean rewards observed by BS-1 and BS-2 in Scenario (S2) of Section
3.2. The best policy in each environment (row or column) is highlighted in
bold font. The best collective arm is (C, C).

B
S
-1

M
ea
n
R
ew

ar
d
s BS-1 Arms (Policies)

A) B) C) D) E) F)
B
S
-2

A) 0.569 0.183 0.612 0.051 0.596 0.505
B) 0.544 0.125 0.587 0.030 0.575 0.474
C) 0.588 0.221 0.630 0.074 0.611 0.530
D) 0.265 0.010 0.267 0.009 0.372 0.050
E) 0.560 0.168 0.604 0.046 0.588 0.493
F) 0.339 0.010 0.376 0.009 0.417 0.158

B
S
-2

M
ea
n
R
ew

ar
d
s BS-1 Arms (Policies)

A) B) C) D) E) F)

B
S
-2

A) 0.936 0.941 0.945 0.942 0.942 0.939
B) 0.934 0.933 0.936 0.932 0.932 0.931
C) 0.955 0.953 0.951 0.951 0.952 0.952
D) 0.709 0.737 0.700 0.696 0.737 0.671
E) 0.932 0.930 0.938 0.932 0.939 0.932
F) 0.873 0.878 0.876 0.866 0.874 0.871

reward of each packet as 1 − tanh(0.04 ∗ delay) and the reward feedback of

one round is the sum of all packet rewards.

Results: We first compute the mean rewards observed by both base

stations under different policy pairs using Monte-Carlo simulations, which is

presented in Table 4.1 and 4.2 (the rewards are normalized by the episode

length and packet loads). In both Scenario (S1) and Scenario (S2), the best

arm for BS-2 is Max-Rate and the mean rewards do not vary much when BS-1

changes policies due to the low load and negligible interference.

Now let us focus on the rewards observed by BS-1. In Scenario (S1), it

turns out Max-Rate is the best arm of BS-1 no matter what policy BS-2 selects
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(due to the relatively low interference level compared to Scenario (S2)). This can

be expected since in our simulation settings, all the users are almost symmetric

(in terms of load and service rates) — the Max-Rate policy, which greedily

serves the user with the best service rate, is proved to be efficient in minimizing

packet delays for symmetric moderate-load scenarios. By contrast, in Scenario

(S2), as the interference level increases (with service rates degrading), for some

choices of BS-2 (Round-Robin and Exp-Rule), Max-Rate performs badly —

instead, the Log-Rule policy which has a better queue-stabilizing property

prevails in these cases.6 However, the majority condition still holds for Scenario

(S2), showing the robustness of our model, and our algorithm can indeed be

applied to find the best collective policy.

Finally, we run the main algorithm for both scenarios. The simulation

results are exhibited in Figure 4.5. For each scenario, we show the exploration

heatmap for the algorithm phase (1a) in the first episode — the best policy is

identified with most of the explorations focusing on good performing policies.

Moreover, not all Track-and-Stop sub-routines are needed to complete, and we

use blue boxes to denote finished sub-routines. As a result, our algorithm has

a lower regret than ETC as shown in Figure 4.5b and Figure 4.5d.

6To be precise, the Max-Rate policy, unlike Log-Rule or MaxWeight, is not throughput-
optimal and has a smaller capacity region. In this setting, when BS-2 chooses Round-Robin
or Exp-Rule which turns out incurring more interference, Max-Rate no longer stabilizes the
load and tends to result in long queues, thus worsening the delay metric.
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Figure 4.5: Simulation results on experiments in Section 4.4.2.

4.5 Conclusion

In this chapter we study an online learning framework for the multi-

agent resource allocation problem. In particular, we focus on so-called weakly

coupled systems with a special arm-reward structure — the majority condition,

which states that most of the time the best arm of each agent is invariant

to other agents’ arm selection. When this condition holds, the optimal arms

can be learned with local signals (reward feedback) with proper coordination

from other agents, therefore allowing the design of less demanding algorithms

compared to classical methods which simply examine all the collective actions.
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Furthermore, we develop an efficient decentralized bandit algorithm with

minimal communication overheads. Through simulation, we validate the

usefulness of our model and algorithm in two wireless settings: channel selection

among nearby APs, and best scheduling policy selection by interfering base

stations. We believe weak coupling is a reasonable abstraction for several

wireless applications, and it is of great interest to explore its benefits in other

related settings.
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Chapter 5

Conclusion

The main focus of this dissertation is exploring the applications of multi-

armed bandit algorithms in wireless systems so as to improve the adaptability

and robustness of wireless scheduling/resource allocation.

We first studied the multi-user scheduling problem for the wireless down-

link with instantaneous channel rate and queue information. We introduced the

notion of “meta-scheduling” which formulates the selection of a good wireless

scheduler as a bandit problem, then propose a UCB-type bandit algorithm that

adapts to the queueing dynamics (e.g., dealing with the randomness of cycles).

Then, we extended the meta-scheduling idea and studied a model of hierarchical

scheduling in the context of network slicing, in which the base station learns

the optimal option among infinitely many arms. We formulated the problem as

a blackbox optimization and addressed it with CHOOC, an HOO-type bandit

algorithm adaptive to random queueing cycles. Lastly, we moved to a multi-

agent setting, where neighboring learning agents’ decisions are coupled with

each other through interference. We identified a low-complexity structure —

the weakly-coupled system — and proposed a decentralized bandit algorithm to

learn the best collective actions. For each segment, we both provided rigorous
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theoretical proof to show that the proposed algorithm gives a desired sub-linear

regret compared to a genie and demonstrated the effectiveness of the algorithm

through a series of experiments using simulation.

The results show that through online learning with bandit feedback,

agent(s) are capable of adjusting their strategies/policies to improve the overall

performance at a manageable cost, which supports our main statement:

Wireless resource allocation problems can be approached by multi-armed

bandit algorithms to systematically address the complexity of systems

and improve the robustness to changing environments.

In the following sections, we provide a summary of our contributions

and discuss potential research directions for future work.

5.1 Summary of Contributions

Chapter 2: In this chapter, we studied a multi-armed bandit framework

for multi-user scheduling in wireless downlink. We called the framework “meta-

scheduling”, where an overlay algorithm, the meta-scheduler, dynamically

selects the best scheduler amongst a candidate set. We proposed a UCB-based

meta-scheduling algorithm with a cycle interruption mechanism adapting to

queueing system dynamics. Through mathematical analysis, we showed that

the algorithm gives a logarithmic regret. Finally, through simulation, we

exhibited the algorithm’s learning ability in choosing the optimal schedulers

under different traffic/reward conditions.
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Chapter 3: In this chapter, we delved into an online learning-based

hierarchical scheduling framework in support of network slicing applications.

In this framework, the scheduler is parameterized by a weight vector used

for slice-level resource allocation. Compared to the model in Chapter 2, the

focus is on selecting weights across a continuum with an infinite number of

options (arms), which is aligned with a blackbox optimization problem. We

designed a modified HOO algorithm, CHOOC, tackling the technical challenges

of random queueing cycles and clipping. The theoretical analysis of CHOOC

showed a sub-linear regret at the same order of the original HOO. Finally, we

conducted an empirical evaluation of the algorithm in various wireless settings

to demonstrate its adaptability in handling performance tradeoffs across slices.

Chapter 4: In this chapter, we extend our work to a multi-agent bandit

setting. We consider scenarios where multiple agents select from a range of

scheduling options, and the performance experienced by one agent is influenced

by decisions made by other agents. We focused on weak coupling, a low-

complexity arm-reward structure that states that most of the time the optimal

arm for each agent remains unchanged despite the arm selections by other

agents. Accordingly, we proposed a decentralized and efficient bandit algorithm,

using Track-and-Stop as a building block. We validated the efficacy of our

model and algorithm through both theoretical regret analysis and empirical

studies.
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5.2 Future Directions

In this section, we discuss some ideas for future research that could

potentially be explored.

5.2.1 Empirical Study in Practical Settings

In this dissertation, we explored various applications of multi-armed

bandit algorithms in wireless/queueing system settings. The simulation results

showed that the online learning approach improves the adaptability and robust-

ness of a scheduling agent to complicated environments. However, the empirical

studies were conducted using synthetic data emulating queueing/channel dy-

namics of a wireless system based on simplified assumptions. It would be

interesting to see how the algorithms perform in more practical settings. With

real-world data, it can be imagined that some of the assumptions may not be

always fulfilled (e.g., the i.i.d. assumptions of queueing cycles and rewards),

and some practical workarounds might be needed – this can lead to additional

algorithmic/theoretical interest as well. For example, if a system observes

periodic fluctuation of traffic, it could be helpful to set up heuristic rules to

cluster the traffic “contexts” based on side information (e.g., number of users

within a cell), and run separate bandit instances for each context to possibly

accelerate convergence and improve the overall performance — the design and

corresponding benefits of such practices depend on the traffic pattern and are

better to be validated using practical data.
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5.2.2 Extension to Multi-Agent Settings

In Chapter 4, we formulated a multi-agent bandit setting where bandits

were coupled and focused on a low complexity structure — weak coupling under

the majority condition. It would be interesting to explore other structures akin

to such coupled multi-agent settings. One possible direction could be exploiting

the structure of the coupling topology. Recall that in Chapter 4, when there

are more than two agents, we simply consider a complete graph to describe

the mutual coupling effects (i.e., each agent can be influenced by any other

agent in the system). In practice, however, one agent may only be coupled with

neighboring agents, and agents are arranged under some simple geographic

patterns (e.g., grids). There is potential to leverage this type of structure to

design efficient bandit algorithms so as to learn the optimal collective action.

5.2.3 Meta-Scheduling in Non-Stationary Settings

In this dissertation, we typically assume the stochastic processes de-

scribing the system (e.g., rewards, traffic flows) to be stationary within the

running time of the algorithm. When the environment drastically changes, an

easy practical fix could be re-running the algorithm as discussed in Chapter 2.

Indeed, there could be significant practical/theoretical interest in studying

meta-scheduling in a non-stationary setting. We could possibly leverage ideas in

the literature of non-stationary bandits (e.g., using a sliding window for recent

feedback when computing empirical averages, see Chapter 31 in [27]) to design

new meta-scheduling algorithms, which are capable of “cleverly” capturing the

142



change of environments as well as adapt to wireless/queuing system settings.
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Appendix A

Appendix for Chapter 2

A.1 Derivation of Equation 2.18

When β>(1+γ)(µmax+ν
2/α) and κ > 4α, one can show that

E[U (∗)
1 ]− 1

s

s∑
i=1

E[Û (∗,fi)
i ]

≤1

s

s∑
i=1

∞∑
l=⌈fi⌉

E[U (∗)(1)|C(∗)(1) = l]P(C(∗)(1) = l)

≤1

s

s∑
i=1

∞∑
l=⌈fi⌉

rmax l P(C(∗)(1) = l)

≤1

s

s∑
i=1

rmax

fiP(C(∗)(1) ≥ fi) +
∞∑

l=⌈fi⌉

P(C(∗)(1) ≥ l)


≤1

s

s∑
i=1

rmax

iκ/2α
(β+2α+κ log i+1)e−βγ/2(1+γ)α (A.1)

≤1

s
rmax

π2

6
(β+2α+κ log s+1)e−βγ/2(1+γ)α. (A.2)

Equation (A.1) gives the term ϵ′n,s in (2.18), which is further bounded by (A.2).

Hence, ϵ′n,s ∼ O(log s/s).
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A.2 Proof of Lemma 1

Proof. We apply a technique commonly used in classical UCB proofs [27]: Let

H(k)(s) denote the cycle index when the arm k is first selected s times, i.e.

H(k)(s) = min{n : T (k)
n = s}. (A.3)

If there exists a positive non-decreasing function g(k)(n) and an event En for

each n such that

{An = k} ⊂ En ∪ {T (k)
n−1 < g(k)(n)}, (A.4)

then we have that

E[T (k)
n ] =E[

n∑
m=1

1{Am=k}]

=E[
n∑

m=1

1{m≤H(k)(g(k)(n))}1{Am=k}]

+ E[
n∑

m=1

1{m>H(k)(g(k)(n))}1{Am=k}]

≤g(k)(n) + E[
n∑

m=n0+1

1Em
1{Am=k}], (A.5)

where n0 := min(H(k)(g(k)(n)), n−1). Note that the last inequality holds since

m > H(k)(g(k)(n)) =⇒ T
(k)
m−1 ≥ g(k)(n) ≥ g(k)(m)

=⇒ {Am = k} ⊂ Em ∩ {Am = k}.

Therefore, for any k ̸= k∗, it suffices to find a function g(k)(n) and some

En such that (A.4) holds and both g(k)(n) and E[
∑n

m=n0+1
1Em1{Am=k}] are
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sub-linear (or even finitely bounded). In plain language, this means finding a

suitable g(k)(n) such that when a suboptimal arm k has been played sufficiently

many times (larger than g(k)(n)), the probability of selecting k for n-th cycle

is negligible.

The lemma is proved for k ∈ Au(λ) and k ∈ As(λ)\{k∗} respectively.

Unstable Arms: Recall that pk = P(C(k)
1 =∞) and pk > 0 for unstable arms.

Let Y
(k)
s = 1{C(k)

s >fs}. Observe that if An = k ∈ Au(λ), one of the following

events must occur for n > |A| (excluding the initialization round):

E1,n = {
T

(k)
n−1∑
i=1

Y
(k)
i − pkT (k)

n−1 ≤ −
√
2T

(k)
n−1 log n}

E2,n = {pkT (k)
n−1 < 2

√
2T

(k)
n−1 log n+

π2

6
}

Otherwise, −
∑T

(k)
n−1

i=1 Y
(k)
i + π2

6
+

√
2T

(k)
n−1 log n > 0 and the stability indicator

will eliminate arm k for this decision.

If E2,n is true, T
(k)
n−1 < (18/pk

2) log n. The probability of E1,n is bounded

by Bernstein’s inequality. Note that

P

(
s∑

i=1

Y
(k)
i − pks < −

√
2s log n

)
<

1

n4
∀1 ≤ s ≤ n.

The value P(E2,n) is bounded by taking a union bound over all possible s.

Therefore, applying the reasoning in (A.5), for all k ∈ Au(λ),

E[T (k)
n ] ≤1+⌈18

pk2
log n⌉+

n∑
m=|A|+1

E[1E1,m
1{Am=k}]

≤1+⌈18
pk2

log n⌉+
∞∑

m=1

m∑
s=1

1

m4
≤⌈18
pk2

log n⌉+π
2

6
+1.
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The “plus 1” term corresponds to the first exploration in the initialization

round.

Stable Arms: For all n > |A|, if An = k ∈ As(λ) \ {k∗}, one of the following

events must happen:

E3,n = {−
T

(∗)
n−1∑
i=1

Y
(∗)
i +

π2

6
+

√
2T

(∗)
n−1 log n ≤ 0},

E4,n = {R̂(k)(n−1)− R̄(k)(n−1) > d(k)

4
},

E5,n = {R̄(k)(n−1) ≥ r(k) +∆′(ϵ̂(k)n )},

E6,n = {R̂(∗)(n−1) ≤ r(∗) −∆(ϵ(∗)n , ϵ′(∗)n )},

E7,n = {∆′(ϵ̂(k)n ) + ∆(ϵ(k)n , ϵ′(k)n ) >
3d(k)

4
}.

The variables R̄(k)(n) and ∆′(ϵ̂
(k)
n ) will be defined later. We argue by contra-

diction. Assume that the five events are all false, then we have

−
T

(∗)
n−1∑
i=1

Y
(∗)
i +

π2

6
+

√
2T

(∗)
n−1 log n > 0, and

R̂(k)(n−1) + ∆(ϵ(k)n , ϵ′(k)n ) < R̂(∗)(n−1) + ∆(ϵ(∗)n , ϵ′(∗)n ),

and thus we reach a contradiction that An ̸= k.

Next, we transform the event
⋃7

j=3 Ej,m into the form exhibited in (A.4)

to investigate bounds on E[T (k)
n ].

E3,n and E6,n: These two events correspond to the design of the stability

indicator and the exploration bonus respectively. By McDiarmid’s inequality,
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we observe that

P

(
s∑

i=1

Y
(∗)
i − π2

6
≥
√

2s log n

)
<

1

n4
, ∀s ≤ n.

By the concentration property stated in Assumption 2 and Eqs. (2.17)–(2.19),

we have that

P
(
R̂(∗)

s +∆(ϵn,s, ϵ
′
n,s) ≤ r(∗)

)
≤ P

(
1

s

s∑
i=1

Ĉ
(∗,fi)
i > E[C(∗)

1 ] + ϵn,s

)
+

P

(
1

s

s∑
i=1

Û
(∗,fi)
i ≤E[U (∗)

1 ]− ϵ′n,s − ϵn,s

)
≤ 2

n3
, ∀s ≤ n.

Note that the term (1/s)
∑s

i=1Û
(∗,fi)
i is (ν2/s, α/s)-sub-exponential by the

technical assumption in item (3) of Assumption 3.

Therefore, we conclude that
n∑

m=|A|+1

∑
j={3,6}

E[1Ej,m
1{Am=k}]

≤
n∑

m=|A|+1

(P (E3,n) + P (E6,n))

≤
n∑

m=1

m∑
s=1

(
1

m3
+

2

m3
) ≤ π2

2
. (A.6)

E4,n: Now we define the “non-truncated” empirical rate of arm k after

s samples as R̄
(k)
s , where for all s ≥ 1,

R̄(k)
s =

s∑
i=1

U
(k)
i

s∑
i=1

C
(k)
i

.
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Therefore, E4,n describes the event that the observed average R̂(k)(n) is

significantly higher than the non-truncated empirical average R̄(k)(n), which is

possible if a substantial number of arm k’s samples are interrupted. We will

show that this will not occur w.h.p. after the sub-optimal arm k is played a

sufficient number of times.

Observe that, for any s ≤ n

P
(
R̂(k)

s − R̄(k)
s >

d(k)

4

)

≤P


s∑

i=1

U
(k)
i

s∑
i=1

C
(k)
i

·

(
s∑

i=1

C
(k)
i −

s∑
i=1

Ĉ
(k,fi)
i

)
s∑

i=1

Ĉ
(k,fi)
i

>
d(k)

4



≤P

r̄ ·
s∑

i=1

C
(k)
i 1{C(k)

i >fi}

s
>
d(k)

4

 .

First consider the case when k ∈ A0. Then κ/αk = κ/α > 4 by

the algorithm setting. Therefore, by Assumption 2 and 3, we have that

E[
∑s

i=1 1{C(k)
i >fi}] ≤ π2/6. Let M

(k)
1 be a constant such that

r̄ ·
(E[C(k)

1 ]+6αk logM
(k)
1 )(π

2

6
+

√
M

(k)
1 logM

(k)
1 )

M
(k)
1

≤ d
(k)

4
.

Then we apply proof by contrapositive to see that

E4,n ⊂ E4,n,(1) ∪ E4,n,(2) ∪ E4,n,(3)

where

E4,n,(1) = {T (k)
n−1 < M

(k)
1 },
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E4,n,(2) =

T
(k)
n−1⋃
i=1

{C(k)
i >E[C(k)

1 ] + 6αk log T
(k)
n−1},

E4,n,(3) = {
T

(k)
n−1∑
i=1

1{C(k)
i >fi}>

π2

6
+

√
T

(k)
n−1 log T

(k)
n−1}.

We can derive that

n∑
m=|A|+1

∑
j={2,3}

E[1E4,m,(j)
1{Am=k}]

≤
∞∑
s=1

P(
s⋃

i=1

{C(k)
i >E[C(k)

1 ] + 6αk log s)

+
∞∑
s=1

P(
s∑

i=1

1{C(k)
i >fi}>

π2

6
+
√
s log s)

≤
∞∑
s=1

(
s∑

i=1

1

s3
) +

1

s2
≤ π2

3
(A.7)

In the first inequality we move from the “global” cycle index m to the “local”

index s (denoting the number of cycles selecting arm k), since E4,m,(2) and

E4,m,(3) only depend on the number of samples T
(k)
m−1 (rather thanm). The second

inequality is given by Assumption 2 and McDiarmid’s inequality respectively.

When k /∈ A0, however, the value
∑s

i=1 1{C(k)
i >fi} does not satisfies the

concentration property, since it is possible that αk > α and κ/αk < 4. That

means this stable arm k can still be interrupted relatively frequently due to

our underestimating of the distribution’s tails.

We note that due to the design of the stability indicator, if An = k,
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there is a natural bound on
∑T

(k)
n−1

i=1 1{C(k)
i >fi} w.h.p. given by,

T
(k)
n−1∑
i=1

1{C(k)
i >fi} ≤ π2/6 +

√
2T

(k)
n−1 log n, (A.8)

i.e., the stability indicator of arm k at n-th decision is true. If this bound does

not hold, then the indicator of every arm must be all false (including the best

arm) such that the random tie-breaker has a chance to select k, which implies

that E3,n must happen.

Now let J
(k)
1 be a constant such that for any s ≥ (J

(k)
1 log1+δ n ∨ χ) for

some δ > 0 and χ > 1,

r̄ ·
(E[C(k)

1 ]+6αk log s)(
π2

6
+
√
2s log n+1)

s
≤ d

(k)

4
.

One choice of J
(k)
1 can be such that for any χ > 1,

J
(k)
1 ≥

4

d(k)
r̄
(E[C(k)

1 ]+6αklog(J
(k)
1 log1+δχ))(π

2

6
+

√
2J

(k)
1 log2+δχ+1)

log1+δ χ
.

Following a similar argument as in the last case, we have that

E4,n ⊂ Ẽ4,n,(1) ∪ E4,n,(2) ∪ Ẽ4,n,(3),

where

Ẽ4,n,(1) = {T (k)
n−1 < J

(k)
1 log1+δ n ∨ χ},

Ẽ4,n,(3) = {
T

(k)
n−1∑
i=1

1{C(k)
i >fi} >

π2

6
+

√
2T

(k)
n−1 logn}.

Note that {An = k} ∩ Ẽ4,n,(3) ⊂ E3,n as discussed earlier and we can apply the

similar bound as in (A.7).
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To interpret the result, we note that when the number of samples

selecting arm k (k /∈ A0) grows slightly faster than O(log n), there must exist

enough samples of k that are not interrupted (due to the stability indicator),

which helps to guarantee R̂
(k)
s ≈ R̄

(k)
s .

E5,n: This event describes that the empirical reward rates of sub-optimal

arms show a nice concentration around r(k), which contributes to Assumption 2.

Recall that ∆̄(ϵ) defined in (2.15) such that R̄(∗)(n) ≤ r(∗) − ∆̄(ϵ
(∗)
n )

w.h.p. Similarly, define that

∆′(ϵ) :=
ϵ(1 + E[U (k)(1)]/E[C(k)(1)])

max(E[C(k)(1)]− ϵ, 1)

Then we have

{R̄(k)
s ≥r(k)+∆′(ϵ)} ⊂ {1

s

s∑
i=1

C
(k)
i ≤max(E[C(k)

1 ]−ϵ, 1)}

⋃
{1
s

s∑
i=1

U
(k)
i ≥ E[U (k)

1 ] + ϵ}.

Let ϵ̂n,s be defined as ϵn,s in (2.17) except that (α, ν2) is replaced by (αk, ν
2
k).

And let ϵ̂
(k)
n = ϵ̂

n,T
(k)
n−1

. Then,

P(R̄(k)(n) ≥ r(k) +∆′(ϵ̂(k)n ))

≤
n∑

s=1

P(R̄(k)
s ≥ r(k) +∆′(ϵ̂n,s)) ≤

1

n2
,

and thus

n∑
m=|A|+1

E[1E5,m
1{Am=k}] ≤

n∑
m=|A|+1

P(E5,m) ≤
π2

6
. (A.9)
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E7,n: Now we show that E7,n is always false when T
(k)
n−1 is large enough.

Let ρ := µmin

µmin+1
. First observe that

{∆(ϵ(k)n , ϵ′(k)n ) + ∆′(ϵ̂(k)n ) ≤ 3d(k)

4
}

⊃ {ϵ
(k)
n (1+rmax)

µmin

≤ d
(k)

2
(1−ρ)}︸ ︷︷ ︸

E1

∪{ ϵ
′(k)
n

µmin

≤ d(k)

4
}︸ ︷︷ ︸

E2

∪ {ϵ̂(k)n (1+rmax) ≤
d(k)

2
ρ}︸ ︷︷ ︸

E3

.

The first and the third set imply that

E1 ⊂{T (k)
n−1≥(

24(1+rmax)
2ν2

(d(k))2ρ2
∨ 12(1+rmax)α

d(k)ρ
)︸ ︷︷ ︸

K
(k)
2

·log n},

E3 ⊂{T (k)
n−1≥(

24(1+rmax)
2ν2k

(d(k))2ρ2
∨ 12(1+rmax)αk

d(k)ρ
)︸ ︷︷ ︸

K
(k)
3

·log n}.

The second set E2 implies T
(k)
n−1 ≥ M

(k)
2 where M

(k)
2 is defined as the smallest

integer such that

rmax

M
(k)
2

· π
2

6
e−β/4α(β + 2α + κ logM

(k)
2 + 1) <

d(k)

4
µmin.

These three results indicate that when E7,n occurs, T
(k)
n−1 < (K

(k)
2 ∨ K

(k)
3 ) log n ∨

M
(k)
2 .

Combining the analysis of the five events, we can conclude that for

k ∈ A0,

g(k)(n) = ⌈(K(k)
2 ∨ K

(k)
3 ) log n ∨M

(k)
1 ∨M

(k)
2 ⌉+ 1,
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En = E3,n ∪ E4,n,(2) ∪ E4,n,(3) ∪ E5,n ∪ E6,n.

as indicated in (A.4). Note that K
(k)
2 ∨ K

(k)
3 = K

(k)
2 since ν2k ≤ ν2, αk ≤ α for

k ∈ A0, and E[
∑n

m=|A|+1 1Em1{Am=k}] is bounded by π2 (see Eqs. (A.6), (A.7)

and (A.9)). The case of k /∈ A0 follows the same reasoning. This finishes the

proof.

A.3 Proof of Theorem 1

Proof. Claim (1): Note that Nπ[τ ] ≤ τ . Clearly, we have that

E[D[τ ]] ≤

(
E[
∑
k∈A

τ∑
n=1

1{An=k}1{C(k)(n)>f
T
(k)
n

}]

)
āufτ ,

where the term in parentheses bounds the number of interruptions in total

while āufτ is the maximal number of packets that can occur in a cycle before

time τ (since fτ is the largest possible length of a cycle).

Note that the expected number of interruptions of arm k is either

bounded by π2/6 if k ∈ A0 or (trivially) bounded by E[T (k)
τ ] otherwise. Indeed,

a better bound can be found for k /∈ A0. Take k ∈ Au(λ) as an example, we

observe that

E[
τ∑

n=1

1{An=k}1{C(k)(n)>f
T
(k)
n

}]

≤
τ∑

n=1

E[1{An=k}1{T (k)
n−1<g

(k)
1 (τ)}1{C(k)(n)>f

T
(k)
n

}]
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+
τ∑

n=1

E[1{An=k}1{T (k)
n−1≥g

(k)
1 (τ)}],

≤E[
g
(k)
1 (τ)∧T (k)

τ∑
s=1

1{C(k)
s >fs}]+

τ∑
n=1

E[1{An=k}1E1,n
],

≤E[
g
(k)
1 (τ)∧T (k)

τ∑
s=1

1{C(k)
s >fs}]+

π2

6
.

Recall that E1,n is defined in the proof of Lemma 1.

Now we define for any integer random variable N ≥ |A|+ 1 (a.s.),

E3,N =
⋃

n≥|A|+1

{N = n} ∩ E3,n.

Then events E3,H(k)(s) are well-defined1 for any s ≥ 2, where H(k)(s) is defined

in (A.3). Observe that, on anywhere but E
3,H(k)(2∧g(k)1 (τ)∧T (k)

τ )
∩{g(k)1 (τ)∧T (k)

τ ≥

2}, we have

g
(k)
1 (τ)∧T (k)

τ −1∑
s=1

1{C(k)
s >fs} ≤

π2

6
+

√
2g

(k)
1 (τ) log τ a.s.

Otherwise the (g
(k)
1 (τ) ∧ T (k)

τ )-th sample will not be chosen due to the stability

indicator (a similar argument is given in (A.8)). Note that H(g
(k)
1 (τ)∧ T (k)

τ ) ≤

τ (a.s.).

Therefore,

E[
g
(k)
1 (τ)∧T (k)

τ∑
s=1

1{C(k)
s >fs}]

1Events E3,H(k)(1) are not well-defined, since H(k)(1) ≤ |A|.
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≤ (
π2

6
+

√
2g

(k)
1 (τ) log τ+1)

+E[(g(k)1 (τ)∧T (k)
τ )1E

3,H(k)(2∧g
(k)
1 (τ)∧T

(k)
τ )

],

≤ π2

6
+

√
2g

(k)
1 (τ) log τ + 2.

The last inequality is given by the fact that P(E3,n) ≤ 1/n3 (see (A.6)) and

H(k)(s) ≥ s (a.s.) for all s.

Finally, the claim is proved by combining all the bounds discussed above.

Claim (2): We follow a similar approach as developed in [32]. First

we claim that the expected cumulative reward of πopt over a time horizon τ is

bounded as follows:

E[Rewπopt [τ ]] ≤ r(∗)τ + r(∗)
E[(C(∗)(1))2]

E[C(∗)(1)]
.

To prove this claim, observe that,

E[Rewπopt [τ ]] ≤ E[
Nπopt [τ ]+1∑

n=1

U (∗)(n)],

= E[
∞∑
n=1

1{Sπopt

n−1 ≤τ}E[U (∗)(n)]],

≤ r(∗)E[
∞∑
n=1

1{Sπopt

n−1 ≤τ}E[C(∗)(n)]],

= r(∗)E[
Nπopt [τ ]+1∑

n=1

C(∗)(n)],

≤ r(∗)(τ +
E[(C(∗)(1))2]

E[C(∗)(1)]
).
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Note that the second and fourth equations hold true due to the independence

of Sπopt

n−1 and (C(∗)(n), U (∗)(n)). The last line follows Lorden’s inequality for

overshoot.

We note that τ can be further bounded with respect to meta-policy π

as follows:

τ ≤ E[
Nπ [τ ]∑
n=1

∑
k∈A

1{An=k}Ĉ
(k,f

T
(k)
n

)
(n)]+ fτ .

Thus, we have the following upper bound:

E[Rewπopt [τ ]] ≤ r(∗)(E[
Nπ [τ ]∑
n=1

∑
k∈A

1{An=k}Ĉ
(k,f

T
(k)
n−1

)

(n)])

+ r(∗)fτ + r(∗)
E[(C(∗)(1))2]

E[C(∗)(1)]
.

The lower bound of E[Rewπ[τ ]] is given by

E[Rewπ[τ ]] ≥ E[
Nπ [τ ]∑
n=1

∑
k∈A

1{An=k}Û
(k,f

T
(k)
n

)
(n)].

Therefore, the regret is bounded by

E[Rewπopt [τ ]− Rewπ[τ ]] ≤ T1+ T2+ r(∗)fτ +O(1) (A.10)

where

T1 =
∑

k∈A\A0

E[
Nπ [τ ]∑
n=1

1{An=k}× (r(∗)Ĉ
(k,f

T
(k)
n

)
(n)− Û

(k,f
T
(k)
n

)
(n))],

T2 =
∑
k∈A0

E[
Nπ [τ ]∑
n=1

1{An=k}× (r(∗)Ĉ
(k,f

T
(k)
n

)
(n)− Û

(k,f
T
(k)
n

)
(n))].
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Here the term T1 denotes the regret induced by the arms that have frequent

interruptions, which includes unstable arms and stable arms that are not in

A0 with respect to the hyper-parameters. Observe that

T1 ≤
∑

k∈A\A0

E[
∞∑
n=1

1{Sπ
n−1≤τ}1{An=k}× (r(∗)E[Ĉ

(k,f
T
(k)
n

)
(n)]− E[Û

(k,f
T
(k)
n

)
(n)])],

≤
∑

k∈A\A0

E[
∞∑
n=1

1{Sπ
n−1≤τ}1{An=k}× (r(∗) − r̃(k))E[Ĉ

(k,f
T
(k)
n

)
(n)]],

≤
∑

k∈A\A0

(r(∗) − r̃(k))E[T (k)
τ ]fτ . (A.11)

The first inequality holds true since Sπ
n−1 andAn are independent of Ĉ

(k,l)(n), Û (k,l)(n)

for any l.

For the term T2, which indicates the regret induced by the arms with

few interruptions (i.e., arms in A0), we can derive the following bound.

T2 ≤
∑
k∈A0

E[
Nπ [τ ]∑
n=1

1{An=k}(r(∗)C(k)(n)− U (k)(n))]

+E[
Nπ [τ ]∑
n=1

1{An=k}(U (k)(n)− Û
(k,f

T
(k)
n

)
(n))]

 ,

≤
∑
k∈A0

E[
Nπ [τ ]∑
n=1

1{An=k}(r(∗) − r(k))E[C(k)(n)]]+ E[
∞∑
i=0

(U
(k)
i − Û

(k,fi)
i )]

 ,

≤
∑
k∈A0

(
(r(∗) − r(k))E[T (k)

τ ]µmax + E[
∞∑
i=0

1{C(k)
i >fi}U

(k)
i ]

)
,

≤
∑
k∈A0

(
(r(∗) − r(k))E[T (k)

τ ]µmax + rmax
π2

6
e−β/4α(fτ+2α+1)

)
. (A.12)

Note that the value E[
∑∞

i=0 1{C(k)
i >fi}U

(k)
i ] is bounded using a similar derivation

from Appendix A.1.
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In conclusion, by combining Eqs. (A.10)–(A.12), we have that

E[Rewπopt [τ ]− Rewπ[τ ]] ≤ fτ
∑

k∈A\A0

(r(∗) − r̃(k))E[T (k)
τ ]

+ µmax

∑
k∈A0

(r(∗)−r(k))E[T (k)
τ ] +O(log τ).

Then the main claim is proved by applying Lemma 1.

A.4 Proof of Corollary 1

Proof. To show this result, we first present the following lemma.

Lemma 7. Consider a queueing system with an initial state Q[0], in which

the number of packet arrivals each slot is bounded. Suppose a stable policy is

applied such that there exist a Lyapunov function ϕ(·), a bounded set Q and

constants ψmax, ι > 0 such that

E[ϕ(Q[k+1])− ϕ(Q[k]) | Q[k]] ≤

{
ψmax, if Q[k] ∈ Q,

−ι, if Q[k] /∈ Q,

then the mean hitting time E[ωb|Q[0]], where ωb := min{k ≥ 0 : ϕ(Q[k]) <

maxQ∈Q ϕ(Q)}, is bounded by C1ϕ(Q[0]) for some constant C1.

Proof. Consider the case when Q0 /∈ Q (since the result is trivial otherwise).

According to Theorem 2.3 in [39], when the queueing system has bounded

arrivals and satisfies the Lyapunov stability condition, there exists a constant c

such that for any η < ι/c and ρ = 1− ιη + cη2, the following inequality holds:

P (ωb > k | Q[0]) < eη(ϕ(Q[0])−b)ρk,
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where b := maxQ∈Q ϕ(Q). Therefore, we have that

E[ωb | Q[0]] ≤
∞∑
k=0

P (ωb > k | Q[0])

≤ eη(ϕ(Q[0])−b) ρ

1− ρ

≤ eη(ϕ(Q[0])−b) 2

ιη
, when η ≤ ι

2c
.

Take η = min( 1
ϕ(Q[0])−b

, ι
2c
), then it follows that

E[ωb | Q[0]] ≤ 2e

ι
(ϕ(Q[0])− b)

and the claim is proved.

Note that the average hitting time from any queueing state within a

compact (finite) set Q to the idle state (i.e., Q = 0) is bounded by a (Q-

dependent) constant, since the Markov chain of the queueing system is positive

recurrent under a stable policy. This implies that when a cycle is interrupted

with initial state Q[0], it takes C1ϕ(Q[0]) time (for some C1) for a stable policy

like MaxWeight to return the system to the idle state.

Note that ϕ(Q) = ∥Q∥22 is the Lyapunov function used to show the

stability of MaxWeight [7]. By our model settings (in particular, bounded

arrivals per time slot) and the interruption rule, there exists a constant C2 such

that the longest queue (after an interrupted cycle) is bounded by C2 log τ for

any interruption before horizon τ . This leads to an extra regret bounded by

rmax|U|C1C
2
2 log

2 τ per interruption. Furthermore, since the average number of

interruptions is logarithmic as bounded by Lemma 1, the claim of this corollary

is proved.
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Appendix B

Appendix for Chapter 3

B.1 Proof of Lemma 2

As a shorthand notation, we define an event Gn(h, i) for any (h, i) ∈ T

and n ≥ 1 where

Gn(h, i) := [(Hn, In) ∈ D(h, i)].

Recall that we denote (Hn, In), (Ĉn, Ûn), (Cn, Un) as the (random)

selected node, observed length/reward, unclipped length/reward for cycle n

under CHOOC, and D(h, i) as the descendants of node (h, i) including itself.

Let i∗ be the shorthand of i∗h when there is no ambiguity.

Proof of Lemma 2. Note that Bh,i∗(n) = ∞ when T
(n)
h,i∗ = 0. Hence, it

suffices to assume T
(n)
h,i∗ ≥ 1.

By Assumption 5, we have f ∗ − f(w) ≤ νρh for all w ∈ Ph,i∗ . Observe

that ∑n
t=1 E[Ut]1Gt(h,i∗)∑n
t=1 E[Ct]1Gt(h,i∗)

≥ inf
w∈Ph,i∗

f(w).

Thus, we have that

f ∗ − νρh −
∑n

t=1 E[Ut]1Gt(h,i∗)∑n
t=1 E[Ct]1Gt(h,i∗)

≤ 0.
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Then we have the following equations:

P (Bh,i∗(n) ≤ f ∗)

= P
(
R̂h,i∗(n) + Φh,i∗(n) + νρh ≤ f ∗

)
,

= P
(
(f ∗ − νρh −

∑n
t=1 E[Ut]1Gt(h,i∗)∑n
t=1 E[Ct]1Gt(h,i∗)

)

+

∑n
t=1 E[Ut]1Gt(h,i∗)∑n
t=1 E[Ct]1Gt(h,i∗)

− R̂h,i∗(n) ≥ Φh,i∗(n)

)
,

≤ P
(∑n

t=1 E[Ut]1Gt(h,i∗)∑n
t=1 E[Ct]1Gt(h,i∗)

− R̂h,i∗(n) ≥ Φh,i∗(n)

)
,

= P

(∑n
t=1 E[Ut]1Gt(h,i∗)∑n
t=1 E[Ct]1Gt(h,i∗)

−
∑n

t=1 Ût1Gt(h,i∗)∑n
t=1 Ĉt1Gt(h,i∗)

≥ Φh,i∗(n)

)
. (B.1)

Now observe that

Φh,i(n) = Φ̃(ϵh,i(n), ϵ
′
h,i(n))

where

Φ̃(ϵ, ϵ′) :=
ϵ(1 + rmax) + ϵ′

µmin + ϵ

≥
∑n

t=1 E[Ut]1Gt(h,i∗)∑n
t=1 E[Ct]1Gt(h,i∗)

−
∑n

t=1 E[Ut]1Gt(h,i∗) − (ϵ+ ϵ′)Th,i∗(n)∑n
t=1 E[Ct]1Gt(h,i∗) + ϵTh,i∗(n)

.

Hence, we can continue to find an upper bound of Equation (B.1) as

follows:

Eq. (B.1)

≤P

(∑n
t=1 E[Ut]1Gt(h,i∗) − (ϵh,i∗(n) + ϵ′h,i∗(n))Th,i∗(n)∑n

t=1 E[Ct]1Gt(h,i∗) + ϵh,i∗(n)Th,i∗(n)
≥
∑n

t=1 Ût1Gt(h,i∗)∑n
t=1 Ĉt1Gt(h,i∗)

)
,
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≤P

(
n∑

t=1

E[Ut]1Gt(h,i∗) − (ϵh,i∗(n) + ϵ′h,i∗(n))Th,i∗(n) ≥
n∑

t=1

Ût1Gt(h,i∗)

)

+ P

(
n∑

t=1

E[Ct]1Gt(h,i∗) + ϵh,i∗(n)Th,i∗(n) ≤
n∑

t=1

Ĉt1Gt(h,i∗)

)
,

≤P

(
n∑

t=1

E[Ût]1Gt(h,i∗) − ϵh,i∗(n)Th,i∗(n) ≥
n∑

t=1

Ût1Gt(h,i∗)

)

+ P

(
n∑

t=1

E[Ct]1Gt(h,i∗) + ϵh,i∗(n)Th,i∗(n) ≤
n∑

t=1

Ct1Gt(h,i∗)

)
,

(B.2)

≤ 2

n3
. (B.3)

Equation (B.2) is given by the fact that for any (h, i) ∈ D(z, i∗), from standard

calculation,

n∑
t=1

E[Ût]1Gt(h,i) + ϵ′h,i(n)Th,i(n) ≥
n∑

t=1

E[Ut]1Gt(h,i). (B.4)

Equation (B.3) follows Azuma-Hoeffding inequality for Martingale differences

(sub-exponential version), Assumption 6(b), Assumption 7(b) and union bounds.

This concludes the proof.

B.2 Proof of Lemma 3

In this section, we will break down the proof of Lemma 3 into several

lemmas. Lemma 3 is a direct result of combining Lemma 10 and Lemma 12.

Recall that we define event Gn(h, i) := [(Hn, In) ∈ D(h, i)] for any (h, i) ∈ T

and n ≥ 1.

Lemma 8. For any suboptimal node (h, i), let z ≤ k ≤ h − 1 be the largest

depth such that (k, i∗k) is an ancestor of (h, i). Then for any integer u ≥ 0, we
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have

E[Th,i(n)] ≤ u+
n∑

t=u+1

P(E1(t) ∪ E2(t))

where

E1(t) =
t⋃

s=k+1

[Bs,i∗s(t) ≤ f ∗],

E2(t;u) = [Bh,i(t) > f ∗] ∩ [Th,i(t) > u].

Proof. This is a modified restatement of Lemma 14 in [2].

Lemma 9. For all suboptimal nodes (h, i) ∈ D(z, i∗) and n ≥ 1,

P
(
R̄h,i(n) > f ∗

h,i +
(1+rmax)ϵh,i(n)

min(µmin−ϵh,i(n), 1)
, Th,i(n) ≥ 1

)
≤ 2n−3

where given Th,i(n) ≥ 1,

R̄h,i(n) :=

∑n
t=1 Ut1Gt(h,i)∑n
t=1Ct1Gt(h,i)

.

Proof. Note that R̄h,i(n) is the untruncated version of the empirical average.

We find it more straightforward to prove the concentration of R̄h,i(n). In

Lemma 10, we will show that R̄h,i(n) ≈ Rh,i(n) when (h, i) is sufficiently

explored.

Observe that∑n
t=1 E[Ut]1Gt(h,i)∑n
t=1 E[Ct]1Gt(h,i)

≤ f ∗
h,i := sup

w∈Ph,i

f(w),
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and that for any ϵ ≤ µmin − 1,1

(1+rmax)ϵ

µmin−ϵ
≥
∑n

t=1 E[Ut]1Gt(h,i) + ϵTh,i(n)∑n
t=1 E[Ct]1Gt(h,i) − ϵTh,i(n)

−
∑n

t=1 E[Ut]1Gt(h,i)∑n
t=1 E[Ct]1Gt(h,i)

.

Then the proof follows the same arguments as in Lemma 2.

Lemma 10. For all suboptimal nodes (h, i) ∈ D(z, i∗) such that ∆h,i > νρh,

we have that for all n ≥ 1,

E[Th,i(n)] ≤ ((K
(h,i)
1 log n) ∨ S(h,i)(n) ∨M

(h,i)
1 ) + 6,

where

K
(h,i)
1 = (

32(1+rmax)
2ξ2(1+µmin)

2

(∆h,i − νρh)2µ2
min

∨ 16(1+rmax)α(1+µmin)

(∆h,i − νρh)µmin

)

and M
(h,i)
1 , S(h,i)(n) are functions of h, i(, n) such that

M
(h,i)
1 ∼ O(1/(∆h,i − νρh)2), S(h,i)(n) ∼ O(log n/(∆h,i − νρh)2).

Proof. We will follow the recipe given in Lemma 8 to show this result. First

we show that

n∑
t=u+1

P(E1(t)) ≤
n∑

t=1

t · 2
t3
≤ π2

3
,

which follows Lemma 2 and a union bound (see the definition of E1(t) in

Lemma 8).

1It is sufficient to consider µmin−ϵ ≥ 1 since Ct ≥ 1 almost surely.
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Then we observe that (on the event [Th,i(t) ≥ 1] such that all is well-

defined)

[Bh,i(t) > f ∗] ⊂ E1(t) ∪ E2(t) ∪ E3(t)

where

E1(t) = [R̄h,i(t) > f ∗
h,i +

(1+rmax)ϵh,i(n)

min(µmin−ϵh,i(n), 1)
],

E2(t) = [Φh,i(t) +
(1+rmax)ϵh,i(t)

min(µmin−ϵh,i(t), 1)
>

3

4
(∆h,i − νρh)],

E3(t) = [R̂h,i(t)− R̄h,i(t) >
∆h,i − νρh

4
].

Recall that R̄h,i(n) is defined as in Lemma 9. To see this, if none of the three

events happen, Bh,i(t) ≤ f ∗.

Then we show that the probability of each event above is negligible

given Th,i(t) is sufficiently large.

(i) First we have that by Lemma 9,

P (E1(t), Th,i(t) ≥ 1) ≤ 2t−3.

(ii) Event E2(t) can be further partitioned as follows:

E2(t) ⊂ [
1+µmin

µmin

(1+rmax)ϵh,i(t) >
∆h,i − νρh

2
] ∪ [

ϵ′h,i(t)

µmin

>
∆h,i − νρh

4
] (B.5)

The first event in RHS of (B.5) implies that (by algebra)

Th,i(t) < K
(h,i)
1 · log t.
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The second event in RHS of (B.5) implies that Th,i(t) ≤ M
(h,i)
1 where M

(h,i)
1 is

defined as the largest integer such that

rmax

M
(h,i)
1

· π
2

6
e−β/4α(β + 2α + κ logM

(h,i)
1 + 1) >

(∆h,i − νρh)
4

µmin.

Note that M
(h,i)
1 ∼ O(1/(∆h,i − νρh)2).

Therefore, we have that for t ≤ n,

P
(
E2(t), Th,i(t) > max(K

(h,i)
1 log n,M

(h,i)
1 )

)
= 0.

(iii) Let S(h,i)(n) be the smallest integer (with respect to a fixed n ≥ 1)

such that for any s ≥ S(h,i)(n),

s >
4r̄

∆h,i − νρh
(
π2

6
e−β/2α(2α+1) +

√
2αs log n). (B.6)

Note that S(h,i)(n) ∼ O(log n/(∆h,i − νρh)2). For any t ≤ n,

P
(
E3(t), Th,i(t) ≥ S(h,i)(n)

)
≤ P

( ∑t
s=1 Us1Gs(h,i)∑t
s=1Cs1Gs(h,i)︸ ︷︷ ︸

≤r̄

·
∑t

s=1(Cs − Ĉs)1Gs(h,i)∑t
s=1 Ĉs1Gs(h,i)︸ ︷︷ ︸
denom.≥T

(t)
h,i

>
∆h,i − νρh

4
, Th,i(t) ≥ S(h,i)(n)

)
,

≤ P

(
t∑

s=1

(Cs − Ĉs)1Gs(h,i) ≥ (π2/6)e−β/2α(2α+1) +
√
2αTh,i(t) log n

)
.

(B.7)

≤ 1

n
. (B.8)

Equation (B.7) is given by (B.6) since Th,i(t) ≥ S(h,i)(n). For (B.8), first we

can derive that (by algebra computation),

t∑
s=1

E[Cs − Ĉs]1Gs(h,i) ≤ (π2/6)e−β/2α(2α+1).
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Next, observe that when ws ∈ Pz,i∗ , since ls ≥ β > E[Cs] + ξ2/α, we have for

all s

(Cs − Ĉs)− E[Cs − Ĉs] ≤ Cs − E[Cs]− ξ2/α a.s.

We can then apply Azuma-Hoeffding and the sub-exponentiality of Cs as in

previous lemmas to show (B.8) holds.

Finally, we apply Lemma 8 to conclude the proof. When u = (K
(h,i)
1 log n)∨

M
(h,i)
1 ∨ S(h,i)(n), we have

E[Th,i(n)] ≤ u+
π2

3
+

n∑
t=u+1

P(E2(t;u)) ≤ u+
π2

3
+

n∑
t=1

(
2

t3
+

1

n
) ≤ u+ 6.

Before introducing the following two lemmas, recall that we have defined

a modified reward function f̃ :

f̃(w) =

f(w) w ∈ (W(λ; ξ2, α))◦,

sup
l≥β

E[Û(w,l)(1)]

E[Ĉ(w,l)(1)]
w ∈W \ (W(λ; ξ2, α))◦.

The function values for w /∈ (W(λ; ξ2, α))◦ are compatible with Assump-

tion 7(a). f̃ ∗, f̃ ∗
h,i and ∆̃h,i are defined accordingly. Note that f ∗ = f̃ ∗.

Lemma 11. For all suboptimal nodes (h, i) /∈ D(z, i∗) and n ≥ 1,

P
(
R̄h,i(n) > f̃ ∗

h,i +
(1+rmax)ϵ̃h,i(n)

min(µmin−ϵ̃h,i(n), 1)

)
≤ 2n−3

where

R̄h,i(n) =

∑n
t=1 Ut1G

(1)
t (h,i)

+ Ût1G
(2)
t (h,i)∑n

t=1Ct1G
(1)
t (h,i)

+ Ĉt1G
(2)
t (h,i)

,
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G
(1)
t (h, i) = Gt(h, i) ∩ [wt ∈ (W(λ; ξ2, α))◦],

G
(2)
t (h, i) = Gt(h, i) ∩ [wt /∈ (W(λ; ξ2, α))◦],

ϵ̃h,i(n) = max(ϵh,i(n),

√
2(1 ∨ r̄)2l2n log n

Th,i(n)
).

Proof. This lemma is analog to Lemma 9. Since when (h, i) /∈ D(z, i∗), wt

may or may nor be in the region (W(λ; ξ2, α))◦, we therefore redefine R̄h,i(n)

accordingly. By Assumption 7, we have that∑n
t=1 E[Ut]1G

(1)
t (h,i)

+ E[Ût]1G
(2)
t (h,i)∑n

t=1 E[Ct]1G
(1)
t (h,i)

+ E[Ĉt]1G
(2)
t (h,i)

≤ f̃ ∗
h,i.

For w /∈ (W(λ; ξ2, α))◦, the sub-exponential type concentration is in-

valid. Thus, we additionally apply Azuma-Hoeffding for bounded differences

by the fact that max(Ĉt, Ût) ≤ (1∨ r̄)ln (a.s.), and the final upper bound is the

maximum of the two bound types as given in ϵ̃h,i(n). Then the proof follows

the same argument as in Lemma 9.

Lemma 12. For all suboptimal nodes (h, i) /∈ D(z, i∗) such that ∆̃h,i > νρh,

we have that for all n ≥ 1,

E[Th,i(n)] ≤ ((K
(h,i)
2 l2n log n) ∨ (K

(h,i)
1 log n) ∨ S(h,i)(n) ∨M

(h,i)
1 ) + 6,

where

K
(h,i)
2 =

8(1+rmax)
2(1 ∨ r̄)2(1+µmin)

2

(∆h,i − νρh)2µ2
min

,

and K
(h,i)
1 ,M

(h,i)
1 , S(h,i)(n) are defined as in Lemma 10.

Proof. This is a redo of the proof of Lemma 10, except that the step using

Lemma 9 is replaced by Lemma 11.
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B.3 Proof of Theorem 1

Lemma 13. Let πopt be the optimal static policy without clipping, i.e., πopt
n =

(w∗,∞) for all n ≥ 1. The expected cumulative reward of πopt over a time

horizon τ is bounded as

E[Rewπopt [τ ]] ≤ r(∗)τ + r(∗)
E[(C(∗)(1))2]

E[C(∗)(1)]
.

Proof. By the definition of E[Rewπopt [τ ]], we have the following upper bound:

E[Rewπopt [τ ]] ≤ E[
Nπopt [τ ]+1∑

n=1

U (∗)(n)],

= E[
∞∑
n=1

1{Sπopt

n−1 ≤τ}E[U (∗)(n)]],

≤ r(∗)E[
∞∑
n=1

1{Sπopt

n−1 ≤τ}E[C(∗)(n)]],

= r(∗)E[
Nπopt [τ ]+1∑

n=1

C(∗)(n)],

≤ r(∗)(τ +
E[(C(∗)(1))2]

E[C(∗)(1)]
).

Note that the second and fourth equations hold true due to the independence

of Sπopt

n−1 and (C(∗)(n), U (∗)(n)). The last line follows Lorden’s inequality for

overshoot [84].

Proof of Theorem 1. This proof follows a similar approach as in [2]. First

we define Ih = {(h, i) : ∆h,i ≤ 2νρh}, i.e., the set of nodes at depth h that

are 2νρh-optimal. Let Jh be the set of nodes that (i) are located at a depth

h, (ii) are not 2νρh-optimal, and (iii) whose parent belongs to the set Ih−1.
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Denote T(z) as the collection of nodes in T with depth greater or equal to z.

For a fixed depth H(H ≥ z), which will be determined later, the collection

T(z) consists of four types of nodes as follows:

(1) T1: IH ∩D(z, i∗) and their descendants,

(2) T2:
⋃

z≤h≤H−1 Ih ∩D(z, i∗),

(3) T3:
⋃

z+1≤h≤H Jh ∩D(z, i∗) and their descendants,

(4) T4: (D(z, i∗))∁ := T(z) \D(z, i∗).

To find an upper bound of regret Regπ[τ ], first we observe that

Regπ[τ ] ≤ (r(∗)τ + r̄
E[(C(∗)(1))2]

E[C(∗)(1)]
)− E[

Nπ [τ ]∑
n=1

Ûn],

≤ r(∗)(E[
Nπ [τ ]∑
n=1

Ĉn] + lτ ) + r̄
E[(C(∗)(1))2]

E[C(∗)(1)]
− E[

Nπ [τ ]∑
n=1

Ûn],

= E[
Nπ [τ ]∑
n=1

r(∗)Ĉn − Ûn] +O(log τ).

The cumulative regret can be considered as induced by nodes of different

types respectively. Denote that for 1 ≤ j ≤ 4,

Regj[τ ] = E[
Nπ [τ ]∑
n=1

(r(∗)Ĉn − Ûn)1{(Hn,In)∈Tj}].

Hence,

Reg[τ ] =
4∑

j=1

Regj[τ ] +O(log τ),

and we will tackle Regj[τ ] separately in the following paragraphs.
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Part A. Observe that for j = 1, 2, 3,

Regj[τ ] ≤ E[
Nπ [τ ]∑
n=1

1{(Hn,In)∈Tj}(r
(∗)Cn − Un)]+ E[

Nπ [τ ]∑
n=1

1{(Hn,In)∈Tj}(Un − Ûn)]︸ ︷︷ ︸
T1

,

≤ E[
Nπ [τ ]∑
n=1

1{(Hn,In)∈Tj}(r
(∗) − r(wn))E[Cn|Hn, In]]+ T1,

≤ µmaxE[
Nπ [τ ]∑
n=1

1{(Hn,In)∈Tj}(f
∗ − f(wn))]+ T1. (B.9)

Note that T1 ∼ O(log n), which has been shown in Lemma 2 (see (B.4)).

Let R̃egj[τ ] := E[
∑Nπ [τ ]

n=1 1{(Hn,In)∈Tj}(f ∗ − f(wn))]. We can follow a

similar analysis as in [2].

(i) For any node (h, i) ∈ IH , f
∗ − f ∗

h,i ≤ 2νρH . By Assumption 5, this

implies f ∗ − infw∈Ph,i
f(w) ≥ 4νρH . Hence,

R̃eg1[τ ] ≤ 4νρHτ.

(ii) By Definition (near-optimality dimension), |Ih| ≤ C(ν, ρ)ρ−d(ν,ρ)h.

Therefore,

R̃eg2[τ ] ≤
H−1∑
h=z

4νρh|Ih| ≤ 4νC(ν, ρ)
H−1∑
h=z

ρ(1−d(ν,ρ))h.

(iii) The parent of any node in Jh lies in Ih−1, which implies any weight

selected in nodes of Jh is 4νρh−1-optimal. Hence,

R̃eg3[τ ] ≤
H∑

h=z+1

4νρh−1
∑

i:(h,i)∈Jh

E[Th,i(τ)],
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≤
H∑

h=z+1

4νρh−1|Jh|E[Th,i(τ)],

≤
H∑

h=z+1

8νρh−1C(ν, ρ)ρ−d(ν,ρ)(h−1)E[Th,i(τ)].

Note that when ∆h,i > 2νρh, E[Th,i(τ)] = O((ξ2 ∨ α)log τ/ρ2h) according to

Lemma 10.

Combining the analysis in (i)-(iii), we have that for some universal

constants γ1, γ2,

3∑
j=1

R̃egj[τ ] = γ1ρ
Hτ + γ2C(ν, ρ)ρ

−H(d(ν,ρ)+1)(ξ2 ∨ α) log τ.

Choosing H such that the two terms above have the same order in τ , implying

ρH in the order of (τ/ ln τ)−1/(C(ν,ρ)+2), we have that for some universal constant

CReg,

3∑
j=1

R̃egj[τ ] = CReg
(
C(ν, ρ)(ξ2 ∨ α)

) 1
d(ν,ρ)+2 τ

d(ν,ρ)+1
d(ν,ρ)+2 (log τ)

1
d(ν,ρ)+2 . (B.10)

Part B. For j = 4, by a similar derivation as in (B.9),

Regj[τ ] ≤ lτE[
Nπ [τ ]∑
n=1

1{(Hn,In)∈Tj}f
∗]+ T1. (B.11)

Note that E[Cn|Hn, In] is (trivially) bounded by lτ almost surely when (Hn, In) /∈

D(z, i∗).

Let z̃ be the smallest integer such that ∆̃z̃,i > 2νρz̃ for all i : (z̃, i) /∈

D(z, i∗). Such an integer exists since by assumption f ∗ − supw/∈Pz,i∗
f̃(w) ≥ δ
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Figure B.1: Simulation results on experiments in Section 3.4.2.3. For ddl =
3, 4, 5, the reward rate function and the corresponding weight heatmap (first
10k cycles) are exhibited. We show the tradeoffs of rewards for two slices in
the bottom-right panel.

for some δ > 0. This gives that,

E[
Nπ [τ ]∑
n=1

1{(Hn,In)∈Tj}f
∗] ≤ (|{(h, i) ∈ (D(z, i∗))∁ : h < z̃}|

+
∑

i:(z̃,i)∈(D(z,i∗))∁

E[Tz̃,i(τ)])f ∗,

≤ (2z̃ + 2z̃γ3 log
3 τ)f ∗ (B.12)

for some universal constant γ3. The last inequality holds as stated by Lemma 12.

Finally, the theorem is proved by combining Eqs. (B.9)–(B.12).
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B.4 Additional Experiments

B.4.1 Tradeoffs between Backlogged and Non-backlogged Users

In this experiment, we set up a scenario exhibiting the ability of CHOOC

to realize tradeoffs among slices of backlogged and non-backlogged users. Sup-

pose the first slice consists of 9 BL users and the second slice has 3 DDL(t) users,

and we consider t = 3, 4, 5 respectively. The user distance to BS (m) equals

100 + 50(i mod 3) for i-th user and the arrival rate is set identically at 0.45

packets/slot for all non-backlogged users.

Suppose a proportionally-fair (PF) scheduler is implemented for flows

in Slice 1 and a Log-Rule scheduler for those in Slice 2. As discussed in Sec-

tion 3.2.3, we reset the moving average of PF for each cycle. To avoid short

cycles where the moving average does not converge, we require that a cycle

must exceed 60 slots (i.e., a cycle ends when it becomes idle the first time after

60 slots).

A larger weight to Slice 2 gives priority to packets with deadline require-

ments, but negatively affects the throughput of Slice 1 (see the bottom-right

panel of Figure B.1). Thus, it is unclear beforehand how much priority should

be given to Slice 2. In Figure B.1, we show the f values for each case, with

the optimal weights highlighted accordingly. As expected, CHOOC correctly

locates the best weight as is shown in the heatmaps.
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Figure B.2: Weight selection heatmaps (6k cycles) on experiments in Sec-
tion B.4.2-A.

B.4.2 CHOOC under different slice- and flow-level schedulers

In this section, we investigate the impact of different choices for the

slice- and flow-level schedulers on the CHOOC framework.

A. We follow the 3-slice system settings introduced in Section 3.4.1.2 in

terms of user type and traffic load. At the slice level, we successively applied

two weight-based scheduling implementations. Besides the plain GPS algorithm

given in Algorithm 3, we simulated a variant of GPS (GPS-Var), where for each

time slot only one slice can be scheduled, which is randomly chosen according to

the weight allocation vector. For the flow-level schedulers, we applied Log-Rule,

MaxWeight and Max-Rate respectively (for all of the slices in each case).

The weight selection heatmaps are shown in Figure B.2 for all of the 6

177



slice- and flow-level combinations. As expected, CHOOC locates the optimal

weight allocation in each scenario, despite that they are slightly varied. This

experiment also shows that the optimal slicing is affected by the associated

schedulers (besides other factors such as traffic load and user utility) in a

sophisticated manner.

B. To further demonstrate how CHOOC learns the trade-offs among

slices under different flow-level schedulers, we set up another 3-slice system with

homogeneous slices (in terms of user traffic and utility). In this system, each

slice consists of 5 DDL(3) users. The BS-to-user distances are 50, 80, 110, 140, 170

m in each slice, and the arrival rate is set to be 0.3 packets/slot for every user.

We first tested CHOOC on a system where all three slices implement

Log-Rule as flow-level schedulers, then we changed the scheduler at Slice 1 to

be Max-Rate. The results are shown in Figure B.3. As can be seen, CHOOC

correctly locates [1/3, 1/3, 1/3] as the best weight under the first scenario.

When asymmetry is introduced in the second simulation, CHOOC allocates

more resources to Slice 1 to maximize the utility as the best weight is close

to [0.4, 0.3, 0.3]. It turns out at this traffic load level, Max-Rate (compared

to Log-Rule) is favored to facilitate more packets to meet the tight deadlines.

This is validated by further numerical tests which show that the optimal slicing

in the second system increases the overall reward rate by 13% compared to the

equal slicing for the first system.
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Figure B.3: Simulation results on experiments in Section B.4.2-B. (Left)
CHOOC’s weight selection heatmap (10k cycles) when all three slices apply
Log-Rule as flow-level schedulers. (Right) Weight selection heatmap when the
three slices apply Max-Rate, Log-Rule and Log-Rule as flow-level schedulers
respectively.
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