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Two well-known approaches to reducing complexity in large-scale communication
networks are flow and network aggregation. Flow aggregation bundles together a
group of individual flows and jointly manages and switches them inside a network
or subnetwork. Network aggregation hierarchically groups network elements into
subnetworks and approximately represents each subnetwork’s state in a compact
form which reduces the overheads of information exchange in traffic management
algorithms.

In the flow aggregation area, we first explore the benefits of aggregating
multicast demands on Virtual Path (VP) trees. We show that this can effectively
reduce capacity requirements, balance network loads, and reduce the number of
VP trees required. Real networks have time-varying demands and finite signaling
resources, so we develop adaptive resource allocation algorithms for aggregated
flows subject to such constraints.

In some cases it is desirable to modify the manner in which flows are ag-
gregated (the VP layout), so we investigate algorithms to migrate from one layout
to another. For incremental changes, the potential for performance losses during
migration in terms of call blocking is minimal. However, when dramatic changes in
the VP layout are warranted, it is desirable to enhance performance by implement-
ing a simple decentralized algorithm that we have proposed.
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In the network aggregation area, we develop an implicit representation of the
congestion level of a subnetwork which is based on a distributed computation of the
average implied cost to go through or into the subnetwork. We prove that both a
synchronous and asynchronous computation of the implied costs will converge to
a unique solution under a light load condition, and an alternative, more aggressive
approximation based on additional local averaging will converge under any traffic
conditions subject to sufficient damping. Our experiments show that our costs are
indeed quite accurate.

Based on this representation for congestion, we propose a Quality of Service-
sensitive routing algorithm that is able to appropriately route high-level flows while
significantly reducing complexity. The algorithm uses effective bandwidths to cap-
ture traffic behavior, and it adaptively selects hierarchical routes so as to maximize
network revenue, while allowing low-level dynamic routing within subnetworks to
respond to traffic fluctuations.
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Chapter 1

Introduction

Aggregation, the collecting of units or parts into a mass or whole, is a well-known
technique for managing “complexity” in many types of large-scale systems [17].1

The aim of this dissertation is to advance the state of the art in applying aggregation
to large-scale communication networks in two domains: the aggregation of network
flows and network elements.

With flow aggregation, a group of individual flows is bundled together and
jointly managed and switched inside a network or subnetwork. By carefully ag-
gregating flows, we can allocate resources with tolerable losses in efficiency while
reaping such benefits as reduced call processing loads and simplified Quality of Ser-
vice (QoS) provisioning. However, because traffic demands fluctuate and network
resources are limited, resource allocations may need to be adapted over time. More
extreme changes in the demands may warrant migration to a new arrangement of
aggregated flows.

Network aggregation hierarchically groups network elements into subnet-
works and represents each subnetwork’s state in a compact form. This is done to
reduce overheads in controlling and managing the network traffic. Having a repre-
sentation which captures the congestion level of a subnetwork while taking traffic
interdependencies into account is useful both to network operators and to hierarchi-
cal routing algorithms.

Aggregation does have a downside: a possible loss in efficiency and/or ac-
curacy. We might ask if the growth in the complexity of communication networks

1We will use the term complexity to loosely discuss a variety of problems related to the number
of flows and/or size of future large-scale networks.
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really warrants its use? While the various players in the telecommunications busi-
ness are competing to determine how to realize the promises of the “information su-
perhighway,” there is no doubt that the network will be geographically widespread
and large in capacity. As a reference case, the growth of the Internet is astounding.
It has grown from 1.3 million to 30 million hosts in the past five years2 with the
number of users estimated at 10 times the number of hosts. The telephone network
has been growing steadily throughout the century, although never at the pace of
the Internet. Currently, there are roughly 700 million terminations worldwide, and
AT&T handles 210 million voice, data, and image calls per business day. Cable TV
is another rising industry. As of 1996, Time Warner had 12.3 million subscribers
with a subscription rate of 65% for passed homes, an increase of 5 million sub-
scribers in just two years. These trends suggest that the sheer number of users and
heterogeneity of services are likely to dramatically increase the complexity of the
communication infrastructure.

As networks grow larger in capacity and extent, companies have embraced
the vision of a broadband network which can use the same infrastructure to cost
effectively multiplex all kinds of traffic including voice, video, and data. Such
multiservice networks are typically modeled as multirate circuit-switched networks
at the call level [19, 26, 52, 63], but is this a good model for the future? The answer
centers around whether future broadband networks will have characteristics which
are akin to “connection-oriented” networks which in turn depends on the roles that
resource reservation, call admission, routing, priority schemes, and pricing will
play [65]. We will speculate briefly on this below after discussing the impact of a
connection-oriented environment on network performance and control.

Today we have both connection-oriented networks, such as the telephone
network, and connectionless networks, such as the Internet. One particularly im-
portant difference between connectionless and connection-oriented networks is how
congestion might develop and dissipate. Consider a single-packet message sent into
a connectionless network providing only best-effort service (e.g., the Internet). If
the packet encounters congestion at a particular location, it may be routed around
the congestion. Thus, hopefully, the congestion will dissipate locally. If enough
packets continue to be sent toward that location, the congestion could spread slowly
outward from that point, eventually causing “global” congestion. Now consider the
other extreme: a call is set up in a circuit-switched network with resources reserved

2Source: Network Wizards (www.nw.com).
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along the chosen route for the call’s lifetime. Instead of queueing as in the pre-
vious case, congestion here results in call blocking. If a call is blocked due to
congestion at a particular location, then an alternate, typically longer route may be
selected, and resources would be reserved accordingly. The problem here is that
if congestion persists, it can spread very quickly into global congestion due to the
interactions between overlapping routes. In other words, due to the network-wide
interactions among routes, there is a greater potential for “knock-on” effects where
local congestion propagates to other parts of the network [36]. Thus traffic man-
agement algorithms for connection-oriented networks typically take a global view
of network performance in order to make good routing decisions. Of central impor-
tance is the notion of an implied cost [36] for a connection along a given path which
measures the opportunity cost or expected loss of revenue resulting from accepting
a connection. Using implied costs, we can quantify the potential for “knock-on”
effects in routing and capacity allocation decisions.

In an integrated network supporting multiple types of traffic with multiple
Qualities of Service, it is almost certain that at least some classes of applications
will desire guaranteed QoS in the form of an explicit or implicit minimal rate guar-
antee. The question is how will this QoS be provided and will the network indeed
look connection-oriented? The Internet today provides only best-effort service, and
application throughput can drop to essentially zero during times of extreme con-
gestion. This is acceptable for “elastic” applications [65], but not for applications
where the performance degradation is unacceptable below a certain minimum rate,
e.g. Internet telephony. Barring the viability of a solution based on overprovi-
sioning, some type of resource reservation and call admission mechanism will be
needed. One perhaps overzealous mechanism is used in Asynchronous Transfer
Mode (ATM) networks where the route and resource reservations are established at
connection setup according to the desired QoS and held for a connection’s lifetime.
The resource ReSerVation Protocol (RSVP) [11, 77], a proposed QoS extension
to the Internet, is an intermediate approach between the “hard” resource reserva-
tions in ATM and the nonexistent resource reservations in the current Internet.3 In
RSVP, packet flows reserve resources temporarily at routers along the “current”
path from source to destination, but these reservations are “soft” in the sense that
they will time out if not renewed, thus allowing flows to be rerouted (or “connec-

3Alternatively, resource reservations in the current Internet can be thought of as occurring im-
plicitly for a packet right before being served at a router.
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tions” repacked [38]) as necessary. Combinations of the above approaches exist in
various proposals for an IP over ATM switching environment, where IP flows are
mapped to ATM virtual circuits [13, 28]. We conclude that if a resource reservation
mechanism for network flows is eventually established and/or the route for a flow
changes infrequently, the network will look connection-oriented from a system per-
spective, even if the underlying communication layer is connectionless. Based on
this assumption, we rely heavily on models for circuit-switched networks and the
computation of implied costs throughout this work.

In light of the above, our goal is to find workable tradeoffs between effi-
ciency, QoS, and “complexity.” The first method we explore for reducing com-
plexity is flow aggregation. One widely known example of flow aggregation is the
use of Virtual Paths (VPs) in ATM networks which can carry multiple Virtual Cir-
cuits (VCs). VPs are especially applicable in large-scale networks, and although
efficiency may be compromised, they can be an effective means for reducing call
processing loads as well as simplifying connection admission control, routing, and
provisioning of QoS requirements.

In Chapter 2, we consider the aggregation of multicast demands on VP trees.
We propose a pre- or post-processing step to the VP multicast layout problem,
which either reduces the complexity of the required optimization or further im-
proves upon obtained solutions. This is an important topic because multicast ap-
plications, such as videoconferencing, will likely generate a substantial portion of
future network traffic.

To handle changing demands on networks with limited resources, such as
signaling capacity, bandwidth, buffers, etc., we need to be able to adjust the re-
sources allocated to aggregated flows. Chapter 3 begins by arguing that signaling
resources may not be sufficient for future demands on ATM networks. The key
issue is how to achieve a tradeoff among the scarce resources in future networks.
With this in mind, we present a framework for adapting VP capacities in a variety
of settings, and we develop and evaluate algorithms for migrating from one set of
VP capacities to another.

In Chapter 4, we consider network aggregation, our second method for re-
ducing complexity in large-scale networks. By exploiting network aggregation, we
can significantly reduce the overheads of information exchange needed to form an
approximate global view of the entire network state. We present a novel applica-
tion of implied costs to implicitly represent the state of a subnetwork. The key

4



element of our scheme is a decentralized computation of the average implied cost
to go through or into a subnetwork which reflects the congestion in the subnetwork
as well as the interdependencies among traffic streams in the network. We incor-
porate this implicit state representation into a QoS-sensitive routing algorithm that
adaptively selects hierarchical routes so as to maximize network revenue.

Finally, Chapter 5 concludes with a summary of our main results, a discus-
sion of applying our methods to areas outside of ATM, and a list of future research
directions.
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Chapter 2

Flow Aggregation: Aggregating
Multicast Demands on VP Trees

2.1 Introduction

In ATM networks, Virtual Paths (VPs) that can carry multiple Virtual Circuits (VCs)
are allocated to reduce the complexity of call setup and traffic management at the
possible expense of efficiency. A VP layout consists of a vector of capacities al-
located to VPs that are set up on a subset of network routes on a permanent or
semi-permanent basis. This logical partitioning may be done periodically for the
purpose of adaptive resource allocation due to changing network conditions.

Given a set of multicast demands for a network incorporating multicast-
capable switches, a layout of VP trees could be established using an algorithm such
as the one found in [42]. Setting up an Switched Virtual Circuit (SVC) tree is a
relatively expensive operation, so even with low multicast demands, creating and
using VP trees on a slower time scale than connection holding times can be worth-
while. In this chapter we argue that due to statistical multiplexing, one may actually
save capacity by aggregating heterogenous multicast demands on the same VP tree.
Taking advantage of this fact, we propose a pre- or post-processing step to the VP
multicast layout problem, which either reduces the complexity of the required op-
timization or further improves upon obtained solutions. If the VP multicast layout
is already determined, then our procedure could be a post-processing step; if not,
it would be a pre-processing step which is discussed further in Sec. 2.5. The need

6
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Figure 2.1: In this example, aggregating the multicast demands provides capacity
savings, better load balancing, and a reduction in VP setup and management loads.

for aggregating multicast demands onto VP or VC trees to avoid VP/VC explosion
has previously been suggested in the context of an IP over ATM environment [10].
Suppose we have a destination set of size 10. Then there are 1023 possible non-
empty subsets of destinations, and it is likely to be impractical to set up a separate
tree for each subset with nonzero demand.

Consider the situation illustrated in Fig. 2.1. There is a single source and two
destinations with a demand ρ1 for multicast connections to both destinations and a
demand ρ2 for unicast connections to only one destination. Suppose that a capacity
of 1 on each link is able to accommodate the demands at the desired call blocking
probability. Furthermore, suppose that if the demands are aggregated, a capacity of
1.4 on each link is required. In this case, despite the fact that connections of type 2
are needlessly using both links, we obtain benefits from aggregating the multicast
demands in three areas: the total required capacity is less, the link capacities are
more evenly balanced, and one VP tree, rather than two, is required.

More generally, suppose we are given demands ρ1 and ρ2 for multicast con-
nections requiring unit bandwidth from a common source to destination sets D1

and D2, respectively, where D2 � D1.1 Assuming the network switches have the
proper multicast capabilities, we want to establish VP trees for sets D1 and D2. The
question is whether we should establish two separate trees or a single tree to ac-

1Of course, one destination set does not have to be a subset of another, but this case leads to the
simplest algorithms and the greatest potential savings. In the more general case, a shared VP tree
would have to reach destinations in the smallest set containing both D1 and D2.
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would require a total capacity of
�
T1
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� �
T2
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C2. Sharing the larger tree would

require capacity
�
T1

�
Cs.

commodate the demands ρ1 and ρ2, i.e., will the benefit of additional multiplexing
at the call and cell levels outweigh the bandwidth wasted by connections for the
smaller set D2 using the larger tree? This situation is illustrated in Fig. 2.2.

To answer this question, we first introduce the function α � ρ � B � which gives
the link capacity needed to accommodate the demand ρ at a specified call blocking
probability B. This function may account for statistical multiplexing at the call
level, the burst level, the cell level, or some combination of the three. To determine
the capacity needed for the VPs in each case, we solve for C1 � α � ρ1 � B � , C2 �
α � ρ2 � B � , and Cs � α � ρ1

� ρ2 � B � . For separate VP trees T1 and T2, the total capacity
needed is C �

�
T1

�
C1

� �
T2

�
C2, where

�
T

�
is the number of links in multicast tree T .

When sharing tree T1, the total capacity needed is C � �
�
T1

�
Cs. If C ��� C, it would

be beneficial to use a single tree. We can rewrite this condition as

Cs � C1

C2
�

�
T2

�
�
T1

�
	 (2.1)

It should be noted that there are additional benefits to sharing VP trees besides
capacity savings: e.g.,

� savings in Virtual Path Identifier (VPI) usage — sharing VP trees would re-
duce the number of VPs, and hence VPIs, needed for a particular layout,

� a reduction in VP setup and management loads as well as setup delays for a
connection,

8



� a more even balancing of load across the network — sharing VP trees tends
to reduce the variance in the allocated link capacities, and

� possible savings in the size of buffers needed at the input of each VP tree due
to the increased cell level multiplexing from combining demands.

After indicating the related work in this area in Sec. 2.2, we explore the
use of the Erlang B formula to implicitly determine the function α in Sec. 2.3,
and then further consider a Gaussian traffic model. Given an initial collection of
destination sets, heuristics for finding an aggregation of demands requiring the least
total capacity are proposed and evaluated through simulation in Sec. 2.4. Finally,
in Sec. 2.5, we present methods for dealing with unknown topologies, and Sec. 2.6
concludes the chapter with a few additional comments.

2.2 Related work

Flow aggregation using virtual paths is a key component of the traffic management
specification for ATM networks [15, 72]. Although much research has addressed
either the VP layout problem or the multicast routing problem separately, e.g. [1,
3, 7, 12, 23, 58, 75], to our knowledge Kim is the only one to specifically address
the VP multicast layout problem [42]. The aggregation of multicast demands which
we propose in this chapter builds on his work on the VP multicast layout problem
by either reducing the complexity of the required optimization or further improving
upon an obtained solution. The need for such aggregation has been suggested in the
context of an IP over ATM environment [10], but we found no specific research on
this topic in the literature. Part of the material in this chapter has been previously
presented [54].

2.3 Specific examples

Herein, we assume a large population (infinite sources) model where the requests
for multicast connections arrive as Poisson processes.2 In this case, the Erlang B
formula can be used to implicitly determine the function α and assess the benefits of

2Note that aggregating demands and sharing a tree will increase the population of sources re-
questing access to the tree and will serve to strengthen this assumption.

9



0

20

40

60

80

100

120

140

160

180

0 20 40 60 80 100

Threshold for capacity savings when sharing a VP tree

0.5
0.6

0.8
0.9

PSfrag replacements
ρ

ρ1

ρ 2

T2

C ρ
10 1

10 3

B 10 5

10 7

10 9

ρ1 ρ2

�
T2

��
T1

�
��� �� 0 � 7

ρ2 10

ρ 10

T1 10

m T1 10

D1

D2
D3

D4
D5

T1

T2
T1 C1

T2 C2

T1 Cs

Figure 2.3: For a blocking probability of 10 � 3, the threshold for capacity savings is
plotted for values of

�
T2

��� �
T1

�
ranging from 0.5 to 0.9. Below each line, the capacity

savings is greater than zero.

call level multiplexing alone [70]. For the above setup, we must solve E � ρ1 � C1 � �
E � ρ2 � C2 � � E � ρ1

� ρ2 � Cs � � B for C1, C2, and Cs, and then test the condition for
sharing the larger tree as expressed in (2.1). Based on the Erlang function and
a blocking probability of 10 � 3, Fig. 2.3 shows the threshold for capacity savings
(maximum value of ρ2 for a given ρ1) as

�
T2

��� �
T1

�
is varied from 0.5 to 0.9. Below

each line, the capacity savings is greater than zero. Note that, because of the sub-
additivity property explained below, the threshold for

�
T2

��� �
T1

�
� 1 would be a

vertical line at ρ1 � 0.
In Fig. 2.4, we see that for a constant blocking probability B, the function

C � g � ρ � , defined implicitly by Erlang’s formula, is concave and sub-additive [70].
The sub-additivity property, i.e., g � ρ1

� ρ2 � � g � ρ1 � �
g � ρ2 � , implies that two sep-

arate links require more capacity than a single link with the same total traffic, or in
other words, it assesses the benefits of call level multiplexing. Furthermore, as the
desired call blocking probability is decreased, the multiplexing benefits get better.
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Figure 2.4: For a given demand ρ, the capacity needed to achieve blocking prob-
abilities ranging from 10 � 1 to 10 � 9 is plotted. The line C � ρ is also plotted as a
comparison.

However, even for a modest blocking probability of 10 � 3, we can achieve signifi-
cant capacity savings from aggregation.

The potential capacity savings are graphed for some different scenarios in
Figs. 2.5 to 2.9 for a call level blocking probability of 10 � 3. Figs. 2.5, 2.6, and
2.7 exhibit the potential savings in capacity when aggregating 2 multicast groups.
The savings are given by 100 � C � C � � �

C, where C and C � are the total required
capacities for separate VP trees and a shared VP tree, respectively, so the values
shown are relative savings percentages. Fig. 2.5 shows results for the situation
shown in Fig. 2.2 where

�
T1

�
� 5 and

�
T2

�
� 4. The tree sizes are varied in the

remaining figures. In Figs. 2.8 and 2.9, there are m multicast groups with D1 being
the largest destination set, and the savings graphed in the figures are a comparison
between using m separate VP trees and aggregating all m groups onto a single tree
T1.

Figs. 2.5, 2.6, 2.7, and 2.9 show that low values of ρ1, ρ2, 	 	 	 , ρm lead to
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higher savings. This is due to the fact that the savings percentage from the sub-
additivity of the inverse Erlang function, C � g � ρ � , introduced above is greater for
smaller values of ρ (see Fig. 2.4). Note that the low offered load regime is not
unrealistic in practice. Indeed, currently the utilizations achieved on ATM/SONET
links are as low as 10–20% due to overheads and spare capacity reserved for 1+1
failure protection [66]. This would mean that a 10 Gbps link would have around 2
Gbps of usable capacity. When this capacity is further partitioned into a logical VP
layout, with say 100 VPs, then each VP would have a capacity of 20 Mbps. Each
VP could, for instance, accommodate 20 video connections at 1 Mbps, or in other
words, the VP capacity would be C � 20 circuits.

Aggregation of larger trees also leads to higher savings, as can be seen in
Figs. 2.6, 2.7, 2.8, and 2.9, because the wasted bandwidth due to a call for a smaller
set of destinations using the larger tree becomes less relative to the total required
bandwidth. The incremental gain in savings decreases as the tree sizes grow larger
because asymptotically, for fixed offered loads, the savings approaches a constant.
For example, in Fig. 2.6, the savings for a given ρ and B is � �T1

�
C1

� � �T1
�
� 1 � C2 ��

T1
�
Cs �

� � �T1
�
C1

� � �T1
�
� 1 � C2 � where C1 � C2 � α � ρ � B � , Cs � α � 2ρ � B � , and α is

the inverse Erlang function. As
�
T1

� � ∞, the savings approaches 1 �
�
Cs

� � C1
�

C2 ��� , i.e., the savings that arises from combining trees of the same size.
From Fig. 2.8, we see that aggregation of more and more trees (increasing

m) increases savings, but it tapers off. In fact, as m approaches infinity, the savings
approaches a constant for fixed offered loads, fixed tree sizes, and constant blocking
probability. For the Erlang function, if the offered load and capacity are scaled
proportionally, we have that, for ρ � C (heavy traffic), [35]

E � mρ � mC � m � ∞� � � � 1 � C
ρ
	 (2.2)

Our scaling is not linear in both ρ and C because as the number of groups (m)
grows, the offered load to the shared tree is scaled linearly but the capacity only
grows enough to keep the blocking probability constant (see Fig. 2.4). However,
for large enough m, we are indeed in the heavy traffic or overloaded regime because
the blocking probability must remain greater than zero and in the critical and un-
derloaded regimes the blocking probability goes to zero as the capacity grows large
[51]. Therefore, letting α � ρ � B � represent the inverse Erlang function, we can use
(2.2) to obtain the rough approximation α � mρ � B ��� mρ � 1 � B � for large m. Let-
ting ρ � ρi � constant, the savings in Fig. 2.8 is 1 �

� �
T1

�
α � mρ � B ��� � � �

T1
�
α � ρ � B � �
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� �T1
�
� 1 � � m � 1 � α � ρ � B � � which asymptotically, as m � ∞, becomes

1 �
�
T1

�
ρ � 1 � B �

� �T1
�
� 1 � α � ρ � B � 	

Now suppose we combine the last two situations and scale both m and
�
T1

�
as in Fig. 2.9. Using the above approximation, as m �

�
T1

�
approaches infinity, the

savings for fixed ρ � ρi is

1 � ρ � 1 � B �
α � ρ � B � 	 (2.3)

The second term in (2.3) can be interpreted as the inverse of the bandwidth required
per connection. The bandwidth per connection increases as ρ decreases because of
less multiplexing, so for smaller ρ, the inverse of the bandwidth per connection is
smaller which leads to higher potential savings. As an example, for B � 0 	 001 and
ρ � 10, the limit in (2.3) implies a maximum savings of 52.1%; for ρ � 100 the
maximum savings is 21.9%. These values are quite reasonable in light of Fig. 2.9,
where for m �

�
T1

�
� 20 and ρ � 10 we have a savings of 40.3%, and for ρ � 100

the savings is 14.0%.
Finally, we see from Fig. 2.7 that there is a threshold for the smaller tree size

below which it never pays to aggregate two candidate trees.
Although the benefits of call level multiplexing are significant, even more

capacity savings can be exhibited by incorporating a burst or cell level model. As
a simple example, we could model the cell arrival rate of each call by a Gaussian
random variable with mean λ and variance σ2. For a bufferless link with N ongoing
connections, it can be shown that the capacity requirement is roughly given by

β � N � � Nλ �
k

�
Nσ2 � (2.4)

where k is a QoS parameter determined by the desired cell loss probability (see e.g.
[69]). For instance, a cell loss probability of 10 � 6 would require k � 4 	 7534. Letting
α � ρ � B � represent the inverse Erlang function, we need to allocate β � α � ρ � B � � to
satisfy the call level and cell level QoS requirements for fixed cell loss probability
and traffic parameters (λ � σ2). We will explore the impact of the Gaussian traffic
model in the simulations of Sec. 2.4.
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2.4 Heuristics

We now consider the more general problem of having multicast demands from a
common source to m destination sets with Di

� D1 for i � 2 � 3 � 	 	 	 � m. Let N �
�
D1

�
.

The subsets Di, i � 2 � 3 � 	 	 	 � m, can have from 1 to N � 1 elements. First, we assume
that Dm

� Dm � 1
�

� ���

� D1, and later we will drop this assumption.
If each set has a known VP tree Ti, the brute force approach to finding a

grouping of sets with the least total required capacity is simply to try all possible
combinations and keep the best combination. The m sets can be divided into 1 to m
groups. The number of possible ways to divide them into k groups is equivalent to
finding the number of ways to place m distinguishable balls into k indistinguishable
cells such that no cell is empty. This is given by a Stirling number [60] of the second
kind S � m � k � where

S � m � k � � 1
k!

k

∑
i � 0

� � 1 � i

�
k
i � � k � i � m 	

For each combination, we must find the capacity needed by the k groups, so the
computational complexity is proportional to ∑m

k � 1 kS � m � k � which grows exponen-
tially. For example, for m � 2, ∑m

k � 1 kS � m � k � � 3, for m � 4, it is 37, and for m � 8,
it is 17,007. Thus, for reasonably large m, heuristics with polynomial complexity
would be preferable to the exponential complexity of the brute force approach.

Although we cannot guarantee optimality, it seems reasonable to try com-
bining pairs of sets starting from the largest set D1, as suggested by the observation
made in Sec. 2.3 that aggregation of larger trees leads to higher savings. Further-
more, we expect to get the most significant savings from combining trees which
are close together in size. These ideas lead to the following (clustering) algorithm
with complexity O � m � . We first describe the algorithm in words and then give pseu-
docode for the algorithm. In the pseudocode, the function combine � i � j � combines
the demands for Di and D j into a single demand for Di (i.e., ρi : � ρi

� ρ j; ρ j : � 0;)
and returns true if the condition in (2.1) holds. Otherwise, it does nothing and re-
turns false.

Algorithm 2.1. Starting with the largest destination set D1, combine the demands
for D1 and D2 into a single demand for D1 if the condition in (2.1) holds. If suc-
cessful, try to combine demands for D1 and D3, and continue on until unsuccessful
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with candidates D1 and Di, 2
�

i
�

m. If i � m, repeat the procedure starting with
Di and Di � 1, continuing on until reaching Dm.

1 begin
2 i : � 1; j : � 2;
3 while j

�
m do

4 if � combine � i � j � then i : � j; endif;
5 j : � j

�
1;

6 endwhile;
7 end

Note that each combination made would result in capacity savings, so re-
gardless of the final grouping, the procedure would be worthwhile, but not neces-
sarily optimal. As a comparison to Algorithm 2.1, we also propose the following al-
gorithm which attempts to make as many combinations as possible with the current
destination set before moving on, resulting in an algorithm of complexity O � m2 � :
Algorithm 2.2. Starting with the largest destination set D1, combine the demands
for D1 and D2 into a single demand for D1 if the condition in (2.1) holds. Next try
to combine demands for D1 and D3, and continue on with candidates D1 and Di

until i � m. If a successful combination was made, repeat the procedure starting
with D1 and D2 (skipping sets which have previously been absorbed). When a pass
without a successful combination has been made, move from D1 to the next smallest
set D j that has not been aggregated and repeat from the beginning starting with D j

and D j � 1.

1 begin
2 for i : � 1 to m � 1 step 1 do
3 if ρi � 0 then (the demand for Di is nonzero)
4 k : � 1;
5 while k � 0 do
6 k : � 0;
7 for j : � i

�
1 to m step 1 do

8 if ρ j � 0 � combine � i � j � then k : � k
�

1; endif;
9 endfor;

10 endwhile;
11 endif;
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12 endfor;
13 end

In Algorithm 2.2, we make another pass through the destination sets when-
ever a successful combination is made. The reason for this is that the offered load
of the larger set has been increased and, as can be seen from Fig. 2.3, since the
threshold is monotonically increasing, the range of offered loads for the smaller
tree allowing for capacity savings when sharing has also been increased. Therefore,
new combinations could potentially be made that were not allowed on a previous
pass through the destination sets.

To see how close to optimal Algorithms 2.1 and 2.2 might be in practice, we
ran simulations of Algorithms 2.1 and 2.2 and the brute force approach using com-
mon random numbers. There were m destination sets with Dm

� Dm � 1
�

��� �

� D1,
and the tree sizes were 1 � 2 � 	 	 	 � m, respectively. The offered loads were randomly
generated according to a uniform distribution between 0 and ρmax. For each case,
the results obtained are 95% confidence intervals based on independent replications.
The call blocking probability was held constant at 10 � 3.

From the results shown in Table 2.1, we see that Algorithm 2.1 is consis-
tently better in total capacity than Algorithm 2.2 and is quite close to the optimal.
As expected, the savings percentage drops off significantly as ρmax grows larger,
but it improves as the size and number of the destinations sets m increases. For this
scenario, Algorithm 2.1 appears to be a good compromise between complexity and
performance.

Two additional statistics are shown in Table 2.2: the link capacity standard
deviation and the final number of trees obtained after running the algorithms.3 Un-
like the other statistics, the link capacity standard deviation is topology-dependent,
and for our current experiments we employed a topology similar to that shown in
Fig. 2.10 for m � 5. The link capacity standard deviation gives us a measure of how
well the load is balanced across the links of the network with a standard deviation
of zero signifying that all links have the same capacity. As can be seen in Table 2.2,
the load is indeed better balanced after running our algorithms, with Algorithms 2.1
and 2.2 both beating the brute force algorithm. The benefits are most dramatic at
low loads and tail off as ρmax increases. Also, the benefits increase as the number

3Note that if we tried to optimize in terms of the link capacity standard deviation or the number
of trees instead of the total required capacity, we would always end up with one tree.
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Figure 2.10: One-level tree topology, shown with m � 5, used to determine the link
capacity standard deviation in the simulations.

of destination sets m increases. Although it is difficult to quantify, we expect that
similar load-balancing benefits might be seen for other more general topologies.
The results for the final number of trees are also quite encouraging. Once again, the
greatest benefits occur for smaller ρmax, and they grow as m increases. The savings
in the number of trees translates to reduced VPI usage and a significant reduction
in VP setup and management loads.

We repeated the simulations with the addition of the Gaussian traffic model
discussed at the end of Sec. 2.3. For each connection, the mean and variance of
the cell arrival rate was given by λ � 1 and σ2 � 1, respectively. The cell loss
probability was held constant at 10 � 6 which translates to a value of 4 	 7534 for the
QoS parameter k in (2.4). The results, shown in Tables 2.3 and 2.4, exhibit the same
general trends as the previous experiments but with a large increase in the capacity
savings percentages. There is also a more significant reduction in the link capacity
standard deviation and the final number of trees. Although the Gaussian model is
certainly not the best cell level model, it does effectively demonstrate the potential
benefits if rate multiplexing is taken into account when aggregating multicast trees.

We shall now drop the assumption that Dm
� Dm � 1

�
�����

� D1. We still keep
the less restrictive assumption that Di

� D1 for i � 2 � 3 � 	 	 	 � m, so with N �
�
D1

�
,

the subsets Di, i � 2 � 3 � 	 	 	 � m, can have from 1 to N � 1 elements, and we can
form equivalence classes based on how many elements are in each set. We can
also construct relationships based on which destination sets are subsets of other
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destination sets. Accordingly, we present a modified version of Algorithm 2.1 that
proceeds down the hierarchy by equivalence class.

Algorithm 2.3. Start with the largest destination set D1 and the equivalence class
directly below D1 with N � 1 elements per destination set. For each Di in that
equivalence class (taken in any order), combine the demands for D1 and Di into a
single demand for D1 if the condition in (2.1) holds. If successful in combining all
members in that equivalence class with D1 (or if the equivalence class is empty), try
to combine demands for D1 and the members of the equivalence class with N � 2
elements. Continue on until reaching an equivalence class in which all members
are not combined with D1. Now repeat the procedure starting with each destina-
tion set of that class (in any order) and restricting combinations to destination sets
which are subsets of the current destination set. Continue on recursively until all
destination sets have either been absorbed or have served as the primary candidate
to which other destination sets may be combined.

1 begin
2 for n : � N to 2 step � 1 do
3 foreach i ��� 1 � 2 � 	 	 	 � m � such that

�
Di

�
� n � ρi � 0 do

4 q : � n � 1; k : � 0;
5 while q � 1 � k � 0 do
6 foreach j ��� 1 � 2 � 	 	 	 � m � such that

�
D j

�
� q � ρ j � 0 do

7 if D j
� Di � � combine � i � j � then k : � k

�
1; endif;

8 endfor;
9 q : � q � 1;

10 endwhile;
11 endfor;
12 endfor;
13 end

For completeness, we also define a modified version of Algorithm 2.2.

Algorithm 2.4. Start with the largest destination set D1 and the equivalence class
directly below D1 with N � 1 elements per destination set. For each Di in that
equivalence class (taken in any order), combine the demands for D1 and Di into a
single demand for D1 if the condition in (2.1) holds. Next try to combine demands
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for D1 and the members of the equivalence class with N � 2 elements, and con-
tinue on until reaching the equivalence class with the smallest number of elements
per destination set. If a successful combination was made, repeat the procedure
starting with D1 and the equivalence class with N � 1 elements per destination set
(skipping sets which have previously been absorbed). When a pass without a suc-
cessful combination has been made, move from D1 to the equivalence class with
the largest number of elements per destination set that has members which have not
been aggregated, and repeat from the beginning starting with each destination set
of that class (in any order) and restricting combinations to destination sets which
are subsets of the current destination set. Continue on recursively until all desti-
nation sets have either been absorbed or have served as the primary candidate to
which other destination sets may be combined.

1 begin
2 for n : � N to 2 step � 1 do
3 foreach i ��� 1 � 2 � 	 	 	 � m � such that

�
Di

�
� n � ρi � 0 do

4 k : � 1;
5 while k � 0 do
6 k : � 0;
7 for q : � n � 1 to 1 step � 1 do
8 foreach j ��� 1 � 2 � 	 	 	 � m � such that

�
D j

�
� q � ρ j � 0 do

9 if D j
� Di � combine � i � j � then k : � k

�
1; endif;

10 endfor;
11 endfor;
12 endwhile;
13 endfor;
14 endfor;
15 end

To simulate Algorithms 2.3 and 2.4, we began with a destination set of size
m and from the 2m � 2 proper subsets (excluding the empty set) chose m � 1 other
destination sets at random at the beginning of each replication. This means that
the majority of the destination sets chosen will have close to m

�
2 members. As

before, the tree sizes were equal to the destination set sizes, the offered loads were
randomly generated according to a uniform distribution between 0 and ρmax, and
the results obtained are 95% confidence intervals based on independent replications.
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To compute the link capacity standard deviation, we used a one-level tree topology,
similar to that shown in Fig. 2.10, but now the destination sets are chosen at random
from all possible combinations. We performed simulations with and without the
Gaussian traffic model using the same traffic parameters and blocking probabilities
as before.

The results for these experiments are given in Tables 2.5 through 2.8. We do
not repeat the results for m � 2 as they are the same as before. Algorithm 2.3 is close
to the optimal in total capacity, but, in contrast to before, it is no longer consistently
better than Algorithm 2.4. The savings percentages have been reduced significantly,
but they are still quite good when the Gaussian traffic model is included. The results
for the link capacity standard deviation and the final number of trees generally ex-
hibit the same trends as before except that the values for Algorithm 2.3 tend to be a
bit higher than the other two algorithms. Overall, the impact of including the Gaus-
sian traffic model is more significant than before, and Algorithm 2.3 still appears to
be a good compromise between complexity and performance.

2.5 Role of topology and pre-processing

In this section, we restrict ourselves to the case where the VP multicast layout has
not yet been determined, and our procedure is a pre-processing step. As in Sec. 2.1,
we consider the situation with a common source and two destination sets D1 and
D2 such that D2 � D1. Suppose that we do not know the actual network topology,
but we do know the distances from the source to all destinations in the larger set
D1. The exact ratio

�
T2

��� �
T1

�
is then unknown, but we can bound it for all possible

trees T1 and T2 with the specified distances to each destination. In the following,
h � d � is the number of hops to destination d.

Lemma 2.1. Let u � D � � ∑d � D h � d � and l � D � �
�
D

� �
∑M � 1

j � 1 1 � j
�� h � d ��� d � D � ,

where M � maxd � D h � d � and 1 � � � is the indicator function. Then, for any trees
T1 and T2 satisfying the distance constraints h � d ��� d � D1 or D2, respectively,
and connecting a common source to destination sets D1 and D2, respectively, with
D2 � D1, we have

l � D2 �
u � D1 �

�
�
T2

�
�
T1

� � u � D2 �
l � D1 �

	 (2.5)
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Proof: To prove the lemma, we show that l � D � � �
T

� �
u � D � for any tree T con-

necting a source to destination set D . The largest number of links occurs when the
tree T has disjoint paths from the source to every destination, i.e., the root of the
tree has

�
D

�
branches and no links are shared by two or more source-destination

paths. Therefore,
�
T

� �
∑d � D h � d � � u � D � . To establish the lower bound, we as-

sume that no two destinations are collocated. (If not, simply combine the demands
for the collocated destinations into a demand for a single combined destination.)
First, suppose that � h � d � � d � D � � � 1 � 2 � 	 	 	 � M � . Then the tree T with the smallest
number of links occurs when the destinations are connected in a straight line. Thus,�
T

�
� M �

�
D

�
. If another destination is added at a duplicate distance 1

�
j

�
M,

then another branch must be added originating from a node at distance j � 1. If a
destination is removed at distance 1

�
j � M such that now j

�� � h � d � � d � D � , then
a branch cannot be removed because the tree would become disconnected. Thus,
by construction,

�
T

� � �
D

� � ∑M � 1
j � 1 1 � j

�� h � d � � d � D � � l � D � .
The bounds in Lemma 2.1 are not very tight. For example, define Γ � D � �� h � d � � d � D � , and suppose that Γ � D2 � � � 3 � 5 � and Γ � D1 � � � 2 � 3 � 5 � . Then we

have 5
10

� �
T2

��
T1

� � 8
5 .

Now consider a similar setup with the additional requirement that T2 � T1.
Tighter bounds than before can be obtained as stated in the following lemma. We
use D1 � D2 to designate the set of elements in D1 that are not in D2.

Lemma 2.2. Let u � D � � ∑d � D h � d � and l � D � �
�
D

� �
∑M � 1

j � 1 1 � j
�� h � d ��� d � D � ,

where M � maxd � D h � d � and 1 � � � is the indicator function. Then, for any trees
T1 and T2 satisfying the distance constraints h � d ��� d � D1 or D2, respectively,
and connecting a common source to destination sets D1 and D2, respectively, with
D2 � D1 and T2 � T1, we have

l � D2 �
l � D2 � �

u � D1 � � u � D2 �
�

�
T2

�
�
T1

� �
min

�
u � D2 �
l � D1 � � 1 � 	 (2.6)

Proof: Since T2 � T1,
�
T2

� � �
T1

�
, and so

�
T2

��� �
T1

� �
1. From Lemma 2.1, we

also know that
�
T2

� � �
T1

� �
u � D2 �

�
l � D1 � , thus establishing the upper bound. For the

lower bound, let T12 be a separate tree for D1 � D2. From Lemma 2.1, we know that�
T12

� �
u � D1 � D2 � � u � D1 � � u � D2 � . Since T2 � T1,

�
T1

� � �
T2

� �
u � D1 � � u � D2 � .

So we have �
T2

�
�
T2

� �
u � D1 � � u � D2 �

�
�
T2

�
�
T1

� 	 (2.7)
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To find the lower bound over all trees T2, we differentiate the left-hand side of (2.7)
with respect to

�
T2

�
. The derivative, � u � D1 � � u � D2 � �

� � �T2
� �

u � D1 � � u � D2 � � 2, is
always positive because u � D1 � � u � D2 � � 0. Therefore, the left-hand side of (2.7)
is an increasing function of

�
T2

�
. Hence, the smallest possible value of

�
T2

�
, which

is l � D2 � , is substituted for
�
T2

�
to establish the lower bound.

Using Lemma 2.2, the bounds for our previous example are 5
7

� �
T2

��
T1

� �
1, a signifi-

cant improvement.
By substituting the lower bound of Lemma 2.1 or preferably Lemma 2.2 for�

T2
� � �

T1
�
in (2.1), we can conservatively decide whether or not to combine the de-

mands for D1 and D2 into a single demand for the larger set D1 without knowing the
full network topology. As confirmed by Lemma 2.2 and Fig. 2.3, large destination
sets (l � D2 � large) with small differences between them (u � D1 � � u � D2 � small) will
produce a lower bound for

�
T2

��� �
T1

�
close to 1 (the maximum value) and improve

the likelihood of achieving positive capacity savings by combining the demands.
Without knowing the distances to the relevant destinations, as we have assumed in
this section, it is not feasible to bound

�
T2

� � �
T1

�
and make any decisions as part of

a pre-processing step.

2.6 Additional remarks

In conclusion, we comment on the practicality of the common source assumption
for large numbers of destination sets. Instead of an end system, the source could
very well be a “core” node inside the network from which core-based trees are
established for multicast routing, an architecture being proposed for the Internet
[5, 6]. A multicast route would consist of a Virtual Path Connection (VPC) or SVC
from the source to the core node followed by the established VP tree. Also, the
destinations may be gateway nodes instead of end systems, in which case the VP
trees would be entirely contained within the backbone of the network.

It is also worth noting that after aggregation, it may be desirable to perform
trunk reservation within a VP tree because of the varying revenues generated by in-
coming connections [37]. For example, with two types of connections, it is optimal
(in terms of total revenue generated) to reserve a certain amount of capacity for the
connections which generate more revenue [25].
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Chapter 3

Adaptive Resource Allocation for
Aggregated Flows

3.1 Introduction

While the flexibility of ATM networks to support a variety of service classes and
other value added services is likely to materialize, network operators will be faced
with increasingly complex operational constraints and tradeoffs among overall net-
work throughput, processing loads on the signaling system, and QoS requirements
at both the call level, e.g., blocking probabilities, and cell level, e.g., cell loss or
delay characteristics. One way to control the daunting complexity of the system is
to aggregate flows, i.e., use Virtual Path Connections (VPCs) or configure virtual
networks, and make a priori fixed or adaptive resource allocations. With flow ag-
gregation, a group of individual flows is bundled together and jointly managed and
switched inside a network or subnetwork. This type of aggregation can reduce the
size of routing tables or the signaling/processing loads (e.g., Connection Admis-
sion Control) at the switches, reduce call setup times, and/or reduce the number of
connection labels needed inside a network.

After noting the related work in this area in Sec. 3.2, the first concern of this
chapter is to provide an overview and crude evaluation in Sec. 3.3 of the increasing
signaling loads that large-scale, connection-oriented networks will need to support.
Sec. 3.4 considers the role that configuring an overlay VP network and traffic man-
agement algorithms can play in controlling what we currently perceive as a possible
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lack of scalability for ATM networks. We present some specific VP capacity alloca-
tion schemes for both VP-only and mixed VP/VC switching environments. Finally,
in Sec. 3.5, we propose and evaluate algorithms for migrating from one VP layout
to another. Sec. 3.6 concludes with a chapter summary.

3.2 Related work

The performance of SVC signaling in ATM networks has only received limited
attention in the literature. One notable attempt at quantifying the signaling overhead
through an empirical study is found in [55]. In contrast, much work has been aimed
at VP capacity allocation in a VP-only switching environment, e.g. [19, 50, 57,
61]. The material in Sec. 3.4.1 is based primarily on the work in [19]. Additional
background material on implied costs can be found in [36]. Very little research
has addressed adaptive VP capacity allocation in a VP/VC switching environment
where call processing capabilities are a limiting factor. The only other research
in this particular setting that we are aware of is found in [4]. In [41], a global
tradeoff between call processing costs and multiplexing gain is considered while
jointly designing the VP layout, capacity allocation, and routing. Our particular
formulation in Sec. 3.4.2 based on signaling flow constraints and implied costs
appears to be new. To our knowledge, the performance of the general VP capacity
migration problem which we address in Sec. 3.5 has not been previously studied.
Part of the material in that section has been previously presented [54].

3.3 SVC signaling: loads, complexity, and technol-
ogy

Herein we will focus on the signaling overheads and processing required to estab-
lish Switched Virtual Circuits (SVCs) in high-speed networks. There are of course
a variety of other signaling tasks that will load up the network resources and will
eventually be of concern. For example, a recent study of the Private Network-
Network Interface (PNNI) signaling overheads required in advertising available ca-
pacity in the network suggested it would totally overload the channel [62].

Consider a 155 Mbps link. It could in principle support at least 2500 voice
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Signal Line rate Call processing rates
STS-1 51.84 Mbps 3 cps
STS-3 155.52 Mbps 10 cps
STS-12 622.08 Mbps 43 cps
STS-48 2.488 Gbps 172 cps
STS-192 9.953 Gbps 691 cps

Table 3.1: Call processing rate requirements vs. bandwidth growth.

connections.1 Assuming the average connection duration is 3 minutes, then the
maximum average call processing rate that might be required for such a link would
be roughly 14 calls per second (cps). For higher line rates, with the same link
utilization, the necessary call processing throughput would eventually scale propor-
tionally with bandwidth.2 Thus, for example, Table 3.1 shows the average signaling
rates that would need to be sustained for various links given the following assump-
tions: they are operated at 80% utilization, voice connections require 64 Kbps each,
and each connection has a mean holding time of 3 minutes. These numbers give a
rough idea of the manner in which call processing rates would grow with bandwidth
for links carrying homogeneous uncompressed continuous bit rate voice traffic.

Current ATM switches typically support call processing using a shared gen-
eral purpose processor. High-end systems can achieve throughputs on the order of
100–215 cps. Thus a switch supporting 16 OC-12 links, subject to the above load-
ing assumption, could find that the required call processing rate, 688 cps, rather
than bandwidth is the system bottleneck. This bottleneck can be overcome with
dedicated special-purpose call processors per line card, but the downside is the in-
creased difficulty in making upgrades and the possible increased cost compared to
a software-only solution.

Several factors affect the call processing loads that switches will see. In the
next sections we consider the role of various types of applications, the manner in

1Some of todays ATM core switches support voice using various compression techniques and
silence detection to extract the benefits of statistical multiplexing and substantially increase the
number of connections that can be supported.

2Statistical multiplexing would increase the number of concurrent connections that can be ad-
mitted more than linearly as the line rates increase, but as they achieve truly high capacities, the
growth would eventually become linear.
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Figure 3.1: Call processing rates versus demand and mean holding times.

which the technology and signaling requirements will scale in a full-blown ATM
network, and the issue of congestion in the signaling network.

3.3.1 What are the SVC hungry applications?

Different applications will place markedly varying burdens on the system. The
graph shown in Fig. 3.1 gives an idea of how various loads will impact the system. It
exhibits the call processing load in cps versus the demand, measured in Erlangs, and
the mean holding times of connections.3 For our purposes here, we shall assume
that there are sufficient network resources to meet most of the demand. In other
words, we ignore blocked calls which would in fact only further increase the call
processing loads on the system. Consider, for example, video applications having a
mean holding time of about 1 hour. If the overall system sustains an average load of
about 10,000 connections, then the call processing load would not exceed 3 cps. In
contrast, consider data applications such as web browsing with mean holding times

3Note the demand, measured in Erlangs, i.e., average connection requests per mean connection
holding time, is also a rough estimate for the average number of concurrent connections in the
system.

39



not exceeding a minute and a total average load of 100,000 connections. In this
case the resulting call processing loads could easily exceed 1000 cps. Even shorter
holding times would be associated with the transfer of say a single IP packet, and
such traffic would far exceed the setup rates that are currently feasible. Below we
comment on these examples in somewhat more detail.

Video-on-demand and other video applications are considered to be among the
possible “killer” application for broadband ATM networks. Because the hold-
ing times of video connections are relatively long, the call setup loads would
be relatively small. Thus, only if database video applications, requesting say
video clips or still images, or smaller sized video programs become popular,
will the signaling load become significant. Note however that if adaptive re-
source allocation was to be used on a per connection basis, as proposed in the
RCBR protocol [27], this conclusion would change dramatically.

Voice calls are estimated to have a load of 0.1 Erlangs per line with a typical voice
connection having a mean holding time of 3–5 minutes, which means an
average of 0.00042 cps per line. Assuming that roughly 100,000 lines are
supported at a central office switch, this translates to 42 cps. Core switches
will however see far greater rates since they support much higher multiplexed
rates. Videoconferencing calls should also be put in this category since they
have similar holding times. These types of calls could significantly increase
the call processing loads because they are typically multicast to several par-
ticipants.

Data is perhaps the most “SVC hungry” application. Supporting LAN Emulation
(LANE) or Multiple Protocol over ATM (MPOA) to carry IP traffic over ATM
would result in significant signaling loads. In the worst case, a user clicking
on an icon translates to the underlying ATM layer setting up an SVC to the
destination router or server. This is the so-called SVC cut-through approach.
Since the demand per user is likely to be quite high, these solutions to IP-over-
ATM are unlikely to scale up in the public WAN environment without taking
appropriate management steps to reduce complexity. A possible solution is a
topology-driven approach such as Cisco’s tag switching in which data is sent
on SVCs already set up along routes computed by the Internet protocols.
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In summary, the average demands for call processing will depend on the
overall demand, the connection holding time, and the capacity of the system. Of
particular concern today would be connections having short holding times, on the
order of seconds or minutes, and high demand, such as voice or transaction pro-
cessing loads that future business applications might require.

3.3.2 Dimensioning large networks

Consider the following simplified scenario. Suppose that the overall load on the
system is increasing linearly, i.e., as Nρ. In dealing with increasing loads, network
service providers can essentially use two extremes in developing their infrastruc-
ture. At one extreme, the provider could simply increase the capacity and/or num-
ber of ports of its switches so as to meet the demand. In this case the total signaling
load seen by these large core switches grows linearly since each switch will see a
fraction of the total load Nρ on the network. With this solution, if the call pro-
cessing resources do not increase in speed linearly, they will eventually become the
bottleneck of the system.

At the other extreme, one can build increasingly complex meshes by adding
more switches to the network, say linearly in N, so as to increase its carrying ca-
pacity. Assuming an optimal hierarchical configuration, the number of switches
traversed by a connection would grow logarithmically, i.e., as logN. Assuming that
the load is spread uniformly on the network, then the total load on a given switch
would be proportional to

Nρ � logN
N � ρ logN 	

With this approach, a switch’s call processing capacity would only need to grow
logarithmically with the load. However, given the increasingly complex network,
there is no guarantee that the processing requirements would not increase with the
number of switches in the system. Indeed, in [55], based on an empirical study,
the authors suggest that the bulk of the processing delay occurs in a small body of
code for which the processing time depends on the size of the network. That is,
the processing rates are likely to depend on the network size, further limiting the
capacity of the switching system.

The call processing requirements of a real system might then scale some-
where between the desirable logarithmic growth and the worst case linear growth.
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This brings us to the following question: what can technology today achieve?

3.3.3 Technology

Whether ATM switches will be able to support a linear increase in speed for their
call processing capacity is at this point difficult to predict. The type of process-
ing required at connection setup can in fact be significant and may span several
switching systems and require additional updates during the lifetime of a connec-
tion. Tasks spanning the gamut from call admission and assessment and negotiation
of QoS requirements, to routing, will be increasingly complex in multiservice net-
works, and thus one would expect them to place increasingly higher loads on call
processing resources. Furthermore significant processing loads would be associated
with performance and usage monitoring as well as billing records.

There is little experience operating ATM networks today, and since the per-
formance characteristics of signaling channels depend on a complex interaction be-
tween software and hardware resources in a distributed environment, they are dif-
ficult to assess [55]. Nevertheless, some relevant data points give a starting point.
Current workgroup switches, such as the ForeRunnerLE 155, advertise a connec-
tion set up time of 10 msec, that is 100 cps. Core switches range from 215 cps for
the ForeRunner ASX-200BX to 3000 cps for the Ascend CBX 500 where the call
processors are implemented in hardware with a separate processor card per port.
Note however that a switch might need to support full accounting capabilities, such
as the generating of billing records on a per connection basis, therefore it is difficult
to extrapolate what throughput might be achieved.

While it is possible to achieve a call setup rate on the order of thousands
of cps per switch with the help of call processors implemented in hardware, it is
hard to scale these speeds even further without running into the high costs that such
systems represent. Moreover, even if the desired speed could be achieved on general
purpose workstations, it is questionable that supporting the full flexibility of SVC
setup in software will be worthwhile given the increased software and maintenance
costs. Indeed with the advent of multiservice broadband networks, the complexity
and maintenance cost of call processing software is likely to increase, and in order
to control costs it may be advantageous to limit the amount of signaling and call
processing performed in the network.
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3.3.4 Dealing with congestion in signaling networks

Looking at the average throughput that network elements can sustain is appropri-
ate as a first cut. However, since call requests arrive as stochastic processes, the
variability in the rate of requests is likely to lead to queuing and setup delays, and
congestion will eventually lead to lost calls. Thus one eventually needs to take ap-
propriate action in controlling demand and signaling flows in the network so as to
reduce focused congestion and allocate resources fairly.

As a reference case, current Intelligent Network (IN) services typically have
much greater processing requirements than Plain Old Telephone Service (POTS).
Indeed, IN services might require a database lookup and authentication in addi-
tion to routing and call admission. With the advent of multiservice networks, the
requirements at call setup, in terms of call admission, authentication, QoS negotia-
tion, billing, etc., will far exceed those of current systems.

A significant amount of effort has yet to be invested in optimizing protocols
and implementations to enhance performance. Some studies suggest that much
work will need to be carried out before definitive performance comparisons and
numbers can be collected [32, 55].

3.4 Controlling processing and complexity costs via
VP networks

By configuring VPCs, the network manager can reduce the processing requirements
placed on intermediate switching nodes in the backbone by deferring call process-
ing to a VPC’s end nodes [20]. The cost of this approach is a possible loss of effi-
ciency since capacity would now be segregated per VPC. Thus the service provider
needs to find a compromise between limiting the processing load on network nodes
and maximizing the large-scale network’s throughput/revenue.

In fact one can view the virtual path layer as an intermediate resource alloca-
tion layer where allocation decisions are made on a slow time scale but coordinated
over the network [19]. We contend that by allowing adaptive resource allocation for
VP networks based on demand estimates and/or on-line estimates, possible losses in
efficiency resulting from limiting the resources available for multiplexing SVC con-
nections may be overcome. The configuration of VP networks is likely to become
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Switching VP VP/VC
VPs single- or multiple-link end-to-end

Algorithm centralized decentralized
(periodic) (incremental)

Table 3.2: A taxonomy of approaches to VP allocation.

an effective strategy for not only limiting signaling requirements in the network
core, but also, and in some cases more importantly, it will enable network operators
to handle the increasing complexity of multiservice networks, e.g., by simplifying
connection admission control, routing, and provisioning of QoS requirements, and
by aiding in addressing network reliability concerns as well as a variety of traffic
management issues.

A variety of approaches are available for allocating VPs. In Table 3.2, the
approaches are classified according to the type of switching available in the net-
work, the extent of the VPs, and the structure of the allocation algorithm, resulting
in eight distinct combinations. In Sec. 3.4.1, we discuss algorithms proposed for
a VP switching environment, and in Sec. 3.4.2, we present our original algorithms
for a VP/VC switching environment.

3.4.1 VP switching

In this section, we consider a core network that only switches VPs, and we present
a method to periodically adjust the VP capacities. We will first treat the case of
single- or multiple-link VPs and a centralized algorithm that is run periodically.
This setup has been previously considered in [19]. We assume the routing is fixed
or quasi-static with load sharing occurring between routes connecting a particular
source/destination pair. The physical network consists of a set J of links with ca-
pacities C j for j � J . The logical network is defined by a set V of virtual paths.
The matrix V � � V jv � j � J � v � V � is a 0–1 matrix with V jv � 1 if VP v passes
through link j and V jv � 0 otherwise. By assuming the existence of V , we have
bypassed the VP layout problem, a difficult problem in its own right that has been
addressed elsewhere, e.g. [12, 23]. We are assuming that the layout would change
infrequently. For simplicity, we start with a single-service loss network model, i.e.,
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all calls require unit bandwidth, call holding times are independent (of all earlier
arrival times and holding times) and identically distributed with unit mean, and
blocked calls are lost.4

Each VP can be considered to be a logical link from the point of view of
routing, and in fact, we define a route (VPC) r � R to be a collection of VPs from
V . The matrix A � � Avr � v � V � r � R � is a 0–1 matrix with Avr � 1 if route r
passes through VP v and Avr � 0 otherwise. Define the vector x � � xv � v � V � to
be the capacities allocated to each VP. The vector ν � � νr � r � R � denotes the rates
of independent Poisson arrival processes for each route. We use wr to denote the
revenue generated by accepting a connection on route r, and Lr is the blocking
probability on route r.

Our goal is to maximize the rate of network revenue, so the optimization
problem can be stated as

maximize W � ν; x � � ∑
r � R

wrνr � 1 � Lr � (3.1)

subject to V x
�

C (3.2)

over x � 0 	

The constraint (3.2) is a physical capacity constraint on the VPs.
To calculate the revenue sensitivities, we must first find the blocking prob-

ability Lr for each route r, an important performance measure in its own right.
Steady-state blocking probabilities can be obtained through the invariant distribu-
tion of the number of calls in progress on each route. However, the normalization
constant for this distribution can be difficult to compute, especially for large net-
works. Therefore, the blocking probabilities are usually estimated using the Erlang
fixed point approximation [26, 38].

Let B � � Bv � v � V � be the solution to the equations

Bv � E � ρv � xv � � v � V � (3.3)

4One realistic example of a single-service environment is a single-class embedded network. Al-
ternatively, our model is roughly equivalent to a network with very high bandwidth links where the
real resource constraint is that of labels (e.g., virtual path or virtual circuit identifiers) for connections
on links. The unit bandwidth requirement per call can be considered to be an effective bandwidth
[16, 40].
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where

ρv � ∑
r � R

Avrνr ∏
u � r � � v � � 1 � Bu � (3.4)

and the function E is the Erlang B formula [8]

E � ρv � xv � � ρxv
v

xv!

�
xv

∑
n � 0

ρn
v

n! � � 1

	 (3.5)

The vector B is called the Erlang fixed point; its existence follows from the Brouwer
fixed point theorem and uniqueness was proved in [35]. Using B, an approximation
for the blocking probability on route r is

Lr � 1 � ∏
v � r

� 1 � Bv � 	 (3.6)

The idea behind the approximation is as follows. Each Poisson stream of rate νr

that passes through VP v is thinned by a factor 1 � Bu at each VP u � r � � v � before
being offered to v. Assuming these thinnings are independent both from VP to
VP and over all routes, then the traffic offered to VP v is Poisson with rate ρv as
given in (3.4), the blocking probability at VP v is Bv as given in (3.3), and the loss
probability on route r is exactly Lr as given in (3.6).

Starting from the Erlang fixed point approximation and by extending the
definition of the Erlang B formula (3.5) to non-integral values of xv via linear inter-
polation,5 the sensitivity of the rate of revenue with respect to the capacity of VP v
has been derived by Kelly [36] and is given by

∂
∂xv

W � ν; x � � cv (3.7)

where the implied costs c are the (unique) solution to the equations

cv � ηv � 1 � Bv � � 1 ∑
r � R

Avrνr � 1 � Lr � � wr � ∑
u � V

Aurcu
�

cv � � v � V 	 (3.8)

In these equations, ηv � E � ρv ��� xv � 1 � � � E � ρv ��� xv � � ; Bv, ρv, and Lr are obtained
from the Erlang fixed point approximation. Note that, based on (3.7), the implied
costs c also have an interpretation as shadow prices.

5At integer values of xv, define the derivative of E � ρv � xv 	 with respect to xv to be the left
derivative.
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Using the partial derivatives of the rate of network revenue (3.7), the opti-
mization problem can be solved (at periodic intervals) using a standard gradient-
based hill-climbing procedure over a convex feasibility region defined by linear
inequalities. An execution of this centralized algorithm could be triggered by a
combination of a time limit and a window for the revenue function W � ν; x � . If the
current rate of revenue reaches the upper or lower limits of the window or the time
limit is reached, then a new optimization would be executed. Subsequently, a new
window would be computed based on the current rate of revenue. Upper and lower
bounds for W � ν; x � can be computed [19, 52] giving an idea of how we are doing.
These bounds are only valid for the particular VP layout being used; a more difficult
problem is to find tight bounds over all possible VP layouts. Bounds of this type
would help to gauge when the VP layout should be adjusted. An alternative would
be to adjust the layout on a daily or hourly basis with the VP capacities adjusted
more frequently for fine-tuning using the algorithm proposed here. We note that,
in general, W � ν; x � is not concave. However, Kelly has shown that it is asymptot-
ically linear as ν and x are increased in proportion [36], and it is possible that the
stochastic fluctuations in the offered traffic may allow the optimization procedure
to escape a nonoptimal local maximum.

If the VPs are constrained to be end-to-end, then each route traverses a single
logical link. Since we are allocating end-to-end VPs, the blocking probability Lr �
E � νr � xv � for the VP v such that Avr � 1. Therefore, ∂

∂xv
Lr � Avr � E � νr � � xv � � �

E � νr ��� xv � 1 � � � � � Avrηv, and the revenue sensitivity is

∂
∂xv

W � ν; x � � ηv ∑
r � R

Avrwrνr 	 (3.9)

Compared to (3.7), this sensitivity can be computed independently of the other VPs.
In a decentralized algorithm, each VP would be responsible for comput-

ing its own sensitivity. In the single- or multiple-link VP case, this would involve
exchanging values with other VPs in an iterative fashion. Once computed, the sen-
sitivities would be used to guide VP capacity allocation and deallocation requests
made to link controllers. The link controllers would enforce the link capacity con-
straints and grant or deny requests as appropriate based on the revenue sensitivities.
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3.4.2 VP/VC switching

In this section, we address the problem of a network that can simultaneously switch
VPs and VCs where the constraint on call processing capacity is a limiting factor.
As argued above, this situation may or may not materialize in the future. If it does,
the underlying tradeoff is between network efficiency, which we represent via the
overall network revenue or throughput, and the switch call processing capacity.
Based on models for circuit-switched networks, we formulate this problem as one
of maximizing network revenue subject to call processing constraints. There is at
least one similar formulation [4], where they use an M/M/1 model to approximate
call setup delays. However, our goal is to design an adaptive mechanism that, based
on on-line measurements of the network loads, slowly dimensions and configures
VPs to enhance network performance.

Our framework in this section consists of a set J of links with capacities C j

for j � J , a set R of routes which are used for switched virtual circuits, and a set V
of routes corresponding to virtual paths. As before, we start with a single-service
loss network model. The initial algorithm that we present will be for end-to-end
VPs in a decentralized setting.

Define the vector x � � xv � v � V � to be the capacities allocated to each VPC.
The matrix A � � A jr � j � J � r � R � is a 0–1 matrix with A jr � 1 if route r passes
through link j and A jr � 0 otherwise. The matrix V � � V jv � j � J � v � V � is the
analogous 0–1 matrix for the VPCs. The residual capacities left to the SVCs are
given by the vector Cs � C � V x. The vector ν � � νr � r � R � denotes the rates of
independent Poisson arrival processes for each route. The vector ξ � � ξv � v � V � is
the analogous demand vector for the VPCs. We use wr (wv) to denote the revenue
generated by accepting a connection on route r (VPC v), and Lr (Lv) is the blocking
probability on route r (VPC v). There may be multiple VPCs and routes available
for SVCs between each origin/destination pair, so to retain the Poisson assumption,
we will assume that load sharing occurs between the choices available for each
origin/destination pair. The percentage routed to the available VPCs is determined
separately from our algorithm for adjusting the VPC capacities. Note that this type
of routing coupled with the loss network assumption provides an upper bound on
the amount of blocking that would occur with a more realistic alternate routing
scheme (in which the VPCs are attempted first). Hence, our estimate for the rate of
revenue generated is conservative.
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To model the signaling constraint, we define a vector µ � � µ j � j � J � repre-
senting the service rate available for setting up SVCs on a per link (or, equivalently,
per port) basis. The signaling capacity of each switch is in proportion to the number
of input (or output) links, so we simply take the average available to each link. We
will define the signaling constraint as a flow constraint µ on the amount of traffic
desiring SVCs.

For a given ν and ξ (and a uniform amount of revenue per connection), the
rate of revenue for the network will be maximized when no capacity is allocated
to VPCs because allocating capacity for an end-to-end VPC reduces the amount of
capacity available (and thus increases blocking) for SVCs using those links. How-
ever, we will be forced to allocate capacity to a VPC if the signaling constraint is
violated at one or more of the switches. Our optimization problem can be stated as

maximize W � ν; ξ; x; C � � ∑
v � V

wvξv � 1 � Lv � � ∑
r � R

wrνr � 1 � Lr � (3.10)

subject to V x
�

C (3.11)

and Aν �
µ (3.12)

over x � 0 	

The second constraint (3.12) is the signaling constraint for SVCs. We have con-
servatively chosen to constrain the offered load (without thinning) to be less than
the signaling capacity. If this constraint is violated, then the delays for call setup
are becoming unacceptable at the affected switches. We note that, in general,
W � ν; ξ; x; C � is not concave with respect to the VPC capacities x because of the
second term in (3.10).

The revenue sensitivity with respect to the VPC capacity xv can be derived
as follows. In the first term of (3.10), only Lv depends on xv. Since we are allocating
end-to-end VPCs, the blocking probability Lv � E � ξv � xv � where the function E is
the Erlang B formula. As before, we extend the Erlang B formula to non-integral
values of xv via linear interpolation, and, at integer values of xv, we define the
derivative of E � ξv � xv � with respect to xv to be the left derivative. Therefore, ∂

∂xv
Lv �

E � ξv ��� xv � � � E � ξv ��� xv � 1 � � � � ηv.
To treat the second term of (3.10), we note that the residual capacities Cs to-

gether with the demand vector ν comprise a loss network in which we can compute
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implied costs according to [36]

cs
j � ηs

j � 1 � Bs
j � � 1 ∑

r � R
A jrνr � 1 � Lr � � wr � ∑

k � J
Akrcs

k
�

cs
j � � j � J � (3.13)

where ηs
j � E � ρ j � Cs

j � 1 � � E � ρ j � Cs
j � , and ρ j and Bs

j are the offered load and block-
ing probability for SVCs at link j, respectively. Bs

j, ρ j, and Lr are obtained from
either the Erlang fixed point approximation or on-line measurement.

In [36], for a revenue function W s � ν; Cs � � ∑r � R wrνr � 1 � Lr � , Kelly de-
rived the sensitivity of the rate of revenue with respect to Cs

j to be cs
j. Noting that

∂
∂xv

W s � ν; Cs � � ∑ j � J
∂

∂xv
Cs

j
∂

∂Cs
j
W s � ν; Cs � and combining this with our result for the

first term, we have

∂
∂xv

W � ν; ξ; x; C � � wvξvηv � ∑
j � J

Vjvcs
j 	 (3.14)

The first term in (3.14) represents the increase in revenue that would result from
additional calls accepted on VPC v after increasing xv, while the second term quan-
tifies the loss in revenue that would occur from decreasing the residual capacity
along path v available to SVCs.

Our on-line algorithm for adjusting the VPC capacities can be described in-
tuitively as follows. Each switch (port) monitors the processing loads generated by
each route. If the aggregate offered load is seen to reach a link’s signaling con-
straint, then a VPC is initiated. To determine which flow of traffic to aggregate,
the switches coordinate a calculation of the revenue sensitivities with respect to al-
locating capacity to the possible VPCs flowing through the overloaded link.6 A
VPC is configured on the route with the highest revenue sensitivity, i.e., likely to
cause the least loss of network revenue. This procedure is carried out slowly and
adaptively to meet changing demands. As the call processing loads on the network
relax, it becomes advantageous to eliminate VPCs allowing for better usage of net-
work resources. In this case a lower threshold on measured loads would initiate the
removal of VPCs. We propose a mechanism incorporating a hysteresis loop with
two thresholds in order to avoid making excessive changes due to fluctuations of the
network processing loads. In addition, the actual measurements of the processing
loads can be damped by exponential weighted averaging.

6Note that this requires coordination because the revenue sensitivities depend on the network
topology, routes, and loads at that moment in time.
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Figure 3.2: VP allocation scenario with two VPCs subject to call processing con-
straints.

A simple illustration of this process is shown in Fig. 3.2 for a link with two
possible VPCs. In this particular case, the revenue sensitivity for VPC 1 is higher,
so it would be chosen first for capacity allocation as the call processing loads at the
link increase.

We now define more formally a decentralized protocol for adaptation. We
assume that each node in the network has complete topology and route informa-
tion and that a decentralized computation of the implied costs for the residual SVC
network is carried out at appropriate intervals. Initially, x � 0, i.e., no capacity
is allocated to VPCs. For each link, there is a link controller (or port monitor)
which is responsible for checking the signaling constraint. If the constraint is vi-
olated for a particular link, then the controller computes the revenue sensitivities
for all VPCs which are alternate routes for routes in R passing through this link.
Increase the capacity by a unit amount (subject to the capacity constraint) of the
VPC with the highest sensitivity subject to not passing through a bottleneck link j
with ∑v � V Vjvxv � C j. After allowing the load vectors ν and ξ to readjust, repeat
as necessary until the signaling constraint at that link is not violated (assuming this
is feasible). Capacity should be removed in unit decrements from a VPC v when

∑r � R A jrνr � µ j � ε j for all j � v where µ j � ε j is a predetermined threshold.
If the VPs are not constrained to be end-to-end, then routes can use a mixture
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of VCs and VPs where multiple-link VPs are treated as single logical links. Implied
costs can be computed for all “links” whether they be VPs or actual links with a
residual capacity Cs

j � C j � ∑v � V Vjvxv. The revenue sensitivity with respect to the
capacity of VP v would be

∂
∂xv

W � ν; x; C � � cv � ∑
j � J

Vjvcs
j 	 (3.15)

It is unclear whether the algorithm to adjust the VP capacities would work as well as
the end-to-end VPC case in limiting the call processing loads for SVCs. Increasing
the capacity of a VP may not increase the capacity available to routes using that
VP because of bottlenecks elsewhere. For this reason, it may be wise to restrict the
candidate VPs for an increase to those passing directly through the link with the
signaling constraint violation. This would increase the probability of a VP capacity
increase actually decreasing the SVC setup traffic through that link.

Another alternative is to run a centralized algorithm at periodic intervals. For
instance, given future demand estimates and average holding times, the average cps
per link can be constrained below a certain value by limiting the capacity available
to SVCs. The remaining capacity in the network can be allocated to VPs using the
method proposed in Sec. 3.4.1 for a VP-only environment. The algorithm could
then be repeated periodically to adapt to changing demands.

3.4.3 Additional remarks

A multiservice environment could accommodate traffic from several different band-
width classes. The implied costs would now be indexed by (logical) link and ser-
vice type, and with the choice of an appropriate blocking function at each link, the
implied cost equations can be derived by extending the approach of Kelly to the
multirate case [19, 52]. The formulation in [19] is particularly relevant here since
they consider a situation similar to that in Sec. 3.4.1. We will have more to say
about the multirate case in Chapter 4 when we discuss network aggregation.

Our goal here was to present a framework for adapting VP capacities in a
variety of settings. Establishing an optimal VP layout and set of capacities is a hard
combinatorial problem, and no comprehensive solution has been presented to date.
We have tried to decouple the problem as much as possible from the effects of the
routing algorithm, but in fact, there are subtle interactions between the routing and
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VP capacity allocation algorithms that affect the ultimate success of the methods
proposed here.

3.5 VP capacity migration

If we run a centralized algorithm to update the VP capacities, then we are faced
with the following problem: given two sets of VP capacities, how do we migrate
from one set to another? This may involve changing the capacities of the current
VP layout or changing to an entirely different layout.7 As discussed previously,
such changes may be triggered by a centralized optimization that is run periodically
for the purpose of allocating resources more efficiently [50]. They may also be
carried out in response to a failure in the network, in which case, enough spare
(unallocated) capacity must be available to handle the reconfiguration. Call priority
levels might be used to determine which calls are reconnected if there is not enough
room to accommodate all calls which were dropped due to the failure. For a non-
failure related reconfiguration, it is reasonable to assume that ongoing calls cannot
be preempted. As we will see in the sequel, this assumption admits the possibility
of migration taking a significant amount of time.

We can divide the VPs that must change capacities into two groups, Vd

and Vi, consisting of those that must decrease their capacities and those that must
increase their capacities, respectively. For a given VP v, let xv denote its current
capacity, x t

v its target capacity, and yv its current utilization. For each v � Vd , we
assume that ongoing calls cannot be preempted and that no new calls are admitted
until the decrease in capacity is accomplished. For v � Vd such that yv � x t

v, the
VP must wait for enough calls to complete to make yv

�
x t

v before requesting the
decrease in capacity. (It could also make changes incrementally.) VPs in Vi can
still admit calls as usual.

In the migration algorithms that we will present, it is assumed that links and
VPs have associated “intelligences” that enable communication between the links

7We will say that we are changing layouts if at least one VP is being created or destroyed. This
distinction is, in reality, arbitrary as the same algorithm is used for migration whether or not the
layout is being changed. We make the distinction because changing VP layouts will, in general,
take longer than incremental capacity adjustments, and in practice, it is expected that the VP layout
will be changed less frequently than the VP capacities, as the creation or destruction of VPs causes
additional overhead.
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and VPs. In addition, for a centralized optimization, we must have the capability
to broadcast the new capacities to existing VPs and arrange for the creation of new
VPs.

3.5.1 Basic algorithm

A simplistic algorithm for accomplishing the migration is to first broadcast the new
capacities to VPs in Vd , wait for all of them to decrease, and then broadcast the
new capacities to VPs in Vi. After presenting pseudocode for this algorithm, we
will show by way of example that it can be extremely inefficient.

Algorithm 3.1.

1 begin
2 foreach v � Vd do xv : � max � yv � x t

v � ; endfor;
3 while

�
v � Vd �� xv � x t

v � �� /0 do
4 wait for a call completion;
5 r : � route on which call completed;
6 foreach v � r such that xv � x t

v do
7 xv : � xv � 1;
8 endfor;
9 endwhile;

10 foreach v � Vi do xv : � x t
v; endfor;

11 end

3.5.2 Migration example

Consider a homogeneous situation in which all calls require unit bandwidth and
holding times are independent and exponentially distributed with mean µ � 1. Sup-
pose n of the VPs in Vd have yv � x t

v � 1 while the remaining VPs in Vd have
yv

�
x t

v. For each VP, the time until one call completes is exponentially distributed
with mean � yvµ � � 1. For simplicity, assume yv � y for all VPs with yv � x t

v. Let T
be a random variable denoting the time until all VPs in Vd can decrease capacity to
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x t
v. Then,

���
T � � 1

nyµ
� 1

� n � 1 � yµ
�

�����

� 1
yµ

� 1
yµ

� 1
n

� 1
n � 1

�
��� �

�
1 �

� 1
yµ

� logn
�

0 	 5772 � for large n �

where 0.5772 is Euler’s constant [64]. However, the tail of the distribution of T is
given by �

� T � t � � 1 �
�
� T �

t �
� 1 � � 1 � e � yµt � n by independence

� ne � yµt for large t 	
Therefore, for large n, the mean migration time grows logarithmically in n,

but the tail probabilities, for a large, fixed time t, grow linearly in n. For hold-
ing time distributions other than exponential, the tail can potentially grow faster or
slower. For example, it grows faster for a Pareto distribution. These growth rates
and limiting distributions are studied more carefully in [21].

The primary observation here is that in large networks where significant
adjustments are being made, we might on occasion have very poor “performance.”
By that, we mean a significant number of connections which were blocked during
migration could have been admitted under a migration process more sophisticated
than Algorithm 3.1. The migration process itself is a transient occurrence, yet if the
duration is lengthy and/or updates on VP layouts are made quite often, the overall
impact on performance may be significant. Roughly speaking, we are likely to have
significant blocking during migration when holding times are long, e.g., there are
lots of video connections, and/or there are lots of VPs being decreased to a small
capacity, i.e., when n is large and yµ is small. As we will see in the experiments
below, the situation can potentially be very bad if we are making dramatic changes
in the VP layout.

3.5.3 Refinements to the basic algorithm

Improved algorithms require more coordination between VPs and links as they at-
tempt to increase the capacity of VPs in Vi before all VPs in Vd have decreased
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to their target levels. The hope is that this will make a difference as the expected
time until the first call completes is much less than

� �
T � . In the example above

with the n VPs and yv � x t
v � 1, the average time until the first call completion is

1
�
nyµ, which is much less than

���
T � for large n. The performance metric of in-

terest is how many extra connections are admitted that would have otherwise been
blocked. Note that our improved algorithms will have the same migration time as
Algorithm 3.1 because (ignoring propagation and processing delays) the length of
the migration process is determined solely by the time it takes for enough ongoing
calls to complete to bring the utilization levels of all VPs in Vd below their target
capacities.

We now briefly outline two enhanced algorithms that can be implemented in
a decentralized fashion. In the following, let xv; j denote the capacity allocated to
VP v at link j, and let Vi; j be the set of VPs in Vi that pass through link j. Note
that that the actual capacity of VP v is xv � min j � v xv; j. Suppose that, at link j, as
VPs in Vd release capacity, available bandwidth units are allocated one at a time
to the VP in Vi; j with the maximum remaining increase to its target capacity, i.e.,
maxv � Vi; j

� x t
v � xv; j � . Ties are broken in an arbitrary fashion. We have omitted the

breaking of ties in the following description and have assumed that calls require
unit bandwidth.

Algorithm 3.2.

1 begin
2 foreach v � Vd do
3 xv : � max � yv � x t

v � ;
4 foreach j � v do xv; j : � xv; endfor;
5 endfor;
6 foreach j � J do
7 c : � spare capacity at link j;
8 while c � 0 do
9 z : � argmaxv � Vi; j

� x t
v � xv; j � ;

10 if x t
z � xz; j then xz; j : � xz; j

�
1; xz : � mink � z xz; k; endif;

11 c : � c � 1;
12 endwhile;
13 endfor;
14 while

�
v � Vd �� xv � x t

v � �� /0 do
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15 wait for a call completion;
16 r : � route on which call completed;
17 foreach v � r such that xv � x t

v do
18 xv : � xv � 1;
19 foreach j � v do
20 xv; j : � xv;
21 z : � argmaxw � Vi; j

� x t
w � xw; j � ;

22 if x t
z � xz; j then xz; j : � xz; j

�
1; xz : � mink � z xz; k; endif;

23 endfor;
24 endfor;
25 endwhile;
26 foreach v � Vi do xv : � x t

v; endfor;
27 end

We can define a more refined algorithm that uses an extra piece of informa-
tion, the current utilization levels, to try to anticipate which VPs in Vi are likely
to block soon. In this algorithm, when allocating a unit of bandwidth at link j, we
choose the VP in Vi; j with the minimum available capacity, i.e., minv � Vi; j

� xv; j �
yv � , given that x t

v � xv; j � 0. Ties are broken by choosing the VP with the maximum
remaining increase as in Algorithm 3.2, with further ties broken arbitrarily. The as-
sumption that links know the utilization levels of VPs is a bad one because it breaks
the interface abstraction between VPs and links. Nonetheless, it is instructive to see
how well this algorithm performs compared to Algorithm 3.2. Once again, we have
omitted the breaking of ties in the following description, and instead of repeating
most of Algorithm 3.2, we only specify what is different.

Algorithm 3.3. Substitute the following for lines 9–10 and for lines 21–22 in Al-
gorithm 3.2.

1 z : � argmin � w � Vi; j

�
x t

w
� xw; j � � xw; j � yw � ;

2 if z is valid then xz; j : � xz; j
�

1; xz : � mink � z xz; k; endif;

Various other algorithms can be defined based on whether or not link j is a
bottleneck for a particular VP, i.e., whether or not xv � xv; j. The idea would be to
only allocate capacity to VPs for which link j is a bottleneck. In our experiments,
these algorithms did not perform significantly better than Algorithms 3.2 and 3.3,
so we have not included their descriptions here.
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Figure 3.3: An illustration of a single link divided into VPs migrating from capacity
10 to 5 and 5 to 10. Arrivals are Poisson with rates 4 and 3, respectively.

3.5.4 Simulation results

To evaluate the algorithms, we conducted several simulations. We began with a
situation resembling the example above. Suppose we have a single link of capac-
ity 1500 supporting a total of 200 VPs, where 100 VPs have capacity 10 and the
remaining 100 have capacity 5. The VPs establish a logical (or overlay) network
upon which routes are defined using the VPs as logical links. For this single physi-
cal link, suppose there are 200 routes, one per VP, with Poisson call arrivals at rate 4
for the VPs with capacity 10 and at rate 3 for the VPs with capacity 5. As before, all
calls require unit bandwidth and holding times are independent and exponentially
distributed with mean µ � 1 � 1. During migration, the VPs simply swap capacities,
i.e., all VPs with capacity 10 move to 5 and vice versa. This situation is illustrated
in Fig. 3.3.

The results quoted below are 95% confidence intervals based on indepen-
dent replications. Sufficient warmup time was allowed for each replication and
common random numbers were used when comparing the various algorithms. For
this experiment, which we refer to as Link-Incr, the average migration time was
0 	 90

�
0 	 05 time units, and the total number of offered calls during migration was

631
�

34 on average. For Algorithm 3.1, an average of 132
�

8 calls were blocked
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Figure 3.4: Hypothetical core network. The double lines indicate 90 Mbps links.
All other links are 45 Mbps.

during migration. For both Algorithms 3.2 and 3.3, 103
�

7 calls were blocked
during migration.

Now consider a similar setup based on changing VP layouts in which the link
capacity is 500, 100 of the VPs are decreased from 5 to 0, and the other 100 VPs
are increased from 0 to 5. One hundred routes with an offered load of 2.5 each are
defined for the VPs currently at capacity 5, and they are immediately shifted to the
other 100 VPs when migration commences. For this experiment, which we refer to
as Link-Layout, the average migration time jumped to 6 	 10

�
0 	 14 time units. The

average number of offered calls during migration was 1628
�

38, all of which were
blocked when using Algorithm 3.1. The number of extra connections admitted was
quite large in this example with 198

�
4 calls being blocked for Algorithm 3.2 and

181
�

4 calls being blocked for Algorithm 3.3.
We experimented with several larger, multi-link networks, one example of

which is shown in Fig. 3.4. This represents a hypothetical core network and is
borrowed from [52]. For each pair of endpoints, we defined an end-to-end VP
along the shortest path. We also defined a single-link VP for each physical link.
We specified three routes for each pair of endpoints: the end-to-end VP and two
alternate routes using the single-link VPs. The arrival rates for the routes were
inversely proportional to the number of links traversed with shorter routes receiving
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greater offered loads. In all, there were 38 VPs and 84 routes. Using this setup,
we performed two experiments: the Mesh-Incr experiment which corresponds to
a plausible incremental change in VP capacities, and the Mesh-Layout experiment
which, in addition to the Mesh-Incr changes, simulates the replacement of the 45
Mbps link between Princeton and College Park with a separate 90 Mbps link. The
results of the link and mesh experiments are summarized in Table 3.3.

The performance difference between Algorithm 3.1 and Algorithms 3.2 and
3.3 is especially dramatic when changing layouts. In a sense, the Link-Layout ex-
periment simulates a worst-case scenario since all existing VPs are replaced during
migration. The migration time for the Mesh-Incr experiment is so short that hardly
any calls are blocked. If the link capacities and number of VPs were increased by an
order of magnitude, the number of blocked calls would become significant similar
to the Link-Incr experiment. In all cases, Algorithm 3.3 is not significantly better
than Algorithm 3.2. We note that, in general, more performance can be gained by
our improved algorithms when VPs do not traverse many physical links because to
increase its capacity, a VP has to wait for each link in its path to allocate additional
capacity to it.

We also performed experiments with holding time distributions having more
variance and larger tails than the exponential such as two-stage hyperexponential
[49] and Pareto distributions [33]. As expected, migration times can potentially
be much longer, especially when changing VP layouts, making the case for imple-
menting improved algorithms even stronger. For example, we repeated the Link-
Incr and Link-Layout experiments with a mean holding time of 3 for three different
distributions: a standard exponential, a two-stage hyperexponential with a standard
deviation that was twice the mean, and a Pareto distribution. (We chose a mean of
3 because the Pareto distribution cannot have a mean of 1.) The offered loads were
divided by 3 to keep the blocking probabilities roughly the same as before. The
results are summarized in Table 3.4.

It is interesting to note that both the fastest migration in the Link-Incr exper-
iment and the slowest migration (by far) in the Link-Layout experiment occurs for
the Pareto distribution. This makes sense because the Pareto distribution typically
has a greater number of both short calls and very long calls when compared to the
other distributions.

We conclude that for small incremental changes, VP capacity migration is
not much of a problem, but when dramatically changing VP layouts, it would be
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wise to implement a simple algorithm such as Algorithm 3.2. Algorithm 3.3 and
other “smarter” decentralized algorithms do not exhibit enough performance gains
over Algorithm 3.2 to warrant their additional complexity.

3.6 Chapter summary

Whereas Chapter 2 was concerned with flow aggregation in a static environment,
the theme of this chapter has been adaptive resource allocation for aggregated flows
in the face of time-varying demands and finite signaling resources. We argued that
signaling resources may not be sufficient for future demands on ATM networks,
and we presented a framework based on implied costs for adapting VP capacities to
handle the increased processing and complexity costs.

In some cases it is desirable to modify the manner in which flows are aggre-
gated (the VP layout). In this context we investigated algorithms to migrate from
one layout to another, and we found that for incremental changes, the potential for
performance losses during migration in terms of call blocking is minimal. However,
when dramatic changes in the VP layout are warranted, it is desirable to enhance
performance by implementing Algorithm 3.2, a simple decentralized algorithm that
we have proposed.
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Chapter 4

Network Aggregation: Hierarchical
Source Routing Using Implied Costs

4.1 Introduction

In order to provide guaranteed QoS, communication systems are increasingly draw-
ing on “connection-oriented” techniques. ATM networks are connection-oriented
by design, allowing one to properly provision for QoS. Similarly, QoS extensions
to the Internet, such as RSVP [11, 31, 77], make such networks akin to connection-
oriented technologies. Indeed, the underlying idea is to reserve resources for packet
flows, but to do it in a flexible manner using “soft state” which allows flows to be
rerouted (or “connections” repacked [38]). Similar comments apply to an IP over
ATM switching environment, where IP flows are mapped to ATM virtual circuits.
In light of the above trends and the push toward global communication, our focus
in this work is on how to make routing effective and manageable in a large-scale,
connection-oriented network by using network aggregation. We shall first introduce
hierarchical source routing, explain the basics of our routing algorithm, and give an
example of the complexity reduction that it can achieve.

4.1.1 Hierarchical source routing: motivation and example

In a large-scale network, there are typically multiple paths connecting a given
source/destination pair, and it is the job of the routing algorithm to split the de-
mand among the available paths. The routing algorithm which we introduce in this
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chapter fits nicely into the ATM Private Network-Network Interface (PNNI) frame-
work [71], but it can also be thought of as a candidate for replacing the Border
Gateway Protocol (BGP) [31] in the Internet that would split flows in “IP/RSVP”
routing. Central to our algorithm is the implied cost [36] for a connection along
a given path which measures the opportunity cost or expected loss of revenue re-
sulting from accepting a connection. Using implied costs takes into account the
possibility of “knock-on” effects (due to blocking and subsequent alternate routing)
[36] and is geared towards achieving a network optimal routing algorithm.

To make good decisions and provide acceptable QoS, it is desirable to have
a global view of the network at the source when making routing decisions for new
connections. Thus, source routing, where the source specifies the entire path for the
connection, is an attractive routing method. It has the additional advantage that, in
contrast to hop-by-hop routing, there is no need to run a standardized routing algo-
rithm to avoid loops and policy issues such as provider selection are easily accom-
modated. Propagating information for each link throughout the network quickly
becomes unmanageable as the size of the network increases, so a hierarchical struc-
ture is needed, such as that proposed in the ATM PNNI specification [71]. Groups of
switches are organized into peer groups (also referred to as clouds), and peer group
leaders are chosen to coordinate the representation of each group’s state. These
collections of switches then form peer groups at the next level of the hierarchy and
so on. Nodes keep detailed information for elements within their peer group. For
other peer groups, they only have an approximate view for the current state, and this
view can become coarser as the “distance” to remote areas of the network increases.
We refer to the formation of peer groups as network aggregation. Besides reducing
the amount of exchanged information, a hierarchical structure also makes address-
ing feasible in a large-scale network, as demonstrated by the network addressing
of IP, and it permits the use of different routing schemes at different levels of the
hierarchy. Prior work in the area of routing in networks with aggregated, and thus
inaccurate information, can be found in [29, 48].

By combining a hierarchical network with (loose1) source routing, we have
a form of routing referred to as hierarchical source routing. As an illustration,
Fig. 4.1 shows a fragment of a larger network (Network 0) in which Peer Group

1In loose source routing, only the high-level path is specified by the source. The detailed path
through a remote peer group is determined by a border switch of that peer group.
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Figure 4.1: Illustration of hierarchical addressing and source routing.

2 contains Nodes 1, 2, and 3.2 These nodes contain 3, 5, and 4 switches, respec-
tively. To specify, for example, the source at Switch 2 of Node 1 of Peer Group 2 in
Network 0, we use the 4-tuple 0.2.1.2. The example in Fig. 4.1 shows a source at
0.2.1.2 and destination at 0.2.3.4. The source 0.2.1.2 has specific information about
its peer switches 0.2.1.1 and 0.2.1.3, but only aggregated information about nodes
0.2.2 and 0.2.3. The result of performing source routing is a tentative hierarchical
path to reach the destination, e.g., 0 � 2 � 1 � 2 � 0 � 2 � 1 � 1 � 0 � 2 � 2 � 0 � 2 � 3 which spec-
ifies the exact path locally (0 � 2 � 1 � 2 � 0 � 2 � 1 � 1) then the sequence of remote nodes
to reach the destination ( � 0 � 2 � 2 � 0 � 2 � 3). Upon initiating the connection request,
the specified path is fleshed out, and, if successful, a (virtual circuit) connection
satisfying prespecified end-to-end QoS requirements is set up. In this case, the
border switches 0.2.2.4 and 0.2.3.2 in Nodes 2 and 3, respectively, are responsible
for determining the detailed path to follow within their respective group. Further-
more, each switch will have a local Connection Admission Control (CAC) algo-
rithm which it uses to determine whether new connection requests can in fact be

2These nodes are peer groups in their own right, but we use the term “node” here to avoid
confusion with the peer groups at the next level of the hierarchy.
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admitted without degraded performance. If the attempt fails, crankback occurs, and
new attempts are made at routing the request. (Our model will ignore crankback.)

4.1.2 Explicit vs. implicit representations of available capacity

To do routing in this hierarchical framework, we must decide how to represent the
“available” capacity of a peer group, either explicitly or implicitly. The explicit
representation takes the physical topology and state of a peer group and represents
it with a logical topology plus a metric denoting available capacity that is associated
with each logical link. There may also be other metrics such as the average delay
associated with logical links.

Typically, the first step in forming the explicit representation is to find the
maximum available bandwidth path between each pair of border nodes, i.e., nodes
directly connected to a link that goes outside the peer group. If we then create
a logical link between each pair of border nodes and assign it this bandwidth pa-
rameter, we have taken the full-mesh approach [45]. If we collapse the entire peer
group into a single point and advertise only one parameter value (usually the “worst
case” parameter), we have taken the symmetric-point approach [45]. Most proposed
solutions lie somewhere between these two extremes.

In the ATM PNNI specification [71], the baseline representation is a star in
which each spoke has the same parameter value associated with it. More complex
representations are permitted in which exceptions have a different associated pa-
rameter value than the default. These exceptions can be a spoke of the star or an
additional logical link that connects a pair of border nodes.

Another alternative is to start with the full-mesh approach and encode the
mesh in a maximum weight spanning tree [45]. External nodes can recover the full-
mesh representation from the spanning tree if they desire. Whereas the symmetric
star topology approximates the “capacity region” of the peer group by a hyper-cube
region, the spanning tree approximates it with a hyper-rectangle. A simple example
will help clarify the meaning of the term “capacity region.” Suppose we have the
three-link peer group shown in Fig. 4.2 with available link capacities C1, C2, and C3

and routes r1 and r2. Let f1 ( f2) be the current amount of capacity in use by connec-
tions on routes r1 (r2). Then we have three link constraints: f1

�
C1, f2

�
C2, and

f1
�

f2
�

C3, plus the requirement that f1 � 0 and f2 � 0. These constraints define
the capacity region as shown in Fig. 4.3. The symmetric star topology approximates
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Figure 4.2: Peer group with three links and two routes.

the capacity region with a square defined by f1
�

min
�
C1 � C2 � , f2

�
min

�
C1 � C2 � ,

f1 � 0, and f2 � 0. The spanning tree approximates it with a rectangle given by
f1

�
C1, f2

�
C2, f1 � 0, and f2 � 0. It should be clear from Fig. 4.4 that neither

of these approaches captures the sharing of capacity by routes r1 and r2 on link 3,
leading to a somewhat optimistic advertised capacity.

A third approach is to approximate the capacity region with a hyperplane
[76]. For the example shown in Fig. 4.3, one possible choice would be the triangle
given by f1

�
f2

�
C3, f1 � 0, and f2 � 0 (see Fig. 4.4). When coupled with

prediction of offered loads, the hyperplane approach has the potential to provide a
more accurate picture of the available capacity than the star or the spanning tree.

None of the explicit representations, however, are without problems. For
example, as mentioned earlier, the maximum available bandwidth paths between
different pairs of border nodes may overlap, causing the advertised capacity to be
too optimistic. Another questionable area is scalability to larger networks with more
levels of hierarchy.

4.1.3 QoS routing based on implied costs

A more important problem is how the representation couples with routing. Can we
really devise an accurate representation that is independent of the choice of routing
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Figure 4.3: The capacity region based on the link constraints imposed on the flows
along the two routes.

algorithm? None of the explicit representations address the effect that accepting a
call would have on the congestion level both within the peer group and in other parts
of the network due to interdependencies among traffic streams. For this reason, we
introduce an implicit representation based on the average implied cost to go through
or into a peer group that directly addresses this issue and is an integral part of the
adaptive hierarchical source routing algorithm that we propose.

Such implied costs reflect the congestion in peer groups as well as the inter-
dependencies among traffic streams in the network, and, independent of their use
in a routing algorithm, they may be useful to network operators for the purpose of
assessing current congestion levels. A rough motivation behind using the average
is that, in a large network with diverse routing, a connection coming into a peer
group can be thought of as taking a random path through that group, and hence the
expected cost that a call would incur would simply be the average over all transit
routes through that group. We will develop two closely related approximations: one
in which the computed average implied costs are never used for the local portion
of a route, and a more aggressive approximation in which the average implied cost
is used locally as well as remotely for transit routes traversing more than one peer
group. This second approximation will enable us to guarantee convergence of the
implied cost computation under any traffic conditions, not just under light loads.
With this approach, a route transiting through a peer group can be thought of as
consuming an amount of bandwidth on each link in that peer group that is propor-
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Figure 4.4: Various approximations to the capacity region in Fig. 4.3.
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tional to the fraction of actual transit traffic in that peer group which passes through
that link.

In order for our scheme to succeed, we need a hierarchical computation of
the implied costs and a complementary routing algorithm to select among various
hierarchical paths. The path selection will be done through adaptive (sometimes
called quasi-static) routing, i.e., slowly varying how demand is split between transit
routes that traverse more than one peer group, with the goal of maximizing the rate
of revenue generated by the network. After eliminating routes which do not satisfy
the QoS constraints, e.g., end-to-end delay,3 the demand for transit routes connect-
ing a given source/destination pair can be split based on the revenue sensitivities
which are calculated using the implied costs. Within peer groups, we feel that dy-
namic routing should be used because of the availability of accurate local routing
information.

By using an adaptive algorithm based on implied costs, we take the point
of view that first it is of essence to design an algorithm that does the right thing
on the “average,” or say in terms of orienting the high-level flows in the system
toward a desirable steady state. In order to make the routing scheme robust to
fluctuations, appropriate actions would need to be taken upon blocking/crankback
to ensure good, equitable performance in scenarios with temporary heavy loads.

4.1.4 Using hierarchy to reduce complexity

We now give an example of the complexity reduction achievable with our algo-
rithm. Consider a network consisting solely of Peer Group 2 in Fig. 4.1. As will
be explained in Sec. 4.4, the implied costs are computed via a distributed, itera-
tive computation. At each iteration, the links must exchange their current values.
Making the assumption that Nodes 1, 2, and 3 are connected locally using a broad-
cast medium, this would require 81 messages per iteration if we did not employ
averaging. With our algorithm for computing the implied costs, only 41 messages
per iteration would be needed, a savings of 49%. The memory savings would be
commensurate with these numbers, and the computational complexity of the two
algorithms is roughly the same. This reduction is significant because information
update in an algorithm such as PNNI is a real problem, as it can easily overload the

3In our model, effective bandwidth [16, 40] allocation is used to control queueing delays which
translates to a limit on hop counts plus propagation delay in order to satisfy a given delay bound.
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network elements [62].

4.1.5 Chapter roadmap

The rest of this chapter is organized as follows. Sec. 4.2 summarizes the prior work
directly relevant to the material in this chapter. Sec. 4.3 explains our model and
notation. The theoretical basis of our adaptive routing scheme and its relation to
Kelly’s work is given in Sec. 4.4. An alternative approximation of the implied costs
that works under any traffic conditions is developed in Sec. 4.5. Sec. 4.6 presents
some computational results which attempt to quantify routing “errors” due to inac-
curacies caused by aggregation. In Sec. 4.7, we discuss on-line measurements of
some necessary parameters, and Sec. 4.8 briefly outlines extensions to a multiser-
vice environment. Finally, Sec. 4.9 concludes with a chapter summary.

4.2 Related work

Hierarchical routing has been widely studied and used in both telephone and data
networks [14, 26, 34, 43, 68]. Generally, only simple routing metrics such as hop
count have been used to select appropriate paths. With the current trend toward
integrated broadband networks, interest in QoS-sensitive routing algorithms has
been increasing [47, 59, 74]. In addition, the desire for large-scale networking has
made a combination of the above, hierarchical QoS-sensitive routing algorithms, an
important area of study [29, 48, 56, 71]. For the specific case of routing in ATM
networks, which supports QoS and makes use of hierarchy and is consequently
quite complex, a good overview can be found in [2]. As an aside, we note that
QoS routing problems such as the constrained shortest path problem are typically
NP-complete [22, 74].

As part of the research on hierarchical QoS-sensitive routing, the explicit
representation of available subnetwork capacity has been studied in detail [45, 46,
71, 76]. However, our implicit representation based on implied costs is new. Here
we have extended the work of Kelly and others on the computation of implied costs
and their use in adaptive routing schemes in single-service and multiservice flat
networks [19, 36, 52]. Our proposed routing algorithm lies in the class of network
optimal algorithms as it attempts to maximize the rate of revenue for the network
instead of greedily trying to individually maximize each user’s benefit. Network
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versus user optimization and the possible effects on stability in QoS-sensitive rout-
ing is an issue worthy of further study. An earlier version of the material in this
chapter can be found in [53].

4.3 Model and notation

Our model is that of a loss network serving a single type of traffic,4 i.e., all calls
require unit bandwidth, call holding times are independent (of all earlier arrival
times and holding times) and identically distributed with unit mean, and blocked
calls are lost. The unit bandwidth requirement per call can be considered to be an
effective bandwidth [16, 40] which captures the traffic behavior. The capacity of
each link j � J is C j units, and there are a total of J links in the network. Each link
j is an element of a single node n � j � � N , where an aggregated node n is defined
as a collection of links that form a peer group or that connect two peer groups.5 We
define E jn to be an indicator function for the event that link j is an element of node
n, and Pjk is an indicator function for the event that link j is a peer of link k (i.e., in
the same node). A route is considered to be a collection of links in J ; route r � R
uses A jr circuits on link j � J , where A jr

� � 0 � 1 � .6 A transit route is defined as
a route that contains links in more than one node, and Tnr is an indicator function
for the event that transit route r passes through node n. A call requesting route r
is accepted if there are at least A jr circuits available on every link j. If accepted,
the call simultaneously holds A jr circuits from link j for the holding time of the
call. Otherwise, the call is blocked and lost. Calls requesting route r arrive as an
independent Poisson process of rate νr. For convenience, definitions of the symbols
we will be using are collected in Table 4.1. Where appropriate, all values referred
to in this chapter are steady-state quantities.

For simplicity, we only consider a network with one level of aggregation like
that shown in Fig. 4.5. This network has three peer groups, consisting of 3, 5, and 4
switches, respectively. The logical view of the network from a given peer group’s
perspective consists of complete information for all links within the peer group but
only aggregated information for links between peer groups and in other peer groups.

4Extensions to multiservice networks will be presented in Sec. 4.8.
5There may be multiple links connecting the border switches of two peer groups. This set of one

or more interconnecting links is considered to be a separate aggregated node in our model.
6In general, these routes might include multicast routes.
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Symbol Description
J

�
J � Number (set) of links in the network.

C j Capacity of link j in circuits.
R

�
R � Number (set) of routes defined in the network.

N
�
N � Number (set) of nodes where a node is defined as a collection of links that

form a peer group or that connect two peer groups.
n

�
j � Link j is an element of node n

�
j � .

A jr Number of circuits (or units of capacity) used by route r on link j.
E jn Indicator function for the event that link j is an element of node n.
Tnr Indicator function for the event that transit route r passes through node n.
Pjk Indicator function for the event that link j is a peer of link k (i.e., in the same

node).
νr Rate of independent Poisson arrival process for route r.
Lr Blocking probability for route r.
λr Throughput achieved on route r.
B j Blocking probability at link j.
ρ j Reduced load at link j from thinned Poisson streams which pass through j.
θ j Throughput achieved through link j.
η j The expected increase in blocking probability at link j from removing a

single circuit.
δ j The expected number of calls blocked at link j as a result of removing a

single circuit for unit time.
wr Revenue generated by accepting a connection on route r.

W
�
ν; C � Rate of revenue for the network.
c j Implied cost to later calls which are blocked due to accepting a connection

through link j.
cn

r Sum of implied costs for links in route r that lie in node n.
c̄n Average implied cost of transiting through node n.
sr Surplus value (revenue minus costs) of an additional connection on route r.

sr; j Surplus value of an additional connection on route r from the perspective of
link j � r (in the hierarchical framework).

Hn Set of hierarchical paths from the point of view of node n.
H jh Number of circuits used explicitly by hierarchical path h on link j.
Lh Blocking probability for hierarchical path h.
λh Throughput achieved on hierarchical path h.

sh; j Surplus value of an additional connection on hierarchical path h of which j
is an explicit member.

Table 4.1: Definition of symbols for single-service model.
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Figure 4.5: Example network with a single level of aggregation.
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Figure 4.6: Logical view of the network from the perspective of peer group 1. The
set of links connecting two peer groups is also considered to be an aggregated node
in our model.
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The other peer groups conceptually have logical links which connect each pair of
border switches and connect each border switch to each internal destination. These
logical links have an associated implied cost, i.e., marginal cost of using this logical
resource, which is approximated from the real link implied costs. Currently, we
calculate an average implied cost for any transit route that passes through or into
a node, i.e., all of the logical links in a node have the same implied cost, and this
value is then advertised to other peer groups. Fig. 4.6 shows the logical view of the
example network from the perspective of peer group 1.

4.4 Approximations to revenue sensitivity

To calculate the revenue sensitivities, we must first find the blocking probability for
each route, an important performance measure in its own right. Steady-state block-
ing probabilities can be obtained through the invariant distribution of the number of
calls in progress on each route. However, the normalization constant for this dis-
tribution can be difficult to compute, especially for large networks. Therefore, the
blocking probabilities are usually estimated using the Erlang fixed point approxi-
mation [26, 38]. For ease of reference, we repeat the presentation of the Erlang
fixed point approximation already given in Sec. 3.4.1.

Let B � � B j � j � J � be the solution to the equations

B j � E � ρ j � C j � � j � J � (4.1)

where

ρ j � ∑
r � R

A jrνr ∏
k � r � � j � � 1 � Bk � (4.2)

and the function E is the Erlang B formula [8]

E � ρ j � C j � �
ρC j

j

C j!

�
C j

∑
n � 0

ρn
j

n! � � 1

	 (4.3)

The vector B is called the Erlang fixed point; its existence follows from the Brouwer
fixed point theorem and uniqueness was proved in [35]. Using B, an approximation
for the blocking probability on route r is

Lr � 1 � ∏
k � r

� 1 � Bk � 	 (4.4)
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The idea behind the approximation is as follows. Each Poisson stream of rate νr

that passes through link j is thinned by a factor 1 � Bk at each link k � r � � j �
before being offered to j. Assuming these thinnings are independent both from link
to link and over all routes, then the traffic offered to link j is Poisson with rate ρ j as
given in (4.2), the blocking probability at link j is B j as given in (4.1), and the loss
probability on route r is exactly Lr as given in (4.4).

Alternatively, instead of using the Erlang fixed point to approximate the
blocking probabilities, it may be more accurate and efficient to measure the rel-
evant quantities. Specifically, Lr, λr (the throughput achieved on route r), and
θ j � ∑r � R A jrλr (the total throughput through link j) can be obtained based on
moving-average estimates. This will in turn allow us to compute the associated
implied costs and hence the approximate revenue sensitivities. We will discuss the
subject of on-line measurements more fully in Sec. 4.7.

Assuming that a call accepted on route r generates an expected revenue wr,
the rate of revenue for the network is

W � ν; C � � ∑
r � R

wrλr 	 (4.5)

Starting from the Erlang fixed point approximation and by extending the definition
of the Erlang B formula (4.3) to non-integral values of C j via linear interpolation,7

the sensitivity of the rate of revenue with respect to the offered loads has been
derived by Kelly [36] and is given by

∂
∂νr

W � ν; C � � � 1 � Lr � sr (4.6)

where

sr � wr � ∑
k � J

Akrck (4.7)

is the surplus value of an additional connection on route r, and the link implied
costs are the (unique) solution to the equations

c j � η j � 1 � B j � � 1 ∑
r � R

A jrλr � sr
�

c j � � j � J � (4.8)

7At integer values of C j, define the derivative of E � ρ j � C j 	 with respect to C j to be the left
derivative.
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where η j � E � ρ j � C j � 1 � � E � ρ j � C j � . B j, ρ j, and Lr are obtained from the Erlang
fixed point approximation, and λr � νr � 1 � Lr � .
Remark. In a flat network, the offered load for a given source/destination pair
should be split among the available routes based on the revenue sensitivities in
(4.6). An additional call offered to route r will be accepted with probability 1 � Lr.
If accepted, it will generate revenue wr, but at a cost of c j for each j � r. The
implied costs c quantify the potential knock-on effects or expected loss in rev-
enue due to accepting a call. The goal of the routing algorithm is to maximize
the rate of network revenue W � ν; C � by adaptively adjusting the splitting for each
source/destination pair over time in response to changing traffic conditions. The
splitting for a source/destination pair should favor routes for which � 1 � Lr � sr has
a positive value since increasing the offered traffic on these routes will increase the
rate of revenue. Routes for which � 1 � Lr � sr is negative should be avoided, with
all adjustments of the splitting made gradually to guard against sudden congestion.
We note that, in general, W � ν; C � is not concave, so there may exist nonoptimal
local maxima. However, Kelly has shown that it is asymptotically linear as ν and
C are increased in proportion [36]. Furthermore, even though the routing algorithm
could potentially reach a nonoptimal local maximum of the revenue function, the
stochastic fluctuations in the offered traffic may allow it to escape that particular
region.

To perform aggregation by peer group, we first define the quantity c̄n as the
weighted average of the implied costs associated with pieces of transit routes that
pass through or enter node n (or, equivalently, over the links in n visited by such
routes) where, in the following, cn

r � ∑ j � J A jrE jnc j:

c̄n � ∑r � R Tnrλrcn
r

∑r � R Tnrλr

� ∑ j � J E jn � ∑r � R TnrA jrλr � c j

∑r � R Tnrλr
	 (4.9)

This averaging is illustrated in Fig. 4.7. We redefine the surplus value for a route as
a function of the local link implied costs and the remote nodal implied costs, from
the perspective of link j � r (see Fig. 4.8):

sr; j � wr � ∑
k � J

AkrPk jck � ∑
n

�� n � j �
Tnr c̄n 	 (4.10)
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Figure 4.7: Computation of c̄n for an aggregated node n with two transit routes.
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The link implied costs are now calculated as

c j � η j � 1 � B j � � 1 ∑
r � R

A jrλr � sr; j
�

c j � � j � J 	 (4.11)

In the sequel, we will address the following issues: the existence of a unique so-
lution to these equations, convergence to that solution, and the accuracy relative to
Kelly’s implied costs.

Eq. (4.11) can be solved iteratively in a distributed fashion via successive
substitution. If we define a linear mapping f :

� J � � J by f � � f1 � f2 � 	 	 	 � fJ � ,

f j � x � � η j � 1 � B j � � 1 ∑
r � R

A jrλr � wr � ∑
k

�� j

AkrPk jxk � ∑
n

�� n � j �
Tnr x̄n � � (4.12)

then successive substitution corresponds to calculating the sequence f i � x � � i � 1 � 2 �
	 	 	 , where f i � x � is the result of iterating the linear mapping i times.

Define a norm on
� J by

�
x

�
M � max

j � r
� A jr � ∑

k
�� j

AkrPk j
�
xk

� � ∑
n

�� n � j �
Tnr

�
x
�
n � � (4.13)

where

�
x
�
n � ∑ j � J E jn � ∑r � R TnrA jrλr �

�
x j

�

∑r � R Tnrλr
	

For any positive vector α, we define the weighted maximum norm on
� J by

�
x

� α
∞ �

max j
� x j
α j

�
, where we suppress the index α if α j � 1 for all j . Also, let δ �

� δ1 � δ2 � 	 	 	 � δJ � , where δ j � η jρ j denotes Erlang’s improvement formula.

Theorem 4.1. Suppose that
�
δ

�
M � 1. Then the mapping f :

� J � � J is a contrac-
tion mapping under the norm

�
�

�
M, and the sequence f i � x � � i � 1 � 2 � 	 	 	 , converges

to c � , the unique solution of (4.11), for any x � � J .

Proof: Choose x � x � � � J . Then, � j � J ,

f j � x � � f j � x � � � � η j � 1 � B j � � 1 ∑
r � R

A jrλr
�
∑
k

�� j

AkrPk j � xk � x �k �

� ∑
n

�� n � j �
Tnr � x̄n � x̄�n ��� 	
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Therefore

�
f j � x � � f j � x � �

� � η j � 1 � B j � � 1 ∑
r � R

A jrλr
�
∑
k

�� j

AkrPk j
�
xk � x �k

� � ∑
n

�� n � j �
Tnr

�
x̄n � x̄�n

� �
� η j � 1 � B j � � 1 ∑

r � R
A jrλr

�
x � x � �

M

� η jρ j
�
x � x � �

M 	

Taking the norm on both sides, we have

�
f � x � � f � x � � �

M
� �

δ
�

M
�
x � x � �

M 	

So f � � � is a contraction mapping if
�
δ

�
M � 1. Using the definition of a contrac-

tion mapping and the properties of norms, one can easily show that the sequence
f i � x � � i � 1 � 2 � 	 	 	 , converges to c � , the unique solution of (4.11), for any x � � J .

Remark. The product η jρ j increases to 1 as ρ j, the offered load at link j, increases
[36]. So

�
δ

�
M � 1 can be referred to as a light load condition. If the network

has long routes and/or heavily loaded links, this constraint may be violated, but at
moderate utilization levels, we expect that it will hold. As an example, consider a
loss network in which all links have capacity C � 150 and the reduced load at each
link from thinned Poisson streams is ρ � 100. Furthermore, for simplicity, assume
that each transit route across a node has the same length. Then δ � 3 	 3 � 10 � 5 for
each link, and the condition

�
δ

�
M � 1 requires the maximum route length to be

at most 30,717 links. The blocking probability for a route of maximum length is
approximately 2% (under the link independence assumption). If ρ is increased to
120 for each link, the maximum route length is 33 links with a blocking probability
of approximately 3% along such a route. At ρ � 140, the maximum route length
is 3 links with a blocking probability of approximately 8%. For this example, link
utilizations up to about 80% are certainly feasible under our “light load” condition.
As the capacities of the links increase (relative to bandwidth requests), even higher
utilizations are possible before the maximum route length becomes too small and/or
blocking becomes prohibitive.

The convergence proved in Thm. 4.1 assumes iterates are computed syn-
chronously. In a large-scale network, synchronous computation may be infeasible,
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so we will show that our light load condition is sufficient for convergence of an
asynchronous computation in the following sense [9]:

Assumption 4.1. (Total Asynchronism) Each link performs updates infinitely of-
ten, and given any time t1, there exists a time t2 � t1 such that for all t � t2, no
component values (link and average implied costs) used in updates occurring at
time t were computed before t1.

Note that, under this assumption, old information is eventually purged from
the computation, but the amount of time by which the variables are outdated can
become unbounded as t increases.

Theorem 4.2. Suppose that
�
δ

�
M � 1 and δ � 0. Then, under Assumption 4.1

(total asynchronism), the sequence f i � x � � i � 1 � 2 � 	 	 	 , converges to c � , the unique
solution of (4.11), for any x � � J .

Proof: Rewrite (4.11) in matrix form as f � x � � Gx
�

b. The goal is to show that
G corresponds to a weighted maximum norm contraction. For, in that case, we
can satisfy the conditions of the Asynchronous Convergence Theorem in [9] (see
Sec. 6.2 and 6.3, pp. 431–435), which guarantees asynchronous convergence to
the unique fixed point c � . In the following, we use δ as the weight vector for the
weighted maximum norm; in order to do so, we require the condition δ � 0. (We
are guaranteed that δ � 0, but in all practical cases δ � 0 as we have assumed).

Choose x � x � � � J . Then, � j � J ,

�
f j � x � � f j � x � �

� � η j � 1 � B j � � 1 ∑
r � R

A jrλr
�
∑
k

�� j

AkrPk j
�
xk � x �k

� � ∑
n

�� n � j �
Tnr

�
x̄n � x̄�n

� � 	
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Therefore

����
f j � x � � f j � x � �

δ j

����
� η j � 1 � B j � � 1

δ j
∑

r � R
A jrλr

�
∑
k

�� j

AkrPk jδk
����
xk � x �k

δk

����
� ∑

n
�� n � j �

Tnr

∑l � J Eln � ∑q � R TnqAlqλq � δl ���
xl � x

�

l
δl

���
∑q � R Tnqλq �

� η j � 1 � B j � � 1

δ j
∑

r � R
A jrλr

�
∑
k

�� j

AkrPk jδk

� ∑
n

�� n � j �
Tnr

∑l � J Eln � ∑q � R TnqAlqλq � δl

∑q � R Tnqλq � �
x � x � � δ

∞

since the weighted maximum norm
�
x

� δ
∞ � max j � J

� x j
δ j

�
. Taking the norm on both

sides, we have
�

f � x � � f � x � � � δ
∞

� �
G

� δ
∞

�
x � x � � δ

∞

where the induced matrix norm
�
G

� δ
∞ � max j � J

� 1
δ j

∑k � J
�
g jk

�
δk � [9]. So G corre-

sponds to a weighted maximum norm contraction if
�
G

� δ
∞ � 1. This follows from

�
δ

�
M � 1 because

�
G

� δ
∞ � max

j � J

η j � 1 � B j � � 1

δ j
∑

r � R
A jrλr

�
∑
k

�� j

AkrPk jδk

� ∑
n

�� n � j �
Tnr

∑l � J Eln � ∑q � R TnqAlqλq � δl

∑q � R Tnqλq �
�

max
j � J

η j � 1 � B j � � 1

δ j
∑

r � R
A jrλr

�
δ

�
M

�
�
δ

�
M

since ρ j � � 1 � B j � � 1 ∑r � R A jrλr and δ j � η jρ j.

Remark. With the additional restriction of bounded communication delays, the con-
vergence rate of an asynchronous iteration satisfying the conditions of Thm. 4.2 is
geometric and can actually be faster than the corresponding synchronous version
which has to wait for all values from the previous iteration to be distributed be-
fore performing the next update. See [9, pp. 441–443] for the details of a situa-
tion analogous to ours which has “fast” local communication (within peer groups)
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and “slower” remote communication (between peer groups) and where the asyn-
chronous convergence rate is faster if there is a “strong coupling” among the local
variables (i.e., the local implied costs), a condition which should typically hold true
in a hierarchical network if the amount of local traffic dominates the amount of
remote traffic in each peer group.

Theorem 4.3. Suppose that
�
δ

�
M � 1 and denote c and c � as the solutions to (4.8)

and (4.11), respectively. Define ∆ � maxn � r
� Tnr ∑m

�� n Tmr
�
cm

r � c̄m
� � where cm

r �
∑ j � J A jrE jmc j and c̄m is defined by (4.9). Then we have

�
s � s � �

∞
� ∆

�
δ �

1
�

∞
1 �

�
δ

�
M

(4.14)

where by
�
s � s � �

∞ we mean max j � r: j � r
�
sr � s �r; j

�
.

Proof: We have, � j � J ,

c � j � c j � η j � 1 � B j � � 1 ∑
r � R

A jrλr
�
∑
k

�� j

AkrPk j � ck � c �k � � ∑
n

�� n � j �
Tnr � cn

r � c̄�n ��� 	

Hence

�
c � j � c j

� � η j � 1 � B j � � 1 ∑
r � R

A jrλr
�
∑
k

�� j

AkrPk j
�
ck � c �k

�

� ∑
n

�� n � j �
Tnr

�
cn

r � c̄n
�

c̄n � c̄�n
� �

� η jρ j �
�
c � � c

�
M

� ∆ � 	 (4.15)

Taking the M-norm on both sides and rearranging, we have

�
c � � c

�
M

� ∆
�
δ

�
M

1 �
�
δ

�
M
	 (4.16)

We also have, � j � r such that j � r,

sr � s �r; j � ∑
k � J

AkrPk j � c �k � ck � � ∑
n

�� n � j �
Tnr � c̄�n � cn

r � 	
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Hence

�
sr � s �r; j

� � ∑
k � J

AkrPk j
�
c �k � ck

� � ∑
n

�� n � j �
Tnr

�
c̄�n � c̄n

�
c̄n � cn

r
�

� �
c � j � c j

� � �
c � � c

�
M

� ∆ since A jr � 1
� η jρ j �

�
c � � c

�
M

� ∆ � � �
c � � c

�
M

� ∆ using (4.15)

� � δ j
�

1 � � �
c � � c

�
M

� ∆ �
� � δ j

�
1 � ∆

1 �
�
δ

�
M

using (4.16).

Taking the maximum norm on both sides, the result follows.

Remark. The error between our modified implied costs and Kelly’s implied costs
will be minimized under light loads (

�
δ

�
M

�
1) and if the difference between tran-

sit route costs and the average for each node is small (∆ close to 0). We use the
maximum norm of s � s � as a comparison because it directly affects the difference
in the revenue sensitivity in (4.6) using the flat and hierarchical frameworks. The
measured value of Lr used in (4.6) may also be different from that in a flat network
because it is potentially averaged over several routes with the same hierarchical path
from a given node’s point of view. When making adaptive routing decisions, we are
really only concerned with the relative values of ∂

∂νr
W � ν; C � among routes sharing a

common source/destination pair. It is unclear in what situations our approximation
might affect this ordering.

4.5 An alternative approximation

In this section, we consider a more aggressive averaging mechanism. In the pre-
vious approach, we used exact information for resources within a peer group and
aggregated metrics to represent its remote peers. By contrast, herein we also per-
form local averaging among routes transiting through or into a local peer group. We
will show that this alternative approximation has a similar structure to the previous
case, although the relation to the exact implied costs is further “removed.” The key
advantage of this approach is that, subject to sufficient damping, one can show con-
vergence to new approximate implied costs under any traffic conditions and route
topology. In fact, the required damping within a peer group depends only on local
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information, the number of links within the peer group, and aggregated global in-
formation, the total number of peer groups. Thus, the damping factor within a peer
group only requires information that is consistent with its hierarchically aggregated
view of the network, and the nonlocal knowledge required, namely the total number
of peer groups, is not detrimental to the decentralized nature of the computation.

Define the matrix Ā with elements Ā jr
� � 0 � 1 � such that

Ā jr �
���� ∑q � R Tn � j � qA jqλq

∑q � R Tn � j � qλq
if Tn � j � r � 1 �

A jr if Tn � j � r � 0 	
(4.17)

Local routes remain unchanged: they take a single circuit on each link that they
traverse. However, transit routes can be thought of as consuming a fraction of a
circuit on every link in each node that they traverse. This fraction is equal to the
fraction Ā jr of transit traffic in node n � j � which passes through that link. Note that
the offered load ρ j at link j remains the same whether it is computed based on the
flat network’s routing matrix A or the aggregated routing matrix Ā. Indeed, for fixed
λr, we have ρ j � � 1 � B j � � 1 ∑r � R A jrλr � � 1 � B j � � 1 ∑r � R Ā jrλr.

By substituting Ā for A in (4.8), we have the following implied cost equa-
tions:

c j � η j � 1 � B j � � 1 ∑
r � R

Ā jrλr � wr � ∑
k

�� j

Ākrck � � j � J 	 (4.18)

We can rewrite these equations in various ways to bring out the connections with
both our first aggregation method (4.9) and the original implied cost equations (4.8)
for a flat network. First, we note that for a given link j and route r such that Tn � j � r �
1, we have ∑k � J ĀkrPk jck � c̄n � j � , which illuminates the role of Ā jr in performing
additional averaging of implied costs at the local level; compare this with (4.9).
Second, we can rewrite (4.18) as

c j � η j � 1 � B j � � 1 ∑
r � R

Ā jrλr � wr � ∑
k

�� j

ĀkrPk jck � ∑
n

�� n � j �
Tnr c̄n � (4.19)

� η j � 1 � B j � � 1 ∑
r � R � � 1 � Tn � j � r � A jrλr � wr � ∑

k � J
Akrck

�
c j �

�
Tn � j � rĀ jrλr � wr � ∑

n � N
Tnr c̄n

�
Ā jrc j �	� 	 (4.20)
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Eq. (4.19) indicates the connection with our previous equations (4.11) for a hierar-
chical network, the only difference being the use of the Ā matrix locally. In (4.20),
we see that the equation for c j is a combination of the original equation (4.8) for
routes not transiting through node n � j � and an equation based on “averaged” sur-
plus values sr � wr � ∑n � N Tnr c̄n for routes transiting through node n � j � plus the
use of Ā jr instead of A jr.

Based on the above, we define a new linear mapping f̃ :
� J � � J by f̃ �

� f̃1 � f̃2 � 	 	 	 � f̃J � ,

f̃ j � x � � η j � 1 � B j � � 1 ∑
r � R

Ā jrλr � wr � ∑
k

�� j

Ākrxk � � (4.21)

where f̃ i � x � is the result of iterating the linear mapping i times. Define f̃ � γ � :
� J � � J to be a damped version of the iteration f̃ � � � for γ � diag � γ j � j where
γ j
� � 0 � 1 � � j � J :

f̃ � γ � � x � � � I � γ � x � γ f̃ � x � 	 (4.22)

If we define a norm on
� J by

�
x

�
M̃ � max

j � r
� 1 � Ā jr � 0 � ∑

k
�� j

Ākr
�
xk

� � � (4.23)

then Thms. 4.1 and 4.2 can be shown to hold for f̃ � x � under the condition
�
δ

�
M̃ � 1.

However, our main interest here lies in proving convergence of the damped iteration
f̃ � γ � � x � without requiring

�
δ

�
M̃ to be less than one.

The proofs of the following two theorems closely resemble the development
in [36, Sec. 4]. Note that all vectors are considered to be column vectors.

Theorem 4.4. The equations (4.18) have a unique solution c̃.

Proof: Rewrite (4.18) in the equivalent form

c j � η j � 1 � δ̃ j � � 1 � 1 � B j � � 1 ∑
r � R

Ā jrλr � wr � ∑
k � J

Ākrck � � (4.24)

where δ̃ j � η j � 1 � B j � � 1 ∑r � R Ā2
jrλr

� η jρ j. Let g̃ � � g̃1 � g̃2 � 	 	 	 � g̃J � where g̃ j � c �
denotes the right-hand side of (4.24). Also, define the positive diagonal matrices

λ � diag � λr � r � ζ � diag � η j � 1 � δ̃ j � � 1 � 1 � B j � � 1 � j 	
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Then we can write (4.24) in matrix form as

c � g̃ � c � � ζĀλ � w � ĀT c � 	

Define the positive diagonal matrices ζ
1
2 , ζ � 1

2 componentwise. The equation c �
g̃ � c � is equivalent to � I � ζĀλĀT � c � ζĀλw. Multiplying both sides of this equation
on the left by ζ � 1

2 , we have

� I � ζ
1
2 ĀλĀT ζ

1
2 � ζ � 1

2 c � ζ
1
2 Āλw 	

The symmetric matrix � I � ζ
1
2 ĀλĀT ζ

1
2 � is positive definite and hence invertible.

Thus the equation c � g̃ � c � has a unique solution

c̃ � ζ
1
2 � I � ζ

1
2 ĀλĀT ζ

1
2 � � 1ζ

1
2 Āλw � (4.25)

which is also the unique solution to (4.18).
In the following, let Jn denote the number of links in node n, and recall that

N denotes the total number of aggregated nodes in the network.

Theorem 4.5. If γ j
� � NJn � j � � � 1 � j � J , then the sequence f̃ i

� γ � � x � � i � 1 � 2 � 	 	 	 ,
converges to c̃, the unique solution of (4.18), for any x � � J .

Proof: It is enough to establish that the sequence f̃ i
� γ � � x � � i � 1 � 2 � 	 	 	 , converges

since the limit vector must solve (4.18) by the continuity of f̃ � γ � � � � . Define the
diagonal matrices

λ � diag � λr � r � β � diag � 1 � B j � j � η � diag � η j � j � δ̃ � diag � η jρ̃ j � j �

where ρ̃ j � � 1 � B j � � 1 ∑r � R Ā2
jrλr. Then in matrix form

f̃ � x � � ηβ � 1Āλw � ηβ � 1ĀλĀT x
� δ̃x �

and so

f̃ � γ � � x � �
�
I � γ � I � δ̃ � � γηβ � 1ĀλĀT � x � γηβ � 1Āλw 	
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The sequence f̃ i
� γ � � x � � i � 1 � 2 � 	 	 	 , will converge provided the eigenvalues of the iter-

ation matrix
�
I � γ � I � δ̃ � � γηβ � 1ĀλĀT � lie in the interval � � 1 � 1 � . The eigenvalues

of this matrix coincide with the eigenvalues of the matrix

γ � 1
2 η � 1

2 β
1
2
�
I � γ � I � δ̃ � � γηβ � 1ĀλĀT � β � 1

2 η
1
2 γ

1
2

� I � γ � I � δ̃ � � γ
1
2 η

1
2 β � 1

2 ĀλĀT β � 1
2 η

1
2 γ

1
2

� I � γ � I � δ̃ � � � λ 1
2 ĀT β � 1

2 η
1
2 γ

1
2 � T � λ 1

2 ĀT β � 1
2 η

1
2 γ

1
2 �

which is of the form I � � D �
M � where D is a diagonal matrix and M is a symmetric,

positive semi-definite matrix of the form M � Y TY . The eigenvalues of D are equal
to its diagonal terms d j � j � J . Let ρ � D � denote the spectral radius of D, i.e., the
maximum of the magnitudes of its eigenvalues. Since 0

� δ̃ j
� η jρ j � 1 and γ j

�
� 0 � 1 � for all j � J , we have that 0 � d j � 1 � j � J , and thus ρ � D � � 1.

Next, we determine a bound on the spectral radius of M. Let
�
�

�
2 denote

the Euclidean norm, and define the induced matrix norm
�
M

�
2 as max �

x
�

2 � 1
�
Mx

�
2.

Since M is symmetric, it can be shown that ρ � M � �
�
M

�
2 � max �

x
�

2 � 1
�
xT Mx

�
�

max �
x

�
2 � 1

�
xTY TY x

�
� max �

x
�

2 � 1
�
Y x

� 2
2. We will show that ρ � M � is guaranteed to

be less than one if we choose γ j
� � NJn � j � � � 1 � j � J . We have the following:

�
Yx

�
2 �

�
λ

1
2 ĀT β � 1

2 η
1
2 γ

1
2 x

�
2 �

�
∑

r � R � ∑
j � J

λ
1
2
r Ā jrβ � 1

2
j η

1
2
j γ

1
2
j x j � 2 � 1

2

�
�
∑

r � R � ∑
j � J

λrĀ
2
jrβ � 1

j η jγ j � �
x

� 2
2

� 1
2

by the Cauchy-Schwarz inequality

� � ∑
j � J

δ̃ jγ j � 1
2 �

x
�

2
� � ∑

j � J
γ j � 1

2 �
x

�
2

� � ∑
j � J

1
NJn � j �

� 1
2 �

x
�

2

� � ∑
n � N

∑
j � J

E jn

NJn
� 1

2 �
x

�
2 � � ∑

n � N

1
N � 1

2 �
x

�
2 �

�
x

�
2 	

Therefore, ρ � M � �
�
M

�
2 � max �

x
�

2 � 1
�
Yx

� 2
2

�
1.

Since D is a diagonal matrix with positive terms, D
�

M is symmetric and
positive definite. Therefore, its eigenvalues are strictly positive, and it can be written
in the form SKS � 1 where K is a diagonal matrix with the same eigenvalues. The
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maximum eigenvalue of D
�

M is strictly less than 2 because

ρ � D �
M � �

�
D

�
M

�
2

� �
D

�
2

� �
M

�
2 � ρ � D � � ρ � M � � 2 	

Hence, the terms of K lie in the interval � 0 � 2 � , and so the terms of I � K lie in the
interval � � 1 � 1 � . But these terms are the eigenvalues of I � � D �

M � because

S � I � K � S � 1 � I � SKS � 1 � I � � D �
M � 	

Thus, the eigenvalues of the original iteration matrix lie in the interval � � 1 � 1 � , and
the sequence f̃ i

� γ � � x � � i � 1 � 2 � 	 	 	 , converges to c̃.

Remark. The convergence proved in Thm. 4.5 is based on synchronous iterations.
To prove totally asynchronous convergence of the damped computation, it is suf-
ficient to show that the iteration matrix G � �

I � γ � I � δ̃ � � γηβ � 1ĀλĀT � corre-
sponds to a weighted maximum norm contraction, or equivalently, that ρ � �G � � � 1,
where ρ � �G � � is the spectral radius of the matrix

�
G
�
having as elements the abso-

lute values
�
g jk

�
of the elements of G. The proof of Thm. 4.5 showed that with

γ j
� � NJn � j � � � 1 � j � J , we have ρ � G � � 1. However, the off-diagonal entries

of G are nonpositive, and its structure is such that no matter how small we make
γ � 0, we cannot guarantee that ρ � �G � � � 1 without requiring the light load con-
dition

�
δ

�
M̃ � 1. Our conjecture is that under a partially asynchronous model [9],

i.e., there is a fixed bound D on the amount of time by which the information used
at a link can become outdated, the algorithm will converge if we use a small enough
stepsize γ. As the asynchronism measure D or the number of links J increases, we
would have to decrease γ to mitigate the effects of asynchronism.

4.6 Computational results

In this section, we explore the computation of the implied costs at one point in time
for a given set of offered loads. We use the Erlang fixed point equations to obtain
the route blocking probabilities, and then input the results to the implied cost calcu-
lations. Let c, c � , and c̃ denote the solutions to (4.8), (4.11), and (4.18), respectively.
The surplus values s and s � are computed according to (4.7) and (4.10), respectively.
For our alternative approximation, we compute s̃r � wr � ∑k � J Ākrc̃k. Because we
use the same route blocking probabilities L in computing the revenue sensitivities
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Figure 4.9: Symmetric network with a single level of aggregation.

for all three cases, the expected and maximum relative surplus value differences are
equal to the expected and maximum relative revenue sensitivity errors. The results
discussed below are summarized in Tables 4.2 and 4.4.

We start with the symmetric network shown in Fig. 4.9 and assign a capacity
of 20 to each link. We define a total of 45 routes with offered loads ranging from
1 	 0 to 3 	 0 in such a way that the offered loads at each link in the three peer groups
are the same and all transit routes use only one link in the peer groups that they
pass through. Each accepted connection generates a revenue of 1 	 0. Under these
conditions, the calculated implied costs c and c � are the same. Thus,

� � s � s � � �
s

�
∞ �

max j � r: j � r
� � sr � s �r; j �

�
sr
�
� 0, and, as a result, the revenue sensitivities are also the

same. For each link in the peer groups, c j � 0 	 015. For the links connecting the peer
groups, c j � 0 	 129. Compared to our alternative approximation, the differences are
quite small:

� � c � c̃ � �
c

�
∞ � 0 	 7%, and

� � s � s̃ � �
s

�
∞ � 0 	 04%.

Next, we take the symmetric case and increase the load on the links in peer
group 1 to near capacity by increasing the offered loads for local routes in peer
group 1 to three and a half times their previous values. This causes the implied cost
calculations for c and c � to differ slightly, resulting in

� � c � c � � �
c

�
∞ � 0 	 3% and

� � s � s � � �
s

�
∞ � 1 	 5%. Due to the heavy loads in peer group 1, the implied costs

c̃ are not as accurate:
� � c � c̃ � �

c
�

∞ � 9 	 0%, and
� � s � s̃ � �

s
�

∞ � 97 	 5%. (Despite
the latter result, we note that

� � � s � s̃ � �
s � � ∑r � R � νr � sr � s̃r �

�
sr �

�
∑r � R νr is only
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15 	 0%.8) To demonstrate the change in revenue sensitivities from the symmetric
case, consider the two alternative routes consisting of the following sets of links:
r1 � � 2 � 9 � 3 � and r2 � � 10 � 6 � 11 � 5 � . In the symmetric case, the revenue sensitives
for r1 and r2 are 0 	 823 and 0 	 684, respectively. In the present overloaded case,
the revenue sensitivities change to approximately 0 	 416 and 0 	 772, respectively.9

The longer route is now favored because it avoids passing through the overloaded
peer group. We note that, using our first hierarchical approximation, the revenue
sensitivity may vary along a particular route depending on which link is making
the calculation (due to the sr; j term). To be exact, all links of a route in a given
peer group will compute the same sensitivity, but links of the route in a different
peer group may compute a different value. For our current example, the revenue
sensitivities vary only slightly along routes, on the order of 0 	 004 in the worst case.

As another example of an overload scenario, we start with the symmetric
case and increase the loads on transit routes between peer groups 1 and 2 by one
and a half times, causing link 9 to be near capacity. For this case, the differences
between the first two approximations are greater than in the previous overload sce-
nario,

� � c � c � � �
c

�
∞ � 1 	 1% and

� � s � s � � �
s

�
∞ � 5 	 0%, but the surplus values s̃ fare

much better:
� � c � c̃ � �

c
�

∞ � 18 	 1% and
� � s � s̃ � �

s
�

∞ � 4 	 4%. This is due to the
fact that the overloaded node consists of only a single link, mitigating the errors due
to local averaging of transit route costs. The revenue sensitivities for r1 and r2 are
approximately 0 	 335 and 0 	 686, respectively, which would cause the routing algo-
rithm to send more traffic around the overload as desired. Compared to the previous
case, there is greater variation in the revenue sensitivities along each route using s � ,
on the order of 0 	 013 in the worst case.

For a fourth experiment with a more varied topology, we use the network
shown in Fig. 4.5. We define a total of 122 routes with offered loads ranging from
0 	 1 to 2 	 0. Two routes are defined between each pair of switches except for the
members of peer group 2 which have only one local route between each pair. As
before, each accepted connection generates a revenue of 1 	 0. The link capacities
are varied between peer groups: links in peer groups 1, 2, and 3 have capacities
25, 40, and 30, respectively, and the connecting links have a capacity of 35 each.
Despite the loss of symmetry, the implied cost calculations are surprisingly close:

8Similarly, we define
��� � c � c̃ 	�� c ��� ∑ j 	 J � ρ j � c j � c̃ j 	
� c j 	�� ∑ j 	 J ρ j.

9The revenue sensitivity values presented in this section are computed using the surplus values
s. Using s � or s̃ results in slightly different values but the same relative ordering.
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Rev. sens. error:
���

� � � �
�

�
∞

s � s �
s

s � s̃
s

∂W
�
∂ν1 ∂W

�
∂ν2

Symmetric load 0.0% / 0.0% 0.01% / 0.04% 0.823 0.684
Local overload 0.2% / 1.5% 15.0% / 97.5% 0.416 0.772
Transit overload 0.9% / 5.0% 1.0% / 4.4% 0.335 0.686
Asymmetric net 2.4% / 15.5% 2.2% / 15.5% — —

Imp. cost error:
� �

� � � �
�

�
∞

c � c �
c

c � c̃
c

Lmax
�
δ

�
M Iterations

Symmetric load 0.0% / 0.0% 0.5% / 0.7% 2.1% 0.297 5
Local overload 0.1% / 0.3% 5.7% / 9.0% 25% 0.764 10–13
Transit overload 0.4% / 1.1% 6.3% / 18.1% 16% 0.780 8–9
Asymmetric net 0.7% / 2.1% 1.9% / 6.2% 3.8% 0.327 6–7

Table 4.2: Computational results for the four experiments.

the worst-case differences are
� � c � c � � �

c
�

∞ � 2 	 1%,
� � c � c̃ � �

c
�

∞ � 6 	 2%, and
� � s � s � � �

s
�

∞ �
� � s � s̃ � �

s
�

∞ � 15 	 5%.
Table 4.2 summarizes the main results of the four experiments. Lmax is the

maximum route blocking probability; the high values for the middle two experi-
ments are for a local route in peer group 1 and a transit route from peer group 1
to 2, respectively. The iterations column denotes the range of iterations needed
for convergence of the three implied cost computations. Note that the light load
condition

�
δ

�
M � 1 holds in every case.

Two comments on the above experiments are in order. First, using our first
hierarchical approximation scheme, one can unfortunately construct cases where
the revenue sensitivities vary enough along a route to cause an ordering between
alternative routes from the source’s point of view that is different from that obtained
in a flat network. This would cause the adaptive routing algorithm to temporarily
shift offered loads in the wrong direction until the sensitivities became farther apart.
As a result, the routing algorithm would adapt more slowly, but it is unclear whether
this is a common or troubling situation. Second, the bound in Thm. 4.3 appears to
be rather weak. It was too high by an order of magnitude in the two overload cases.
In the fourth experiment, however, it was less than twice the actual value.
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Figure 4.10: A larger symmetric network.

We also performed experiments on the larger network shown in Fig. 4.10
with a variable number of defined groups. The group memberships in terms of
the links in each group are listed in Table 4.3. We define a total of 247 routes
with offered loads ranging from 0 	 2 to 3 	 0. As before, each accepted connection
generates a revenue of 1 	 0. The link capacities vary from 20 to 30, and no attempt
was made to equalize the offered loads on the links.

Table 4.4 summarizes the main results of these six experiments. In terms of
relative implied cost and revenue sensitivity errors, the 6 groups case performed the
best, and the 6 alternate groups and 9 groups performed the worst. For these exper-
iments (with fixed routes and offered loads), the error results seem to be correlated
to the number of transit routes per group with a lower average number of transit
routes tending to produce better results. We also compute the number of messages
per iteration under the assumption that the groups of three switches in a triangle are
connected locally using a broadcast medium, i.e., only one message is required to
reach the three link controllers in the triangle. For a flat network, 807 messages per
iteration are required, so each group structure tested provides a significant reduc-
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3 groups � 0–11, 36 � � 12–23, 38 � � 24–35, 37 �
6 groups � 0–11 � � 12–23 � � 24–35 � � 36 � � 37 � � 38 �
6 alt. groups � 0–2, 9–10 � � 3–8, 11, 36 � � 12–14, 18–20, 22, 38 �� 15–17, 21, 23 � � 24–29, 33, 37 � � 30–32, 34–35 �
9 groups � 0–2, 9 � � 3–5, 11, 36 � � 6–8, 10 � � 12–14, 21 � � 15–17, 23 �� 18–20, 22, 38 � � 24–26, 33, 37 � � 27–29, 35 � � 30–32, 34 �
12 groups � 0–2, 9 � � 3–5, 11 � � 6–8, 10 � � 12–14, 21 � � 15–17, 23 �� 18–20, 22 � � 24–26, 33 � � 27–29, 35 � � 30–32, 34 � � 36 �� 37 � � 38 �
21 groups � 0–2 � � 3–5 � � 6–8 � � 9 � � 10 � � 11 � � 12–14 � � 15–17 �� 18–20 � � 21 � � 22 � � 23 � � 24–26 � � 27–29 � � 30–32 �� 33 � � 34 � � 35 � � 36 � � 37 � � 38 �

Table 4.3: Group memberships for the experiments on the larger network.

tion. The most savings occurs with the 6 alternate groups and the 9 groups which,
as noted above, provide the worst performance in terms of revenue sensitivity error.

4.7 On-line measurements

We now return to the subject of on-line measurements, as briefly mentioned in
Sec. 4.4. Instead of using the Erlang fixed point approximation, we show how
estimates of the carried loads and blocking probabilities can be used to implement
a hierarchical adaptive routing scheme. Our discussion follows that of Kelly [36],
with additional optimizations to take advantage of the hierarchical framework.

We say that two routes have the same hierarchical path from the point of
view of link j if they use the same set of links in peer group n � j � and follow the
same sequence of peer groups outside of n � j � . Let Hn be the set of hierarchical
paths from the point of view of node n, and let H jh be the amount of bandwidth used
explicitly by hierarchical path h � Hn on link j. (H jh is 0 for all links j outside of
n.) If we make the assumption that wr1 � wr2 for two routes r1 and r2 with the same
hierarchical structure from the point of view of link j � r1 � r2, then sr1; j � sr2; j.
Recalling that ρ j � 1 � B j � � ∑r � R A jrλr and δ j � η jρ j, we can rewrite (4.11) as

c j � δ j ∑
h � Hn � j � H jh

flow carried on path h
flow carried through link j

� sh; j
�

c j � � j � J 	 (4.26)
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Rev. sens. error:
� �

� � � �
�

�
∞ Imp. cost error:

���
� � � �

�

�
∞

s � s �
s

s � s̃
s

c � c �
c

c � c̃
c

3 groups 3.7% / 63.9% 2.8% / 120.1% 0.7% / 2.9% 1.6% / 5.9%
6 groups 0.3% / 12.2% 0.7% / 16.2% 0.05% / 0.3% 1.7% / 3.9%
6 alt. groups 6.8% / 159.1% 7.1% / 163.1% 1.9% / 4.5% 4.9% / 8.3%
9 groups 10.1% / 136.8% 6.9% / 98.4% 4.0% / 9.6% 4.3% / 9.1%
12 groups 7.7% / 48.6% 4.1% / 46.7% 4.5% / 8.9% 4.2% / 7.7%
21 groups 2.7% / 13.5% 2.5% / 13.5% 1.0% / 2.9% 2.2% / 8.2%

Messages Avg. Transit Routes Avg. Local Routes
per Iteration per Group per Group

3 groups 303 14.7 75.0
6 groups 312 12.2 36.5
6 alt. groups 234 49.0 18.0
9 groups 249 43.9 9.7
12 groups 294 35.1 7.0
21 groups 447 31.0 3.1

Table 4.4: Computational results for the larger network.
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Suppose we have on-line measures Λ̂h � t � and Θ̂ j � t � of the carried flows on
path h and link j, respectively, over the interval

�
t � t �

1 � . Smoothed, moving-
average estimates λ̂h � t � and θ̂ j � t � of the mean carried flows can be computed using
the iterations

λ̂h � t �
1 � � � 1 � γ � λ̂h � t � � γΛ̂h � t �

θ̂ j � t �
1 � � � 1 � γ � θ̂ j � t � � γΘ̂ j � t �

where γ � � 0 � 1 � . If we consider link j to be in isolation with Poisson traffic offered
at rate ρ j, we can estimate ρ j (and thus δ j) by solving the equation θ̂ j � ρ j

�
1 �

E � ρ j � C j � � to obtain ρ̂ j. Then we would have δ̂ j � ρ̂ j
�
E � ρ̂ j � C j � 1 � � E � ρ̂ j � C j � � .

Now suppose that the implied costs ĉ and the associated surplus values ŝ have
been computed using these estimates and successive substitution. Suppose also that
the blocking probability Lh has been estimated for each hierarchical path, possibly
using a moving-average estimate similar to the above. The revenue sensitivity � 1 �
L̂h � ŝh; j tells us the net expected revenue that a call on path h will generate from the
perspective of link j. Traffic from a source to a given destination peer group should
be split among the possible hierarchical paths based on these revenue sensitivities.
A greater share of the traffic should be offered to a path that has a higher value of
� 1 � L̂h � ŝh; j than the others. Also, if � 1 � L̂h � ŝh; j is negative for a particular path,
that path should not be used since a net loss in revenue would occur by accepting
connections on that path. Any adjustments of the splitting should be done gradually
to prevent sudden congestion. Note that we have assumed that routes not satisfying
the QoS constraints of a particular connection will be eliminated prior to choosing
a path based on the revenue sensitivities.

4.8 Multiservice extensions

To accommodate different types of services, our model can be extended to a mul-
tirate loss network. Now we allow A jr

� � � . Several additional problems arise in
this context. First and foremost, the Erlang B formula no longer suffices to com-
pute the blocking probability at a link for each type of call. Let π j � n � denote the
steady-state probability of n circuits being in use at link j. Then the blocking prob-
ability for route r at link j is B jr � ∑

C j
n � C j � A jr � 1 π j � n � . We can compute π j using

a recursive formula of complexity O � C jK j � where K j denotes the number of traffic
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classes (distinct values of A jr � 0) arriving at link j [63]. This result was derived
independently by Kaufman and Roberts. To reduce complexity, many asymptotic
approximations have been proposed in the literature as the offered load and link
capacity are scaled in proportion [30, 44, 51, 61, 67, 73]. We have found Mitra
and Morrison’s Uniform Asymptotic Approximation (UAA) [51] to be particularly
accurate.

The Erlang fixed point approximation can be extended in a straightforward
manner to the multiservice case using an appropriate blocking function at each link.
Note that, in this case, the fixed point is no longer guaranteed to be unique [63].10

Based on this approximation, implied cost equations can be derived [19, 52], where
we now have a different implied cost at each link for each type of service. The
straightforward extension to our hierarchical setting is to further compute an aver-
age implied cost for each type of service passing through each peer group. Com-
puting a single average implied cost for each peer group is attractive but would
probably result in an unacceptable loss in accuracy.

Define S to be the set of services offered by the network and partition R into
sets R s � s � S . Let s � r � denote the service type associated with route r.11 Also, let
ρ jr � λr

� � 1 � B jr � , and define η jrq � B jr �
�

ρ j �
�

A j � C j � A jq � � B jr �
�

ρ j �
�

A j � C j � , which
is the expected increase in blocking probability at link j for route r given that A jq

circuits are removed from link j. The multiservice implied costs satisfy the follow-
ing system of equations:

c jq � ∑
r: j � r

η jrqρ jr � sr; j
�

c jr � � j � J � q � R � (4.27)

where

sr; j � wr � ∑
k � r

Pk jckr � ∑
n

�� n � j �
Tnr c̄ns � r � (4.28)

and

c̄ns � ∑r � R s Tnrλr � ∑ j � r E jnc jr �
∑r � R s Tnrλr

	 (4.29)

10Using a certain single-link blocking function, convergence to a unique fixed point was recently
proved in the light load regime only [73].

11Note that when multiple service types are carried between two points, we assign various routes
that may follow the same path.

98



Note that c jr � c jq if A jr � A jq. In a large capacity network, we can further reduce
(4.27) to a system of only J equations by employing the UAA [52]. If we redefine
our norm on

� JR (R is the total number of routes) as

�
x

�
M � max

j � r: j � r

� ∑
k

�� j:k � r

Pk j
�
xkr

� � ∑
n

�� n � j �
Tnr

�
x
�
ns � r � � � (4.30)

let δ � � δ11 � δ12 � 	 	 	 � δ1R � δ21 � 	 	 	 � δJR � where δ jq � ∑r: j � r η jrqρ jr, and define ∆ �
maxn � r

� Tnr ∑m
�� n Tmr

�
cm

r � c̄ms � r �
� � where cm

r � ∑ j � r E jmc jr, then Thms. 4.1, 4.2, and
4.3 can be easily shown to hold for the multiservice case.

4.9 Chapter summary

This chapter is based on the premise that the use of hierarchical source routing is a
key to both reducing complexity and providing acceptable QoS in a large-scale net-
work. Although aggregating network elements into subnetworks is an old idea, we
have taken a unique approach to representing the “available” capacity of a subnet-
work by formulating an implicit representation based on the average implied cost
to go through or into the subnetwork. This average implied cost reflects the conges-
tion in the subnetwork and captures the interdependencies among traffic streams, a
feature sorely lacking in explicit representations of available capacity.

We proved that both a synchronous and asynchronous distributed compu-
tation of the approximate implied costs will converge to a unique solution under
a light load condition. Furthermore, we presented a more aggressive averaging
mechanism that also performs local averaging among routes transiting through or
into a local subnetwork. We proved that with sufficient damping, a synchronous
distributed computation of these new approximate implied costs will converge to a
unique solution under any traffic conditions. Our experimental results showed that
these approximations are reasonably accurate.

Based on this representation for available subnetwork capacity, we proposed
a hierarchical source routing algorithm that adaptively selects high-level routes so
as to maximize network revenue. Prior to path selection, routes not likely to meet
prespecified QoS constraints, such as end-to-end delay, are eliminated from consid-
eration. Our scheme can incorporate on-line measurements, and it can be extended
to a multiservice environment. The low-level routing within subnetworks was de-
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liberately not specified, as we feel that some form of dynamic routing would be
beneficial in coping with traffic fluctuations at that level.
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Chapter 5

Conclusion

5.1 Summary of main results

The goal of this dissertation was to advance the state of the art in applying aggre-
gation to large-scale communication networks in two domains: the aggregation of
network flows and network elements. In the flow aggregation area, we first explored
the benefits of aggregating multicast demands on VP trees. We proposed a pre- or
post-processing step to the VP multicast layout problem, which either reduces the
complexity of the required optimization or further improves upon obtained solu-
tions, and we showed that it can be effectively reduce capacity requirements, bal-
ance network loads, and reduce the number of VP trees required.

Real networks have time-varying demands and finite signaling resources.
We argued that signaling resources may not be sufficient for future demands on
large-scale, connection-oriented networks, and we developed adaptive VP capacity
allocation algorithms that are based on implied costs and address these constraints.

In some cases it is desirable to modify the manner in which flows are aggre-
gated (the VP layout). In this context we investigated algorithms to migrate from
one layout to another, and we found that for incremental changes, the potential for
performance losses during migration in terms of call blocking is minimal. However,
when dramatic changes in the VP layout are warranted, it is desirable to enhance
performance by implementing a simple decentralized algorithm that we have pro-
posed.

In the network aggregation area, we developed an implicit representation
of the available capacity of a subnetwork which is based on a distributed compu-
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tation of the average implied cost to go through or into the subnetwork. Such im-
plied costs reflect the congestion in the subnetwork as well as the interdependencies
among traffic streams in the network. We proved that both a synchronous and asyn-
chronous distributed computation of the implied costs will converge to a unique so-
lution under a light load condition. We also presented an alternative approximation
that performs averaging among local transit routes in addition to remote averaging,
and we proved that with sufficient damping, distributed computation of these new
costs will converge to a unique solution under any traffic conditions. To assess ac-
curacy, we derived a bound on the difference between our (original) implied costs
and those calculated for a flat network, and our experiments showed that our costs
are indeed quite accurate. In addition, we showed how on-line measurements can
be incorporated into the computation, and we outlined extensions to a multiservice
environment.

Based on this representation for available subnetwork capacity, we proposed
a QoS-sensitive routing algorithm that is able to appropriately route high-level flows
while significantly reducing complexity. The algorithm uses effective bandwidths
to capture traffic behavior, and it adaptively selects hierarchical routes so as to max-
imize network revenue, while allowing low-level dynamic routing within subnet-
works to respond to traffic fluctuations.

5.2 Application to other areas

The research for this dissertation was performed primarily in the context of ATM
networks. We made use of VPs in the flow aggregation area, and PNNI routing
motivated the framework for our hierarchical routing scheme. However, it is unclear
at this time whether ATM will prevail as the network technology of choice. As
argued in Chapter 1, whatever architecture prevails, it is likely that it will at least
appear to be connection-oriented at the call level because of resource reservations
and call admission. If this is the case, much of our work will be relevant to future
broadband networks.

For instance, aggregation of multicast demands is useful in any context
where multicast applications need resource reservations to meet their QoS require-
ments, e.g., an important videoconference or live surgical images multicast to sev-
eral specialists at a busy time of day. In an IP/RSVP network, based on estimates
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for demands for these types of multicast applications, network resources could be
pre-reserved and shared among several core-based trees, increasing the success rate
for receivers who subsequently request resources dynamically through RSVP. Our
pre- or post-processing step could be applied to this “layout” of core-based trees.
These types of layouts would also provide a suitable setting for adaptive capacity
allocation and migration.

Our implicit representation for subnetwork congestion is also flexible in its
application. Independent of the routing algorithm, it could be used to ease perfor-
mance monitoring by network operators as well as to provide information valuable
for determining the best location for future capacity upgrades and how much we
should be willing to pay for them.

The proposed hierarchical routing algorithm is at the level of the Border
Gateway Protocol (BGP) in the Internet [31]. BGP implements shortest path rout-
ing for packets, so many modifications would be needed to support our scheme.
However, to cope with such issues as provider selection, charging for traffic, and
resource reservations through RSVP, modifications in the direction of a source rout-
ing protocol for IP flows may be forthcoming making our algorithm more viable.

5.3 Future research directions

In the flow aggregation area, the adaptive VP capacity allocation scheme for a mixed
VP/VC switching network would need more work if signaling capacities emerge as
a binding constraint. Heuristics for choosing the threshold parameters and perfor-
mance evaluation through simulations would be topics of importance.

In the network aggregation area, there are several topics for future research
directly related to our routing algorithm, including

� extensions to more than two levels of hierarchy,

� the optimal subnetwork size and switch arrangement to achieve the best trade-
off between accuracy and reduced overheads,

� the robustness of the implied costs and routing to link failures,

� investigation of the need to reserve capacity for local traffic using trunk reser-
vation, and
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� the role of our algorithm in a layered approach to IP over ATM routing [18].

One issue that has not been addressed at length in this dissertation is hetero-
geneity in QoS requirements. We have assumed a homogeneous model with unit
bandwidth per connection and have outlined extensions to multiservice networks
where multiple bandwidth classes are offered. Several additional questions arise in
a multiservice environment such as what types of flows should we aggregate (video,
video plus audio, web traffic, etc.)? Is it ever a problem that the Erlang fixed point
is no longer guaranteed to be unique?

Another fundamental issue is the choice of network versus user optimization
in QoS-sensitive routing. Our proposed algorithm lies in the class of network opti-
mal algorithms. Greedy shortest path algorithms are user optimal in the sense that
the best route is chosen from the user’s perspective without regard to the overall
system effect. Our general feeling is that shortest path routing of high-level flows
may lead to instabilities in a large-scale network [24, 39]. If this is true, algorithms
based on implied costs would be essential to ensuring good performance in future
broadband networks.
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