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Network Utility Maximization (NUM) provides a key conceptual framework to

study reward allocation amongst a collection of users/entities in disciplines as di-

verse as economics, law and engineering. However when the available resources

and/or users’ utilities vary over time, reward allocations will tend to vary, which

in turn may have a detrimental impact on the users’ overall satisfaction or quality

of experience. In this thesis, we introduce a generalization of the NUM framework

which incorporates the detrimental impact of temporal variability in a user’s allo-

cated rewards and explicitly incorporates Mean-Variability-Fairness tradeoffs, i.e.,

tradeoffs amongst the mean and variability in users’ reward allocations, as well as

fairness across users. We propose a simple online algorithm to realize these trade-
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offs, which, under stationary ergodic assumptions, is shown to be asymptotically

optimal, i.e., achieves a long term performance equal to that of an offline algorithm

with knowledge of the future variability in the system. This substantially extends

work on NUM to an interesting class of relevant problems where users/entities are

sensitive to temporal variability in their service or allocated rewards.

We extend the theoretical framework and tools developed for realizing Mean-

Variability-Fairness tradeoffs to develop a simple online algorithm to solve the prob-

lem of optimizing video delivery in networks. The tremendous increase in mobile

video traffic projected for the future along with insufficiency of available wireless

network capacity makes this one of the most important networking problems today.

Specifically, we consider a network supporting video clients streaming stored video,

and focus on the problem of jointly optimizing network resource allocation and video

clients’ video quality adaptation. Our objective is to fairly maximize video clients’

video Quality of Experience (QoE) realizing Mean-Variability-Fairness tradeoffs, in-

corporating client preferences on rebuffering time and the cost of video delivery. We

present a simple asymptotically optimal online algorithm NOVA (Network Opti-

mization for Video Adaptation) to solve the problem. Our algorithm uses minimal

communication, ‘distributes’ the tasks of network resource allocation to a central-

ized network controller, and video clients’ video quality adaptation to the respective

video clients. Further, the quality adaptation is also optimal for standalone video

clients, and is an asynchronous algorithm well suited for use in the Dynamic Adap-

tive Streaming over HTTP (DASH) framework.

We also extend NOVA for use with more general video QoE models, and

study NOVA accounting for practical considerations like time varying number of

video clients, sharing with other types of traffic, performance under legacy resource

allocation policies, videos with variable sized segments etc.

viii



Contents

Acknowledgments v

Abstract vii

Chapter 1 Introduction 1

1.1 Key contributions of this thesis . . . . . . . . . . . . . . . . . . . . . 5

1.2 Organization of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 Mean-Variability-Fairness Tradeoffs in Resource Alloca-

tion 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Organization of the chapter . . . . . . . . . . . . . . . . . . . 16

2.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Optimal variance-sensitive offline policy . . . . . . . . . . . . . . . . 22

2.4 Adaptive variance-aware reward allocation . . . . . . . . . . . . . . . 26

2.4.1 Proof of Theorem 2.3 . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.1 A stationary version of OPT: OPTSTAT . . . . . . . . . . . 35

2.5.2 Convergence of auxiliary ODE associated with AVR . . . . . 39

ix



2.5.3 Convergence of AVR and proof of Theorem 2.1 . . . . . . . . 45

2.6 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Chapter 3 NOVA: QoE-driven Optimization of Video Delivery in

Networks 54

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.1.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.1.4 Organization of the chapter . . . . . . . . . . . . . . . . . . . 62

3.2 System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3 Offline optimization formulation . . . . . . . . . . . . . . . . . . . . 71

3.4 An online algorithm for jointly optimizing resource allocation and

quality adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Proof of optimality of NOVA . . . . . . . . . . . . . . . . . . . . . . 86

3.5.1 OPTSTAT: An auxiliary optimization problem related to the

offline optimization formulation . . . . . . . . . . . . . . . . . 87

3.5.2 An auxiliary differential inclusion related to NOVA . . . . . . 101

3.5.3 Convergence of NOVA and proof of Theorem 3.1 . . . . . . . 128

3.6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

3.6.1 More general QoE models . . . . . . . . . . . . . . . . . . . . 151

3.6.2 More general channel models . . . . . . . . . . . . . . . . . . 152

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Chapter 4 NOVA in Practical Networks and Performance Evaluation

using Simulation 154

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

x



4.2 NOVA under other resource allocation policies, and QNOVA for a

standalone video client . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.2.1 NOVA under other resource allocation policies . . . . . . . . 155

4.2.2 QNOVA for optimizing a standalone video client . . . . . . . 156

4.3 NOVA and sharing network resources with other traffic . . . . . . . 157

4.4 NOVA implementation considerations . . . . . . . . . . . . . . . . . 160

4.4.1 Discrete network resources . . . . . . . . . . . . . . . . . . . . 161

4.4.2 Video client implementation considerations . . . . . . . . . . 161

4.5 NOVA in stochastic networks . . . . . . . . . . . . . . . . . . . . . . 167

4.6 Performance evaluation of NOVA via simulation . . . . . . . . . . . 178

4.6.1 Simulation setting . . . . . . . . . . . . . . . . . . . . . . . . 179

4.6.2 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 186

4.7 Implementing NOVA: An example . . . . . . . . . . . . . . . . . . . 193

4.7.1 Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

4.7.2 Detailed algorithm . . . . . . . . . . . . . . . . . . . . . . . . 194

Chapter 5 Future Directions 205

5.1 A general approach for classes of online stochastic optimization prob-

lems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

5.2 Extensions to optimization in stochastic networks . . . . . . . . . . . 206

5.3 Rate of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Bibliography 207

xi



Chapter 1

Introduction

Network Utility Maximization (NUM) is a key conceptual framework to study re-

ward allocation among a collection of users/entities across disciplines as diverse as

economics, law and engineering. In network engineering, the NUM framework has

served as a particularly insightful setting to study (reverse engineer) how the In-

ternet’s congestion control protocols allocate bandwidth, how to devise schedulers

for wireless systems with time varying channel capacities, and also motivated the

development of distributed mechanisms to maximize network utility in diverse set-

tings including communication networks and the smart grid, while incorporating

new relevant constraints, on energy, power, storage, power control, stability, etc.

When the available resources/rewards and/or users’ utilities vary over time,

reward allocations amongst users will tend to vary, which in turn may have a detri-

mental impact on the users’ utility or perceived service quality. Indeed temporal

variability in utility, service, rewards or associated prices are particularly problem-

atic when humans are the eventual recipients of the allocations. Humans typically

view temporal variability negatively, as a sign of an unreliable service, network or

market instability. Broadly speaking, temporal variability, when viewed through

human’s cognitive and behavioral responses, leads to a degraded Quality of Expe-
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rience (QoE). This in turn can lead users to make decisions, e.g., change provider,

act upon perceived market instabilities, etc., which can have serious implications on

businesses and engineered systems, or economic markets. For problems involving

resource allocation in networks, [9] argues that predictable or consistent service is

essential and even points out that it may be appropriate to intentionally lower the

quality delivered to the user if that level is sustainable.

For a user viewing a video stream, variations in video quality over time have

a detrimental impact on the user’s QoE, see e.g., [59, 28, 40]. Indeed [59] suggested

that variations in quality can result in a QoE that is worse than that of a constant

quality video with lower average quality. Furthermore, [59] proposed a metric for

QoE given below which penalizes standard deviation of quality over time:

Mean Quality− κ
√

Temporal Variance in Quality

where κ is an appropriately chosen positive constant. [19] and [53] argue that less

variability in the service processes can improve customer satisfaction by studying

data for large retail banks and major airlines respectively. Aversion towards tem-

poral variability is not just restricted to human behavior, for instance, see [38] for a

discussion of the impact of temporal variability in nectar reward on foraging behav-

ior of bees. Also, variability in resource allocation in networks can lead to burstiness

which can degrade network performance (see [11, 41]). These examples illustrate

the need for extending the NUM framework to incorporate the impact of variability.

In Chapter 2, we develop a generalized NUM framework which explicitly

incorporates the detrimental impact of temporal variability in a user’s allocated

rewards. We use the term rewards as a proxy for the resulting utility of, or any

other quantity associated with, resource allocations to users/entities in a system.

For instance, in wireless network serving video users, resource allocation concerns

decisions about allocation of resources like bandwidth, power etc., and the resulting

2



video quality corresponds to the reward. Our goal is to explicitly tackle the task of

incorporating tradeoffs amongst the mean and variability in users’ rewards. Thus,

for example, in a variance-sensitive NUM setting, it may make sense to reduce a

user’s mean reward so as to reduce his/her variability. There are many ways in

which temporal variations can be accounted for, and which, in fact, present distinct

technical challenges. In this thesis, we shall take a simple elegant approach to the

problem which serves to address systems where tradeoffs amongst the mean and

variability over time need to be made rather than systems where the desired mean

(or target) is known (as in minimum variance control, see [4]), or where the issue at

hand is minimization of the variance of a cumulative reward at the end of a given

(e.g., investment) period.

Chapter 2 contains one of the major contributions of this thesis: the devel-

opment of a simple online algorithm, Adaptive Variability-aware Reward allocation

(AVR), to solve problems falling in the generalized NUM framework. Under station-

ary ergodic assumptions, AVR is shown to be asymptotically optimal, i.e., achieves

a long term performance equal to that of an optimal omniscient offline algorithm.

In Chapter 3, we extend the theoretical framework and tools developed in

Chapter 2 to solve the problem of optimizing stored video delivery in networks. In

particular, we study an asynchronous extension of the reward allocation framework

studied in Chapter 2. The reward allocation framework studied in Chapter 2 is

synchronous in the sense that the decisions concerning reward allocations and the

associated resource allocation are made in a synchronous manner. In Chapters3,

we study a reward allocation framework in which reward allocation decisions are

made in an asynchronous manner, and which allows ‘buffering’/delaying of even-

tual rewards. This feature is particularly useful in Chapter 3 where we consider

a setting in which users stream/download long videos stored at video servers. A

long video file can be viewed as a concatenation of several short files called seg-
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Table 1.1: A comparison of frameworks in Chapters 2 and 3

Synchronous Synchronous ‘Buffered’
Framework in resource reward reward Resource-Reward

allocation? allocation? allocation? coupling

Chapter 2 Yes Yes No Instantaneous

Chapter 3 Yes No Yes Averaged

ments, a user downloads the video by downloading the segments sequentially, and

the reward allocation decisions in this setting correspond to decisions about the

segments’ quality. Although decisions concerning the underlying resource allocation

(e.g., bandwidth allocation) are made in a synchronous manner, the reward alloca-

tion decision associated with a segment, i.e., the decision concerning the segment’s

quality, is made only after the completion of download of the previous segment.

Apart from the asynchronous nature of the framework, a key distinguishing feature

of the two frameworks is the fact that, the reward allocation decisions and resource

allocation decisions considered in Chapter 3 are coupled through constraints that

only account for averages associated with these decisions, whereas there is an in-

stantaneous coupling between reward allocation decisions and resource allocation

decisions in the setting considered in Chapter 2. In Table 1.1, we have summarized

some of the key features of the frameworks studied in Chapters 2 and 3.

In Chapter 3, we use the asynchronous reward allocation framework to model

a network supporting video clients streaming stored video, and focus on the prob-

lem of jointly optimizing network resource allocation and video clients’ video qual-

ity adaptation. Projections of tremendous increase in mobile video traffic and in-

sufficiency of available wireless network capacity highlights the importance of this

problem. In Chapter 3, we develop a simple online algorithm NOVA to solve this

problem, and also establish its asymptotic optimality.

One of our main objectives in the development of NOVA was to ensure that
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it could be used with current and future practical systems, for e.g., the quality

adaptation proposed in NOVA is well suited for Dynamic Adaptive Streaming over

HTTP (DASH) framework. This is the state of the art framework being proposed

for stored video delivery (and possibly for real time streaming applications). Hence,

we go beyond the theoretical analysis of NOVA in Chapter 3, and study the per-

formance of NOVA taking several practical considerations into account like time

varying numbers of video clients, sharing with (and presence of) other types of traf-

fic, performance under legacy resource allocation policies etc. In Chapter 4, we also

study the performance of NOVA using simulations under a variety of settings using

real world data.

1.1 Key contributions of this thesis

Below, we summarize the key contributions of this thesis.

I.a We develop a generalized NUM framework which explicitly accounts for Mean-

Variability-Fairness tradeoffs associated with users’ reward allocation.

I.b We develop a simple asymptotically optimal online algorithm AVR (Adaptive

Variability-aware Reward allocation) to solve problems falling in this frame-

work.

II.a We propose a general optimization framework for stored video delivery opti-

mization, that factors heterogeneity in client preferences, QoE models (that

account for Mean-Variability tradeoffs in quality), capacity and video content.

II.b We develop a simple online algorithm NOVA (Network Optimization for Video

Adaptation) to solve the video delivery optimization problem. Key features

of NOVA are listed below:
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1. Optimality: We establish a strong asymptotic optimality result for NOVA

which roughly guarantees that NOVA performs as well as the optimal

offline scheme which is omniscient, i.e., knows everything about the evo-

lution of channel and video ahead of time.

2. Simple and Online: NOVA only utilizes current information, and is com-

putationally light.

3. Distributed : NOVA uses minimal signaling, and can be implemented in

a distributed manner.

4. NOVA is asynchronous and requires almost no statistical information

about the system

5. Optimal Adaptation: The adaptation proposed in NOVA is independently

optimal, and the optimality properties of the adaptation component of

NOVA is ‘insensitive’ to the resource allocation, i.e., does not depend

on detailed characteristics (for e.g., the specific resource allocation algo-

rithm, time scale of operation etc) of the latter. Further, the adaptation

proposed in NOVA is entirely client driven and (can be used for and) is

also optimal for standalone video clients.

6. Suited for current practical systems:

(a) Suited for DASH: The adaptation proposed in NOVA is suited for

DASH framework as it entirely client driven, and can be carried out

in an asynchronous manner.

(b) The resource allocation proposed in NOVA requires simple modifica-

tion of legacy schedulers like proportionally fair schedulers, and can

be extended for use in the presence of data users.
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1.2 Organization of this thesis

In Chapter 2, we develop the generalized NUM framework to realize optimal Mean-

Variability-Fairness tradeoffs, develop the algorithm AVR to solve problems falling

in this framework, and establish the optimality of AVR. In Chapter 3, we study the

problem of stored video delivery optimization, present the algorithm NOVA to solve

the problem, and establish the optimality of NOVA. In Chapter 4, we discuss the

performance of NOVA taking several practical considerations into account and study

the performance of NOVA using simulations. We conclude the thesis in Chapter 5

with a discussion about some future directions and open problems.
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Chapter 2

Mean-Variability-Fairness

Tradeoffs in Resource Allocation

2.1 Introduction

Network Utility Maximization (NUM) is a key conceptual framework to study (fair)

reward allocation among a collection of users/entities across disciplines as diverse

as economics, law and engineering. For example, [43] introduces NUM for realizing

fair allocations of a fixed amount of water c to N farms. The amount of water wi

allocated to the ith farm is a resource which yields a reward ri = fi(wi) to the ith

farm. Here, fi is a concave function mapping allocated water (resource) to yield

(reward), and these can differ across farms. The allocation maximizing
∑

1≤i≤N ri

is a reward (utility) maximizing solution to the problem. Fairness can be imposed

on the allocation by changing the objective of the problem to
∑

1≤i≤N U(ri) for

an appropriately chosen concave function U . Now, suppose that we have to make

allocation decisions periodically to respond to time varying water availability (ct)t∈N

and utility functions (fi,t)t. Then, subject to the time varying constraints, one could
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maximize (see e.g., [49], [30])

∑
1≤i≤N

U (ri) (2.1)

to obtain a resource allocation scheme which is fair in the delivery of time average

rewards r = (ri)i∈N .

In network engineering, the NUM framework has served as a particularly

insightful setting to study (reverse engineer) how the Internet’s congestion control

protocols allocate bandwidth, how to devise schedulers for wireless systems with

time varying channel capacities, and also motivated the development of distributed

mechanisms to maximize network utility in diverse settings including communica-

tion networks and the smart grid, while incorporating new relevant constraints, on

energy, power, storage, power control, stability, etc.

When the available resources/rewards and/or users’ utilities vary over time,

reward allocations amongst users will tend to vary, which in turn may have a detri-

mental impact on the users’ utility or perceived service quality. In fact, temporal

variability in farm water availability can have a negative impact on crop yield (see

[47]). This motivates modifications of formulations with objectives such as the one

in (2.1) to account for this impact.

Indeed temporal variability in utility, service, rewards or associated prices are

particularly problematic when humans are the eventual recipients of the allocations.

Humans typically view temporal variability negatively, as a sign of an unreliable ser-

vice, network or market instability. Broadly speaking, temporal variability, when

viewed through human’s cognitive and behavioral responses, leads to a degraded

Quality of Experience (QoE). This in turn can lead users to make decisions, e.g.,

change provider, act upon perceived market instabilities, etc., which can have seri-

ous implications on businesses and engineered systems, or economic markets. For

problems involving resource allocation in networks, [9] argues that predictable or

9



consistent service is essential and even points out that it may be appropriate to

intentionally lower the quality delivered to the user if that level is sustainable.

For a user viewing a video stream, variations in video quality over time have

a detrimental impact on the user’s QoE, see e.g., [59, 28, 40]. Indeed [59] suggested

that variations in quality can result in a QoE that is worse than that of a constant

quality video with lower average quality. Furthermore, [59] proposed a metric for

QoE given below which penalizes standard deviation of quality over time:

Mean Quality− κ
√

Temporal Variance in Quality

where κ is an appropriately chosen positive constant. [19] and [53] argue that less

variability in the service processes can improve customer satisfaction by studying

data for large retail banks and major airlines respectively. Aversion towards tem-

poral variability is not just restricted to human behavior, for instance, see [38] for a

discussion of the impact of temporal variability in nectar reward on foraging behav-

ior of bees. Also, variability in resource allocation in networks can lead to burstiness

which can degrade network performance (see [11, 41]). These examples illustrate

the need for extending the NUM framework to incorporate the impact of variability.

This chapter introduces a generalized NUM framework which explicitly incor-

porates the detrimental impact of temporal variability in a user’s allocated rewards.

We use the term rewards as a proxy for the resulting utility of, or any other quantity

associated with, allocations to users/entities in a system. Our goal is to explicitly

tackle the task of incorporating tradeoffs amongst the mean and variability in users’

rewards. Thus, for example, in a variance-sensitive NUM setting, it may make

sense to reduce a user’s mean reward so as to reduce his/her variability. As will

be discussed in the sequel, there are many ways in which temporal variations can

be accounted for, and which, in fact, present distinct technical challenges. In this

chapter, we shall take a simple elegant approach to the problem which serves to
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address systems where tradeoffs amongst the mean and variability over time need

to be made rather than systems where the desired mean (or target) is known (as in

minimum variance control, see [4]), or where the issue at hand is minimization of

the variance of a cumulative reward at the end of a given (e.g., investment) period.

To better describe the characteristics of the problem we introduce some pre-

liminary notation. We shall consider a network shared by a set N of users (or other

entities) where N :=|N | denotes the number of users in the system. Throughout

the chapter, we distinguish between random variables (and random functions) and

their realizations by using upper case letters for the former and lower case for the

latter. Let N, R and R+ denote the sets of positive integers, real numbers and

nonnegative real numbers respectively. We use bold letters to denote vectors, e.g.,

a = (ai)i∈N . Given a collection of T objects (b(t))1≤t≤T or a sequence (b(t))t∈N, we

let (b)1:T denote the finite length sequence (b(t))1≤t≤T (in the space associated with

the objects of the sequence). For example, consider a sequence (b(t))t∈N where each

element is a vector. Then (b)1:T denotes the T length sequence containing the first

T vectors of the sequence (b)1:T , and (bi)1:T denotes the sequence containing the

ith component of the first T vectors. For any function U on R, let U ′ denote its

derivative.

Definition 2.1. For any (infinite length) sequence of real numbers (a(t))t∈N, let

mT (a) :=
1

T

T∑
t=1

a(t),

VarT (a) :=
1

T

T∑
t=1

(
a(t)−mT (a)

)2
,

eTi (a) := mT (a)− UVi
(
VarT (a)

)
,

i.e., mT (a) and VarT (a) denote empirical mean and variance. Note that the argu-

ment a used in the functions mT (a), VarT (a) and eTi (a) stands for the associated
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sequence (a(t))t∈N. We will also (abusing notation) use the above operators on any

finite length sequence (a)1:T ∈ RT of real numbers.

Let ri(t) represent the reward allocated to user i at time t. Then r(t) =

(ri(t))i∈N is the vector of rewards to usersN at time t, and (r)1:T represents sequence

of vector rewards allocated over time slots t = 1, . . . , T . We assume that reward

allocations are subject to time varying network constraints,

ct(r(t)) ≤ 0 for t = 1, . . . , T,

where each ct : RN → R is a convex function, thus implicitly defining a convex set

of feasible reward allocations. To formally capture the impact of the time-varying

rewards on users’ QoE consider the following offline convex optimization problem

OPT(T ):

max
(r)1:T

∑
i∈N

UEi


User i’s QoE︷ ︸︸ ︷

mT (ri)︸ ︷︷ ︸
Mean Reward

− UVi
(
VarT (ri)

)︸ ︷︷ ︸
Penalty for Variability

 ,

subject to ct(r(t)) ≤ 0, r(t) ≥ 0 ∀ t ∈ {1, ..., T} .

We refer to OPT(T ) as an offline optimization because time-varying time

constraints (ct)1:T are assumed to be known. Here, we introduce increasing functions(
UEi , U

V
i

)
i∈N such that the above optimization problem is convex. For user i, the

argument of the function UEi is our proxy for the user’s QoE. Thus, the desired

fairness in the allocation of QoE across the users can be imposed by appropriately

choosing
(
UEi
)
i∈N . Note that the first term mT (ri) in user i’s QoE is the user’s

mean reward allocation, whereas the presence of the empirical variance function

VarT (ri) in the second term penalizes temporal variability in a reward allocation.
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Further, flexibility in picking
(
UVi
)
i∈N allows for several different ways to penalize

such variability. Indeed, one can in principle have a variability penalty that is

convex or concave in variance. Hence, the formulation OPT(T ) allows us to realize

tradeoffs among mean, fairness and variability associated with the reward allocation

by appropriately choosing the functions
(
UEi , U

V
i

)
i∈N .

2.1.1 Main contributions

The main contribution of this chapter is the development of an online algorithm,

Adaptive Variability-aware Reward allocation (AVR), which asymptotically solves

OPT(T ). The algorithm requires almost no statistical information about the system,

and its characteristics are as follows:

(i) in each time slot, ct is revealed, and AVR greedily allocates rewards by solving

the following optimization problem OPT-ONLINE:

max
r

∑
i∈N

(
UEi
)′

(ei(t))
(
ri −

(
UVi
)′

(vi(t)) (ri −mi(t))
2
)

subject to ct(r) ≤ 0, r ≥ 0,

where ei(t) = mi(t) − UVi (vi(t)) for each i ∈ N is an estimate of the user’s QoE

based on estimated means and variances m(t) and v(t); and,

(ii) it updates (vector) parameters m(t) and v(t) to keep track of the mean and

variance of the reward allocations under AVR.

Under stationary ergodic assumptions for time-varying constraints, we show

that our online algorithm AVR is asymptotically optimal, i.e., achieves a per-

formance equal to that of the offline optimization OPT(T ) introduced earlier as

T → ∞. This is a strong optimality result, which at first sight may be surprising

due to the variability penalty on rewards and the time varying nature of the con-

straints (ct)t∈N. The key idea is to keep online estimates for the relevant quantities

13



associated with users’ reward allocations, e.g., the mean and variance which over

time are shown to converge. This in turn eventually enables our greedy online pol-

icy to produce reward allocations corresponding to the optimal stationary policy.

Proving this result is somewhat challenging as it requires showing that the estimates

based on reward allocations produced by our online policy, AVR, (which itself de-

pends on the estimated quantities), will converge to the desired values. To our

knowledge this is the first attempt to generalize the NUM framework in this direc-

tion. We contrast our problem formulation and approach to past work in addressing

‘variability’ minimization, risk-sensitive control and other MDP based frameworks

in the next subsection.

2.1.2 Related work

Network Utility Maximization (NUM) is a well studied approach used for reward al-

location amongst a collection of users/entities. The work in [43] provides a network-

centric overview of NUM. All the work on NUM including several major extensions

(for e.g., [27], [49], [48], [37] etc.) has ignored the impact of variability in reward

allocation. Our work [24] is to our knowledge the first to tackle NUM incorporating

the impact of variability explicitly. In particular, we addressed a special case of the

problem studied in this chapter that only allows for linear functions
(
UEi , U

V
i

)
i∈N ,

and an asymptotically optimal online reward allocation algorithm for a wireless net-

work supporting video streaming users is proposed. The algorithm proposed and

analyzed in this chapter is a generalization of gradient based algorithms studied

in [2], [30] and [49]. Our approach for proving asymptotic optimality generalizes

those in [49] and [25]. In [49], the focus is on objectives such as (2.1), but does not

allow for the addition of penalty terms on temporal variance in the objective. By

contrast with this chapter, the approaches in [24] and [25] rely on the use of results

on sensitivity analysis of optimization problems, and only allows for linear
(
UEi
)
i∈N

14



and concave
(
UVi
)
i∈N .

Adding a temporal variance term in the cost takes the objective out of the

basic dynamic programming setting (even when
(
UEi , U

V
i

)
i∈N are linear) as the

overall cost is not decomposable over time, i.e., can not be written as a sum of

costs each depending only on the allocation at that time- this is what makes sen-

sitivity to variability challenging. For risk sensitive decision making, MDP based

approaches aimed at realizing optimal tradeoffs between mean and temporal vari-

ance in reward/cost were proposed in [18] and [45]. While they consider a more

general setting than ours where actions can even affect future feasible reward allo-

cations, e.g., may affect the process (Ct)t∈N itself, the approaches proposed in these

works suffer from the curse of dimensionality as they require solving large optimiza-

tion problems. For instance, the work of [18] involves solving a quadratic program

in the (typically large) space of state-action pairs. Note that these works on risk

sensitive decision making are different from those focusing on the variance of the

cumulative cost/reward such as the one in [33].

Variability or perceived variability can be measured in many different ways,

and temporal variance considered in this chapter is one of them. One could also ‘re-

duce variability’ using a minimum variance controller (see [4]) where we have certain

target reward values fixed ahead of time and big fluctuations from these targets are

undesirable. Note however that in using this approach, we have to fix our targets

ahead of time, and thus lose the ability to realize tradeoffs between the mean and

variability in reward allocation. One could also measure variability using switching

costs like in [31], which consider the problem of achieving tradeoffs between average

cost and time average switching cost associated with data center operation, and pro-

poses algorithms with good performance guarantees for adversarial scenarios. The

decision regarding how to penalize variability is ultimately dependent on the appli-

cation setting under consideration. We summarize the key points of the discussion
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Table 2.1: Realizing Mean-Variability-Tradeoffs: Related Work

Allows Strong Need
variability optimality system
penalties? guarantees? Simple? Online? statistics?

Our Work Yes Yes Yes Yes No

[2, 30, 49] No Yes Yes Yes No

[18, 45] Yes No No No Yes

about related work in Table 2.1.

2.1.3 Organization of the chapter

Section 2.2 introduces the system model and assumptions. Section 2.3 presents and

studies the offline formulation for optimal variance sensitive joint reward allocation

OPT(T ). Section 2.4 formally introduces our online algorithm AVR and presents our

key convergence result which is used to prove asymptotic optimality of AVR. Section

2.5 is devoted to the proof of AVR’s convergence and Section 2.6 presents simulation

results exhibiting additional performance characteristics of AVR. We conclude the

chapter with Section 2.7.

2.2 System model

We consider a slotted system where time slots are indexed by t ∈ N, and the system

serves a fixed set of users N and let N := |N |.

We assume that rewards are allocated subject to time varying constraints.

The reward allocation r(t) ∈ RN+ in time slot t is constrained to satisfy the following

inequality

ct (r(t)) ≤ 0,
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where ct denotes the realization of a randomly selected function Ct from a finite set

C of real valued maps on RN+ . We model the reward constraints (Ct)t∈N as a random

process where each Ct can be interchangeably viewed as a random function or an

associated index for such a function which is selected from a finite set C. We make

the following assumptions on these constraints:

Assumptions C1-C3 (Time varying constraints on rewards)

C.1 (Ct)t∈N is a stationary ergodic process of functions selected from a finite set C.

C.2 The feasible region for each constraint is bounded: there is a constant 0 <

rmax < ∞ such that for any c ∈ C and r ∈ RN+ satisfying c (r) ≤ 0, we have

ri ≤ rmax for each i ∈ N . 1

C.3 Each function c ∈ C is convex and differentiable on an open set containing

[0, rmax]N with c (0) ≤ 0 and

min
r∈[0,rmax]N

c (r) < 0. (2.2)

As indicated in Assumption C.1, we model the evolution of the reward con-

straints is assumed to be stationary ergodic process.Hence, time averages associated

with the constraints will converge to their respective statistical averages, and the

distribution of the random vector (Ct1+s, Ct2+s, ..., Ctn+s) for any choice of indices

t1, ..., tn does not depend on the shift s, thus the marginal distribution of Ct does not

depend on time. We denote the marginal distribution of this process by (π(c))c∈C

and let Cπ denote a random constraint with this distribution. This model captures

a fairly general class of constraints, including, for example, time-varying capacity

constraints associated with bandwidth allocation in wireless networks. If condition

1We could allow the constant rmax to be user dependent. But, we avoid this for notational
simplicity.
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C.2 holds, then we can upper bound any feasible allocation under any constraint

in C using rmax1N where 1N is the N length vector with each component equal to

one. Condition C.3 ensures that the feasible sets are convex, and the differentiability

requirement simplifies the exposition. The remaining requirements in C.3 are useful

in studying the optimization problem OPT(T ).

Next we introduce the assumptions on the functions
(
UVi
)
i∈N associated

with the variability penalties.

Assumptions U.V: (Variability penalty) Let vmax:=r2
max.

U.V.1: For each i ∈ N , UVi is well defined and differentiable on an open set

containing [0, vmax] satisfying minv∈[0,vmax]

(
UVi
)′

(v) > 0, and
(
UVi
)′

(·) is Lipschitz

continuous.

U.V.2: For each i ∈ N and any z1, z2 ∈
[
−√vmax,

√
vmax

]
with z1 6= z2, and

α ∈ (0, 1) with ᾱ = 1− α, we have

UVi

(
(αz1 + ᾱz2)2

)
< αUVi

(
z2

1

)
+ ᾱUVi

(
z2

2

)
. (2.3)

The assumptions concerning the Lipschitz continuity of derivatives made in Assump-

tions U.V.1 and U.E (see below) are made to simplify the exposition, and could be

relaxed (see Section 2.5.2). Note that any non-decreasing (not necessarily strictly)

convex function satisfies (2.3), but the condition is weaker than a convexity require-

ment. For instance, using triangle inequality, one can show that UVi (vi) =
√
vi + δ

for δ > 0 satisfies all the conditions described above for any vmax
2. This function is

not convex but is useful as it transforms variance to (approximately) the standard

deviation for small enough δ > 0. We will later see that our algorithm (Section

2.1.1) can be simplified if any of the functions UVi are linear. Hence, we define the

2Note that we need δ > 0 otherwise UVi (vi) =
√
vi violates U.V.1
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following subsets of N :

Nl :=
{
i ∈ N : UVi is linear

}
,

Nn :=
{
i ∈ N : UVi is not linear

}
.

Next we discuss assumptions on the functions
(
UEi
)
i∈N used to impose fair-

ness associated with the QoE across users. Recall that our proxy for the QoE for

user i is ei(t) = mi(t)− UVi (vi(t)) and, let

emin,i:=− UVi (vmax) and emax,i:=rmax − UVi (0) .

Assumption U.E: (Fairness in QoE)

U.E: For each i ∈ N , UEi is concave and differentiable on an open set containing

[emin,i, emax,i] with
(
UEi
)′

(emax,i) > 0, and
(
UEi
)′

(·) is Lipschitz continuous.

Note that concavity and the condition that
(
UEi
)′

(emax,i) > 0 ensure that
(
UEi
)′

is

strictly positive on [emin,i, emax,i]. For each i ∈ N , although UEi has to be defined

over an open set containing [emin,i, emax,i], only the definition of the function over[
−UVi (0), emax,i

]
affects the optimization. This is because we can achieve this value

of QoE for each user just by allocating 01N in each time slot. Thus, for example,

we can choose any function from the following class of strictly concave increasing

functions parametrized by α ∈ (0,∞) ([34])

Uα(e) =


log (e) if α = 1,

(1− α)−1 e1−α otherwise,

(2.4)

and can satisfy U.E by making minor modifications to the function. For instance, we
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can use the following modification UE,log of the log function for any (small) δ > 0:

UE,log(e) = log (e− emin,i + δ) , e ∈ [emin,i, emax,i]. The above class of functions are

commonly used to enforce fairness specifically to achieve reward allocations that are

α−fair (see [43]).

Good choices of
(
UVi
)
i∈N and

(
UEi
)
i∈N will depend on the problem setting.

A good choice for
(
UVi
)
i∈N should be driven by an understanding of the impact of

temporal variability on a user’s QoE, which might in turn be based on experimental

data. For instance, a choice of UVi (vi) =
√
vi + δ is proposed for video adaptation in

[59]. The choice of
(
UEi
)
i∈N is driven by the degree of fairness in the allocation of

QoE across users, e.g. max-min, proportional fairness etc. A larger α corresponds to

a more fair allocation which eventually becomes max-min fair as α goes to infinity.

Applicability of the model

We close this section by illustrating the wide scope of the framework discussed above

by describing examples of scenarios that fit it nicely. They illustrate the freedom

provided by the framework for modeling temporal variability in both the available

rewards and the sensitivity of the users’ reward/utility to their reward allocations, as

well as fairness across users’ QoE. The presence of time-varying constraints ct (r) ≤ 0

allows us to apply the model to several interesting settings. In particular, we discuss

three wireless network settings and show that the framework can handle problems

involving time-varying exogenous loads and time-varying utility functions.

Time-varying capacity constraints

We start by discussing the case where the rewards in a time slot is the rate allocated

to the users, and users dislike variability in their allocations. Let P denote a finite

(but arbitrarily large) set of positive vectors where each vector corresponds to the

peak transmission rates achievable to the set of users in a given time slot. Let
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C =
{
cp : cp (r) =

∑
i∈N

ri
pi
− 1, p ∈ P

}
. Here, for any allocation r, ri/pi is the

fraction of time the wireless system needs to serve user i in time slot t in order to

deliver data at the rate of ri when the user has peak transmission rate pi. Thus,

the constraint cp (r) ≤ 0 can be seen as a scheduling constraint that corresponds to

the requirement that the sum of the fractions of time that different users are served

in a time slot should be less than or equal to one.

Time-varying exogenous constraints

We can further introduce time varying exogenous constraints on the wireless system

by appropriately defining the set C. For instance, consider a base station in a cellular

network that supports users who dislike variability in rate allocation. But, while

allocating rates to these users, we may also need to account for the time-varying

rate requirements of the voice traffic handled by the base station. We can model

this by defining

C =

{
cp,f : cp,f (r) =

∑
i∈N

ri
pi
− (1− f) , p ∈ P, f ∈ Tfr

}

where Tfr is a finite set of real numbers in [0, 1) where each element in the set

corresponds to a fraction of a time slot that is allocated to other traffic.

Time-varying utility functions

Additionally, our framework also allows the introduction of time-varying utility func-

tions as illustrated by the following example of a wireless network supporting video

users. Here, we view utility functions as a mapping from allocated resource (e.g.,

rate) to reward (e.g., video quality). For video users, we consider perceived video

quality of a user in a time slot as the reward for that user in that slot. However, for
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video users, the dependence of perceived video quality 3 on the compression rate is

time varying. This is typically due to the possibly changing nature of the content,

e.g., from an action to a slower scene. Hence, the utility function that maps the

reward (i.e., perceived video quality) derived from the allocated resource (i.e., the

rate) is time varying. This setting can be handled as follows. Let qt,i (·) denote the

strictly increasing concave function that, in time slot t, maps the rate allocated to

user i to user perceived video quality. For each user i, let Qi be a finite set of such

functions, then a scenario with time varying peak rates and utilities can be modeled

by set of convex constraints:

C =

{
cp,q : cp,q (r) =

∑
i∈N

q−1
i (ri)

pi
− 1, p ∈ P, qi ∈ Qi ∀ i ∈ N

}
.

2.3 Optimal variance-sensitive offline policy

In this section, we study OPT(T ), the offline formulation for optimal reward allo-

cation introduced in Section 2.1. In the offline setting, we assume that (c)1:T , the

realization of the constraints process (C)1:T , is known. We denote the objective

function of OPT(T ) by φT , i.e.,

φT (r) :=
∑
i∈N

UEi
(
eTi (ri)

)
, (2.5)

3in a short duration time slot roughly a second long which corresponds to a collection of 20-30
frames
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where eTi (·) is as in Definition 2.1. Hence the optimization problem OPT(T ) can

be rewritten as:

max(r)1:T
φT (r) (2.6)

subject to ct(r(t)) ≤ 0 ∀ t ∈ {1, ..., T} , (2.7)

ri(t) ≥ 0 ∀ t ∈ {1, ..., T} ,∀ i ∈ N . (2.8)

The next result asserts that OPT(T ) is a convex optimization problem sat-

isfying Slater’s condition (Section 5.2.3, [10]) and that it has a unique solution.

Lemma 2.1. OPT(T ) is a convex optimization problem satisfying Slater’s condition

with a unique solution.

Proof. By Assumptions U.E and U.V, the convexity of the objective of OPT(T ) is

easy to establish once we prove the convexity of the function UVi (VarT (·)) for each

i ∈ N . Using (2.3) and the definition of VarT (·), we can show that UVi (VarT (·)) is

a convex function for each i ∈ N . The details are given next. For any two quality

vectors
(
r1
)

1:T
and

(
r2
)

1:T
, any i ∈ N , α ∈ (0, 1) and ᾱ = 1− α, we have that

VarT
(
αr1

i + ᾱr2
i

)
=

1

T

T∑
t=1

(
α
(
r1
i (t)−mT

(
r1
i

))
+ ᾱ

(
r2
i (t)−mT

(
r2
i

)))2

≤


√√√√ 1

T

T∑
t=1

(
α
(
r1
i (t)−mT

(
r1
i

)))2
+

√√√√ 1

T

T∑
t=1

(
ᾱ
(
r2
i (t)−mT

(
r2
i

)))22

=

(
α
√

VarT
(
r1
i

)
+ ᾱ

√
VarT

(
r2
i

))2

(2.9)

where the above inequality follows from triangle inequality for the Euclidean norm.
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Using this, (2.3) and the monotonicity of UVi , we have

UVi
(
VarT

(
αr1

i + ᾱr2
i

))
≤ αUVi

(
VarT

(
r1
i

))
+ ᾱUVi

(
VarT

(
r2
i

))
. (2.10)

So, UVi
(
VarT (·)

)
is a convex function. Thus, by the concavity of UEi (·) and

−UVi (VarT (·)), we can conclude that OPT(T ) is a convex optimization problem.

Also, from (2.9) and (2.3) (since we have strict inequality), we can conclude that we

have equality in (2.10) only if

VarT
(
r1
i

)
= VarT

(
r2
i

)
, (2.11)

or equivalently

r1
i (t) = r2

i (t) +mT
(
r1
i

)
−mT

(
r2
i

)
∀t ∈ {1, ..., T} . (2.12)

Further, Slater’s condition is satisfied and it follows from (2.2) in Assumption C.3.

Now, for any i ∈ N , UEi and −UVi (VarT (·)) are not necessarily strictly

concave. But, we can still show that OPT(T ) has a unique solution. Let
(
r1
)

1:T

and
(
r2
)

1:T
be two optimal solutions to OPT(T ). Then, from the concavity of the

objective,
(
α
(
r1
i

)
1:T

+ ᾱ
(
r2
i

)
1:T

)
is also an optimal solution for any α ∈ (0, 1) and

ᾱ = 1− α. Due to convexity of UEi (·) and UVi
(
VarT (·)

)
, this is only possible if for

each i ∈ N and 1 ≤ t ≤ T ,

UVi
(
VarT

(
αr1

i + ᾱr2
i

))
= αUVi

(
VarT

(
r1
i

))
+ ᾱUVi

(
VarT

(
r2
i

))
.

Hence (2.12) and (2.11) hold. Due to optimality of
(
r1
)

1:T
and

(
r2
)

1:T
, we have
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that

∑
i∈N

UEi

(
1

T

T∑
t=1

r2
i (t)− UVi

(
VarT

(
r2
i

)))

=
∑
i∈N

UEi

(
1

T

T∑
t=1

r1
i (t)− UVi

(
VarT

(
r2
i

)))

=
∑
i∈N

UEi

(
1

T

T∑
t=1

r2
i (t) +mT

(
r1
i

)
−mT

(
r2
i

)
− UVi

(
VarT

(
r2
i

)))
,

where the first equality follows from (2.11) and the second one follows from (2.12).

Since UEi is a strictly increasing function for each i ∈ N , the above equation implies

that mT
(
r1
i

)
= mT

(
r2
i

)
and thus (using (2.12)) r1(t) = r2(t) for each t such that

1 ≤ t ≤ T . From the above discussion, we can conclude that OPT(T ) has a unique

solution.

We let
(
rT
)

1:T
denote the optimal solution to OPT(T ). Since OPT(T ) is a

convex optimization problem satisfying Slater’s condition (Lemma 2.1), the Karush-

Kuhn-Tucker (KKT) conditions (see Section 5.5.3 in [10]) given next hold.

KKT-OPT(T ):

There exist nonnegative constants
(
µT
)

1:T
and

(
γT
)

1:T
such that for all i ∈ N and

t ∈ {1, ..., T}, we have

(
UEi
)′ (

eTi
(
rTi
))( 1

T
−

2
(
UVi
)′ (

VarT
(
rTi
))

T

(
rTi (t)−mT

(
rTi
)))

−µ
T (t)

T
c′t,i(r

T (t)) +
γTi (t)

T
= 0, (2.13)

µT (t)ct(r
T (t)) = 0, (2.14)

γTi (t)rTi (t) = 0, (2.15)
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Here c′t,i denotes ∂ct
∂ri

, and we have used the fact that for any t ∈ {1, ..., T}

∂

∂r(t)

(
TVarT (r)

)
= 2

(
r(t)−mT (r)

)
.

From (2.13), we see that the optimal reward allocation rT (t) on time slot t

depends on the entire allocation
(
rT
)

1:T
through the following three quantities: (i)

the time average rewards mT ; (ii)
((
UEi
)′)

i∈N
evaluated at the quality of experience

of the respective users; and (iii),
((
UVi
)′)

i∈N
evaluated at the variance seen by the

respective users. So, if the time averages associated with the optimal solution were

somehow known, the optimal allocation for each time slot t could be determined

by solving an optimization problem (derived from the KKT conditions) that only

requires these time averages, and knowledge of ct (associated with current time slot)

rather than (c)1:T . We exploit this key idea in formulating our online algorithm in

the next section.

2.4 Adaptive variance-aware reward allocation

In this section, we present Adaptive Variance-aware Reward allocation (AVR) algo-

rithm and establish its asymptotic optimality.

We let

H := [0, rmax]N × [0, vmax]N , (2.16)

where × denotes Cartesian product for sets. Let (m,v) ∈ H and ei = mi − UVi (vi)

for each i ∈ N , and consider the optimization problem OPTAVR((m,v) , c) given
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below:

max
r

∑
i∈N

(
UEi
)′

(ei)
(
ri −

(
UVi
)′

(vi) (ri −mi)
2
)

subject to c(r) ≤ 0, (2.17)

ri ≥ 0 ∀ i ∈ N . (2.18)

The reward allocations for AVR are obtained by solving OPTAVR((m,v) , c), where

m, v and e correspond to current estimates of the mean, variance and QoE respec-

tively. We let r∗ ((m,v) , c) denote the optimal solution to OPTAVR((m,v) , c).

Next, we describe our algorithm in detail.

Algorithm 2.1. Adaptive Variance-aware Reward allocation (AVR)

AVR.0: Initialization: let (m(1),v(1)) ∈ H.

In each time slot t ∈ N, carry out the following steps:

AVR.1: The reward allocation in time slot t is r∗ ((m(t),v(t)) , ct), i.e., the opti-

mal solution to OPTAVR((m(t),v(t)) , ct), and will be denoted by r∗(t) (when the

dependence on the variables is clear from context).

AVR.2: In time slot t, update mi as follows: for all i ∈ N ,

mi(t+ 1) =

[
mi(t) +

1

t
(r∗i (t)−mi(t))

]rmax

0

, (2.19)

and update vi as follows: for all i ∈ N ,

vi(t+ 1) =

[
vi(t) +

(r∗i (t)−mi(t))
2 − vi(t)

t

]vmax

0

. (2.20)

Here, [x]ba = min (max (x, a) , b).
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Thus, AVR greedily allocates rewards in slot t based on the objective of

OPTAVR((m(t),v(t)) , ct). Thus, the computational requirements per slot involve

solving a convex program in N variables (that has a simple quadratic function as

its objective function), and updating at most 2N variables. We see that the update

equations (2.19)-(2.20) roughly ensure that the parameters m(t) and v(t) keep track

of mean reward and variance in reward allocations under AVR. The updates in AVR

fall in the class of decreasing step size stochastic approximation algorithms (see [29]

for reference) due to the use of 1/t in (2.19)-(2.20). We could replace 1/t with a

small positive constant ε and obtain a constant step size stochastic approximation

algorithm which is usually better suited for non-stationary settings. Also, note that

we do not have to keep track of variance estimates for users i with linear UVi since

OPTAVR is insensitive to their values (i.e.,
(
UVi
)′

(.) is a constant), and thus the

evolutions of m(t) and (vi(t))i∈Nn do not depend on them. We let θ(t) = (m(t),v(t))

for each t. The truncation [.]ba in the update equations (2.19)-(2.20) ensure that θ(t)

stays in the set H.

For any ((m,v) , c) ∈ H×C, we have
(
UEi
)′ (

mi − UVi (vi)
) (
UVi
)′

(vi) > 0 for

each i ∈ N (see Assumptions U.E and U.V). Hence, OPTAVR((m,v) , c) is a convex

optimization problem with a unique solution. Further, using (2.2) in Assumption

C.3, we can show that it satisfies Slater’s condition. Hence, the optimal solution r∗

for OPTAVR((m,v) , c) satisfies KKT conditions given below.

KKT-OPTAVR((m,v) , c):

There exist nonnegative constants µ∗ and (γ∗i )i∈N such that for all i ∈ N

(
UEi
)′ (

mi − UVi (vi)
) (

1− 2
(
UVi
)′

(vi) (r∗i −mi)
)

+ γ∗i − µ∗c′i(r∗) = 0, (2.21)

µ∗c(r∗) = 0, (2.22)

γ∗i r
∗
i = 0. (2.23)
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In the next lemma, we establish continuity properties of r∗ ((m,v) , c) when

viewed as a function of (m,v). In particular, the Lipschitz assumption on the deriva-

tives of
(
UVi
)
i∈N and

(
UEi
)
i∈N help us conclude that the optimizer of OPTAVR(θ, c)

is Lipschitz continuous in θ.

Lemma 2.2. For any c ∈ C, and θ = (m,v) ∈ H

(a) r∗ (θ, c) is a Lipschitz continuous function of θ.

(b) E [r∗ (θ, Cπ)] is a Lipschitz continuous function of θ.

Proof. For θ = (m,v), let

Φθ (r) :=
∑
i∈N

(
UEi
)′

(ei)
(
ri −

(
UVi
)′

(vi) (ri −mi)
2
)

(2.24)

for r ∈ RN where ei = mi − UVi (vi) for each i ∈ N . Next, for any θa,θb ∈ H and

r ∈ [−2rmax, 2rmax]N (any optimal solution to OPTAVR, i.e., minimizer of Φθ (r)

subject to constraints is an interior point of this set), let

∆Φ
(
r,θa,θb

)
= Φθb (r)− Φθa (r) .

We prove part (a) (i.e., the Lipschitz continuity with respect to θ of the optimizer

r∗ (θ, c) of Φθ (r) subject to constraint c) using Proposition 4.32 in [8]. The first

condition in the Proposition requires that ∆Φ
(
·,θa,θb

)
be Lipschitz continuous. To
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show this, note that for any rc, rd ∈ [−2rmax, 2rmax]N

∆Φ
(
rc,θa,θb

)
−∆Φ

(
rd,θa,θb

)
=

∑
i∈N

((
UEi
)′

(eai )−
(
UEi
)′ (

ebi

))(
rci − rdi

)
+
∑
i∈N

(
UEi
)′

(eai )
(
UVi
)′

(vai )
(
rdi − rci

)(
rdi + rci − 2ma

i

)
−
∑
i∈N

(
UEi
)′ (

ebi

) (
UVi
)′ (

vbi

)(
rdi − rci

)(
rdi + rci − 2mb

i

)
.

Using the above expression, Lipschitz continuity and boundedness of
(
UVi
′
)
i∈N

and(
UEi
′
)
i∈N

(see Assumptions U.V.1 and U.E), and boundedness of ra and rb, we can

conclude that there exists some positive finite constant η such that

∆Φ
(
rc,θa,θb

)
≤ ηd

(
θa,θb

)
d
(
ra, rb

)
.

Next, we establish the second condition given in the proposition referred to as second

order growth condition. For this we use Theorem 6.1 (vi) from [6], and consider the

functions L and ψ discussed in the exposition of the theorem. We have

L (r,θ, µ,γ, c) = Φθ (r∗)− Φθ (r) + µc (r)−
∑
i∈N

γiri,

and for d ∈ RN , we have

ψr∗(θa,c) (d) = dtr∇2
rL (r∗ (θa, c) ,θa, µm(c),γm(c), c) d

where µm(c) and (γmi (c) : i ∈ N ) are Lagrange multipliers associated with the opti-

mal solution to OPTAVR(θa, c). Then, using convexity of c we have

ψr∗(θa,c) (d) ≥
∑
i∈N

2
(
UEi
)′

(eai )
(
UVi
)′

(vai ) d2
i .
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Since
(
UVi
′
)
i∈N

and
(
UEi
′
)
i∈N

are strictly positive (see Assumptions U.V.1 and

U.E), we can conclude that there exists some positive finite constant η1 such that

ψr∗(θa,c) (d) ≥ η1 ‖d‖2 . Now, using Theorem 6.1 (vi) from [6], we can conclude that

second order growth condition is satisfied.

Thus, we have verified the conditions given in Proposition 4.32 in [8], and

thus (a) holds. Then, (b) follows from (a) since C is finite and

E [r∗ (θ, Cπ)] =
∑
c∈C

π(c)r∗ (θ, c) .

2.4.1 Proof of Theorem 2.3

Proof. By KKT-OPTSTAT (ρπc : c ∈ C), (µπ (c) : c ∈ C) and
(
(γπi (c))i∈N : c ∈ C

)
satisfy (2.30)-(2.32). To show that r∗ ((mπ,vπ) , c) = ρπc , we verify that ρπc satisfies

KKT-OPTAVR((mπ,vπ) , c). To that end, we can verify that ρπc along with µ∗ =

µπ(c)
π(c) and

(
γ∗i =

γπi (c)
π(c) : i ∈ N

)
satisfy (2.21)-(2.23) by using (2.30)-(2.32). This

proves part (a).

To prove part (b), first note that (mπ,vπ) ∈ H∗ and this follows from (a) and

the definitions (see (2.33)-(2.34)) of mπ and vπ. Next, note that for any (m,v) ∈ H∗

and each c ∈ C, r∗ (m,v, c) is an optimal solution to OPTAVR and thus, there

exist nonnegative constants µ∗ (c) and (γ∗i (c) : i ∈ N ) such that for all i ∈ N , and

satisfies KKT-OPTAVR given in (2.21)-(2.23). Also, since (m,v) ∈ H∗, it satisfies
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(2.36)-(2.37). Combining these observations, we have that for all c ∈ C

(
UEi
)′ (

E [r∗ (θ, Cπ)]− UVi (Varπ (r∗ (θ, Cπ)))
)(

r∗i (θ, c)− 2
(
UVi
)′

(Varπ (r∗ (θ, Cπ))) (r∗i (θ, c)

−E [r∗ (θ, Cπ)])) + γ∗i − µ∗ (c) c′i(r
∗ (θ, c)) = 0,

µ∗ (c) c(r∗ (θ, c)) = 0,

γ∗i r
∗
i (θ, c) = 0.

where θ = (m,v), and ei = mi−UVi (vi) for each i ∈ N . Now for each c ∈ C, multi-

ply the above equations with π(c) and one obtains KKT-OPTSTAT ((2.30)-(2.32))

with (π (c)µ∗ (c) : c ∈ C) and
(
(π (c) γ∗i (c))i∈N : c ∈ C

)
as associated Lagrange mul-

tipliers. From Lemma 2.3, OPTSTAT satisfies Slater’s condition and hence sat-

isfying KKT conditions is sufficient for optimality for OPTSTAT. Thus, we have

that (r∗ (m,v, c))c∈C is an optimal solution to OPTSTAT. This observation along

with uniqueness of solution to OPTSTAT and (2.36)-(2.37), imply part (b), i.e.,

H∗ = {(mπ,vπ)}.

The next theorem states our key convergence result for the mean, variance

and QoE of the reward allocations under AVR. This result is proven in Section 2.5.

For brevity, we let r∗(t) denote r∗ ((m(t),v(t)) , ct).

Theorem 2.1. The evolution of the users’ estimated parameters m(t) and v(t),

and the sequence of reward allocations (r∗i )1:T to each user i under AVR satisfy the

following property: for almost all sample paths, and for each i ∈ N ,

(a) lim
T→∞

mT (r∗i ) = lim
t→∞

mi(t),

(b) lim
T→∞

VarT (r∗i ) = lim
t→∞

vi(t),

(c) lim
T→∞

eTi (r∗i ) = lim
t→∞

(
mi(t)− UVi (vi(t))

)
.
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The next result establishes the asymptotic optimality of AVR, i.e., if we

consider long periods of time T , the difference in performance (i.e., φT defined in

(2.5)) of the online algorithm AVR and the optimal offline policy OPT(T ) becomes

negligible. Thus, the sum utility of the QoEs (which depends on long term time

averages) is optimized.

Theorem 2.2. The sequence of reward allocations (r∗)1:T under AVR is feasible,

i.e., it satisfies (2.7) and (2.8), and for almost all sample paths they are asymptot-

ically optimal, i.e.,

lim
T→∞

(
φT (r∗)− φT

(
rT
))

= 0.

Proof. Since the allocation (r∗)1:T associated with AVR satisfies (2.17) and (2.18)

at each time slot, it also satisfies (2.7) and (2.8).

To show asymptotic optimality, consider any realization of (c)1:T . Let (µ∗)1:T

and (γ∗)1:T be the sequences of nonnegative real numbers satisfying (2.21), (2.22)

and (2.23) for this realization. From the nonnegativity of these numbers, and feasi-

bility of
(
rT
)

1:T
, we have

φT
(
rT
)
≤ ψT

(
rT
)
, (2.25)

where

ψT
(
rT
)

=
∑
i∈N

UEi
(
eTi
(
rTi
))
−

T∑
t=1

µ∗(t)

T
ct(r

T (t)) +
T∑
t=1

∑
i∈N

γ∗i (t)

T
rTi (t).

Indeed, the function ψT is the Lagrangian associated with OPT(T ) but evaluated at

the optimal Lagrange multipliers associated with the optimization problems (OP-
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TAVR) involved in AVR, and hence the inequality. Since ψT is a differentiable

concave function, we have (see [10])

ψT
(
rT
)
≤ ψT (r∗) +

〈
∇ψT (r∗) ,

((
rT
)

1:T
− (r∗)1:T

)〉
,

where 〈·, ·〉 denotes the dot product. Hence, we have

ψT
(
rT
)
≤

∑
i∈N

UEi
(
eTi (r∗i )

)
−

T∑
t=1

µ∗(t)

T
ct(r

∗(t)) +
T∑
t=1

∑
i∈N

γ∗i (t)

T
r∗i (t)

+
T∑
t=1

∑
i∈N

(
rTi (t)− r∗i (t)

)
(
−µ
∗(t)

T
c′t,i(r

∗(t)) +
γ∗i (t)

T
+
(
UEi
)′ (

eTi (r∗i )
)

(
1

T
−

2
(
UVi
)′ (

VarT (r∗i )
)

T

(
r∗i (t)−mT (r∗i )

)))
.

Using (2.25), and the fact that (µ∗)1:T and (γ∗)1:T satisfy (2.21), (2.22) and (2.23),

we have

φT
(
rT
)
≤
∑
i∈N

UEi
(
eTi (r∗i )

)
+

T∑
t=1

∑
i∈N

rTi (t)− r∗i (t)
T

(2.26)((
UEi
)′ (

eTi (r∗i )
) (

1− 2
(
UVi
)′ (

VarT (r∗i )
) (
r∗i (t)−mT (r∗i )

) )
−
(
UEi
)′

(ei(t− 1))
(

1− 2
(
UVi
)′

(vi(t− 1)) (r∗i (t)−mi(t− 1))
))

.

From Theorem 2.1 (a)-(c), and the continuity and boundedness of the functions

involved, we can conclude that the expression appearing in the last four lines of the

above inequality can be made as small as desired by choosing large enough T and

then choosing a large enough t. Also,
∣∣rTi (t)− r∗i (t)

∣∣ ≤ rmax for each i ∈ N . Hence,
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taking limits in (2.26),

lim
T→∞

(
φT (r∗)− φT

(
rT
))
≥ 0. (2.27)

holds for almost all sample paths. From the optimality of
(
rT
)

1:T
,

φT
(
rT
)
≥ φT (r∗) . (2.28)

The result follows from the inequalities (2.27) and (2.28).

2.5 Convergence analysis

This section is devoted to the proof of the previously stated Theorem 2.1 capturing

the convergence of reward allocations under AVR. Our approach relies on viewing

(2.19)-(2.20) in AVR as a stochastic approximation update equation (see, e.g., [29]

for reference), and relating the convergence of reward allocations under the discrete

time algorithm AVR to that of an auxiliary (continuous time) ODE (given in (2.38))

which evolves according to time averaged dynamics of AVR. In fact, we will show

that the ODE converges to a point determined by the optimal solution to an auxiliary

optimization problem OPTSTAT closely related to OPT(T ) which is discussed in

the next subsection. In Subsection 2.5.2, we study the convergence of the auxiliary

ODE and in Subsection 2.5.3, we establish convergence of (θ(t))t∈N generated by

AVR to complete the proof of Theorem 2.1.

2.5.1 A stationary version of OPT: OPTSTAT

The formulation OPT(T ) involves time averages of various quantities associated

with users’ rewards. By contrast, the formulation of OPTSTAT is based on expected

values of the corresponding quantities under the stationary distribution of (Ct)t∈N.
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Recall that (under Assumption C.1) (Ct)t∈N is a stationary ergodic process

with marginal distribution (π(c))c∈C , i.e., for c ∈ C, π(c) is the probability of the

event Ct = c. Since C is finite, we assume that π(c) > 0 for each c ∈ C without any

loss of generality.

Definition 2.2. A reward allocation policy is said to be stationary if the associated

reward allocation in any time slot t depends only on current constraint ct.

Thus, we can represent any stationary reward allocation policy as a |C| length

vector (of vectors) (ρc)c∈C where ρc = (ρc,i)i∈N ∈ RN+ denotes the allocation of

rewards to users under constraint c ∈ C.

Definition 2.3. We say that a stationary reward allocation policy (ρc)c∈C is feasible

if for each c ∈ C, we have that c (ρc) ≤ 0 and for each i ∈ N , we have ρc,i ≥ 0. Also,

let RC ⊂ RN |C| denote the set of feasible stationary reward allocation policies, i.e.,

RC :=Πc∈C
{
ρc ∈ RN : c (ρc) ≤ 0, ρc,i ≥ 0 ∀ i ∈ N

}
. (2.29)

Now, let

φπ
(
(ρc)c∈C

)
=
∑
i∈N

UEi
(
E [ρCπ ,i]− UVi (Var (ρCπ ,i))

)
where ρCπ ,i is a random variable taking value ρc,i with probability π(c) for each

c ∈ C, i.e., a random variable whose distribution is that of user i’s reward allocation

under stationary reward allocation policy (ρc)c∈C . Hence,

E [ρCπ ,i] =
∑
c∈C

π(c)ρc,i,

Var (ρCπ ,i) =
∑
c∈C

π(c) (ρc,i − E [ρCπ ,i])
2 .
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We define the ‘stationary’ optimization problem OPTSTAT as follows:

max
(ρc)c∈C∈RC

φπ
(
(ρc)c∈C

)
.

The next lemma gives a few useful properties of OPTSTAT.

Lemma 2.3. OPTSTAT is a convex optimization problem satisfying Slater’s con-

dition and has a unique solution.

Proof. The proof is similar to that of Lemma 2.1, and is easy to establish once the

convexity of the function Var (·) is shown.

Using Lemma 2.3, we can conclude that the KKT conditions given below are

necessary and sufficient for optimality of OPTSTAT. Let (ρπc )c∈C denote the optimal

solution.

KKT-OPTSTAT:

There exist constants (µπ (c))c∈C and (γπ (c))c∈C are such that

π (c)
(
UEi
)′ (

E
[
ρπCπ ,i

]
− UVi

(
Var

(
ρπCπ ,i

)))(
1− 2

(
UVi
)′ (

Var
(
ρπCπ ,i

)) (
ρπc,i − E

[
ρπCπ ,i

]))
−µπ (c) c′i (ρπc ) + γπi (c) = 0, (2.30)

µπ (c) c (ρπc ) = 0, (2.31)

γπi (c) ρπc,i = 0, (2.32)

where c′i denotes the ith component of the gradient ∇c of the constraint function

c ∈ C.

In developing the above KKT conditions, we used the fact that for any c ∈ C and

i ∈ N ,
∂Var

(
ρπCπ,i

)
∂ρc,i

= 2π(c)
(
ρπc,i − E

[
ρπCπ ,i

])
.
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Next, we find relationships between the optimal solution (ρπc )c∈C of OPT-

STAT and OPTAVR. To that end, let θπ:= (mπ,vπ) where for each i ∈ N , we

define

mπ
i := E

[
ρπCπ ,i

]
, (2.33)

vπi := Varπ
(
ρπCπ ,i

)
, (2.34)

eπi := mπ
i − UVi (vπi ) . (2.35)

Definition 2.4. Let H∗ be the set of fixed points defined by

H∗ = {(m,v) ∈ H : (m,v) satisfies (2.36)− (2.37)} ,

where

E [r∗i ((m,v) , Cπ)] = mi ∀ i ∈ N , (2.36)

Var (r∗i ((m,v) , Cπ)) = vi ∀ i ∈ N . (2.37)

Recall that r∗ ((m,v) , c) denotes the optimal solution to OPTAVR((m,v) , c)

and H is defined in (2.16). Thus, H∗ is the set of parameter values θ = (m,v) that

can be viewed as fixed points for ‘stationary modification’ of AVR obtained by

replacing r∗i (t) and (r∗i (t)−mi(t))
2 in (2.19) and (2.20) with their expected values.

Theorem 2.3 below shows that in fact there is but one such fixed point θπ. A proof

is given in Appendix 2.4.1.

Theorem 2.3. θπ satisfies the following:

(a) r∗ (θπ, c) = ρπc for each c ∈ C, and

(b) H∗ = {θπ}.

Using these results we will study a differential equation that mimics the

evolution of the parameters under AVR and show that it converges to θπ.
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2.5.2 Convergence of auxiliary ODE associated with AVR

In this subsection, we study and establish convergence of an auxiliary ODE which

evolves according to the average dynamics of AVR. This will subsequently be used

in establishing convergence properties of AVR.

Consider the following differential equation

dθA(τ)

dτ
= ḡ

(
θA(τ)

)
+ z

(
θA(τ)

)
, (2.38)

for τ ≥ 0 with θA(0) ∈ H where ḡ (θ) is a function taking values in R2N defined as

follows: for θ = (m,v) ∈ H, let

(ḡ (θ))i := E [r∗i (θ, C
π)]−mi, (2.39)

(ḡ (θ))N+i := E
[
(r∗i (θ, C

π)−mi)
2
]
− vi. (2.40)

In (2.38), z (θ) ∈ −CH (θ) is a projection term corresponding to the smallest vector

that ensures that the solution remains in H (see Section 4.3 of [29]). The set CH (θ)

contains only the zero element when θ is in the interior of H, and for θ on the

boundary of the set H, CH (θ) is the convex cone generated by the outer normals

at θ of the faces of H on which θ lies. The motivation for studying the above

differential equation should be partly clear by comparing the right hand side of

(2.38) (see (2.39)-(2.40)) with AVR’s update equations (2.19)-(2.20), and we can

associate the term z (θ) with the constrained nature of AVR’s update equations.

The following result shows that z (θ) appearing in (2.38) is innocuous in the sense

that we can ignore it when we study the differential equation. The proof shows the

redundancy of the term z (θ) by arguing that the differential equation itself ensures

that θA(τ) stays within H.

Lemma 2.4. For any θ ∈ H, zj (θ) = 0 for all 1 ≤ j ≤ 2N .
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Proof. Recall that H = [0, rmax]N × [0, vmax]N and vmax = r2
max. Note that for any θ

in the interior of H, zj (θ) = 0 for all j such that 1 ≤ j ≤ 2N from the definition of

CH (θ) and thus we can restrict our attention to the boundary ofH. For any θ on the

boundary ofH and i ∈ N , we can use the facts that (ḡ (θ))i = E [r∗i (θ, C
π)]−mi and

0 ≤ r∗i (θ, Cπ) ,mi ≤ rmax, to conclude that zi (θ) = 0. Similarly, since vmax = r2
max,

we can show that zj (θ) = 0 for any j such that N + 1 ≤ j ≤ 2N .

Note that (2.38) has a unique solution for a given initialization due to Lips-

chitz continuity results in Lemma 2.2.

We define the set H̃ ⊂ H as follows:

H̃ :=
{

(m,v) ∈ H : there exists (ρc)c∈C ∈ RC such that

E [ρCπ ,i] = mi, Var (ρCπ ,i) ≤ vi ≤ r2
max ∀ i ∈ N

}
where RC is the set of feasible stationary reward allocation policies defined in (2.29).

We can view H̃ as the set of all ‘achievable’ mean variance pairs, i.e., for any

(m,v) ∈ H there is some stationary allocation policy with associated mean vector

equal to m and associated variance vector componentwise less than or equal to v.

Here, the restriction vi ≤ r2
max for each i ensures that H̃ is bounded. Further, for

any θ = (m,v) ∈ H̃, let

R̃ (θ) :=
{

(ρc)c∈C ∈ RC : E [ρCπ ,i] = mi, Var (ρCπ ,i) ≤ vi ∀ i ∈ N
}
.

We can view R̃ (θ) as the set of all feasible stationary reward allocation policies

corresponding to an achievable θ ∈ H̃.

The following result characterizes several useful properties of the sets intro-

duced above.

Lemma 2.5. (a) For any θ = (m,v) ∈ H̃, R̃ (θ) is a non-empty compact subset of
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RN |C|.

(b) H̃ is a bounded, closed and convex set.

Proof. For any θ ∈ H̃, using the definition of H̃, we see that R̃ (θ) is a non-empty

set. For any c ∈ C, the set
{
ρc ∈ RN : c (ρc) ≤ 0, ρc,i ≥ 0 ∀ i ∈ N

}
is compact

due to continuity (see Assumption C.1) and boundedness (see Assumption C.2) of

feasible region associated with functions in C. Thus, RC is also compact. Now,

note that R̃ (θ) is the intersection of a compact set RC , and Cartesian product of

intersection of inverse images of closed sets associated with continuous functions

(corresponding to E[.] and Var(·)) defined over RN . Thus, R̃ (θ) is compact, and

this proves (a).

H̃ is bounded since 0 ≤ mi ≤ rmax and 0 ≤ vi ≤ r2
max for each i ∈ N , and

each (m,v) ∈ H̃.

Let (m,v) be any limit point of H̃. Then, there is a sequence ((mn,vn))n∈N ⊂

H̃, such that limn→∞ (mn,vn) = (m,v). Let (ρc,n)c∈C ∈ R̃ ((mn,vn)) for each

n ∈ N. Since
(
(ρc,n)c∈C

)
n∈N is a sequence in the compact set RC , it has some

convergent subsequence
(
(ρc,nk)c∈C

)
k∈N. Suppose that the subsequence converges

to (ρc)c∈C ∈ RC . Then,

E
[
ρCπ ,i

]
= lim

k→∞
E [ρCπ ,nki] = lim

k→∞
mnki = mi,

Var
(
ρCπ ,i

)
= lim

k→∞
Var (ρCπ ,nki) ≤ lim

k→∞
vnki = vi.

Thus, (ρc)c∈C ∈ R̃ ((m,v)), and hence, (m,v) ∈ H̃. Thus, H̃ contains all its limit

points and hence is closed.

To show convexity, consider (m1,v1) , (m2,v2) ∈ H̃, and we show that for

any given α ∈ [0, 1], we have α (m1,v1) + (1− α) (m2,v2) ∈ H̃. Let (ρc,1)c∈C ∈

R̃ ((m1,v1)) and (ρc,2)c∈C ∈ R̃ ((m2,v2)). Hence for each i ∈ N , Var (r1i (Cπ)) ≤
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v1i and Var (r2i (Cπ)) ≤ v2i. Let ρc,3 = αρc,1 + (1− α)ρc,2. Thus, for each i ∈ N ,

E [ρCπ ,3i] = αm1 + (1− α)m2. (2.41)

Next, note that Var (ρCπ) is a convex function of (ρc)c∈C . This can be shown using

convexity of square function and linearity of expectation. Thus, for each i ∈ N ,

Var (ρCπ ,3i) ≤ αVar (ρCπ ,1i) + (1− α) Var (ρCπ ,2i)

≤ αv1i + (1− α) v2i. (2.42)

From (2.41) and (2.42), we have (r3(c))c∈C ∈ R̃ (α (m1,v1) + (1− α) (m2,v2)), and

thus α (m1,v1) + (1− α) (m2,v2) ∈ H̃.

The next result gives a set of sufficient conditions to establish asymptotic

stability of a point with respect to an ordinary differential equation. This result is

a generalization of Theorem 4 in [49].

Lemma 2.6. Consider a differential equation

ẋ = f(x) , x ∈ Rd , (2.43)

where f is locally Lipschitz and all trajectories exist for t ∈ [0,∞). Suppose that

some compact set K ⊂ Rd is asymptotically stable with respect to (2.43) and also

suppose that there exists a continuously differentiable function L : Rd → R and some

x0 ∈ K such that

∇L(x) · f(x) < 0 ∀x ∈ K , x 6= x0 . (2.44)

Then x0 is an asymptotically stable equilibrium for (2.43) in Rd.

Proof. The approach used here is similar to that in [49]. Let δ > 0 be given. With
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Bδ(x0) denoting the open ball of radius δ centered at x0 select ε ∈ (0, δ) such that

max
Bε(x0)

L < min
K\Bδ(x0)

L . (2.45)

This is possible, since the hypotheses imply that L(x0) < L(x) for all x ∈ K, x 6= x0.

Indeed, consider any solution γ of (2.43) starting at x ∈ K, with x 6= x0. Then the

invariance of K and (2.44) imply that the set of ω-limit points of γ is necessarily the

singleton {x0}. Note that L is non-increasing along trajectories in K and is strictly

decreasing along any portion of a trajectory which does not contain x0. Choose any

t′ > 0 such γ(t) 6= x0 for all t ∈ [0, t′] (this is of course possibly by the continuity of

t 7→ γ(t)). Therefore we must have

L(x) = L(γ(0)) > L(γ(t′)) ≥ lim
t→∞

L(γ(t)) = L(x0) .

Since K is asymptotically stable there exists a decreasing sequence of open

sets {Gk}k∈N such that each Gk is invariant with respect to (2.43) and ∩k∈NGk = K.

By (2.44)–(2.45) and the continuity of L and ∇L·f we can select n ∈ N large enough

such that

∇L(x) · f(x) < 0 ∀x ∈ Ḡn \Bε(x0) (2.46a)

max
Bε(x0)

L < min
Ḡn\Bδ(x0)

L . (2.46b)

It is clear by (2.46a)–(2.46b) that any trajectory starting in Gn ∩ Bε(x0) stays in

Bδ(x0), implying that x0 is a stable equilibrium. Let γ be any trajectory of (2.43).

Asymptotic stability of K implies that there exists t1 > 0 such that γ(t) ∈ Gn for all

t > t1. Also by (2.46a) there exists t2 ≥ t1 such that γ(t2) ∈ Gn∩Bδ(x0). Therefore

x0 is asymptotically stable.

We are now in a position to establish the convergence result for the ODE in
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(2.38). The proof relies on the optimality properties of the solutions to OPTAVR,

Lemma 3 from [49], Theorem 2.3 (b), and Lemma 2.6.

Theorem 2.4. Suppose θA(τ) evolves according to the ODE in (2.38). Then, for

any initial condition θA(0) ∈ H, limτ→∞ θ
A(τ) = θπ.

Proof. Applying Lemma 3 in [49] and by identifying V ≡ H̃, it follows that H̃ is

asymptotically stable for (32). Define

L(θ) = L(m,v):=−
∑
i∈N

UEi
(
mi − UVi (vi)

)
.

Then

∇L(θ) · ḡ(θ) = −
∑
i∈N

(
UEi )′

(
mi − UVi (vi)

)(
E
[
r∗i (θ, C

π)
]
−mi

−
(
UVi )′(vi)

(
E
[
(r∗i (θ, C

π)−mi)
2
]
− vi

))
. (2.47)

If θ ∈ H̃, then for some ρ ∈ R̃(θ), (2.47) takes the form

∇L(θ) · ḡ(θ) = −E [Φθ(r∗(θ, Cπ))− Φθ(ρCπ)] (2.48)

−
∑
i∈N

(
UEi )′

(
mi − UVi (vi)

)(
UVi )′(vi)

(
vi −Var

(
ρCπ ,i

))
where Φθ is defined in (2.24). The optimality of r∗i (θ, c) for OPTAVR((m,v) , c) and

the fact that ρ ∈ R̃(θ) together with Assumptions U.V.1 and U.E. then imply that

both terms on the right-hand-side of (2.48) are nonpositive and that they vanish

only if

E [r∗i (θ, C
π)] = E [ρCπ ,i] = mi, (2.49)

Var
(
r∗i (θ, C

π)
)

= Var
(
ρCπ ,i

)
= vi . (2.50)
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In turn, by Theorem 3 these imply that θ = θπ. Therefore ∇L(θ) · ḡ(θ) < 0 for all

θ ∈ H̃, θ 6= θπ and the result follows by Lemmas 4 and 6.

If the Lipschitz hypothesis in Assumptions U.V.1 and U.E. is relaxed, then

the conclusions of Lemma 2.2 hold with continuity replacing Lipschitz continuity.

Existence of solutions to the ordinary differential equation (2.38) in the setH follows

by Peano’s theorem since H is compact, thus rendering the vector field (associated

with (2.38)) continuous and bounded. Note that Lemma 2.6 does not require Lips-

chitz continuity, and nor does the proof of Theorem 2.4.

2.5.3 Convergence of AVR and proof of Theorem 2.1

In this subsection, we complete the proof of Theorem 2.1. We first establish a

convergence result for the sequence of iterates of the AVR algorithm (θ(t))t∈N based

on the associated ODE (2.38). We do so by viewing (2.19)-(2.20) as a stochastic

approximation update equation, and use a result from [29] that relates the iterates

to the ODE (2.38). We establish the desired convergence result by utilizing the

corresponding result obtained for the ODE in Theorem 2.4.

Lemma 2.7. If θ(0) ∈ H, then the sequence (θ(t))t∈N generated by the Algorithm

AVR converges almost surely to θπ.

Proof. This proof draws on standard techniques from stochastic approximation (see

e.g., [29]). The key idea is to view (2.19)-(2.20) as a stochastic approximation

update equation, and using Theorem 1.1 of Chapter 6 from [29] to relate (2.19)-

(2.20) to the ODE (2.38). Below, for brevity, we provide details drawing heavily on

the framework developed in [29].

In the following, we show that all the Assumptions required to use the theo-

rem are satisfied. The following sets, variables and functions H, θt, ξt, Yt, εt, sigma

algebras Ft, βt, δMt and the function g appearing in the exposition of Theorem 1.1
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of [29], correspond to the following variables and functions in our problem setting:

H = H, θt = (m(t),v(t)), ξt = ct, for each i ∈ N (Yt)i = r∗i (t)−mi(t) and (Yt)i+N =

(r∗i (t)−mi(t))
2 − vi(t), εt = 1

t for each t, Ft is such that (θ0,Yi−1, ξi, i ≤ t) is Ft-

measurable, βt = 0 and δMt = 0 for each t, (g ((m,v) , c))i = r∗i ((m,v) , c) −mi

and (g ((m,v) , c))i+N = (r∗i ((m,v) , c)−mi)
2 − vi,

Equation (5.1.1) in [29] is satisfied due to our choice of εt, and (A4.3.1) is

satisfied due to our choice of H. Further, (A.1.1) is satisfied as the solutions to

OPTAVR are bounded. (A.1.2) holds due to the continuity result in Lemma 2.2 (a).

We next show that (A.1.3) holds by choosing the function ḡ as follows for

each i ∈ N :

(g (m,v))i = E [r∗i ((m,v) , Cπ)]−mi,

(g (m,v))i+N = E
[
(r∗i ((m,v) , Cπ)−mi)

2
]
− vi.

Note that the continuity of the function ḡ follows from Lemma 2.2 (b).

From Section 6.2 of [29], if εt does not go to zero faster than the order of 1√
t
,

for (A.1.3) to hold, we only need to show that the strong law of large numbers holds

for (g (m,v, Ct))t for any q̂. The strong law of large numbers holds since (Ct)t∈N

is a stationary ergodic random process and g is a bounded function. Assumptions

(A.1.4) and (A.1.5) hold since βt = 0 and δMt = 0 for each t. To check (A.1.6)

and (A.1.7), we use sufficient conditions discussed in [29] following Theorem 1.1.

Assumption (A.1.6) holds since g is bounded. (A.1.7) holds due to the continuity

of g ((m,v) , c) in (m,v) uniformly in c which follows from the continuity result in

Lemma 2.2 (a), and the finiteness of C. Thus, using Theorem 1.1, we can conclude

that on almost all sample paths, (θ(t))t∈N converges to some limit set of the ODE

(2.38) in H. From Theorem 2.4, for any initialization in H, this limit set is the

singleton {θπ}, and thus the main result follows.
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If we use AVR with a constant step size stochastic approximation algorithm

obtained by replacing 1/t in (2.19)-(2.20) with a small positive constant ε, we can

use results like Theorem 2.2 from Chapter 8 of [29] to obtain a result similar in

flavor to that in Lemma 2.7 (which can then be used to obtain optimality results).

Now we prove Theorem 2.1 mainly using Lemma 2.7, and stationarity and

ergodicity assumptions. For each i ∈ N ,

1

T

T∑
t=1

r∗i (θ(t), Ct) =
1

T

T∑
t=1

(
r∗i (θ(t), Ct)− r∗i (θπ, Ct)

)
+

1

T

T∑
t=1

r∗i (θ
π, Ct) . (2.51)

The first term of (2.51) converges to 0 a.s. (i.e., for almost all sample paths) as

T →∞ by Lemma 2.7, the continuity of r∗ (θ, c) in θ (see Lemma 2.2 (a)) and the

Dominated Convergence Theorem (see, for e.g., [22]). The second term converges

to E
[
r∗i
(
θπ, Cπ

)]
by Birkhoff’s Ergodic Theorem (see, for e.g., [21]). Now, note

that E
[
r∗i
(
θπ, Cπ

)]
= mπ

i (see Theorem 2.3 (b) and (2.36)). Since by Lemma 2.7,

limt→∞ mi(t) = mπ
i , part (a) of Theorem 2.1 is proved.

Next, we prove part (b). Note that for each i ∈ N ,

VarT (r∗i ) =
1

T

T∑
t=1

(
r∗i
(
θ(t), Ct

)
− 1

T

T∑
s=1

r∗i
(
θ(s), Cs

))2

=
1

T

T∑
t=1

(
r∗i
(
θ(t), Ct

)
−mπ

i

)2 −( 1

T

T∑
s=1

r∗i
(
θ(s), Cs

)
−mπ

i

)2

. (2.52)

The second term on the right-hand-side of (2.52) converges a.s. to zero as t→∞ by

part (a). Also, following the same steps as in the proof of part (a), we see that the

first term converges a.s. to vπi as T →∞. Since by Lemma 2.7, limt→∞ vi(t) = vπi ,

part (b) of Theorem 2.1 is proved.

Part (c) of Theorem 2.1 follows from parts (a) and (b).
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2.6 Simulations

In this section, we evaluate additional performance characteristics of AVR via simu-

lation. We focus on the realization of different mean-variability-fairness tradeoffs by

varying the functions
(
UEi , U

V
i

)
i∈N , and on the convergence rate of the algorithm.

For the simulations, we consider a time-slotted setting involving time varying

utility functions as discussed in Section 2.2. We consider a network where N = 20.

Temporal variations in video content get translated into time varying quality rate

maps, and we model this as follows: in each time slot, a time varying quality rate

map for each user is picked independently and uniformly from a set Q = {q1, q2}.

Motivated by the video distortion versus rate model proposed in [51], we consider

the following two (increasing) functions that map video compression rate w to video

quality

q1(w) = 100− 40000

w − 500
, q2(w) = 100− 80000

w − 500
.

These (increasing) functions map video compression rate w to a video quality metric.

We see that the map q2 is associated with a time slot in which the video content (e.g.,

involving a scene with a lot of detail) is such that it needs higher rates for the same

quality (when compared to that for q1). Referring Section 2.2, we see that Qi = Q

for each user i ∈ N . For each user, the peak data rate in each time slot is modeled as

an independent random variable with various distributions (discussed below) from

the setW = {ω1, ω2} where ω1 = 30000 units and ω2 = 60000 units (thus P =WN ).

Further, we choose rmax = 100 and the run length of each simulation discussed below

is 100000 time slots.

To obtain different tradeoffs between mean, variability and fairness, for each

i ∈ N we set UEi (e) = e1−α

1−α and UVi (v) = β
√
v + 1 and vary α and β. For a given α,

note that UEi (·) corresponds to α−fair allocation discussed in Section 2.2 where a

larger α corresponds to a more fair allocation of QoE. Also, by choosing a larger β we
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can impose a higher penalty on variability. The choice of UVi (·) roughly corresponds

to the metric proposed in [59]. To obtain a good initialization for AVR, the reward

allocation in the first 10 time slots is obtained by solving a modified version of

OPTAVR((m,v) , c) with a simpler objective function
∑

i∈N U
E
i (ri) (which does

not rely on any estimates) under the same constraints (2.17) and (2.18), and run

AVR from the 11th time slot initialized with parameters (m,v) set to the mean

reward and half the variance in reward over the first ten time slots.

We first study a homogeneous setting in which, for each time slot, the peak

data rate of each user is picked independently and uniformly at random from the

set W. Here, we set α = 1.5 and vary β over {0.02, 0.1, 0.2, 0.5, 1, 2}. The averaged

(across users) values of the mean reward and standard deviation of the reward

allocation for the different choices of β are shown in Fig 2.1. Not only does the

Figure 2.1: Homogeneous setting: Mean-Variability tradeoffs

standard deviation reduce with a higher β, we also see that the reduction in mean
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reward for a given reduction in variability is very small. For instance here we were

able to reduce the standard deviation in reward from around 10 to 3 (i.e., around 70

% reduction) at the cost of a mere reduction of 4 units in the mean reward (around

7 % reduction). It should be clear that the reduction in variance corresponding to

the above data will be even more drastic than that of the standard deviation and

this is the case in the next setting too.

Next, we study a heterogeneous setting. For each time slot, the peak data

rate of each user indexed 1 through 10 is modeled as a random variable taking values

ω1 and ω2 with probability 0.9 and 0.1 respectively, and that of each user indexed

11 through 20 is ω1 and ω2 with probability 0.1 and 0.9 respectively. Thus, in this

setting, users with index in the range 1 through 10 typically see poorer channels, and

can end up being sidelined if the allocation is not fair. To measure the fairness of a

reward allocation, we use a simple metric Mfair which is the ratio of the minimum

value to the maximum value of the QoE of the users. In Table 2.2, the value of

Mfair along with values of the averages (across users) of the mean, variance and

standard deviation of the allocated rewards for different choices of α and β are

given. As in the homogeneous setting, we see that we can achieve drastic reduction

in the variability of quality (measured in terms of either the variance or the standard

deviation) for a relatively small reduction in the mean reward. We further see that

higher values of α result in a higher values of Mfair for the same β, and thus reduce

the disparity in allocation of quality.

Fig. 2.2 depicts the evolution of the parameters (m5, v5) and (m15, v15) (i.e.,

the parameters associated with Users 5 and 15) for the heterogeneous setting where

α = 1.5 and β = 0.5. Also, note that User 5 (depicted using dashed lines) sees

poorer channel conditions than User 15. Recall that convergence of the parameters

m and v is the key property used in establishing optimality in Theorem 2.2. Thus,

we can conclude that reward allocations under AVR are close to optimal after a few
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Table 2.2: Heterogeneous setting: Mean-Variability-Fairness Tradeoffs
α β Mean Variance Std.Devn. Mfair

0.05 0.02 62.14 65.23 8.08 0.85

0.05 0.1 62.10 49.11 7.01 0.84

0.05 0.5 61.44 19.52 4.42 0.83

0.05 1 60.72 11.66 3.41 0.81

0.05 2 59.25 5.15 2.27 0.79

1.5 0.02 62.06 65.09 8.07 0.89

1.5 0.1 62.00 49.20 7.01 0.89

1.5 0.5 61.37 19.67 4.43 0.88

1.5 1 60.66 11.87 3.44 0.87

1.5 2 59.21 5.23 2.29 0.86

5 0.02 61.86 65.89 8.10 0.93

5 0.1 61.80 49.72 7.05 0.93

5 0.5 61.18 20.122 4.47 0.93

5 1 60.46 11.80 3.44 0.93

5 2 58.87 5.03 2.24 0.92

hundred time slots by which time the parameters have roughly converged.

In Fig. 2.3, the dashed lines depict the performance of AVR in terms of

φT (r∗) for different simulation runs of the heterogeneous setting where α = 1.5

and β = 0.5. The thick line exhibits the value of
∑

i∈N U
E
i

(
mπ
i − UVi (vπ)

)
with the

limiting estimated parameters mπ and vπ obtained by running AVR for 100000 slots.

We once again observe good rate of convergence similar to that of the estimated

parameters shown Fig. 2.2. Note that
∑

i∈N U
E
i

(
mπ
i − UVi (vπ)

)
is also an upper

bound on the performance of optimal offline scheme over T slots, i.e., the optimal

value of OPT(T ), as T goes to infinity.
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Figure 2.2: Heterogeneous setting: Convergence

2.7 Conclusions

This work presents an important generalization of NUM framework to account for

the deleterious impact of temporal variability allowing for tradeoffs between mean,

fairness and variability associated with reward allocations across a set of users. We

proposed a simple asymptotically optimal online algorithm AVR to solve problems

falling in this framework. We believe such extensions to capture variability in reward

allocations can be relevant to a fairly wide variety of systems. Our future work will

encompass the possibility of addressing resource allocation in systems with buffering

or storage. e.g., energy and/or data storage.
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Figure 2.3: Performance of AVR: Evolution of φT (r∗) for different simulation runs
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Chapter 3

NOVA: QoE-driven

Optimization of Video Delivery

in Networks

3.1 Introduction

There has been tremendous growth in video traffic in the past decade. Current

trends (see [12]) suggest that mobile video traffic will more than double each year

till 2015, with two-thirds of mobile data traffic being video by 2015. It is unlikely

that wireless infrastructure, e.g., base stations, access points, capacity etc, can keep

up with such growth. Even densification does not resolve the problem since the

variability in throughput is likely to increase or worsen due to increased sensitivity

to the dynamic number of users sharing an access point and/or dynamic interference.

Given these challenges, optimizing video delivery to make the best use of available

network resources is one of the most important networking problems today.

The main focus of this chapter is to develop solutions for optimizing the

delivery of stored video, i.e., video stored in video servers, streamed by video clients
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that can adapt their video quality. Our solution is designed to achieve better Quality

of Experience (QoE) while taking important video client preferences like rebuffering

and data cost into account. Further, it is suited for operation in settings that present

video clients with heterogeneous preferences, channels and video content.

In this chapter, we view the video delivery optimization problem for a net-

work as a problem of fairly maximizing the video clients’ QoE subject to network

constraints. Here, QoE is a proxy for ‘video client satisfaction’. A comprehensive

solution to this problem requires two components- an allocation component and an

adaptation component. The allocation component decides how the resources (e.g.,

bandwidth, power etc) in the network are allocated to the video clients. The adap-

tation component decides how the video clients adapt their video quality (or video

compression rate) in response to the allocated resources, the nature of the video

etc. In this chapter, we develop a distributed algorithm Network Optimization for

Video Adaptation (NOVA) to jointly optimize the two components. The adaptation

component itself has strong optimality guarantees, and can be used in standalone

video clients and, in particular, the adaptation in NOVA can be used with video

clients using the DASH (Dynamic Adaptive Streaming over HTTP) framework. Un-

der the DASH framework, video associated with each video client is stored at the

respective video server (at the content provider), and is a concatenation of several

short duration videos called segments which for example could be a GOP (Group

Of Pictures). Various ‘representations’ of a segment are obtained by compressing it

to different sizes by changing various parameters associated with the segment like

quantization, resolution, frame rate etc, and typically high quality representations

of a segment are larger in size. Video clients can adapt their video quality across

segments, i.e., can pick different representations for different segments. The choice

of representations can be based on several factors such as the state of playback

buffer, current channel capacity, features of video content being downloaded etc.
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For instance, the video client can request representations of smaller size to adapt to

poor channel conditions.

We identify the following four key factors determining the QoE of a video

client: (a) average quality, (b) temporal variability in quality, (c) fraction of time

spent rebuffering, and (d) cost to the video client and video content provider. Our

main focus is on solving the video delivery optimization problem OPT-BASIC given

below which takes these key factors into account:

max
∑
i∈N

UEi (Mean Qualityi −Quality Variabilityi) (3.1)

subject to Rebufferingi, Costi, and Network constraints, (3.2)

where N is the set of video clients supported by the network and UEi is a ‘nice’

concave function chosen in accordance with the fairness desired in the network.

Network constraint captures time varying constraints on network resource allocation

allowing us to model wide range variability in resource availability found in real

networks.

Next, we discuss the four key factors mentioned above. We measure mean

quality for a video session as the average across segments of Short Term Quality

(STQ) associated with the downloaded representations of (short duration, e.g., 1

second) segments. STQ of a downloaded segment should ideally capture the viewer’s

subjective evaluation of the quality of the downloaded representation of the segment,

although in practice, this subjective metric will be measured approximately using

objective video quality assessment metrics (see [42] for a survey) like PSNR, SSIM,

MSSSIM etc (see [56, 57]).

While the benefit of high mean quality is clear, the detrimental impact of

temporal variability on QoE (see [59, 28, 40]), and fundamental tradeoff between

average quality and temporal variability in quality is often ignored. Indeed [59] even
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suggests that temporal variability in quality can result in a QoE that is worse than

that of a constant quality video with lower average quality. Two prominent sources

for such variability ([24]) are time varying capacity and the time varying nature of

video content. Time varying capacity is especially relevant when considering wireless

networks where such variations can be caused by fast fading (on faster time scales,

e.g., ms) and slow fading due to shadowing, dynamic interference, mobility, and

changing loads (on slower time scales, e.g. secs). The second, is the time varying

nature of the dependence of a segment’s STQ on parameters like compression rate.

Perhaps the key contributor to such change is the video content itself, for instance,

segments of same size and same duration could have very different STQ, for e.g.,

consider two such segments where the first segment is of an action scene (where

there is a lot of changing visual content) and the second segment is of a slower scene

(where things stay the same).

Rebuffering is the event when playback buffer of a video client empties, and

video playback stalls. Rebuffering events have a significant impact on QoE. Indeed

[35] points out that the total time spent rebuffering and the frequency of rebuffering

events during a video session can significantly reduce video QoE. In our approach,

we impose constraints on the fraction of the total time spent rebuffering, and suggest

simple ideas to reduce the frequency of rebuffering events. We also provide flexibility

to the video client in setting these constraints according to their preferences. For

instance, a video client who is willing to tolerate rebuffering in return for higher

mean quality (for e.g., to watch a movie in HD over a poor network) can set these

constraints accordingly. Such constraints driven by video client preferences will

often be content and device dependent, and capture important tradeoffs for the

video client.

Client preferences concerning the cost of video delivery are also significant,

and are important when viewers wish to manage their wireless data costs. Note
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that content providers may also pay Content Distribution Network operators for the

delivery of video data. Thus, if the cost of data delivery is high, higher QoE often

comes at higher cost, and the video client/content provider may want to tradeoff

QoE versus delivery cost. In our framework, we allow each video client/content

provider to set a constraint on the average cost per unit video duration which in

turn reflects the desired tradeoff.

3.1.1 Main contributions

The main contribution of this chapter is a general optimization framework for stored

video delivery optimization, that factors heterogeneity in client preferences, QoE

models, capacity and video content.

We develop a simple online algorithm NOVA (Network Optimization for

Video Adaptation) to solve the video delivery optimization problem. Key features

of NOVA are listed below:

1. Optimality: We establish a strong asymptotic optimality result for NOVA

which roughly guarantees that NOVA performs as well as the optimal offline

scheme which is omniscient, i.e., knows everything about the evolution of

channel and video ahead of time.

2. Simple and Online: NOVA only utilizes current information, and is computa-

tionally light.

3. Distributed : NOVA uses minimal signaling, and can be implemented in a

distributed manner.

4. NOVA is asynchronous and requires almost no statistical information about

the system

5. Optimal Adaptation: The adaptation proposed in NOVA is independently

optimal, and the optimality properties of the adaptation component of NOVA
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is ‘insensitive’ to the resource allocation, i.e., does not depend on detailed

characteristics (for e.g., the specific resource allocation algorithm, time scale

of operation etc) of the latter. Further, the adaptation proposed in NOVA is

entirely client driven and is also optimal for standalone video clients.

6. Suited for current practical systems:

(a) Suited for DASH: The adaptation proposed in NOVA is suited for DASH

framework as it entirely client driven, and can be carried out in an asyn-

chronous manner.

(b) The resource allocation proposed in NOVA requires simple modification

of legacy schedulers like proportionally fair schedulers, and can be ex-

tended for use in the presence of data users.

3.1.2 Related work

The problem of video delivery optimization in wireless networks has been studied

in many works, for instance, see [52, 23, 60, 20, 24, 5] etc. In [20], the problem of

optimizing network resource allocation for maximizing the discounted sum of the

aggregate quality of the users over time is considered, and a scheme based on Markov

decision programming is proposed. Video quality adaptation is not considered in

[20], and the main focus of the paper is real time interactive video applications

which present an additional challenge of meeting strict deadlines associated with

video delivery. [23] is another work aimed at similar applications with strict dead-

lines, and considers the problem of optimizing both network resource allocation and

video quality adaptation under additional assumptions which allow decoupling of

the two tasks. [52] focuses on a WLAN setting and proposes a scheme that greedily

maximizes the minimum quality among users by determining the optimal encoding

rate and physical layer parameters so as to minimize the sum of the distortion caused
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by source compression and the expected distortion resulting from packet loss during

transmission. Although [5] considers the problem of video delivery optimization in

a more general network setting (specifically, one involving multiple small base sta-

tions serving video clients) which presents new challenges (even ordering of segments

is important), the paper considers simpler QoE models that ignore the impact of

temporal variability. Further, the algorithm proposed in [5] relies on synchronous

quality adaptation decisions which limits the algorithm’s ability to exploit good

channel conditions, for instance, even if segments are downloaded quickly, one has

to wait till the end of a slot to request the next segment. The papers [5] and [60] do

not explicitly target rebuffering, and try to ensure low rebuffering through stability

of video data queues at the basestation. [60] also considers the problem of video

delivery in wireless networks, and proposes a solution based on dynamic program-

ming framework which is computationally heavy and requires detailed knowledge of

system statistics. A major weakness of [52, 23, 60, 20, 5] is the limited nature of the

QoE models considered that are essentially just the mean quality (or in some cases,

a mean of a function of quality across segments) which does not explicitly account

for the impact of temporal variability.

There are several works, for e.g., [14], that propose schemes to reduce vari-

ability in coding rates to reduce the variability in STQ. But, these approaches ignore

the (time varying nature of the) dependence of STQ on rates, and hence are sub-

optimal. The problem of reducing the variability in quality for SVC coded video

over the Internet was considered in [28]. However, they restrict their attention to a

single video stream, and they only focus on the reduction of switching rate of quality

which is a crude metric for variability of STQ.

The problem of realizing optimal mean-variability tradeoffs is carefully stud-

ied in [24] for the video delivery problem, and in Chapter 2 for more general re-

source allocation problems. While [24] presents a novel algorithm for realizing mean-
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variability tradeoffs for video delivery, the model considered in [24] (and Chapter

2) involves a strong, and to somewhat impractical, assumption of synchrony- the

segment downloads of all the video clients are synchronous, i.e., the download of a

segment of each video client starts at the beginning of a (network) slot and finishes

at the end of the slot. This assumption on synchrony precludes any explicit control

over rebuffering at the video clients and forces the solution in [24] to be a centralized

one. The relaxation of assumption on synchrony in this chapter allows us to obtain a

distributed asynchronous solution in which the video clients and network controllers

operate at their own pace. This relaxation also presents new technical challenges in

dealing with distributed asynchronous algorithms operating in a stochastic setting,

and the rebuffering constraints in our asynchronous setting effectively induce a new

type of constraints involving averages measured over two time scales. Further, the

framework incorporates novel heterogeneous client preferences on rebuffering and

data costs.

Our work in this chapter relies heavily on results from theory of asynchronous

stochastic approximation discussed in Chapter 12 of [29]. We also use extensions of

several theoretical tools from works [26], [50] etc related to Network Utility Maxi-

mization (NUM).

3.1.3 Notation

Here, we describe some of the notation used in this chapter. We shall consider a

network shared by a set N of video clients (or other entities) where N :=|N | denotes

the number of video clients in the system. We use bold letters to denote vectors, e.g.,

a = (ai)i∈N . Given a collection of T objects (a(t))1≤t≤T or a sequence (a(t))t∈N, we

let (a)1:T denote the finite length sequence (a(t))1≤t≤T (in the space associated with

the objects of the sequence). For example, consider a sequence (a(t))t∈N where each

element is a vector. Then (a)1:T denotes the T length sequence containing the first
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T vectors of the sequence (a)1:T , and (ai)1:T denotes the sequence containing the

ith component of the first T vectors. Let N, R and R+ denote the sets of positive

integers, real numbers and nonnegative real numbers respectively. For any function

U on R, let U ′ denote its derivative. For any positive integer M , a,b ∈ RM and set

A ⊂ RM , let

dM (a,b) :=

√√√√ M∑
i=1

(ai − bi)2, dM (b,A) := inf
a∈A

dM (a,b) .

3.1.4 Organization of the chapter

Section 3.2 introduces the system model and assumptions. We formulate the prob-

lem OPT-BASIC as an offline optimization problem in Section 3.3. In section 3.4,

we present NOVA to essentially solve the offline optimization problem, and discuss

its optimality properties. Section 3.5 is devoted to the proof of optimality of NOVA.

We discuss few useful extensions of NOVA in Section 3.6, and conclude the chapter

in Section 3.7.

3.2 System model

We consider a network serving video to a fixed set of video clients N where |N | = N.

We consider a slotted network system where resources are allocated for the duration

of a slot τslot, and the slots are indexed by k ∈ {0, 1, 2...}.

We assume that resource allocation is subject to time varying constraints. In

each slot k, a network controller (e.g., base station in a cellular network) allocates

rk = (ri,k)i∈N ∈ RN+ bits (or rk/τslot bits per second) to the video clients such that

ck (rk) ≤ 0, where ck is a real valued function modeling the current constraints on

network resource allocation. In many practical settings, the set of feasible resource

allocations in a slot may be discrete (i.e., we have to pick from a finite set of feasible
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allocations), and we discuss such settings in Section 4.4.1. However, in this Chapter,

we consider the set of feasible allocations in slot k to be
{
rk ∈ RN+ : ck (rk) ≤ 0

}
which is determined by the function ck. This function could be determined by

various parameters like video clients’ SNR, interference etc. In the sequel, we refer

to these functions as allocation constraints. Let Ck denote the random variable

corresponding to the allocation constraint in slot k (and ck is a realization of it).

Even though we are assuming We make the following assumptions on these allocation

constraints:

Assumptions C.1-C.3 (Time varying allocation constraints)

C.1 (Ck)k∈N is a stationary ergodic process of functions selected from a set C.

C.2 C is a (arbitrarily large) finite set of real valued functions on RN+ , such that each

function c ∈ C is convex and continuously differentiable on an open set containing

[0, rmax]N with c (0) ≤ 0 and

min
r∈[0,rmax]N

c (r) < 0. (3.3)

C.3 The feasible region for each allocation constraint is bounded : there is a constant

0 < rmax < ∞ such that for any c ∈ C and r ∈ RN+ satisfying c (r) ≤ 0, we have

ri ≤ rmax for each i ∈ N .

As indicated in Assumption C.1, we model the evolution of the allocation

constraints as a stationary ergodic process. Hence, time averages associated with

the allocation constraints will converge to their respective statistical averages, and

the distribution of the random vector (Ck1+s, Ck2+s, ..., Ckn+s) for any choice of

indices k1, ..., kn does not depend on the shift s, thus the marginal distribution of

Ck does not depend on time. We denote the marginal distribution of this process
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by (π(c))c∈C . Without loss of generality, we assume that πC(c) > 0 for each c ∈ C.

This model (along with the generalization in Subsection 3.6.2) captures a fairly

general class of allocation constraints, including, for example, time-varying capacity

constraints associated with bandwidth allocation in wireless networks.

We express the network constraints in (3.2) of OPT-BASIC as the require-

ment ck (rk) ≤ 0 on resource allocation rk in each slot k. We impose an additional

requirement on the resource allocation algorithm to ensure that the resource allo-

cation to each video client i ∈ N in each slot should be at least ri,min where ri,min

is a small positive constant. This technical requirement can be relaxed as long as

we ensure that each video client can be guaranteed a strictly positive amount of

resource allocation over a fixed (large) number of slots.

Next, we discuss our video quality adaptation model which is compatible

with that proposed in DASH. The video associated with each video client i ∈ N is

stored at the respective video server (at the content provider), and is a concatena-

tion of segments. Representations of a segment are obtained by compressing it to

different sizes by changing various parameters associated with it like quantization,

resolution, frame rate etc. Video clients adapt their quality across segments by

selecting different representations for different segments, and these choices can be

based on a variety of factors such as the state of playback buffer, current channel

capacity, features of video content being downloaded etc.

The STQ of a (downloaded) segment, measured using objective video qual-

ity assessment metrics like PSNR, SSIM, MSSSIM etc, typically increases with the

compression rate of the corresponding downloaded representation. Here the com-

pression rate is the ratio of the size of the segment’s representation to the duration

of the segment. Note that the size and (hence the) compression rate also depend

on the size of overheads due to metadata (like identifiers, sequence numbers etc)

associated with the generation of the data-unit (e.g., file) associated with the seg-
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ment’s representation. In the sequel, we interchangeably use the terms quality and

STQ. We abstract the relationship between the compression rate and quality of a

segment using a convex increasing function referred to as QR (Quality Rate) trade-

off. QR tradeoffs maps quality q to the compression rate fs(q) (measured in bits per

second). Note that for each segment and given compression rate, we are implicitly

restricting our attention to the representation with highest quality and ignoring less

efficient representations. QR tradeoffs can be segment dependent and vary depend-

ing on the nature of the segment’s video content. For instance, a segment associated

with a slow scene (where things stay the same) will typically have a ‘steeper’ QR

tradeoff when compared to that of an action scene (where there is a lot of changing

visual content). For stored video these functions might be obtained offline. For

video streaming of live events, live broadcast of TV channels etc, computationally

efficient video quality assessment metrics can be used to obtain the QR tradeoffs.

Let fi,s denote a realization of QR tradeoff associated with the sth segment

downloaded by video client i. Also, let Fi,s denote the random variable correspond-

ing to the QR tradeoff associated with the sth segment of video client i. Next,

let li,s denote a realization of length (or duration in seconds) of the sth segment

downloaded by video client i, and let Li,s denote the corresponding random vari-

able. Thus, to obtain a quality q for the sth segment, the size of the segment that

has to be downloaded by video client i is given by li,sfi,s (q). For each video client

i ∈ N , we make the following assumptions on the QR tradeoffs and segment lengths

associated with it:

Assumptions QRL.1-QRL.3 on QR tradeoffs and segment lengths

QRL.1 (Fi,s, Li,s)s≥0 is a stationary ergodic process taking values in a set FLi ⊂

Fi × Li.

QRL.2 Fi is a finite set consisting of differentiable increasing convex functions

65



defined on an open set containing [0, qmax] such that min{fi∈Fi} fi (0) > 0 and

max{fi∈Fi} (fi)
′ (qmax) is finite.

QRL.3 Li is a finite set of positive real numbers.

As indicated in Assumption QRL.1, we model the evolution of QR tradeoffs and

segment lengths of each video client i ∈ N as a stationary ergodic process. Let(
πF ,Li (fi, li)

)
(fi,li)∈FLi

denote the associated marginal distribution. Without loss

of generality, we assume that πF ,Li (fi, li) > 0 for each (fi, li) ∈ FLi. Next, let

fmin:= min{i,∈N ,fi∈Fi} fi (0) which is strictly positive from QRL.2, and this gives a

lower bound on segment compression rates. Even at zero quality, there is usually

overhead information associated with a representation of a segment which causes

fmin to be positive. The constant qmax represents the maximum quality that can

achieved in the given network setting. Let fmax:= max{i,∈N ,fi∈Fi} fi (qmax) denote

an upper bound on segment compression rates. From assumption QRL.3, it follows

that lmin:= min{i∈N ,li∈Li} li is strictly positive, and lmax:= max{i∈N ,li∈Li} li is finite

although it can be arbitrarily large.

Each video client downloads the segments of its video sequentially, and we

index the segments using variables like s, si etc taking values in {0, 1, 2, ...}. Let qi,s

denote the quality (i.e., STQ) associated with the segment s downloaded by video

client i.

Next, we discuss our model for QoE. Our QoE model requires that the re-

buffering constraint referred to in (3.2) (discussed in more detail below) are met and

under this condition, QoE of video client i ∈ N depends only on the quality (qi)1:S

seen over segments by the video client i ∈ N . Thus, our QoE model maps quality

seen by a video client i ∈ N over S segments, i.e. (qi)1:S , to a QoE metric (under the

assumption that the rebuffering constraint of video client i is met). While accurate

QoE models are typically very complex, we use a simple model motivated by the
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discussion in Section 3.1 and the model proposed in [59]. Let mS
i (qi) and VarSi (qi)

denote (length weighted) mean quality and temporal variance in quality respectively

associated with the first S segments downloaded by the video client i, i.e.,

mS
i (qi) :=

∑S
s=1 li,sqi,s∑S
s=1 li,s

, (3.4)

VarSi (qi) :=

∑S
s=1 li,s

(
qi,s −mS

i (qi)
)2∑S

s=1 li,s
. (3.5)

Note that the arguments of mS
i and VarSi are actually S−length sequences (qi)1:S

(i.e., (qi,s)1≤s≤S) although we are using a shorthand for simplicity. We model the

QoE of video client i for these S segments as

eSi (qi) = mS
i (qi)− UVi

(
VarS (qi)

)
, (3.6)

where
(
UVi (.)

)
i∈N are ‘nice’ convex functions satisfying assumption U.V given below:

Assumption U.V: (Variability penalty)

U.V For each i ∈ N , UVi is a continuously differentiable increasing convex function

with Lipschitz continuous derivatives defined on an open set containing [0, q2
max]

satisfying
(
UVi
)′

(0) > 0.

Thus, we could choose UVi (v) = ηiv or UVi (v) = ηiv
2, where ηi > 0 and scales the

penalty for temporal variability in quality. Note that our approach can be extended

to more general QoE models, and we discuss this in Section 3.6.1.

Now that we have developed our QoE model, we express the objective func-

tion (3.1) in OPT-BASIC as

φS ((q)1:S) :=
∑
i∈N

UEi
(
eSi (qi)

)
(3.7)

67



where eSi (qi) is defined in (3.6),
(
UEi (.)

)
i∈N are ‘nice’ concave functions satisfying

assumption U.E described below. Let emin,i:=−UVi (q2
max) and emax,i:=qmax−UVi (0).

Assumption U.E: (Fairness in QoE)

U.E For each i ∈ N , we assume that UEi is a continuously differentiable increasing

concave function with Lipschitz continuous derivatives defined on an open set con-

taining [emin,i, emax,i] satisfying
(
UEi
)′

(emax,i) > 0.

For each i ∈ N , although UEi has to be defined over an open set containing

[emin,i, emax,i], only the definition of the function over
[
−UVi (0), emax,i

]
affects the

optimization. This is because we can achieve this value of QoE for each video client

by just picking representation corresponding to zero quality for each segment. Thus,

for example, we can choose any function from the following class of strictly concave

increasing functions parametrized by α ∈ (0,∞) ([34])

Uα(e) =


log (e) if α = 1,

(1− α)−1 e1−α otherwise,

(3.8)

and can satisfy the above conditions by making minor modifications to the function.

For instance, we can use the following modification UE,log of the log function for any

(small) δ > 0: UE,log(e) = log (e− emin,i + δ) , e ∈ [emin,i, emax,i]. The above class of

functions are commonly used to enforce fairness specifically to achieve allocations

that are α−fair (see [43]). A larger α corresponds to a more fair allocation which

eventually converges to max-min fair allocation as α goes to infinity.

Next, we consider the rebuffering related constraint considered in (3.2) of

OPT-BASIC. Let κ > 0 and let KS = dκSe. We obtain a good estimate for the

fraction of time spent rebuffering by a video client under an additional assumption
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on resource allocation that for each video client i, 1
KS

∑KS
k=1 ri,k converges (for almost

all sample paths), and hence provides an asymptotically accurate estimate for time-

average resource allocation to video client i as S goes to infinity. Note that this

condition is satisfied by alpha-fair resource allocation policies like proportionally

fair allocation, max-min fair allocation etc. Next, note that the cumulative size of

the first S segments is given by
∑S

s=1 li,sfi,s (qi,s). Thus, a good estimate (for large

S) for the time required by video client i to download the first S segments is

∑S
s=1 li,sfi,s (qi,s)
1

τslotKS

∑KS
k=1 ri,k

which is the ratio of the cumulative size of S segments to the per slot allocation

estimate. In the above observation, we are implicitly assuming that the network

always has video data to send to the video client. Now, we show that the following

expression is an asymptotically (as S goes to infinity) accurate estimate for the

percentage of time that video client i is rebuffering while watching the S segments:

βi,S

(
(qi)1:S , (ri)1:KS

)
:=

∑S
s=1 li,sfi,s(qi,s)
1

τslotKS

∑KS
k=1 ri,k∑S

s=1 li,s
− 1.

Note that the first term in the right hand side is the ratio of the estimate for

time required for download of the first S segments to the total duration
∑S

s=1 li,s

associated with the S segments. For video client i, let T rebi (t) denote the fraction of

time spent rebuffering till time t ≥ 0 (measured in seconds), and let T dowi (S) denote

the time required to download S segments. Then, we have

T rebi (t) =

∫ t

0
I
(
T dowi (Ssegi (u)) > u+ T rebi (u)

)
du (3.9)

where I(.) is the indicator function, and Ssegi (t) = min
{
S :
∑S

s=1 li,s ≥ t
}

denotes

the number of segments corresponding to video duration of t. Rearranging (3.9), we
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have

T rebi (t) =

∫ t

0
I
(
Irebi (u) > 0

)
du (3.10)

where

Irebi (t) =

(
T dowi (Ssegi (t))

t
− 1

)
− T rebi (t)

t
. (3.11)

Using (3.10) and (3.11), we can show that when Irebi (t) < 0, (T rebi (t) is non-

increasing and hence) Irebi (t) is non-decreasing and strictly increasing over a large

enough window of time (of duration greater than lmax) due to presence of the term

T dowi (Ssegi (t) in (3.11). Using this observation along with the fact that Irebi (t) ≤ 0

(since T rebi (t) ≥ T dowi (Ssegi (t))− t for any t), we can conclude that

lim
t→∞

Irebi (t) = 0.

Using the above observation (and set t =
∑S

s=1 li,s in (3.11)) along with the conver-

gence of 1
KS

∑KS
k=1 ri,k, we can show that that βi,S

(
(qi)1:S , (ri)1:KS

)
is an asymptot-

ically accurate estimate for the percentage of time that video client i is rebuffering

while watching S segments.

Note that βi,S

(
(qi)1:S , (ri)1:KS

)
can also take negative values which happens

when segments are being downloaded at rate higher than the rate at which they are

viewed. We express the rebuffering constraint in OPT-BASIC as

βi,S

(
(qi)1:S , (ri)1:KS

)
≤ βi, ∀ i ∈ N ,

where each video client i specifies an upper bound βi > −1 on the percentage of

time spent rebuffering. Though setting βi = 0 ensures that there is only an asymp-

totically negligible amount of rebuffering, we can enforce more stringent constraints
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on rebuffering by setting βi to negative values.

Next, we consider the cost constraint considered in (3.2) of OPT-BASIC. The

average compression rate associated with the first S segments of video client i ∈ N

is
∑S
s=1 li,sfi,s(qi,s)∑S

s=1 li,s
. Let pdi denote the cost per unit of data (measured in dollar per

bit) that video client i ∈ N (or the video content provider associated with the video

client) has to pay. Then, the average amount of money per unit video duration the

video client (/content provider) pays is

pi,S ((qi)1:S) :=pdi

∑S
s=1 li,sfi,s (qi,s)∑S

s=1 li,s
.

We express the cost constraint in OPT-BASIC as

pi,S ((qi)1:S) ≤ pi, ∀ i ∈ N ,

where each video client i (or the video content provider associated with the video

client) sets an upper bound pi > 0 on the amount of money per unit video duration.

Rest of the chapter is devoted to the derivation and analysis of an algorithm

for solving OPT-BASIC that carries out jointly optimal quality adaptation (i.e.,

picks optimal (qi)1:S for each video client i ∈ N ) and resource allocation (i.e., picks

optimal (r)1:KS
).

3.3 Offline optimization formulation

In this section, we formulate the problem OPT-BASIC of joint optimization of

quality adaptation and resource allocation as an offline optimization problem. In

the offline setting we assume (ck)k and (li,s, fi,s)s, i.e., the realization of the processes

(Ck)k and (Li,s, Fi,s)s, for each video client i ∈ N are known.

Based on the discussion in Section 3.2, we rewrite OPT-BASIC as the opti-
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mization problem OPT(S) given below:

max
(q)1:S ,(r)1:KS

φS ((q)1:S)

subject to 0 ≤ qi,s ≤ qmax ∀ s ∈ {1, ..., S} ,∀ i ∈ N ,

ri,k ≥ ri,min, ∀ k ∈ {1, ...,KS} , ∀ i ∈ N ,

ck (rk) ≤ 0, ∀ k ∈ {1, ...,KS} ,

βi,S

(
(qi)1:S , (ri)1:KS

)
≤ βi,∀ i ∈ N , (3.12)

pi,S ((qi)1:S) ≤ pi,∀ i ∈ N .

Although the objective function of OPT(S) does not depend directly on the allocated

resources (r)1:KS
, the constraint (3.12) ties the quality adaptation of video clients

(and hence the objective function) to their respective network resource allocation

since the constraint (3.12) for video client i ∈ N is equivalent to

1(
1 + βi

)∑S
s=1 li,sfi,s (qi,s)∑S

s=1 li,s
≤ 1

τslotKS

KS∑
k=1

ri,k.

We need the following assumption to ensure strict feasibility which will be

used in later sections.

Assumption-SF (Strict Feasibility): For each c ∈ C, c
(
(ri,min)i∈N

)
< 0, and for

each i ∈ N , max{fi∈Fi}
τslotfi(0)
ri,min

< 1, and pdi max{fi∈Fi} fi (0) < pi.

This assumption1 requires that the resource allocation (ri,min)i∈N is strictly

feasible for any c ∈ C, and that the maximum size of segments at zero quality is not

too large.

Let φoptS denote the optimal value of objective function of OPT(S). We would

solve the optimization problem OPT(S) directly if it were possible. However this

1The assumption requires a uniform upper bound on the size of the segments at zero quality
which is used in Lemma 3.1. We conjecture that this per segment requirement can be replaced with
a milder averaged version.
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is impossible in practice since we need to know (ck)k and (fi,s)s ahead of time.

Further, a direct approach is also computationally prohibitive as the optimization is

over O(NS) variables. Thus, from a practical point of view, the main challenge is to

overcome these two hurdles and obtain a simple and online algorithm that performs

as well as φoptS asymptotically. We present our solution to this challenge in the next

section.

3.4 An online algorithm for jointly optimizing resource

allocation and quality adaptation

In this section, we present our algorithm Network Optimization for Video Adapta-

tion (NOVA), and discuss its asymptotic optimality. The algorithm NOVA com-

prises three components:

1. Allocate: Network resource allocation is done at the beginning of each slot

k by solving an optimization problem RNOVA(bk, ck) which depends on the

parameter bk (described later in the section) and current allocation constraint

ck.

2. Adapt: When a video client i ∈ N finishes download of sith segment, select

the quality/representation for the next segment by solving an optimization

problem QNOVAi(θi,si , fi,si+1) which depends on a parameter θi,si (described

later in the section), and the QR tradeoff fi,si+1 of the next segment.

3. Learn: Learning parameters (mi,si , µi,si , vi,si , bi,k, di,si , λi,si)i∈N used in the

optimization problems RNOVA(bk, ck) and QNOVAi(θi,si , fi,si+1). Here si

is the current segment index of video client i and k is current slot index.

The parameters mi,si and µi,si track mean quality, vi,si tracks variance in

quality, and λi,si tracks the mean segment duration of video client i ∈ N . The
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parameters bi,k and di,si serve as indicators of risk of violation of rebuffering

constraints (3.12) and cost constraints (3.13) respectively of video client i ∈ N ,

and larger the parameter, larger the risk.

We start by describing the two optimization problems RNOVA(b, c) and

QNOVAi(θi, fi) associated with NOVA before presenting the algorithm. We can

control the response of NOVA to the indicators bi,k and di,si using functions dis-

cussed next. For each i ∈ N , let hBi (.) and hDi (.) be non-negative valued Lips-

chitz continuous functions that are strictly increasing over R+, and are such that

limb→∞ h
B
i (b) = ∞ and limd→∞ h

D
i (d) = ∞. Also, let hBi (bi) = 0 for all bi ≤ b

and hDi (di) = 0 for all di ≤ d for some constants b and d typically set as zero or

small negative numbers. Simple examples of functions satisfying these conditions

are max(b, 0), max(b2, 0) etc.

Let b ∈ RN and c ∈ C. The optimization problem RNOVA(b, c) associated

with network resource allocation is given below:

max
r

φR (r,b) :=
∑
i∈N

hBi (bi) ri (3.13)

subject to c (r) ≤ 0, (3.14)

ri ≥ ri,min ∀ i ∈ N . (3.15)

Let R∗ (b, c) denote the set of optimal solutions to RNOVA(b, c). Note that the

objective function (3.13) gives more weight to video clients higher value of bi, i.e.,

higher risk of violation of rebuffering constraints.

The optimization problem QNOVAi(θi, fi) associated with quality adapta-

tion performed by video clients. Let 0 ≤ mi, µi ≤ qmax, 0 ≤ vi ≤ q2
max, bi, di ∈

R, θi = (mi, µi, vi, bi, di) and fi ∈ Fi. For i ∈ N , the optimization problem
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QNOVAi(θi, fi) is given below:

max
qi

φQ (qi,θi, fi)

subject to qi ≥ 0, (3.16)

qi ≤ qmax, (3.17)

where

φQ (qi,θi, fi) =
(
UEi
)′ (

µi − UVi (vi)
) (
qi −

(
UVi
)′

(vi) (qi −mi)
2
)

(3.18)

− hBi (bi)(
1 + βi

)fi (qi)−
pdi h

D
i (di)

pi
fi (qi) .

We can obtain an intuitive understanding of the objective function (3.18) of the

above optimization problem by noting that the term (qi −mi)
2 ensures that an op-

timal solution to QNOVAi(θi, fi) is not too far away from mi (current estimate of

mean quality), and thus avoids high variance in quality. Also, the terms
hBi (bi)

(1+βi)
fi (qi)

and
pdi h

D
i (di)
pi

fi (qi) in (3.18) penalize quality choices leading to large segment sizes

when bi or di are high, and thus help NOVA to respond to increased risk of vi-

olation of rebuffering constraints and cost constraints. The optimization problem

QNOVAi(θi, fi) is convex and has a unique solution due to the strict concavity of

the objective function. Let q∗i (θi, fi) denote the solution to QNOVAi(θi, fi).

For each i ∈ N , define the set H(i) as follows:

H(i) =
{

(mi, µi, vi, bi, di, λi) : 0 ≤ mi, µi ≤ qmax, 0 ≤ vi ≤ q2
max, (3.19)

bi ≥ b, di ≥ d, lmin ≤ λi ≤ lmax} .

Let si be an indexing variable keeping track of the segment video client i is currently

downloading. We also use auxiliary variables bQ,i,s and bR,i,k for each video client i

to keep track of the parameter bi,. in NOVA. The algorithm NOVA is given below.
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NOVA

NOVA.0: Initialization: Let (mi,0, µi,0, vi,0, bi,0, di,0, λi,0) ∈ H(i) and si = 0 for

each i ∈ N , and ε > 0.

In each slot k ≥ 0, carry out the following steps:

ALLOCATE: At the beginning of slot k, let bR,i,k = bi,k for each i ∈ N , and allo-

cate resources according to any element of the set R∗ (bk, ck) (of optimal solutions

to RNOVA(bk, ck) ) and update bk as follows:

bi,k+1 = bi,k + ε

(
τslot(

1 + βi
)) . (3.20)

ADAPT: In slot k, if any video client i ∈ N finishes download of si th segment, let

bQ,i,si+1 = bi,k+1, θi,si = (mi,si , µi,si , vi,si , bQ,i,si+1, di,si). For segment si+ 1 of video

client i, select representation with quality q∗i (θi,si , fi,si+1) (i.e., optimal solution

to QNOVAi(θi,si , fi,si+1)), denoted as q∗i,si+1 for brevity, and update parameters

mi,si+1, µi,si+1, vi,si+1, bi,k+1, di,si+1 and si as follows:

mi,si+1 = mi,si + ε
(
UEi
)′ (

µi − UVi (vi)
) (
UVi
)′

(vi)

(
li,si+1

λi,si
q∗i,si+1 −mi,si

)
,(3.21)

µi,si+1 = µi,si + ε

(
li,si+1

λi,si
q∗i,si+1 − µi,si

)
, (3.22)

vi,si+1 = vi,si + ε

(
li,si+1

λi,si

(
q∗i,si+1 −mi,si

)2 − vi,si) , (3.23)

bi,k+1 = [bi,k+1 − ε (li,si+1)]b , (3.24)

di,si+1 =

di,si + ε

pdi li,si+1fi,si+1

(
q∗i,si+1

)
pi

− λi,si


d

, (3.25)

λi,si+1 = λi,si + ε (li,si+1 − λi,si) , (3.26)

si = si + 1.
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Here, [x]y = max(x, y) for x, y ∈ R. The variable bQ,i,s stores the value of bi,.

used in choosing quality for the sth segment of video client i, and bR,i,k stores the

value of (bi,k)i∈N used in the resource allocation in slot k. These are just auxiliary

variables, and do not affect the evolution of the algorithm (unlike bi,k which affects

the algorithm). Further, to ensure that the video clients start downloading video

segments from the beginning, we assume that all the video clients have already

downloaded 0th segment.

Allocation and adaptation in NOVA are asynchronous- allocation is done at

the beginning of each slot, and adaptation related decisions are made when video

clients complete a segment download. The update equation (3.26) associated with

the parameter λi,si is similar to update rules used for tracking EWMA (Exponen-

tially Weighted Moving Averages), and ensures that λi,si tracks the mean segment

duration of video client i. The update rules (3.21)-(3.23) are similar, and ensure

that mi,si and µi,si track mean quality, while vi,si tracks variance in quality. Both

mi,si and µi,si track mean quality giving different weights to the current quality, and

we later generalize the update rule (3.22) so that µi,si tracks parameters associated

with more general QoE metrics. The weights
li,si+1

λi,si
used in the update rules ensure

that the duration of the segment is appropriately factored. Next, we consider the

evolution of the parameter the operator bi,k which is updated in both (3.20) and

(3.24) ignoring [.]b and setting initialization to zero. (3.20) ensures that bi,k is in-

creased by fixed amount ε

(
τslot

(1+βi)

)
at the beginning of each slot. (3.24) ensures

that when a video client completes the download of a segment, bi,k is reduced by ε

times the duration of the next segment. Hence, at some time t seconds (or t/τslot

slots) after starting the video,

bi,k
ε
≈

(
t(

1 + βi
) −Duration of video downloaded till now

)
,
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which sheds light on its role as an indicator of risk of violation of rebuffering con-

straints (3.12) for video client i, for e.g., bi,k will be large if βi = 0 and the total

duration of video downloaded till now is much less than t. Similarly, we can argue

that di,si serves as an indicator of risk of violation of cost constraint (3.13) for video

client i. Depending on the problem under consideration, we can drop some of the

parameters from NOVA. For instance, if UVi is a linear function, we need not track

vi,si . Or, if a video client does not have a cost constraint, we need not track di,si .

It is interesting to note that the quality adaptation proposed in NOVA does

not directly use any information about the allocation constraints. Neither does the

resource allocation directly use any information about QR tradeoffs of the video

clients. Yet, the joint resource allocation and quality adaptation under NOVA has

strong optimality properties (which are presented later in this section). This is

mainly due to the fact that the variables (bi,k)i∈N carry almost all the information

about the video clients’ quality adaptation that is required by the network controller

to carry out optimal resource allocation, and the variable bi,k carries almost all the

information that the quality adaptation at video client i needs to know about the

resource allocation (to the client). For e.g., consider a video client i in the network

that has very few unwatched segments in the playback buffer, i.e., the video client

is about to experience rebuffering. We see that the update rules for bi,k (and a

large enough initialization) ensure that bi,k will be large in this scenario, and this

forces the video client and the network controller to make the right moves, i.e., this

forces the video client to switch to low quality representations (while taking current

QR tradeoffs into account), and forces the network controller to give higher priority

to this video client in the resource allocation (while taking the current allocation

constraints also into account).

Next, we discuss some important features of NOVA that make it attractive

from a practical point of view.

78



� We provide strong optimality guarantees for NOVA (see Theorem 3.1).

� NOVA is an online algorithm as it only uses current information, i.e., NOVA

only needs the allocation constraint ck for slot k, and for quality adaptation

of segment si + 1 of video client i, it only requires the QR tradeoff fi,si+1 for

the optimization and li,si+1 for updates associated with that segment.

� NOVA is a simple algorithm since RNOVA(b, c) is convex optimization prob-

lem in N variables. Further, if allocation constraints are linear, RNOVA(b, c)

is just a linear program which often has enough structure to allow for very

efficient evaluation of the solutions. Also, note that QNOVAi(θi, fi) is just a

scalar convex optimization problem.

� The asynchronous nature of NOVA ensures that the video clients can work

at their own pace and the adaptation prescribed in NOVA is entirely client

driven requiring no assistance from the network controller, and is thus well

suited for DASH framework.

� NOVA can be implemented in a distributed manner with minimal signaling

since quality adaptation is client driven and for the resource allocation, the

network controller need only know bk which are indicators of risk of viola-

tion of rebuffering constraints associated with the video clients (illustrated in

Fig. 3.1). To ensure that the network controller knows the current value of

bk, each video client can send a signal to the base station indicating the latest

value of bi,k at the end of each segment download which usually occurs at a

low frequency (typically once a second). On receiving this signal from video

client i ∈ N , the network controller can then update bi,k until the next signal

from video client i using the simple update rule in (3.20) that requires only

constant increments.
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Figure 3.1: Distributed Implementation of NOVA

� Optimization algorithm for resource allocation, RNOVA(b, c) requires only

a simple modification of legacy schedulers like proportionally fair schedulers

(see [30]). In fact, the optimization problem associated with proportionally fair

schedulers is almost the same as RNOVA(b, c) except that it uses a function

of current estimate of average throughput instead of bk.

The preceding discussion of NOVA suggests it is intuitively doing the right

things. The discussion in the rest of this section and Section 3.5 is a rigorous

analysis of NOVA aimed at establishing the strong optimality result for NOVA

given in Theorem 3.1. Proving Theorem 3.1 requires other intermediary results. We

have devoted Section 3.5 to these results and give a proof of Theorem 3.1 at the end

of that section.

Theorem 3.1. Suppose (mi,., µi,., vi,., bi,., di,., λi,.) evolve according to the update

rules in NOVA.

(a) Feasibility: NOVA asymptotically satisfies the constraints on rebuffering and
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cost, i.e., for each i ∈ N

limsupS→∞βi,S

(
(q∗i )1:S , (r

∗
i )1:KS

)
≤ βi, (3.27)

limsupS→∞pi,S ((q∗i )1:S) ≤ pi. (3.28)

(b) Optimality: Let Sε = S
ε . Then,

lim
S→∞

lim
ε→0

(
φSε

((
(q∗i (θi,s, fi,s))i∈N

)
1≤s≤Sε

)
− φoptSε

)
goes to zero in probability.

The above result tells us that the difference in performance of the online

algorithm NOVA (i.e., φSε
(
(q∗)1:Sε

)
) and that of the optimal offline scheme goes

to zero for long enough videos and small enough ε. Recall that φoptSε
is the optimal

value of the OPT(Sε), i.e., the performance of the optimal omniscient offline scheme

which knows all the allocation constraints (ck)k and QR tradeoffs and segment

lengths (fi,s, li,s)s ahead of time. Note that although choosing small ε is beneficial

for long videos, it can significantly affect the performance (initial transient and

tracking ability) of NOVA for short videos.

In the rest of this section, we discuss some useful properties of NOVA that will

be used in Section 3.5. We start with optimality conditions associated with solutions

to RNOVA(b, c) and QNOVAi(θi, fi). The optimization problem RNOVA(b, c) is

convex, and using Assumption-SF, we can show that it satisfies Slater’s condition

(see [10] for reference). Thus, KKT conditions are necessary (and sufficient) for

optimality. Hence, if r∗ (b, c) is an optimal solution to RNOVA(b, c), there exist
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constants χ∗(c) and (ω∗i (c))i∈N such that for each i ∈ N ,

hBi (bi) = χ∗(c)c
′
i (r∗ (b, c)) + ω∗i (c), (3.29)

χ∗(c)c (r∗ (b, c)) = 0, (3.30)

ω∗i (c) (r∗i (b, c)− ri,min) = 0, (3.31)

The optimization problem QNOVAi(θi, fi) is also convex and satisfies Slater’s con-

dition (since the constraints are all linear), and thus, KKT conditions are necessary

(and sufficient) for optimality. Thus, there exist constants γi(θi, fi) and γi(θi, fi)

such that

(
UEi
)′ (

µi − UVi (vi)
) (

1− 2
(
UVi
)′

(vi) (q∗i (θi, fi)−mi)
)

+ γi (θi, fi)

−γi (θi, fi)−
hBi (bi)(
1 + βi

) (fi)
′
(q∗i (θi, fi))− pdi

hDi (di)

pi
(fi)

′
(q∗i (θi) , fi) = 0, (3.32)

γi (θi, fi) q
∗
i (θi, fi) = 0, (3.33)

γi (θi, fi) (q∗i (θi, fi)− qmax) = 0. (3.34)

The next result states that the parameters in NOVA stay in a compact set.

Lemma 3.1. For any initialization (mi,0, µi,0, vi,0, bi,0, di,0, λi,0)i∈N ∈
∏
i∈N H(i),

the parameters evolving according to NOVA satisfy the following: for each i ∈ N ,

s ≥ 1 and k ≥ 1, we have 0 ≤ mi,s, µi,s ≤ qmax, 0 ≤ vi,s ≤ q2
max, and lmin ≤ λi,s ≤

lmax. Further, b ≤ bi,k ≤ b, d ≤ di,s ≤ d for some finite constants b and d and for

all k and s large enough.

Proof. It is easy to establish the result for the parameters mi,s, µi,s, vi,s and λi,s

using the initialization of these parameters in NOVA and the boundedness of the

quantities involved in the respective update rules. For instance, we can use (3.21),

(3.22) and the fact that 0 ≤ q∗i,si+1 ≤ qmax to obtain the result for mi,. and µi,..

Next, we show that there exists a finite b such that b ≤ bi,k ≤ b for all k
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large enough. The lower bound is easy to show and holds for all k. We establish

the upper bound by showing the following property regarding the optimal solution

to QNOVAi(θi, fi): for each i ∈ N , there is a finite constant bi such that

max
{fi∈Fi}

fi (q∗i (θi, fi))(
1 + βi

) − ri,min
τslot

≤ 0.5

(
max
{fi∈Fi}

fi (0)(
1 + βi

) − ri,min
τslot

)

for any θi = (mi, µi, vi, bi, di) satisfying bi ≥ bi, 0 ≤ mi, µi ≤ qmax, 0 ≤ vi ≤

q2
max, di ≥ d. Note that max{fi∈Fi}

fi(0)

(1+βi)
− ri,min

τslot
< 0 from Assumption-SF.

Hence, if this property holds, we can conclude that for large enough bi,k, i.e. bi,k ≥

b:= maxi∈N max
(
bi
)
, the time required to download a segment is strictly less than(

1 + βi
)

times the duration of video associated with the segment. Thus, bi,k is

strictly decreasing when it is greater than b. Hence for any initialization bi,k ≥ b,

we can show that bi,k ≥ b for large enough k.

We establish the above property next. Using (3.32) and the fact that fi are

convex increasing functions, we have

(
UEi
)′ (

µi − UVi (vi)
) (

1− 2
(
UVi
)′

(vi) q
∗
i (θi, fi)

)
≥ hBi (bi)(

1 + βi
) (fi)

′
(q∗i (θi, fi))− γi (θi, fi) .

Let

η1 = max
i∈N

max
ei∈[emin,i,emax,i]

(
1 + βi

) (
UEi
)′

(ei) ,

η2 = min
i∈N

min
ei∈[emin,i,emax,i],vi∈[0,q2

max]
2
(
1 + βi

) (
UEi
)′

(ei)
(
UVi
)′

(vi) .

Recall that emin,i = −UVi (q2
max) and emax,i = qmax − UVi (0). Since,

(
UEi
)′

(.) and(
UVi
)′

(.) are continuous,
(
UVi
)′

(0) > 0 and
(
UEi
)′

(emax,i) > 0, η1 is finite, and
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η2 > 0. Hence, for any i ∈ N and θi

η1 − η2q
∗
i (θi, fi) ≥ hBi (bi) (fi)

′
(q∗i (θi, fi))− γi (θi, fi) ,

Using the above inequality, and using the facts that (fi)
′
(q) > 0 for each q > 0

and limb→∞ h
B
i (b) = ∞, we can show that limb→∞ q

∗
i (θi, fi) = 0. Also, from

Assumption-SF, max{fi∈Fi}
fi(0)

(1+βi)
− ri,min

τslot
< 0. Now, (using continuity of the func-

tions in Fi and finiteness of |Fi|) we can conclude that there is some finite constant

bi such that max{fi∈Fi}
fi(q∗i (θi,fi))

(1+βi)
− ri,min

τslot
≤ 0.5

(
max{fi∈Fi}

fi(0)

(1+βi)
− ri,min

τslot

)
when

bi ≥ bi.

The proof for di,s can be completed using an approach similar to that given

for bi,k.

For the next two results, let θi = (mi, µi, vi, bi, di) where 0 ≤ mi, µi ≤

qmax, 0 ≤ vi ≤ q2
max and bi, di ∈ R. The next result provides smoothness properties

for the optimal solutions of RNOVA(b, c) and QNOVAi(θi, fi).

Lemma 3.2. (a) For each i ∈ N and fi ∈ Fi, q∗i (θi, fi) is a continuous function

of θi.

(b) For each c ∈ C, R∗ (b, c) is a convex and compact set. Further, R∗ (b, c) is an

upper semi-continuous set valued map of b.

(c) For each c ∈ C and r∗ (b, c) ∈ R∗ (b, c), φR (r∗ (b, c) ,b) is a continuous function

of b.

Proof. Part (a) follows from Theorem 2.2 in [16] which provides sufficient conditions

for verifying continuity of the optimal solution q∗i (θi, fi). We can verify that the

conditions given in Theorem 2.2 are satisfied since φQ (qi,θi, fi) is continuous in

(qi,θi), QNOVAi(θi, fi) has a unique solution, and since the set of feasible solutions

is a compact set.
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Part (b) follows from Theorem 2.4 in [16] which provides sufficient conditions

for verifying continuity of the set of optimal solutions R∗ (b, c) of RNOVA(b, c)..

Part (c) follows from Theorem 2.1 in [16] which provides sufficient conditions

for verifying continuity of the optimal value φR (r∗ (b, c) ,b) of RNOVA(b, c).

In the next result, we discuss concavity and differentiability properties of the

optimal value of QNOVAi(θi, fi), i.e., φQ (q∗i (θi, fi) ,θi, fi).

Lemma 3.3. The following statements hold for each i ∈ N and fi ∈ Fi.

(a) The optimal value of QNOVAi(θi, fi), i.e., φQ (q∗i (θi, fi) ,θi, fi), is a strictly

concave function of mi where θi = (mi, µi, vi, bi, di).

(b) The partial derivative of φQ (q∗i (θi, fi) ,θi, fi) with respect of mi is given by:

∂φQ (q∗i (θi, fi) ,θi, fi)

∂mi
= 2

(
UEi
)′ (

µi − UVi (vi)
) (
UVi
)′

(vi) (q∗i (θi, fi)−mi) .(3.35)

(c) Let θ
(m)
i = (m,µi, vi, bi, di), i.e., θi with the first component set to m. If m 6= mi,

the optimal value of QNOVAi(θ
(m)
i , fi) satisfies

φQ
(
q∗i

(
θ

(m)
i , fi

)
,θ

(m)
i , fi

)
< φQ (q∗i (θi, fi) ,θi, fi) (3.36)

+2 (m−mi)
(
UEi
)′ (

µi − UVi (vi)
) (
UVi
)′

(vi) (q∗i (θi, fi)−mi) .

Proof. Part (a) follows from Proposition 2.8 from [17] which provides sufficient con-

ditions for verifying strict concavity of the optimal value of an optimization problem

with respect to parameters associated with the problem.

Part (b) follows from Theorem 4.1 related to sensitivity analysis of optimal

value function given in [7], and the remark following the theorem. Part (c) follows

from strict concavity in part (a) and using the expression for the partial derivative

in part (b).
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3.5 Proof of optimality of NOVA

This section is devoted to the proof of the previously stated Theorem 3.1 related to

optimality of NOVA. In Subsection 3.5.1, we study an auxiliary optimization prob-

lem OPTSTAT and obtain Theorem 3.2 which suggests that we can prove the main

optimality result Theorem 3.1 for NOVA if we establish an appropriate convergence

result for NOVA’s parameters. In Subsection 3.5.2, we study an auxiliary differen-

tial inclusion (given in (3.75)-(3.82)) which evolves according to average dynamics

of NOVA, and obtain a convergence result for the differential inclusion. In Subsec-

tion 3.5.3, we view NOVA’s update equations ((3.21)-(3.26) and (3.72)-(3.73)) as

an asynchronous stochastic approximation update (see, e.g., [29] for reference), and

relate this stochastic approximation update to the auxiliary differential inclusion (in

(3.75)-(3.82)), and use this relationship to establish desired convergence of NOVA’s

parameters using the convergence result for the auxiliary differential inclusion es-

tablished in Subsection 3.5.2.

TheoremD1
NOVADisD
optimal.

TheoremD2
NOVADwithDparametersD

inD isDoptimal.

TheoremD3
ConvergenceDofD

AuxiliaryDDifferentialD
InclusionDtoD .D

TheoremD4
ConvergenceDofD

NOVADtoD .

Figure 3.2: An outline of proof of optimality of NOVA
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3.5.1 OPTSTAT: An auxiliary optimization problem related to the

offline optimization formulation

The offline optimization formulation OPT(S) mainly involves time and segment av-

erages of various quantities. By contrast, the formulation of OPTSTAT discussed in

this section is based on the expected value of the corresponding quantities evaluated

under the stationary distribution of (Ck)k and (Fi,s, Li,s)s≥0 for each i ∈ N .

Recall (see Section 3.2) that (Ck)k is stationary ergodic random process

with marginal distribution
(
πC(c)

)
c∈C , and let Cπ denote a random variable with

distribution
(
πC(c) : c ∈ C

)
. Also, recall that for each i ∈ N , (Fi,s, Li,s)s≥0 is a

stationary ergodic process with marginal distribution
(
πF ,Li (fi, li)

)
(fi,li)∈FLi

. We

let (F πi , L
π
i ) denote random variables with distribution

(
πF ,Li (fi, li)

)
(fi,li)∈FLi

.

Let (r (c))c∈C be a vector (of vectors) representing the reward allocation r (c)

(∈ RN ) to the video clients for each c ∈ C. Although we are abusing the notation

introduced earlier where r(t) denoted the allocation to the video clients in slot t, one

can differentiate between the functions based on the context in which they are being

discussed. Similarly, we let qi (f, l) denote the quality associated with a segment of

video client i with (f, l) ∈ FLi. Mimicking the definition of φS ((q)1:S), mS
i (qi) and

VarSi (qi) in Section 3.3, we let

φπ

((
(qi (fi, li))(fi,li)∈FLi

)
i∈N

)
(3.37)

=
∑
i∈N

UEi
(
Mean (qi (F πi , L

π
i ))− UVi (Var (qi (F πi , L

π
i )))

)
,

where

Mean (qi (F πi , L
π
i )) =

E [Lπi qi (F πi , L
π
i )]

E [Lπi ]
,

Var (qi (F πi , L
π
i )) =

E
[
Lπi (qi (F πi , L

π
i )−Mean (qi (F πi , L

π
i )))2

]
E [Lπi ]

.
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Now, consider the optimization problem OPTSTAT given below:

max(
(qi(fi,li))(fi,li)∈FLi

)
i∈N

,(r(c))c∈C

φπ

((
(qi (fi, li))(fi,li)∈FLi

)
i∈N

)
(3.38)

subject to c (r (c))) ≤ 0, ∀ c ∈ C, (3.39)

qi (fi, li) ≥ 0, ∀ (fi, li) ∈ FLi, ∀ i ∈ N , (3.40)

qi (fi, li) ≤ qmax, ∀ (fi, li) ∈ FLi, ∀ i ∈ N , (3.41)

ri (c) ≥ ri,min, ∀ c ∈ C, ∀ i ∈ N , (3.42)

pdi
E [Lπi F

π
i (qi (F πi , L

π
i ))]

piE [Lπi ]
≤ 1, ∀ i ∈ N , (3.43)

E [Lπi F
π
i (qi (F πi , L

π
i ))](

1 + βi
)
E [Lπi ]

≤ E [ri (Cπ)]

τslot
, ∀ i ∈ N . (3.44)

We obtained the above formulation by replacing the time and segment averages

of various quantities in OPT(S) (see (3.12)-(3.12)) with the expected value of the

corresponding quantities. Note that in the constraint c (r (c))) ≤ 0 given in (3.39),

c appearing as argument of r(c) is an index (for the corresponding element in C)

whereas the other c is the associated function with argument r(c). Similarly, in the

term F πi (qi (F πi , L
π
i )), the argument (F πi , L

π
i ) serves as an index whereas F πi (.) is

the (random) function.

For δ ≥ 0, let OPTSTATδ denote a modification of optimization problem

OPTSTAT with objective (3.38), constraints (3.39)-(3.42), and the following con-

straints

pdi
E [Lπi F

π
i (qi (F πi , L

π
i ))]

piE [Lπi ]
≤ 1 + δ, ∀ i ∈ N , (3.45)

E [Lπi F
π
i (qi (F πi , L

π
i ))](

1 + βi
)
E [Lπi ]

≤ E [ri (Cπ)]

τslot
+ δ, ∀ i ∈ N . (3.46)

Hence, OPTSTATδ is obtained by relaxing constraints (3.43) and (3.44) of OPT-

STAT by δ. Let OPTSTATVAL and OPTSTATVALδ denote the optimal value of
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OPTSTAT and OPTSTATδ respectively. Clearly, for any δ ≥ 0, OPTSTATVAL ≤

OPTSTATVALδ and we have equality when δ = 0.

The next result presents properties related to the optimal solution of OPT-

STAT, and optimal values of OPTSTAT and OPTSTATδ. Part (a) states says that

OPTSTAT is a nice convex optimization problem, and part (b) states that the opti-

mal quality choices obtained by solving OPTSTAT are unique. Part (c) shows that

for any video client i ∈ N , the optimal quality choices for any two segments with

the same QR tradeoff are the same irrespective of their lengths. In part (d), we

establish continuity of optimal value OPTSTATVALδ of OPTSTATδ at δ = 0.

Lemma 3.4. (a) OPTSTAT is a convex optimization problem satisfying Slater’s

condition.

(b) Let

(((
qπ,1i (fi, li)

)
(fi,li)∈FLi

)
i∈N

,
(
rπ,1 (c)

)
c∈C

)
and(((

qπ,2i (fi, li)
)

(fi,li)∈FLi

)
i∈N

,
(
rπ,2 (c)

)
c∈C

)
denote two optimal solutions to OPT-

STAT. Then, qπ,1i (fi, li) = qπ,2i (fi, li) for each (fi, li) ∈ FLi for each i ∈ N .

(c) Let

(((
qπ,1i (fi, li)

)
(fi,li)∈FLi

)
i∈N

,
(
rπ,1 (c)

)
c∈C

)
denote an optimal solution to

OPTSTAT. Then, given (fi, li) ∈ FLi, qπ,1i (fi, li) = qπ,1i (fi, l
′
i) for each l′i such that

(fi, l
′
i) ∈ FLi and for each i ∈ N , i.e., quality choices for any two segments with the

same QR tradeoff are the same irrespective of their lengths.

(d) limδ→0 OPTSTATVALδ=OPTSTATVAL.

Proof. Convexity properties of the objective and constraint functions of OPTSTAT

are easy to establish using the convexity of the functions in C and ∪i∈NFi once we

establish convexity of Var (qi (F πi , L
π
i )). This can be done using arguments similar

to those in Lemma 3 (a) of [26], and we can show that OPTSTAT is a convex

optimization problem. Using Assumption-SF, we can show that it also satisfies

Slater’s condition.

Proofs for part (b) is similar to that for Lemma 3 (b) in [26].
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From (a), we can conclude that the KKT conditions are necessary and suffi-

cient for optimality. Thus, there exist non-negative constants
(
bπ,1i

)
i∈N

,
(
dπ,1i

)
i∈N

,((
γπ,1i (fi, li)

)
(fi,li)∈FLi

)
i∈N

and

((
γπ,1i (fi, li)

)
(fi,li)∈FLi

)
i∈N

, such that

(
UEi
)′ (

mπ,1
i − U

V
i

(
vπ,1i

))(
1− 2

(
UVi
)′ (

vπ,1i

)(
qπ,1i (fi, li)−mπ,1

i

))
+γπ,1i (fi, li)− γπ,1i (fi, li)−

bπ,1i(
1 + βi

) (fi)
′
(
qπ,1i (fi, li)

)
−pdi

dπ,1i
pi

(fi)
′
(
qπ,1i (fi, li)

)
= 0 ∀ (fi, li) ∈ FLi, ∀ i ∈ N , (3.47)

γπ,1i (fi, li) q
π,1
i (fi, li) = 0, ∀ (fi, li) ∈ FLi, ∀ i ∈ N , (3.48)

γπ,1i (fi, li)
(
qmax − qπ,1i (fi, li)

)
= 0, ∀ (fi, li) ∈ FLi, ∀ i ∈ N . (3.49)

where for each i ∈ N ,

mπ,1
i =

E
[
Lπi q

π,1
i (F πi , L

π
i )
]

E [Lπi ]
,

vπ,1i = Var
(
qπ,1i (F πi , L

π
i )
)
.

Using (3.47), (3.48) and (3.49), we can conclude that, given (fi, li) ∈ FLi, qπ,1i (fi, li)

is an optimal solution to

max
0≤q≤qmax

(
UEi
)′ (

mπ,1
i − U

V
i

(
vπ,1i

))(
q −

(
UVi
)′ (

vπ,1i

)(
q −mπ,1

i

)2
)

−
bπ,1i(

1 + βi
)fi (q)− pdi

dπ,1i
pi

fi (q) ,

Using the above observation, we have that qπ,1i (fi, li) is the unique optimal solu-

tion to QNOVAi

((
mπ,1
i ,mπ,1

i , vπ,1i ,
(
hBi
)−1

(
bπ,1i

)
,
(
hDi
)−1

(
dπ,1i

))
, fi

)
(where the

uniqueness is due to the strict concavity of the objective) which is independent of

li and part (c) follows.
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Part (d) is a result related to the continuity of optimal value of OPTSTATδ

and this follows from Theorem 2.1 in [16] which provides sufficient conditions for

verifying continuity of the optimal value. We can verify that the conditions given in

Theorem 2.1 by noting that the objective function φπ (.) (defined in (3.37)) of OPT-

STAT is a continuous function (which follows from the continuity of the functions

Mean (.), Var (.) and UVi (.)), and by establishing the upper semicontinuity, lower

semicontinuity and compactness at δ = 0 of the feasible region QRδ of OPTSTATδ

defined below

QRδ =
{((

(qi (fi, li))(fi,li)∈FLi

)
i∈N

, (r (c))c∈C

)
:((

(qi (fi, li))(fi,li)∈FLi

)
i∈N

, (r (c))c∈C

)
satisfies the constraints

(3.39), (3.40), (3.41), (3.42), (3.45) and (3.46)}

The compactness of QRδ follows from the boundedness of the set, and the continuity

of the functions associated with the constraints (3.39), (3.40), (3.41), (3.42), (3.45)

and (3.46).

Proof of upper semicontinuity: We say that QRδ is upper semicontinuous

at δ = 0 if for each open set QR such that QR0 ⊂ QR, there is some δ > 0 such

that QRδ ⊂ QR for each δ ∈ [−δ, δ]. Since QR0 is a compact set and QR is an

open set, we can find δ0 > 0 such that δ0 expansion of QR0 is a subset of QR

(since each point in QR0 is an interior point of QR, we can obtain an open cover

of the compact set QR0 comprising the union of neighborhoods of positive radii

centered points in QR0, and then we can obtain δ0 > 0 as the minimum radius of

neighborhoods associated with a finite subcover).

Next, we show that the distance between any point((
(qi (fi, li))(fi,li)∈FLi

)
i∈N

, (r (c))c∈C

)
∈ QRδ and the set QR0 can be made as

close to zero as desired by picking δ small enough. Since this is trivial for δ ≤ 0, we
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focus on δ > 0. Consider
(

(q′i (fi, li))(fi,li)∈FLi

)
i∈N

defined as follows

q′i (fi, li) =
qi (fi, li)

1 + ξδ
∀ (fi, li) ∈ FLi, i ∈ N , (3.50)

where

ξ = max
i∈N

max

 1(
1− pdi

E[Lπi Fπi (0)]
piE[Lπi ]

) , 1(
1 + E[ri(Cπ)]

τslot
− E[Lπi Fπi (0)]

(1+βi)E[Lπi ]

)
 .

We can show that ξ ≥ 0 using Assumption-SF, and hence

q′i (fi, li) ≤ qi (fi, li) ∀ (fi, li) ∈ FLi, i ∈ N . (3.51)

Now, consider the following expression in the left hand side of the cost constraint

(3.45) in OPTSTATδ evaluated at
((

(q′i (fi, li))(fi,li)∈FLi

)
i∈N

, (r (c))c∈C

)

pdi
E [Lπi F

π
i (q′i (F πi , L

π
i ))]

piE [Lπi ]
≤ 1

1 + ξδ
pdi

E [Lπi F
π
i (qi (F πi , L

π
i ))]

piE [Lπi ]

+
ξδ

1 + ξδ
pdi

E [Lπi F
π
i (0)]

piE [Lπi ]

≤ 1 + δ

1 + ξδ
+

ξδ

1 + ξδ
pdi

E [Lπi F
π
i (0)]

piE [Lπi ]

=
1 + δ + ξδpdi

E[Lπi Fπi (0)]
piE[Lπi ]

1 + ξδ

≤ 1, (3.52)

where the first inequality above follows from the convexity of functions in Fi, and the

second inequality is due to the fact that
((

(qi (fi, li))(fi,li)∈FLi

)
i∈N

, (r (c))c∈C

)
∈

QRδ (and hence satisfies (3.45)). Note that the expression in the third line is less

than or equal to one if δ + ξδpdi
E[Lπi Fπi (0)]
piE[Lπi ]

≤ ξδ, and this holds due to our choice
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of ξ which ensures that ξ ≥ 1 + ξpdi
E[Lπi Fπi (0)]
piE[Lπi ]

for each i ∈ N . Next, consider the

following expression from the rebuffering constraint (3.46) in OPTSTATδ evaluated

at
((

(q′i (fi, li))(fi,li)∈FLi

)
i∈N

, (r (c))c∈C

)
E [Lπi F

π
i (q′i (F πi , L

π
i ))](

1 + βi
)
E [Lπi ]

≤ 1

1 + ξδ

E [Lπi F
π
i (qi (F πi , L

π
i ))](

1 + βi
)
E [Lπi ]

+
ξδ

1 + ξδ

E [Lπi F
π
i (0)](

1 + βi
)
E [Lπi ]

≤
1 + δ + E[ri(C

π)]
τslot

1 + ξδ
+

ξδ

1 + ξδ

E [Lπi F
π
i (0)](

1 + βi
)
E [Lπi ]

=
1 + δ + E[ri(C

π)]
τslot

+ ξδ
E[Lπi Fπi (0)]
(1+βi)E[Lπi ]

1 + ξδ

≤ 1, (3.53)

where the above inequalities follow from arguments similar to those made to ob-

tain (3.52). Using the fact that δ > 0 and
((

(qi (fi, li))(fi,li)∈FLi

)
i∈N

, (r (c))c∈C

)
∈

QRδ, and using the inequalities (3.51), (3.52) and (3.53), we can conclude that((
(q′i (fi, li))(fi,li)∈FLi

)
i∈N

, (r (c))c∈C

)
∈ QR0. Then, by using the expression for(

(q′i (fi, li))(fi,li)∈FLi

)
i∈N

in (3.50), we can conclude that the distance between((
(qi (fi, li))(fi,li)∈FLi

)
i∈N

, (r (c))c∈C

)
and

((
(q′i (fi, li))(fi,li)∈FLi

)
i∈N

, (r (c))c∈C

)
is O(δ). Hence, the distance between any

((
(qi (fi, li))(fi,li)∈FLi

)
i∈N

, (r (c))c∈C

)
∈

QRδ and the set QR0 goes to zero as δ goes to zero.

Hence, we can always δ > 0 such that for each δ ∈ [−δ, δ], QRδ is contained

in a δ0 expansion of QR0 which in turn is a subset of the open set QR containing

QR0 . Hence, for each δ ∈ [−δ, δ], QRδ ⊂ QR for each δ ∈ [−δ, δ]. Thus, QRδ is

upper semicontinuous at δ = 0.

Proof of lower semicontinuity: We show that QRδ is lower semicontinuous

at δ = 0 by showing that it is open at δ = 0. QRδ is open at δ = 0 if for

any sequence (δn)n≥1 converging to 0 and
((

(qi (fi, li))(fi,li)∈FLi

)
i∈N

, (r (c))c∈C

)
∈

QR0, we can find a sequence

(((
q

(n)
i (fi, li)

)
(fi,li)∈FLi

)
i∈N

,
(
r(n) (c)

)
c∈C

)
∈ QRδn
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that converges to
((

(qi (fi, li))(fi,li)∈FLi

)
i∈N

, (r (c))c∈C

)
. We can obtain the desired

sequence by setting r(n) (c) = r (c) for each c ∈ C, and

q
(n)
i (fi, li) = min(1 + ξδn, 1)qi (fi, li) ∀ (fi, li) ∈ FLi, i ∈ N . (3.54)

Next, we verify that

(((
q

(n)
i (fi, li)

)
(fi,li)∈FLi

)
i∈N

,
(
r(n) (c)

)
c∈C

)
∈ QRδn for each

n. This is clear for δn ≥ 0, and hence we restrict our attention to δn < 0. Con-

sider the following expression in the left hand side of the cost constraint (3.45) in

OPTSTATδ evaluated at
((

(q′i (fi, li))(fi,li)∈FLi

)
i∈N

, (r (c))c∈C

)

pdi

E
[
Lπi F

π
i

(
q

(n)
i (F πi , L

π
i )
)]

piE [Lπi ]
≤ (1 + ξδ) pdi

E [Lπi F
π
i (qi (F πi , L

π
i ))]

piE [Lπi ]

−ξδpdi
E [Lπi F

π
i (0)]

piE [Lπi ]

≤ 1 + ξδ − ξδpdi
E [Lπi F

π
i (0)]

piE [Lπi ]

≤ 1, (3.55)

where the above inequalities can be shown using arguments similar to those made

to obtain (3.52) and (3.53). Similarly, we can show that

E
[
Lπi F

π
i

(
q

(n)
i (F πi , L

π
i )
)]

(
1 + βi

)
E [Lπi ]

≤ (1 + ξδ)

(
1 +

E [ri (Cπ)]

τslot

)
− ξδ E [Lπi F

π
i (0)](

1 + βi
)
E [Lπi ]

≤ 1. (3.56)

Using the fact that
((

(qi (fi, li))(fi,li)∈FLi

)
i∈N

, (r (c))c∈C

)
∈ QR0, (3.54), (3.55)

and (3.56), we can conclude that

(((
q

(n)
i (fi, li)

)
(fi,li)∈FLi

)
i∈N

,
(
r(n) (c)

)
c∈C

)
∈

QRδn for each n, and the associated sequence converges to((
(qi (fi, li))(fi,li)∈FLi

)
i∈N

, (r (c))c∈C

)
. Thus, we have showed that QRδ is open at

δ = 0, and is thus lower semicontinuous at δ = 0
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We let
(

(qπi (f))f∈Fi

)
i∈N

denote the optimal quality choices associated with

different quality rate tradeoffs. Note that we have dropped the dependence of the

optimal quality choices on segment length based on the observation in Lemma 3.4

(c). Let
((

(qπi (f))f∈Fi

)
i∈N

, (rπ (c))c∈C

)
be an optimal solution to OPTSTAT,

and let bπ and dπ denote the associated Lagrange multipliers for the constraints

(3.43) and (3.44) respectively. Using the above result, we can conclude that the

KKT conditions are necessary and sufficient for optimality. Hence, there exist non-

negative constants (referred to in the sequel as Lagrange multipliers associated with

the optimal solution) (χπ(c))c∈C ,
(

(γπi (f))f∈Fi

)
i∈N

,
(

(γi(f)π)f∈Fi

)
i∈N

, (ωπ(c))c∈C ,

dπ and bπ such that

(
UEi
)′ (

mπ
i − UVi (vπi )

) (
1− 2

(
UVi
)′

(vπi ) (qπi (f)−mπ
i )
)

+ γπi (f)− γπi (f)

− bπi(
1 + βi

) (f)
′
(qπi (f))− pdi

dπi
pi

(f)
′
(qπi (f)) = 0, ∀ f ∈ Fi, ∀ i ∈ N , (3.57)

−χπ(c)
∂c (rπ(c))

∂ri
+

bπi
τslot

+ ωπi (c) = 0, ∀ c ∈ C, ∀ i ∈ N , (3.58)

γπi (f)qπi (f) = 0, ∀ f ∈ Fi, ∀ i ∈ N , (3.59)

γπi (f) (qmax − qπi (f)) = 0, ∀ f ∈ Fi,∀ i ∈ N , (3.60)

χπ(c)c (rπ(c)) = 0, (3.61)

ωπi (c)

KS
(rπi (c)− ri,min) = 0, ∀ c ∈ C, ∀ i ∈ N , (3.62)

dπi

(
1− pdi σ

π
i

pi

)
= 0 ∀ i ∈ N , (3.63)

bπi

(
σπi(

1 + βi
) − ρπi

τslot

)
= 0 ∀ i ∈ N . (3.64)
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where for each i ∈ N ,

mπ
i =

E [Lπi q
π
i (F πi )]

E [Lπi ]
, (3.65)

vπi = Var (qπi (F πi )) , (3.66)

σπi =
E [Lπi F

π
i (qπi (F πi ))]

E [Lπi ]
, (3.67)

λπi = E [Lπi ] . (3.68)

Thus mπ
i , vπi and σπi are the (statistical) mean quality, variance in quality and mean

segment size for video client i associated with optimal solution to OPTSTAT. Also,

let

X π = {(ρπ,bπ,dπ) : there is an optimal solution (3.69)((
(qπi (f))f∈Fi

)
i∈N

, (rπ (c))c∈C

)
to OPTSTAT with

ρπi = E [rπi (Cπ)] for each i ∈ N , and with

bπ and dπ as the associated optimal Lagrange multipliers

for the constraints (3.43) and (3.44) respectively} .

In the next result, we present three useful properties of the optimal solution

to OPTSTAT. The result in part (a) below provides a video client level optimality

result which essentially suggests that we can decouple the quality adaptation of the

video clients. It states that the component (qπi (f))f∈Fi of the optimal solution to

OPTSTAT associated with video client i ∈ N is itself an optimal solution to an

optimization problem which can be solved by the video client i. This result hints at

the possibility of distributing the task of quality adaptation across the video clients

so that each video client manages its own adaptation. The result in part (b) points

out that we only need to know a few parameters (specifically, the optimal Lagrange

multipliers associated with the rebuffering constraints) associated with the quality
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adaptation to carry out optimal resource allocation. This suggests that we could

potentially decouple the task of optimal resource allocation from quality adaptation.

Part (c) states that that when NOVA parameter θi,s of video client i is in the set

H∗i defined below

H∗i :=
{(
mπ
i ,m

π
i , v

π
i ,
(
hBi
)−1

(bπi ) ,
(
hDi
)−1

(dπi )
)

: (ρπ,bπ,dπ) ∈ X π
}
, (3.70)

we can obtain optimal quality choices for OPTSTAT by using NOVA.

Lemma 3.5. For parts (a) and (b) of this result, suppose (ρπ,bπ,dπ) ∈ X π, and

let
((

(qπi (f))f∈Fi

)
i∈N

, (rπ (c))c∈C

)
be the associated optimal solution.

(a) For each i ∈ N , (qπi (f))f∈Fi is the unique optimal solution to the following

optimization problem

max(
(qi(f))f∈Fi

)UEi
(
E [Lπi qi (F πi )]

E [Lπi ]
− UVi (Var (qi (F πi )))

)

−
∑
i∈N

dπi

(
pdi
pi

)(
E [Lπi F

π
i (qi (F πi ))]

E [Lπi ]

)
−
∑
i∈N

bπi(
1 + βi

) (E [Lπi F
π
i (qi (F πi ))]

E [Lπi ]

)
,

qi(f) ≥ 0, ∀ f ∈ Fi,

qi(f) ≤ qmax, ∀ f ∈ Fi.

(b) (rπ (c))c∈C is an optimal solution to the following optimization problem

E

[∑
i∈N

bπi ri (Cπ)

]
,

s.t. c (r (c))) ≤ 0, ∀ c ∈ C,

ri (c) ≥ ri,min, ∀ c ∈ C,∀ i ∈ N .
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(c) The following holds for each i ∈ N : If θπi ∈ H∗i , then q∗i (θπi , f) = qπi (f) for

each f ∈ Fi.

Proof. As with the case of OPTSTAT, we can show that KKT conditions are nec-

essary and sufficient for optimality for the optimization problem considered in part

(a). Now, the result follows by using (3.57), (3.59) and (3.60) to conclude that

(qπi (f))f∈Fi satisfies these conditions. Proof of part (b) is similar to that of (a),

and can be completed by using the fact that (rπ (c))c∈C satisfies (3.58), (3.61) and

(3.62).

Using the necessary optimality conditions for OPTSTAT given in (3.57),

(3.59) and (3.60), we can show that qπi (f) satisfies the sufficient optimality condi-

tions (3.32)-(3.34) for QNOVAi (θπi , f) (following an approach similar to that used

in the proof of part (c) of Lemma 3.4). Then part (c) follows from the fact that

QNOVAi (θπi , f) has a unique optimal solution.

We use the observation in part (c) and properties of OPTSTAT to prove

the next result which is the main result for this subsection and is an important

intermediate result used in the proof of main optimality of NOVA given in Theorem

3.1. The result states that the performance of NOVA with its parameters θi,s picked

from the set H∗i for each i ∈ N is asymptotically optimal. Further, this result

suggests that we can prove Theorem 3.1 if we can show that the updates (3.21)-

(3.26) of NOVA guide the parameters (θi,s)s≥1 of video client i to H∗i for each video

client i ∈ N . This motivates the study of convergence behavior of NOVA which is

the main focus of the rest of this section.

Theorem 3.2. Suppose θπi ∈ H∗i for each i ∈ N . Then, for almost all sample paths

lim
S→∞

(
φS

((
(q∗i (θπi , fi,s))i∈N

)
1≤s≤S

)
− φoptS

)
= 0.
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Proof. For a fixed S, consider an optimal solution
((

qS
)

1:S
,
(
rS
)

1:KS

)
to OPT(S).

Without loss of generality (we prove this below), we assume that the optimal solu-

tion
((

qS
)

1:S
,
(
rS
)

1:KS

)
satisfies the following two conditions:

(a) qSi,s1 = qSi,s2 for any two segments s1 and s2 such that fi,s1 = fi,s2 and li,s1 = li,s2 .

(b) rSk1
= rSk2

for any two slots k1 and k2 such that ck1 = ck2 .

We show that we can always find an optimal solution satisfying these conditions.

Consider an optimal solution
((

q0,S
)

1:S
,
(
r0,S

)
1:KS

)
to OPT(S) that does not sat-

isfy the conditions. We can obtain another optimal solution
((

q1,S
)

1:S
,
(
r1,S

)
1:KS

)
to OPT(S) satisfying this condition by letting

q1,S
i,s′ =

∑S
s=1 I

(
fi,s = fi,s′ , li,s = li,s′

)
q0,S
i,s∑S

s=1 I
(
fi,s = fi,s′ , li,s = li,s′

) , ∀ 1 ≤ s′ ≤ S,

r1,S
i,k′ =

∑KS
k=1 I (ck = ck′) r

0,S
i,k∑KS

k=1 I (ck = ck′)
, ∀ 1 ≤ k′ ≤ KS .

It is clear that
((

q1,S
)

1:S
,
(
r1,S

)
1:KS

)
satisfies the conditions (a) and (b). Fur-

ther, using the structure of the optimization problem OPT(S), we can show that((
q1,S

)
1:S

,
(
r1,S

)
1:KS

)
is also an optimal solution to OPT(S).

Now, we return to the proof of the main result and consider an optimal

solution
((

qS
)

1:S
,
(
rS
)

1:KS

)
to OPT(S) satisfying the conditions (a) and (b) so

that the component qSi,s in the optimal solution assocaited with quality adaptation

for segment s of video client i depends only on (f, l). Hence, we can obtain a function

qSi (f, l) for (f, l) ∈ FLi, such that qSi (f, l) denotes the quality associated with this

optimal solution for a segment s with QR tradeoff fi,s = f and length li,s = l.

Similarly, we can obtain a function rSi (c) for c ∈ C such that rSi (c) denotes the

resource allocation associated with the optimal solution for a slot k with allocation

constraint ck = c. Let πF ,L,Si (fi, li) =
∑S
s=1 I(fi,s=fi, li,s=li)

S for (f, l) ∈ FLi be

the empirical distribution for the occurrence of segments with QR tradeoff f and
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length l, and πC,S (c) =
∑KS
k=1 I(ck=c)

KS
for c ∈ C be the empirical distribution for the

occurrence of allocation constraint c.

The mean quality for video client i corresponding to the optimal solution((
qS
)

1:S
,
(
rS
)

1:KS

)
is given by

mS
i

(
qSi
)

=

∑S
s=1 li,sq

S
i,s∑S

s=1 li,s
=

∑
(fi,li)∈FLi π

F ,L,S
i (fi, li) liq

S
i (fi, li)∑

(fi,li)∈FLi π
F ,L,S
i (fi, li) li

=

∑
(fi,li)∈FLi π

F ,L
i (fi, li) liq

S
i (fi, li)∑

(fi,li)∈FLi π
F ,L
i (fi, li) li

+ δm(S)

where δm(S) is a function such that limS→∞ δm(S) = 0 a.s. (in this proof, ‘a.s.’

stands for ‘for almost all sample paths’). This limiting behavior of δm(S) follows

from the boundedness of the terms involved, and the fact that (Li,s, Fi,s)s≥0 is a sta-

tionary ergodic process as a result of which limS→∞

∣∣∣πF ,L,Si (fi, li)− πF ,Li (fi, li)
∣∣∣ = 0

a.s. for each (f, l) ∈ FLi, i.e., the empirical distribution converges to the stationary

distribution. Recall that
(
πF ,Li (fi, li)

)
(fi,li)∈FLi

is the marginal distribution asso-

ciated with the stationary ergodic process (Fi,s, Li,s)s≥0. Using similar calculations,

we can obtain a function δe,1(S) satisfying limS→∞ δe,1(S) = 0 a.s. such that the

optimal value for OPT(S), i.e. φoptS = φS
((

qS
)

1:S

)
can be expressed as

φoptS =
∑
i∈N

UEi
(
Mean

(
qSi (F πi , L

π
i )
)
− UVi

(
Var

(
qSi (F πi , L

π
i )
)))

+ δe,1(S).

where the first term on the right hand side is equal to the objective function of

OPTSTAT (given in (3.37)) evaluated at
((
qSi (fi, li)

)
(fi,li)∈FLi

)
i∈N

.

Again using the fact that limS→∞

∣∣∣πF ,L,Si (fi, li)i − πF ,L (fi, li)
∣∣∣ = 0 a.s. and

limS→∞
∣∣πC,S (c)− πC (c)

∣∣ = 0 a.s., together with arguments similar to those above,

we can show that
(((

qSi (fi, li)
)

(fi,li)∈FLi

)
i∈N

, (r′S (c))c∈C

)
is a feasible solution to

the optimization problem OPTSTATδe,2(S) (i.e., optimization problem OPTSTAT
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with constraints loosened by δe,2(S)) for an appropriately chosen function δe,2(S)

satisfying limS→∞ δe,2(S) = 0 a.s.. Hence,

φoptS ≤ OPTSTATVALδe,2(S) + δe,1(S) (3.71)

From Lemma 3.4 (d), we have that limδ→0 OPTSTATVALδ=OPTSTATVAL. Using

Lemma 3.5 (c) and the fact that (Fi,s, Li,s)s≥0 is a stationary ergodic process for

each i ∈ N , we have

lim
S→∞

(
φS

((
(q∗i (θπi , fi,s))i∈N

)
1≤s≤S

)
−OPTSTATVAL

)
= 0 a.s..

Now, the result follows by using these two observations, (3.71) and the fact that

φS

((
(q∗i (θπi , fi,s))i∈N

)
1≤s≤S

)
≤ φoptS .

3.5.2 An auxiliary differential inclusion related to NOVA

In the previous subsection, we stated Theorem 3.2 which suggests that we can prove

the main optimality result for NOVA if we establish an appropriate convergence re-

sult for NOVA. In this subsection, we study an auxiliary differential inclusion which

evolves according to average dynamics of NOVA. The main goal of this subsection

is to study the convergence of the differential inclusion which in turn will help us

obtain the desired convergence of parameters of NOVA in the next subsection.

For the rest of this section, we additionally consider the evolution of auxiliary

parameters (σi,si)si≥1 and (ρi,k)k≥1 associated with NOVA which evolve according

to update rules discussed next. We update the auxiliary parameter σi,si based on the

quality q∗i,si+1 (shorthand for q∗i (θi,si , fi,si+1), θi,si = (mi,si , µi,si , vi,si , bQ,i,si , di,si))
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chosen by NOVA for (si + 1)th segment of video client i ∈ N as follows:

σi,si+1 = σi,si + ε

 li,si+1fi,si

(
q∗i,si+1

)
λi,si

− σi,si

 , (3.72)

Thus, the auxiliary parameter σi,si tracks the mean segment size of the segments

downloaded by video client i ∈ N . We update the parameter ρk based on the

resource allocation r∗k ∈ R∗ (bk, ck) in slot k as described below

ρi,k+1 = ρi,k + ε
(
r∗i,k − ρi,k

)
∀ i ∈ N . (3.73)

Thus, the auxiliary parameter ρk tracks the mean resource allocation to video

clients. Note that the auxiliary parameters σi,. and ρ. do not affect the allocation

or adaptation in NOVA.

Next, let

H =
{

(m,µ,v,b,d,λ,σ,ρ) ∈ R8N : for each i ∈ N , (3.74)

0 ≤ mi, µi ≤ qmax, 0 ≤ vi ≤ q2
max, b ≤ bi ≤ b, d ≤ di ≤ d,

lmin ≤ λi ≤ lmax, lminfmin ≤ σi ≤ lmaxfmax, ri,min ≤ ρi ≤ rmax} .

Note that the parameters (ms,µs,vs,bk,ds,λs,σs,ρk)s,k associated with NOVA

remain in H (see Lemma 3.1). For each video client i ∈ N , we use the vari-

ables m̂i(t), µ̂i(t), v̂i(t), b̂i(t), d̂i(t), λ̂i(t), σ̂i(t) and ρ̂i(t) to track the average

dynamics of the parameters mi,si , µi,si , vi,si , bi,k, di,si , λi,si , σi,si and ρi,k re-

spectively associated with NOVA (and this is explained in detail in the sequel

before Lemma 3.6). Let Θ̂(t) =
(
m̂(t), µ̂(t), v̂(t), b̂(t), d̂(t), λ̂(t), σ̂(t), ρ̂(t)

)
∈ H

and θ̂i(t) = (m̂i(t), µ̂i(t), v̂i(t), b̂i(t), d̂i(t)) for each i ∈ N , i.e., θ̂i(t) includes the

components in Θ̂(t) that affect the quality adaptation of video client i ∈ N .

The main focus of this subsection is the following differential inclusion which
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describes the evolution of
(
Θ̂(t)

)
t≥0

:

Auxiliary differential inclusion related to NOVA

Θ̂(0) ∈ H and for almost all t ≥ 0 and each i ∈ N ,

.
m̂i(t) =

(
UEi
)′ (

µ̂i(t)− UVi (v̂i(t))
) (
UVi
)′

(v̂i(t))

ui

(
Θ̂(t)

) (3.75)

E
[
Lπi q

∗
i

(
θ̂i(t), F

π
i

)]
λ̂i(t)

− m̂i(t)

 ,

.
µ̂i(t) =

1

ui

(
Θ̂(t)

)
E

[
Lπi q

∗
i

(
θ̂i(t), F

π
i

)]
λ̂i(t)

− µ̂i(t)

 , (3.76)

.
v̂i(t) =

1

ui

(
Θ̂(t)

)
E

[
Lπi

(
q∗i

(
θ̂i(t), F

π
i

)
− m̂i(t)

)2
]

λ̂i(t)
− v̂i(t)

 , (3.77)

.
b̂i(t) =

1(
1 + βi

) − E [Lπi ]

ui

(
Θ̂(t)

) + ẑbi

(
Θ̂(t)

)
, (3.78)

.
d̂i(t) =

1

ui

(
Θ̂(t)

)
pdiE

[
Lπi F

π
i

(
q∗i

(
θ̂i(t), F

π
i

))]
pi

− λ̂i(t)

 (3.79)

+ẑdi

(
Θ̂(t)

)
,

.
λ̂i(t) =

1

ui

(
Θ̂(t)

) (E [Lπi ]− λ̂i(t)
)
, (3.80)

.
σ̂i(t) =

1

ui

(
Θ̂(t)

)
E

[
Lπi F

π
i

(
q∗i

(
θ̂i(t), F

π
i

))]
λ̂i(t)

− σ̂i(t)

 , (3.81)

.
ρ̂i(t) =

1

τslot

r∗i
(
b̂(t)

)
τslot

− ρ̂i(t)

 , (3.82)
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where

ui

(
Θ̂(t)

)
= τslot

E
[
Lπi F

π
i

(
q∗i

(
θ̂i(t), F

π
i

))]
E
[
r∗i

(
b̂(t), Cπ

)] , (3.83)

and r∗
(
b̂(t), c

)
∈ R∗

(
b̂(t), c

)
for each c ∈ C. Here,

(
ẑb
(
Θ̂(t)

)
, ẑd
(
Θ̂(t)

))
∈ −ZH (Θ) . (3.84)

Here ẑbi

(
Θ̂(t)

)
and ẑdi

(
Θ̂(t)

)
are terms mimicking the role of the operators [.]b

and [.]d in (3.24) and (3.25), and ensure that
(
Θ̂(t)

)
t≥0

stays in H (see Sec-

tion 4.3 of [29] for a discussion about projected stochastic approximation). For

Θ = (m,µ,v,b,d,λ,σ,ρ) ∈ H, ZH (Θ) ⊂ R2N is the set containing only the zero

element when (b,d) is in the interior of the set

HBD =
{

(b,d) ∈ R2N : for each i ∈ N , bi ≥ b, di ≥ d
}
,

and for (b,d) on the boundary of the set HBD, ZH (Θ) is the convex cone generated

by the outer normals at (b,d) of the faces of HBD on which (b,d) lies. Thus, for a

given Θ, −ZH (Θ) contains reflection terms pointing in the right directions to keep(
Θ̂(t)

)
t≥0

in H. For Θ with (b,d) in the interior of HBD,

ẑbi = 0, ẑdi = 0, ∀ i ∈ N , ∀
(
ẑb, ẑd

)
∈ −ZH (Θ) , (3.85)

Also note that for all Θ ∈ H

ẑbi ≥ 0, ẑdi ≥ 0, ∀ i ∈ N , ∀
(
ẑb, ẑd

)
∈ −ZH (Θ) , (3.86)
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i.e., the components of all the terms in −ZH (Θ) are non-negative and this is clear

from the definition of the set HBD which indicates that the reflection terms are

needed only needed when the parameters hit a lower bound. Thus, ẑbi

(
Θ̂(t)

)
and

ẑdi

(
Θ̂(t)

)
are terms mimicking the role of the operators [.]b and [.]d. Also, note that

ui (.) is a set valued map (and hence (3.75)-(3.82) describes a differential inclusion)

since the denominator E
[
r∗i

(
b̂(t), Cπ

)]
in (3.83) is a set valued map. Finally, note

that the above definition only requires that
(
Θ̂(t)

)
t≥0

is differentiable for almost all

t ≥ 0, i.e., we are considering the class of absolutely continuous functions
(
Θ̂(t)

)
t≥0

that satisfy (3.75)-(3.82).

Although we will rigorously establish the relationship between the evolution

of parameters of NOVA and (3.75)-(3.82) in the next subsection, we can see that

the differential inclusion (3.75)-(3.82) reflects the average dynamics of the evolution

of parameters in NOVA by comparing (3.75)-(3.82) against the update rules (3.21)-

(3.26) and (3.72)-(3.73) in NOVA. For instance, this is apparent when we compare

the update rule

µi,si+1 − µi,si = ε

(
li,si+1

λi,si
q∗i,si+1 − µi,si

)
for NOVA parameter µi,si+1 given in (3.22), against (3.76) describing the evolution

of the parameter µ̂i(t). Note that the rate of change of µ̂i(t) given in (3.76) has

a scaling term 1

ui(Θ̂(t))
which corresponds to the segment download rate of video

client i at time t (and ui

(
Θ̂(t)

)
defined in (3.83) corresponds to expected segment

download time of video client i at time t). This scaling by segment download rate is

naturally expected for the rate of change of parameters m̂i(t), µ̂i(t), v̂i(t), d̂i(t), λ̂i(t),

and σ̂i(t) which correspond to NOVA parameters of video client i that are updated

when a segment download is completed, and thus we can view 1

ui(Θ̂(t))
as the update

rate associated with these parameters. Similarly, we can view the constant scaling

term 1
τslot

in (3.82) describing the evolution of ρ̂i(t) as the corresponding update

rate by noting that the associated (auxiliary) NOVA parameter ρi,k is updated at
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the beginning of every slot, i.e., once every τslot seconds. Finally, note that (3.78)

describing the evolution of b̂i(t) can be rewritten as

.
b̂i(t) =

1

τslot

(
τslot(

1 + βi
))− 1

ui

(
Θ̂(t)

) (E [Lπi ]) + ẑbi

(
Θ̂(t)

)
,

and presence of the two scaling terms 1
τslot

and 1

ui(Θ̂(t))
reflects the fact that the

corresponding NOVA parameter bi,k is updated at the beginning of every slot (using

(3.20)) and when a segment download of video client i is completed (using (3.24)).

Thus, we can expect that (3.75)-(3.82) captures the average dynamics of NOVA,

and the presence of the two video client dependent update rates 1
τslot

and 1

ui(Θ̂(t))

reflects the asynchronous nature of the evolution of parameters in NOVA where

different video clients are updating their parameters at their own (possibly time

varying) rates.

Now, we study the differential inclusion (3.75)-(3.82) to identify properties

that will help us to study convergence behavior. The next result shows that the

differential inclusion is ‘well behaved’.

Lemma 3.6. The differential inclusion (3.75)-(3.82) is well defined, i.e., there exists

an absolutely continuous function that solves (3.75)-(3.82) for any Θ̂(0) ∈ H. Fur-

ther, these solutions are Lipschitz continuous and stay in H and hence are bounded.

Proof. The existence of solution follows from the proof of Theorem 3.4 (in Subsection

3.5.3) where we obtain a solution satisfying (3.75)-(3.82). The boundedness follows

from (3.84) and arguments similar to those in Lemma 3.1. The Lipschitz continuity

of the paths follows from the fact that all the terms on the right hand side of

(3.75)-(3.82) can be bounded above for Θ̂(t) ∈ H.

Definition 3.1. Stationary resource allocation policy: Let (r(c))c∈C be a |C| length
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vector (of vectors) where r(c) ∈ RN+ . We refer to (r(c))c∈C as a stationary resource

allocation policy as we can associate (r(c))c∈C with a resource allocation policy that

allocates resource r(c) in a slot k when Ck = c, and thus the policy carries out the

resource allocation in a slot only based on the allocation constraint in the slot.

Definition 3.2. Feasible stationary resource allocation policy: We say that a sta-

tionary resource allocation policy
(
(r (c))c∈C

)
is feasible if

r (c) ≥ rmin and c (r (c)) ≤ 0, ∀ c ∈ C.

Definition 3.3. Stationary quality adaptation policy for video client i:

Let (qi (fi))fi∈Fi ∈ RFi+ . We refer to (qi (fi))fi∈Fi as a stationary quality adaptation

policy for video client i ∈ N as we can associate (qi (fi))fi∈Fi with a quality adapta-

tion policy for video client i that chooses quality qi (fi) for each segment s with QR

tradeoff Fi,s = fi, and thus the policy carries out quality adaptation for a segment

based only on the QR tradeoff of that segment.

Definition 3.4. Feasible stationary quality adaptation policy for video client i: We

say that a stationary quality adaptation policy (qi (fi))fi∈Fi for video client i is

feasible if 0 ≤ qi (fi) ≤ qmax for each fi ∈ Fi.

Next, we define the set H̃ ⊂ R8N as

H̃ =

{
(m,µ,v,b,d,λ,σ,ρ) ∈ H : λi = E[Lπi ] ∀ i ∈ N ; (3.87)

∃ a feasible stationary resource allocation policy (r (c))c∈C s.t.

E [ri (Cπ)]

τslot
= ρi ∀ i ∈ N ;

for each i ∈ N , ∃ there is a feasible stationary quality

adaptation scheme
(

(qi (fi))fi∈Fi

)
such that

E [Lπi qi (F πi )]

E [Lπi ]
= µi,

Var (qi (F πi )) ≤ vi ≤ q2
max,

E [Lπi F
π
i (qi (F πi ))]

E [Lπi ]
≤ σi ≤ fmax

}
.
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We can view H̃ as the set of ‘achievable’ parameters in H, i.e., for any element

(m,µ,v,b,d,λ,σ,ρ) ∈ H there is some feasible stationary resource allocation pol-

icy with mean resource allocation per unit time ρ, and there is some feasible sta-

tionary quality adaptation policy for each i that has a mean quality µi, variance in

quality which is at least vi and mean segment size which is at least σi (and satisfies

λi = E[Lπi ] ∀ i ∈ N ).

It can be verified that H̃ is a bounded, closed and convex set (using an

approach similar to that in Lemma 5 (b) in [26]). Hence, we conclude that for any

Θ ∈ H, there exists a unique projection of Θ̃ ∈ H on the set H̃. Let .̃ denote

this projection operator. Hence, for any Θ ∈ H, d8N

(
Θ, H̃

)
= d8N

(
Θ, Θ̃

)
. The

next result states that, irrespective of the initialization, the differential inclusion

converges to the bounded, closed and convex set H̃ of achievable parameters.

Lemma 3.7. There exist finite constants χ0 > 0 and χ1 such that for any initial-

ization Θ̂(0) ∈ H,

d

dt
d8N

(
Θ̂(t),H

)
≤ −χ0d8N

(
Θ̂(t),H

)
+ χ1dN

(
λ̂(t),λπ

)
.

Hence,

lim
t→∞

d8N

(
Θ̂(t),H

)
= 0.

Proof. The result is an application of a generalization of Lemma 3 in [49]. It can

be proved by modifying the arguments in [49], and using the update rule (3.80) for

λ̂(t) which can be also written as

.
λ̂i(t) =

1

ui

(
Θ̂(t)

)d1

(
λ̂i(t), E [Lπi ]

)
.

In the next result, we provide the main convergence result for the differential
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inclusion (3.75)-(3.82) which states that Θ̂(t) converges to the following set

H∗ =
{

(m,µ,v,b,d,λ,σ,ρ) ∈ H :
(
ρ,
(
hBi (bi)

)
i∈N ,

(
hDi (di)

)
i∈N

)
∈ X π,

and for each i ∈ N , mi = µi = mπ
i , vi = vπi } (3.88)

Recall that Theorem 3.2 suggested that we can prove Theorem 3.1, if we can show

that the updates (3.21)-(3.26) guide NOVA parameters (θi,s)s≥1 of video client i to

the set H∗i (defined in (3.70)) for each video client i ∈ N . Note that for each i ∈ N ,

H∗i is a set obtained by projecting H∗ on a lower dimensional space (by considering

only video client i’s components and ‘dropping’ the components (λ,σ,ρ)). Hence,

the following result along with Theorem 3.4 (which relates evolution of NOVA pa-

rameters to the differential inclusion) help us to establish the desired convergence

property for NOVA parameters.

Theorem 3.3. (a) For Θ̂ =
(
m̂, µ̂, v̂, b̂, d̂, λ̂, σ̂, ρ̂

)
∈ H, and some (ρπ,bπ,dπ) ∈

X π, let

L
(
Θ̂
)

:= −
∑
i∈N

(
1 + βi

)
λ̂iU

E
i

(
µ̂i − UVi (v̂i)

)
+
∑
i∈N

(
1 + βi

)
λ̂i (m̂i −mπ

i )2

+
∑
i∈N

(
1 + βi

)
λ̂id

π
i

(
pdi σ̂i
pi
− 1

)
+
∑
i∈N

(
1 + βi

) ∫ d̂i

d

(
hDi (e)− dπi

)
de

+
∑
i∈N

(
λ̂ib

π
i σ̂i − τslotbπi ρ̂i

)
+
∑
i∈N

σπi

∫ b̂i

b

(
hBi (e)− bπi

)
de

+
χ2

χ0
d8N

(
Θ̂, H̃

)
, (3.89)

where χ0 is the positive constant from Lemma 3.7, and χ2 is a large positive constant
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(the value is given in the proof). If Θ̂(0) ∈ H, then for almost all t

dL
(
Θ̂(t)

)
dt


≤ 0, ∀ Θ̂(t) ∈ H,

< 0, ∀ Θ̂(t) /∈ H∗.

(b) If Θ̂(0) ∈ H, then

lim
t→∞

d8N

(
Θ̂(t),H∗

)
= 0.

Proof. The proof of part (b) relies on the analysis of the drift of the Lyapunov

function L(.) defined in (3.89) of part (a) for Θ̂ =
(
m̂, µ̂, v̂, b̂, d̂, λ̂, σ̂, ρ̂

)
∈ H

where (ρπ,bπ,dπ) ∈ X π (defined in (3.69)). Here χ0 is the positive constant from

Lemma 3.7, and χ2 is a positive constant whose value is chosen to be large enough

to satisfy certain conditions, and is specified towards the end of the proof (above

(3.101)). The choice of several terms in the Lyapunov function L(.) given above

are motivated by the choice of Lyapunov functions in [24] and [50]. The first term

−
∑

i∈N
(
1 + βi

)
λ̂iU

E
i

(
µ̂i − UVi (v̂i)

)
is similar to terms in the Lyapunov function

in [24], and resembles an estimate for a scaled version of the objective of OPT(S)

(see (3.7)) since µ̂i(.) tracks mean quality and v̂i(.) tracks variance in quality so that

a negative drift would suggest that the estimate is decreasing and we are moving in

the right direction. The terms in the second line
∑

i∈N
(
1 + βi

)
λ̂id

π
i

(
pdi σ̂i
pi
− 1
)

+∑
i∈N

(
1 + βi

) ∫ d̂i
d

(
hDi (e)− dπi

)
de are similar to the terms chosen in the Lyapunov

function in [50]. However, note that our choice and analysis of the Lyapunov func-

tion has many novel elements. For instance, the term
∑

i∈N
(
1 + βi

)
λ̂i (m̂i −mπ

i )2

(which can be viewed as weighted distance of ‘m̂’ component in Θ̂(t) to ‘m̂’ com-

ponent of elements in H∗) allows us to accommodate objectives involving vari-

ability terms (i.e., non-zero UVi (v̂i)) and the terms in
∑

i∈N b
π
i

(
λ̂iσ̂i − τslotρ̂i

)
+∑

i∈N σ
π
i

∫ b̂i
b

(
hBi (e)− bπi

)
de which allow us to accommodate the rebuffering con-

straints (which involves comparing averages over time time scales). Further, note
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that our analysis of L(.) will establish a convergence result for a differential inclu-

sion associated with an algorithm NOVA which, unlike those in [24] and [50], uses

asynchronous updates.

Figure 3.3: H∗ ⊂ H̃ ⊂ H, and we show that Θ̂(t))t≥0 reaches H̃ mainly using
Lemma 3.7

In the first part of the proof, we establish that the Lyapunov function L has a

non-positive drift, and that the drift is strictly negative outside H∗. Note that since

(ρπ,bπ,dπ) ∈ X π, there is some optimal solution
((

(qπi (f))f∈Fi

)
i∈N

, (rπ (c))c∈C

)
to OPTSTAT with ρπi = E [rπi (Cπ)] for each i ∈ N and bπ and dπ as the associated

optimal Lagrange multipliers for the constraints (3.43) and (3.44) respectively.

The proof is a bit lengthy, and the following is rough outline of the initial
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steps in the proof (RHS is shorthand for right hand side):

dL
(
Θ̂(t)

)
dt

≤ RHS of (3.90)

≤ RHS of (3.91)

≤ RHS of (3.95)

≤ RHS of (3.100)

≤ RHS of (3.102)

We use definition of L(.) and (3.75)-(3.82) to obtain (3.90). We obtain (3.91) mainly

counting on (optimality) properties of optimal solution to QNOVAi

(
θ̂i(t), fi

)
and

Lemma 3.3 (c), and we obtain (3.95) mainly counting on (optimality) proper-

ties of optimal solutions to RNOVA
(
b̂(t), c

)
and QNOVAi

(
θ̂

(mπi )
i (t), fi

)
, where

θ̂
(mπi )
i (t) = (mπ

i , µ̂i(t), v̂i(t), b̂i(t), d̂i(t)). In step (3.100), we mainly collect projec-

tion (projection of Θ̂(t) on H̃) error terms and terms containing
∣∣∣λ̂i(t)− λπi ∣∣∣, bound

them and nullify the role of these terms by using (3.80) and Lemma 3.7 and picking

large enough χ2. Finally, we obtain (3.102) mainly counting on properties of opti-

mal solution and optimal Lagrange multipliers of OPTSTAT. In (3.102), we have

an upper bound for
dL(Θ̂(t))

dt as a sum of several functions which are shown to be

non-positive using aforementioned properties, and we use additional arguments to

establish strict negativity of
dL(Θ̂(t))

dt outside H∗ and conclude proof of part (a).
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Using the definition of L(.) and (3.75)-(3.82), we have that

dL
(
Θ̂(t)

)
dt

≤ −
∑
i∈N

(
1 + βi

)
λ̂i(t)

(
UEi
)′ (

µ̂i(t)− UVi (v̂i(t))
)

(3.90)(
1

ui(t)

(
E [Lπi q

∗
i (t)]

λ̂i(t)
− µ̂i(t)

)

−
(
UVi
)′

(v̂i(t))

ui(t)

E
[
Lπi (q∗i (t)− m̂i(t))

2
]

λ̂i(t)
− v̂i(t)


+
∑
i∈N

2
(
1 + βi

)
λ̂i(t)

(
UEi
)′ (

µ̂i(t)− UVi (v̂i(t))
) (
UVi
)′

(v̂i(t))

ui(t)

(m̂i(t)−mπ
i )

(
E [Lπi q

∗
i (t)]

λ̂i(t)
− m̂i(t)

)

+
∑
i∈N

(
1 + βi

)
λ̂i(t)d

π
i

(
pdi
pi

)
1

ui(t)

(
E [Lπi F

π
i (q∗i (t))]

λ̂i(t)
− σ̂i(t)

)

+
∑
i∈N

(
1 + βi

)
λ̂i(t)

(
hDi

(
d̂i(t)

)
− dπi

) 1

ui(t)

(
pdi
E [Lπi F

π
i (q∗i (t))]

λ̂i(t)pi
− 1

)

+
∑
i∈N

λ̂i(t)b
π
i

1

ui(t)

(
E [Lπi F

π
i (q∗i (t))]

λ̂i(t)
− σ̂i(t)

)
−
∑
i∈N

bπi

(
E [r∗i (t)]

τslot
− ρ̂i(t)

)

+
∑
i∈N

σπi

(
hBi

(
b̂i(t)

)
− bπi

)( 1(
1 + βi

) − E [Lπi ]

ui(t)

)

−χ2d8N

(
Θ̂(t), H̃

)
+
χ2χ1

χ0
dN

(
λ̂(t),λπ

)
+
∑
i∈N

.
λ̂i(t)l̃i1

(
Θ̂(t)

)
−+

∑
i∈N

(
hBi

(
b̂i(t)

)
− bπi

)(E [Lπi F
π
i (q∗i (t))]

ui(t)
− E [r∗i (t)]

τslot

)
,

where we have collected terms involving
.
λ̂i(t) and grouped them together in the
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term
.
λ̂i(t)l̃i1

(
Θ̂(t)

)
so that for each i ∈ N ,

l̃1i

(
Θ̂
)

= −
(
1 + βi

)
UEi

(
µ̂i − UVi (v̂i)

)
+
(
1 + βi

)
(m̂i −mπ

i )2

+
∑
i∈N

(
1 + βi

)
dπi

(
pdi σ̂i
pi
− 1

)
+ bπi σ̂i.

For brevity, we have not explicitly indicated the dependence of many terms above on

Θ̂(t). For instance, ui

(
Θ̂(t)

)
is shorthand for ui(t), and E [Lπi q

∗
i (t)] is shorthand

for E
[
Lπi q

∗
i

(
θ̂i(t), F

π
i

)]
where θ̂i(t) = (m̂i(t), µ̂i(t), v̂i(t), b̂i(t), d̂i(t)) for each i ∈ N .

Also, note that we also added

∑
i∈N

(
hBi

(
b̂i(t)

)
− bπi

)(E [Lπi F
π
i (q∗i (t))]

ui(t)
− E [r∗i (t)]

τslot

)

to the right hand side of (3.90) where E [r∗i (t)] is a shorthand for E
[
r∗i

(
b̂(t), Cπ

)]
where r∗

(
b̂(t), c

)
∈ R∗

(
b̂(t), c

)
which is R∗

(
b̂(t)

)
for each c ∈ C. This does not

change the inequality since this expression evaluates to zero from the definition of

ui(.) in (3.83). We also dropped the terms
∑

i∈N σ
π
i

(
hBi

(
b̂i(t)

)
− bπi

)
ẑbi

(
Θ̂(t)

)
and

∑
i∈N

(
1 + βi

)
λ̂i(t)

(
hDi

(
d̂i(t)

)
− dπi

)
ẑdi

(
Θ̂(t)

)
from right hand side of (3.90)

noting that they are less than or equal to zero. To see this, note that ẑbi

(
Θ̂(t)

)
≥

0 (from (3.86)) which is equal to zero unless b̂i(t) = b (from (3.85)) for which

hBi

(
b̂i(t)

)
= 0 ≤ bπi . Hence,

∑
i∈N σ

π
i

(
hBi

(
b̂i(t)

)
− bπi

)
ẑbi

(
Θ̂(t)

)
≤ 0, and we can

similarly show that
∑

i∈N
(
1 + βi

)
λ̂i(t)

(
hDi

(
d̂i(t)

)
− dπi

)
ẑdi

(
Θ̂(t)

)
≤ 0.

Consider the right hand side of (3.90), and group the terms containing q∗i (t)

except those in the fifth line (i.e., the line with the term (m̂i(t)−mπ
i )) to note that

we have negative of a scaled (by
(
1 + βi

)
/ui(t)) version of the expectation of the

objective of QNOVAi

(
θ̂i(t), fi

)
, i.e., E

[
Lπi φ

Q
(
q∗i (t), θ̂i(t), F

π
i

)]
. Recall that q∗i (t)

in the above calculations is a shorthand for q∗i

(
θ̂i(t), F

π
i

)
. Now, let q

∗,mπi
i (t) denote

the shorthand for q∗i

(
θ̂

(mπi )
i (t), F πi

)
where θ̂

(mπi )
i (t) = (mπ

i , µ̂i(t), v̂i(t), b̂i(t), d̂i(t)),
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i.e., θ̂i(t) with the first component set to mπ
i (defined in (3.65)). Next, we replace

q∗i (t) appearing in the above inequality with q
∗,mπi
i (t), incorporate the correction term

associated with this replacement into a function ∆1

(
Θ̂(t)

)
, and rewrite (3.90) as

dL
(
Θ̂(t)

)
dt

≤ ∆1

(
Θ̂(t)

)
−
∑
i∈N

(
1 + βi

)
λ̂i(t)

(
UEi
)′ (

µ̂i(t)− UVi (v̂i(t))
)

(3.91)

 1

ui(t)

E
[
Lπi q

∗,mπi
i (t)

]
λ̂i(t)

− µ̂i(t)



−
(
UVi
)′

(v̂i(t))

ui(t)

E
[
Lπi

(
q
∗,mπi
i (t)−mπ

i

)2
]

λ̂i(t)
− v̂i(t)




+
∑
i∈N

(
1 + βi

)
λ̂i(t)d

π
i

(
pdi
pi

)
1

ui(t)

E
[
Lπi F

π
i

(
q
∗,mπi
i (t)

)]
λ̂i(t)

− σ̂i(t)


+
∑
i∈N

(
1 + βi

)
λ̂i(t)

(
hDi

(
d̂i(t)

)
− dπi

) 1

ui(t)

pdi E
[
Lπi F

π
i

(
q
∗,mπi
i (t)

)]
λ̂i(t)pi

− 1


+
∑
i∈N

λ̂i(t)b
π
i

1

ui(t)

E
[
Lπi F

π
i

(
q
∗,mπi
i (t)

)]
λ̂i(t)

− σ̂i(t)


−
∑
i∈N

bπi

(
E [r∗i (t)]

τslot
− ρ̂i(t)

)

+
∑
i∈N

σπi

(
hBi

(
b̂i(t)

)
− bπi

)( 1(
1 + βi

) − E [Lπi ]

ui(t)

)

+
∑
i∈N

(
hBi

(
b̂i(t)

)
− bπi

)E
[
Lπi F

π
i

(
q
∗,mπi
i (t)

)]
ui(t)

− E [r∗i (t)]

τslot


−χ2d8N

(
Θ̂(t), H̃

)
+
χ2χ1

χ0
dN

(
λ̂(t),λπ

)
+
∑
i∈N

.
λ̂i(t)l1i

(
Θ̂(t)

)
,
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where

∆1

(
Θ̂(t)

)
= −

∑
i∈N

(
1 + βi

)
ui(t)

E
[
Lπi

(
φQ
(
q∗i

(
θ̂i(t), F

π
i

)
, θ̂i(t), F

π
i

)
(3.92)

−φQ
(
q∗i

(
θ̂

(mπi )
i (t), F πi

)
, θ̂

(mπi )
i (t), F πi

)
−
(
UEi
)′ (

µ̂i(t)− UVi (v̂i(t))
) (
UVi
)′

(v̂i(t)) 2 (m̂i(t)−mπ
i ) (q∗i (t)− m̂i(t))

)]
and for each i ∈ N ,

l1i

(
Θ̂(t)

)
= l̃1i

(
Θ̂(t)

)
+2

(
1 + βi

)
ui(t)

(
UEi
)′ (

µ̂i(t)− UVi (v̂i(t))
) (
UVi
)′

(v̂i(t)) (m̂i(t)−mπ
i ) m̂i(t).

Note that we have included the terms in the third line of (3.90) in (3.92) after

replacing λ̂i(t) with E [Lπi ], and the correction for the modification is included as

the second term of l1i

(
Θ̂(t)

)
defined above. From the definition (3.83) of ui(t), we

have that

umin:=
τslotlminfmin

rmax
, umax:=

τslotlmaxfmax

rmin
(3.93)

are lower and upper bounds respectively on ui(t) for each i ∈ N . Note that, in

the term
∑

i∈N

.
λ̂i(t)l1i

(
Θ̂(t)

)
, we are collecting the terms scaled by

.
λ̂i(t) together

so as to bound it by picking a large enough χ2 since
.
λ̂i(t) ≤ 1

umin
dN

(
λ̂(t),λπ

)
≤

1
umin

d8N

(
Θ̂(t), H̃

)
. Using the bounded nature of the terms involved in l1i

(
Θ̂
)

and

l̃1i

(
Θ̂
)

, we can show that there is some finite χ3 such that

χ2χ1

χ0
dN

(
λ̂(t),λπ

)
+
∑
i∈N

l1i

(
Θ̂
) .
λ̂i(t) ≤ χ3d8N

(
Θ̂(t), H̃

)
(3.94)

holds for any Θ̂(t) ∈ H.
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If we group the terms containing q
∗,mπi
i (t) and r∗(t), we find that the right

hand side of (3.91) contains negative of scaled versions of optimal value of objec-

tive functions of QNOVAi

(
θ̂

(mπi )
i (t), fi

)
(i.e., φQ

(
q∗i (t), θ̂

(mπi )
i (t), fi

)
) and those of

RNOVA
(
b̂(t), c

)
(i.e., φR

(
r∗(t), b̂(t), c

)
). Now using the optimality of q

∗,mπi
i (t) and

r∗(t) with respect to QNOVAi

(
θ̂

(mπi )
i (t), fi

)
and RNOVA

(
b̂(t), c

)
, and using the

fact that qπi (f) and rπ (c) are feasible solutions for these optimization problems, we

obtain the following inequality from (3.91) (obtained by replacing q
∗,mπi
i (t) and r∗(t)

with qπi (f) and rπ (c) in (3.91) and adding the correction term ∆2

(
Θ̂(t)

)
associated

with this replacement)

dL
(
Θ̂(t)

)
dt

≤ ∆1

(
Θ̂(t)

)
+ ∆2

(
Θ̂(t)

)
(3.95)

−
∑
i∈N

(
1 + βi

)
λ̂i(t)

(
UEi
)′ (˜̂µi(t)− UVi ( ˜̂vi(t)))

(
1

ui(t)

(
mπ
i E [Lπi ]

λ̂i(t)
− ˜̂µi(t)

)

−

(
UVi
)′ ( ˜̂vi(t))
ui(t)

E
[
Lπi (qπi (F πi )−mπ

i )2
]

λ̂i(t)
− ˜̂vi(t)


+
∑
i∈N

(
1 + βi

)
λ̂i(t)d

π
i

(
pdi
pi

)
1

ui(t)

(
σπi E [Lπi ]

λ̂i(t)
− ˜̂σi(t)

)

+
∑
i∈N

(
1 + βi

)
λ̂i(t)

(
hDi

(
d̂i(t)

)
− dπi

) 1

ui(t)

(
pdi
σπi E [Lπi ]

λ̂i(t)pi
− 1

)

+
∑
i∈N

λ̂i(t)b
π
i

1

ui(t)

(
σπi E [Lπi ]

λ̂i(t)
− ˜̂σi(t)

)
−
∑
i∈N

bπi

(
ρπi
τslot

− ˜̂ρi(t))

+
∑
i∈N

σπi

(
hBi

(
b̂i(t)

)
− bπi

)( 1(
1 + βi

) − E [Lπi ]

ui(t)

)

+
∑
i∈N

(
hBi

(
b̂i(t)

)
− bπi

)(σπi E [Lπi ]

ui(t)
− ρπi
τslot

)
+ +

χ2χ1

χ0
dN

(
λ̂(t),λπ

)
+
∑
i∈N

.
λ̂i(t)l1i

(
Θ̂(t)

)
− χ2d8N

(
Θ̂(t), H̃

)
+ l2

(
Θ̂(t)

)
,

where mπ
i , vπi and σπi are defined in (3.65)-(3.67), (and ρπ was chosen at the begin-
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ning of the proof- see below (3.89))

∆2

(
Θ̂(t)

)
= − 1

τslot
E
[
φR
(
r∗(t), b̂(t), Cπ

)
− φR

(
rπ (Cπ) , b̂(t), Cπ

)]
(3.96)

−
∑
i∈N

(
1 + βi

)
ui(t)

E

[
Lπi

(
φQ
(
q∗i

(
˜̂
θ

(mπi )
i (t), F πi

)
,
˜̂
θ

(mπi )
i (t), F πi

)

−φQ
(
qπi (F πi ) ,

˜̂
θ

(mπi )
i (t), F πi

))]
,

and .̃ is the projection operator mapping elements in H to the set H̃. Here

(
˜̂m(t), ˜̂µ(t), ˜̂v(t), b̃(t), d̃(t),

˜̂
λ(t), ˜̂σ(t), ˜̂ρ(t)

)
:=

˜̂
Θ(t).

Due to the definition of H̃ (see (3.87)), ˜̂m(t) = m̂(t),
˜̂
b(t) = b̂(t) and

˜̂
d(t) = d̂(t) as

(3.87) does not impose any additional restrictions on these components. Also, for

each i ∈ N ,

˜̂
θi(t) :=

(
m̂i(t),˜̂µi(t), ˜̂vi(t), b̂i(t), d̂i(t)) ,

˜̂
θ

(mπi )
i (t) :=

(
mπ
i ,

˜̂µi(t), ˜̂vi(t), b̂i(t), d̂i(t)) .
Note that we have replaced components of µ̂(t), v̂(t), λ̂(t), σ̂(t) and ρ̂(t) appearing

in (3.91) with those of ˜̂µ(t), ˜̂v(t),
˜̂
λ(t), ˜̂σ(t) and ˜̂ρ(t) respectively, and in (3.95), we
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have added the function l2 (.) defined below to account for these replacements:

l2

(
Θ̂(t)

)
= −

∑
i∈N

(
1 + βi

)
λ̂i(t)

((
UEi
)′ (

µ̂i(t)− UVi (v̂i(t))
)

(3.97)

−
(
UEi
)′ (˜̂µi(t)− UVi ( ˜̂vi(t))))(

1

ui(t)

(
mπ
i E [Lπi ]

λ̂i(t)
− ˜̂µi(t)

)

−

(
UVi
)′ ( ˜̂vi(t))
ui(t)

E
[
Lπi (qπi (F πi )−mπ

i )2
]

λ̂i(t)
− ˜̂vi(t)


−
∑
i∈N

(
1 + βi

)
λ̂i(t)

(
UEi
)′ (

µ̂i(t)− UVi (v̂i(t))
)

(UVi )′
( ˜̂vi(t))− (UVi )′ (v̂i(t))

ui(t)

E
[
Lπi (qπi (F πi )−mπ

i )2
]

λ̂i(t)
− ˜̂vi(t)


−
∑
i∈N

(
1 + βi

)
λ̂i(t)

(
UEi
)′ (

µ̂i(t)− UVi (v̂i(t))
)

((
˜̂µi(t)− µ̂i(t)

)
−
(
UVi
)′

(v̂i(t))

ui(t)

( ˜̂vi(t)− v̂i(t)))

+
∑
i∈N

(
1 + βi

)
λ̂i(t)d

π
i

(
pdi
pi

)
1

ui(t)

(
˜̂σi(t)− σ̂i(t)

)
−
∑
i∈N

λ̂i(t)b
π
i

1

ui(t)

(
˜̂σi(t)− σ̂i(t)

)
−
∑
i∈N

bπi

( ˜̂ρi(t)− ρ̂i(t)) .
Using the bounded nature of the terms involved in the above expression for l2

(
Θ̂(t)

)
(note that here we are using the fact that the functions

(
UVi , U

E
i

)
i∈N have Lipschitz

continuous derivatives due to Assumptions U.V and U.E), we can show that there

exists some large enough finite constant χ4 such that

l2

(
Θ̂(t)

)
≤ χ4d8N

(
Θ̂(t), H̃

)
(3.98)

holds for any Θ̂(t) ∈ H. We can replace the term λ̂i(t) appearing in the denom-
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inators of terms in (3.95) with E [Lπi ], and add a term l3i

(
Θ̂(t)

) .
λ̂i(t) to account

for the change in the expression due to the replacement such that all the terms in

l3i

(
Θ̂
)

are bounded. Using the boundedness of terms involved in l3i

(
Θ̂
)

, and then

using arguments similar to that used in obtaining (3.94), we can show that there is

some χ5 such that

∑
i∈N

l3i

(
Θ̂(t)

) .
λ̂i(t) ≤ χ5d8N

(
Θ̂(t), H̃

)
(3.99)

holds for any Θ̂(t) ∈ H. Thus, we can use the observations in (3.94), (3.98) and

(3.99) along with (3.95) to conclude that

dL
(
Θ̂(t)

)
dt

≤ ∆1

(
Θ̂(t)

)
+ ∆2

(
Θ̂(t)

)
(3.100)

−
∑
i∈N

(
1 + βi

)
λ̂i(t)

(
UEi
)′ (˜̂µi(t)− UVi ( ˜̂vi(t))) 1

ui(t)

(
mπ
i − ˜̂µi(t)

)
−

(
UVi
)′ ( ˜̂vi(t))
ui(t)

E
[
Lπi (qπi (F πi )−mπ

i )2
]

E [Lπi ]
− ˜̂vi(t)


+
∑
i∈N

(
1 + βi

)
λ̂i(t)d

π
i

(
pdi
pi

)
1

ui(t)

(
σπi − ˜̂σi(t)

)
+
∑
i∈N

(
1 + βi

)
λ̂i(t)

(
hDi

(
d̂i(t)

)
− dπi

) 1

ui(t)

(
pdi
σπi
pi
− 1

)
+
∑
i∈N

λ̂i(t)b
π
i

1

ui(t)

(
σπi − ˜̂σi(t)

)
−
∑
i∈N

bπi

(
ρπi − ˜̂ρi(t))

+
∑
i∈N

(
hBi

(
b̂i(t)

)
− bπi

)( σπi(
1 + βi

) − E [Lπi ]σπi
ui(t)

)

+
∑
i∈N

(
hBi

(
b̂i(t)

)
− bπi

)(σπi E [Lπi ]

ui(t)
− ρπi
τslot

)
+ (χ3 + χ4 + χ5 − χ2) d8N

(
Θ̂(t), H̃

)
.
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Let χ2 = χ3 + χ4 + χ5 + 1, and let

∆ (Θ) = ∆1 (Θ) + ∆2 (Θ) + ∆(d) (Θ) + ∆(b) (Θ) (3.101)

+∆(π,q) (Θ) + ∆(π,r) (Θ) + ∆3 (Θ) ,

where

∆(π,q)
(
Θ̂(t)

)
= −

∑
i∈N

(
1 + βi

)
λ̂i(t)

ui(t)

((
UEi
)′ (˜̂µi(t)− UVi ( ˜̂vi(t)))((

mπ
i − ˜̂µi(t)

)
−
(
UVi
)′ ( ˜̂vi(t))(vπi − ˜̂vi(t)))

+
∑
i∈N

dπi

(
pdi
pi

)(
σπi − ˜̂σi(t)

)
+
∑
i∈N

bπi

(
σπi(

1 + βi
) − ˜̂σi(t)(

1 + βi
))) ,

∆(π,r)
(
Θ̂(t)

)
= −

∑
i∈N

bπi

(
ρπi − ˜̂ρi(t)) ,

∆(d)
(
Θ̂(t)

)
=

∑
i∈N

(
1 + βi

)
λ̂i(t)

(
hDi

(
d̂i(t)

)
− dπi

) 1

ui(t)

(
pdi
σπi
pi
− 1

)
,

∆(b)
(
Θ̂(t)

)
=

∑
i∈N

(
hBi

(
b̂i(t)

)
− bπi

)( σπi(
1 + βi

) − ρπi
)
,

∆3

(
Θ̂(t)

)
= −d8N

(
Θ̂(t), H̃

)
,
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and recall that

∆1

(
Θ̂(t)

)
= −

∑
i∈N

(
1 + βi

)
ui(t)

E
[
Lπi

(
φQ
(
q∗i

(
θ̂i(t), F

π
i

)
, θ̂i(t), F

π
i

)
−φQ

(
q∗i

(
θ̂

(mπi )
i (t), F πi

)
, θ̂

(mπi )
i (t), F πi

)
−
(
UEi
)′ (

µ̂i(t)− UVi (v̂i(t))
) (
UVi
)′

(v̂i(t)) 2 (m̂i(t)−mπ
i ) (q∗i (t)− m̂i(t))

)]
,

∆2

(
Θ̂(t)

)
= − 1

τslot
E
[
φR
(
r∗(t), b̂(t), Cπ

)
− φR

(
rπ (Cπ) , b̂(t), Cπ

)]
−
∑
i∈N

(
1 + βi

)
ui(t)

E

[
Lπi

(
φQ
(
q∗i

(
˜̂
θ

(mπi )
i (t), F πi

)
,
˜̂
θ

(mπi )
i (t), F πi

)

−φQ
(
qπi (F πi ) ,

˜̂
θ

(mπi )
i (t), F πi

))]
.

Hence, we can rewrite (3.100) as follows:

dL
(
Θ̂(t)

)
dt

≤ ∆
(
Θ̂(t)

)
. (3.102)

Next, we show that all the functions ∆1 (Θ), ∆2 (Θ), ∆(d) (Θ), ∆(b) (Θ), ∆(π,q) (Θ),

∆(π,r) (Θ) and ∆3 (Θ), from the definition (3.101) of ∆ (Θ) are non-positive for

Θ ∈ H∗ so that ∆ (Θ) is non-positive for all Θ ∈ H∗, and that ∆ (Θ) < 0 for

Θ /∈ H∗.

The non-positivity of the functions ∆(d)
(
Θ̂(t)

)
and ∆(b)

(
Θ̂(t)

)
follows from

complementary slackness conditions for OPTSTAT given in (3.63)-(3.64), and the

following observations about the optimal solution to OPTSTAT which follows from

the feasibility of the optimal solution (specifically that it satisfies (3.43) and (3.44))

pdi
σπi
pi
≤ 1,

σπi(
1 + βi

) ≤ ρπi i ∈ N .
For instance, if we consider the term

(
hBi

(
b̂i(t)

)
− bπi

)(
σπi

(1+βi)
− ρπi

)
in the defi-
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nition of ∆(b)
(
Θ̂(t)

)
, we see that if bπi > 0,

σπi
(1+βi)

= ρπi due to (3.64), and thus

the term is zero. The case for bπi = 0 follows from the feasibility condition (3.44)

and the fact that hBi

(
b̂i(t)

)
≥ 0.

Next, we show that ∆(π,q)
(
Θ̂(t)

)
is non-positive and that it is negative unless˜̂µ(t) = mπ and ˜̂v(t) = vπ. Since

˜̂
Θ(t) is an element of H̃, for each i ∈ N , there is

some feasible quality adaptation policy
(

(qi (fi))fi∈Fi

)
satisfying (see definition of

H̃ in (3.87))

˜̂µi(t) =
E [Lπi qi (F πi )]

E [Lπi ]
, ˜̂vi(t) ≥ Var (qi (F πi )) , ˜̂σi(t) ≥

E [Lπi F
π
i (qi (F πi ))]

E [Lπi ]
, (3.103)

Using Lemma 3.5 (a), noting that
(

(qπi (fi))fi∈Fi

)
is the unique optimal solution

and
(

(qi (fi))fi∈Fi

)
is a feasible solution to the optimization problem considered in

Lemma 3.5 (a), we have

UEi
(
mπ
i − UVi (vπi )

)
−
∑
i∈N

dπi

(
pdi
pi

)
σπi −

∑
i∈N

bπi(
1 + βi

)σπi
≥ UEi

(
E [Lπi qi (F πi )]

E [Lπi ]
− UVi (Var (qi (F πi )))

)
(3.104)

−
∑
i∈N

dπi

(
pdi
pi

)(
E [Lπi F

π
i (qi (F πi ))]

E [Lπi ]

)
−
∑
i∈N

bπi(
1 + βi

) (E [Lπi F
π
i (qi (F πi ))]

E [Lπi ]

)

≥ UEi

(
˜̂µi(t)− UVi

(˜̂v(t)
))
−
∑
i∈N

dπi

(
pdi
pi

)
˜̂σi(t)−

∑
i∈N

bπi(
1 + βi

)˜̂σi(t), (3.105)

where the second inequality follows from (3.103). Since
(

(qπi (fi))fi∈Fi

)
is the

unique optimal solution, the inequality in (3.104) is strict unless
(

(qπi (fi))fi∈Fi

)
=(

(qi (fi))fi∈Fi

)
. Also, the inequality in (3.105) is strict unless ˜̂µi(t) =

E[Lπi qi(Fπi )]
E[Lπi ]

and ˜̂vi(t) = Var (qi (F πi )) for each i ∈ N . Now, since UEi (.) and −UVi (.) are concave
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functions of their arguments, and since
(
UEi
)′

(.) is non-negative, we have

UEi
(
mπ
i − UVi (vπi )

)
≤ UEi

(
˜̂mi(t)− UVi

( ˜̂vi(t)))
+
(
UEi
)′ (˜̂µi(t)− UVi ( ˜̂vi(t)))(˜̂µi(t)−mπ

i −
(
UVi
)′ ( ˜̂vi(t))(vπi − ˜̂vi(t))) .

By combining the above inequality and (3.105), we have that ∆(π,q)
(
Θ̂(t)

)
is non-

positive. Further, since the inequality in (3.104) is strict unless
(

(qπi (fi))fi∈Fi

)
=(

(qi (fi))fi∈Fi

)
, and the inequality in (3.105) is strict unless ˜̂µi(t) =

E[Lπi qi(Fπi )]
E[Lπi ]

and˜̂vi(t) = Var (qi (F πi )) for each i ∈ N , we can conclude ˜̂µ(t) = mπ and ˜̂v(t) = vπ.

∆(π,q)
(
Θ̂(t)

)
= 0 only if ˜̂µ(t) = mπ and ˜̂v(t) = vπ. (3.106)

Using similar arguments along with Lemma 3.5 (b), we can show that

∆(π,r)
(
Θ̂(t)

)
= 0 only if ˜̂ρi(t) = ρπ. (3.107)

Next we consider the term ∆1

(
Θ̂(t)

)
. Using Lemma 3.3 (c), we can show

that ∆1

(
Θ̂(t)

)
≤ 0 and that

∆1

(
Θ̂(t)

)
= 0 only if m̂(t) = mπ. (3.108)

Next we consider the term ∆2

(
Θ̂(t)

)
. Using the fact that q∗i

(
˜̂
θ

(mπi )
i (t), fi

)
and r∗(t) are optimal solutions to optimization problems QNOVA

(
˜̂
θ

(mπi )
i (t), fi

)
and

RNOVA
(
b̂(t), c

)
respectively, we can conclude that ∆2

(
Θ̂(t)

)
≤ 0.

Also, note that ∆3 (Θ) = −d8N

(
Θ̂, H̃

)
is non-positive, and

∆3

(
Θ̂(t)

)
= 0 only if ˜̂µ(t) = µ̂(t), ˜̂v(t) = v̂(t) and ˜̂ρ(t) = ρ̂(t). (3.109)
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Next, we argue that ∆
(
Θ̂(t)

)
= 0 only if

(
ρ̂(t),

(
hBi

(
b̂i(t)

))
i∈N

,
(
hDi

(
d̂i(t)

))
i∈N

)
∈ X π.

Suppose that ∆
(
Θ̂(t)

)
= 0. Then, ∆(π,q)

(
Θ̂(t)

)
+∆(π,r)

(
Θ̂(t)

)
+∆3

(
Θ̂(t)

)
= 0,

and from (3.106), (3.107) and (3.109), we can conclude that µ̂(t) = mπ, v̂(t) = vπ

and ρ̂i(t) = ρπ. We also have that ∆2

(
Θ̂(t)

)
= 0, and hence

φR
(
r∗
(
b̂(t), c

)
, b̂(t), c

)
= φR

(
rπ (c) , b̂(t), c

)
, ∀ c ∈ C,

φQ
(
q∗i

(
˜̂
θ

(mπi )
i (t), fi

)
,
˜̂
θ

(mπi )
i (t), fi

)
= φQ

(
qπi (fi) ,

˜̂
θ

(mπi )
i (t), fi

)
,

∀ fi ∈ Fi, ∀ i ∈ N ,

where recall that
˜̂
θ

(mπi )
i (t) =

(
mπ
i ,

˜̂µi(t), ˜̂vi(t), b̂i(t), d̂i(t)). Since (from earlier ob-

servations in this paragraph) µ̂(t) = mπ and v̂(t) = vπ, we have
˜̂
θ

(mπi )
i (t) =(

mπ
i ,m

π
i , v

π
i , b̂i(t), d̂i(t)

)
. Hence, rπ (c) is an optimal solution to RNOVA

(
b̂(t), c

)
for each c ∈ C, and qπi (fi) is an optimal solution to QNOVA

(
˜̂
θ

(mπi )
i (t), fi

)
for each

fi ∈ Fi and i ∈ N . Hence for each c ∈ C, rπ (c) satisfies the optimality condi-

tions (3.29)-(3.31) for RNOVA
(
b̂(t), c

)
. Denote the associated optimal Lagrange

multipliers in these conditions by
(
χ
′
(c)
)
c∈C

and
(
ω
′
(c)
)
c∈C

. Similarly, qπi (fi)

satisfies the optimality conditions (3.32)-(3.34) for QNOVA

(
˜̂
θ

(mπi )
i (t), fi

)
. Let((

γ
′
i(f)

)
f∈Fi

)
i∈N

,

((
γi(f)

′
)
f∈Fi

)
i∈N

, denote the associated optimal Lagrange

multipliers.

Thus,
((

(qπi (f))f∈Fi

)
i∈N

, (rπ (c))c∈C

)
together with the non-negative con-

stants
(
χ
′
(c)
)
c∈C

,
(
ω
′
(c)
)
c∈C

,

((
γ
′
i(f)

)
f∈Fi

)
i∈N

and

((
γi(f)

′
)
f∈Fi

)
i∈N

satisfy

the optimality conditions for OPTSTAT given in (3.57)-(3.64) with bπi replaced by

b̂i(t) and dπi replaced by d̂i(t) for each video client i ∈ N . Note that (3.63)-(3.64)
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are satisfied since ∆(d)
(
Θ̂(t)

)
+ ∆(b)

(
Θ̂(t)

)
= 0 (since ∆

(
Θ̂(t)

)
= 0). Hence, we

have shown that

∆
(
Θ̂(t)

)
= 0 only if

(
ρ̂(t),

(
hBi

(
b̂i(t)

))
i∈N

,
(
hDi

(
d̂i(t)

))
i∈N

)
∈ X π (3.110)

Now, the above discussion along with (3.106), (3.107) (3.109), and (3.110)

allow us to conclude that for almost all t

dL
(
Θ̂(t)

)
dt

≤ ∆
(
Θ̂(t)

)
where ∆

(
Θ̂
)
≤ 0 ∀ Θ ∈ H, ∆ (Θ) < 0 ∀ Θ /∈ H∗. (3.111)

This completes proof of part (a) of the theorem.

Now, we use (3.111) to prove the main claim, i.e., part (b) of the theorem,

i.e.,

lim
t→∞

d8N

(
Θ̂(t),H∗

)
= 0.

Suppose

limsupt→∞d8N

(
Θ̂(t),H∗

)
= d0

for some d0 > 0. Then, for any ∆t > 0, there exists (infinite) sequence of increasing

numbers (tm)m∈N such that t1 > ∆t and for each m ∈ N, tm+1 − tm > ∆t and

d8N

(
Θ̂ (tm) ,H∗

)
≥ 0.5d0.

Consider new functions ∆1 (Θ), ∆2 (Θ), ∆
(d)

(Θ) and ∆
(π,q)

(Θ) obtained

by replacing 1
ui(t)

in the definitions of ∆1 (Θ), ∆2 (Θ), ∆(d) (Θ) and ∆(π,q) (Θ)

respectively with 1
umax

(where umax is defined in (3.93)). Then, using arguments

from the discussion of non-positivity of the functions ∆1 (Θ), ∆2 (Θ), ∆(d) (Θ) and

∆(π,q) (Θ), we can show that the new functions give upper bounds, i.e., ∆1 (Θ) ≥

∆1 (Θ) , ∆2 (Θ) ≥ ∆2 (Θ) , ∆
(d)

(Θ) ≥ ∆(d) (Θ) and ∆
(π,q)

(Θ) ≥ ∆(π,q) (Θ) . Now,
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let

∆ (Θ) = ∆1 (Θ) + ∆2 (Θ) + ∆
(d)

(Θ) + ∆(b) (Θ) + ∆
(π,q)

(Θ) + ∆(π,r) (Θ) + ∆3 (Θ) ,

so that ∆ (Θ) ≥ ∆ (Θ). Further, by repeating the arguments above, we can also

show that ∆
(
Θ̂
)
≤ 0, ∀ Θ ∈ H, and ∆ (Θ) < 0, ∀ Θ /∈ H∗ Note that ∆ (Θ)

is a continuous function of Θ, as it is the sum of continuous functions ∆1 (Θ),

∆2 (Θ), ∆
(d)

(Θ), ∆(b) (Θ), ∆
(π,q)

(Θ), ∆(π,r) (Θ) and ∆3 (Θ). It is easy to see that

the functions ∆
(d)

(Θ), ∆(b) (Θ), ∆
(π,q)

(Θ), ∆(π,r) (Θ) and ∆3 (Θ) are continuous.

The continuity of ∆1 (Θ) and ∆2 (Θ) follows from parts (a) and (c) of Lemma 3.2.

Since ∆ (Θ) is a continuous function of Θ satisfying ∆ (Θ) < 0 for each

Θ /∈ H∗, we can conclude that

∆max:= max
{Θ∈H:d8N (Θ,H∗)≥0.25d0}

∆ (Θ) < 0.

Since Θ̂(t) is Lipschitz continuous in t (from Lemma 3.6), d8N

(
Θ̂(t),H∗

)
is also

Lipschitz continuous in t so that there can be no abrupt changes in distance of Θ̂(t)

from H∗. Thus, we can find some t′ such that d8N (Θ(t),H∗) ≥ 0.25d0 for each t in

neighborhood Tm = [tm − t′, tm + t′] of tm for each m. Further, we pick ∆t > 2t′ so

that the sets (Tm)m∈N are disjoint. Then,

∫ τ

0

dL
(
Θ̂(t)

)
dt

dt ≤
∫ τ

0
∆
(
Θ̂(t)

)
dt ≤ 2t′∆maxm(τ)

where m(τ) = max {m ∈ N : tm + t′ < τ}. Since limτ→∞m(τ) =∞, we have

lim
τ→∞

∫ τ

0

dL
(
Θ̂(t)

)
dt

dt = −∞

Thus, we have a contradiction since
∫ τ

0

dL(Θ̂(t))
dt dt = L

(
Θ̂(τ)

)
and L

(
Θ̂(τ)

)
is
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bounded. This boundedness is due to the continuity of L(Θ̂) in Θ̂ (see the definition

in (3.89)), and due to Lemma 3.6 using which we have that for all τ , Θ̂(τ) ∈ H

which is a compact set. Hence, d0 = 0 and thus,

lim
t→∞

d8N

(
Θ̂(t),H∗

)
= 0.

3.5.3 Convergence of NOVA and proof of Theorem 3.1

In Subsection 3.5.1, we obtained Theorem 3.2 which says that for almost all sample

paths

lim
S→∞

(
φS

((
(q∗i (θπi , fi,s))i∈N

)
1≤s≤S

)
− φoptS

)
= 0,

for each θπi ∈ H∗i and each i ∈ N . This suggests that we can prove the main

optimality result for NOVA if we establish convergence of NOVA’s parameters to

the set H∗i . The main focus of this subsection is Theorem 3.4 which relates NOVA

to the auxiliary differential inclusion (3.75)-(3.82), and thus obtains the desired

convergence result for NOVA by using the convergence result obtained in Theorem

3.3 for the differential inclusion. Our approach here relies on viewing the update

equations ((3.21)-(3.26) and (3.72)-(3.73)) of NOVA as an asynchronous stochastic

approximation update equation (see Chapter 12 of [29] for a detailed discussion on

asynchronous stochastic approximation) to relate NOVA to the differential inclusion.

After obtaining the convergence result for NOVA in Theorem 3.4, we conclude this

section with the proof of Theorem 3.1.

In this subsection, we use the superscript ε on NOVA parameters (mε
i,s)i∈N ,

(µεi,s)i∈N , (vεi,s)i∈N , (bεQ,i,s)i∈N , (bεR,i,k)i∈N , (bεi,k)i∈N , (dεi,s)i∈N , (λεi,s)i∈N , (σεi,s)i∈N

and (ρεi,k)i∈N to emphasize their dependence on ε (see NOVA updates in (3.20)-
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(3.26)). We refer to the update of NOVA parameters (mi,si , µi,si , vi,si , bi,k, di,si , λi,si)

in (3.21)-(3.26) carried out after the selection of segment quality for video client i

(following a segment download) as a Qi-update, and we refer to the update (3.20)

on bk carried out at the beginning of each slot k as an R-update. Let δτ εQ,i,s denote

the time (in seconds) between the sth and (s + 1)th Qi-updates. Let δτ εR,k denote

the time between the kth and (k+ 1)th R-updates, i.e., δτ εR,k = τslot for each k. Let

τ εR,k = ε
k−1∑
j=0

δτ εR,j , τ
ε
Q,i,s = ε

s−1∑
j=0

δτ εQ,i,j

denote ε times the cumulative time for the first k R-updates and s Qi-updates

respectively.

Next, we define time interpolated processes(
m̂ε(t), µ̂ε(t), v̂ε(t), b̂ε(t), d̂ε(t), λ̂ε(t), σ̂ε(t), ρ̂ε(t)

)
associated with NOVA’s param-

eters. For each i ∈ N and for t ∈
[
τ εQ,i,s, τ

ε
Q,i,s+1

)
, let m̂ε

i(t) = mε
i,s, µ̂

ε
i(t) = µεi,s,

v̂εi (t) = vεi,s, b̂
ε
Q,i(t) = bεQ,i,s, d̂

ε
i(t) = dεi,s, λ̂

ε
i(t) = λεi,s and σ̂εi (t) = σεi,s. Also, for

t ∈ [kε, (k + 1)ε), let b̂εR,i(t) = bεR,i,k and ρ̂εi(t) = ρεi,k. Recall that bεQ,i,s and bεR,i,k are

auxiliary variables used in the description of NOVA (in Section 3.4).

For each t, let

Θ̂ε
Q(t) =

(
m̂ε(t), µ̂ε(t), v̂ε(t), b̂εQ(t), d̂ε(t), λ̂ε(t), σ̂ε(t), ρ̂ε(t)

)
,

Θ̂ε
R(t) =

(
m̂ε(t), µ̂ε(t), v̂ε(t), b̂εR(t), d̂ε(t), λ̂ε(t), σ̂ε(t), ρ̂ε(t)

)
,

Note that definitions Θ̂ε
Q(.) and Θ̂ε

R(.) are different only for components 3N +

1 to 4N . The next result states that for small enough ε, the time interpolated

versions of NOVA parameters Θ̂ε
Q(.) and Θ̂ε

R(.) stay close to the set H∗ (defined

in (3.88)) most of the time over long time windows. The proof relies on relating

Θ̂ε
Q(.) and Θ̂ε

R(.) associated with NOVA to the auxiliary differential inclusion (3.75)-

(3.82) by viewing the update equations (3.21)-(3.26) of NOVA as an asynchronous
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stochastic approximation update equation, and using Theorem 3.3 which states that

the differential inclusion converge to the set H∗.

Theorem 3.4. Let Θ̂ε
Q(0) = Θ̂ε(0) ∈ H. Then, the fraction of time in the time

interval [0, T ] that Θ̂ε
Q(.) and Θ̂ε

R(.) spend in a small neighborhood of H∗ converges

to one in probability as ε→ 0 and T →∞.

Proof. This result follows from an extension of Theorem 3.4 in Chapter 12 of [29]

which relates asynchronous stochastic approximation (3.21)-(3.26) to its associated

differential inclusion (3.75)-(3.82). Theorem 3.4 cannot be directly applied mainly

because condition (A3.8) (given in Section 12.3.3, page 418 of [29]) concerning the

time between the (asynchronous) updates is not be satisfied in our problem setting

(discussed later in the proof). Below, we discuss why Theorem 3.4 can not be

directly applied, and an appropriate extension to prove our result. To explain this

in more detail, we introduce some notation.

In order to simplify our discussion, we consider the special case of NOVA,

NOVA-L1 (described below) which exhibits the key ideas involved in the extension.

NOVA-L1 corresponds to a setting with a single video client with UV1 and UE1 equal

to (linear) identity functions, and no cost constraints. We also assume the allocation

in slot k is r∗1

(
bε1,k, ck

)
where r∗1 (b, c) is a continuous (single valued) function of b

for each c (instead of the set valued mapping R∗ (bk, ck) associated with NOVA). In

the single video client case, r∗1 (b, c) actually does not depend on b. However, below

we will not use this property, and will only rely on the continuity of r∗1 (b, c) (with

respect to b) so as to facilitate the extension of the proof to more general settings.

To further simplify the notation, we assume that β1 = 0 and all the segments have

the same length l1. Hence, we need only track m1,. and b1,. since resource allocation

and quality adaptation only depend on these parameters (see (3.13) and (3.18)).

For this special case, the algorithm NOVA-L1 works as follows:
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NOVA-L1.0: Initialize: mε
1,0, b

ε
1,0. Let s1 = 0.

In each slot k ≥ 0, carry out the following steps:

RNOVA-L1: At the beginning of slot k, let bεR,1,k = bε1,k, allocate rate r∗1

(
bε1,k, ck

)
to video client 1, and update bε1,k as follows:

bε1,k+1 = bε1,k + ετslot. (3.112)

QNOVA-L1: In slot k, if video client 1 finishes transmission of the s1 th seg-

ment, let bεQ,1,s1+1 = bε1,k+1, choose quality q∗1

((
mε

1,s1
, bεQ,1,s1+1

)
, f1,s1+1

)
denoted

as q∗1,s1+1 for brevity, and update mε
1,s1+1, bε1,k+1 and s1 as follows:

mε
1,s1+1 = mε

1,s1 + ε
(
q∗1,s1+1 −mε

1,s1

)
, (3.113)

bε1,k+1 =
[
bε1,k+1 − εl1

]
b
, (3.114)

s1 = s1 + 1.

Note that bεQ,1,s is the value of bε1,. used in choosing quality for sth segment, and

bεR,1,k is the value of b used in choosing the allocation in kth slot. These are book-

keeping variables, and do not affect the evolution of the algorithm over time. In

this proof, we refer to the updates (3.113)-(3.114) in QNOVA-L1 as a Q-update

(dropping the subscript ‘1’ used in Section 3.4 since there is just one video client),

and the update (3.112) as an R-update.

Let δτ εQ,s denote the time (in seconds) between the sth and (s + 1)th Q-

updates, i.e., time required to download the sth segment. Let δτ εR,k denote the time

between the kth and (k+1)th R-updates. Note that δτ εR,k = τslot for each k whereas
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δτ εQ,s can potentially be different for different s. Let

τ εR,k = ε

k−1∑
j=0

δτ εR,j , τ
ε
Q,s = ε

s−1∑
j=0

δτ εQ,j

denote ε times the cumulative time for the first k R-updates and s Q-updates re-

spectively. We let

τ εR(t) = τ εR,k, t ∈ [kε, (k + 1)ε) ,

τ εQ(t) = τ εQ,s, t ∈ [sε, (s+ 1)ε) ,

m̂ε
1(t) = mε

1,s, t ∈
[
τ εQ,s, τ

ε
Q,s+1

)
b̂εQ(t) = bεQ,1,s, t ∈

[
τ εQ,s, τ

ε
Q,s+1

)
b̂εR(t) = bεR,1,k, t ∈

[
τ εR,k, τ

ε
R,k+1

)
Let Θ̂ε

Q(t) =
(
m̂ε

1(t), b̂εQ(t)
)

. Let FQ,s denote a sigma-algebra that measures at least

mε
1,i, b

ε
Q,1,i, τ

ε
Q,1,i and F1,i for each i ≤ s+1, and bεR,1,k and Ck for each k ≤ τεQ,1,s+1

ετslot
.

A timing diagram (similar to those given in [29]) is given in Fig. 3.4 illustrating the

asynchronous nature of the updates of the variables discussed above.

The stochastic approximation algorithm in our setting is different in two

aspects from the one studied in Theorem 3.4 of [29]. First, since the time δτ εQ,s+1

required to download segment s + 1 depends on the exact instant during the slot

in which the segment download begins 2, we do not satisfy the necessary condition

(A3.8) (and related assumptions (A3.10) and (A3.14) given in Section 12.3.3, page

418 of [29])) given in Theorem 3.4. More precisely, condition (A3.8) requires that

the conditional expectation of δτ εQ,s with respect to the sigma algebra FQ,s depends

on τ εQ,s+1 only through the value of Θ̂ε
Q(t) at t = τ εQ,s+1 (and conditions (A3.10)

2This requirement may be met in real systems if practical constraints force segment downloads
to begin at slot boundaries.
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Measured by sigma algebra 

Figure 3.4: NOVA-L1: Asynchronous updates and associated variables

and (A3.14) are related to the continuity properties and averaging behavior of this

conditional expectation function). The approach in [29] relies on this assumption to

prove the following result (which in turn is used to prove the main result) associated

with the component τQ(t) of the weak limits (associated with τ εQ(t)):

τQ(t) =

∫ t

0
uQ

(
Θ̂Q(τQ(s))

)
ds. (3.115)

where for Θ = (m, b)

uQ (Θ) = τslotl1
E [F π1 (q∗1 (Θ, F π1 ))]

E [r∗1 (b, Cπ)]
.

Note that uQ

(
Θ̂Q(τQ(t))

)
corresponds to ui

(
Θ̂Q(τQ(t))

)
with ui as defined in

(3.83) for the setting in NOVA-L1. Further, we can intuitively see why (3.115)

should hold by noting that τQ(t) is roughly the time required to download the first

t/ε segments (for small ε) and viewing uQ

(
Θ̂Q(τQ(s))

)
(appearing in the right hand
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side) as the expected instantaneous segment download time for segment s/ε, so that

the expression in the right hand side can be viewed as an integral (or roughly the

sum) of segment download durations of the first t/ε segments.

The first goal of the discussion below is to argue that (3.115) can be estab-

lished for NOVA-L1. Our argument relies on the fact that when considering time

required for the download of a large number of segments, the starting time (and

the capacity of the slot associated with that instant) of the download of the first

segment makes a negligible impact (unlike the conditional expectation of δτ εQ,s with

respect to FQ,s, considered in condition (A3.8) of [29], which depends on τ εQ,s+1).

The second aspect which in our setting is different from that in [29] is the fact

that the update rules for the bεQ,1,s and bεR,1,k are different from those considered in

Theorem 3.4 in that they are determined by the evolution of parameter bε1,k which is

updated on two time scales. Thus, we must also argue that the weak limits associated

with bεQ,1,s and bεR,1,k are the same, and that the common limit b̂1(t) satisfies (special

case of (3.78) for NOVA-L1) given below

.
b̂1(t) = 1− l1

u1

(
Θ̂Q(t)

) + ẑb1

(
Θ̂Q(t)

)
, (3.116)

where ẑb1

(
Θ̂Q(t)

)
∈ −ZH

(
Θ̂Q(t)

)
. Later in the proof, we show that (3.116) follows

once we establish (3.115).

First, let us focus on the proof of (3.115). If we let

U
ε
Q(t) = ε

t
ε
−1∑
i=0

uQ

(
Θ̂ε
Q(τ εQ,i)

)
, and

Ũ εQ(t) = ε

t
ε
−1∑
i=0

(
δτ εQ(i)− uQ

(
Θ̂ε
Q(τ εQ,i)

))
, (3.117)
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then

τ εQ(t) = ε

t
ε
−1∑
i=0

δτ εQ(i) = U
ε
Q(t) + Ũ εQ(t).

Next, let

W ε
Q (t) = τ εQ(t)− U εQ(t) = Ũ εQ(t). (3.118)

For ease of reference, we are using notation similar to that used in Chapters 8 and

12 of [29] (and hence we are using redundant notation, for e.g., W ε
Q = Ũ εQ).

Now, fix t and τ . For any integer p, let ti ≤ t, i ≤ p, Let h(.) be an arbitrary

bounded, continuous and real valued function of its arguments. Hence,

E
[
h
(
τ εQ(ti), Θ̂

ε
Q(τ εQ(ti)), i ≤ p

) (
W ε
Q (t+ τ)−W ε

Q (t)
)]

(3.119)

−E
[
h
(
τ εQ(ti), Θ̂

ε
Q(τ εQ(ti)), i ≤ p

)(
Ũ εQ (t+ τ)− Ũ εQ (t)

)]
= 0.

If we show that the expression

E
[
h
(
τ εQ(ti), Θ̂

ε
Q(τ εQ(ti)), i ≤ p

)(
Ũ εQ (t+ τ)− Ũ εQ (t)

)]
(3.120)

appearing in the above equation goes to zero as ε → 0, then we can use (3.119)

along with an approach similar to that in proof of Theorem 2.1 in Chapter 8 of [29]

to show that (3.115) holds.

Hence, we next focus on showing that the expression in (3.120) goes to zero

as ε→ 0. For some fixed ∆ > 0, let

Iε,∆j =

{
i :
j∆

ε
≤ i ≤ (j + 1) ∆

ε

}
.
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Then,

limsupε→0E
[
h
(
τ εQ(ti), Θ̂

ε
Q(τ εQ(ti)), i ≤ p

)(
Ũ εQ (t+ τ)− Ũ εQ (t)

)]
(3.121)

= limsupε→0E

[
h
(
τ εQ(ti), Θ̂

ε
Q(τ εQ(ti)), i ≤ p

)
ε t+τε −1∑

i= t
ε

(
δτ εQ(i)− uQ

(
Θ̂ε
Q(τ εQ,i)

))]

= lim
∆→0

limsupε→0E

[
h
(
τ εQ(ti), Θ̂

ε
Q(τ εQ(ti)), i ≤ p

)
 t+τ

∆
−1∑

j= t
∆

ε
∑
i∈Iε,∆j

(
δτ εQ(i)− uQ

(
Θ̂ε
Q(τ εQ,i)

))]

= lim
∆→0

limsupε→0E

[
h
(
τ εQ(ti), Θ̂

ε
Q(τ εQ(ti)), i ≤ p

)
(3.122) t+τ

∆
−1∑

j= t
∆

εEF
Q,
j∆
ε

 ∑
i∈Iε,∆j

(
δτ εQ(i)− uQ

(
Θ̂ε
Q(τ εQ,i)

))
]

where the third equality holds since F
Q, j∆

ε
measures

(
τ εQ(ti), Θ̂

ε
Q(τ εQ(ti)), i ≤ p

)
due

to the fact that ti ≤ p for each i ≤ p and j ≥ t
∆ . Next, we show that (3.122) goes

to zero by picking small enough ε and δ.

Due to the bounded nature of the quantities involved in the update rules

(3.112)-(3.114) for Θ̂ε, we have max
i∈Iε,∆j

∣∣∣Θ̂ε
Q(τ εQ,i+1)− Θ̂ε

Q(τ εQ,i)
∣∣∣ = O(ε) and hence

max
i∈Iε,∆j

∣∣∣Θ̂ε
Q(τ εQ,j)− Θ̂ε

Q(τ εQ,i)
∣∣∣ = O(∆). (3.123)
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Thus, using continuity of uQ (.), we have

lim
∆→0

limsupε→0E

 t+τ
∆
−1∑

j= t
∆

ε

∣∣∣∣∣∣∣
∑
i∈Iε,∆j

(
uQ

(
Θ̂ε
Q(τ εQ,i)

)
− uQ

(
Θ̂ε
Q(τ εQ,j)

))∣∣∣∣∣∣∣
 = 0.

Hence, to show that (3.121) is zero (and hence (3.120) goes to zero), it is enough to

show that the following term appearing in (3.122) satisfies

lim
∆→0

limsupε→0E

[
h
(
τ εQ(ti), Θ̂

ε
Q(τ εQ(ti)), i ≤ p

)
 t+τ

∆
−1∑

j= t
∆

εEF
Q,
j∆
ε

 ∑
i∈Iε,∆j

(
δτ εQ(i)− uQ

(
Θ̂ε
Q(τ εQ,j)

))
] = 0.

Let

ςε,∆Q,j =
ε

∆
EF

Q,
j∆
ε

 ∑
i∈Iε,∆j

δτ εQ(i)


denote the conditional expectation of the average time (in seconds) for the ∆

ε updates

indexed by the set Iε,∆j . Since, for each segment index i and channel slot index k

Θ̂ε
Q

(
τ εQ (iε)

)
=

(
m̂ε

1(τ εQ (iε)), b̂εQ(τ εQ (iε))
)

=
(
mε

1,i, b
ε
Q,1,i

)
,

b̂εR (τ εR (kε)) = b̂εR
(
τ εR,k

)
= bεR,1,k.

137



we have

∑
i∈Iε,∆j

l1FQ,i

(
q∗Q

(
Θ̂ε
Q

(
τ εQ (iε)

)
, FQ,i

))
(3.124)

≥

(
∆ς
ε,∆
Q,j

ετslot
−2

)
+

⌈
τεQ(j∆)

ετslot

⌉
∑

k=

⌈
τε
Q

(j∆)

ετslot

⌉ r∗
(
b̂εR (τ εR (kε)) , Ck

)
,

and

∑
i∈Iε,∆j

l1FQ,i

(
q∗Q

(
Θ̂ε
Q

(
τ εQ (iε)

)
, FQ,i

))
(3.125)

≤

(
∆ς
ε,∆
Q,j

ετslot
+2

)
+

⌊
τεQ(j∆)

ετslot

⌋
∑

k=

⌊
τε
Q

(j∆)

ετslot

⌋ r∗
(
b̂εR (τ εR (kε)) , Ck

)
.

In the above inequalities, the left hand side is equal to the total size of the segments

indexed by the set Iε,∆j , and the right hand side is roughly equal to the total allo-

cation over the slots during which these segments are downloaded. The term in the

left hand side of (3.124) satisfies

∑
i∈Iε,∆j

l1FQ,i

(
q∗Q

(
Θ̂ε
Q

(
τ εQ (iε)

)
, FQ,i

))
(3.126)

=
∆

ε
E
[
l1F

π
Q

(
q∗Q

(
Θ̂ε
Q

(
τ εQ (j∆)

)
, F πQ

))]
+
∑
i∈Iε,∆j

(
l1FQ,i

(
q∗Q

(
Θ̂ε
Q

(
τ εQ (iε)

)
, FQ,i

))
− l1FQ,i

(
q∗Q

(
Θ̂ε
Q

(
τ εQ (j∆)

)
, FQ,i

)))
+
∑
i∈Iε,∆j

(
l1FQ,i

(
q∗Q

(
Θ̂ε
Q

(
τ εQ (j∆)

)
, FQ,i

))
−E

[
l1F

π
Q

(
q∗Q

(
Θ̂ε
Q

(
τ εQ (j∆)

)
, F πQ

))])
.
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Similarly, the term in the right hand side of (3.124) satisfies

(
∆ς
ε,∆
Q,j

ετslot
−2

)
+

⌈
τεQ(j∆)

ετslot

⌉
∑

k=

⌈
τε
Q

(j∆)

ετslot

⌉ r∗
(
b̂εR (τ εR (kε)) , Ck

)
(3.127)

≥

(
∆ςε,∆Q,j
ετslot

− 2

)
E
[
r∗
(
b̂εQ
(
τ εQ (j∆)

)
, Cπ

)]
−

(
∆ςε,∆Q,j
ετslot

)
max⌈

τε
Q

(j∆)

ετslot

⌉
≤k≤

(
∆ς
ε,∆
Q,j

ετslot
−2

)
+

⌈
τε
Q

(j∆)

ετslot

⌉
∣∣∣r∗ (b̂εR (τ εR (kε)) , Ck

)
− r∗

(
b̂εQ
(
τ εQ (j∆)

)
, Ck

)∣∣∣
+

(
∆ς
ε,∆
Q,j

ετslot
−2

)
+

⌈
τεQ(j∆)

ετslot

⌉
∑

k=

⌈
τε
Q

(j∆)

ετslot

⌉
(
r∗
(
b̂εQ
(
τ εQ (j∆)

)
, Ck

)
− E

[
r∗
(
b̂εQ
(
τ εQ (j∆)

)
, Cπ

)])
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Using (3.124), (3.126) and (3.127), we have

∆ςε,∆Q,j ≤ ∆uQ

(
Θ̂ε
Q

(
τ εQ (j∆)

))
+ ∆E

[
r∗
(
b̂εQ
(
τ εQ (j∆)

)
, Cπ

)]
(3.128)2O

( ε
∆

)
+

∣∣∣∣∣
∑

i∈Iε,∆j
l1FQ,i

(
q∗Q

(
Θ̂ε
Q

(
τ εQ (j∆)

)
, FQ,i

))
(

∆
ε

)
−E

[
l1F

π
Q

(
q∗Q

(
Θ̂ε
Q

(
τ εQ (j∆)

)
, F πQ

))] ∣∣∣∣∣

+

(
ςε,∆Q,j
τslot

)∣∣∣∣∣
∑(

∆ς
ε,∆
Q,j

ετslot
−2

)
+

⌈
τεQ(j∆)

ετslot

⌉
k=

⌈
τε
Q

(j∆)

ετslot

⌉ (
r∗
(
b̂εQ

(
τ εQ (j∆)

)
, Ck

))
(

∆ςε,∆Q,j
ετslot

− 2

)
−E

[
r∗
(
b̂εQ
(
τ εQ (j∆)

)
, Cπ

)] ∣∣∣∣∣
+

(
ςε,∆Q,j
τslot

)
max⌈

τε
Q

(j∆)

ετslot

⌉
≤k≤

(
∆ς
ε,∆
Q,j

ετslot
−2

)
+

⌈
τε
Q

(j∆)

ετslot

⌉
∣∣∣r∗ (b̂εR (τ εR (kε)) , Ck

)

−r∗
(
b̂εQ
(
τ εQ (j∆)

)
, Ck

)∣∣∣
+ max
i∈Iε,∆j

∣∣∣l1FQ,i (q∗Q (Θ̂ε
Q

(
τ εQ (iε)

)
, FQ,i

))
−l1FQ,i

(
q∗Q

(
Θ̂ε
Q

(
τ εQ (j∆)

)
, FQ,i

))∣∣∣) .
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Then, using (3.125) and arguments similar to those above, we have

∆ςε,∆Q,j ≥ ∆uQ

(
Θ̂ε
Q

(
τ εQ (j∆)

))
−∆E

[
r∗
(
b̂εQ
(
τ εQ (j∆)

)
, Cπ

)]
(3.129)2O

( ε
∆

)
+

∣∣∣∣∣
∑

i∈Iε,∆j
l1FQ,i

(
q∗Q

(
Θ̂ε
Q

(
τ εQ (j∆)

)
, FQ,i

))
(

∆
ε

)
−E

[
l1F

π
Q

(
q∗Q

(
Θ̂ε
Q

(
τ εQ (j∆)

)
, F πQ

))] ∣∣∣∣∣

+

(
ςε,∆Q,j
τslot

)∣∣∣∣∣
∑(

∆ς
ε,∆
Q,j

ετslot
+2

)
+

⌊
τεQ(j∆)

ετslot

⌋
k=

⌊
τε
Q

(j∆)

ετslot

⌋ (
r∗
(
b̂εQ

(
τ εQ (j∆)

)
, Ck

))
(

∆ςε,∆Q,j
ετslot

+ 2

)
−E

[
r∗
(
b̂εQ
(
τ εQ (j∆)

)
, Cπ

)] ∣∣∣∣∣
+

(
ςε,∆Q,j
τslot

)
max⌊

τε
Q

(j∆)

ετslot

⌋
≤k≤

(
∆ς
ε,∆
Q,j

ετslot
+2

)
+

⌊
τε
Q

(j∆)

ετslot

⌋
∣∣∣r∗ (b̂εR (τ εR (kε)) , Ck

)

−r∗
(
b̂εQ
(
τ εQ (j∆)

)
, Ck

)∣∣∣
+ max
i∈Iε,∆j

∣∣∣l1FQ,i (q∗Q (Θ̂ε
Q

(
τ εQ (iε)

)
, FQ,i

))
−l1FQ,i

(
q∗Q

(
Θ̂ε
Q

(
τ εQ (j∆)

)
, FQ,i

))∣∣∣)
Using the boundedness of the terms, and the fact that (FQ,i)i≥1 and (Ck)k≥1 are

stationary ergodic, the terms appearing in lines 2-5 of (3.128) and (3.129) converge

in mean to zero (i.e., we have L1 convergence to 0). Also, the terms in the last

four lines of (3.128) and (3.129) can be made as small as needed by picking a small

enough ∆ due to the absolute continuity of q∗1(., f) and r∗1(, c) for each f and c. and

141



since we have (3.123) and

max⌊
τε
Q

(j∆)

ετslot

⌋
≤k≤

(
∆ς
ε,∆
Q,j

ετslot
+2

)
+

⌊
τε
Q

(j∆)

ετslot

⌋
∣∣∣̂bεR (τ εR (kε))− b̂εQ

(
τ εQ (j∆)

)∣∣∣ = O(∆). (3.130)

where the argument for the above property is similar to (3.123) and using the fact

that ςε,∆Q,j is bounded by the constant δτmax. Thus, the expression in (3.122) is equal

to zero, and consequently (3.120) is also zero. The rest of the proof is similar to

that in [29].

In the above arguments, we used the property that the resource allocation

r∗1 (b1,k, ck) in slot k is a continuous function of b1,k for each ck. These arguments can

be extended if the resource allocation in slot k is picked from R∗
(
bε1,k, ck

)
where

R∗ (b, c) is an upper semi-continuous set valued map of b taking compact convex

values (i.e., R∗ (b, c) is a convex compact set for each b and c ∈ C ) for each c ∈ C.

For instance, we used (3.123), (3.130) and the continuity of uQ (.) to argue earlier

(see below (3.123)) that

lim
∆→0

limsupε→0E

 t+τ
∆
−1∑

j= t
∆

ε

∣∣∣∣∣∣∣
∑
i∈Iε,∆j

(
uQ

(
Θ̂ε
Q(τ εQ,i)

)
− uQ

(
Θ̂ε
Q(τ εQ,j)

))∣∣∣∣∣∣∣
 = 0.

Note that (after relaxing the continuity assumption)

uQ (Θ) = τslotl1
E [F π1 (q∗1 (Θ, F π1 ))]

E [r∗1 (b, Cπ)]
.

for Θ = (m1, b1) and r∗1 (b1, c) ∈ R∗ (b1, c) for each c ∈ C. Now we can pick
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r∗1

(
b̂εQ

(
τ εQ,j

)
, c
)
∈ R∗

(
b̂εQ

(
τ εQ,j

)
, c
)

for each c ∈ C and for each j such that

lim
∆→0

limsupε→0E

 t+τ
∆
−1∑

j= t
∆

ε

∣∣∣∣∣∣∣
∑
i∈Iε,∆j

τslotl1E
[
F π1

(
q∗1

(
Θ̂ε
Q(τ εQ,i), F

π
1

))]
E
[
r∗1

(
b̂εQ

(
τ εQ,i

)
, Cπ

)] (3.131)

−τslotl1
E
[
F π1

(
q∗1

(
Θ̂ε
Q(τ εQ,j), F

π
1

))]
E
[
r∗1

(
b̂εQ

(
τ εQ,j

)
, Cπ

)]
∣∣∣∣∣∣
 = 0.

This follows from the following two properties:

(i) the continuity of QR tradeoffs and q∗i (.), and

(ii) the fact that for small enough ∆, we can always pick r∗1

(
b̂εQ

(
τ εQ,j

)
, c
)
∈

R∗
(
b̂εQ

(
τ εQ,j

)
, c
)

for each c ∈ C and for each j such that

∣∣∣∣∣∣∣
ε

∆

∑
i∈Iε,∆j

1

E
[
r∗1

(
b̂εQ

(
τ εQ,i

)
, Cπ

)] − 1

E
[
r∗1

(
b̂εQ

(
τ εQ,j

)
, Cπ

)]
∣∣∣∣∣∣∣

is small enough.

Property (ii) follows from (3.130) and the fact that

R∗inv (b) =

{
1

E [r∗1 (b, Cπ)]
: r∗1 (b, c) ∈ R∗ (b, c) ∀ c ∈ C

}
,

is an upper semicontinuous set valued map of b taking compact convex values.

These properties of R∗inv (b) are essentially consequences of the fact that R∗ (b, c)

is an upper semicontinuous set valued map of b taking compact convex values for

each c (from Lemma 3.2 (b)). The compactness of R∗inv (b) follows from the com-

pactness of R∗ (b, c) for each c, and the fact that R∗inv (b) is obtained using a con-

tinuous map on the elements of (R∗ (b, c))c∈C . To show convexity, let α ∈ [0, 1]

and consider x, y ∈ R∗inv (b), i.e., there exists r∗x (b, c) , r∗y (b, c) ∈ R∗ (b, c) for each

c ∈ C such that x = 1
E[r∗x(b,Cπ)] , y = 1

E[r∗y(b,Cπ)]
. Then, (αx+ (1− α) y) ∈ R∗inv (b)
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since (αx+ (1− α) y) = 1
E[r∗xy(b,Cπ)]

where r∗xy (b, c) = α′r∗x (b, c)+(1− α′) r∗y (b, c) ∈

R∗ (b, c) (due to convexity of R∗ (b, c)), and α′ = αx
αx+(1−α)y ∈ [0, 1]. Next, we show

that R∗inv (.) is an upper semicontinuous set valued map. Note that since R∗inv (.)

is uniformly compact, R∗inv (.) is upper semicontinuous if it is closed (see [16] or

[44] for a discussion about upper semicontinuous, uniformly compact and closed set

valued maps). Consider any sequence (bn)n≥1 converging to b, and consider any

sequence (xn)n≥1 such that xn ∈ R
∗
inv (bn) for each n, and xn converges to some

x. Then, R∗inv (b) is closed at b if x ∈ R∗inv (b). Since, xn ∈ R
∗
inv (bn), there ex-

ists r(n) (c) ∈ R∗ (bn, c) for each c ∈ C such that xn = 1
E[r(n)(C

π)]
. For any c ∈ C,

we can obtain a convergent subsequence
(
r(nkc ) (c)

)
kc≥1

that converges to some

r (c) ∈ R∗ (bn, c) (due to upper semicontinuity of R∗ (b, c)). Since C is finite, we can

keep picking subsequences (of subsequences) to obtain a sequence of indices (nk)k≥1

such that for each c ∈ C,
(
r(nk) (c)

)
k≥1

converges to some r (c) ∈ R∗ (b, c). Using

this convergence property for each c ∈ C, and noting that xn converges to x, we can

conclude that x = 1
E[r(Cπ)] ∈ R

∗
inv (b). Thus, R∗inv (.) is a closed map, and hence is

upper semicontinuous.

Now that we have shown that R∗inv (b) is an upper semicontinuous set val-

ued map of b taking compact convex values, we use this observation to show that

property (ii) holds. Due to upper semicontinuity of R∗inv (b) and (3.130), for each

δ > 0 and i ∈ Iε,∆j , we can find rinv,i

(
b̂εQ

(
τ εQ,i

))
∈ R∗inv

(
b̂εQ

(
τ εQ,i

))
such that∣∣∣∣ 1

E[r∗1(b̂εQ(τεQ,i),Cπ)]
− rinv,i

(
b̂εQ

(
τ εQ,i

))∣∣∣∣ < δ by picking ∆ small enough. Due to con-

vexity of R∗inv (b), there are r∗1

(
b̂εQ

(
τ εQ,j

)
, c
)
∈ R∗

(
b̂εQ

(
τ εQ,j

)
, c
)

for each c ∈ C

and for each j that satisfies

1

E
[
r∗1

(
b̂εQ

(
τ εQ,j

)
, Cπ

)] =
ε

∆

∑
i∈Iε,∆j

rinv,i

(
b̂εQ
(
τ εQ,i
))
.
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Then, we see that property (ii) holds since∣∣∣∣∣∣∣
ε

∆

∑
i∈Iε,∆j

1

E
[
r∗1

(
b̂εQ

(
τ εQ,i

)
, Cπ

)] − 1

E
[
r∗1

(
b̂εQ

(
τ εQ,j

)
, Cπ

)]
∣∣∣∣∣∣∣ < δ

for ∆ small enough. Since properties (i) and (ii) hold, (3.131) follows. We can

similarly extend other arguments in our proof (that relied to continuity r∗1 (., c))

to the case when the resource allocation in slot k is picked from R∗
(
bε1,k, ck

)
by

using the fact that R∗ (b, c) is an upper semi-continuous set valued map of b taking

compact convex values for each c ∈ C.

Now, we focus on proving the result in (3.116) for the weak limit component

b̂εQ(.) associated with time interpolated version b̂εQ(.) of the parameter bεQ,1,s. Similar

to (3.118), we start by rewriting b̂εQ(τ εQ(t)) as given below:

b̂εQ(τ εQ(t)) = bε1,0 + G̃εb(t) + ε

t
ε
−1∑
i=0

(
uQ

(
Θ̂ε
Q(τ εQ,i)

)
− l1

)
+ ε

t
ε
−1∑
i=0

Zε1,i + Eεb(t), (3.132)

where

G̃εb(t) = ε

t
ε
−1∑
i=0

(
δτ εQ(i)− uQ

(
Θ̂ε
Q(τ εQ,i)

))
,

Eεb(t) = ετslot

∑ t
ε
−1

i=0 δτ
ε
Q(i)

τslot
−

∑ t
ε
−1

i=0 δτ
ε
Q(i)

τslot


and for each i, Zε1,i is the term that accounts for the reflection term associated with

the update in (3.114) for the sth segment due to the operator [.]b. Note that Eεb(t)

accounts for the fact that R-updates (that increment bε1,. by ετslot) only occur at slot

boundaries which are separated by τslot seconds. Note that Zε1,i ∈ −ZH
(
Θ̂ε
Q(τ εQ,i)

)
and |Eεb(t)| ≤ ετslot so that the last term in (3.132) is O(ε).

Now, fix t and τ . For any integer p, let ti ≤ t, i ≤ p, Let h(.) be an arbitrary
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bounded, continuous and real valued function of its arguments. The proof of (3.116)

can be completed just like in [29] (see pages 414-415 and pages 251-257) once we

prove that

limsupε→0E
[
h
(
τ εQ(ti), Θ̂

ε
Q(τ εQ(ti)), i ≤ p

)(
G̃εb (t+ τ)− G̃εb (t)

)]
= 0. (3.133)

But, note that G̃εb(t) = U
ε
Q(t) for each t (defined in (3.117)), and hence, (3.133) holds

since we have established this property earlier for the same expression in (3.120).

We have now established that the weak limit b̂Q(.) satisfies (3.116). The

weak limit components b̂R(.) (associated with bεR,1,k) also satisfies (3.116) since

b̂εQ(t)− b̂εR(t) = O(ε)

which follows from the bounded nature of the increase of bεR,1,k due to (3.20), and

the fact that the number of slots between two segment download completion instants

is bounded.

Thus, we have argued that for the special case NOVA-L1, we can extend

Theorem 3.4 of [29] as described in the above discussion. These arguments can be

extended to the general setting considered in NOVA also. In particular, we can

study NOVA given in (3.21)-(3.26) and (3.72)-(3.73) and relate it to the auxiliary

differential inclusion (3.75)-(3.82). We can also show that the following claim in

Theorem 3.4 of [29] holds: the fraction of time in the time interval [0, T ] that Θ̂ε(.)

and Θ̂ε
R(.) spends in a small neighborhood of set of limit points of the differential

inclusion in (3.75)-(3.82) converges to one in probability as ε → 0 and T → ∞.

Now, the main claim of this result now follows from this observation and Theorem

3.3 where we have shown that the set of limit points of the differential inclusion in

(3.75)-(3.82) is contained in H∗.

We conclude the proof by verifying that the remaining conditions given in

146



Theorem 3.4 of [29] are satisfied. Due to Lemma 3.1, we can view NOVA given

in (3.21)-(3.26) and (3.72)-(3.73) as a constrained stochastic approximation which

satisfies condition (3.1) in Chapter 12 of [29], and hence the set H in the discussion

of Theorem 3.4 corresponds to H in our problem setting. Although the initialization

in NOVA, specifically b0 and d0, does not ensure that we start in H, we enter and

stay in H in a finite number of slots (as shown in Lemma 3.1), and thus we can view

NOVA as a constrained stochastic approximation. Note that the random variables

ξεs,i considered in the discussion of Theorem 3.4 corresponds to (Fi,s, Li,s) in our

setting, and the condition given in (A3.11) concerning these random variables is

clearly satisfied as they take values in a finite set. Condition (A3.1) and (A3.12) can

be verified using the boundedness of the quantities associated with these conditions.

In particular, note that 0 < δτmin ≤ δτ εQ,s ≤ δτmax < ∞ where δτmin = fminlmin
rmax

and δτmax = fmaxlmax
mini∈N ri,min

. The condition (A3.13) is satisfied since, for each i ∈ N ,

(Fi,s, Li,s)s≥0 is a stationary ergodic process. Conditions (A3.6), (A3.7) and (A3.9)

can be verified by letting βεn,α and ∆ε
n,α to be identically zero, and gεn,α = gα where

gεn,α = gα are defined based on the right hand side of the differential inclusion in

(3.75)-(3.82) taking appropriate care of the terms associated with the update rates.

For instance, let Θ = (m,µ,v,b,d,λ,σ,ρ) ∈ H and let θi = (mi, µi, vi, bi, di) for

each i ∈ N , and for each i ∈ N , we define gi+N based on (3.76) as given below:

gi+N (Θ) =
E [Lπi q

∗
i (θi, F

π
i )]

λi
− µi,

Note that we have not verified conditions (A3.8), (A3.10) and (A3.14) since our

discussion at the beginning of the proof allows us to avoid using these assumptions.

We have the following corollary of Theorem 3.4 which says that for small

enough ε and after running NOVA for long enough, video client i’s NOVA parameter

147



stays close to H∗i (defined in (3.70)) most of the time with high probability.

Corollary 3.1. Let Θ̂ε(0) ∈ H and Sε = S
ε . Then for each i ∈ N , the following

holds: for any δ > 0, the fraction of segment indices for which (θi,s)1≤s≤Sε is in a

δ-neighborhood of H∗i converges to one in probability as ε goes to zero and S goes to

infinity.

Proof. The corollary follows by using Theorem 3.4 to conclude that the fraction of

time in the time interval [0, T ] that θ̂εi (.) spends in a small neighborhood of H∗i
converges to one in probability as ε → 0 and T → ∞. Recall that here θ̂εi (t) =(
m̂ε
i(t), µ̂

ε
i(t), v̂

ε
i (t), b̂

ε
Q,i(t), d̂

ε
i(t)
)

. Note that here we are also using the fact that for

each video client i ∈ N , the amount of time between updates is bounded below.

We have now obtained all the intermediate results required to prove Theorem

3.1 which is given below.

Proof of Theorem 3.1. Part (a) of Theorem 3.1 states that NOVA satisfies the

constraints on rebuffering and cost asymptotically, i.e., for each i ∈ N

limsupS→∞βi,S

(
(q∗i )1:S , (r

∗
i )1:KS

)
≤ βi, (3.134)

limsupS→∞pi,S ((q∗i )1:S) ≤ pi. (3.135)

We first prove that NOVA satisfies rebuffering constraints, i.e., (3.134). Note that

βi,S

(
(q∗i )1:S , (r

∗
i )1:KS

)
=

∑S
s=1 li,sfi,s(q∗i,s)

1
τslotKS

∑KS
k=1 r

∗
i,k∑S

s=1 li,s
− 1. (3.136)

Let Ti(S) (measured in seconds) denote the time at which the download of the first

S segments of video client i completes. Then, based on NOVA update rules (3.20)

and (3.24), and removing the projection operator, we get the following lower bound
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on the value bQ,i,S :

bQ,i,S ≥ bQ,i,0 + ε

τslot
⌊
Ti(S)
τslot

⌋
(
1 + βi

) −
S∑
s=1

li,s


≥ bQ,i,0 −

ετslot(
1 + βi

) + ε

(
Ti(S)(
1 + βi

) − S∑
s=1

li,s

)
.

Hence,

Ti(S)∑S
s=1 li,s

≤
(
1 + βi

)
+
(
1 + βi

)bQ,i,S − bQ,i,0 + ετslot
(1+βi)

ε
∑S

s=1 li,s

 . (3.137)

Now, if we let Ki(S) denote the (random variable associated with) the num-

ber of slots which video client i takes to download S segments, then we can express

the term appearing in the left hand side of above inequality as

Ti(S)∑S
s=1 li,s+1

=

τslot

∑S
s=1 li,sfi,s(q∗i,s)
1

Ki(S)

∑Ki(S)

k=1 r∗i,k∑S
s′=1 li,s′

+ o(S). (3.138)

Now note that any limit point of the sequence 1
KS

∑KS
k=1 r

∗
i,k is also a limit point

of the sequence 1
Ki(S)

∑Ki(S)
k=1 r∗i,k since we can uniformly bound Ki(S)−Ki(S − 1).

Thus, using (3.136), (3.138), (3.137) and the fact that bQ,i,S is bounded (see Lemma

3.1), we can conclude that (3.134) also holds.

Next, we prove that NOVA asymptotically satisfies the cost constraints, i.e.,

(3.135). Note that the cost per unit video duration associated with the first S

segments under NOVA for video client i is

pi,S ((q∗i )1:S) = pdi

∑S
si=1 li,sifi,si

(
q∗i,si

)
∑S

si=1 li,si
. (3.139)
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Now, using the NOVA update rule (3.25) for parameter di,si , we have

di,si+1 ≥ di,si + ε

pdi li,si+1fi,si+1

(
q∗i,si+1

)
pi

− λi,si

 .

Summing both sides of the above inequality from si = 1 to S, we have

pdi
pi

S∑
si=1

li,si+1fi,si+1

(
q∗i,si+1

)
≤

S∑
si=1

λi,si +
di,S+1 − di,1

ε
. (3.140)

Next, note that by summing both sides of the NOVA update rule (3.26) for the

parameter λi,si from si = 1 to S, and rearranging the terms, we have

S∑
si=1

λi,si =
S∑

si=1

li,si+1 −
λi,S+1 − λi,1

ε
.

Combining this with (3.140) and dividing by
∑S

si=1 li,si+1, we have

pdi
pi

∑S
si=1 li,si+1fi,si+1

(
q∗i,si+1

)
∑S

si=1 li,si+1

≤ 1−
λi,S+1 − λi,1
ε
∑S

si=1 li,si+1

+
di,S+1 − di,1
ε
∑S

si=1 li,si+1

.

Now, the result in (3.135) follows from (3.139) and the above inequality by noting

that the terms λi,S+1, λi,1, di,S+1 and di,1 are bounded (from Lemma 3.1), and that

lminS ≤
∑S

si=1 li,si+1 ≤ lmaxS.

Next, we prove part (b) of Theorem 3.1 regarding the optimality of NOVA.

Using Corollary 3.1 (which says that (θi,s)1≤s≤Sε essentially converges to H∗i ) and

Lemma 3.2 (a) (which says that q∗i (θi, fi) is a continuous function of θi), we can

conclude that for θπi ∈ H∗i

lim
S→∞

lim
ε→0

(
φSε

((
(q∗i (θi,s, fi,s))i∈N

)
1≤s≤Sε

)
− φSε

((
(q∗i (θπi , fi,s))i∈N

)
1≤s≤Sε

))
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goes to zero in probability. Now, part (b) of Theorem 3.1 follows from the above

observation and Theorem 3.2 which states that for each i ∈ N and for almost all

sample paths

lim
S→∞

(
φS

((
(q∗i (θπi , fi,s))i∈N

)
1≤s≤S

)
− φoptS

)
= 0.

3.6 Extensions

3.6.1 More general QoE models

NOVA can be used for a larger class of QoE models, and still retain its optimality

characteristics. For instance, we can consider QoE models such as

eSi (qi) = m
UQi ,S
i (qi)− UVi

(
VarS (qi)

)
,

where m
UQi ,S
i (qi) is a generalized mean defined as

m
UQi ,S
i (qi) :=

∑S
s=1 li,sU

Q
i (qi,s)∑S

s′=1 li,s′
,

and UQi is a twice differentiable concave increasing function. We only need two

simple modifications to the algorithm NOVA in order to allow for the above QoE

model:

1. Modify objective function (3.18) of the optimization problem QNOVAi(θi, fi)

associated with the quality adaptation of video client i as given below:

φU
Q
i ,Q (qi,θi, fi) =

(
UEi
)′ (

µi − UVi (vi)
) (
UQi (qi)−

(
UVi
)′

(vi) (qi −mi)
2
)

− hBi (bi)(
1 + βi

)fi (qi)−
pdi h

D
i (di)

pi
fi (qi) ,
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where we have only replaced a qi term appearing in (3.18) with UQi (qi).

2. Modify the update rule (3.22) for µi,si as follows:

µi,si+1 = µi,si + ε

(
li,si+1

λi,si
UQi

(
q∗i,si+1

)
− µi,si

)
, (3.141)

so that µi,si keeps track of the generalized mean.

We can show that under the new QoE model, NOVA with the above modifications

is still asymptotically optimal, i.e., we can obtain a result similar to Theorem 3.1.

This generalization allows us to accommodate QoE models involving generalized

mean such as those proposed in [15].

3.6.2 More general channel models

For notational simplicity, we assumed that the network allocation constraint in each

slot is a real valued function. However, we can consider more general channel models

prevalent in many practical networks like wireless networks using OFDM, where the

resource allocation to a video client is the sum of the resource allocation over several

sub-resources w ∈ W (for e.g., orthogonal subcarriers in OFDM) whereW is a finite

set of sub-resources in the network. It is easy to extend the preceding discussion to

consider such networks. In particular, we can extend the resource allocation algo-

rithm RNOVA(b, c) proposed in NOVA to obtain RNOVA-GC
(
b, (cw)w∈W

)
given

below:

max
r

∑
i∈N

hBi (bi) ri

subject to cw
(
(ri,w)i∈N

)
≤ 0, ∀ w ∈ W,

ri =
∑
w∈W

ri,w ≥ ri,min ∀ i ∈ N ,

ri,w ≥ 0, ∀ w ∈ W, ∀ i ∈ N .
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where the optimization variable ri,w represents the resource allocation to video client

i over sub-resource w, and ri represents the cumulative resource allocation to video

client i. If the natural generalization of assumptions on network allocation con-

straints (e.g., stationary ergodic, Assumption-SF etc) discussed earlier hold, then we

can show that the above extension of NOVA (which uses RNOVA-GC
(
b, (cw)w∈W

)
for network resource allocation) is also asymptotically optimal. Similar extensions

will typically be possible in general settings where the capacity region can be de-

scribed using a finite number of convex functions.

3.7 Conclusions

We obtained a simple asymptotically optimal online algorithm NOVA to solve the

problem of optimizing video delivery over networks. NOVA is designed to fairly

maximize video clients’ QoE while taking client preferences on rebuffering time and

data costs into account. Further, the distributed, asynchronous and simple nature of

NOVA makes it well suited for DASH and current networks. In the next chapter, we

study the performance of NOVA using simulations and we discuss the performance

of NOVA taking several practical considerations into account.
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Chapter 4

NOVA in Practical Networks

and Performance Evaluation

using Simulation

4.1 Introduction

In this chapter, we discuss the performance of NOVA taking several practical con-

siderations into account and evaluate its performance via simulation. In particular,

we focus on the following practical considerations:

� NOVA under other, e.g. legacy, resource allocation policies;

� the performance of quality adaptation in NOVA, referred to as QNOVA, when

used for a standalone video client;

� the presence of, and sharing with, other traffic;

� discrete network resources;

� video client implementation considerations for NOVA such as
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– discrete levels of quality adaptation,

– choice of ε, (hBi (.))i∈N and (hDi (.))i∈N ,

– reduction of startup delay and frequency of rebuffering,

– playback buffer limits,

– and, video playback pauses;

� and, the performance of NOVA in stochastic networks, i.e., networks with

dynamically varying number of video clients.

We consider the above aspects in Sections 4.2-4.5. We evaluate the performance of

NOVA using simulation in Section 4.6, and conclude this chapter with a discussion

of a possible implementation in Section 4.7.

4.2 NOVA under other resource allocation policies, and

QNOVA for a standalone video client

Let us consider the problem of optimizing video delivery in scenarios where we

cannot modify or optimize the resource allocation policies, e.g., legacy systems or

networks where resource allocation is driven by other considerations. Note in such

scenarios, we can still control the quality adaptation at the video clients. In this

section, we show that the quality adaptation component in NOVA is still optimal

for such scenarios.

Further, we show that QNOVA, i.e., quality adaptation component of NOVA,

carries out optimal quality adaptation for a standalone video client.

4.2.1 NOVA under other resource allocation policies

Consider a network where the resource allocation policy cannot be modified or

optimized for video delivery. This would be the case in legacy networks where
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the video clients have to operate under a predetermined resource allocation policy

like proportional fair allocation policy (see [30]), or other proprietary (unknown)

allocation policies. The following result says that QNOVA is asymptotically optimal

for any feasible stationary resource allocation policy (r(c))c∈C (see Definition 3.2 of

a feasible stationary resource allocation policy in Chapter 3)

Corollary 4.1. QNOVA is asymptotically optimal for any feasible stationary re-

source allocation policy (r(c))c∈C.

Proof. This result follows once we note that under the given network resource al-

location policy (r(c))c∈C , the offline optimization problem formulation OPTN (S),

discussed in Section 3.3, breaks into N single video client offline problem formula-

tions
(
OPT{i}(S)

)
i∈N . Recall that N is the set of video clients considered, and we

have added the subscript N in OPTN (S) to emphasize the dependence of the prob-

lem formulation on the set of video clients. Thus, for i ∈ N , the offline optimization

problem OPT{i}(S) is obtained by only considering the terms in the objective func-

tion and constraints of OPTN (S) that involve video client i, and ensuring that the

allocation constraints correspond to the fixed resource allocation (ri(c))c∈C associ-

ated with the video client.

This result sheds light on an important feature of NOVA that the optimality

properties of the adaptation component QNOVA are insensitive to the resource

allocation in the network as long as the resource allocation policy is stationary. The

gains from QNOVA are also explored using simulations in Section 4.6 for a scenario

with the legacy proportionally fair resource allocation schemes.

4.2.2 QNOVA for optimizing a standalone video client

We now move away from the network setting, and consider a video client i∗ with as-

sociated resource allocations (Ri∗,k)k≥1 modeled as an exogenous stationary ergodic
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process (i.e., Ri∗,k is the random variable modeling the resource allocation to the

client in slot k). This is a reasonable model for a standalone video client accessing

video servers in a wide range of scenarios involving wired networks and wireless

networks. We have the following important optimality property for QNOVA when

used for a standalone video client.

Corollary 4.2. QNOVA is asymptotically optimal for a standalone video client if

the associated resource allocation (Ri∗,k)k≥1 is an exogenous (i.e., independent of

quality adaptation decisions) stationary ergodic process.

Proof. This result directly follows from the discussion in Chapter 3 by setting N =

{i∗} and defining the capacity regions using (Ri∗,k)k≥1.

The above result is significant since the optimization of adaptation in stan-

dalone video clients is an important problem in practice, and the result provides

optimality guarantees for the solution QNOVA to this problem. Further, this result

also reinforces the insensitivity of optimality of the adaptation component in NOVA.

An evolution of the parameters of QNOVA and associated quality adaptation

is depicted in Figure 4.1, which also illustrates the response of the quality adaptation

in QNOVA to an abrupt capacity drop between time instants 50 secs and 100 secs

(see the last subplot). We see that the value of the parameter bi∗,k starts to increase

(see the fourth subplot) following the drop, and eventually becomes large enough to

force the selection of representations with the least size (see the first subplot).

4.3 NOVA and sharing network resources with other

traffic

Video traffic due to stored video is typically carried in networks supporting other

types of traffic such as voice traffic, real time video traffic, data traffic due to file
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Figure 4.1: Quality adaptation responding to a capacity drop

downloads etc. If the network capacity consumed by other sources of traffic can

be modeled as an exogenous stationary ergodic process, then we can extend the

optimality result for NOVA given in Theorem 3.1 to this scenario. This can be shown

by incorporating the consumption of capacity by other traffic into the stationary

ergodic random process (Ck)k (i.e., the allocation constraints associated with the

video clients). This observation about optimality of NOVA is useful as it covers

scenarios where the stored video traffic has to compete with other sources of traffic

that have higher priority, for e.g., voice traffic and video traffic generated by real

time interactive applications like phone calls, video conferencing etc. However, note

that in these scenarios, the traffic due to stored video (is low priority to the network

and) is only supported using residual capacity in the network.

A more fair approach is to set aside a fixed part of the available network
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capacity for carrying stored video traffic. This could however lead to inefficient

use of network resources if there are too few or too many video clients streaming

stored video. A better approach can be obtained by using a more flexible division

of network capacity. For instance, we can use the approach developed below which

extends NOVA for use in the presence of other data traffic, e.g., associated with

users downloading long files. Let ND denote the set of data users. The following

modification of the resource allocation component in NOVA can be used to this end:

max
((ri)i∈N∪ND)

pV
∑
i∈N

hBi (bi,k)ri +
∑
j∈ND

(
UDj
)′

(ρj,k) rj

s.t. ck ((ri)i∈N∪ND) ≤ 0, ri ≥ ri,min ∀ i ∈ N ∪ND.

The resource allocation in slot k is carried out by obtaining an optimal solution(
(r∗i,k)i∈N∪ND

)
to the above optimization problem, where (r∗i,k)i∈N and (r∗j,k)j∈ND

are respectively the resource allocation to the video clients and data users. Here,

UDj is a twice differentiable concave function for each data user j ∈ ND, and ck is

a convex function characterizing the capacity region in slot k. The parameter ρj,k

tracks the mean resource allocation to data user j ∈ ND, and is updated at the

beginning of each slot k as follows:

ρj,k+1 = ρj,k + ε
(
r∗j,k − ρj,k

)
.

The constant pV determines the priority given to video clients, i.e., the higher the

value of pV , the higher is the priority given to video over data users.

We can show that NOVA with the above modification in resource allocation

is once again asymptotically optimal, i.e., we can establish an optimality result like

that given in Theorem 3.1, where we compare the performance of NOVA against that
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of the optimal offline algorithm solving OPT-D(S), which has objective function

pV
∑
i∈N

UEi
(
eSi (qi)

)
+
∑
j∈ND

UDj

(
eKS ,dataj (rj)

)
,

and same constraints as in OPT(S) and additional constraints, rj ≥ rj,min for each

j ∈ ND, on the resource allocation to the data users. Here, for each data user

j ∈ ND,

eKS ,dataj (rj) = mKS
j (rj) ,

represents the QoE for a data user j ∈ ND and is equal to the mean resource

allocation to the video client, i.e., this QoE model assumes that the data users

care only about their long term time average resource allocation. The objective

function of OPT-D(S) also indicates that the constant pV controls the tradeoff

between QoE delivered to video clients versus that delivered to the data users under

an optimal solution. Also, note that if there are no video clients (i.e., N is empty),

the above objective corresponds to that of a network carrying out fair resource

allocation to the data users where the fairness is implicitly decided by the choice

of functions
(
UDj

)
j∈ND

. In particular, if UDj is log(.) for each j ∈ ND, then the

resulting allocation is proportionally fair. The above discussion also sheds light on an

important property of the resource allocation component in NOVA that it requires

only a simple modification of legacy schedulers like proportionally fair schedulers,

and hence is well suited for use in current networks.

4.4 NOVA implementation considerations

In this section, we discuss implementation considerations related to NOVA focusing

on the resource allocation component of NOVA in Subsection 4.4.1, and the quality

160



adaptation component of NOVA in Subsection 4.4.2.

4.4.1 Discrete network resources

In many practical settings, the set of feasible resource allocations in a slot is discrete.

For instance, the basic unit of resource allocation in LTE is a Resource Block (RB)

which comprises several OFDM sub-carriers for a given time slot, and an RB can

be assigned to at most one video client. In such cases, we can use a discrete approx-

imation RNOVA-DISCRETE(bk, ck) of RNOVA(bk, ck) given below to obtain the

resource allocation in slot k:

max
r

∑
i∈N

hBi (bi,k) ri

subject to r ∈ Rdiscreteck
,

where Rdiscreteck
is the discrete set of permissible (i.e., permitted by the practical

constraints) resource allocation vectors satisfying the allocation constraint ck for slot

k. In many practical settings, allocation constraints are essentially linear, and hence,

we can obtain computationally efficient approaches to solve the discrete convex

optimization problem RNOVA-DISCRETE(bk, ck) by exploiting the linearity of the

objective and constraint functions. We consider an example of this in Section 4.7

where we obtain the optimal solution (and not just a good solution) to the above

problem by just finding the maximum of N scalars.

4.4.2 Video client implementation considerations

Discrete quality adaptation

In Chapter 3, we assumed that we have a continuous set of quality choices for each

segment. However, in practice, video segments are only available in a finite num-

ber of representations. Thus, we modify the optimization problem QNOVAi(θi, fi)
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associated with the adaptation in NOVA as follows: the representation chosen for

segment s of video client i is the one with quality equal to the optimal solution to

QNOVAi-FINITE(θi,s, fi,s,Qi,s) given below

max
qi

φQ (qi,θi,s, fi,s)

subject to 0 ≤ qi ≤ qmax,

qi ∈ Qi,s,

where we have modified QNOVAi(θi,s, fi,s) by imposing an additional restriction

that the quality should be picked from the set Qi,s of available quality choices for

segment s of video client i. For instance, if segment 10 of video client 1 has 4

representations of sizes 200, 300, 500 and 1000 kb with the corresponding quality

measurements being DMOS values equal to 38, 48, 62 and 83 respectively, then

Q1,10 = {38, 48, 62, 83}, and f1,10(38) = 200 kbps, f1,10(48) = 300 kbps etc.

When using QNOVAi-FINITE(θi,s, fi,s,Qi,s) for adaptation, extra care is

needed while choosing the function UVi (which in turn decides the penalty for vari-

ability) due to the structure of the objective function

φQ (qi,θi, fi) =
(
UEi
)′ (

µi − UVi (vi)
) (
qi −

(
UVi
)′

(vi) (qi −mi)
2
)

− hBi (bi)(
1 + βi

)fi (qi)−
pdi h

D
i (di)

pi
fi (qi) ,

This is because a very high value of (UVi )′ could potentially inhibit the above discrete

approximation of NOVA’s adaptation from selecting representations that correspond

to quality choices greater than mi. This is especially the case when the number of

quality choices is small. This happens due to the fact that the term (qi −mi)
2 could

be large for quality choices in the discrete set Qi,s that are larger than mi,s.

Quality adaptation using QNOVAi-FINITE(θi,s, fi,s,Qi,s) can be efficiently
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carried out as it involves a simple task of evaluating the objective function for a few

quality choices.

Choice of ε, (hBi (.))i∈N and (hDi (.))i∈N

The choice of the constant ε, and the functions (hBi (.))i∈N and (hDi (.))i∈N used

in NOVA can have a significant impact on the convergence and tracking ability of

NOVA operating in non-stationary regimes involving short duration videos, discrete

quality adaptation (discussed above) etc. Although choosing small ε is beneficial for

long videos, it can significantly affect the performance (initial transient and tracking

ability) of NOVA for short videos. We have observed that choices of ε in the range

0.05 to 0.1 typically work well, and often a good choice can be made using trial and

error for the system under consideration.

Setting (hDi (.))i∈N as linear functions, with the scaling obtained using trial

and error, worked well in our simulations. Good choices of the scaling depend on

certain features of QR tradeoffs (of the videos) like their first and second order

derivatives (or first and second order differences in the case of discrete quality adap-

tation). This dependence follows from the dependence of the quality adaptation on

the first order derivatives of the QR tradeoffs (see (3.32) of Chapter 3).

Unlike in the case of the choice of (hDi (.))i∈N where (simple) linear functions

were enough, we used hBi (.) that have the following structure in Section 4.6 (see

(4.6)):

hBi (bi) = hi,0

(
bi

0.05
+ max

(
bi − hi,1

0.05
, 0

)2
)
,

with carefully chosen constant hi,0. Also, note that the constant 0.05 corresponds

to ε associated with NOVA updates. The linear structure of hDi (di,k) was enough to

meet the average cost constraints in NOVA, whereas the above structure of hBi (bi,k)

allows NOVA to meet average rebuffering constraints (i.e., (3.12) which requires that
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rebuffering be asymptotically negligible) and a stronger per-slot requirement (unlike

the ‘average requirement’) that there is no rebuffering; we explain this below. The

constant hi,1 is picked to be equal to or (a bit) greater than bi,0 − 20 (where bi,0 is

the initialization of the parameter bi,k) so that hBi (bi) increases more quickly (i.e.,

quadratically) when bi
ε is close to

bi,0−20
ε , and is very large when bi

ε is close to
bi,0−5
ε so

as to force QNOVA to select lower quality representations. This feature of QNOVA

is desirable since (we have argued the following in Section 3.4 of Chapter 3 after

presenting the algorithm NOVA)

bi,k
ε
− bi,0

ε
≈

(
kτslot(
1 + βi

) −Duration of video downloaded till now

)
.

For instance, if βi = 0 (i.e., video client i prefers not to see any rebuffering), then our

choice of hi,1 ensures that hBi (bi) is large when the playback buffer has video content

of duration less than 5 seconds (i.e., bi
ε is close to

bi,0−5
ε ) so that QNOVA starts to

pick lower (if not lowest) quality representations. This was our main motivation for

using hBi (bi,k) with the above structure, and setting hi,1 ≈ bi,0 − 20.

Good choices of the constant hi,0 depend again on the characteristics of the

QR tradeoffs like the first and second order derivatives (as in the case of good scaling

constants for (hDi (.))i∈N ), and we obtained them via trial and error for the system

under consideration.

Reducing startup delay and the frequency of rebufffering

Video client optimization also requires attention to issues like reduction of frequency

of rebuffering events and playback startup delay. Frequency of rebuffering events

can be reduced by forcing the video client to delay the resumption of playback after

a rebuffering event until there is sufficient amounts of video content in the playback

buffer.
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We can reduce the start up delay by appropriately choosing the initial con-

ditions. For instance, we can pick large values for bi∗,0, and small values for mi∗,0

(recall that bi∗,0 and mi∗,0 denote the initialization of parameters bi∗,k and mi∗,s

used in NOVA) to encourage selection of representations with smaller size so that

they are downloaded quickly at the beginning. An evolution of NOVA’s parameters

using such an initialization is depicted in Figure 4.1 where we see that, in the be-

ginning, large bi∗,0 and small mi∗,0 encourages the selection of representations with

lower STQ and thus, smaller size.

Playback buffer limits

In practical systems, we might have to operate NOVA under an additional con-

straint on the size of the playback buffer. Hardware limitations on memory could

be a reason for this constraint although the latest smartphones, tablets, laptops etc

have plenty of memory and memory limitations are no longer a major concern in

the design of video clients. However, it is interesting to note that even data deliv-

ery cost considerations can force us to impose this constraint especially when the

chances of video client abandonment are high, i.e., the possibility of a video client

terminating the video playback without viewing the entire video is high. For in-

stance, suppose that we do not impose any constraint on the size of playback buffer,

and hence there are no constraints on the amount of video data downloaded by the

video client that has not been viewed yet. Then, if the video client receives very

high resource allocation (that is well above even the largest compression rates of

available representations), then QNOVA will aggressively download the video seg-

ments exploiting the good resource allocation. But, all the downloaded data would

be wasted if there is a video client abandonment. In such a scenario, the video client

and/or content provider might have to pay for the delivery of these wasted (i.e., not

viewed) segments. Thus, high data delivery costs and video client abandonment
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concerns would motivate the use of playback buffer limits for some types of content.

Note that there is an interesting tradeoff between the size of the playback

buffer (small buffers might reduce wastage of video data in the event of a video

client abandonment) and the ability of QNOVA (and other adaptation algorithms)

to exploit periods of good resource allocation. For instance, consider a user running

a video client on a mobile that is moving away from a base station in a cellular

network so that the user initially sees better wireless channels but they are declining.

Imposing a playback buffer limit will adversely impact the ability of the video client

to exploit high initial resource availability. Therefore, we conclude that it may be

useful to impose limits on playback buffer size, and this has to be carefully chosen

after taking into account the data delivery costs, and the possibility of video client

abandonment etc.

In the presence of limits on the size of playback buffer, we can modify QNOVA

to slow down the rate of segment download when capacity is abundant. A simple

modification would be to stop segment download requests once a playback buffer

limit is reached. A better modification would use a ‘smoother’ approach where we

keep reducing the segment download rate as we approach the playback buffer limit,

for e.g., we could force QNOVA to delay the next segment download request by a

duration proportional to

max

(
1

PBlim − PBcur
− 1

0.5PBlim
, 0

)

where PBlim is the playback buffer limit and PBcur is the current state of the

playback buffer. This would ensure that QNOVA slows segment download rate once

the playback buffer is large enough, (i.e., greater than 0.5PBlim), and stops once it

reaches the limit.

Note that under NOVA, the issue of wastage of data under video client

abandonment is mainly relevant in scenarios where the network resource allocation
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is exceptionally high. This is due to the fact that QNOVA will switch to higher

quality representations under high resource allocation, and hence, excessive buffering

of video data can occur only when average resource allocation is consistently higher

than average compression rate of the largest representations (or if the video client

has set βi in NOVA less than zero).

Video playback pauses

If a video client i ∈ N pauses the playback of a video, then we stop the use of update

rule (3.20) which increments the value of the variable bi,k, and resume the use of the

update rule when the video client resumes its playback. Recall that (see Section 3.4)

bi,k serves an indicator of risk of violation of rebuffering constraints of video client i,

and a large value of bi,k would force the selection of low quality representations by

the video client and ensure higher priority in resource allocation to the video client.

Hence, by temporarily pausing the use of update rule (3.20), we ensure that we are

not unnecessarily forcing the video client to lower its quality or forcing the network

controller to give higher priority to a paused video client.

We can use the same idea of temporarily pausing the use of update rule (3.20)

when the content provider inserts ads during the playback of a video.

4.5 NOVA in stochastic networks

Till now, we focused on networks with a static number of video clients (since the

set N considered in Chapter 3 is a fixed set) and data users. An important feature

of real world networks will be dynamics in the number of video clients. Motivated

by this, in this section, we study stochastic networks where video clients arrive into

the network, utilize network resources to stream video content, and depart.

We start by exploring some of the new challenges associated with video

delivery optimization problem in stochastic networks. Recall that we formulated
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the video delivery optimization problem in Chapter 3 as an optimization problem

OPT-BASIC. Similarly, we could formulate video delivery optimization problem

in stochastic networks as the following ‘stochastic’ extension OPT-BASIC-STOCH

associated with a time window of K slots:

max
1

|N [0,K]|
∑

i∈N [0,K]

UEi (Mean Qualityi −Quality Variabilityi)

subject to Rebufferingi, Costi, and Stochastic Network constraints,

where N [0,K] is the set of video clients who arrive into the network during the K

slots. Note that the new objective is the average of UEi of the QoE of video clients

utilizing the network resources during the K slots, where the functions UEi implicitly

decide fairness in the delivery of QoE to the video clients. The stochastic network

constraints reflect the network resource allocation constraints associated with the

time varying number of video clients in different slots, and this video client dynamics

introduces another potential source of variability in network resource allocation.

Solving OPT-BASIC-STOCH presents new challenges due to the video client

dynamics considered in the formulation. Firstly, note that the time duration (i.e.,

the number of slots) that a video client spends in the network can depend on the re-

source allocation to it. For instance, a video client receiving high resource allocation

over many slots could leave the network early after downloading all the segments of

its video before the completion of video playback. However, even if we ignore this

dependence on resource allocation (this dependence will be negligible if there are suf-

ficient choices of representations for segments and the quality adaptation algorithm

responds to very high or very low resource allocation by appropriately adjusting

the effective rate of download of segments), there are issues related to video client

dynamics that need to be carefully tackled. For instance, consider a video client i∗

that arrives into the network at time slot k and leaves the network at time slot k.
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Now, let N1 denote the set of video clients in the network after the arrival of video

client i∗ in slot k, and we refer to this set as the state of the network in slot k. Sup-

pose that the state of the network does not change until slot 0.5
(
k + k

)
, and (the

arrival/departure of another video client causes) the network state changes to N2 in

slot 0.5
(
k + k

)
(for simplicity, assume that this is an integer), and suppose that the

network state remains the same until slot k (when video client i∗ leaves). Suppose

the video client downloads S1 segments until slot 0.5
(
k + k

)
, and S2 segments in

the remaining slots. Then,

Var
(

(qi∗,s)1:(S1+S2)

)
=

S1Var
(

(qi∗,s)1:(S1)

)
S1 + S2

+
S2Var

(
(qi∗,s)(S1+1):(S1+S2)

)
S1 + S2

+
S1

(
Mean

(
(qi∗,s)1:(S1)

)
−Mean

(
(qi∗,s)1:(S1+S2)

))2

S1 + S2

+
S2

(
Mean

(
(qi∗,s)(S1+1):(S1+S2)

)
−Mean

(
(qi∗,s)1:(S1+S2)

))2

S1 + S2
,

where

Mean
(

(qi∗,s)1:(S)

)
=

1

S

S∑
s=1

qi∗,s,

Var
(

(qi∗,s)1:(S)

)
=

1

S

S∑
s=1

(
qi∗,s −Mean

(
(qi∗,s)1:(S)

))2
.

From the above expression, we see that Var
(

(qi∗,s)1:(S1+S2)

)
(and hence the QoE) of

the video client i∗ is a complex function of resource allocation and quality adaptation

associated with the various network states seen during its stay in the network, for

e.g., note that S1 and S2 depend on the resource allocation to the video client i∗

during
[
k, 0.5

(
k + k

)]
and

[
0.5
(
k + k

)
, k
]

respectively which in turn depend on the

network states N1 and N2 respectively associated with these time windows. This

observation suggests that a direct extension of the approach in Chapter 3, which

is based on considering a static network (or a single network state), is difficult.
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However, this can be done under additional assumptions on the nature of video

client dynamics and its impact on the stochastic network constraints, and this is the

focus of most of the rest of this section.

Although a theoretical analysis of the performance of NOVA in stochastic

networks is difficult without additional simplifying assumptions, the following three

features of NOVA suggest that we can expect it to perform well in stochastic net-

works also.

1. Adaptation in NOVA is optimal and insensitive to resource alloca-

tion: This property, explored in Section 4.2, essentially guarantees that the

adaptation in NOVA is optimal as long the resource allocation can be mod-

eled as a stationary ergodic process. Thus, if the video client dynamics results

in a resource allocation to the video clients which is stationary ergodic, the

quality adaptation in NOVA will perform well. However, this argument can-

not be extended to argue optimality of resource allocation under video client

dynamics.

2. The tracking ability of NOVA: Although NOVA was studied for scenarios

where a fixed set of video clients see stationary variations in capacity and

video QR tradeoffs, NOVA has tracking ability built into it which allows it

to perform well in non-stationary regimes. Such non-stationary regimes could

include networks with video client dynamics, settings where the video and/or

channels exhibit non-stationary behavior etc. The tracking ability follows from

the structure of the update rules for the parameters used in NOVA where the

current decision is weighted by ε. For instance, consider the update rule (3.21)

for NOVA parameter mi,si repeated below:

mi,si+1 = mi,si + ε
(
UEi
)′ (

µi − UVi (vi)
) (
UVi
)′

(vi)

(
li,si+1

λi,si
q∗i,si+1 −mi,si

)
.
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Recall that the parameter mi,si is responsible for tracking the mean quality of

video client i. This rule keeps updating the value of the estimate of mean based

on the quality q∗i,si+1 of the current segment under consideration. The choice of

ε decides the impact of the current quality q∗i,si+1. Similarly, we can identify

the impact of current decisions on other NOVA parameters. This influence

of current information allows NOVA to track and adapt in non-stationary

settings. Further, we can control the tracking ability by controlling ε since we

can increase the impact of current decisions on the update, and thus on the

tracking ability, by increasing ε. However, note that an excessively high value

of ε can degrade the performance of the algorithm, as NOVA parameters will

not be able to converge due to their evolution being swayed by even small

changes in the network.

3. Optimal for static setting: NOVA comes with strong optimality guarantees

for a static setting with a fixed set of video clients. This, along with the

tracking ability discussed above, suggests that we can expect good performance

under certain assumptions on the video client dynamics. For instance, this

would be the case if the video client dynamics were ‘slow’. We discuss this in

more detail below.

We start with a discussion about an extension of the model in Chapter 3

to a stochastic setting. We index the video clients in the order of their arrival to

the network using the variable j ∈ N. Let N (k) denote the set of indices of video

clients supported by the network during slot k, and we refer to this as the state of

the network in slot k. Also, let N(k) = |N (k)|. Let H∗N (k) denote the set of optimal

NOVA parameters defined in (3.88) associated with network state N (k). To see

some of the issues arising in a dynamic setting, consider Fig. 4.2 which illustrates a

typical evolution of distance d
(

Θ̂NOV A(k),H∗N (k)

)
between current value of NOVA

parameters Θ̂NOV A(k) to the current set of optimal NOVA parameters H∗N (k).The
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time slots indices (kj)j≥1 indicated in the figure correspond to time slots in which

there is change in the state of the network due to an arrival or departure of a video

client. Recall that Theorem 3.4 of Chapter 3 ensures that Θ̂NOV A(k) converges

Figure 4.2: A typical evolution of distance of NOVA parameters Θ̂NOV A(k) from
optimal set H∗N (k) of parameters under video client dynamics

to a neighborhood of H∗N (k) over time. However, a change in the state of the

network will typically result in a new optimal set of parameters, and this causes

the abrupt increase in d
(

Θ̂NOV A(k),H∗N (k)

)
at time slots (ki)i≥1. This increase in

the ‘distance from optimality’ will be less pronounced if variations in the network

state are typically small, and if the impact of small variations in network state on

performance of NOVA is small. We explore this property in the rest of this section,

and identify scenarios where we can expect this to hold.

To simplify the notation in the rest of this section, we assume that the

segment lengths of all the video clients are fixed and are equal to l. The arguments in

this section can be extended to settings with heterogeneous variable-length segments.

In the rest of this section, we impose an additional constraint on the structure of

the allocation constraint. Specifically, in each slot k, the resource allocation to the
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current set of video clients N (k) must satisfy

∑
j∈N (k)

cj(rj) ≤ c, (4.1)

where c is a positive constant representing the cumulative capacity in the system,

cj is a function picked from a finite set Cu of convex functions where each element

is a function that maps video client resource allocation to its impact on the alloca-

tion constraint. We refer to these as video client capacity consumption functions.

Thus, we are assuming that the allocation constraints are video client-separable,

i.e., the impact of capacity consumption of a video client on the allocation con-

straint is additive. This additivity is satisfied if the network resource (in a slot)

comprises orthogonal sub-resources (like in TDMA, FDMA, OFDMA etc) and is

typically not satisfied if we do not have orthogonality (for instance, see Gaussian

Multiple Access Channels with joint decoding in [13]). Later, we use this separa-

bility along with assumptions on independence of evolution of capacity functions to

argue that the cumulative capacity consumption of a large number of video clients

scales approximately linearly in their number. We also assume that Cu satisfies (nat-

ural modification of) the assumptions on allocation constraint functions discussed

in Section 3.2, and in particular, they are convex increasing functions. Also, let F

denote a finite set of QR tradeoffs such that each QR tradeoff picked from this set

satisfies the assumptions made on QR tradeoffs in Section 3.2. In particular, each

QR tradeoff is a convex increasing function.

To facilitate the analysis of the stochastic setting, we divide the set of video

clients associated with the network into classes. Let M denote the set of all classes

of video clients, and we assume that this set is finite. Let m(j) denote the class of

the video client with index j. All the video clients of a given class have the same

video client preferences and QoE model so that βj1 = βj2 , pj1 = pj2 and UVj1 = UVj2

for any video client indices j1 and j2 such that m(j1) = m(j2). Also, UEj1 = UEj2
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for any video client indices j1 and j2 such that m(j1) = m(j2) so that all the video

clients of a given class are subject to same fairness considerations.

The probability law for the evolution of QR tradeoffs and the video client ca-

pacity consumption functions associated with a video client depends only on its class.

Associated with each class m ∈ M are two probability distributions
(
πFm (f)

)
f∈F

and
(
πCum (c)

)
c∈Cu defined on the sets F and Cu. The evolution (Fj,s)s≥0 of QR trade-

offs of the jth video client is modeled as a stationary ergodic process with marginal

distribution
(
πFm(j) (f)

)
f∈F

. Let cjk denote the video client capacity consumption

function for slot k associated with video client with index j. The evolution (Cjk)k of

video client capacity consumption functions of the jth video client (of class m(j)) is

modeled as a stationary ergodic process with marginal distribution
(
πCum(j)(c)

)
c∈C

.

Let Nm(k) denote the set of indices associated with the video clients of class

m ∈ M present in the network during slot k, and let Nm(k) = |Nm(k)|. Consider

the optimization problem OPTSTAT(k), obtained by modifying the optimization

problem OPTSTAT from Section 3.5.1 to account for the network state N (k), which

is given below:

max
((qm(f))f∈F)

m∈M
,((rm(c))c∈Cu)

m∈M

∑
m∈M

Nm(k)UEm

(
Em [qm (F π)]

−UVm
(
Em
[
(qm (F π)− Em [qm (F π)])2

]))
subject to

∑
j∈N (k)

cj
(
rm(j) (cj))

)
≤ c, ∀ (cj)j∈N (k) ∈ CN (k)

u , (4.2)

qm (f) ≥ 0, ∀ f ∈ F , ∀ m ∈M,

qm (f) ≤ qmax, ∀ f ∈ F , ∀ m ∈M,

rm (c) ≥ ri,min, ∀ c ∈ Cu, ∀ m ∈M,

pdm
Em [F π (qm (F π))]

pm
≤ 1,∀ m ∈M,

Em [F π (qm (F π))](
1 + βm

) ≤ Em [rm (Cπ)]

τslot
,∀ m ∈M.
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where Em[.] denotes the expectation with respect to the
(
πFm (f)

)
f∈F associated

with class m ∈M. Thus, we have adapted the optimization problem OPTSTAT to

obtain OPTSTAT(k) in which our goal is to find optimal quality choices qm (f) for

f ∈ F and resource allocation to the video clients rm (c) for c ∈ Cu, for each class

m. Hence, (rm (c))c∈Cu is a class specific resource allocation policy, which prescribes

a video client resource allocation of rm (c) to a video client with capacity function

c ∈ Cu (in a given slot), and hence could result in different resource allocation in a

slot to video clients of the same class with different capacity consumption functions.

Similarly, we can view (qm (f))f∈F as a class specific quality adaptation policy.

One of the main goals of this section is to argue that NOVA has continuity

properties with respect to the state of the network so that various quantities asso-

ciated with NOVA do not change significantly for small changes in network state,

and we establish this by studying continuity properties of an optimization problem

OPTSTAT-HT(k) presented in the sequel which is obtained as an approximation

of OPTSTAT(k). The continuity properties of OPTSTAT(k) are difficult to ana-

lyze especially due to (4.2) where the number of constraints depends exponentially

on N (k). Hence, we study an approximation of OPTSTAT(k) for a heavy traf-

fic regime. We consider a heavy traffic regime with network states NΛ
m(k) where∣∣NΛ

m(k)
∣∣ = Λ |Nm(k)| for each m ∈ M so that the number of video clients in the

network is scaled up by Λ, and we scale down the video client capacity consump-

tion functions by Λ. That is, to accommodate the scaling up of video clients, we

expand the capacity region by assuming that the video client capacity consumption

functions take values in the set

CΛ
u =

{ c
Λ

: c ∈ Cu
}
,

i.e., the set of video client capacity consumption functions obtained by scaling the
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video client capacity consumption functions in the original set Cu. Also, let

αm(k, c) =

∑
j∈NΛ

m(k) I(cjk = c)∑
m∈M |NΛ

m(k)|
, (4.3)

denote the fraction of video clients in slot k that are of class m and have video client

capacity consumption function c
Λ for some c ∈ Cu. Next, we make the following two

assumptions:

Assumption-UI: For each class m ∈ M, the evolution of video client capacity

consumption functions of the video clients of class m are independent.

Assumption-CF: For each slot k, the ratio of total number of video clients to Λ

is equal to N , and the fraction of video clients of a class m ∈M is equal to a fixed

constant πm.

The Assumption-UI is similar to that made in [32] which imposes a simple

model on the correlation of the video client capacity consumption functions across

video clients of the same class in any given slot. The Assumption-CF is essentially

an assumption on the arrival process and holding times associated with the video

clients of different classes. Although the assumption is very rigid and rarely holds

in any practical system, the conditions in the assumption are roughly satisfied if

the arrival processes are Poisson and holding times are exponentially distributed,

and if the holding times are scaled up by Λ (so that the video clients stay in the

network longer giving more time to ‘learn’ NOVA parameters associated with the

stochastic network). Under Assumption-UI and CF, we see that αm(k, c) converges

to a constant πmπ
Cu
m (c) for almost all sample paths since the evolution of the video

client capacity consumption functions is modeled as a stationary ergodic process.

Motivated by this observation, we modify Constraint (4.2) in OPTSTAT(k) as given
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below:

N(k)
∑
c∈Cu

∑
m∈M

αm(k, c)c (rm (c))) ≤ c. (4.4)

Hence, instead of requiring that constraints in (4.2) are met for each (cj)j∈NΛ(k) ∈(
CΛ
u

)NΛ(k)
(where

(
CΛ
u

)NΛ(k)
corresponds to the set of all possible combination of ca-

pacity consumptions function realizations for slot k given the network state NΛ(k)),

we use the consequences of Assumptions UI and CF and only require that only an

approximate version of (4.2) is satisfied.

We now define a new optimization problem OPTSTAT-HT(k) with objective

max
((qm(f))f∈F)

m∈M
,((rm(c))c∈Cu)

m∈M

∑
m∈M

∑
c∈Cu

N(k)αm(k, c)UEm (Em [qm (F π)]

−UVm
(
Em
[
(qm (F π)− Em [qm (F π)])2

]))
and with same constraints as OPTSTAT(k) except for (4.2) replaced by (4.4).

Then, we have the following continuity result regarding the optimal solution and

Lagrange multipliers associated with OPTSTAT-HT(k) with respect to the param-

eters
(
(α′m(k, c))c∈Cu

)
m∈M defined as α′m(k, c):=N(k)αm(k, c) for each c ∈ Cu and

m ∈M.

Lemma 4.1. The optimal value of the objective of OPTSTAT-HT(k) is a continuous

function of
(
(α′m(k, c))c∈Cu

)
m∈M.

Proof. The proof follows from Theorem 2.1 in [16].

Using Theorem 3.2, Corollary 3.1 and Lemma 3.2 (a) of Chapter 3, we can

argue that the NOVA’s performance is tied to the optimal value of OPTSTAT(k)

and hence (roughly) to that of OPTSTAT-HT(k). Hence, using the above result, we

can also argue that the limiting behavior of NOVA’s performance is continuous in
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(
(α′m(k, c))c∈Cu

)
m∈M. This observation along with the fact that αm(k, c) is approxi-

mately πmπ
Cu
m (c) and N(k) is approximately N for almost all slots, suggests that the

video client dynamics in the network only causes small changes in the performance

of NOVA, and that the performance is usually close to that the optimal value of

OPTSTAT-HT(k) obtained with α′m(k, c) set to Nπmπ
Cu
m (c).

4.6 Performance evaluation of NOVA via simulation

In this section, we carry out an evaluation of NOVA using Matlab simulations to

compare the performance of a wireless network operating under NOVA vs one using

Proportionally Fair (PF) network resource allocation (see [30]) and quality adapta-

tion based on Rate Matching (RM). We discuss PF and RM in detail below. The

main objective of this section is to use the simulation results to answer questions

like:

� What are the typical gains under NOVA? In particular, we are interested in

the following questions:

– What are the typical capacity gains (defined later)?

– How does NOVA perform in terms of rebuffering?

– How do price constraints affect the gains?

– Does NOVA penalize mean quality by too much to reduce variability in

quality?

– Is NOVA fair?

� What is the loss in the performance of NOVA (and for that matter, any good

adaptation algorithm utilizing information about QR tradeoffs) in the absence

of accurate QR tradeoffs? In particular, we are interested in the following

questions:
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– What is the reduction in performance if we have access only to partially

accurate QR tradeoffs, e.g., those based on less sophisticated video quality

assessment metrics like PSNR or if we just know ‘averaged’ QR tradeoffs?

– What is the reduction in performance if we do not have any information

about QR tradeoffs?

4.6.1 Simulation setting

We consider a wireless network with τslot = 10 msecs, and with allocation constraints

of the form ck (rk) =
∑

i∈N
ri,k
pi,k
− 1 in each slot k, where pi,k denotes the peak

resource allocation for video client i in slot k, i.e., if we only allocate resources to

video client i in slot k, then ri,k = pi,k is the maximum resource allocation to the

video client that does not violate the allocation constraint in the slot. To obtain

traces of peak resource allocation for the video clients, we generated 300 sequences

of length 150000 each using Markov Chain Monte Carlo method, in such a way that

the values in consecutive slots are positively correlated (the positive correlation

reflects the correlation of the wireless channel in adjacent slots) and the marginal

distribution of the stationary process is that of an appropriately scaled version of

the sequence is equal to a distribution which is representative of capacities seen by

a randomly placed wireless user with single antenna equalizer in an HSDPA system

with 50% load (and thus associated interference) from its neighbors 1.

Unless mentioned otherwise, in our simulations, we consider settings with

heterogeneous channels: we uniformly and at random pick a sequence for each video

client from the 300 sequences, scale the sequence by a uniformly distributed random

number in the range [0.5, 1.5], and use the scaled sequence as the peak resource

allocation seen by the video clients over 15000 slots. Thus, a video client with

random scaling close to 0.5 sees the worst wireless channel on average, whereas one

1This data was provided by a service provider and is based on a simulation framework for such
a system.
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with random scaling close to 1.5 sees the best. We also present simulation results

for a setting with homogeneous channels later in the section. In the setting with

homogeneous channels, we uniformly at random pick a sequence for each video client

from the 300 sequences and just use the sequence (without any additional scaling)

as the peak resource allocation seen by the video clients.

Under PF, network resource allocation in slot k is an optimal solution to

max
r

{∑
i∈N

ri
ρi,k

: ck (r) ≤ 0, ri ≥ ri,min ∀ i ∈ N

}
(4.5)

where the parameters (ρi,k)i∈N track the mean resource allocation to the video

clients, and are updated using (3.73) with ε set to 0.01 (this is a good choice since

ρi,k is getting updated at a high rate of once every τslots = 10 msecs).

In our simulations, we consider video clients downloading different parts of

three open source movies Oceania (about 55 mins long), Route 66 (about 100 mins

long) and Valkaama (about 90 mins long). The movies Oceania and Valkaama are

compressed at rates 0.1, 0.2, 0.3, 0.6, 0.9 and 1.5 Mbps, with segments of duration

1 second each (hence, each segment is available in six representations). The movie

Route 66 is compressed at rates 0.1, 0.2, 0.3, 0.6 and 0.9 Mbps, with segments of

duration 1 second each (hence, each segment is available in five representations).

Unless mentioned otherwise, in each simulation, video clients pick a movie and

starting segment (index) for the movie at random, and start downloading the rest of

the movie from that segment onwards. A video client on reaching the last segment

of a movie continues viewing the movie from the first segment. We measure STQ of

a representation using a proxy for DMOS (Differential Mean Opinion Score) score

(see [36] for a discussion on DMOS) associated and mapping: STQ=100-DMOS. We

chose this mapping as it roughly maps the proxy DMOS scores to the range [0, 100],

and an increase in STQ (unlike that for DMOS) corresponds to an improvement

in quality. The proxy DMOS score for a representation is obtained from the value
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of the video quality assessment metric MSSSIM-Y (see [55]) associated with the

representation, by using the following mapping (obtained from the model used in

[46]): DMOS = 13.6056 × log(1 + (1 −MSSSIM-Y)/0.0006). The MSSIM-Y value

of each segment was obtained as the average MSSIM-Y of the constituent frames

obtained using the code given in [1]. To summarize, the QR tradeoffs used in

our simulations map STQ values (obtained essentially from MS-SSIM metric) for

five/six representations (each one second long) to its associated compression rate.

Recall that this compression rate also accounts for the size of overheads due to

metadata. The diversity of QR tradeoffs associated with these movies is illustrated

in Figs. 4.3-4.5.

Till now, we assumed that we have a continuous set of quality choices for

each segment. However, in practice, video segments are only available in a finite

number of representations, and this is also the case with QR tradeoffs we obtained

for the three movies. Thus for our simulations, we modify the optimization problem

QNOVAi(θi, fi), used in quality adaptation of NOVA, by imposing an additional

restriction that the quality for segment s of video client i is picked from the finite

set Qi,s of available quality choices associated with the segment. We discuss this

modification in more detail in Subsection 4.4.2 of Chapter 4.

In quality adaptation based on RM (Rate Matching), the video client essen-

tially tries to ‘match’ the compression rate of the selected representation to (current

estimate of) mean resource allocation in bits per second, and further modifies the

selection to respond to the state of the playback buffer. This is basic feature in

many compression rate adaptation algorithms, for instance, see [3] where (follow-

ing their terminology) we see that ‘requested bitrate’ (i.e., size of the representa-

tion) stays close to the ‘average throughput’ (i.e., ρi,k in our setting) in Microsoft

Smooth Streaming player and Netflix player. For each video client i ∈ N , the
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Figure 4.3: Diversity in QR tradeoffs of movie Route 66.

variables Icautiousi (k) and Iaggressivei (k) are used to enable RM to respond to low

and high playback buffer respectively. The variable Icautiousi (k) is set to one if in

slot k, the playback buffer has video content of duration less than 10 seconds and

is set to zero if the playback buffer has video content of duration greater than 15

seconds. The variable Iaggressivei (k) is set to one if in slot k, the playback buffer
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Figure 4.4: Diversity in QR tradeoffs of movie Oceania.

has video content of duration greater than 30 seconds and is set to zero if the

playback buffer has video content of duration less than 25 seconds. The quality

adaptation in RM works as follows: if any video client i ∈ N finishes download of

(s − 1) th segment in slot k, we first find the representation with quality equal to

argmaxqi
{
qi ∈ Qi,s : fi,s(qi) ≤ 0.99ρi,k, p

d
i fi,s(qi) ≤ pi

}
, and let MRM,0

i,s denote the

index of this representation. We denote the index of the representation picked by
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Figure 4.5: Diversity in QR tradeoffs of movie Valkaama.

RM for segment s of video client i by MRM
i,s which is given by

MRM
i,s =


max

(
min

(
MRM,0
i,s + Iaggressivei (k)− Icautiousi (k),MRM

i,s,max

)
, 1
)
,

1, if playback buffer has video content duration less than 5 secs,

where M
RM
i,s is the number of representations available for segment s of video client
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i. Hence, RM picks a lower representation if Icautiousi (k) = 1 (i.e., when playback

buffer is low), picks a higher representation if Iaggressivei (k) = 1 (i.e., when playback

buffer is high), and picks the lowest representation when the risk of rebuffering is

high. Thus, RM meets the price constraint by ensuring that it is met for each

segment. While considering price constraints in our simulations, we let pdi = 0.01

dollars per bit, and explicitly indicate the price constraints by referring to RM as

RM(pi) when we have cost constraint pi for video client i.

.

For our simulations of NOVA, we let ε = 0.05 and ri,min = 0.001 bits. We

set UEi (e) = ei and UVi (v) = 0.05vi for each i ∈ N , and hence we only have to track

the parameters (mi,., bi,., di,.) in this implementation of NOVA. We let βi = 0 for

each i ∈ N , and consider settings with two types of price constraints: in the first

setting there are no price constraints, and in the second, each user i ∈ N has a price

constraint of pi = 3 dollars per second. While evaluating the rebuffering time in

the simulation results, we allow for a startup delay of 3 secs (which does not count

towards rebuffering time). For each i ∈ N , we chose hDi (di) = 10di and

hBi (bi) = hi,0

(
bi

0.05
+ max

(
bi − 20

0.05
, 0

)2
)
, (4.6)

with hi,0 = 0.005 (see Subsection 4.4.2 for a discussion about this choice of hBi (.)).

In all our simulations, we use the following initialization of NOVA parameters for

each i ∈ N : mi,0 = 25, bi,0 = 40
0.05 and di,0 = 1. Note that these initializations are

used in all simulations ranging from lightly loaded (e.g. N = 12) to heavily loaded

networks (e.g. N = 33), and for users seeing very good wireless channels to very

bad wireless channels. Given the challenge of operating in these diverse settings, we

enable NOVA to quickly ‘learn’ the setting by starting with larger values of ε for a

few slots and segments initially and we keep reducing it until it reaches 0.1.
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Each point in the plots discussed below is obtained by running the associ-

ated algorithm in 50 times where each simulation is run until all the users have

downloaded a video of duration at least 10 minutes (i.e., 600 segments). Each point

corresponds to a fixed number N of video clients in the network, and we vary N

over the set {12, 15, 18, 21, 24, 27, 30, 33}. We refer to the combination of PF

resource allocation and RM quality adaptation as PF-RM. To study the effectiveness

of the quality adaptation in NOVA, we also study the performance of PF-QNOVA

obtained by using PF resource allocation and the quality adaptation in NOVA. We

refer to the modification of NOVA, PF-QNOVA and PF-RM with price constraint

of 3 dollars per bit using the phrases NOVA(3), PF-QNOVA(3) and PF-RM(3) re-

spectively. While implementing NOVA(3) and PF-QNOVA(3) with price constraint

of 3 dollars per bit, we used a more stringent price constraint of 0.95× 3 to ensure

that the constraint is met for short videos (note that Theorem 3.1 guarantees that

the constraint will be met for long enough videos without any additional tightening

of the constraint).

4.6.2 Simulation results

In Fig. 4.6, we compare the QoE of the video clients under different algorithms,

where we measure QoE using the metric QoE1 which is the average across simulation

runs of

1

|N |
∑
i∈N

(
m600
i (qi)−

√
Var600

i (qi)

)
,

wherem600
i (qi)−

√
Var600

i (qi) is the metric proposed in [59] with the scaling constant

for
√

Var600
i (qi) set to unity (and m600

i (qi) and Var600
i (qi) are defined in (3.4) and

(3.5)).

On comparing QoE1 using Fig. 4.6, we see that NOVA performs much better

186



10 15 20 25 30 35
36

38

40

42

44

46

48

50

52
Q
o
E
1

N

NOVA
PF−QNOVA
PF−RM
NOVA(3)
PF−QNOVA(3)
PF−RM(3)

Figure 4.6: QoE1 gains from NOVA.

than PF-RM and PF-QNOVA, and in fact provides ‘network capacity gains’ of

about 60% over PF-RM, i.e., given a requirement on (user) average QoE1, we can

support about 60% more video clients by using NOVA than that under PF-RM. For

instance, if we consider the horizontal dashed line in Fig. 4.6 that corresponds to

an average QoE1 requirement of about 43, we see that PF-RM can only support

20 video clients while meeting this requirement whereas NOVA can support almost

33 video clients. Under price constraint (of 3 dollars per second) also, we see that

NOVA(3) provides network capacity gains of about 60% over PF-RM(3).

The gain from the adaptation component of NOVA is also visible in Fig. 4.6,

where we see that PF-QNOVA provides network capacity gains of about 25% over

PF-RM respectively.
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Figure 4.7: Reduction in rebuffering using NOVA.

The results in Fig. 4.7 depict the significant reduction in the amount of

time spent rebuffering under NOVA and NOVA(3). Using Figs 4.6-4.7, we see that

NOVA outperforms PF-RM in both the metric QoE1 and the amount of time spent

rebuffering which cover some of the most important factors affecting users’ QoE (see

the discussion in Section 3.1).

In Fig. 4.8, we compare the performance of different algorithms using another

metric QoE2 which is the average across simulation runs of

1

|N |
∑
i∈N

(
m600
i (qi)−

√
MSD600

i (qi)

)
,
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Figure 4.8: QoE2 gains from NOVA.

where

MSD600
i (qi) :=

1

600

600∑
s=1

(qi,s+1 − qi,s)2 .

Note that this metric is similar to the metric QoE1, except that it penalizes short

term variability in quality (i.e., variability across consecutive segments). From

Fig. 4.8, we see that NOVA provides gains similar to those in the case of the metric

QoE1 (in Fig. 4.6), By comparing QoE2, we see that NOVA and NOVA(3) provide

network capacity gains of about 50% over PF-RM and PF-RM(3) respectively.

The results in Fig. 4.9 show that the improvement in QoE1 and QoE2 under

NOVA does not come at the cost of significant reduction in mean quality. In fact, the

results suggest that NOVA has better mean quality (in addition to lower variability

in quality) in all but lightly loaded networks (i.e., N = 12). Also note that we can
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Figure 4.9: Mean quality gains from NOVA.

further increase the mean quality under NOVA (at the cost higher variability in

quality) if we scale down the functions
(
UVi
)
i∈N .

The results in Fig. 4.10 indicate that, when compared to PF-RM, NOVA is

more fair in QoE1 delivered to the video clients. Here, we measure fairness as (the

average across simulations of) the ratio of the difference between maximum and

minimum of QoE1 across users to the mean (across users of) QoE1. Although we

chose
(
UEi
)
i∈N to be linear functions, the fairness associated with NOVA in these

results can be attributed to the concavity of inverse of QR tradeoffs (i.e., convexity

of QR tradeoffs) and the structure of the objective function (see (3.18)) of the

optimization problem associated with quality adaptation. Further, from Fig. 4.11,

we see that NOVA(3) meets cost constraints (of 3 dollars per second).
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Figure 4.10: Fairness gains using NOVA.

We have depicted the results obtained using simulations for the setting with

homogeneous channels (see the discussion about the setting in the beginning of

this section) in Fig. 4.12. We see that the performance gains under homogeneous

channels are slightly higher than those in the case of heteregeneous ones.

To assess the value of knowing accurate QR tradeoffs, we carried out sim-

ulations for NOVA with STQ based on less sophisticated video quality assessment

metrics. In particular, we carried out simulations where we used the same QR trade-

off for all segments and this QR tradeoff was equal to the average of QR tradeoffs of

all segments of the movie being viewed by the video client. Thus, instead of using

segment level QR tradeoff information, we are using an approximation based on

long term features of the videos being viewed by the video clients. The results asso-
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Figure 4.11: NOVA meets cost constraints.

ciated with this setting is depicted using the curve NOVA-Avg-QR in Fig. 4.13. We

also carried out simulations using NOVA with STQ equal to PSNR, and the results

associated with this setting are depicted using the curve NOVA-PSNR in Fig. 4.13.

We picked hi,0 in (4.6) as 0.0025 for the simulations with STQ equal to PSNR.

In a setting, where we do not have any information about the QR tradeoffs, we

could use crude metrics like 10 log(Representation Size), and the results associated

with this setting are depicted using the curve NOVA-No-QR in Fig. 4.13. Although

NOVA-No-QR has (expectedly) the worst performance, we see that there is a signif-

icant reduction in performance (i.e., QoE1) when we do not have accurate segment

level QR tradeoff information, and further these reductions are not too different for

NOVA-Avg-QR or NOVA-PSNR when compared to that for NOVA-No-QR.
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We also compared the performance of NOVA, PF-QNOVA and PF-RM for

the movies Oceania, Route 66 and Valkaama separately, and these results are de-

picted in Figs. 4.14-4.16.

4.7 Implementing NOVA: An example

In this section, we discuss an example for an implementation of NOVA for a network

shared by video clients and data users. To simplify the exposition, we will make sim-

plifying assumptions. We also discuss the issues related to signaling requirements,

information exchange and complexity towards the end.

4.7.1 Setting

We consider a base station in a cellular network supporting a dynamic number of

video clients and data users, i.e., the base station is the network controller respon-

sible for network resource allocation. Let N (k) denote the set of video clients and

ND(k) denote the set of data users in the network in slot k. The priority given to

video clients is determined by the parameter pV > 0 (discussed in Section 4.3). Let

the duration of each slot be equal to τslot seconds and that of each segment be lseg

seconds.

In each slot k, let ck

(
(ri,k)i∈N (k)∪ND(k)

)
≤ 0 defined below

ck

(
(ri,k)i∈N (k)∪ND(k)

)
=

∑
i∈N (k)

ri
pi,k

+
∑

i∈ND(k)

ri
pi,k
− 1, (4.7)

describe the capacity region in slot k, where pi,k and pj,k denotes the peak rate seen

by video client i ∈ N (k) and data user j ∈ ND(k) respectively in slot k, i.e., pi,k is

the maximum rate that can be allocated to video client i ∈ N (k) in slot k when we
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allocate all the resources to this video client (and none to others). We assume that

the video clients have no cost constraints (so that we can ignore the variables di,s)

and that the QoE model is given by

eSi (qi) = mS
i (qi)− cvVarS (qi) ,

for some positive constant cv. Further, we set UEi (e) = e for each i ∈ N (k). Also,

let βi = 0 for each i ∈ N (k). We also set ri,min = 0 for each i ∈ N (and ignore the

requirement that it should be positive). For each data user j ∈ ND(k), we use the

following QoE model (see Section 4.3 for a discussion of this QoE model)

eKS ,dataj (rj) = mKS
j (rj) .

For the sth segment of video client i ∈ N (k), Qi,s is the (finite) set of

available quality choices for the segment and fi,s(q) denotes the compression rate of

the representation associated with a quality choice qi ∈ Qi,s (see Subsection 4.4.2

for a detailed discussion).

4.7.2 Detailed algorithm

As for the proportional fair scheduler, the base station uses ρj,k to track the mean

rate allocation to data user j ∈ ND(k). Since the update of variable bi,k requires the

knowledge of segment download completions (see the update rule (3.24) of NOVA),

the base station either has to be able look at the data stream of video clients to

infer segment download completions, or rely on signaling from the video clients

that indicate segment download completions. We focus on the latter setting in this

section. Let the base station store an current estimate bBi,k of bi,k for each video

client i ∈ N (k), and we discuss the update rule for this estimate in the algorithm

presented later in the section. Each video client i ∈ N (k) uses index si to track
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the number of segments downloaded by video client i ∈ N (k), the parameter mi,s

to track mean quality, and uses the parameter bi,k to obtain a proxy for the risk

of rebuffering. Thus, each video client i ∈ N (k) stores the current value of si, mi,.

and bi,.. The base station stores the current value of variable ρj,k for each data

user j ∈ ND(k) in addition to the current value of variable bBi,k for each video client

i ∈ N (k). The detailed algorithm is given below.

INIT: The base station initializes bBi,0 for each video client i ∈ N (k), and ρj,0 for

each data user j ∈ ND(k). Each video client i ∈ N (k) initializes mi,0 and bi,0. Let

si,0 = 1 for each video client i ∈ N (k).

In each slot k ≥ 0, carry out the following steps:

RNOVA-BS: At the beginning of slot k, base station estimates current capacity

region ck, and allocates rate r∗i,k to each video client i ∈ N (k) and r∗j,k to each data

user j ∈ ND(k), where
(
r∗i,k

)
i∈N (k)∪ND(k)

is an optimal solution to

max
r≥0

pV
∑

i∈N (k)

h(bBi,k)ri +
∑

j∈ND(k)

rj
ρj,k

(4.8)

subject to ck

(
(ri,k)i∈N (k)∪ND(k)

)
≤ 0, (4.9)

and update

bBi,k+1 = bBi,k + ε (τslot) , ∀ i ∈ N (k)

ρj,k+1 = ρj,k + ε
(
r∗j,k − ρj,k

)
, j ∈ ND(k).

RNOVA-VC: At the beginning of each slot k, each video client i ∈ N (k) updates
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bi,k as follows

bi,k+1 = bi,k + ε (τslot) , (4.10)

QNOVA-VC: During slot k, if any video client i ∈ N (k)v finishes transmission of

si th segment, the video client i sends an END-OF-SEGi to the BS, retrieves (this

should be locally available at this time) Qi,si+1 and fi,si+1 for the (s + 1)th (i.e.,

next) segment, and picks segment corresponding to quality q∗i,si+1 obtained using

q∗i,si+1 = argmaxqi∈Qi,si+1

(
qi − cv (qi −mi,si)

2 − h(bi,k)fi,si+1 (qi)
)

(4.11)

and update mi,si+1, bi,k+1 and si as follows:

mi,si+1 = mi,si + ε
(
q∗i,si+1 −mi,si

)
, (4.12)

bi,k+1 = bi,k+1 − ε (lseg) , (4.13)

si = si + 1.

BS-REC-SIG: On receiving END-OF-SEGi from video client i ∈ N (k), the base

station updates (overwrites)

bBi,k+1 = bBi,k+1 − ε (lseg) , (4.14)

Signaling required between the base station and video clients

Each video client i ∈ N (k) sends an END-OF-SEGi signal to the base station when

it completes downloading a segment. Here, END-OF-SEGi can be viewed as a
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control signal carrying ID of the video client sending it and data to indicate that

this is an END-OF-SEG control signal. When the base station receives the END-

OF-SEGi signal from video client i ∈ N (k), it updates bBi,k using (4.14). It can be

verified that the update mechanism along with the signaling ensures that bBi,k, which

is base stations’s estimate for bi,k, is equal to bi,k most of the time (except for the

time duration between sending END-OF-SEGi and the reception of the signal at

the basestaion). Note that if the segment lengths are variable, the video clients will

also have to send the length of the next segment being downloaded as it is required

(see 3.24) by the base station to update bBi,k+1.

Information flow

NOVA uses two types of ‘external’ data- (a) channel capacity data c., and (b) Qi,.

and fi,. for each video client i ∈ N (k). They are described in more detail below.

We assume that the base station knows (or knows with reasonable accu-

racy) the current value of ck for each slot k, e.g., the current value of peak rates(
(pi,k)i∈N (k) , (pj,k)j∈ND(k)

)
for each video client in each slot k. The video clients

could measure this and inform the base station.

For each video client i ∈ N (k), on completion of download of segment s, we

assume that video client knows Qi,s+1 and fi,s+1(.) for the s + 1th segment. One

simple way to ensure this is to make sure that when a video client starts downloading

a certain segment, the video client has requested the video server to ensure that video

server has sent Qi,. and fi,.(.) for the next few segments to the video client. Note

that this is not a difficult requirement to meet even for live videos (and clearly not

for stored videos). In the worst case, if this information is not available, then we

could use a concave function (e.g., log(.)) of the size of the segment as a proxy for

quality.

The flow of information across various layers of the network for this imple-
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mentation of NOVA is depicted in Fig. 4.17.

Complexity

The optimization problem used in resource allocation (described in (4.8)- (4.9)) is

a linear program. Further, we can exploit the structure of allocation constraints

given in (4.7) and linearity of objective, to show that will be carrying out optimal

resource allocation if we pick a video client or data user that has the highest value

a metric, and assign the peak rate to that video client or data user. The metric

for this setting is equal to pV h(bBi,k)pi,k for video clients i ∈ N (k), and
pj,k
ρj,k

for data

users j ∈ ND(k)).
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Figure 4.12: Performance gains using NOVA: Homogeneous channels.
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Figure 4.13: Value of knowing QR tradeoffs.
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Figure 4.14: Performance gains using NOVA: Streaming movie Oceania.

201



10 15 20 25 30 35
44

46

48

50

52

54

56

58

60

62

64

Q
o
E
1

N

10 15 20 25 30 35
0

0.5

1

1.5

2

2.5

3

3.5

A
ve
ra
g
e)
R
eb
u
ff
er
in
g
)(
se
cs
)

N

10 15 20 25 30 35
52

54

56

58

60

62

64

66

68

70

Q
o
E
2

N

NOVA
PF−QNOVA
PF−RM
NOVA(3)
PF−QNOVA(3)
PF−RM(3)

NOVA
PF−QNOVA
PF−RM
NOVA(3)
PF−QNOVA(3)
PF−RM(3)

NOVA
PF−QNOVA
PF−RM
NOVA(3)
PF−QNOVA(3)
PF−RM(3)

Figure 4.15: Performance gains using NOVA: Streaming movie Route 66.
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Figure 4.16: Performance gains using NOVA: Streaming movie Valkaama.
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Chapter 5

Future Directions

5.1 A general approach for classes of online stochastic

optimization problems

The work in this thesis suggests perhaps the possibility of a more general frame-

work for certain classes of online stochastic optimization problems. By identify-

ing the key properties that allowed the design of simple online algorithms for the

problem considered in Chapter 2, we can obtain insights into such generalizations.

These properties are not restricted to the specific application (i.e., realizing Mean-

Variability-Fairness Tradeoffs in network resource allocation) considered in Chapter

2, and we are exploring new applications for using the general framework.

The algorithms presented in this thesis are computationally lightweight, and

thus, can also be used in solving large offline stochastic optimization problems (such

as OPT(T ) considered in Chapter 2). We are also exploring the potential of our

algorithms (and their generalizations) as attractive alternatives for solving similar

large offline optimization problems.
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5.2 Extensions to optimization in stochastic networks

In this thesis, we mainly focused on developing algorithms (with optimality guar-

antees) for network settings involving a fixed number of users. However, many real

world networks are stochastic networks, i.e., there will be a time varying number

of users utilizing network resources due to arrival and departure of users. Further-

more, solutions obtained for a network with fixed number of users need not always

be optimal for stochastic networks, for e.g., [54, 39] point out that algorithms that

are throughput optimal for a network with a fixed number of users need not be so

in stochastic settings. Although we were able to study the performance of NOVA

under simplifying assumptions in Chapter 4, the problem of designing optimal algo-

rithms for stochastic networks to realize Mean-Variability-Fairness Tradeoffs is still

open.

5.3 Rate of convergence

In this thesis, we developed simple online algorithms which have strong optimality

properties under an appropriate convergence behavior. In our work, the theoretical

analyses were focused primarily on establishing convergence, and we studied issues

related to rate of convergence only using simulations. An important future direction

of work would be to explore the possibility of providing guarantees on rate of con-

vergence and how it is impacted by system characteristics, e.g., heterogeneity. This

in turn will provide an idea of the time required by these algorithms to ‘learn’ its

system and perform in an optimal manner. Further, ideas similar to those used in

Newton method (see Chapter 9 in [10]) and [58], that use second order properties of

the optimization problem may also be useful in developing algorithms with better

convergence rates.
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