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The new wireless network technologies introduced in the fifth genera-

tion of cellular networks (5G) have enabled the development of various classes

of mobile applications. This thesis investigates how these emerging mobile

use-cases can make the most of the state-of-the-art wireless and computing

technologies through effective collaborative network management and opera-

tions strategies. We study two general classes of services: (1) collaborative

traffic relaying in vehicular ad-hoc networks (VANETs), aiming at provid-

ing highly available, fair and reliable connectivity/throughput to the network

users; and (2) collaborative real-time services, aimed at providing devices with

low-latency and high availability/reliability connectivity.

In the first part of this thesis, we study VANETs and propose a novel

vehicle connectivity framework wherein vehicles within communication range

of each other form vehicle clusters, allowing them to opportunistically route

x



traffic from/to each other. With the formation of these logical entities, vehicles

can be viewed as mobile relay nodes, and have the potential to substantially

improve the coverage and per-user throughput of the vehicular network. In

this setting, we begin by presenting an analytical framework to study the per-

formance gains enabled by this network architecture on a single road, and we

show that vehicle clustering leads to considerable benefits including reduced

throughput variability and improved coverage. We then look at larger-scale

cellular networks and leverage results from the stochastic geometry litera-

ture to show that the proposed opportunistic vehicle clustering and relaying

scheme has the potential to improve the throughput for both vehicles and

non-vehicle-bound users by more than an order of magnitude through oppor-

tunistic relaying and cell load-balancing. Finally, we study wireless resource

allocation mechanisms leading to improvements in shared-rate fairness among

the network users.

In the second part of this thesis, we study the operation of networks

supporting real-time services, with a focus on devising efficient and timely

information sharing mechanisms among the interconnected entities. We first

examine how joint management of wireless communication and cloud/edge-

computing resources can improve the timeliness of the information shared

over the network, while reducing network resource provisioning costs. We in-

vestigate tradeoffs associated with status-update rate adaptation and service

placement in the Cloud-to-Thing continuum for devices running real-time ap-

plications, and develop associated algorithms aiming at controlling the network

xi



congestion and improving the service availability. We argue that sending more

information might be detrimental to its quality, and that various application-

specific properties influence the service placement decision in the Cloud-to-

Thing continuum. We then examine the performance of real-time multi-user

services via the specific example of Multiplayer Cloud Gaming (MCG), and

exhibit how joint rate adaptation is key to controlling congestion and providing

a high quality of service in spite of spatio-temporal variations in the network

delays particularly impacting massive multi-user services. Finally, we give

particular attention to timely information sharing in collaborative-sensing ve-

hicular networks. We introduce a communication-efficient information-sharing

mechanism enabling vehicles to benefit from each other’s sensing capability in

real-time via a centralized node (e.g., edge compute node, a cellular base sta-

tion, or a road side unit). Our proposed mechanism opportunistically improves

the vehicles’ situational awareness when assistance is available, allowing them,

for instance, to drive at a faster speed without compromising on safety.
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Chapter 1

Introduction

1.1 Vision for the Next Generation Wireless Networks

The next generation of wireless networks, spearheaded by the release

of new wireless technology standards such as 5G NR and Wi-Fi 6, promises to

be a turning point for tomorrow’s social interactions. While previous wireless

technology generations focused on interconnecting people by providing higher

throughput to end-user mobile devices such as mobile phones and tablets, cur-

rent and future wireless networks are also geared towards interconnecting ob-

jects at a massive scale, while offering improved connectivity, throughput and

latency performance to the connected devices. New types of services are stem-

ming from this new connectivity framework, benefiting from (1) technological

advancements at the physical layer of the network, e.g., massive-MIMO [22],

beamforming [127] and improved channel coding techniques [168], (2) more

efficient network resource management strategies, e.g., through network slic-

ing [25, 59], Network Functions Virtualization (NFV) [70, 176] and Software

Defined Networking (SDN) [176], and (3) additional communication and com-

pute resources deployed in the network, e.g., licensing the millimeter-wave

(mmWave) spectrum for cellular communication [132, 131, 10], cellular base-

station densification [21, 12] and mobile edge computing infrastructure [111].
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In the context of 5G cellular network connectivity for instance, the

services to be supported have been broadly classified as (see [7, 122]):

• Enhanced Mobile Broadband (eMBB) providing (possibly highly mobile)

devices with high throughput (20 Gbps downlink, 10 Gbps uplink) and

high coverage to mobile devices.

• Massive Machine Type Communication (mMTC) serving densely de-

ployed (possibly interconnected) devices (1, 000, 000 devices/km2), while

guaranteeing high service coverage and high energy efficiency at the de-

vice side.

• Ultra-Reliable Low Latency Communication (URLLC) guaranteeing low

delay (sub-1ms) and highly reliable connectivity (99.999% reliability) to

mission-critical devices.

By supporting such services 5G is expected to spark the emergence

of a wide variety of networked-applications some of which we shall study

in this thesis, including for instance Vehicle-to-Everything (V2X) based ser-

vices, Extended Reality (XR) headsets, Multiplayer Cloud Gaming (MCG),

and Internet-of-Things (IoT) solutions such as smart cities or smart homes.

1.2 Emerging Connectivity and Technological Trends

Driven by the opportunities made possible by 5G, some general trends

are influencing the conception and commercialization of new connected de-

vices. In this thesis, we identify, anticipate and embrace some of these trends,
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from the perspective of proposing novel network operation strategies to sup-

port the associated shifting traffic demands. This section discusses some trends

that are investigated in this thesis.

1.2.1 Ride-sharing Platforms

The automotive industry is undergoing several disruptive changes that

are likely to have a significant impact on future wireless networks. These

include the emergence and ride-sharing services and the Transportation-as-a-

Service model, as well as the progressive adoption of autonomous driving tech-

nologies. Under both of these transportation schemes, passengers, who are no

longer required to drive, are free to work/play while commuting. Hence, a

considerable shift in cellular traffic patterns is to be expected, as an increasing

proportion of cellular network users require connectivity from their vehicles.

The resulting demand in infotainment traffic, composed, e.g., of high definition

audio/video-streaming, Voice over IP (VoIP), gaming and video-conferencing

services, typically requires considerable amounts of wireless resources. There-

fore, efficient network operations, infrastructure deployment, and resource al-

location mechanisms will need to be devised to support this shift in traffic.

1.2.2 Cloud/Edge Computing and Artificial Intelligence

Another technological trend is the emergence of the Compute-as-a-

Service business model, allowing mobile devices to cheaply offload heavy com-

putation tasks (such as Machine Learning and Artificial Intelligence models)

3



to a remote servers, leveraging the increasingly reliable, high throughput, and

low-latency communication links [111]. This constitutes a new opportunity

for device designers and manufacturers, as they can produce cheaper, smaller,

lighter, and more energy-efficient devices by moving the device “intelligence”

to a cloud or edge server [106], depending on the application performance re-

quirements. Hence, in next-generation of wireless networks, we expect to see

a convergence of the communication and compute network infrastructure and

joint resource allocation schemes so as to provide improved end-to-end Quality

of Service (QoS) to the network users. Consequently, new classes of perfor-

mance metrics, resource management strategies and algorithms will need to be

developed to satisfy the QoS expectations associated with the emerging use-

cases, characterizing the joint performance of the communication and compute

networks.

1.2.3 Online Multi-User Services

As connectivity is developing into a ubiquitous commodity worldwide,

interactions and collaborations among geographically dispersed users /nodes is

becoming increasingly prevalent. The need and ability to simultaneously col-

laborate on common multi-user projects was highlighted as crucial in the midst

of the global COVID-19 pandemic, imposing workers from all around the world

to work, interact and collaborate remotely [104]. Examples of such live/real-

time multi-user services include video-conferencing, multiplayer cloud gaming,

collaborative document editing, source code version control, etc. Many of these
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projects/services are highly time-sensitive, and in such settings it is critical to

ensure that the information generated by one node in the network is quickly

and effectively disseminated to all the participants. Novel performance met-

rics and network operations are thus being developed to address this type of

service.

1.2.4 Autonomous Driving

Autonomous driving is perhaps one of the most substantial paradigm

shifts in the history of the automotive industry. Vehicles are expected to

become increasingly reliant on advances in artificial intelligence, computer vi-

sion algorithms, and hence, computing technologies in general [76]. Similarly,

communication technologies will play a major role in the advancement of au-

tonomous driving technologies. Indeed, while the sensors equipped on the

vehicles coupled with the on-board computation power need to be sufficient

to navigate safely in their environment, additional information shared from

other nodes in the network could be used by the vehicles to improve their sit-

uational awareness. As such, it is expected that effective information sharing

techniques will need to be engineered to improve the safety and efficiency of

the future connected vehicular networks.

1.3 Network Design Challenges and Tradeoffs

As the quality requirements of the services relying on wireless net-

works become increasingly demanding, designing high-performance networks
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and deploying the necessary infrastructure can be particularly challenging and

expensive.

Three recurring challenges and their associated design tradeoffs are

often faced while engineering such networks and services.

(a) Limited spectrum: Wireless spectrum can be seen as a scarce natural

resource [54], making it a very valuable commodity. Networks and services

need therefore to be designed so as to ensure that this resource is used as

efficiently as possible. However, maximizing a network’s spectral efficiency

might lead to undesirable effects such as unfair QoS delivered to different users,

while communicating less information to reduce the spectrum utilization may

have considerable impact on the provided QoS.

(b) Information as a time-sensitive resource: For some classes of appli-

cation, information sharing in the network needs to be performed in a timely

manner, and timeliness constraints can be extremely tight for some kinds of

service, e.g., URLLC traffic. Indeed, for many real-time applications, the value

of the communicated information quickly wanes over time. As network delays

are negatively impacted by network congestion, the quantity of information

shared over the network can impact its value/quality. Hence, to ensure high

reliability, low latency traffic will typically need to tolerate reduced spectral-

efficiency.

(c) Network temporal dynamics and stochasticity: Wireless networks

are highly dynamic on two different levels: (1) wireless channel conditions vary
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on fast time-scales; and (2) user mobility leads to continuous fluctuations in

the network parameters, e.g., the number of users in the network, albeit on a

slower time-scale. As these dynamics are typically captured by (possibly non-

stationary) stochastic processes, it is critical to design robust algorithms that

are able to adapt to such variability in the environment. While optimal algo-

rithms/policies are typically desired, they might have poor time-complexity,

making them unsuitable for real-time deployment. Optimality is therefore

traded-off to allow timely computation and adaptation to time-varying pa-

rameters.

This thesis leverages multiple techniques to tackle the identified chal-

lenges and balance the corresponding tradeoffs. Among them, five general

strategies, often jointly-utilized, are recurring themes in this thesis: (1) Load

balancing, see Chapters 3 and 4, (2) Opportunism, see Chapters 2, 3, 4,

and 6 (3) Rate adaptation, see Chapters 4, 5, and 6, (4) Fairness con-

siderations, see Chapters 2, 3, and 5, (5) Suboptimal algorithms, see

Chapters 3, 4, 5, and 6.

1.4 Overview of Key Insights

In this thesis, we examine collaborative networks that are subject to dif-

ferent combinations of the design challenges described previously. Our analysis

enables us to offer network operation recommendations to network operators

and service providers, while providing valuable insights on the resulting net-

work performance. We compile below some of the major pieces of insight that
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we shall develop throughout this thesis.

(a) Vehicle-to-Vehicle (V2V) cluster relaying, i.e., the ability for vehicles within

communication range of each other to relay each other’s traffic to/from the

network infrastructure enables substantial benefits to the vehicular network.

These benefits include (1) improved reliability in the connectivity to the

infrastructure as clusters may be multihomed, i.e. connected to multiple in-

frastructure nodes simultaneously, but also since link failure, e.g., due to

blockage, can be dealt with by routing traffic via a different vehicle in the

cluster; (2) reduced temporal variability in the per-user shared-rate, and

particularly, reduced fraction of time a typical vehicle is disconnected; (3) im-

proved mean shared-rate per vehicle, benefiting from opportunism and

load-balancing, with overall gains that can exceed an order of magnitude as

compared to a non-cooperative scenario; (4) improved mean shared-rate

for non-vehicle-bound users who benefit from load-balancing gains; (5)

improved shared-rate fairness among network users; and (6) improved

resilience to spatial traffic surges due to the ability to balance vehicular

loads across neighboring cells.

(b) Transmitting additional information is not always beneficial in

networks supporting real-time services, as additional transmitted packets con-

tribute to the network congestion, leading to increased network delays that

impact the timeliness/quality of the information being communicated over

the network.

(c) The service placement decision in the Cloud-to-Thing contiunuum
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is application-specific, and controls a tradeoff between communication and

compute resource provisioning costs. Services with tight timeliness constraints

might be required to place service close to the devices at the network edge,

while applications associated with high-computation and low-communication

loads might rather benefit from statistical multiplexing effects by placing their

service closer to the cloud.

(d) The QoS of multi-user real-time services can only be as good as

the QoS received by the “worst” individual user. Therefore, massive

multi-user services are particularly sensitive to spatio-temporal fluctuations in

network delays, and the most advantaged users are incentivized to “assist” the

most deprived ones to improve the overall service QoS.

(e) Neighboring vehicles can considerably improve their respective sit-

uational awareness by opportunistically sharing sensing information

among each other when possible, with minimal communication overheads.

This enables them, e.g., to drive at a faster velocity without compromising

on the safety of their passengers and their environment.

1.5 Outline

The remaining chapters of this thesis are organized into two parts.

Part I: The first part studies efficient collaborative relaying mecha-

nisms in Vehicular Ad-hoc Networks (VANETs). More particularly, it investi-

gates the benefits associated with joint utilization of Vehicle-to-Infrastructure
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(V2I) connectivity and Vehicle-to-Vehicle (V2V) clustering to opportunisti-

cally relay traffic from/to the network infrastructure. Chapter 2 presents a

connectivity analysis of VANETs on a single road, equipped with dedicated

Road-Side Units (RSUs) to serve the vehicle-bound users. The effect of vehicles

not equipped with V2V technology is also considered, as well as the benefits

of multi-lane roads and driving patterns along them. Chapter 3 considers

larger-scale cellular networks and investigates how V2V clustering can lead to

opportunistic relaying gains along with load-balancing gains, benefiting even

non-vehicle-bound users. Wireless resource allocation algorithms are proposed

and compared, ensuring shared rate fairness across the network users.

Part II: The second part investigates the notion of timely information

sharing in three different categories of collaborative networks with their re-

spective information metrics. Chapter 4 studies Cloud/Edge/Fog networks

supporting possibly heterogeneous types of real-time services. Communication

and computation tradeoffs associated with service placement in the continuum

between the cloud and the edge are explored, along with associated network

resource provisioning and service placement algorithms. Chapter 5 analyzes

the performance and design of real-time multi-user services, such as Multi-

player Cloud Gaming (MCG). Rate-adaptation, network dimensioning and

service placement strategies are discussed to ensure a high QoS in stochastic

network delay environments. Chapter 6 examines communication-efficient

sensing information sharing schemes in vehicular sensing networks, showing

how vehicle cooperation can improve the safety and efficiency of future au-
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tonomous vehicle-based transportation systems.

Finally, Chapter 7 concludes this thesis by compiling the major results

and insights obtained through the conducted research, and provides future

work suggestions to complement it.
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Chapter 2

Connectivity Analysis of RSU-based

Multihomed Multilane Collaborative VANETs

This chapter1 explores the benefits of leveraging joint Vehicle-to-Vehicle

(V2V) and Vehicle-to-Infrastructure (V2I) connectivity to improve the vehi-

cles’ network connectivity and offload traffic from the traditional cellular in-

frastructure. In particular we consider a network architecture wherein V2V+V2I

capable vehicles form relay network clusters which in turn use V2I links to

connect to possibly several Road Side Units (RSUs), leveraging multihomed

connectivity. The central goal of this chapter is to model and study the connec-

tivity performance and tradeoffs afforded by such Vehicular Ad-Hoc Network

(VANET) architectures and their ability to address the potentially substantial

traffic demands placed by future intelligent transportation network and future

commuters in driverless vehicles.

1Publications based on this chapter: [83] S. Kassir, P. Caballero, G. de Veciana, N. Wang,
X. Wang, P. Palacharla, An Analytical Model and Performance Evaluation of Multihomed
Multilane VANETs. IEEE/ACM Transactions on Networking, February 2021.
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2.1 Related Work

There has recently been substantial interest in enabling V2V connec-

tivity driven in part by the desire to improve safety, collaborative sensing and

driving [183]. Current Dedicated Short-Range Communications (DSRC) stan-

dards for V2V relaying are mature [89, 99, 20], but in general fall short at

high vehicle densities or in highly dynamic environments [27, 38, 32]. DSRC

also supports V2I connectivity but only to nearby Road Side Units (RSUs)

whence their placement is critical [119, 103, 171]. New alternatives based on

millimeter-wave (mmWave) and Visible Light Communication (VLC) physical

layers that can deliver higher capacity, e.g., 1-10 Gbps, are being currently ex-

plored [27, 38, 28]. While these provide substantial improvements in capacity,

they typically require Line of Sight (LoS) based connectivity. The network

architecture studied in this chapter also provides a partial solution to over-

come LoS blockages through the diversity provided by multihomed multilane

V2V-based vehicle clusters, making the network more robust to V2V and V2I

blocking.

This chapter targets a deeper performance study of a network archi-

tecture leveraging RSUs and V2V clustering. In the past, several works have

analyzed such networks, characterizing the user association expected delays

[4, 136], throughput [13, 31, 84], connectivity [144, 182, 123, 94], re-healing

connection time [166, 153] and percolation (full-connectivity) probability [94],

among others.

This chapter builds up on models and results presented in these studies,
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but includes several novel aspects that were not tackled in the mentioned

papers.

2.2 Chapter Contributions and Organization

This chapter examines a model capturing the salient features of a

vehicular-based wireless network, and expands previous work along several key

directions. Our primary goal is to characterize the ability of such networks to

deliver high capacity data rates to vehicles reliably.

First, we consider the role of V2V cluster RSU multihoming, i.e., the

potential benefits of enabling V2V clusters to connect to multiple RSUs at the

same time, in terms of improved connectivity and reliability, as well as reduced

variability in users’ shared rate.

Second, we provide an analytical framework to evaluate the network

performance which not only accounts for the role of multihoming, but also

captures the impact of V2V blockages and market penetration of V2V and V2I

capable vehicles. We evaluate the sensitivity of a typical vehicle performance

to market penetration.

Third, our evaluation of such vehicle-based networks suggests that even

with a moderate penetration of V2V+V2I capable vehicles one can achieve

improved connectivity and stability in per-user shared rate. For instance, users

see a reduced variability in their rate and users in large stable clusters remain

connected for large periods of time. Indeed, at high vehicle densities, one can
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expect almost deterministic user perceived performance. Comparisons with

simple V2I networks which do not leverage V2V relaying are used to quantify

the gains of the cluster-based architecture.

Fourth, we propose a novel framework to study a typical vehicle’s per-

formance on multilane highway systems. This analysis provides key insights

regarding the generalization of the single-lane results derived in the chapter,

as well as the performance of various traffic patterns such as vehicle inten-

sity heterogeneity across the highway lanes, or lanes restricted to V2V+V2I

capable vehicles.

Finally, we validate the model’s underlying assumptions and analyze

the multilane highway performance based on additional system level simula-

tion results of realistic traffic flows on roads, while considering real deploy-

ment considerations for the V2X technology. We then revisit the assumptions

to understand how idealized control of the vehicle distribution could lead to

improved performance. The analysis of this best case scenario naturally leads

to the introduction of a throughput-connectivity tradeoff.

Overall, these results show that such a network could provide a reliable

means to offload substantial traffic from the cellular infrastructure to vehicles,

particularly when the vehicle density is high, i.e., when such assistance is most

needed.

In this chapter, we focus on performing system-level modeling, analysis,

and simulations. While packet-level considerations including medium-access
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and control-plane management may impact the network’s performance, this

type of analysis has already been performed in related work, e.g., [13, 105, 145],

and is deemed out of scope of this chapter.

The remaining of this chapter is organized as follows. Section 2.3

presents a single lane model for a V2V+V2I based wireless network archi-

tecture. Section 2.4 develops an analytical characterization of the statistics of

typical V2V clusters, e.g., the distributions of the number of vehicles, length

and number of connected RSUs as a function of system parameters including

the penetration of V2V+V2I capable vehicles. Section 2.5, provides a perfor-

mance analysis of the coverage probability, shared rate and service redundancy

as seen by a typical vehicle, and comparisons with those achieved by a V2I

network. Section 2.6 provides an extension to multilane highways to assess

the impact of heterogeneity in lane traffic. We evaluate the performance of

such fixed-time systems in Section 2.7. We then discuss the results’ sensitivity

to the vehicle placement assumption in Section 2.8, before we validate this

assumption via time traces generated from a micro-mobility traffic simulator

in Section 2.9. Finally, we present our conclusions in Section 2.10.

2.3 Network Model

We first consider a model for an infinite straight single lane road as

in [94]. The model corresponds to a snapshot of a collection of vehicles along

the road, whose locations follow a Poisson Point Process (PPP) Φv with inten-

sity λv (vehicles/meter). The validity of the Poisson model has been discussed
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in empirical studies such as [166, 66] showing that such a model remains appro-

priate in settings under the so-called free-flow traffic conditions. In our analy-

sis, we study the network performance for a snapshot of vehicle configurations,

representing the network at a fixed time. We validate the analytical results

by showing how the key insight and results also apply in a dynamic setting

through simulation results generated via a vehicular micro-mobility simulator,

presented in Section 2.9. We model the market penetration of V2V+V2I en-

abled vehicles on the road as a randomly chosen fraction γ of vehicles. Thus a

fraction (1− γ) are legacy vehicles without communication capabilities which

may block LoS communications among V2V capable vehicles. Furthermore, it

follows that the locations of V2V capable vehicles follow a PPP with intensity

γλv, and those of legacy vehicles a PPP with rate (1− γ)λv. We will use the

term full market penetration to denote γ = 1.

Finally, RSUs are equally spaced each λ−1
r meters along the road. RSUs

are wired to the Internet infrastructure to provide mapping data, infotain-

ment and cloud computing services and may also relay messages to other

clusters/vehicles. A depiction of the geometry of the network is displayed in

Figure 2.1.

Connectivity: We model the vehicle connectivity based on the three assump-

tions listed below.

Assumption 2.3.1. We assume a unit disk connection model for V2V and

V2I links.
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Figure 2.1: Example of the single lane highway modeled.

More specifically, a link is established if the destination vehicle is within

a communication range of radius d meters of the transmitter (vehicle or RSU),

as in [136, 110], and the LoS between their antennas is not obstructed, e.g.,

by another vehicle. We assume that the LoS between RSUs and cluster-head

vehicles is never obstructed, e.g., by having RSUs above the road as illustrated

in Figure 2.1.

Assumption 2.3.2. We assume that d < λ−1
r /2.

Indeed, the communication range d would typically be on the order of

10-200 meters, while RSUs might be deployed at a distance λ−1
r on the order

of a few kilometers apart.

Assumption 2.3.3. We assume V2V links to have very high capacity, exceed-

ing the maximum RSU capacity ρRSU.

Those links can be for instance based on mmWave or VLC technologies

[159, 27, 38], while the V2I links have maximum capacity of ρRSU. Thus, for

simplicity, V2V links are not a bottleneck in this system. One possible scenario
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that can be envisaged is using VLC technology, known for its considerable

bandwidth [28] for V2V links, while cellular (potentially mmWave based) links

are used for V2I. Another scenario would be that both V2V and V2I links

run on the same technology, but on orthogonal channels, and where the V2V

channels can have larger bandwidth than the V2I ones. Some other multi-RAT

network design considerations to avoid throughput bottlenecks are presented

in [90].

The above assumptions capture the salient features of V2V+V2I net-

works, allowing us to explore their fundamental characteristics of possible de-

ployments. In this chapter, we focus on analyzing the downlink performance

of this network architecture.

Sharing / Scheduling: V2V capable vehicles within communication range

can form V2V relaying clusters. In this chapter, we assume RSU multihoming,

i.e., a cluster can connect to multiple RSUs in its range, as illustrated in

Figure 2.1. This enables the vehicles to see (i) improved performance, i.e.,

connectivity and reduced variability, by sharing the capacity of multiple RSUs

and (ii) improved reliability through infrastructure redundancy in the case of

link failures. In this chapter, for simplicity and given Assumption 2.3.3, we

will use a max-min fair resource allocation among the vehicles and clusters;

where a resource allocation is said to be max-min fair if it is only possible to

increase the resources assigned to a vehicle by decreasing the rates of vehicles

which have lower rates [18]. We study the downlink shared rate seen by vehicles

assuming the V2V-V2I capable vehicles are always active, i.e., full buffer traffic.
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Moreover, we assume that the network does not allocate any bandwidth

resources to a disconnected vehicle, i.e., that cannot reach an RSU either

directly or through its cluster.

Benchmark system: We compare the described V2V+V2I multihoming

architecture with the same V2I network but without V2V relaying, i.e., where

vehicles do not relay data to form V2V relaying clusters and are only be

connected to the infrastructure if they are within range of an RSU.

2.4 V2V Cluster Characterization

Definition 2.4.1 (Vehicle Relay cluster). A V2V relay cluster is a group of

vehicles that can inter-communicate without the network infrastructure, i.e.,

each vehicle has a direct connectivity link with at least one other vehicle in its

cluster. A vehicle that does not have any other vehicle within communication

range is considered a cluster of size 1.

A typical cluster is characterized by a (N,L,M) triplet, where N and

L are random variables denoting the size (number of vehicles) and length of

the cluster, respectively; and M denotes the number of RSUs that the cluster

is connected to, see Figure 2.1. The performance analysis will be based on

characterizing the distributions of N,L and M . The following lemmas, proved

in Appendices A.2, A.3, A.4, summarize cluster statistics results.

Lemma 2.4.2 (Cluster Size Distribution). The number of vehicles N in a

typical cluster follows a geometric distribution with parameter φ = 1 − γ(1 −
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e−λvd), i.e.,

pN(n) = φ (1− φ)n−1 , (2.1)

and E[N ] = 1/φ. Consequently, under full market penetration, N follows a

geometric distribution with parameter e−λvd.

Lemma 2.4.3 (Cluster Length Distribution). The typical cluster’s length L

distribution can be obtained by the inverse Laplace transform L−1(·) as follows:

fL(l) = L−1

(
e−2sdφ

1−MT (−s) + φMT (−s)

)
(l), (2.2)

where

MT (s) =
λve

d(s−λv) − λv
(s− λv)(1− e−λvd)

, (2.3)

and the conditional distribution of L given N = n is given by

fL|N(l | N = n) = L−1
(
e−2sd [MT (−s)]n−1) (l). (2.4)

For the case of full market penetration, the cluster length L distribution

is:

fL(l) = L−1

(
e−d(2s+λv) (s+ λv)

s+ λved(s−λv)

)
(l). (2.5)

Lemma 2.4.4 (Number of connected RSUs). The conditional c.d.f. of the

number of RSUs M serving a cluster of length L is given by

FM |L(m | L = l) =


1 if mλ−1

r < l,

1− l
m·λ−1

r
if (m− 1)λ−1

r < l ≤ mλ−1
r ,

0 otherwise,

(2.6)
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and the conditional CDF of the number of RSUs that serve a cluster with

N = n vehicles is:

FM |N (m | N = n) = F c
L|N((m− 1)λ−1

r | N = n)−
m·λ−1

r∫
(m−1)·λ−1

r

l · fL|N(l | N = n)

m · λ−1
r

dl.

(2.7)

Finally, the CDF of M is given by:

FM (m) =
∞∑
n=1

pN(n)FM |N (m | N = n) , for m ∈ N. (2.8)

2.5 Single Lane VANET Performance Analysis

In this section, we analyze the performance of V2V+V2I multihoming

networks and compare it to the V2I only network architecture.

Notation 2.5.1. We distinguish performance metrics corresponding to the

V2I networks via variables with an asterisk superscript, i.e., Rv and R∗
v will

denote the rate of a typical vehicle in the V2V+V2I and the V2I only networks

respectively. Also, we will evaluate the performance seen by a typical vehicle,

indicating the related metrics by a subscript v.

We validate our theoretical analysis by running MATLAB simulations

of the studied static single-lane vehicular network. Section 2.9 provides further

simulation results of a dynamic network using traces generated via a vehicle

micro-mobility simulator.
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2.5.1 Typical Vehicle Coverage Probability

Definition 2.5.2 (Coverage Probability). We define the coverage probability

as the probability that a typical vehicle is connected to one or more RSUs,

either directly or through V2V relaying.

One clear benefit of the V2V+V2I architecture is that it allows vehicles

to relay messages from/to RSUs, increasing the coverage probability. We let

πv denote the probability that a typical vehicle is connected (possibly through

relaying) to the infrastructure. Specifically, note that the typical vehicle cov-

erage probability for the benchmark V2I network is independent of the traffic

intensity. By contrast, in the V2V+V2I network, higher traffic intensities lead

to longer and bigger clusters, increasing the typical vehicle coverage proba-

bility. The following result proved in Appendix A.5 addresses the coverage

probability for both networks assuming 2d ≤ λ−1
r .

Lemma 2.5.3 (Coverage probability). The coverage probability of a typical

vehicle in the V2V+V2I network is given by:

πv = φ2 ·
∞∑
n=1

n · (1− φ)n−1 · F c
M |N (0 | N = n) , (2.9)

where F c
M |N (0 | N = n) is the probability that a cluster is connected to at least

one RSU given N = n; see Lemma 2.4.2.

The coverage probability of a typical vehicle in a V2I network is inde-

pendent of λv and given by:

π∗
v =

2d

λ−1
r

, for 2d ≤ λ−1
r . (2.10)
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Figure 2.2: Left: Vehicle coverage probability for V2V and no V2V cases.
Center: Expected RSU network throughput. Right: Expected number of
RSUs connected per typical vehicle. In all cases d = 150 m, γ = 1. Legend
applies to all plots.

Numerical evaluations of Equations 2.9 and 2.10 are displayed in Fig-

ure 2.2 (left). As expected, the coverage probability is always greater for

V2V+V2I and increases rapidly to 1 with the traffic load intensity λv on the

road. Figure 2.3 exhibits the coverage probability for V2V+V2I as a function

of the penetration γ; it shows that the sensitivity of the coverage to the traffic

intensity is higher at higher γ, e.g., for γ = 0.9 where the coverage probabil-

ity attains a maximum for λv ≈ 25 vehicles/km and varies notably with λv.

Indeed, increasing λv increases the effect of the blocking vehicles, reaching a

regime where long clusters are not possible and where πv is independent of λv,

consistently with Equation 2.10. Therefore, if γ < 1, πv eventually decreases

and converges back to the value presented in Equation 2.10.
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Figure 2.3: Impact of the load in the coverage probability for different market
penetrations γ.

2.5.2 Typical Vehicle Shared Rate

The shared rate seen by a typical vehicle is defined as its allocations

of the multihomed RSU capacity of its cluster under max-min fair sharing

and denoted by the random variable Rv. The shared rate, for both networks,

i.e., V2V+V2I and V2I, thus depends on λv, γ, d, ρ
RSU and λ−1

r , as proved in

Appendix A.6.

Theorem 2.5.4 (Expected shared rate). The mean shared rate of a typical

vehicle in the V2V+V2I and the V2I networks are equal, i.e., E[Rv] = E[R∗
v]

and given by:

E[Rv] =
ρRSU

γλvλ−1
r

(
1− e−2γλvd

)
≤ ρRSU E[M ]

E[N ]
, (2.11)
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Figure 2.4: Empirical CDF of the typical shared rate for V2I vs V2V+V2I
and different inter-RSU distances, for γ = 1, ρRSU = 1.

where E[N ] and E[M ] can be computed using Lemmas 2.4.2 and 2.4.4.

Note that the mean rate for both architectures are equal because the

number of busy RSUs is the same, independently of the underlying V2V con-

nectivity. Assuming all vehicles are infinitely backlogged the overall downlink

rate is the same and thus so is the mean rate per vehicle.

Although V2V relaying collaboration does not alter the mean shared

rate seen by vehicles, see Figure 2.2 (center); it significantly impacts the cov-

erage probability and the shared rate distribution, as specified in the following

theorem, proved in Appendix A.7.

Theorem 2.5.5 (Shared rate distribution). The c.d.f. of the shared rate Rv
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in a V2V+V2I network satisfies:

FRv(r) ≥ 1− φ2

∞∑
n=1

n (1− φ)n−1F c
M |N

(⌈ rn

ρRSU

⌉
| n
)
, (2.12)

and P (Rv = 0) = 1− πv while that in the V2I network is given by

FR∗
v
(r) = 1− 2d

λ−1
r

·Q
(
ρRSU

r
− 1, 2γλvd

)
, (2.13)

where Q is the regularized gamma function and P (R∗
v = 0) = 1− π∗

v. Further-

more, R∗
v ≥icx Rv, where icx dominance2 implies:

Var(R∗
v) ≥ Var(Rv). (2.14)

Numerical evaluations of Equations 2.12 and 2.13 are shown in Fig-

ure 2.4 and the resulting variability in Figure 2.5. These demonstrate the

superiority of the V2V+V2I network architecture in terms of providing, not

only improved connectivity, but also a substantial decrease in the shared rate

variability of a typical user. Note that in Figure 2.5 we have plotted the dis-

persion of the per-user shared rate, defined as σ/µ, i.e., the standard-deviation

over the mean of the per user shared rate. In addition, we have displayed the

lower bound on the dispersion for the non-V2V scenario, given by the disper-

sion as λv → ∞. It can be observed that the rate dispersion converges to 0

for the V2V+V2I network. By contrast, in the V2I network the dispersion of

the shared rate is bounded below. These results show that the V2V+V2I net-

work at reasonably high vehicle density will provide them with an increasingly

stable and almost deterministic shared rate to vehicles.

2The definition for icx dominance is provided in Appendix A.1
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2.5.3 Multihoming Redundancy

RSU multihoming, i.e., the ability for a cluster to connect to multiple

RSUs simultaneously via different vehicles, provides connection redundancy

to a cluster. This redundancy in principle improves the reliability of vehicle

connectivity in presence of unreliable/obstructed V2I links. The following

result follows immediately from Equation 2.11 in Theorem 2.5.4.

Corollary 2.5.6 (Multihoming). The expected number of RSUs E[M ] per

cluster is bounded by:

E[M ] ≥ 1− e−2γλvd

γλvλ−1
r (1− γ + γ · e−γλvd)

, (2.15)

which for full market penetration corresponds to

E[M ] ≥ eλvd − e−λvd

λvλ−1
r

=
2 sinh(λvd)

λvλ−1
r

. (2.16)

As can be observed from this equation, E[M ] i.e., the expected number

of RSUs that the cluster of a typical vehicle is connected to grows rapidly

with the traffic intensity λv and the vehicle communication range d. A similar

trend is observed in Figure 2.2 (right) where we have plotted E[Mv], the mean

number of RSUs a typical vehicle would see its cluster connected to. We see a

rapid increase in the expected number of RSUs as λv increases. These results

confirm an exponential growth of redundancy suggesting possibly substantial

improvements in reliability of multihomed systems.

The effect of redundancy is also reflected in Figure 2.6 exhibiting the

probability that a typical vehicle benefits from multihoming as the vehicle in-

tensity increases. This probability reaches values very close to 1 under heavy
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Figure 2.5: Dispersion (standard deviation over the mean) of the vehicle shared
rates under V2V+V2I and V2I only scenarios, and different inter-RSU dis-
tances, for d = 150m, γ = 1.

traffic conditions, for the given values of λ−1
r , providing evidence of the poten-

tial for higher reliability through multihoming.

2.6 Extension to Multilane Highways

The system described in Section 2.3 and analyzed in Section 2.5 con-

siders a single lane highway. In this section we consider multilane highways.

Because an exact analysis is somewhat intricate we shall explore how one can

relate the performance of multilane highways to the single lane setting.

Definition 2.6.1 (Multilane highway). We define a multilane highway as a

triplet:
(
η,λV2V,λb

)
, where η is the number of lanes, which are indexed se-
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Figure 2.6: Redundancy: Probability for a typical vehicle cluster to be con-
nected to 2 or more RSUs.

quentially 1, 2, . . . , η,

λV2V ≜ (λV2V
k : k = 1, 2, . . . , η), λV2V ≜

η∑
k=1

λV2V
k (2.17)

and

λb ≜ (λbk : k = 1, 2, . . . , η), λb ≜
η∑

k=1

λbk (2.18)

correspond to the intensities of V2V capable and blocking legacy vehicles in each

lane, respectively. We assume each lane has independent PPPs of vehicles,

and distances among lanes are negligible as compared to the communication

range d.

Definition 2.6.2 (Multilane blocking model). In our multilane highway, LoS

blocking is modeled as follows. Consider a triplet (k−, kb, k+) as the lane in-
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dex of the transmitter, of a potential blocker and the receiver, respectively. A

blocker may obstruct the LoS link from k− to k+ if and only if it is located in

a lane between the transmitter and receiver, i.e.,

k− = kb = k+ or k− < kb < k+ or k− > kb > k+.

From this definition, it follows that the worst case number of lanes where ve-

hicles might be located and might block a LoS link is k∗ = max(1, η − 2).

For a typical vehicle in a multilane highway M, we define the num-

ber of vehicles, length and number of multihomed RSUs to its cluster as

(NM
v , L

M
v ,M

M
v ) for the multi-lane highway and (NS

v , L
S
v,M

S
v ) for a single lane

road S. We will also define (πM
v , R

M
v ) and (πS

v , R
S
v) as the coverage probability

and shared rate of a typical vehicle in multi and single lane highways. The fol-

lowing result, proved in Appendix A.8, compares the connectivity performance

of single-lane and multilane highways.

Theorem 2.6.3. For a given multilane highway M = (η,λV2V, λb) let S =

(1, γλ, λbeff) be an associated single lane highway system where:

λ = λV2V + λb; γ =
λV2V

λ
and λbeff = max(λb0, λ

b
k,

η−1∑
i=2

λbi).

Then, it follows that 3:

NM
v ≥st NS

v , LM
v ≥st LS

v and MM
v ≥st MS

v

3The definitions of ≤st and ≤icx dominance can be found in Appendix A.1
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and

πM
v ≥ πS

v , RM
v ≤icx RS

v.

In other words, the multilane highway has larger cluster statistics, better cov-

erage and decreased variability relative to the associated single lane highway.

Intuitively, this theorem indicates that taking any configuration of ve-

hicles on a multilane highway system, and comparing it with an associated

highway where all the vehicles are collapsed onto a single lane, a typical ve-

hicle’s cluster size, cluster length, number of reachable RSUs will always be

larger (stochastically dominate) in the multilane configuration. Moreover, the

connectivity of a typical vehicle will also be higher in this setting, while the

rate variability it experiences is reduced (this follows from icx dominance). A

high level illustration of our approach is depicted in Figure 2.7 and a sketch

of the proof is provided in the appendix. The single lane performance can in

turn be obtained by using the result in the previous sections.

2.7 Multilane Performance Evaluation

In this section, we further assess the performance of the proposed

V2V+V2I network architecture via simulations. This will enable us to infer

useful design and deployment strategies for the proposed collaborative tech-

nology in future vehicles and highways. The simulator used in this section is

an extension of the one used in Section 2.5 to a multi-lane vehicular network.

The communication range d is set to be 150 meters and the inter-RSU distance
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Figure 2.7: Example of the multi-lane highway approximation construction.
The bottom system is the construction proposed based on the rules in Defini-
tion 2.6.2.

λ−1
r is fixed at 1 km, unless otherwise specified. Table 2.1 shows typical values

for different parameters that were used in the simulations. For our figures,

we have obtained 95% confidence intervals achieving relative errors below 2%

(not displayed). In order to capture the effect of the blocking vehicles in the

multilane system, we modeled vehicles as having a length of 5 meters allowing

overlapping of vehicles resulting from the Poisson assumption on their location

distribution.

d λv

mmWave VLC Free-flow Congestion
75− 200m ≈ 100m ≤ 25 veh./km ≥ 60 veh./km

Table 2.1: Typical communication ranges and traffic densities, see [166, 118,
125]
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2.7.1 Homogeneous Multilane Highways

Figure 2.8 illustrates the variation in the coverage probability πv as η in-

creases, but the overall traffic intensity on the highway (λv = 20 vehicles/Km)

remains unaltered. This can be interpreted as the effect of increasing the

vehicles’ “degrees of freedom” to overcome blocking by legacy vehicles.
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1

Figure 2.8: Typical vehicle’s coverage probability analysis as the driving “de-
grees of freedom”, i.e. η increases, for different γ.

A first observation is that the marginal gain in performance is most

considerable when increasing the number of lanes from 1 to 2, while further

increments in the number of lanes result in smaller relative gains. An explana-

tion of this effect is that vehicles in the V2V+V2I network will see on average

twice fewer blockers when passing from η = 1 to 2; while the relative decrease

in the average number of blockers is smaller for higher values of η. Note that

increasing the “degrees of freedom” does not affect the performance of the
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system under full-market penetration as the same clusters will be formed for

any value of η. From this result, one can infer that, as long as it is greater or

equal than 2, the number of lanes of a highway, will not substantially affect

the connectivity probability.

2.7.2 Heterogeneous Multilane Highways

Next, we further explore the impact of heterogeneous traffic intensity

across lanes on the coverage probability πv. Note that such heterogeneity

is typical in highways nowadays in a free-flow regime, since for instance a

greater density of slower vehicles is seen in the right hand lanes. Figure 2.9(a)

exhibits the effect of the vehicle distribution on a three-lane highway. In this

figure, each coordinate represents the proportion of vehicles driving on each

lane, therefore all possible configurations lie on the simplex. We observe that

the homogeneous configuration has the best performance as it offers the best

balance between minimizing the effect of blockers on the same and across

lanes. The results show that performance deteriorates slowly when moving

away from the homogeneous configuration, only experiencing notable decreases

when moving to extreme distributions, e.g., all users are concentrated on one

lane. In order to extrapolate these results to greater values of η we define five

different types of heterogeneous lane intensity distributions:

• Homogeneous: all lanes have equal vehicle intensities, e.g. for η = 5,

λ = λvη · [15 ,
1
5
, 1
5
, 1
5
, 1
5
].

• V: traffic is symmetrically and gradually concentrated around the left-
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most and rightmost lanes of the highway, such that the intensity is min-

imized in the middle and maximized in the first and last lanes, e.g. for

η = 5, λ = λvη · [13 ,
2
15
, 1
15
, 2
15
, 1
3
].

• C: traffic is restricted to two lanes with identical intensities while η − 2

lanes are empty, e.g. for η = 5, λ = λvη · [12 , 0, 0, 0,
1
2
].

• I: traffic is restricted to one lane with η − 1 lanes empty, e.g. for η = 5,

λ = λvη · [1, 0, 0, 0, 0].

• L: 90% of traffic is in the first lane while the other 10% is evenly dis-

tributed across the η − 1 remaining lanes, e.g. for η = 5, λ = λvη ·

[ 9
10
, 1
40
, 1
40
, 1
40
, 1
40

].

Figure 2.9(b) confirms the trends exhibited in Figure 2.9(a) as the number of

lanes of the highway increases. The homogeneous distribution remains best as

compared to the V, C, L and I configurations.

We note that unlike in Figure 2.8, the total number of vehicles increases

with η in the highway system. An interesting insight which can be inferred

from these results is the idea that congested highways (large λv) may have

a better connectivity performance than free-flowing systems, as the intensity

distribution is typically uniform across all the lanes in such cases.

Another interesting observation can be made for extreme configurations

such as configuration I. We observe that as η increases, along with the density

of vehicles, πv also increases for small η as more vehicles join clusters. However,
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(b) Coverage probability for different
configurations.

Figure 2.9: Multilane configuration coverage probability analysis for γ =
0.8, d = 150m, λ−1

r = 1 km.

for larger values of η, more non-V2V vehicles prevent the formation of large

clusters, leading to a decrease in πv.

2.7.3 V2V Segregation Impact

While manufacturers progressively release new vehicle models equipped

with the V2V+V2I technology, we envision a transition period during which

the roads will be shared among the new V2V-enabled and older legacy vehi-

cles. In order to accelerate the integration and the spread of new automotive

technologies, policies restricting specific lanes to driverless and V2V-enabled

vehicles only might be adopted, akin to the concept of high-occupancy vehi-

cle lane. We analyze the effect on the coverage probability of reserving the

first lane for V2V-enabled vehicles and we will define α as the percentage of

V2V-enabled vehicles driving on this lane, i.e. the first lane has a vehicle

intensity of αγλv with only V2V-enabled vehicles while the others are mixed
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and uniformly distributed. Figure 2.10 shows the effect of α on the network

performance.
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Figure 2.10: Connectivity of α-segregated scenario for different γ.

We observe that for α large enough, segregation does improve coverage,

particularly for low market penetration, implying that such a policy would

lead to improved connectivity in the early stages of the V2V capable vehicles

deployment.

2.8 Revisiting the Poisson Assumption

In this section, we revisit one of the main assumptions of our network

model, namely the Poisson distribution for cars on the highway. We study

its validity through realistic multilane highway system simulations, before dis-

cussing the impact of different configurations on the network performance.
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Recall that as discussed in Section 2.3, this assumption was validated in part

for the free-flow setting in [166, 66].

2.8.1 Validity of the Poisson Assumption

We first explore the degree to which the PPP assumption might hold

via a detailed simulation of vehicles on the road. We use traces generated

from the open-source Simulation of Urban MObility (SUMO) micro-mobility

simulator [64], capturing realistic traffic features, e.g., a car-following model,

vehicles passing each other, vehicle dimension, and velocity control, among

others.

Figure 2.11 shows the distribution for the inter-vehicle distances ob-

tained in the simulator, on a three lanes straight highway. In light traffic,

i.e., in the free-flow regime, the simulated traffic leads indeed configurations

of vehicles where the inter-vehicle spacing is exponentially distributed, one of

the features of a PPP. When the vehicle density increases, the spacing slightly

deviates from the exponential distribution, becoming more deterministic due

to congestion. Note that the results shown in Figure 2.11 correspond to inter-

vehicle spacing for the projection of cars in the three lanes onto the given axis,

hence although vehicles cannot be closer than their dimension permits on a

given lane in the simulator, the projection of the vehicles’ centers on the three

lanes can be arbitrarily close.

Therefore, as long as the vehicles are operating in the free-flow regime,

we expect that the observations and conclusions drawn from Figures 2.2-2.6
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Figure 2.11: Comparison of the simulated inter-vehicle spacing c.d.f. with the
corresponding exponential random variables, on a collapsed 3 lanes highway
system, η = 3.

in the single lane scenario to apply in the multilane configuration as well.

Moreover, our analysis in Sections 2.6 and 2.7 predicts improved performances

compared to the single lane case. For instance, we expect a higher probabil-

ity of connectivity, better redundancy, or improved per-user shared rate for

instance, due to the fact that clusters can be larger in size and that blocking

vehicles have a less severe impact on the others.

2.8.2 Study of Non-Poisson Traffic Scenarios

As shown in Figure 2.11, the Poisson assumption may not hold for all

traffic patterns, e.g., when vehicles are not moving in the free-flow regime. We

now consider two specific scenarios where the Poisson assumption may not
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be applicable: (1) a high vehicle density regime, and (2) a road with traffic

lights deployed every 1 km with random phases, turning from red to green

and green to red every 60 seconds. In both settings, vehicles are not free to

move at their desired speed and vehicles’ locations may be correlated, either

due to congestion or to the traffic lights. We are interested in evaluating

how the connectivity probability is impacted by this correlation in vehicle

locations, using SUMO traces. Figure 2.12 shows how the connectivity πv of a

typical vehicle varies as a function of γ in these two scenarios. For comparison

purposes, we also exhibit the network performance for the case where vehicles

are placed according to a PPP on the road. As a fair comparison, the three

scenarios were simulated with the same vehicle density of λv = 42 vehicles/km.

Figure 2.12: Connectivity probability as a function of γ for three different
traffic patterns, η = 3, λ−1

r = 1km, λv = 42 vehicles/km.

As shown on Figure 2.12, the Poisson assumption underestimates the
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connectivity probability of a typical vehicle as compared to a realistic high-

density traffic pattern scenario. This can be explained by the fact that faster

vehicles may be stuck behind slower ones when the highway gets congested,

leading to larger clusters of vehicles. In addition, in the traffic light scenario,

the typical vehicle has a better connectivity than in the Poisson traffic regime

when γ is small, as a typical vehicle is likely going to be in a large cluster

formed at the traffic lights. However, for larger values of γ, the connectivity

in the traffic light scenario becomes slightly lower than under Poisson traf-

fic, as vehicles that are not in those traffic light generated clusters have less

opportunity to cooperate with other vehicles than if the traffic were Poisson.

Moreover, when γ is close to 0, a V2V+V2I capable vehicle, may be disadvan-

taged by being in the clusters formed at the traffic lights as the high density

of legacy vehicles considerably reduces its field of view, and hence its ability

to reach other V2V+V2I capable vehicles. For this reason, the Poisson traffic

scenario leads to slightly better performance than the traffic light one in this

regime.

In summary, a typical vehicle’s connectivity analysis shows that the

Poisson traffic assumption underestimates the network’s performance com-

pared to realistic non-Poisson scenarios for small values of γ, and may be a

reasonable assumption when γ grows larger.
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2.8.3 Insight on Alternative Distributions

Although the PPP assumption will be a good fit in certain regimes,

it will still fail for others that may arise in the future, e.g., where cars may

intentionally form platoons to increase highway throughput. To better under-

stand how such patterns might affect connectivity, in this section we ask the

question “What is the best possible configuration of cars, i.e., resulting in the

best connectivity metrics?”. We shall focus on two performance metrics: cov-

erage πv and mean rate per user. Two regimes can be distinguished. The first

one corresponds to situations where λv ≥ 1/d, i.e. where the vehicle density

is large enough so that vehicles can be separated by 1/d meters. In such a

scenario, vehicles would form a single infinite cluster leading to πv = 1 and

maximum mean rate per user since all the RSUs are in use. The other regime

of interest is where λv < 1/d. Consider first a configuration where all the clus-

ters in the network are of same size. Then spacing the vehicles by d within the

cluster would ensure maximal cluster length, and hence maximal πv and E[Rv]

as this would maximize the “space covered” by clusters and thus the RSU

busy time. Similarly, spacing vehicles in adjacent clusters by 2d would also

maximize E[Rv], without affecting the coverage. Following these two rules,

we derive expressions for πv and u, the average RSU utilization capturing the

same information as E[Rv]. For a fixed cluster size n:

πv(n) = min[(n+ 1) · d · λr, 1] (2.19)

u(n) = min[
n+ 1

n
· d · λv, 1] (2.20)
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Clearly, as n increases, πv(n) increases while u(n) decreases. We exhibit

that trend through a tradeoff curve between coverage and throughput as a

function of n in Figure 2.13:
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Figure 2.13: Tradeoff curve between connectivity πv and RSU utilization u,
for different λv (in vehicles/km), and the achievable performance by mixing
cluster sizes.

Figure 2.13 exhibits the tradeoff between connectivity and throughput.

In a low density regime, vehicles form longer clusters but cover less area as the

cluster size n increases, improving the connectivity but reducing the average

RSU utilization, and hence the mean rate per user. We note that when the

vehicle density λv is large enough, the tradeoff does not occur as vehicles can

get full connectivity and maximum mean rate per user. In scenarios where

cluster size mixing is allowed, cluster can see an even better performance, rep-

resented by a straight line between any two points on the tradeoff curves. We

note that the best mixing possible is combinations of clusters of size 1, i.e.

isolated vehicles, and clusters of size n = ⌊ 1
dλr

+ 1⌋. The tradeoff curves asso-
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ciated with such mixings are drawn as dashed lines on Figure 2.13. Intuitively,

clusters of size 1 help to maximize the total area covered by the clusters, while

the largest clusters increase the connectivity probability of a typical vehicle.

Different combinations of those two cluster sizes can be constituted to reach

any specific connectivity or throughput target.

2.9 Performance Evaluation of Multilane Dynamic Net-
works

So far, our analysis and validations have focused on a snapshot of a

highway system at a given time. While the Poisson model for vehicle locations

on the road holds in free-flow traffic as discussed in the previous section, the

evolution of the vehicle location over time may impact the overall network

performance. In this section, we perform additional time-domain validations

based on SUMO traces. We describe below the SUMO simulation setup.

Scenario: We consider a three-lane straight highway of length 10,000 meters,

where vehicles that reach the end of the road are regenerated at its beginning.

The vehicle density is mentioned alongside each experiment.

Traffic: The highway speed limit is set to be 35 meters/sec., however, each

vehicles sets a random target velocity by picking a velocity multiplier from a

normal distribution of mean 1.0 and standard deviation 0.3. The multiplier

values are then capped between 0.2 and 2.0. In addition, we adopt the Krauss

car-following model in our experiments.

Simulation Duration: The simulation duration is set to 5, 000 sec., but
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only samples starting from 2, 500 sec. are considered to ensure enough mixing

in the vehicles’ positions.

We now present the results of our three SUMO experiments.

2.9.1 Reduction in Throughput Temporal Variability

As discussed throughout this chapter, one key advantage of a V2V+V2I

topology over V2I only connectivity is that a typical vehicle sees a considerable

reduction in throughput variability, while remaining connected to the network

for longer periods of time. Figure 2.14 shows how the throughput seen by a

typical vehicle varies over time, for different vehicle densities and penetration

rates.

(a) Throughput Time Trace, λv = 5 veh./km, γ = 1.
E[Rv] = E[R∗

v] = 0.167,Var(Rv) = 0.0776,Var(R∗
v) = 0.0640.
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(b) Throughput Time Trace, λv = 20 veh./km, γ = 1.
E[Rv] = E[R∗

v] = 0.056,Var(Rv) = 0.0123,Var(R∗
v) = 0.0042.

(c) Throughput Time Trace, λv = 42 veh./km, γ = 1.
E[Rv] = E[R∗

v] = 0.0219,Var(Rv) = 1.03e− 3,Var(R∗
v) = 1.74e− 8.

(d) Throughput Time Trace, λv = 42 veh./km, γ = 0.5.
E[Rv] = E[R∗

v] = 0.0411,Var(Rv) = 4.1e− 3,Var(R∗
v) = 2.84e− 4.

Figure 2.14: Time-Domain Dynamic Simulation of a typical vehicle’s through-
put, d = 150m, λ−1

r = 1 km, η = 3, ρRSU = 1.

49



One can observe that in the non-cooperative scenario, a typical vehicle

sees alternating on/off periods during which vehicles see high rates, before

being disconnected. The frequency of the on-periods depends on λ−1
r and the

vehicle’s velocity, while the on/off durations depend on the communication

range dv, as well as the vehicles’ velocity. As can be seen in the V2V+V2I

scenarios, the throughput time trace is steadier in general, which is consistent

with the results in Theorem 2.5.5. While the shared rate improvement may

not be very clear in very low traffic regimes, e.g., for λv = 5 vehicles/km,

reduction in variability becomes much more visible for larger vehicle densities,

where vehicles have more opportunities to cooperate and form clusters. The

variance in throughput effectively vanishes when the vehicle density is large

enough, e.g., λv = 42 vehicles/km, as the max-min fair scheduler is able to

allocate resources perfectly given the large number of of V2V links (large λv,

large γ).

Moreover, as predicted by our analysis, smaller penetration rates neg-

atively impact the network’s performance. However, allowing vehicle cooper-

ation on a multilane highway has been shown to address this issue, see Theo-

rem 2.6.3. The last time trace in Figure 2.14 shows that even with low/medium

penetration rates, cooperation considerably reduces the throughput variability

seen by a typical vehicle in the network.
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2.9.2 Study of the Rate at which Clusters Change

One challenge that needs to be considered in real deployment of such

cooperative ad-hoc networks is cluster management. As vehicles are moving

on the highway at different velocities, clusters of vehicles will inevitably split

and merge with others over time. If the rate of such “cluster change” events is

too high, then the network may not be able to dynamically allocate resources

to vehicles, hence impacting the network performance. We study the viability

of our proposed V2V+V2I scheme, by studying the rate of “cluster change”

events seen by a typical vehicle over time. Figure 2.15 shows how this metric

changes as a function of the penetration rate γ, for different values of vehicle

intensity λv.

Figure 2.15: Mean Rate of cluster change event vs. the penetration rate γ in
a V2V+V2I scenario, η = 3.

We observe on this figure that the rate of cluster change event increases
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with γ. As more vehicles are equipped with V2V technology, clusters get larger,

hence more vehicles might be susceptible to leaving it, while more vehicles may

join it as well. However, when the V2V+V2I capable vehicle density becomes

large enough, the rate of change events decreases, as vehicles are likely to form

larger clusters that are harder to split. In the limit, one can expect that all

the vehicles form a single large cluster, further reducing the change rate.

One important takeaway is the fact that even at its peak, the rate of

cluster change remains reasonably small (on the order of one change every two

seconds) as compared to the reactivity of the control plane of today’s networks,

making the V2V+V2I topology a viable solution.

2.9.3 Sensitivity of Coverage Probability to RSU placement

Finally, we evaluate how the coverage probability changes under ran-

dom perturbations in the RSU locations. This is a crucial study, as in real-

deployments, network operators may not have full control on the exact RSU

placement. We simulate a network where the RSU locations are independently

perturbed by a random amount between 0 and dp meters from either side of

their initial location (regularly placed λ−1
r = 1 km apart), where we vary dp

from 0 to 300 meters. For brevity, we present our results without an associated

figure. The random perturbations do not affect the mean connectivity time

of a typical vehicle, for any vehicle intensity λv and penetration rate γ, as

the RSU coverage regions never overlap if dp ≤ λ−1
r /2 − d. Perturbations do

however affect the variance in the time to access the network, i.e., a vehicle
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requesting connectivity service at a random instant will see more variability

in the time until it can connect to the network. Still, V2V+V2I cooperation

helps to improve the connectivity probability, hence reducing the mean time

to access the network, along with its variance.

2.10 Chapter Conclusion

In this chapter we have analyzed the performance of a multi-homed

V2V+V2I architecture. Our main conclusion is that V2V relay clusters along

with RSU multi-homing improves significantly the typical vehicle coverage

probability and reliability, while reducing the variability of the shared rate

per user when compared to a traditional V2I architecture. These proper-

ties position this architecture as a critical enabler for Internet connectivity

services in future vehicular networks. We also conclude that the V2V tech-

nology penetration level is critical in the system performance given that many

legacy vehicles will obstruct the LoS and prevent some vehicles to communi-

cate. These difficulties may be mitigated if dedicated lanes are used by new

vehicles that are V2V+V2I capable, particularly at low penetration levels.

Moreover, we proposed a new mechanism to bound the performance of multi-

lane highways by equivalent single lane highways, and our simulation results

highlight a robustness of performance to heterogeneous vehicle distributions

across lanes. We then described how the results presented throughout the

chapter would change if one could control the relative positions of the vehi-

cles on the road, e.g., when autonomous vehicles form platoons, and how the
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connectivity-throughput tradeoff can be formally characterized in such scenar-

ios. Finally, the theoretical results (e.g., reduction of variability of the rate

seen by a typical vehicle), key assumptions of our model (e.g., PPP assump-

tion, regular RSU placement), and practical deployment considerations (e.g.,

rate of cluster change impacting cluster management) have been validated via

a micro-mobility traffic simulator.
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Chapter 3

Throughput Analysis of Collaborative

VANETs in Cellular Networks

The previous chapter proposed a solution to support the connectivity

requirements associated with vehicle-bound users demanding reliable and high-

throughput connectivity. We leveraged Vehicle-to-Vehicle (V2V) and Vehicle-

to-Infrastructure (V2I) links (commonly called V2X) possibly operating in the

millimeter-wave (mmWave) frequency bands, while deploying Road Side Units

(RSUs) close to the vehicles. The “ubiquitous” availability of V2X connectivity

offers the prospect of enabling new vehicle-based services, e.g., data relaying

and caching, that could also reduce the traffic loads on traditional cellular

networks. In addition, RSU deployment might come at substantial costs for

network operators, and solutions leveraging the existing cellular infrastructure

may therefore be preferable.

In this chapter1, we focus on leveraging vehicle clustering using the V2X

technology to provide improved cellular connectivity for infotainment content

1Publications based on this chapter: [84] S. Kassir, G. de Veciana, N. Wang, X. Wang,
P. Palacharla, Enhancing Cellular Performance via Vehicular-based Opportunistic Relaying
and Load Balancing. IEEE INFOCOM 2019, April 2019; and S. Kassir, G. de Veciana,
N. Wang, X. Wang, P. Palacharla, Analysis of Opportunistic Relaying and Load Balancing
Gains through V2V Clustering. Submitted to IEEE Transactions on Vehicular Technology,
[Under Review].
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delivery to vehicle passengers (as opposed to delay-sensitive safety data). The

central challenge is to develop an understanding of the performance and trade-

offs of vehicular-based wireless architectures, when taking into account the

roles of the vehicle clusters on the roads and the cellular network geometry,

while adopting a more realistic wireless link model than in Chapter 2. As in

that chapter, we consider a setting wherein clusters of well connected vehicles

share possibly multihomed connectivity to the cellular infrastructure, i.e., one

or more Base Stations (BSs) can transmit data to a cluster of vehicles which

can in turn relay data to the appropriate vehicle. This leads to two types of

benefits which we discuss next.

3.1 Overview of Benefits Associated with V2V-Clustering

3.1.1 Opportunistic Throughput Gains

The first benefit stems from the significant throughput gains achievable

through opportunistic relaying to vehicle clusters. For example, as shown in

Figure 3.1, rather than sending directly to a vehicle v4 at the cell edge, a BS b1

can send data to a nearby vehicle v1 and the cluster can then use high capacity

V2V connectivity to relay data to v4. Given the order of magnitude differences

in the peak capacity of nearby users compared to edge users in a typical cell, as

long as V2V capacity is plentiful the potential of such cluster-based cooperative

relaying is extremely high. When v4 and v1 lie in the same cell we refer to this

as intra-cell opportunism, and if b1 uses relay v1 to forward data to a vehicle in

another cell (say v5) we call this inter-cell opportunism. This approach might
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be particularly relevant in mmWave based infrastructures, whose short range

and susceptibility to obstructions make efficient deployment challenging. By

leveraging cluster-based relaying one can exploit spatial diversity to find Line

of Sight (LoS) channels to BSs, providing improved coverage, throughput and

reliability, see Chapter 2.

Figure 3.1: Example of an eight vehicle cluster traversing two cells shared by
other User Equipments.

3.1.2 Load Balancing Gains

The second benefit comes from enabling load balancing across neigh-

boring cells. For example, as shown in Figure 3.1, the traffic destined to a

cluster of vehicles spanning multiple BS cells, e.g., b1 and b2, can be delivered

through either one or both of the BSs, depending on their current loads. For

instance, b1 and b2 currently have 5 and 15 users/vehicles in their respective

cells but by using inter-cell cooperative relaying the loads could be shifted so

that they each serve 9 and 11 respectively. Such an approach can help reduce
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the variability across cell loads, hence diminishing the spatial and temporal

variability in users’ perceived shared rate. This is especially important in the

context of 5G where small-cells cover limited regions and thus might see higher

relative load variability. Moreover, although the link between the cluster and

the lightly-loaded BS b1 may be weaker than the link to b2, the former will be

able to allocate more wireless resources to the cluster, benefiting not only the

vehicles, but also other devices associated to b2 as fewer users are contending

for channel access.

3.2 Related Work

Extensive research efforts have recently been devoted to investigating

the benefits of opportunistic relaying in cellular networks and cell association

load-balancing. We present next an overview of relevant related work in both

directions.

Many researchers have explored gains that can be achieved through op-

portunistic relaying in cellular networks [73, 36, 177, 15, 175, 98, 179, 80], com-

monly exhibiting gains in throughput, rate fairness, and/or outage probability.

For instance, [15] proposes a promising software framework that leverages op-

portunism to improve by 2× the total throughput delivered by a WiFi-based

WLAN network. Our work shows that much greater gains can possibly be

achieved in large-scale cellular networks by leveraging V2V relaying to serve

vehicle-bound users. Studies such as [175] analyze the opportunistic gain in

the context of VANETs, and also show that opportunism improves the down-
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link throughput. The focus is, however, on comparing the performance of

different routing strategies, and proposing efficient relaying protocols rather

than analyzing the gains associated with opportunism and load balancing.

Although [175] studies RSU-based networks, it provides some valuable insight

regarding exploiting opportunism, that can be applicable in cellular-network

settings. The authors in [80] show that up to 5.7× data rate gains an be

achieved by the cell-edge users and 4.1× gains for the median users via Device-

to-Device (D2D) opportunistic relaying. In our work, we show that additional

gains can be expected by considering the geometry of vehicle clusters on the

roads in cellular networks as well as the role of load-balancing.

Another line of work explored the benefits of load balancing in wireless

networks. Some proposed solutions include channel borrowing [42], cell breath-

ing [139, 16], BS association biasing [174, 146], centralized dynamic inter-cell

and intra-cell handovers [150], distributed user association policies under het-

erogeneous traffic [91], and combinations thereof. Our work proposes a novel

load-balancing solution leveraging V2V connectivity among vehicles driving

on a road network served by the cellular infrastructure.

Other works have also investigated the benefits of D2D-based load balancing.

In [45], spectrum savings enabled by D2D-based load balancing across cells

were investigated. In our work, we characterize instead the relaying benefits

in terms of user shared-rate and fairness gains. In [180], the authors introduce

an optimization framework to find the optimal load-balancing and routing

strategies in D2D-relay-based networks, considering a sum-rate maximization
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objective, but do not study the potential fairness gains associated with D2D-

relaying. In addition, in contrast to both of these works, we leverage tools

from the stochastic geometry literature [14] to understand the role that the

V2V-cluster relay geometry plays on their load-balancing ability, and hence,

on the large-scale cellular network performance. Other works have established

the critical role that load balancing plays in improving mean user rate or im-

proving a notion of fairness, see, e.g., [97]. This work has been extended to

vehicular network settings where V2I and V2V links are used to offload traffic

from one cell to another [160, 167, 149]. While these works exhibit the ben-

efits of load balancing, they focus on defining routing strategies, rather than

evaluating the resource allocation and the potential per-user rate gains that

a load balancing scheme might generate. The traditional approach to bal-

ance mobile users’ loads across cells is via the formulation of an optimization

problem, see e.g., [45, 180, 137] which in turn suggests appropriate schedul-

ing algorithms, e.g., [43, 180, 102]. Other researchers propose learning-based

solutions to determine effective association policies, see e.g., [100], but per-

haps lack the development of underlying insights useful towards the design of

vehicular network-based relaying strategies. Finally, some papers focused on

studying multihomed load balancing schemes. For instance, [30] presents algo-

rithms and experimental results showing how load balancing can improve the

performance of multihop multihomed VANETs, but no network modeling and

analysis was performed, and the study was mainly focused on uplink access,

while we focus on multihomed downlink connectivity in this work.
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This work is, to the best of our knowledge, the first one evaluating

jointly opportunistic and load balancing gains by leveraging V2V cluster-based

relaying to enhance the cellular infrastructure.

3.3 Chapter Contributions and Organization

The main objective of this chapter lies in modeling and analyzing the

potential benefits of vehicle cluster-based opportunistic relaying in terms of

shared rate gains and improved fairness. More specifically, this chapter makes

five major contributions.

First, we present a model to study the performance of cellular net-

works leveraging V2V-clustering. The model captures the essential features

and tradeoffs associated with this technique, while leveraging tools and results

already established in the field of stochastic geometry.

Second, we study analytically the sources of intra-cell opportunistic

gains, providing additional insight on the benefit of V2V-clustering, and pro-

viding tools to assess the performance gains.

Third, we formulate a network-level (centralized) fairness oriented re-

source allocation and load balancing optimization problem, allowing us to

capture the full gains associated with intra-cell and inter-cell opportunism, as

well as load balancing through BS multihoming.

Fourth, we propose a cluster-level (distributed) and computationally

efficient load balancing algorithm that greedily and locally re-associates vehi-
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cles to BSs. We assess its performance by comparing it to the network-level

fairness optimal algorithm, and policy which only leverages intra-cell oppor-

tunism. We then argue that our cluster-level resource management algorithm

is suitable for real-time dynamic allocation compared to a centralized network-

level solution, and may be preferable despite its sub-optimality.

Finally, we discuss technical challenges associated with V2V cluster-

based relaying, such as incentive mechanisms, the impact on packet delays, as

well as real-time cluster management challenges.

The remaining of chapter is organized as follows. In Section 3.4 we

propose our stochastic geometric network model and we present in Section 3.5

the associated analysis geared at understanding the roots of intra-cell oppor-

tunistic gains. In Section 3.6, we introduce a centralized network-level and

a distributed cluster-level resource allocation and user association algorithms

leveraging intra-cell opportunism, inter-cell opportunism, and load balancing.

Section 3.7 presents simulation results for a variety of scenarios suggesting

10×-20× shared rate gains along with significant improvements in shared rate

fairness. In Section 3.8, we present a critical outlook on V2V-clustering by

highlighting major technical challenges associated with the proposed network

architecture. Finally Section 3.9 concludes the chapter.

3.4 System Model

In this section, we propose a system model enabling us to study gains

associated with opportunism and load balancing in cellular networks enhanced
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by V2V cluster relaying.

3.4.1 Network Model

We consider a network where BSs are randomly placed on the plane

according to a homogeneous Poisson Point Process (PPP) ΦBS with intensity

λBS, see e.g., [11]. Another independent homogeneous PPP ΦM of intensity λM

models the locations of the mobile User Equipment (UE). In this network, the

road infrastructure is modeled as an arbitrary stationary line process ΦR of

line intensity λR meters of road per m2, and independent of ΦBS. Conditioned

on a realization ϕR of this road infrastructure, vehicles with a fixed Line-of-

Sight V2V-communication range of dR meters are dropped on the roads and

form vehicle clusters.

Definition 3.4.1 (Vehicle Cluster). Given an arbitrary configuration of ve-

hicles on a road, a vehicle cluster is a sequence of vehicles on the same road

such that any two consecutive vehicles are within communication range dR of

each other.

It follows from this definition that a vehicle can only belong to a single

cluster. Vehicles (hence clusters) are modeled as randomly distributed on the

roads according to the following bursty-traffic model:

• Vehicle clusters consist of an independent random number of vehicles

where the typical cluster size Z follows an arbitrary (but known) discrete

distribution.
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• Vehicles are equispaced2 within a cluster, and the inter-vehicular distance

is fixed to be dV ≤ dR meters, consistent with Definition 3.4.1, i.e.,

clusters can be seen as chains of successive vehicles within communication

range of each other. Thus, the random size Z of a typical cluster induces

a random length L in meters from the first to the last vehicle, such that

L = (Z − 1)dV meters. We use the convention that a cluster with one

vehicle has length 0, a cluster with two vehicles has length dV, etc.

• Clusters are dropped on roads in ϕR, such that the distance between two

consecutive clusters on the same road is random. Specifically, the typi-

cal inter-cluster distance T between the last vehicle of a typical cluster

and the first vehicle of the preceding one follows an arbitrary (known)

distribution satisfying T > dR meters almost surely, consistent with Def-

inition 3.4.1. This captures the requirement that two vehicles in different

clusters cannot be within communication range of each other, otherwise

they would be part of the same cluster.

For any given dV and known E[Z] and E[T ], one can characterize the

vehicle density λV on a road in vehicles/meter as follows:

λV =
E[Z]

(E[Z]− 1) · dV + E[T ]
=

E[Z]

E[L] + E[T ]
(3.1)

2While the equispaced model for vehicle placement within a cluster is idealized, our
extensive experiments showed that for a given cluster length distribution the vehicle con-
figuration within the cluster has an almost negligible impact on the network performance.
Hence, we shall adopt the equispaced model to keep the subsequent analysis tractable.
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The above clustered vehicle model induces a spatial process ΦV = {Vi :

i ∈ N} denoting the locations of the vehicles in the network, which is not a

PPP. Each vehicle is assumed to also correspond to an active user, i.e., with

full-buffer traffic. In the sequel we let ϕBS = {bi : i ∈ N} denote a realization

of the PPP ΦBS and refer to BSs directly through and their locations, e.g., bi.

This convention is adopted for all point processes. As shown in Figure 3.2,

the BSs in ϕBS induce a Voronoi tessellation T(ϕBS) = {Tb(ϕBS) | b ∈ ϕBS},

where each BS b has an associated cell: Tb(ϕBS) = {x ∈ R2 | ∥x − b∥2 ≤

∥x − b′∥2,∀b′ ∈ ϕBS}. Based on this tessellation of BSs’ cells we define the

following additional notation. The set of vehicles ϕV is partitioned such that

ϕV,c denotes vehicles belonging to cluster c while ϕb
V denotes the set of vehicles

in BS b’s cell. Similarly, the set of mobile UEs ϕM in the network is partitioned

such that ϕb
M denotes the set of UEs in BS b cell. Finally, we let ϕb

C denote the

set of clusters that include at least one vehicle in b’s cell, while ϕBS,c denotes

the set of BSs containing at least one of cluster c’s vehicles in its cell.

Simulated Network Model. While our analytical results will be based on

the above general network model, we shall adopt a more specific model for our

simulation results, by relating the parameters dV, λV, the distributions of the

random variables Z and T , and the road process ΦR in a consistent manner.

Note that while ΦR can be selected independently, the other parameters need

to be carefully jointly chosen so as to satisfy all the model constraints, i.e.,

Equation 3.1, and the communication range constraints. To that end, we shall

generate the road infrastructure as a Poisson Line Process (PLP) ΦR of line
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Figure 3.2: Illustration of a random network realization, i.e., realizations of ϕBS

and ϕM modeling the BS and UE locations, along with the induced T(ϕBS), and
an arbitrary road infrastructure supporting randomly placed vehicle clusters.

intensity λR meters of road per m2, see [37, 34]. As for the cluster-generation

parameters, we shall fix λV, and select the three other ones accordingly as

follows:

• We model Z ∼ Geometric(e−λVdR), which corresponds to the cluster size

distribution as if the vehicles were distributed as a PPP on the roads and

grouped if they were within communication range dR, as in Chapter 2.

• We let dV = λ−1
V (1 − λVdRe−λVdR

1−e−λVdR
) corresponding to the mean inter-

vehicular distance within a cluster if the vehicles were distributed as

a PPP on the roads, i.e., for X ∼ Exp(λV), dV = E[X|X ≤ dR], see, e.g.,

Chapter 2.
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• We model T ∼ Exp(µ) such that T > dR almost surely, consistent

with the corresponding distribution if the vehicles were distributed as a

PPP on the roads, and corroborated by empirical observations in bursty-

traffic settings [66]. The parameter µ is selected to be consistent with

Equation 3.1, i.e., µ = λV.

3.4.2 Link Capacity Model

In our analysis, we will consider downlink transmissions. For the tra-

ditional cellular network, i.e., without V2V cluster relaying, we model the

downlink capacity from BS b ∈ ϕBS to user u ∈ ϕb
V ∪ ϕb

M (i.e., to vehicle

a mobile UE) for a given network realization as depending on the Signal-to-

Interference-and-Noise-Ratio (SINR) given by:

SINRb
u =

pBS ·Hu · P b
u

Ibu + σ2
, (3.2)

where pBS is the BS transmission power, Hu models the independent Rayleigh

fast-fading gain such that Hb
u ∼ Exp(1), P b

u is a random variable modeling the

path-gain of the link between b and u, Ibu is the interference power seen by user

u associated to BS b, σ2 models the total thermal noise power over the allocated

bandwidth. Letting dub denote the distance between user u and BS b, we

model LoS blocking for all the wireless links through the dual-slope distance-

dependent binary random variable P b
u purposed in the 3GPP standard [53]:

P b
u =


kLoS · (dbu)−αLoS w.p. pLoS(dbu),

min

[
kLoS · (dbu)−αLoS

kNLoS · (dbu)−αNLoS

]
w.p. 1− pLoS(dbu),

(3.3)
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where kLoS and kNLoS capture the signal attenuation at a reference distance of 1

meter for LoS and NLoS links respectively, while αLoS and αNLoS represent the

respective path-loss exponents such that αLoS ≤ αNLoS. Moreover, pLoS(·) is a

non-increasing non-negative function of the distance dbu, satisfying pLoS(0) ≤ 1.

Finally Ibu is the interference power seen by user u, originating from all the

BSs except b, i.e.,:

Ibu =
∑

b′∈ϕBS\{b}

pBS ·Hb′

u · P b′

u . (3.4)

We assume for simplicity that a user u associated with BS b always observes

interfering signals from other BSs through NLoS links, i.e., for all b′ in ϕBS\{b},

we have pLoS(db
′
u ) = 0.

Finally, the average transmission rate rbu from BS b to user u for a link

of bandwidth w for a given network realization is modeled for simplicity by

the Shannon ergodic rate:

rbu = w · E{Hb
u}b∈ϕBS

[
log2

(
1 +

SINRb
u

Γ

)]
, (3.5)

where Γ models the gap between the actual transmission rate and the Shannon

capacity, modeling the joint effect of quantized modulation schemes, finite-

length codes, channel estimation error due to vehicle mobility, etc., see [79],

and the expectation is taken over all the fading terms. Note that we do not

average the transmission rate over large-scale SINR variations such as blocking

and link distance/vehicle mobility as we leverage opportunism with respect to

these fluctuations.
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In the cluster-based opportunistic relaying scenario, UEs see the same

capacity as in the traditional cellular network setting. By contrast, the average

downlink transmission rate from BS b ∈ ϕBS to any vehicle belonging to cluster

c ∈ ϕb
C is modeled by

rb,∗c = max
v∈ϕV,c∩ϕb

V

rbv, (3.6)

i.e., the transmission rate from b to a (relay) vehicle in cluster c and in BS b’s

cell. In the sequel, we shall refer to this relay vehicle as the cluster-head, and

a cluster may have multiple cluster-heads if it is multihomed. Note that we

make cluster-head decisions based on the user average rates rbv as we envision

the cluster-head selection decisions/handoffs to realistically occur on slower

time-scales (on the order of hundreds of milliseconds to seconds) than the

short channel coherence time associated with fading experienced by vehicles

that may be moving at high velocity (on the order of milliseconds). We shall

further make the following assumption which is in line with a setting where

vehicles use high capacity V2V line of sight links, e.g., mmWave, to connect

to the vehicles directly ahead and/or behind them in the same cluster.

Assumption 3.4.2 (V2V link model). We assume intra-cluster V2V links

have sufficiently high capacity (e.g., mmWave bands) so as to ensure they are

not the bottleneck in relaying traffic to vehicles within clusters, and do not

interfere with infrastructure transmissions (e.g., sub-6GHz bands).

We envision the allocation of wireless resources for the V2V links to be

in line with the 5G NR V2X Sidelink resource allocation schemes described in
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the 3GPP Release 16, i.e., either coordinated by the relevant BSs (mode 1) or

uncoordinated, where vehicles access wireless resources from a resource pool

preallocated by the BS (mode 2), see [63].

3.5 Intra-cell Opportunism Performance Analysis

As introduced earlier in this chapter, we are ultimately interested in an-

alyzing both opportunism and load balancing gains. While the opportunism

gain analysis can be tractable, the study of load-balancing gains is more com-

plex as it is intrinsically related to the resource allocation policies used in

the network. In this section, we focus on understanding the cause and ef-

fect of intra-cell opportunism solely, in a scenario where no load balancing is

performed. In subsequent sections we will get a full picture of the intra-cell

opportunism, inter-cell opportunism and load balancing gains. Recall that

intra-cell opportunism considers data relaying only among vehicles that are in

the same cluster and in the same BS cell. In other words, clusters are assumed

to be artificially broken at the cell boundaries, creating logically independent

sub-clusters. While this mechanism clearly reduces the benefits of V2V coop-

eration, a formal analysis of this setting allows for a better understanding of

the origin of the gains associated with V2V cluster relaying.

The gains associated with intra-cell opportunism can be summarized in

terms of two phenomena: (1) clustering allows vehicles to route traffic through

the closest vehicle in their cluster to the BS, leveraging a higher SINR link; and

(2), routing traffic through vehicles closer to the BS improves robustness to
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blocking, by increasing the probability of benefiting from a LoS wireless link.

Although these two effects are closely related, we shall study them separately.

3.5.1 Clustering Reduces the Effective Distance

The most obvious benefit of intra-cell opportunism is the flexibility to

route traffic through the vehicle that sees the best BS link in the cluster. A

well known result in stochastic geometry characterizes the random distance

between a typical user in a cellular network and its closest BS as following a

Rayleigh distribution [14], under the assumption that the BSs are deployed

according to a PPP. This result still applies to our framework despite the

vehicles not following a PPP, as the roads and cluster generation processes

are all independent of ΦBS. Hence, we let the random variable D denote the

distance between a typical vehicle in the network and its closest BS in the

traditional network scenario, such that:

fD(d) = 2πλBSde
−λBSπd

2

,∀d ∈ R+. (3.7)

To quantify analytically the potential gains associated with intra-cell

opportunism, we derive the distribution of the effective distance D∗ between

the typical vehicle and its closest BS in the intra-cell cooperative network sce-

nario, i.e., the distance between the BS b ∈ ϕBS and the cluster-head associated

with a typical vehicle’s cluster c ∈ ϕC. We have:

D∗ = max
v′∈ϕV,c∩ϕb

V

Db
v′ . (3.8)
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We note that while Equation 3.8 resembles Equation 3.6, the closest

vehicle to the BS in the cluster may not be the one relaying the data, as it

may not provide the best link in the case where it is not in LoS link to the

BS. Nevertheless, studying D∗ allows us to quantify the potential of effective

distance reduction gains though V2V relaying. Using the network geometry,

one can develop an expression for the conditional c.d.f. of D∗ given D = d.

Theorem 3.5.1 (Effective Distance Conditional c.d.f.). Given the distance

D = d between a typical vehicle and its closest BS, and the distribution for the

typical cluster size Z, the c.d.f. of the distance between the closest vehicle in

the typical vehicle’s cluster to the serving BS is given by:

P(D∗ ≤ x|D = d) = (3.9)
1, for 0 ≤ d ≤ x,

2

πE[Z]

∫ θ0(d,x)

0

e0(d, x, θ) ·
∞∑

i=1+⌈ l0(d,x,θ)
dV

⌉

P(Z ≥ i)dθ, for 0 ≤ x ≤ d,

and the associated variables and functions are given in Table 3.1.

Table 3.1: Theorem 3.5.1 Intermediary Variables; for x ≤ d ∈ R, θ ∈ [0, π
2
]

θ0(d, x) = sin−1(x/d)

l0(d, x, θ) = d cos(θ)−
√
x2 − (d sin(θ))2

d0(d, x, θ) = dV · ⌈ l0(d,x,θ)dV
⌉

r0(d, x, θ) =
√
d2 + d0(d, x, θ)2 − 2d · d0(d, x, θ) cos(θ)

a0(d, x, θ) = πr20 −
[
r20 cos−1

(
d20+r20−d2

2d0r0

)
+ d2 cos−1

(
d20+d2−r20

2d0d

)
−
√

(r0+d−d0)(d0+r0−d)(d0+d−r0)(d0+r0+d)

2

]
e0(d, x, θ) = e−λBSa0(d,x,θ) · 1

{⌊
l0(d,x,θ)

dV

⌋
̸=
⌊
l0(d,x,θ)+2

√
x2−(d sin(θ))2

dV

⌋}
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A formal proof of this theorem is provided in Appendix B.1. One can

then directly derive from Theorem 3.5.1 and Equation 3.7 the (unconditional)

distribution of D∗. Figure 3.3 exhibits the reduction in the effective distance

that the typical vehicle experiences in a traditional and cooperative relaying

network by comparing the c.d.f.’s of D and D∗. As seen on the figure, a typical

Figure 3.3: Comparison of the c.d.f.’s of the effective distance between the
typical vehicle and its attached BS, under the traditional and cooperative
network scenarios, for λBS = 2 BSs/km2, λV = 30 vehicles/km and dR = 100m.

vehicle is expected to benefit from considerable gains associated with reduced

effective distance to the tagged BS. For instance, 43% of the vehicles will be

effectively within 200m from their attached BS thanks to intra-cell cooperation,

while only 23% would be within this range in a traditional network. Besides

these considerable direct gains, this effective distance reduction between a

typical vehicle and its associated BS induces another benefit that we study
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next.

3.5.2 Clustering Improves Robustness to Blocking

Another benefit of V2V cluster relaying is the flexibility to circum-

vent large blocking objects, such as buildings, that may interrupt LoS links

and attenuate the received SINR. Indeed, vehicle clustering not only provides

diversity through additional candidate links that have the potential to have

a LoS to the BS, but closer vehicles are clearly more likely to benefit from

such LoS links (see Equation 3.3). More precisely, if the probability that a

typical vehicle a distance D = d from its BS sees a LoS link is pLoS(d) in a

traditional network setting, we denote the equivalent metric in the cooperative

relaying setting by p∗LoS(d). In this formulation, a typical vehicle a distance

D = d from its BS is in a sub-cluster of size Z̃ (containing vehicles in the same

cluster and same cell as the typical vehicle) whose vehicles are at distances

D = (D1, D2, . . . , DZ̃) from the BS, where there is an i such that Di = D

almost surely. Now p∗LoS(d) has the following form, assuming the LoS proba-

bilities of vehicles within the same sub-cluster are conditionally independent

given D:

p∗LoS(d) = E0
ΦBS,ΦV

[1−
Z̃∏
i=1

(1− pLoS(Di)) | D = d] (3.10)

where E0[·] denotes the Palm expectation with respect to the typical vehicle

and its subcluster. Clearly, we have p∗LoS(d) ≥ pLoS(d),∀d, i.e., the probability

that at least one of the vehicles in the typical vehicle’s sub-cluster sees a LoS

link is always larger than the probability that the typical vehicle sees one
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without cooperation. We note that the conditional independence assumption

is realistic when the inter-vehicle distance dV is not too small. This ordering

is exhibited in Figure 3.4a, which shows the LoS probability with and without

V2V cluster relaying for a vehicle at a given distance from its closest BS,

taking into account the random sub-cluster sizes. In the sequel, we adopt

the following baseline pLoS(·) function, as proposed in the 3GPP Release 14

standard in an Urban Macro-cell (UMa) environment [53]:

pLoS(d) =

{
1, if d ≤ 18m,
18
d

+ (1− 18
d

) · e−d/63, if d > 18m.
(3.11)

(a) LoS probability for a vehicle a dis-
tance d away from its closest BS, for
λBS = 2 BSs/km2.

(b) LoS probability for a typical vehicle
as a function of λBS.

Figure 3.4: Study of LoS probability for λV = 30 vehicles/km and dR = 100m.

Figure 3.4a shows a considerable improvement in the probability of

benefiting from a LoS link. The gains are particularly significant for large

values of d, i.e., for cell-edge vehicles. Vehicle clustering can then be seen as

a mechanism that reduces the need to densify the network with BSs, hence

75



reducing the infrastructure deployment costs as well as the mean interference

power level in the network. This phenomenon is noticeable in Figure 3.4b

showing how ED[pLoS(D)] varies as a function of the BSs density λBS.

First, one observes that when the distribution of the distanceD between

a typical vehicle and its closest BS is taken into consideration, the probability

of a LoS link increases 6-fold between the traditional and intra-cell coopera-

tive network scenarios, for the network parameters selected in Figure 3.4a, i.e.,

λBS = 2 BSs/km2. Second, vehicle clustering enables substantial savings in the

density of BS needed to achieve a specific pLoS level for a typical vehicle. For

instance, to guarantee that a typical vehicle sees a LoS with probability 0.28,

λBS needs to be equal to 10 BSs/km2 in a traditional network, while the same

performance can be achieved with λBS = 0.05 BSs/km2 in the cooperative

setting for the selected network parameters. Hence, by using V2V cluster re-

laying, a network operator could achieve considerable savings in infrastructure

deployment, when providing service only to vehicles.

3.5.3 Mean Shared Rate Gains through Intra-cell Opportunism

We now study the joint effect of the reduced effective distance among

vehicles and their associated BSs, and the improved probability that they

benefit from LoS links on the vehicles’ mean shared rate. The vehicles’ mean

shared rate is defined to be the rate received by the vehicles after sharing the

wireless resources amongst the vehicles and UEs. In the intra-cell cooperative

network scenario, we consider a proportionally fair resource allocation scheme,
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i.e., all the users receive the same fraction of resources regardless of their link

quality, and see a shared rate proportional to their average transmission rate.

Hence, for a given network realization, vehicle v belonging to cluster c attached

to BS b would receive in the traditional network a shared rate

sv =
rbv

|ϕb
V |+ |ϕb

M |
, ∀v ∈ ϕb

V, (3.12)

and in the intra-cell cooperative network scenario a shared rate

s∗,intrav =
rb,∗c

|ϕb
V |+ |ϕb

M |
, ∀v ∈ ϕb

V ∩ ϕV,c. (3.13)

In addition, for a mobile UE m, sm is defined similarly to sv, and we have

sm = s∗,intram . Figure 3.5 exhibits how both effects presented in this section can

improve the mean shared rate by comparing sv to s∗,intrav , using the network

parameters in Table 3.2 based on the 3GPP standard [53].

One observes that intra-cell opportunism leads to a considerable shared

rate boost for the vehicles in the network, allowing them to experience higher

shared rate especially when the roads are congested. At this stage, we em-

phasize that these considerable gains in mean shared rate result from the sole

effect of intra-cell opportunism. In reality, clusters can cross cell edges (and

are not artificially interrupted as assumed here for tractable analysis) leading

to longer clusters providing even further opportunities for reduction in effec-

tive distance, and finding a LoS link to the BS. As argued in the rest of this

chapter, further gains are to be expected through effective network-level re-

source allocation strategies, allowing for instance the balancing of vehicular
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Table 3.2: Network Simulation Parameters

Parameter Value Units
λBS 2 BSs/km2

λM 10 UEs/km2

λR 4.5 road km/km2

dR 100 m
pBS 40 dBm
w 100 MHz
kLOS −34 dB
kNLOS −19.5 dB
αLoS 2.2 –
αNLoS 3.9 –
σ2 −199 + w|dB dBm
Γ 3 dB

loads across cells, benefiting vehicles, but also mobile UEs that do not have

any relaying abilities.

3.6 Resource Allocation Algorithms for Cluster-Based
Cooperative Relaying Networks

In order to study the full performance gains associated with V2V clus-

ter relaying, i.e., leveraging both opportunism and load balancing, the wireless

resource (e.g., time and/or bandwidth) allocation mechanisms need to be de-

fined as the network performance depends considerably on the adopted policy.

We no longer assume that clusters are interrupted at the cell edges, and we

allow for cluster multihoming.

The resource allocation problem can be broken down into two sub-problems:
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Figure 3.5: Comparison of the vehicles’ mean shared rate in the traditional
and intra-cell cooperative scenarios as a function of λV, for the simulation
parameters in Table 3.2.

1. How should resources be allocated by BSs to serve the clusters and mobile

UEs?

2. How should resources be shared amongst vehicles within each cluster?

A reasonable sharing strategy within a cluster is to divide resources

equally amongst the associated vehicles. In our formulation, we will assume

such a sharing policy, relegating the discussion of alternative strategies to Sec-

tion 3.8. Below, we introduce two different algorithms addressing the first

sub-problem, while Section 3.7 focuses on evaluating their respective perfor-

mance.
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3.6.1 Network-Level Fairness-Optimal Joint Rate Optimization

We first consider a centralized network-level joint optimization of op-

portunistic relaying and load balancing, aiming at fairly allocating the wireless

resources among the mobile UEs and vehicle clusters. The optimization frame-

work solves the first sub-problem for a given network configuration in a finite

region. As described in Section 3.4, we shall assume that a BS b ∈ ϕBS serves

the set of mobile UEs ϕb
M in its cell, where for m ∈ ϕb

M the average trans-

mission rate is rbm given in Equation 3.5. Similarly, BS b may serve vehicles

in any cluster c ∈ ϕb
C which would in turn perceive an average rate rb,∗c , as

defined in Equation 3.6. However, as the BSs need to share their resources

among the vehicle clusters and mobile UEs in their cells, each entity shall be

served only for a fraction of the transmission time. Specifically, BS b decides

on an allocation vector πb = (πb
i : i ∈ ϕb

M ∪ ϕb
C) ≥ 0, representing the frac-

tion of time allocated to the mobile UEs and clusters it can serve, such that

∥πb∥1 =
∑

i∈ϕb
M∪ϕb

C
πb
i = 1, and we let π = (πb : b ∈ ϕBS). For a given alloca-

tion vector (potentially a function of the network realization), we define the

shared rate s∗,interm perceived by mobile UE m attached to BS b as

s∗,interm = πb
mr

b
m, ∀m ∈ ϕM. (3.14)

while vehicle v in cluster c multihomed through a set of BSs ϕBS,c perceives

s∗,interv such that

s∗,interv =
1

|ϕV,c|
∑

b∈ϕBS,c

πb
cr

b,∗
c , ∀v ∈ ϕV,c. (3.15)
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Recall that while mobile UEs are assumed to be served by only one BS, ve-

hicle clusters can be multihomed, i.e., served by multiple BSs, explaining the

summation in Equation 3.15.

One way to improve the network users’ QoS is to provide them with

steady data rates. By ergodicity, this can be achieved by ensuring a fair dis-

tribution of resources among the mobile UEs, and the vehicles by selecting

an appropriate resource allocation vector π. In general, there is a tradeoff

between performance (measured in terms of mean shared rate per user) and

fairness among the user allocations, see, e.g., [179]. One can define fairness is

different ways, allowing one to control this tradeoff. For instance, a max-min

fair resource allocation might be relevant for our scenario; but other fairness

measures could also be used such as proportional fairness, that allocates re-

sources proportionally to the link quality between the cluster and the BSs. In

order to keep our framework as general as possible, we shall use α-fair util-

ity functions, that model a range of fairness definitions via the parameter α,

see [95]. For instance, proportional fair resource sharing corresponds to α = 1,

and max-min fair to a value of α → ∞. For each network user we posit an

increasing concave utility function Uα(·) of its allocated shared rate s, where:

Uα(s) =

{
s1−α

1−α
, if α ≥ 0, α ̸= 1,

log(s), if α = 1.
(3.16)

With this notation in place, and given a network realization, the net-
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work utility maximization problem is given as follows:

maxπ

∑
v∈ϕV

Uα(sv) +
∑

m∈ϕM
Uα(sm)

s.t.


sm = πb

mr
b
m, ∀m ∈ ϕb

M, ∀b ∈ ϕBS,

sv = 1
|ϕV,c|

∑
b∈ϕBS,c

πb
cr

b,∗
c , ∀v ∈ ϕV,c, ∀c ∈ ϕC,

∥ πb ∥1= 1,πb ≥ 0, ∀b ∈ ϕBS.

(3.17)

The above optimization problem is convex (as we maximize a concave

objective function over a convex set) but may not have a unique optimizer [67].

Intuitively if there were a cycle of BSs linked by overlapping vehicle clusters it

may be possible to shift resource allocations around the cycle while maintaining

the same overall network utility.

While the proposed optimization framework allows the network to reach

a proportional fairness-optimal resource allocation, one major issue associated

with using such a network-level and centralized optimization algorithm is that

it requires excessive computation, especially for large and congested networks.

This is likely to hinder the ability to deploy and run such an algorithm in real-

time, especially with highly mobile users such as vehicles that would impose

a continual network re-optimization making such a solution impractical. In

particular, most known algorithms to solve Problem 3.17 can find an ϵ-optimal

solution within O(δ/ϵ2) iterations, e.g., projected gradient ascent, or O(δ/ϵ),

e.g., ADMM, where δ is the problem dimension, i.e., δ = |ϕBS||ϕC + ϕM|,

see [162]. Note that the real algorithm complexity might be even worse as

each iteration typically has a dimension-dependent per-iteration complexity.

Clearly, as the network grows larger, the overall complexity of this problem
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also scales up, making it unusable in large-scale networks.

3.6.2 Cluster-Level Load-Balancing Algorithm

While the proposed optimization framework allows the network to reach

a fairness-optimal resource allocations, one major issue associated with using

such a network-level and centralized optimization algorithm is that it requires

excessive computation, especially for large and congested networks. We pro-

pose in this section a decentralized algorithm solving the user-association and

resource-allocation problems with a network-size independent complexity, al-

lowing to spread the computations across multiple nodes in the network, while

being less computationally intensive overall. As the vehicles are highly mo-

bile, the optimal user association is likely to change quickly over time and it

might be preferable to equip the network with an agile potentially sub-optimal

algorithm, rather that a slow one that leads to an optimal yet obsolete solu-

tion. Unlike the centralized optimization framework we have proposed, this

algorithm first solves the user-association problem and then allocates an equal

amount of wireless resources to all the users associated to each BS. The idea

is to have clusters asynchronously trigger a re-association routine at random

or periodic times.

This re-association routine consists in having each cluster c update

how many of its set ϕV,c of vehicle based users should be served by each of

the BSs in ϕBS,c, i.e., the BSs serving cells crossed by c. In particular let

nc = (nb
c ∈ Z+ : b ∈ ϕBS,c) where nb

c denotes the number vehicles in cluster c
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served by BS b. Let kc = (kbc ∈ Z+ : b ∈ ϕBS,c) where kbc denotes the number

of other mobile UEs and vehicle based users BS b is currently serving (i.e.,

excluding the ones in c). Finally we shall define r∗c = (rb,∗c ∈ R+ : c ∈ ϕBS,c)

where rb,∗c denotes the highest transmission rate BS b can achieve amongst

cluster c’s vehicles in its cell, as defined in Equation 3.6.

When the cluster management update is engaged, it takes the current

vectors kc and r∗c , and determines n∗
c that maximizes the cluster-level utility,

defined as

Lc,α(n) =
∑

b∈ϕBS,c

nb · Uα

(
rb,∗c

nb
c + kbc

)
(3.18)

such that

n∗
c ∈ arg max

n

{
Lc,α(n) |

∑
b∈ϕBS,c

nb = |ϕV,c|

}
(3.19)

i.e., each cluster greedily maximizes the network utility function over its own

the set of vehicles based on local information. Note the above assumes each

BS allocates an equal fraction of time to each of its UEs and vehicles. As

a final step, the vehicles in ϕV,c aggregate their resources in a common pool

and redistribute them uniformly among themselves, in such a way that all

the vehicles in a cluster perceive similar rate allocation. Finding the optimal

cluster association vector n∗
c (with respect to the cluster-level utility function)

may require solving an NP-hard integer program, or attempting a brute force

search over the set of weak integer compositions of |ϕV,c| into |ϕBS,c| parts, of

cardinality
(|ϕV,c|+|ϕBS,c|−1

|ϕV,c|

)
, see [135]. While both options are computationally

inefficient, we propose an alternative approach in Theorem 3.6.1. The proof
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of correctness of this algorithm is provided in Appendix B.2.

Theorem 3.6.1 (Sequential Association Solves the Cluster-level Maximiza-

tion Problem). Consider a cluster c and let {ñ(i)
c }|ϕV,c|

i=0 be a sequence of vectors

in Z|ϕBS,c|
+ , defined as:

ñ(i)
c ≜ arg max

n

{
Lc,α(n) | n = ñ(i−1)

c + eb, for some b

}
, (3.20)

where eb is the bth basis vector in Z|ϕBS,c|
+ and ñ

(0)
c ≜

−→
0 ∈ Z|ϕBS,c|

+ , then

Lc,α(n∗
c) = Lc,α(ñ

(|ϕV,c|)
c ).

Therefore, determining n∗
c is a straightforward task of computational

complexity O(|ϕBS,c||ϕV,c|), that is independent of the network size. Assuming

BSs track kbc and rbc the data requirement to perform a cluster c update is

O(|ϕBS,c|).

For this algorithm, we envision vehicles follow a dual-handoff protocol

wherein cluster-head handoffs, i.e., the decision to select a different cluster-

head and BS handoffs, i.e., the decision of a cluster-head to associate to a

different BS are taken separately, potentially on different time-scales. While

one can rely on existing standardized protocols to manage the latter, the for-

mer needs further investigation. Clearly, in a dynamic network where vehicles

and UEs are mobile, the cluster-head selection and cluster re-association rou-

tine described above need to be performed repeatedly, and the necessary rate

of updates will depend on the vehicles’ velocity. One mode of operation is to

have clusters trigger updates after random exponential timeouts with given
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mean rate, proportional to the vehicles’ velocity. In order to study the signif-

icance of the mean update rate, we performed time-domain simulations and

we examined the spatial density of updates, i.e., the expected number of re-

association updates performed by a cluster per meter traveled, and computed

as the ratio of the cluster update rate and the cluster velocity. This metric is

motivated by the fact that the network performance expressed, e.g., in terms

of mean shared rate seen by a typical vehicle, is invariant to an increase in

both the network users’ velocities and the mean update rate by a common

factor. To perform the time-domain simulations, we extend the network and

wireless link models described in Section 3.4 by assuming a linear constant-

velocity trajectory for all the clusters on their roads, while mobile UEs move

in random linear directions in the network at a velocity set to be 10× slower

than the vehicles. In addition, to capture the spatial correlation in the wire-

less channels in a mobile setting, we define LoSt to be the event that a user

moving at velocity v sees a LoS link to its closest BS at a distance dt at time

t, we propose the following simple Markovian model capturing the temporal

correlation in the users’ LoS link probability, which is consistent with results

presented in [138]:

pLoS(dt|LoSt−1) = β · pLoS(dt) + (1− β) · 1{LoSt−1} (3.21)

where β = min( v·∆t
dcorr

, 1), and dcorr models the LoS correlation distance. Fig-

ure 3.6 exhibits the network performance in terms of the typical user’s mean

shared rate, as a function of the spatial density of updates.
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Figure 3.6: Figure of a typical vehicle’s mean shared rate under the distributed
cluster-level algorithm as a function of the spatial density of updates, for the
parameters in Table 3.2, λV = 30 vehicles/km, and dcorr = 30m. The dashed
line shows the asymptote when the network users are static.

The key takeaway of Figure 3.6 is that while the typical vehicle’s mean

shared rate improves as the re-association rate increases and/or the cluster

velocity decreases, reasonable mean cluster-head handoff rates (e.g., on the

order of one update every 50ms for clusters moving at medium to high velocity)

are sufficient to ensure satisfactory performance.

3.7 Performance Evaluation of V2V Clustering

In this section, we discuss Monte-Carlo simulations, aiming at providing

additional insight regarding different resource allocation and network manage-

ment strategies. We compare the performance of the two resource allocation
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algorithms presented in Section 3.6, and quantify the full gains associated

with V2V clustering, i.e., joint opportunism and load balancing gains. We

then study how V2V clustering can also improve the network robustness to

instantaneous traffic surges.

3.7.1 Resource Allocation Algorithms Performance Analysis

We now analyze and compare the network performance under the re-

source allocation strategies introduced in Section 3.6, and assess the full gains

associated with opportunism and load balancing when vehicles are cooperating

using V2V communication.

Performance is evaluated via two metrics: (1) the mean gain in per-user

shared rate, and (2), the Jain’s index measure of fairness in the per-user shared

rate. All the mean gains in shared rate are relative to the non-cooperative

scenario, i.e., we evaluate the average of the ratio of the shared rate received

by a network user in the cooperative setting over the shared rate that the

same user would perceive if vehicles were not cooperating, or more formally

the spatial averages of s∗,interv

sv
and s∗,interm

sm
, i.e., averaged over all the vehicles and

UEs in space, respectively. We present the results as a function of the cluster

density λV representing how congested the roads are. We evaluated network

performance in Figure 3.7 for random network configurations based on the

network parameters shown in Table 3.2.

Four settings were considered:

Traditional cellular: all users associate with their closest BS which shares
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(a) Typical vehicle’s gain in shared
rate.

(b) Typical UE’s gain in shared rate.

(c) Jain’s index of per-user shared
rate.

Figure 3.7: Resource Allocation Algorithms Performance Comparison for the
parameters in Table 3.2.

its resources equally amongst them. This setting is used a baseline for the

mean shared-rate gain computations, and does not explicitly appear in Fig-

ures 3.7a and 3.7b.

Intra-cell opportunism: setting analyzed in Section 3.4 were only cluster-

based intra-cell opportunism was exploited, and all users in a cell also receive

an equal amount of resources.
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Network Optimal (PF): corresponds to solving the centralized network util-

ity maximization Problem 3.17 introduced in Section 3.6 where all users have

log utilities, i.e., Proportionally Fair (PF) resource allocation.

Distributed algorithm: refers to the cluster-side distributed algorithm pre-

viously described where the Voronoi cells were used to initialize the associa-

tion, before conducting multiple cluster re-balancing updates. The number of

such updates was five times the number of clusters in the simulated area, the

updated clusters were selected at random.

Note that only the last two exploit both opportunism and load balanc-

ing. Multiple takeaways can be extracted from Figure 3.7.

First, one can observe on Figure 3.7a that a typical vehicle can see

considerable gains in mean shared rate, regardless of the adopted algorithm,

that may even reach 20× gains for policies leveraging both opportunism and

load balancing. Such gains arise from the substantial inequities in link capac-

ities amongst vehicles at the cell-edge compared to the ones in LoS with the

BS. V2V cluster-based relaying is therefore an effective mechanism to bridge

this gap. One can clearly distinguish the gains associated with intra-cell op-

portunism reaching around 10.86× with inter-cell and load balancing gains

providing an additional 1.87× gain factor when λV = 40 vehicles/km. We

note that the reported gains are under the PPP assumptions for the BS, UE,

and clusters placement, and we expect the load balancing gains to be even more

substantial under spatially bursty traffic (as may happen on roads), when load

balancing across cells is the most needed. Similarly, all strategies lead to a
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considerable improvement in the users’ shared rates Jain’s index, as observable

in Figure 3.7c, compared to the traditional cellular setting.

Second, we observe that our proposed cluster-level algorithm performs

slightly better than the network fairness-optimal allocations in terms of mean

gains in shared rate. In retrospect this is not surprising as the latter strat-

egy optimizes for proportional fairness, rather than sum shared rate. This is

reflected in Figure 3.7c, where the network optimization framework logically

outperforms the other resource allocation policies in terms on rate fairness.

Third, we observe on Figure 3.7b that, on average, the mobile UEs

also benefit from V2V relaying if the resource allocation policy leverages load

balancing, although they are not actively relaying. While not all the UEs will

benefit from the cooperative scheme, a typical UE will. Indeed, a typical UE

is likely to belong to a large cell, that is expected to be highly loaded. This cell

will benefit from load balancing by shifting the vehicles away, letting them to

associate to smaller and less loaded neighboring cells. This mechanism frees

up additional resources that can be shared with all the cell users (including the

typical UE). In addition, UEs tend to benefit more from a network fairness-

optimal resource allocation strategy, compared to the local cluster-based algo-

rithm. This results from the fact that their perceived shared rate is explicitly

taken into account in the problem formulation 3.17, whereas it only implicitly

appears in 3.19, where clusters mainly consider the shared rate perceived by of

their own vehicles while still attempting to balance the load across cells. The

fact that the network fairness-optimal allocates more resources to the mobile
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UEs compared to vehicles also provides an additional explanation to the fact

that this policy underperforms the cluster-level distributed strategy from the

perspective of the typical vehicle’s shared rate gain, but largely outperforms

it in terms of per-user shared-rate fairness when both vehicles’ and UEs’ rates

are taken into account, as seen in Figure 3.7c.

In summary, the adoption of the distributed cluster-level algorithm

seems to be justified. Aside from its computational advantages, it has been

shown to outperform the network fairness optimal algorithm in terms of shared

rate gain seen by a typical vehicle in the network, although it does not provide

as much gains to the mobile UEs. In addition, the distributed algorithm’s

fairness performance remains satisfactory as compared to the network fairness

optimal strategy, making it a suitable solution for the resource allocation and

user association problem.

3.7.2 Robustness to Load Surges

The main benefit of balancing the network user load across cells is that

it allows vehicles in highly congested cells to perceive satisfactory throughput

by “sharing” wireless resources with less congested neighboring BSs. Clearly,

the potential for effective load balancing is closely related to the cluster sizes,

as longer clusters are more likely to be crossing cell boundaries and be multi-

homed. We now study the relationship between cluster size and such balancing

potential. We introduce the notion of offloading potential defined next, so as to

best understand how to manage the network, e.g., arranging for specific traffic
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configurations, imposing a maximum cluster size may come at a reasonably

small performance cost.

Definition 3.7.1 (Offloading Potential). A cell’s offloading potential is the

maximum number of vehicles it can offload to neighboring cells, i.e., by lever-

aging V2V cluster relaying to serve vehicles in its cell via the resources of

another BS.

This metric captures the ability of the network to diffuse user/vehicular

loads across the network. For instance, it is relevant to study settings where a

cell observes a momentary surge in the number of mobile UEs requesting ser-

vice due to, e.g., a temporary large-scale event gathering a substantial amount

of people. For simplicity, we shall assume (for this experiment only) that all

the cluster sizes are equal and deterministic. We simulate different scenar-

ios, wherein we vary the cluster size Z, while keeping the vehicle density λV

constant, i.e., increasing the cluster size proportionally decreases the cluster

density (controlled by the mean of the typical inter-cluster distance T distribu-

tion). We show in Figure 3.8 the empirical c.c.d.f. of the offloading potential

for different cluster sizes, exhibiting a tradeoff between the offloading potential

of a typical BS and the fraction of BSs able to offload user loads.

Indeed, for a fixed vehicle density, a decrease in the cluster size induces

an increase in the cluster density, making them more spatially scattered. This

scattering is beneficial for the network as more BSs can be reached and hence,

will be able to offload traffic. However, highly scattered networks are associ-

ated with very small clusters that are unlikely to be crossing cell boundaries
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Figure 3.8: Offloading potential empirical c.d.f.’s for different cluster sizes Z
(in number of vehicles), for λV = 30 vehicles/km2.

(i.e., be multihomed), and only meagerly contribute to increasing the cells’ of-

floading potential. This is reflected in Figure 3.8 by a c.c.d.f. for a cluster size

of 3 vehicles decaying quickly to 0. As the cluster size increases, the number

of vehicles that can be offloaded out of a cell increases – the c.c.d.f.’s decrease

at a slower rate. An interesting observation is the diminishing benefits of in-

creasing the cluster size in the regime where clusters can cross multiple cells, as

the offloading potential is constrained by the cell size (or more specifically by

the length of random cell cross-sections). Hence, the distributions of offloading

potential for cluster sizes of 50 and 100 vehicles are almost identical. However,

increasing the cluster size comes at the cost of reducing the number of cells that

can benefit from traffic offloading as the cluster density is reduced, hence more

cells are likely not be serving any vehicle due to the reduced vehicle scattering,
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explaining the fact that the offloading potential c.c.d.f. curve for Z = 128 for

instance might be below the one associated with Z = 64 on the right-hand

side of the figure. For the simulated network parameters, intermediate cluster

sizes between 8 and 16 vehicles appear to be the most judicious, by allowing

a considerable number of cells to benefit from network user offloading, while

providing them with substantial offloading potential without facing substantial

cluster management complications associated with large cluster sizes.

Remark: We have only considered networks where the roads are ho-

mogeneously placed in space. In reality, these roads may be spatially clustered,

e.g., near metropolitan areas. While the theoretical analysis of such networks

is out of scope of this chapter, we conjecture that while spatial correlation in

the roads (and hence the clusters over different roads) does not impact intra-

cell opportunism gains, it may improve inter-cell opportunism gains as highly

congested cells would lead to additional benefits from load-balancing.

3.8 Technical Challenges

We complement our theoretical and numerical analysis with additional

technical challenges that would need to be examined if V2V cluster relaying

was deployed.

3.8.1 Incentive Mechanism for Cluster Relaying

The first challenge that needs to be addressed is the design of an effec-

tive incentive mechanism for vehicles to be willing to route traffic for others
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in their cluster. Indeed, vehicles can be seen as selfish and greedy agents that

need to be compensated for the additional transmission power and potentially

additional overheads associated with routing and relaying.

To address this issue, two types of solutions can be proposed. First,

the cluster-head vehicles are naturally incentivized to cooperate, when the net-

work dynamics are considered. A cluster-head is indeed unlikely to keep this

role continuously, as the vehicles are in motion and the channel qualities vary

over time. A cluster-head is clearly better-off routing traffic for its cluster to

benefit from future throughput improvement when its channel quality dete-

riorates. While this may not be necessary, a token-based mechanism can be

implemented, as proposed in [184], where vehicles in each cluster would pay

their cluster-head(s) through a virtual currency/tokens that can be redeemed

at a later stage, when the latter can benefit from V2V-relaying.

Second, cooperate can be incentivised through more direct mechanisms.

For instance, instead of equally dividing the wireless resources among all the

vehicles in a cluster, they can be re-distributed in a way that rewards the

cluster-heads, e.g., as a function of the rate each vehicle would have perceived

without V2V cluster relaying. This solution has the advantage of providing

instantaneous incentives to cluster-heads by providing them with additional

throughput, but at the cost if negatively impacting the shared-rate fairness

amongst the vehicles in the network. Additional benefits of instantaneous

incentives over token-based have been discussed in [107].

Finally, we note that the incentive mechanism can also be designed to
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benefit vehicles that are not cluster-heads, but that are willing to forward other

vehicles packets in the cluster, i.e., intermediate nodes. Suitable incentive

mechanisms would include the ones providing rewards (wireless resources or

tokens) proportionally to the volume of data forwarded.

3.8.2 Delay Management in Cluster Relays

The second challenge that would need to be accounted for would be the

additional delays associated with packet routing, especially when the clusters

are large. In this chapter, we have assumed that the V2V links have very

high capacity, hence leading to negligible transmission delays. However, this

assumption may not always hold, and other types of delays may also be taken

into account, such as packet processing and forwarding delays. Clearly, V2V-

relaying is a promising technology that has been shown to provide considerable

potential in terms of throughput, but it may be best fitted for applications that

are not too delay sensitive.

One solution to partially address this issue would be to artificially break

the clusters, e.g., by fixing a maximum cluster size to limit the overall packet

delay to the furthest vehicle in the cluster. This would clearly impact the

mean gain in shared-rate performance, but it would help to provide better

delay guarantees. Network operators can then tune the maximum cluster size

parameter to control the tradeoff between mean throughput and packet delay.

Finally, we note that even though the clusters can have considerable

sizes, they are also likely to be multihomed and traffic can be effectively routed
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from the closest serving BS, according to the association/resource allocation

algorithm in effect. We show in Figure 3.9 a comparison of the distributions

of the typical vehicle’s cluster size and the number of hops experienced by the

typical vehicle’s packets, for the cluster-level distributed algorithm presented

in Section 3.6. We observe that the typical vehicle experiences substantially

Figure 3.9: C.d.f.s of the typical vehicle’s cluster size and the number of hops
experienced by the typical vehicle’s packets, for the parameters in Table 3.2.

fewer hops than its cluster size, and may not always leverage multihoming if

the load across cells is very imbalanced. For instance, while the median typical

vehicle’s cluster size is 27 vehicles using the network parameters in Table 3.2,

the median number of packet hops for a typical vehicle is only 7 V2V hops.
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3.8.3 Real-Time Cluster Management

The third practical challenge associated with V2V clustering is the abil-

ity to manage the cluster in real-time. As discussed in Section 3.6, vehicles may

be moving at high velocity, hence the cluster-head role and routing decisions

will need to be frequently updated to ensure the best performance.

A perhaps more restrictive issue is that an efficient signaling protocol

needs to be adopted to detect and adapt to changes in the vehicle-clustering

and association. For instance, clusters may divide or merge over time, and BSs

and cluster-heads need to be aware of such changes in real-time to adapt/re-

optimize the resource allocation amongst users in the network. Two ap-

proaches could be used to resolve this issue. In the first solution, changes

can be detected locally (e.g., by vehicles in the cluster) and the information

can be propagated to the relevant cluster-head(s). For instance, cluster-heads

of merging clusters can negotiate the best association strategy and propagate

the information back to the relevant BSs. In the second solution, a centralized

virtual controller (e.g., placed in an edge server) can aggregate information

collected from vehicles to recompute the optimal re-association/vehicle clus-

tering, and propagate the information back to the BSs and the vehicles. While

the second solution may lead to better performance as more information is ag-

gregated to take better decisions, the first solution may be preferable due to

the simpler signaling required, and less computations, making it more reactive

to sudden changes.
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3.9 Chapter Conclusion

In this chapter, we studied the gains associated with V2V cluster-

based relaying by identifying and characterizing the sources of opportunistic

and load balancing gains analytically and via simulations. We established a

network-level optimization framework to associate users to BSs and ensure a

fair wireless resource allocation scheme. The results show that shared-rate

gains from V2V-relaying can exceed an order of magnitude, and are associ-

ated with shared-rate fairness improvements across network users, stemming

from both opportunism and load balancing. We then used this framework as

a benchmark to study the performance of a cluster-level, efficient, and dis-

tributed vehicle association and resource allocation algorithm. We show that

excellent performance gains can be achieved via this policy, while being more

convenient than the network-level algorithm when executed in real-time. Fur-

thermore, V2V relaying has been shown to help to provide improved service

to all the network users, including mobile UEs that do not actively partic-

ipate in the relaying scheme. While some technical challenges still need to

be addressed, the considerable gains associated with V2V cluster relaying will

motivate future development.

100



Part II

Timely Information Sharing in
Collaborative Cloud/Edge

Networks
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Chapter 4

Timely Information Sharing in Fog Networks

Many of the emerging mobile applications require unprecedented com-

pute power, e.g., autonomous vehicles, remotely controlled robots, Augmented

Reality (AR) technologies, unmanned aerial vehicles, cloud gaming platforms,

etc. Equipping mobile devices with the compute resources needed can be

a considerable challenge for manufacturers due to cost, complexity, battery

longevity, weight, and size constraints. A solution to overcome this challenge

and bring to market such computation-hungry services is to (partially) offload

compute to the cloud via wireless connectivity to remote servers. This chapter1

explores the major communication/compute tradeoffs associated with compu-

tation offloading to cloud/edge servers and the induced timely information

sharing with the physical device.

A flexible approach to support mobile devices with remote compute re-

sources is through a server-side process running on a Virtual Machine (VM). If

kept up-to-date, the process can keep track of a device’s state in real-time, per-

form computations, and possibly send back control commands. Such processes

1Publications based on this chapter: [85] S. Kassir, G. de Veciana, N. Wang, X. Wang,
P. Palacharla, Service Placement for Real-Time Applications: Rate-Adaptation and Load-
Balancing at the Network Edge. IEEE EdgeCom 2020, August 2020.
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are expected to become prevalent to support the management and control of

mobile devices, e.g., robots, self-driving cars, smart cities devices [115]. How-

ever, in real-time settings, associating remote processes to devices poses several

technical challenges. In particular, in order to maintain safety or offer an ap-

propriate Quality of Service (QoS), the process needs to closely track the state

of its device. In other words, updates among mobile device and server-side pro-

cesses should not have “aged” too much to remain relevant. Maintaining such

timeliness depends both on the update rate as well as communication/compute

delays.

To support possibly stringent timeliness requirements, edge comput-

ing architectures have been proposed as means to reduce network delays, by

moving the servers closer to the devices. By contrast, the alternative of host-

ing VMs in the cloud, typically further away from the devices, provides an

attractive solution leveraging large pools of shared resources. Deploying mo-

bile services at scale will require careful study of cost/performance tradeoffs

of edge/cloud infrastructure based solutions.

4.1 Related Work

There has been substantial work in this area. We identify two relevant

classes of work. The first class focuses on the need for mobile edge computing.

The natural way to introduce the concept is to compare the characteristics of

edge and cloud computing, as in [147, 35, 111]. In this chapter, we take this one

step further by characterizing precisely the tradeoffs for real-time applications.
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Additionally, we propose an intuitive hierarchical network model materializing

the idea of “Cloud-to-Thing continuum”, or Fog-to-Cloud, suggested in [35]

and [113], where service providers can place compute resources anywhere in

the network. This softens the dichotomy between edge and cloud, leading

naturally to the optimal placement problem.

The second line of work focuses on service placement, i.e., where to in-

stantiate VMs once a provider has dimensioned a graph of compute resources,

e.g., [185, 178, 81, 46, 148, 108, 124]. These works propose various policies

to optimize placement based on different performance metrics. For instance,

[46] considers power consumption and transmission delay, [148] examines the

number of services placed, [108] focuses on minimizing the violation in QoS,

i.e., latency, while [124] uses user-specific reward functions. Other studies sug-

gest approximation or genetic algorithms to solve the service placement prob-

lem. Furthermore, [140] suggests to solve a Mixed Integer Linear Program to

minimize capital and operating expenditures to dimension the network, but

the authors to not analyze the communication vs. compute tradeoff explicitly,

and do not address heterogeneity in the device requirements (e.g., latency con-

straints and compute job size). In this work, we follow a different approach.

We simplify the network model which allows us to extract basic insights, that

we leverage to propose a more general service placement algorithm. Unlike

the above-mentioned work, we propose a service placement policy that ad-

dresses the need to adapt to network congestion by adapting the update rates

associated with mobile devices supporting real-time applications.
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4.2 Chapter Contributions and Organization

In this chapter, we first explore the fundamental characteristics of pro-

visioning edge/cloud compute resources for real-time mobile services. To that

end we propose a stylized network model allowing us to capture the salient

features of the network dimensioning problem. Based on the initial insights

developed from studying the resource provisioning problem, we propose an

online, adaptive and distributed joint service-placement and rate-adaptation

policy that is more generally applicable, and that describes how the network

is ought to be managed while operating.

The framework introduced in this chapter allows us to reach multiple

conclusions. First, we identify key tradeoffs between cloud and edge comput-

ing, and show how the optimal provisioning and placement depend on the

application’s characteristics.

Second, we show how the relative cost of compute vs. communication

impacts the optimal location of compute resources. In particular the most cost

effective placement may not be in the cloud or at the edge, but rather at an

intermediate level.

Third, we show that for any use-case, as the density of mobile devices

grows placing compute resources at the edge becomes more cost effective.

However, perhaps counter-intuitively, stricter timeliness guarantees makes it

beneficial to shift compute resources further away in the cloud.

Finally, we introduce a device-side online distributed algorithm to man-
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age dynamic mobile device loads by determining both the device’s update rate

and a server to host its VM. Our approach adapts its decisions to measured

network congestion, which may not be under service provider’s control. We

show that under the proposed joint placement and rate-adaptation policy,

near-optimal service availability can be achieved in large networks, and show

the benefit over load balancing policies when applications choose fixed update

rates.

The remaining of this chapter is organized as follows. Section 4.3 de-

scribes four mobile applications serving as running examples throughout the

chapter. Section 4.4 proposes a highly stylized system model and network

architecture, as well as an appropriate timeliness metric. Section 4.5 includes

our problem formulation and result analysis. In Section 4.6, we study a more

general setting, and analyze the performance of our online device-side joint

service placement and rate-adaptation algorithm. We conclude the chapter in

Section 4.7.

4.3 Mobile Edge Computing Services: Use Cases

Our work is motivated by several emerging applications/use cases in-

cluding those developed in the context of 5G networks [7, 2]; specifically we

focus on four types of applications:

(a) XR Traffic: Augmented Reality, Virtual Reality and Mixed Re-

ality, generally referred to as extended reality (XR), have been the subject of

extensive study in industry and academia as it is considered one of the in-
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novative services to be supported by next generation wireless networks. XR

devices have the particularity of requiring both considerable bandwidth and

low latency, making the design of networks supporting such services challeng-

ing [52, 152, 51].

(b) Vehicular Network Traffic: Supporting self-driving and/or coor-

dination amongst next generation vehicles may be based on exchanging basic

safety messages or localization data. To be relevant, update messages will

typically require tight timeliness constraints, but may require relatively little

compute and communication resources.

(c) Cloud Gaming Traffic: In the near term cloud gaming may be-

come the leading use-case. It has the potential to reduce the compute re-

quirements on the gaming devices by performing computations in a remote

server, enabling complex multiplayer games to be more accessible on-demand.

Similarly to XR traffic, considerable data may be streamed from the server to

the devices to enable high-quality graphics, but timeliness constraints may be

looser.

(d) IoT Device Traffic: We shall also consider IoT devices that do

not have strict and tight latency budgets, but that can potentially be massively

deployed, e.g. smart home devices, or agricultural sensor networks. Typical

traffic for such use cases consists of short and sporadic packets.

We summarize the requirements for these use-cases in Table 4.1.
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Table 4.1: Network Requirements and Parameters per Use-Case

Use Case

Timeliness
Con-

straint
(τ0, in ms)

Devices
per BS

(η, in de-
vices/BS)

UL/DL
Update
Size (pu,
pd, in

kB/update)

Compute
per update

(ψ−1, in
Ops/update)

Refs.

XR 15 10 50 50 1e9
[96,
109,
130]

Vehicular
Networks

10 40 0.4 0.4 1e7
[72, 1,
117,
130]

Cloud
Gaming

100 5 5 100 1e10
[40, 77,

130]

IoT 10,000 500 0.2 0 1e4
[133,
130]

4.4 System Model

In this section, we introduce a network architecture and performance

metrics that we use to explore the characteristics and tradeoffs associated with

service placement and provisioning decisions for real-time applications.

4.4.1 Network Model

We shall initially take the perspective of a (virtual) service provider

who pays for communication and compute resources from one or more in-

frastructure providers. Initially we assume that the service provider provides

custom services to a homogeneous customer base of mobile devices, i.e., with

the same application requirements.
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We consider a setting where the network resources lie on a binary tree

where compute resources could be made available on any node, while the

edges correspond to communication links carrying traffic between compute

nodes and mobile devices, see Figure 4.1. The root of the tree is at height

hc and will be interpreted to correspond to a cloud compute service provider,

while the leaves at height 1 will be viewed as edge compute nodes co-located

with cellular Base Stations (BS). Meanwhile intermediate levels are introduced

to study the potential benefits of placing compute resources between the two

extremes, i.e., in the fog network.

Figure 4.1: Tree Topology Model

We model mobile device service requests as arriving at each BS as a

Poisson Point Process (PPP) with intensity λ. Each request corresponds to

a server-side process running on a VM hosted in a compute node, and has

a random duration of mean µ−1 seconds. Hence, if sufficient resources were

provisioned the number of active mobile devices at each BS, illustrated in blue

in Figure 4.1, follows a Poisson distribution with mean η = λ/µ devices, cor-

responding to the stationary distribution of an M/GI/∞ queue. However, if

limited resources are provisioned mobile devices may experience blocking. In
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particular, suppose the service provider provisions sufficient compute resources

to k simultaneous sessions at each node resources at level h of the tree. As-

suming requests at all leaf nodes are served by the parent node at level h, the

total offered mean load on such a node will be η2h−1 and the blocking proba-

bility probability ϵ is given by the Erlang function E(η2h−1, k) associated with

an M/GI/k/k queue. The service availability, i.e., 1 − ϵ, thus depends not

only on the resources provisioned k but also on the level h at which they are

located – more on this later.

When a session is active, we assume the device sends updates of size

pu bits at a fixed rate ρ updates/sec. to its associated process, which in turn

performs a fixed number of operations ψ−1 and may send back an update of

size pd bits to the device – see Figure 4.2. As discussed below, we consider

applications where these tasks must be performed in a timely manner.

Figure 4.2: Interaction between a device and its server-side process.

We assume for now that the devices supported by the service provider

share the same application and their VMs are hosted at the same level in the
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tree. Section 4.6 revisits this assumption by examining a general service and

network model.

4.4.2 Delay Model

To achieve timely service, three key metrics need to be considered: (1)

the device update rate ρ affecting the amount of compute needed and the load

on communication links, (2) the transport delay dt experienced by updates

depending on the level the VM is placed; and (3) the compute delay dc that

depending on the amount of compute resources allocated to a VM.

To get at the main characteristics of such systems we shall consider a

simple delay model. If compute resources are placed at level h the round-trip

transport delay dt(h) is given by:

dt(h) = 2×
(
pu + pd

l
+ ϕh

)
sec., (4.1)

where l is the bottleneck link capacity, likely the wireless link, and ϕ is a

constant forwarding delay per hop to the compute resources. The first term

captures the overall transmission delay of a file while the second term captures

the forwarding delay. This idealized model assumes that the service providers

have access to uncongested links with minimal queuing from their infrastruc-

ture provider, i.e., by over-provisioning their communication resources, see [60],

or prioritizing such traffic.

Meanwhile, the delay to process an update depends on application

specific tasks such as database look-ups, GPS-coordinates processing, video
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frames rendering, etc. Given that an update requires ψ−1 operations and as-

suming perfect parallelism, c CPU cores each able to deliver ν operations/sec

would complete the update task in

dc(c) =
1

cψν
sec. (4.2)

Note that we will allow c take fractional values.

4.4.3 Timeliness Metric

In this chapter we adopt an end-to-end timeliness metric based on the

Age-of-Information (AoI), see e.g., [88, 41, 93]. The key difference with tra-

ditional end-to-end or round-trip delay, is capturing the difference between

the current time (at the mobile device) and the time at which the server has

completed processing the last update, i.e., acted upon and possibly delivered

back to the mobile device. Hence, the AoI requires factoring both the update

rate and compute/communication delays, and captures the tension between

these two variables. For instance, if the device’s update rate is low, then the

remote process may often be out of sync even if the transport and compute

delays are low. Conversely, if the update rate is high, but updates experience

large delays, the server-side process decisions would be outdated most of the

time.

Several works have studied ways of characterizing the AoI in multi-

user settings, see e.g., [172, 75, 19]. For the most part, they use variations of

Theorem 3 in [172] which captures the AoI for a specific device. For simplicity
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we shall use a natural variant of this timeliness metric τ , given by:

τ =
1

2ρ
+ dt(h) + dc(c) (4.3)

As can be seen, low delays and high update rates improve timeliness. Further

support for this performance metric can be found in Appendix C.1. We denote

by τ0 the application specific timeliness constraint, i.e., resources need to be

provisioned so as to ensure τ ≤ τ0 for the devices subscribed to the service.

Putting Equations 4.1 and 4.3 together, one can observe the dependence

of the timeliness τ on the device update rate ρ and the level h at which the

service provider rents/places its compute resources. It is clear that both dt(h)

and τ increase with h. However, fixing a timeliness constraint τ0 forces ρ to

increase with h to compensate for the additional delay, increasing the compute

resources required at the compute node side to process the additional updates.

Therefore, one can distinguish two clear tradeoffs, one between the VM level

and timeliness, the other between the VM level and compute resources.

4.5 Problem Formulation and Results

The service provisioning problem reduces to jointly determining (1) the

optimal level h∗ at which to place the VMs, (2) the required number of cores c∗

per VM, (3) the minimum number of VMs k∗ that can be hosted per compute

node, as well as (4) the minimum device update rate ρ∗, that will dictate the

amount of traffic, i.e., the communication cost, on the links below level h∗.
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4.5.1 Problem Formulation

Given the simple system model proposed in the previous section, the

service provider’s cost CP in the network resource provisioning phase can be

approximated as the sum of the communication and compute cost:

CP (ρ, c, k, h) = θtη2hc−1h(pu + pd)ρ+ θc2hc−hkc (4.4)

where θt is the communication cost (in $/Mbps/hop/link) and θc is the com-

pute cost (in $/core). Note that η2hc−1 is the mean number of devices in the

network assuming high availability (no blocking) and h(pu + pd)ρ is the mean

load × links per device if compute is placed at level h. Meanwhile 2hc−h is

the number of nodes at level h where compute resources are placed and kc is

number of cores per node if each VM requires c cores. Now given a timeliness

constraint τ0 and an availability requirement, i.e., blocking probability ϵ, one

can characterize the minimum cost level at which to dimension the network in

four steps.

First, given Equation 4.3 and the timeliness constraint τ0 one can deter-

mine the smallest feasible update rate, when compute resources are placed at

level h, i.e., that with the smallest communication/compute cost. Specifically,

to ensure no queuing at the VM we need dc ≤ 1
ρ

so setting this to equality we

get:

ρ(h) =
3/2

τ0 − dt(h)
. (4.5)

Second, given the compute delay constraint, the number of CPU cores
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allocated per VM can be found from Equation 4.2:

c(h) =
ρ(h)

ψν
. (4.6)

Third, the number of VMs k(h) compute nodes at level h would need

to support to limit blocking to ϵ can be obtained via the Erlang-B formula,

see [17], i.e., solving ϵ = E(η2h−1, k(h)), where η2h−1 is the mean load such

nodes would see. Note service providers benefit from statistical multiplexing

gains when compute resources are placed higher in the tree, allowing increased

aggregation of traffic on shared resources. As h increases, the compute load

variability per node decreases, hence placing compute at the top of the tree,

i.e., in the cloud, reduces the need for slack compute resources in order to

ensure high availability, and thus reduces compute costs.

Finally, the optimal service level can be trivially found by evaluating

h∗ = arg minh∈{1,··· ,hc} CP (ρ(h), c(h), k(h), h). We can then obtain ρ∗ = ρ(h∗),

c∗ = c(h∗) and k∗ = k(h∗). This is tractable since hc is reasonably small.

4.5.2 Results Analysis

We now present and analyze our results for different application pa-

rameters shown in Table 4.1. We analyze successively the effect of the relative

costs of compute and communication, density of devices, and service availabil-

ity constraint.
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(a) Effect of the relative cost of com-
pute to communication θr; ϵ = 1 ×
10−5.

(b) Effect of the number of devices η
attached to each BS, θr = 1 × 103;
ϵ = 1× 10−5.

(c) Effect of the blocking probability
ϵ, θr = 1× 103.

Figure 4.3: Optimal service level h∗, for hc = 25, ϕ = 100µs/hop, ν = 30×103

MIPS/core, l = 1 Gbps.

4.5.2.1 Effect of Compute and Communication Costs

Figure 4.3a shows the optimal VM level h∗ as a function of the relative

cost of compute to communication θr = θc/θt. Clearly, as compute becomes

more expensive with respect to communication, it is preferable for compute

resources to be placed higher up in the tree so as to benefit from statistical

multiplexing. It is also worth noticing that the optimal VM placement depends
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on the use-case. While the optimal decision for all applications would be to

place compute resources as close to the mobile devices as possible, i.e., at

the edge, when compute is cheap, each use case has a different behavior as θr

grows. For large θr, the cost effective placement for each use-case is as far from

the edge as possible. The highest level possible for large θr is dictated by the

application’s timeliness constraint. More specifically, the looser τ0, the larger

h∗ is for large θr. Any value of h larger than this level would be infeasible,

as the transport delay dt(h) would exceed the timeliness requirement τ0, for

any ρ.

4.5.2.2 Effect of Device Density

As discussed earlier, having multiple VMs share compute resources

leads to statistical multiplexing gains. Resource pooling can either be achieved

by placing compute resources higher up in the tree, or by increasing the de-

vice load per BS. Therefore, as η grows, we expect to need fewer compute

resources per unit demand, pulling the optimal service level down closer to

the edge. This is indeed what is exhibited in Figure 4.3b, where θr has been

estimated based on realistic compute and communication cost values [8, 23].

4.5.2.3 Effect of Service Availability Requirement

The network is dimensioned so as to guarantee an availability of 1− ϵ.

This naturally leads to higher dimensioning cost versus mean load provisioning,

as slack resources will need to be allocated to address load variations. In
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fact, the smaller ϵ is, the more compute resources will need to be provisioned

to ensure the desired service availability level is met. Since more compute

resources need to be reserved, the most cost effective strategy is to place

compute resources higher in the tree. Figure 4.3c illustrates this trend, showing

that one can afford to place the resources closer to the edge under relaxed

constraints.

4.6 Online Service Placement of Heterogeneous Traffic
in the Fog

So far in this chapter, we have tackled the problem of service placement

and dimensioning for real-time applications on mobile devices. The analysis

presented in Section 4.5 was based on a simple network topology, delay models

and timeliness constraints. These assumptions were necessary to abstract what

in practice is quite a complex system. In this section, we explore the design

of an algorithm that jointly adapts devices’ update rates and VM placement

in a heterogeneous network, using delay measurements instead of model-based

predictions. We assume a service provider has already provisioned resources on

a general network topology and consider the case where mobile devices running

different applications are co-hosted on shared resources. We emphasize that

the problem addressed in the previous sections is a joint network dimensioning

and service placement problem faced by the service provider, while the one

presented in this section is a joint network management (through device rate-

adaptation) and service placement problem faced by the devices requesting the
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service. The former problem is hence faced during the network deployment

phase, while the latter is faced when the network is operating.

4.6.1 Network Model and Algorithm Description

In our general network model we let S denote the set of compute nodes,

where each s ∈ S has capacity κs. These nodes shared by mobile devices of

different types where A denotes the set of types. Requests of Type a ∈ A

arrive as a PPP of intensity λa, and are active for a random time with mean

µ−1
a seconds. The types also have potentially different compute requirements

per update ψ−1
a and application timeliness requirement τa. Note that request

types capture devices’ requests generated at different locations and associated

with different application requirements, whence Type a requests are restricted

to be served by a subset of compute nodes Sa ⊆ S.

In practice, delays experienced by updates might be roughly quasistatic

or constant over time, congestion dependent, i.e., depend on previous place-

ment decisions made by the algorithm, or vary due to exogenous traffic which

is not under the service provider’s control. Hence, in the sequel several metrics

including network delays are denoted as depending on time.

Our proposed Algorithm 4.1 extends traditional Least Ratio Routing

(LRR) based algorithms, see [6], to realize joint service placement and rate-

adaptation along with possibly service migration. Thus it is executed when

new mobile devices arrive to the network, but also subsequently if a device

moves and/or observes changes in network congestion that warrant the migra-
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tion of its VM to another location. As devices execute Algorithm 4.1 more

frequently, they will be able to react to more sudden changes in the delay

profile, but at the cost of more frequent compute node pings. For simplicity,

we focus on the algorithm’s behavior upon arrival of a new request.

Algorithm 4.1: Rate-Adaptive Least Ratio Routing

Data: Device Type a, time t
Result: Solves for best s∗ ∈ Sa, ρ

∗
a,s∗(t)

1 Ping/measure dt
a,s(t), rs(t), κs, fs(·), ∀s ∈ Sa

2 ρa,s(t) = 1.5/(τa − dt
a,s(t)), ∀s ∈ Sa

3 ∆a,s(t) = ψ−1
a ρa,s(t), ∀s ∈ Sa

4 us(t) = rs(t)/κs, ∀s ∈ Sa

5 u′a,s(t) = (rs(t) + ∆a,s(t))/κs, ∀s ∈ Sa

6 S̃a = {s ∈ Sa|u′a,s(t) ≤ 1}
7 s∗ = arg mins∈S̃a

∫ u′
a,s(t)

us(t)
fs(u) du

8 return s∗, ρ∗a,s∗(t)

When a Type a device arrives at time t, it first pings the compute nodes

that can potentially host its VM to estimate the current transport delays

dt
a,s(t) to all s ∈ Sa. It also gathers the amount of resource rs(t) currently

allocated at s. Given dt
a,s(t), the device can use Equation 4.5 to determine

the update rate ρa,s(t) it would currently require if its VM was instantiated on

node s while satisfying its timeliness constraint τa. It then deduces its compute

requirements ∆a,s(t) = ρa,s(t)ψ
−1
a . The device can then determine the current

utilization us(t) = rs(t)
κs
∈ [0, 1) and projected utilisation u′a,s(t) = rs(t)+∆a,s(t)

κs

if the VM was placed on s ∈ Sa. The nodes that can support this request

at time t are given by S̃a = {s ∈ Sa|u′a,s(t) ≤ 1}. If none are available, the
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request is blocked. Otherwise, each compute node has a strictly increasing

function fs : [0, 1] → R+ which we refer to as Marginal Utilization Cost

Function (MUCF) capturing the cost of using an extra compute resource unit

at a given utilization. The algorithm greedily places the VM on the feasible

node having the smallest marginal cost at time t, defined as the integral of the

MUCF from us(t) to u′a,s(t).

The MUCF can be designed with different objectives in mind. For

instance, a natural objective would be to balance the compute nodes’ loads.

This strategy ensures that there are as much available resources as possible

in all the nodes, which may help reduce the blocking rate. Different MUCFs

would attempt to greedily balance the loads on the compute nodes. In fact,

any convex function would achieve this goal, and the function convexity would

control the extent to which the service provider wants to balance the load,

at the cost of risking to consume more compute resources. In light of these

observations, being proportionally fair with respect to the available resources

among them is a reasonable policy, i.e., greedily maximizing the network-level

utility function
∑

s∈S log(1 − us(t)) for an arrival at time t. Theorem 4.6.1,

proved in Appendix C.3, confirms this objective can be achieved by properly

selecting the MUCF.

Theorem 4.6.1 (Proportional Fairness MUCF). Choosing fs(u) = 1
1−u

, u ∈

[0, 1) for a compute node s is equivalent to greedily maximizing the proportional

fairness utility function.
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4.6.2 Algorithm Performance Analysis

In our framework, we aim at minimizing device blockage. Since we are

studying a heterogeneous system, where devices running different applications

can request service from the same pool of resources, we assign a reward wa to

Type a devices per unit time spent in the network, which can represent, e.g.,

revenue generated by serving a Type a device.

We observe that this problem reduces to the Multiple Knapsack Prob-

lem (MKP) for fixed compute requirements ∆. This problem has been thor-

oughly studied in the literature and several strategies based on approximation

algorithms and heuristics have been proposed to solve it [61]. In Theorem 4.6.1,

we propose an MUCF that greedily balances the loads across the compute

nodes to solve a variant of the MKP where the item sizes ∆a,s, depend on the

knapsacks s ∈ S.

A natural definition for the cost function of the device-centered problem

CD in the network operation phase is the expected rate of loss in revenues due

to blockage, for a fixed ∆, defined as:

CD(w,λ,µ,∆,κ) =
∑
a∈A

waλaµ
−1
a P (Ba;λ,µ,∆,κ) (4.7)

where P (Ba;λ,µ,∆,κ) captures the probability that a typical Type a device

is blocked. CD can be lower-bounded by solving a relaxed MKP as stated in

Theorem 4.6.2, proved in Appendix C.4.

Theorem 4.6.2 (Lower-Bound on the Rate of Loss in Revenue). Let A be an

assignment matrix representing the mean number of Type a devices assigned to
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node s, such that A ∈ B(λ,µ,∆,κ) = {A ∈ R|A|×|S||
∑

s∈SAa,s ≤ λaµ
−1
a ,∀a ∈

A ,
∑

a∈A ∆a,sAa,s ≤ κs,∀s ∈ S}.

Let A∗ be a feasible assignment, solution of the Linear Program relaxed

Multiple Knapsack Problem (LP-MKP):

LP-MKP(w,λ,µ,∆,κ) : max
A

∑
a∈A

∑
s∈S

waAa,s

s.t. A ∈ B(λ,µ,∆,κ)

Then, CD(w,λ,µ,∆,κ) =
∑
a∈A

wa(λaµ
−1
a −

∑
s∈S

A∗
a,s)

≤ CD(w,λ,µ,∆,κ)

The authors in [6] discuss a special case of the suggested framework,

where wa = 1, µ−1
a = 1,∀a ∈ A, and ∆a,s = 1,∀(a, s) ∈ A × S. In this

specific setting, CD was proven to converge to CD in the fluid limit, i.e., when

both the arrival rate vector λ and capacity vector κ are scaled by a large

fluid-scale factor γ. In this chapter we study whether our proposed local and

adaptive LRR policy can asymptotically drive the value of the network-wide

cost function to its theoretical lower bound in large systems in more general

settings than in [6].

4.6.3 Algorithm Performance Evaluation

We now evaluate the performance of our joint service placement and

rate-adaptation algorithm via simulation in the fluid-scaled network with fac-
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tor γ. In these simulations, we assumed a more general underlying network

model than Figure 4.1, depicted in Figure 4.4.

Figure 4.4: General Topology Model

This network features a cloud compute node located 25 hops away from

the edge, the cloud compute node having a compute capacity set to be 100

times the one of an edge node. Each of the |A| device types is attached to a

random BS colocated with an edge compute node. A type is a collection of

devices of one of the use-cases described in Section 4.3, and having technical

requirements given in Table 4.1. Each device can place its service in its closest

compute node, or any adjacent node including the cloud at the cost of higher

transport delay, as modeled in Equation 4.1. Moreover, Type a’s reward wa is

set to be proportional to ψ−1
a depicting a pricing model based on the amount

of compute a Type a update requires.

We compare the performance of our joint placement and rate-adaptation

policy to a similar placement algorithm, i.e., using the MUCF suggested in

Theorem 1, but for devices having static update rates, set such that compute

nodes up to five hops away can be reached without violating their timeliness
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constraint.

In Figure 4.5, we show that the rate of loss in revenue CD converges

to the lower-bound CD as γ increases for the rate-adaptive algorithm, but not

for the static-rate one. In this simulation, network delays are assumed to be

static, and κ has been set so as to ensure that the total capacity in the network

is larger than the expected network load.

Figure 4.5: Performance comparison of the rate-adaptive and static LRR al-
gorithms in the fluid-limit and the theoretical lower-bound on the mean rate
of loss in revenue; |A| = 50, |S| = 20.

We note that the value of the lower-bound is 0, meaning that in large-

scale systems a zero-blocking regime can be achieved.

Figure 4.5 may, however, look different if the fixed update rate is de-

signed differently. Figure 4.6 shows the value of CD in the fluid limit for the

static LRR algorithm as a function of the devices’ rates. Note that the figure
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only shows the rate of XR devices, but all the devices’ rates increase along

with ρXR. We observe that CD first drops quickly once the update rate is large

enough to reach nodes two hops away, as it gives the devices the ability to bal-

ance the load among edge nodes. This effect is not as beneficial for larger rates

as the VM compute requirements also increase, leading to a higher blocking

rate. The cost function value then dramatically drops once the update rate

allows the devices to reach the cloud node and benefit from its substantial ca-

pacity, yet without reaching zero-blocking as the rate-adaptive LRR. Finally,

larger update rates are associated with larger values of CD as the devices’ VM

requirements keep on increasing while not gaining any load-balancing oppor-

tunity.

Figure 4.6: Plot of the mean rate of loss in revenue as a function of the devices’
fixed update rate; |A| = 50, |S| = 20, γ = 300.

The key takeaway is that manufacturers can design devices with slow
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fixed update rates, requiring little compute resources at the server side and

little power at the device side, but at the cost of reducing the set of reach-

able nodes given the timeliness constraint, hence reducing the placement al-

gorithm’s balancing ability. Conversely, for large rates, farther nodes such as

powerful cloud servers can be reached leading to better load-balancing, but

devices may occupy unnecessary resources if their VMs are placed at the edge,

leading to wasted compute resources and reduced service availability. Manu-

facturers may optimize for an optimal update rate balancing these two effects,

but it is unlikely to perform well in arbitrary network topologies.

Rate-adaptation allows for more flexibility in the service placement,

without occupying unnecessary compute resources, explaining the better per-

formance of the rate-adaptive LRR algorithm in Figure 4.5 over static rate

policies.

Another major strength of Algorithm 4.1 is the fact that it can closely

adapt to changes in network delays. Figure 4.7 shows the performance over

time of the joint placement and rate-adaptation policy under stochastic de-

lays and compares it to the one of the static algorithm. The delay process

experienced by the devices is now assumed to depend on previous decisions

taken by the algorithm, whose mean is simulated as an increasing and convex

function in the congestion level. In this simulation, the compute node capaci-

ties κ were slightly under-provisioned to exhibit the policies’ performances in

a compute-limited settings.

One can clearly observe that the rate-adaptive LLR policy’s perfor-
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Figure 4.7: Performance comparison of the rate-adaptive and static LRR al-
gorithms, and the theoretical lower-bound on the mean rate of loss in revenue
under stochastic network delays; |A| = 20, |S| = 10, γ = 500.

mance eventually moves very close to the steady-state lower-bound CD, while

the static policy does not perform as well. Here again, the rate-adaptive LRR

algorithm has the advantage of being able to reach further compute nodes

when needed than the static rate algorithm, explaining the gap between the

two curves. Moreover, when performing rate adaptation, all the devices cur-

rently served in the network can quickly react to changes in the network delay

they experience, making use of the available compute nodes’ resources more

efficiently, hence reducing blocking.

The presented results indicate that rate-adaptation is a requirement

and needs to be associated with load-balancing policies to achieve low blocking

rates, i.e., high service availability, and serve real-time timeliness constrained
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devices.

4.7 Chapter Conclusion

In this chapter, we studied the service placement and dimensioning

problem in the fog network. We introduced a simple framework allowing us

to identify the most cost-effective VM placement and network resource di-

mensioning strategies, and understand the fundamental tradeoffs associated

with this problem. Unlike results presented in related work, we use the notion

of Age-of-Information as a timeliness metric, as it demonstrated to be more

relevant than network delay when devices send real-time updates. We show-

cased that different “forces” influence the optimal VM placement and resource

dimensioning decisions in the Cloud-to-Thing continuum, which may greatly

vary from use-case to use-case. We then proposed an online and decentralized

joint service placement and rate adaptation policy based on delay measure-

ments. This algorithm is aware of stochasticity in the network delays, ensuring

near-optimal availability in large-scale networks by balancing the load on the

different compute nodes that can host the devices’ service. Our algorithm

showed to outperform static rates policies, revealing that rate-adaptation is a

requirement in the design of real-time applications.
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Chapter 5

Timely Information Sharing in Multiplayer

Cloud Gaming Networks

In this chapter1, we analyze the performance of Multiplayer Cloud

Gaming (MCG) systems.

Multiplayer Cloud Gaming (MCG) is emerging as one of the possible

future dominant applications. Benefiting from the latest technological ad-

vances in communication networks, GPU virtualization, and high-performance

computing systems in the cloud and/or edge network, this new Gaming as a

Service business model is appealing to the three parties involved: gamers,

game developers and game service providers (GSPs) [26]. Unlike traditional

online gaming frameworks, the game is hosted at a remote server, allowing the

players to interact by sending regular updates and receiving a video stream

without the need for dedicated hardware or need to own the game license.

Multiple platforms are already being commercialized, such as GeForce Now

by Nvidia [120], Project xCloud by Xbox [114], Google Stadia [65], Playsta-

tion Now [151], and Amazon Luna [9].

1Publications based on this chapter: [86] S. Kassir, G. de Veciana, N. Wang, X. Wang,
P. Palacharla, Joint Update Rate Adaptation in Multiplayer Cloud-Edge Gaming Services:
Spatial Geometry and Performance Tradeoffs. ACM MobiHoc 2021, July 2021.
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While such platforms are becoming increasingly popular, many network

design questions associated with delivering the best MCG-Quality of Service

(MCG-QoS) across players remain unexplored. These include the choice of ef-

fective network architectures, resource allocation/provisioning strategies, per-

formance guarantees under stochastic network congestion, or ensuring fairness

amongst heterogeneous players. These technical challenges are likely to be ex-

acerbated by the tight performance guarantees required by Extended Reality

(XR) enhanced collaborative applications/games [51].

5.1 Related Work

Multiple researchers have proposed approaches to optimize the perfor-

mance of MCG networks, in a wide variety of settings, e.g., proposing energy-

aware solutions [39] or cost-effective resource allocation strategies, Virtual Ma-

chine (VM) placement and network architectures subject to QoS constraints

[49, 85, 71, 47]. However, this body of work does not place emphasis on the im-

pact that each individual player has on the overall gaming experience. Other

studies have focused on the interaction among players. In [33], the authors dis-

tinguish the notions of absolute response delay and inter-player delay which in

turn allows them to study the fairness among the players, and place the VM re-

sources accordingly. In [62], the authors solve a multi-objective optimization

problem to solve the network resource provisioning problem, by minimizing

both the worst inter-player delay and the network operating cost. However,

none of these works consider the effect of adapting the players’ update rates
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to improve on the freshness of the game state data received/computed at the

server side. This notion of freshness has been studied in the context of Cloud

Gaming in [173]. While the game server update rate is fixed, the authors

analyze the effect of synchronizing the game server’s and the players’ phases

under stochastic network delays, to minimize the mean Age-of-Information at

the player side. Unlike this study, this chapter focuses on the player-to-server

traffic, characterizing the timeliness of the information processed at the game

server side.

5.2 Chapter Contributions and Organization

A key challenge associated with supporting multiplayer games is that

they may involve a (possibly large) number of geographically dispersed play-

ers increasing the games’ exposure to congestion variations across a large set

of network regions/resources. This makes the MCG-QoS potentially volatile

making it particularly difficult to provide stable guarantees. In this chapter,

we address this general challenge through four key contributions.

The first contribution is the introduction of a novel multiplayer game

model and MCG-QoS metric which captures the joint impact of the network

delays/congestion experienced over different time-scales by the all the players

participating in the game.

The second contribution is the development of a measurement-based

Joint Multiplayer Rate adaptation Algorithm (JMRA) geared at ensuring that

the information transmitted by all the players is delivered and processed in a
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timely manner at the game server. We show how players can overcome large

network delays through increased update rates to improve the MCG-QoS.

The third contribution lies in showcasing how GSPs can leverage the

benefits of JMRA to cost effectively provision network resources so as to guar-

antee high service coverage. Leveraging tools from multivariate majorization

theory, we relate the MCG-QoS to the player’s spatial configuration and iden-

tify the worst-case geometry for a given “geographical spread”. We show how

the spread impacts the MCG-QoS, and how GSPs might envision provisioning

network resources to meet service coverage requirements, e.g., by exploiting

edge computing to deliver services with tight timeliness constraints.

The fourth contribution consists in providing a basis to study the MCG

service placement problem using majorization theory. We propose a strategy

that can be adopted by GSPs to make the MCG-QoS robust to stochastic

variations in the network delays/congestion.

We note that the framework we present in this work is not limited to

gaming applications. It is indeed also relevant to the general setting of pro-

visioning real-time collaborative cloud-based services to geographically scat-

tered participants/contributors, e.g., collaborative document editing, source

code version control, etc.

The remaining of this chapter is organized as follows. In Section 5.3,

we present our system model and MCG-QoS metric. We then introduce and

study the properties of the JMRA algorithm towards optimizing the MCG-QoS
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in Section 5.4. In Section 5.5, we model and study the impact of the players’

geographical locations on the MCG-QoS, and we deduce some approaches that

can be used by GSPs to provision the network resources. We then capitalize

on the models and performance characterization in Section 5.6 to provide

additional insights about service placement strategies to face network delays

variability. We conclude the chapter in Section 5.7.

5.3 The MCG System Model

5.3.1 Network Architecture

We consider a multiplayer cloud gaming system composed of three en-

tities, consistent with MCG network architectures studied in the literature,

see [101, 47, 62]:

1. A set P of n players in a geographic configuration x = (xi, i ∈ P), where

xi ∈ R2 corresponds to the location of player i.

2. A Game-server (G-server) running on a VM in a compute node at loca-

tion g ∈ R2 that hosts the game, i.e., that keeps track of the state of the

game by receiving and processing updates from the players.

3. Rendering servers (R-servers) that receive aggregate state information

from the G-server, render the video feed and stream it to the players.

R-servers are typically placed closer to the players than the G-server to

reduce network congestion, but they can also be colocated in the same

datacenter.
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5.3.2 Network Delay Variation Model

We model network delay variations happening on two different time

scales: (1) slow time-scale variations, happening on the order of seconds or

minutes, modeling overall network congestion level, and (2) fast time-scale

packet delay variations, happening on the order of milliseconds or microsec-

onds, modeling jitter and instantaneous bottlenecks in the network. In this

work, we investigate the effect of slow time-scale variations due to network

congestion, while abstracting out the fast time-scale variations, using a point

estimate, e.g., the mean, median, or 90th percentile of this stochastic process

over a small time window, and over which the slow time-scale delay variations

are assumed to be constant. Hence, this point statistic is itself slowly varying

over time. We model the slow-variations of this point statistic due to network

congestion delays between player i and the G-server via a random variable Dt
i .

In the sequel, we loosely refer to it as the typical transport delay experienced

by player i. In addition, we assume that the impact of the players’ updates

on the network congestion they see is negligible.

5.3.3 Game Operation Model

The game’s operation model, depicted in Figure 5.1, can be summarized

in three stages.

1. Player i sends periodic updates at a rate ρi updates per second to the G-

server, containing instructions from the game controller (e.g., character’s

135



Figure 5.1: Figure of the game operation timeline

movement, camera/headset rotation) and experiences a typical transport

delay Dt
i seconds.

2. The G-server, in turn, forms periodic update batches by aggregating and

processing everything it has received from the players every τ seconds.

This model can be characterized by two types of delays (1) the individual

random waiting time Wρ,i capturing the time between the latest update

received from player i and the beginning of a typical compute cycle, and

(2) a shared batch compute delay to process the updates aggregated

in a batch, denoted by dc. We model this batch compute delay dc(s)

as a deterministic differentiable convex function of the game’s overall

update load s =
∑

j ρj at the G-server side. While the load is stochastic

(as it depends on the relative phases of the players’ update cycles and
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the server’s compute cycles), we assume that the load variations are

negligible, and s can be seen as the mean batch load. In addition, we

impose the constraint dc(s) ≤ τ to ensure that the G-server completes

the processing of a batch before the end of a compute cycle of period τ ,

see Figure 5.1.

3. Once the aggregated game’s state is computed, the G-server sends it to

the R-servers, that will render the video feed in dr seconds and stream

it back to the associated players.

In this chapter we focus on the timeliness of the player to G-server

traffic, leaving the analysis of the round-trip loop as future work.

5.3.4 Game Timeliness Model

In our framework, we seek to ensure that the state of the game is

updated in a timely fashion. We use as our timeliness metric the age of the

game Adt,ρ, conditioned on a given delay vector dt (a realization of the random

vector Dt = (Dt
i ,∀i ∈ P)) and a choice of update rate vector ρ = (ρi,∀i ∈ P),

and defined as:

Adt,ρ = max
i=1,...,n

[dti +Wρ,i] + dc(
n∑

j=1

ρj) (5.1)

where Wρ,i ∼ Uniform([0, 1
ρi

]),∀i ∈ P as we assume that the transmissions are

asynchronous with the G-server’s batch processing regular schedule, hence a

typical compute batch starts to get processed at a uniform random time in an

interval of 1/ρi seconds.
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In this formulation, the age of each player’s updates processed at the G-

server is the sum of the transport delay, waiting time at the G-server, and batch

compute delay. The age of the game is then modeled as the maximum age of

each player’s updates to capture the fact that stragglers considerably impact

the quality of experience of all the other players interacting on a common

virtual space. This formulation also hints at the need to ensure that network

resources are “fairly” shared among the players involved in the game. This

model also recognizes that the game’s age depends jointly on the players’

update rates and the network delays. As the update rates can be controlled,

we identify a basic tradeoff involving this decision. While larger update rates

lead to smaller waiting times, and help reduce the age of the game’s state, this

also results in larger computation delays, increasing the game’s age.

5.3.5 The JMRA Problem

Our objective is to solve the Joint Multiplayer Rate Adaptation (JMRA)

problem that ensures a small game age, defined as follows:

Problem 5.3.1 (Joint Multiplayer Rate Adaptation). Given the current trans-

port delay vector Dt = dt, and a desired age level a0, the JMRA problem con-

sists in finding the update rate vector that maximizes the probability that the

age of the game does not exceed some desired level a0, i.e., solving:

ρ∗(dt) = arg max
ρ

{
P(Adt,ρ ≤ a0) : dc(

∑
j

ρj) ≤ τ
}

(5.2)

= arg max
ρ

P(max
i

[dti +Wρ,i] + dc(
∑
j

ρj) ≤ a0)
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s.t. dc(
∑
j

ρj) ≤ τ (5.3)

= arg max
ρ

n∏
i=1

P(Wρ,i ≤ a0 − dti − dc(
∑
j

ρj))

s.t. dc(
∑
j

ρj) ≤ τ (5.4)

= arg max
ρ

n∑
i=1

[
log

(
ρi · (a0 − dti − dc(

∑
j

ρj))

)]
−

s.t. dc(
∑
j

ρj) ≤ τ (5.5)

where we define x− = min[x, 0]. We can now define the MCG Quality of

Service as follows:

Definition 5.3.2 (MCG-QoS). For a given transport delay vector dt ∈ Rn
+,

we define the MCG-QoS q(dt) as:

q(dt) =

{
P(Adt,ρ∗(dt) ≤ a0), if ρ∗(dt) exists,

0, otherwise,
(5.6)

i.e., the probability that the age constraint is met under JMRA.

In the sequel, we will present an efficient algorithm that solves for

ρ∗(dt), hence computing q(dt), under slowly varying delays.

5.4 The Rate Adaptation Algorithm

In this section, we derive the Joint Multiplayer Rate Adaptation algo-

rithm (JMRA), which jointly uses measured network delays to solve the JMRA

problem described in Problem 5.3.1. We then study some of its properties, be-

fore evaluating its performance.

139



5.4.1 Algorithm Description

We envision an algorithm to be executed periodically at the G-server

side. At each iteration, the G-server characterizes the transport delays to each

player in the game. This can be done, for instance, by estimating the distribu-

tion of the (fast time-scale) packet delays experienced by previous updates in a

sliding window, and computing the desired point estimate, e.g., the mean, me-

dian or 90th percentile. We assume that the players and G-server can measure

time using synchronized clocks, hence the packet delays can be estimated with

reasonable accuracy. Based on this information, the G-server re-optimizes the

players’ update rates accordingly, hence adapting to slow-time variations in

the delays/congestion. Naturally, the frequency of execution of the algorithm

would depend on the time scale for (slow) variations in the network delays’

statistics. We describe below the procedure to optimize for the players’ update

rates given the vector of measured network delays dt.

Observe that Problem 5.3.1 is convex but it has a non-differentiable

cost function leading to slow convergence of a numerical solver. We propose

an alternative algorithm to compute the optimal update rate vector, by decom-

posing the optimization problem into a set of simpler (smooth) sub-problems.

In addition, this analysis allows us to extract some basic properties of the

JMRA policy.

Our approach is to first consider the case where the aggregate game

server load s =
∑

j ρj is fixed and known. Under this assumption, one can

use the Lagrange multiplier procedure to solve for the optimal ρ∗(dt, s) in

140



Problem 5.3.1 as a function of s. We find:

ρ∗i (d
t, s) = min

[ 1

µ(dt, s)
,

1

a0 − dti − dc(s)

]
,∀i (5.7)

where µ(dt, s) is s.t.
∑
j

ρ∗j(d
t, s) = s.

Observe that for any delay vector dt, and any choice of the sum-rate s, two

types of players can be distinguished. We have on one hand a set S(dt, s) of

support players, that will all pick the same update rate of 1
µ(dt,s)

. These players

see a transport delay to the G-server that is too large to be able to fully adapt

their update rate to compensate for the large transport delays. We have from

Equation 5.7, player i ∈ S(dt, s) if dti ≥ a0 − µ(dt, s)− dc(s). We have on the

other hand a set S(dt, s) of non-support players that can flexibly trade-off delay

for update rate, where i ∈ S(dt, s) if dti < a0 − µ(dt, s) − dc(s). The players

in this set do not impact directly the MCG-QoS, except by contributing to

the total server congestion, as their respective terms in the sum vanish after

substituting ρ∗i (d
t, s). Equipped with the notion of support set, we can state

the following property:

Property 5.4.1 (Support Set Monotonicity in Transport Delays). For a given

delay vector dt ∈ Rn
+, and sum update rate s ∈ R+, if dti ≥ dtj, then j ∈

S(dt, s) =⇒ i ∈ S(dt, s). Thus, there are only n+ 1 possible support sets.

We now use this property along with the solution of Equation 5.7 to

solve for the optimal load s. After substituting ρ∗(dt, s), Problem 5.3.1 reduces
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to solving the one dimensional problem:

s∗(dt) = arg max
s

n∑
i=1

[log
a0 − dti − dc(s)

µ(dt, s)
]− (5.8)

s.t.

{∑n
i=1 min( 1

µ(dt,s)
, 1
a0−dti−dc(s)

) = s

dc(s) ≤ τ

This problem is still not easily solved as the cost function is non-

differentiable and the constraint set is non-convex. However, by integrating

more information about the support set, one can simplify this problem fur-

ther. Invoking Property 5.4.1, we can distinguish n+ 1 cases corresponding to

the n + 1 possible support sets. Let Sm(dt) be the possible support set that

contains m players with the largest measured delays, for 0 ≤ m ≤ n. Each

sub-problem reduces to solving for the optimal game server load s∗m(dt) as-

suming that Sm(dt) is the support set. For each sub-problem m, the Lagrange

multiplier µ(s,dt) becomes µm(dt, s) and is dictated by the first constraint in

Equation 5.8. Without loss of generality, we index the players in descending

order of transport delays, and we get that:

µm(dt, s)−1 =
1

m

(
s−

n∑
i=m+1

1

a0 − dti − dc(s)

)
(5.9)

After substituting this constraint into the cost function of the mth sub-

problem Um(dt, s), the latter reduces to:

Um(dt, s) =
m∑
i=1

log(a0 − dti − dc(s)) (5.10)

+m · log(s−
n∑

i=m+1

1

a0 − dti − dc(s)
)−m · log(m)
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and the new sub-problem becomes:

s∗m(dt) = arg max
s

{
Um(dt, s) : µm(dt, s) > 0, dc(s) ≤ τ

}
(5.11)

where Um(dt, s) is smooth and concave in s over the range of values where

µm(dt, s) > 0 and the constraint set is convex. We note that the range of s

values where µm(dt, s) > 0 can be found by solving for the roots of the non-

linear Equation 5.9. Hence, the solution to this problem can be found using

a convex optimization solver, e.g., using Gradient Ascent, along with a non-

linear equation solver. Finally, the optimal s∗(dt) is such that s∗(dt) = sm∗(dt)

where m∗ = arg maxm Um(dt, s∗m). We summarize JMRA in Algorithm 5.1.

Algorithm 5.1: Joint Multiplayer Rate Adaptation (JMRA)

Result: Solves for ρ∗(dt)
1 Estimate dti, ∀i;
2 Solve s0 =

∑n
i=1

1
a0−dti−dc(s0)

;

3 if s0 exists AND dc(s0) < τ then
4 ρ∗i = 1

a0−dti−dc(s0)
,∀i;

5 else
6 for m=1 to n do
7 Find range of feasible s s.t. µm(dt, s) > 0;
8 Solve for s∗m(dt) in Eq. 5.11 using Gradient Ascent;

9 end
10 Pick s∗(dt) = sm∗(dt), m∗ = arg maxm Um(dt, s∗m(dt));
11 Compute ρ∗(dt) = ρ∗(dt, s∗(dt)) using Equation 5.7

12 end
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5.4.2 Algorithm Analysis

In Section 5.4.1, we proposed and established the optimality of the

JMRA algorithm. We now study some interesting properties thereof, and

compare its performance to a baseline where all the players share the same

update rate. We start by stating a theorem that relates the players’ update

rates to their delays to the G-server.

Proposition 5.4.2 (Rate-Proximity Tradeoff). Given a delay vector dt ∈ Rn
+

and any players i, j ∈ P, if dti ≥ dtj then ρ∗i (d
t) ≥ ρ∗j(d

t).

This proposition follows directly from Equation 5.7 and Property 5.4.1.

Intuitively, this property states that players experiencing large transport de-

lays, can compensate for this by increasing the rate at which they send infor-

mation to the game server. While a unilateral increase in a player’s update

rate increases the G-server load, and hence all the players’ compute delays, the

algorithm finds the appropriate congestion level for the given player’s configu-

ration. An alternate interpretation would be that the players that experience

the smallest delays are willing to reduce their update rates to allow players

with larger transport delays to benefit from increased communication/compute

resources.

We now compare the performance of the JMRA algorithm with one

that distributes equal communication/compute resources among the players.

We introduce the Best Static Rate algorithm (BSR), that solves Problem 5.3.1

subject to the additional constraint that all the players’ update rates are the
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same. We note that this algorithm outperforms any algorithm that uses a

fixed update rate imposed by the game designer, as the static update rate is

still optimized based on the delay vector. Hence, the reported performance of

the BSR algorithm should be viewed as as an upper-bound on what can be

achieved when players used fixed update rates. We compare the two algorithms

using the following performance metric:

Definition 5.4.3 (ϵ-Playable Games). A game is said to be ϵ-playable for a

given transport delay vector dt ∈ Rn
+, and ϵ ∈ [0, 1], if its MCG-QoS function

satisfies the condition q(dt) > 1− ϵ.

To compare the performance of the JMRA and BSR update rate se-

lection algorithms, we characterize the probability of a game being ϵ-playable

under randomly generated player configurations. Towards evaluating the im-

pact of the game’s spatial geometry, i.e., the relative placement of the players

and the G-server, we consider a setup where n players are placed randomly and

uniformly in a disk of radius r meters forming a player configuration X ∈ Rn×2,

while the G-server is placed in the center of the disk assumed to be the origin,

i.e., g = 0. In addition, we model the network delay experienced by player i

to simply be a deterministic increasing linear function of its distance to the

G-server, hence:

dti(x,g) = β1 + β2 · ∥xi − g∥2 (5.12)

where β1 captures the communication delay components that are independent

of the distance between the player and the G-server, e.g., contention delay on
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the wireless interface, and β2 is a coefficient inversely proportional to the speed

of light in fiber. We pick values of β1 = 3 × 10−3 seconds and β2 = 1 × 10−8

seconds/meter, consistently with empirical studies in WANs, see [82].

We also assume a specific model for the batch compute delay dc:

dc(s) =
s · τ
n · kG

(5.13)

where kG corresponds to the compute capacity reserved per player resulting

from the compute resources allocated to the G-server’s VM. This functional

form is motivated by the fact that the expected number of updates received

in a batch, i.e., in a window of τ seconds, is s · τ updates, while the overall

compute capacity allocated for the G-server’s VM is such that it can process

n · kG updates/second.

Equipped with these models, we compare in Figure 5.2 the likelihood

that a randomly generated game configuration is ϵ-playable, under the JMRA

and BSR algorithms.

The figure clearly shows that JMRA outperforms the BSR algorithm,

as a random player configuration is more likely to lead to a playable game

configuration. The performance gap is most significant for small ϵ, i.e., in

the regime we expect to operate. For instance, if a GSP seeks to offer high-

quality games by picking ϵ = 0, then around 79% of the randomly generated

game configurations can be supported under JMRA, while none can be sup-

ported under BSR. The main takeaway of these results lies in the observation

that allowing flexibility in the choice of the players’ update rates considerably
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Figure 5.2: Comparison of the probability of the game being ϵ-playable un-
der JMRA and BSR algorithms as a function of ϵ, under random players’
configurations; n = 20, r = 3 × 106m, a0 = 50ms, τ = 20ms, kG = 150 up-
dates/s/player.

improves the MCG-QoS, or equivalently, allows the GSPs to deploy reduced

network resources for a desired MCG-QoS.

5.5 Service Coverage Analysis and Network Resource
Provisioning

So far we have presented an efficient algorithm to maximize the MCG-

QoS through joint multiplayer rate adaptation for a given network congestion

regime as captured by the network delay vector. A GSP will, however, want to

guarantee that newly instantiated games are playable for configurations that

are not “too spread-out” and/or experiencing network congestion outliers. In
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this section, we further introduce a model tying geometry to network con-

gestion and analyze the large-scale compute resources a GSP would need to

deploy (e.g., rent from spatially distributed cloud service providers) so as to

ensure that MCGs with a given geographical spread will be playable under

JMRA – i.e., ensure MCG service coverage.

5.5.1 Linking Players’ Spatial Geometry to Network Congestion

To capture the relationship between players’ configuration geometry

and large-scale network congestion, we model the typical transport delay vec-

tor Dt experienced by the players, via a random vector Dt
δ = (Dt

δ,i, i ∈ P). It

is parametrized by a distance vector δ = (δi, i ∈ P), where δi is the distance

from player i to the G-server and Dt
δ,i models the typical slow variations in

transport delay experienced by player i a distance δi from the G-server.

Remark. We emphasize that this model is not intended to capture the specific

characteristics of congestion/delay variations as seen at a particular location,

but instead what would be typically experienced by players in a large scale

network to enable a study of the large-scale resources the GSP would require.

Assumption 5.5.1 (Network Congestion Model). We assume for any player

configuration with associated distance vector δ ∈ Rn that Dt ∼ Dt
δ where the

entries of Dt
δ are mutually independent and furthermore for z ∈ Rn

+ and i ∈ P

we have that2 E[Dt
δ,i] ≤ E[Dt

δ+z,i] and Dt
δ ≤icx Dt

δ+z.

2As in[142], we define increasing convex dominance as X ≤icx Y ⇐⇒ E[ϕ(X)] ≤
E[ϕ(Y)], for all increasing convex ϕ : Rn → R. See also Appendix A.1.
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Intuitively players that are further away from the G-server would on

average experience higher transport delays, e.g., due to increased propagation

delay and number of hops traversed. Perhaps more importantly with higher

distances one might expect a higher variability due to congestion on intervening

network resources. The multivariate increasing convex (icx) ordering, assumed

above, see [142], partially captures an ordering in delay “variability” with

distance.

As previously mentioned, the distribution of Dt
δ reflects slowly varying

network congestion an MCG game will need to overcome through rate adap-

tation. For simplicity, the GSP might provision network resources respect

to a point estimate of the transport delay distributions, e.g., the mean, me-

dian or 90th percentile of the delay distribution for each user, depending on

the GSP’s risk tolerance. In Section 5.6, we discuss how the risk of under-

provisioning the network due to variability in the network delays/congestion

can be curtailed by the GSP during network operation. We denote as d̄t(x,g)

the transport delay vector associated with the desired network delay statistic,

as a function of the player configuration x and the G-server location g. For

instance, d̄ti(x,g) = E[Dt
δ(x,g),i], where δi(x,g) = ∥xi−g∥2, if the GSP decides

to provision the network resources for the mean transport delays.

5.5.2 Characterization of Geographical Spread

We characterize the players’ geographical spread as follows:

Definition 5.5.2 (Geographical Spread). Let x ∈ Rn×2 be an n-player con-
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figuration, we define the configuration’s geographical spread σ(x) as the radius

of the smallest disk containing all the players, i.e.,:

σ(x) = min
r∈R+,c∈R2

{
r: ∥c− xi∥2 ≤ r, ∀i

}
(5.14)

Clearly, the larger σ(x) is, the more “spread out” the players are, and

hence, the harder it will be to find a server location that can ensure the game

is ϵ-playable. We also introduce the notion of a regular configuration, which

will be useful to characterize the class of configurations with n players with a

given geographical spread.

Definition 5.5.3 (Regular Configuration). An n player configuration of ra-

dius r ω(n, r) ∈ Rn×2 is said to be regular iff all the players are equispaced on

a circle of radius r.

For instance, the configuration ω(n, r) such that ωi(n, r) = (r·cos 2π(i−1)
n

, r·

sin 2π(i−1)
n

), 1 ≤ i ≤ n is a regular configuration.

5.5.3 Service Coverage Analysis

Next we focus our attention on how the players’ geographical spread

impacts the service coverage and the GSP’s network resource provisioning

strategies. We assume GSPs whose goal is to ensure that games involving

players with a given geographical spread will find a G-server (with high prob-

ability) such that the game is ϵ-playable. To that end, a GSP can control the

density of compute nodes, as well as the compute capacity allocated to the
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G-servers’ VMs. We study how these decisions are coupled and impacted by

the target games’ geographical spread to be supported.

We shall define first a useful service coverage metric that we adopt in

this framework, as a function of the delay vector d̄t(x,g).

Definition 5.5.4 (ϵ-Feasible Region). For a given player configuration x ∈

Rn×2, we define the ϵ-feasible region Fϵ(x) to include all G-server locations for

which the game would be ϵ-playable as:

Fϵ(x) = {g ∈ R2 : q(d̄t(x,g)) > 1− ϵ}, (5.15)

Moreover, the area of region Fϵ(x) can be expressed as:

|Fϵ(x)| =
∫∫

R2

1{q(d̄t(x,g)) > 1− ϵ}dg (5.16)

Large feasible areas |Fϵ(x)| are preferred as they are associated with

large likelihood to find a G-server that can support the MCG service given the

player configuration x, see Figure 5.3.

To formally characterize the network provisioning problem, we model

the compute nodes to be deployed according to a homogeneous spatial Pois-

son Point Process (PPP) Φ(λ) of intensity λ compute nodes/m2. The GSP

aims to provision the network resources so as to ensure an (n, σ, ϵ, α, ν)-service

coverage, defined as:

Definition 5.5.5 ((n, σ, ϵ, α, ν)-Service Coverage). An MCG network is said

to ensure an (n, σ, ϵ, α, ν)-service coverage, for n ∈ N, σ ∈ R+, ϵ ∈ [0, 1], α ∈
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Figure 5.3: Example of an ϵ-feasible region, with n = 5 players.

[0, 1], ν ∈ N, if for any n-player configuration x with a geographical spread less

than σ:

P(|Φ ∩ Fϵ(x)| ≥ ν) ≥ 1− α, (5.17)

i.e., if the probability that a randomly located game involving n players with a

geographical spread less than σ finds at least ν compute nodes that would make

the game ϵ-feasible exceeds 1− α.

More formally, the GSP wishes to solve the network resource provision-

ing problem described as follows:

Problem 5.5.6 (Network Resource Provisioning). The network resource pro-

visioning problem consists in finding the smallest density of compute nodes λ

guaranteeing an (n, σ, ϵ, α, ν)-service coverage.
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(a) Area of the ϵ-feasible region vs.
the players’ geographical spread σ;
n = 20, a0 = 50ms, τ = 20ms, ϵ = 0.

(b) Smallest feasible server density
λmin vs. the players’ geographical
spread σ; n = 20, a0 = 50ms, τ =
20ms, ϵ = 0, α = 1× 10−4.

(c) Smallest feasible server density
λmin vs. the players’ geographical
spread σ; n = 20, a0 = 5ms, τ = 3ms,
ϵ = 0, α = 1× 10−4.

Figure 5.4: Figures of the impact of the geographical spread σ and the per-
user compute capacity kG on the area of the ϵ-feasible region of an n player
regular configuration, and the induced minimum density λmin of compute nodes
required to guarantee (n, σ, ϵ, α, 1)-service coverage, in traditional MCG and
XR-MCG settings. For scale comparison, the distance from New York City,
NY to Los Angeles, CA is on the order of 4×106 meters, while the area of the
USA is on the order of 1× 1013 square meters.
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We note that while a single compute node falling inside an ϵ-feasible

region may be enough to guarantee that the game is ϵ-playable, the GSPs

may want to provision the network resources so as to ensure that multiple

compute node (ν > 1) fall within the region for three reasons. First, such a

choice increases load-balancing flexibility across compute nodes in the network,

which has been shown to improve the service availability in large networks [85].

Second, it provides additional guarantees in case some feasible servers are

unable to support additional MCG instances due to limited resources. Third,

it improves the robustness to variability in the transport delays experienced

by the players, that may trigger costly migrations of the G-server’s VM, more

on this in Section 5.6.

We now state an important result, enabling the GSPs to solve the

network provisioning problem, defined in Problem 5.5.6, giving a lower bound

on |Fϵ(x)| for any configuration of a given spread.

Theorem 5.5.7 (Lower-Bound on the ϵ-Feasible Area). Let x ∈ Rn×2 be

any configuration of n players with geographic spread σ(x). Under the JMRA

algorithm, we have ∀ϵ ∈ [0, 1]:

|Fϵ(x)| ≥ |Fϵ(ω(n, σ(x)))|. (5.18)

A proof of this theorem is found in Appendix D.1. An intuitive in-

terpretation is that regular configurations are the most “spread-out” among

the class of n players configurations with a geographical spread equal to σ(x),

hence leading to the smallest ϵ-feasible region.
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We now present a corollary of Theorem 5.5.7, allowing the GSPs to

solve the network resource provisioning problem. For tractability, we shall

present the case where ν = 1.

Corollary 5.5.8 (Smallest Server Density). Let Φ(λ) be a homogeneous PPP

of intensity λ compute nodes/m2. The smallest compute node density λmin

required to guarantee an (n, σ, ϵ, α, 1)-service coverage, for n ∈ N, σ ∈ R+, ϵ ∈

[0, 1], α ∈ [0, 1] is given by:

λmin(n, σ, ϵ, α) =
− ln(α)

|Fϵ(ω(n, σ))|
(5.19)

The proof directly follows from Theorem 5.5.7 and the fact that for a

PPP, see [14]: P(|Φ(λ) ∩ Fϵ(ω(n, σ))| ≥ 1) = 1− e−λ|Fϵ(ω(n,σ))|.

Now that we established the optimal strategy for GSPs to densify the

network, we study through numerical simulations how they should dimen-

sion the G-server VMs’ compute capacity. Specifically, Figure 5.4 exhibits

results capturing the effects of the geographical spread σ and the per-player

compute capacity kG on the area of the ϵ-feasible region corresponding to a

regular configuration, and ultimately, on the required λmin. The results pre-

sented correspond to two different scenarios. In Figures 5.4a and 5.4b, we use

parameters relevant to classical MCG instances, e.g., involving players inter-

acting on a common virtual first-person shooter game, requiring a somewhat

loose timeliness constraints (on the order of 100 milliseconds end-to-end [40],

or around 50 milliseconds for the player-to-server leg). However, Figure 5.4

corresponds to an XR-MCG game setting, where players are equipped with
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XR headsets, requiring much tighter timeliness guarantees (on the order of 10

millisecond end-to-end [51], or around 5 milliseconds for the player-to-server

leg). We study both scenarios separately. In these experiments, we adopt the

functional forms introduced in Equations 5.12 and 5.13 to model the transport

and batch computation delays.

The General MCG Setting. One can first observe in Figure 5.4a

that the area of the ϵ-feasible region decreases with the players’ geographical

spread σ. This effect leads in turn to a sharp increase in the required den-

sity λmin, see Figure 5.4b, to compensate for the reduced area. This rapid

increase is explained by the fact that |Fϵ(ω(n, σ))| eventually vanishes as the

players become too widely spread, leading to the vertical asymptotes shown

in Figure 5.4b. Therefore, for a fixed capacity per G-server’s VM instance,

we witness a geographical spread limit after which densification can no longer

help in guaranteeing (n, σ, ϵ, α, ν)-service coverage. Supporting larger spreads

can then only be achieved by increasing the servers’ compute capacity. One

direct implication of this observation is that GSPs that can perform efficient

matchmaking, i.e., match players in close proximity of each other, can afford

to reduce the servers’ compute capacity kG, while keeping the server density

reasonably low. In addition, we recognize in Figure 5.4b a law of diminishing

returns on feasible σ with increasing kG, pointing to the existence of a fun-

damental limit on the maximum geographical spread that can be supported

for any n-player game, regardless of the network resources deployed and rate

adaptation policy, due to the sole impact of the transport delay on the age of
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the game, see Equation 5.1.

We note that while the initial model proposed in this chapter does not

capture this effect, servers and players are in reality likely to be more densely

located in cities. When the player’s geographical spread is small enough, e.g.,

games involving players in the same city, then the GSPs can afford to provision

compute nodes mostly in cities as per Figure 5.4, and the G-server would be

placed nearby the players’ city. If, however, GSPs want to support games

with higher geographic spread, e.g., involving players across different cities,

then they may need to densify the compute nodes between the cities, in the

associated ϵ-feasible regions that is intuitively close to “center” of the players’

configuration.

The XR-MCG Setting. Comparing Figure 5.4b to Figure 5.4c,

one can highlight three key challenges faced by GSPs with extremely tight

timeliness constraints, e.g., supporting XR-MCG. The first challenge is the

need to ensure that the compute delay is as small as possible. To this end, the

compute capacity per player kG needs to be large enough to guarantee that

the constraint in Problem 5.3.1 can be satisfied. Hence, XR-MCG instances

require additional compute capacity compared to traditional MCG games.

The second challenge is the need to ensure that the players’ geograph-

ical spread is small such that all the players are close enough to the G-server,

leading to low transport delays. This is reflected by the scale of the horizontal

axis, showing that XR-MCG instances can only be supported by connecting

local players, e.g., in the same neighborhood/city, as opposed to the coun-
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try/continent scale for traditional MCG instances.

The third challenge is the need to heavily densify the network to ensure

small transport delays (and hence low variability under Assumption 5.5.1) so as

to meet the service coverage requirement with a tight game age. The required

density is on the order of 10−9− 10−8 compute nodes per square meter, which

clearly calls for leveraging the edge computing infrastructure to host the G-

servers, in addition to the (potentially colocated) R-servers. Hefty network

resource provisioning costs stemming from allocating considerable compute

power in densely deployed edge compute nodes are unavoidable for XR-MCG

GSPs to meet the tight game age constraint associated with such types of

applications.

5.6 MCG Network Management

In Section 5.5, we showed how GSPs can ensure high service coverage

by appropriately provisioning the network resources. We now assume that

these resources have been provisioned, and we use insights extracted from our

previous analysis to investigate strategies that can be adopted by GSPs to

improve the MCG-QoS. We identify and study two complementary problems

faced by GSPs: (1) the G-server placement problem, i.e., finding the best

compute node to host the G-server for a particular player configuration, and

(2) the matchmaking problem, i.e., finding the grouping of players to assign

to a particular G-server/MCG instance.
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5.6.1 The Service Placement Problem

We study first the particular problem of G-server placement, consisting

in selecting the best compute node to host the G-server’s VM among a set of

feasible options given a players’ configuration, see Figure 5.3. Previously, we

showed how the JMRA algorithm can help to ensure that the spatial region

that may contain feasible servers has the largest area. This region is likely

to contain multiple compute nodes, all of them satisfying the game QoS re-

quirement. While this may imply that all of the options are equivalent in

the framework formulated in this chapter, additional considerations such as

robustness to network delay variability may motivate the GSPs to prefer some

options over others. For instance, considerations such as cost of service de-

ployment [47, 169], load balancing among edge servers to ensure high service

availability [85], or energy consumption [170] may be relevant factors to take

into account in the final service placement decision. However, for the specific

case of MCG networks, we envision that resiliency to delay variations will be

a major criterion to consider in the service placement decision of G-servers.

Indeed, delay variations may considerably change the shape and area of the

region of feasible servers over time, and frequent costly migrations of service

entailed by those variations can considerably impact all the players’ gaming

experience. So far, we have been considering problems with fixed values to

capture network delays, either because they are measured in real-time as in

Section 5.4, or because we assumed that GSPs provision the network by only

considering a relevant statistic of the instantaneous network delays (e.g., its
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estimated mean) as in Section 5.5. We now investigate how the GSPs might

go about selecting the G-servers’ VMs locations to improve the robustness of

the MCG-QoS under varying network delays/congestion statistics. This is an

important consideration, as one can expect MCG sessions to potentially last

several hours.

We first observe that JMRA can increase robustness to slow variations

in network/congestion delays over time as the optimal choice of update rate can

adapt to such variations. However, this reactivity feature of JMRA may not

be sufficient to keep the game ϵ-playable under significant variations, or if the

players are mobile. Indeed, a change in the joint delay statistics experienced

by the players may induce a substantial change in the shape of the region

Fϵ(x) causing a potential need to trigger a costly G-server VM migration.

Therefore, given the opportunity to select a server among multiple feasible

options, a simple strategy would be to select the one that maximizes the

expected value of the MCG-QoS, as it would keep the game ϵ-playable under

the largest delay variations. Hence, the GSPs might maximize a new service

placement MCG-QoS:

Definition 5.6.1 (MCG-QoS for Service Placement). Given a player configu-

ration x ∈ Rn×2, and a feasible G-server location g ∈ R2, inducing a distance

vector δ ∈ Rn
+, s.t. δi = ∥xi − g∥2, we define the MCG-QoS q̄(δ) for service

placement, for a given ϵ ∈ [0, 1], as:

q̄(δ) = P(q(Dt
δ) > 1− ϵ) (5.20)
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i.e., the probability that the game remains ϵ-playable under JMRA and variable

network congestion statistics.

Based on this MCG-QoS, we formally define the service placement prob-

lem as follows:

Problem 5.6.2 (Service Placement). Given a player configuration x ∈ Rn×2

and a realization ϕ of the spatial server deployment Φ, inducing a set G(x, ϕ) =

{g1, . . . ,gl} of l ϵ-feasible server locations, the service placement problem con-

sists in finding server g∗(x, ϕ), s.t.:

g∗(x, ϕ) = arg max
gk∈G(x,ϕ)

{
q̄(δ) : δi = ∥xi − gk∥2,∀i

}
(5.21)

A straightforward way to solve Problem 5.6.2 would be to compute the

MCG-QoS for service placement assuming that each of the candidate servers is

selected to host the G-server, and choose the one that maximizes it. However,

computing the MCG-QoS function may be impractical and computationally

expensive as it involves solving numerous optimization problems, and labori-

ously estimate the distribution of q̄(δ) through advanced sampling techniques.

To overcome this issue, we envision a 3-step algorithm, that can run

in a centralized server, and that is aware of all the players’ locations and the

map of compute nodes:

Step 1: Exploration. First, one needs to identify the search space

G(x, ϕ) of candidate servers. This can be performed either by considering

all the compute nodes within a vast region containing all the servers “within
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reach” of any player, i.e., such that the transport delay does not exceed the

age constraint. As this solution would likely lead to an excessively large search

space, heuristics can be leveraged to restrict the set to candidate servers, e.g.,

considering the l closest servers to the center of mass of configuration x.

Step 2: Elimination. Second, one can considerably simplify the

search space by only using the geometry of the players’ configuration, as pre-

sented in Theorem 5.6.3.

Theorem 5.6.3 (Preferred G-Server Location). Given a player configuration

x ∈ Rn×2 and a compute node deployment ϕ, let g and g′ ∈ G(x, ϕ) be the

coordinates of two servers inducing distance vectors δ and δ′, respectively. We

have under Assumption 5.5.1:

δ ≺w δ′ =⇒ q̄(δ) ≥ q̄(δ′) (5.22)

hence the server at location g is to be preferred over the one at g′.

where ≺w denotes the weak majorization ordering, see [112]. The proof of this

theorem can be found in Appendix D.2.

Using this result, some of the candidate servers can be eliminated in

O(l2) time only by inspecting the distance vectors induced by the players’

configuration x and each potential server in G(x, ϕ). We note however that

weak majorization is merely a partial order, hence not any pair of distance

vectors can be compared and this procedure does not guarantee to single out

the best candidate server. In such a case, the algorithm needs to execute

Step 3.
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Step 3: Approximation. Third, once the number of candidate

servers has been reduced to only a few candidates, additional heuristics can

be exploited to select the final server. For instance, q(dt) can be used as a

surrogate for q̄(δ), where dt can be measured/estimated as discussed in Sec-

tion 5.4. Finally the best compute node is confirmed if its MCG-QoS function

exceeds the desired level ϵ.

We assess the performance of the elimination step by studying the effect

of the size of the search space l and the number of players n on the average

number of survivors (i.e., options that were not eliminated in step 2), for a

fixed players’ geographical spread and density of servers. The average is taken

over random player configurations of given spread, and over realizations of Φ.

Clearly, values close to 1 are associated with an effective elimination. In this

experiment, we initialize G(x, ϕ) to contain the l closest compute nodes in ϕ

to the center of gravity of the configuration x, as suggested in Step 1. We

present the results of this experiment in Figure 5.5.

One can observe that the average number of survivors increases slowly

with l, as additional options are increasingly more likely to be eliminated. This

confirms that proximity to the center of gravity of the player’s configuration is

a valid criterion to initialize the search space. In addition, the elimination step

appears to be the most effective in games involving a large number of players.

Indeed, larger values of n lead to a hardening of the spatial distribution of

players, homogenizing it over a disk of radius σ, and bringing the center of

gravity closer to the center of this disk. This in turn increases the likelihood for
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Figure 5.5: Effect of the size of the search space l and the number of players n
on the average number of survivors; σ = 2× 106m, λ = 4× 10−12 servers/m2.

any sub-optimal server to find at least one of the players being prohibitively

far, hence making it more likely to be eliminated as its associated distance

vector will weakly majorize the ones of servers that are closer to the center of

gravity.

5.6.2 The Player Matchmaking Problem

Another problem the GSPs may face is the player matchmaking prob-

lem. If the game allows it, the GSPs/game designers may wish to ensure

that players are in close proximity of each other to improve the MCG-QoS as

previously argued in this chapter.

Matchmaking has already been studied in the context of multiplayer

games to match players that have similar game expertise [44], but not for
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the purposes of clustering players geographically. Given the analytical frame-

work presented in this chapter, the matchmaking problem can be reduced to

a clustering problem, that aims, e.g., at finding the partition of players that

minimizes the maximum geographical spread of the induced player configura-

tions, given all the players’ coordinates. More practical strategies can also be

proposed. For example, one might impose a geographic restriction regarding

the players’ locations, e.g., all the players being in the same building, see, e.g.,

XR-MCG solutions such as [163]. Another solution would be to ensure that

all the players are not too spread out by matching only players in the same

city or neighborhood. Clearly, optimal and efficient matchmaking is a difficult

problem, and judicious strategies may greatly depend on considerations such

as the game type, game rules, demand in the service, or willingness of players

to be matched with random players. Regardless of the specifics of the game,

results and insights from Section 5.5 can be exploited to design customized

matchmaking algorithms.

5.7 Chapter Conclusion

In this chapter, we studied fundamental questions that arise in the de-

sign of MCG systems. We introduced an MCG-QoS capturing the freshness

of the information processed by the G-server, as well as the joint impact of

the variable delays experienced by the players. We proposed JMRA, an effi-

cient measurement-based joint update rate adaptation algorithm maximizing

the MCG-QoS. We then related the game’s geometry to the network delays
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experienced by the players, and showed how GSPs can benefit from JMRA to

combat the effect of geographical spread and slow-variability in the network

delays/congestion, through effective network resource provisioning and service

placement. We note that MCG player matchmaking, i.e., finding the best set

of players to match on the same G-server, is a network operation problem that

is complementary to service placement, and is also worth studying. Given

the analytical framework presented in this chapter, the matchmaking problem

might be reduced to a clustering problem aiming at finding the partition of

players that minimizes the geographical spread of the induced configurations.

We intend to study this problem in future work.

166



Chapter 6

Timely Information Sharing in

Edge-supported Vehicular Collaborative

Sensing Networks

As vehicles are progressively gaining in autonomy, accurate environ-

ment awareness is becoming an increasingly important feature. The conven-

tional way to provide them with such awareness is by equipping them with

various complementary sensors such as cameras, ultrasonic sensors, radars

and/or LiDARs. These sensors may however be insufficient to provide the

vehicles with a complete perception of the environment in some situations,

e.g., when a target (such as a pedestrian, a cyclist, or another vehicle) is ob-

structed. This may lead to undesirable consequences such as needing to reduce

the safe driving velocity of the vehicle to lower the risk and severity of a po-

tential collision. To handle this issue, getting assistance from other network

nodes, e.g., the cellular infrastructure, or other vehicles, has been proposed as a

solution [48, 155]. This chapter1 explores how the vehicles’ situational aware-

ness can be improved at the cost of using valuable wireless communication

resources. This opportunistic assistance is particularly useful as the vehicles

1Publications based on this chapter: S. Kassir, G. de Veciana, Opportunistic Collabora-
tive Estimation for Vehicular Networks. Submitted to ACM MobiHoc 2022.
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may have different sensor qualities and their measurements may be autocor-

related over time, affecting the amount of information collected individually

over time. Nevertheless, vehicles need to remain able to operate independently

in case no network access or no other network members is available to pro-

vide any complementary data. Given this requirement, it is critical to adopt a

suitable network architecture and design a parsimonious information sharing

scheme while guaranteeing the safety of all the vehicles in the network.

6.1 Related Work

The power of sensor collaboration has been well studied in the litera-

ture, e.g., in the context of Collaborative Signal and Information Processing

(CSIP) [56, 57], analyzing wireless sensor networks where nodes cooperate to

achieve a common goal (e.g., target tracking [56, 57], classification [128, 50]) in

an energy-efficient and fault-tolerant manner. In this work, we consider a CSIP

system, but focus on features that are more specific to vehicular networks, e.g.,

wireless spectrum usage and estimation accuracy.

Multiple works have investigated techniques for collaborative sensing

applied to vehicular networks. Two common approaches to improve the situa-

tional awareness, or equivalently the vehicles’ tracking error, are adaptation of

the sensors’ transmission rates, see [5, 181], transmission power [157], or both

jointly [74, 134]. In [5] for instance, the authors propose an age-minimizing

mechanism where vehicles broadcast periodically situational information to

each other at an optimal rate. While the adopted model captures essential
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communication features in collaborative sensing networks such as contention

and transmission delays, no specific environment estimation strategy is dis-

cussed and the quality of the observations from each sensor/vehicle is not

taken into account in the analysis. In other studies such as [74], the authors

present an adaptive transmission control strategy aiming at jointly control-

ling the vehicles’ transmission rates and transmission power to adjust to the

current channel congestion leading to improved tracking accuracy for the par-

ticipating vehicles. Most of these works focus however on strategies based

on broadcast sensing messages using protocols such as DSRC, interconnecting

all the vehicles through a mesh network whose reliability may depend on the

channel congestion level [3]. While distributed environment estimation is com-

mon in wireless sensor networks [121, 161, 186] for its effective computational

and failure resilience properties, this topology often leads to hefty communica-

tion costs as the network scales up. Consensus-based solutions disseminating

information to a subset of the nodes have been proposed [121, 29] but often

affecting the convergence rate of the local nodes’ estimation filters. We envi-

sion a more centralized data dissemination protocol performed via the cellular

infrastructure using dedicated and reliable unicast links from/to participating

vehicles. This solution might be more suitable for such safety-sensitive data.

As wireless resource utilization is costly, we aim to minimize the communi-

cation load on the network and we integrate rate adaptation as part of our

solution.

Another relevant class of work studies information fusion mechanisms
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that could be applied to collaborative vehicular sensing. For instance, Dis-

tributed Kalman Filters (DKF) have been proposed to allow individual sen-

sors to share their respective state estimates and error covariance matrices

with a central node, that combines them optimally so as to minimize the

mean-squared error (MSE) of the fused estimate, see, e.g., [69, 156]. In this

work, we leverage results from the track-to-track fusion literature (see [156]),

studying optimal combination of local state estimates from distributed nodes

at a global aggregation node, to build and analyze the performance of our

proposed collaborative sensing network.

Finally, the idea of timely information sharing and the role of data rate

adaptation has been thoroughly studied via the notion of Age-of-Information [87,

154, 85], particularly relevant when network congestion is considered. This

work proposes an alternative approach to capture information timeliness by

studying the evolution of the estimation mean squared error over time, that

has a more pragmatic interpretation for safety-critical applications.

6.2 Chapter Contributions and Organization

This chapter makes five major contributions.

First, we propose a collaborative environment estimation framework

allowing vehicles to operate independently using their respective tracking fil-

ters while being able to opportunistically receive assistance from other vehicles

with better sensing abilities via the network infrastructure as needed.
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Second, we propose a novel information sharing mechanism and char-

acterize how the data rate from the infrastructure to the assisted vehicles

improves their local estimation accuracy.

Third, we present our Vehicle Information Sharing Algorithm (VISA)

combining three data sharing policies which minimize the communication over-

heads while ensuring that all the vehicles’ local estimation errors are kept below

their respective desired targets. We leverage supermodularity to derive an op-

portunistic greedy sensor selection algorithm with suboptimality guarantees

allowing VISA to adapt in real-time to time-varying network parameters.

Fourth, we evaluate the performance of the proposed opportunistic

collaborative-sensing framework as compared to unassisted environment esti-

mation solutions via system-level simulations. We show how considerable gains

in feasible estimation accuracy can be enabled by communication-efficient sens-

ing information sharing.

Fifth, we study a pedestrian tracking scenario allowing us to character-

ize the marginal value of the information shared by vehicles with VISA, using

the Safe Driving Throughput (SDT) as a performance metric.

The remaining of this chapter is organized as follows. In Section 6.3, we

describe our proposed collaborative sensing system architecture and introduce

our network and environment models. In Section 6.4, we formulate the Vehicle

Information Sharing Problem and we present our information control mecha-

nism that in turn allows us to derive a Vehicle Information Sharing Algorithm
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in Section 6.5. In Section 6.6, we complement our analysis with simulation-

based experiment results, and we provide additional discussion on the value of

information sharing in vehicular sensing networks in Section 6.7. Finally, we

conclude the chapter in Section 6.8.

6.3 Solution Architecture and Model

We propose a system designed to allow a set of geographically neigh-

boring vehicles to collaborate and opportunistically improve the quality of

their respective estimates for their shared dynamic environment. The system

architecture we present is designed to satisfy the following requirements:

• the vehicles should not be fully dependent on the opportunistic collab-

orative framework, i.e., they should be able to operate independently

(with lower but acceptable performance guarantees) even without any

network assistance;

• the solution should be flexible and sufficiently computationally efficient

to allow for frequent reconfiguration as the vehicles’ dynamics may lead

to intermittent vehicle availability and non-stationary dynamics/sensing

ability;

• the solution should ensure that the lowest amount of communication

resources is used for any desired estimation accuracy.

Our proposed opportunistic collaborative solution is compared to a
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baseline network topology where vehicles do not cooperate which is introduced

next.

6.3.1 Baseline Network Model

Consider a network composed of a set V of vehicles evolving in a com-

mon environment, each equipped with a sensor (or possibly multiple ones)

and connected to a common infrastructure node, such as an edge server or a

cellular base station. To gain situational awareness and navigate safely, vehi-

cle i ∈ V observes its environment by taking periodic measurements {zi,k}∞k=1

via its sensor. All the sensors operate synchronously at a common sampling

rate of τ−1 samples/second. These measurements are fed to a Local (Kalman)

Filter (LF) that allows each vehicle to keep track of both its own environment

state estimate x̂i,k and its error covariance matrix Pi,k at time k.

6.3.2 Proposed Collaborative Network Architecture

Next we present an alternative network architecture wherein vehicles do

not rely solely on their own sensor’s measurements, but can also benefit from

other vehicles’ sensing data to improve their local environment state estimates.

In this system, we distinguish two (possibly overlapping) subsets of vehicles:

(1) a set C ⊆ V of data contributors, and (2) a set R ⊆ V of data recipients.

The data contributors take measurements of the environment and update their

respective LFs as in the baseline model, but additionally send their local state

estimates and local error covariance matrix to the infrastructure node after
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each LF update, hence at a rate of τ−1 updates/s. The base station/edge

server will in turn combine optimally (see [156]) all the local state estimates

via a master filter (MF) to form an environment master state estimate x̂k and

master error covariance matrix Pk. The infrastructure node finally resets the

LFs of the vehicles in R with the master state estimate which will be more

accurate than the local one, i.e., the LFs discard their local estimates/error

covariance matrix and replace them with the corresponding ones from the MF.

The vehicles in R then evolve independently by taking their own measurements

and updating their own local model until the next reset signal from the MF.

Each vehicle i ∈ R has a feedback rate from the infrastructure node equal to

ρi resets/second, configured judiciously to ensure a low communication cost.

This feedback synchronizes the environment estimates of the MF and LFs,

allowing the vehicles to benefit from an environment estimate of improved

quality.

As we explain and precisely characterize in the sequel, the rate ρi con-

trols the magnitude of the peak local error covariance matrix P̃ ∗
i of vehicle i

when the MF error has reached its steady-state. This overall framework, sum-

marized in Figure 6.1, allows the vehicles to leverage sensing information from

other vehicles to improve the quality of their own environment state estimates.

Finally, we neglect the effect of communication delays on the estimation er-

ror, as packet transmissions happen on a much smaller time scale than the

sampling period and the environment velocity.
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Figure 6.1: Cooperative Environment Sensing Data Flow. The value in paren-
thesis indicates the data rate.

6.3.3 Environment Estimation Model

In the sequel, we shall assume a simple representative model for the

environment dynamics, amenable to analysis, yet capturing its essential fea-

tures.

Assumption 6.3.1. We assume that an element of the environment tracked

by the vehicles, e.g., the x-coordinate of a pedestrian, cyclist, or other vehicle,

is characterized as a Brownian motion, independent of the other elements being

tracked.

While we acknowledge this is a strong assumption, it allows us to ex-

tract essential insights that can be generalized when it is lifted. We provide
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additional discussion and justifications for this simplified system in Section 6.7.

As elements of the environment can be tracked independently, we con-

sider a discrete-time environment state evolution model of the form:

xk+1 = xk + wk, (6.1)

where (wk)∞k=1 is a stationary white Gaussian process, such that wk ∼ N(0, Q)

for all k, where Q is proportional to the sampling period τ , i.e., Q = ν2τ

for a known network parameter ν that can be interpreted as the environment

velocity.

6.3.4 Environment Observation Model

As vehicles navigate in their environment, they observe their surround-

ings by taking measurements via their respective sensors. The sensors in dif-

ferent vehicles are assumed to take independent and unbiased measurements of

the environment, yet different vehicles may have different precision as they may

be equipped with different sets of sensors of different quality/manufacturers.

In addition, the sensors’ measurement errors may emerge from (1) the sensors’

intrinsic properties but also from (2) biases that may be dependent on the

environment, e.g., the target is obstructed. The second type of errors depends

on slowly varying factors (e.g., the existence of a wall near the target, or the

relative position of the sensor and the target), leading to temporal correla-

tions in successive measurement errors, that shall be modeled. We model a
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measurement zi,k taken by sensor i at time k as

zi,k = hixk + vi,k,∀i ∈ V, (6.2)

where hi ∈ R∗, and (vi,k)∞k=1 is a stationary Gaussian noise process modeled

to be autocorrelated over time as follows

vi,k+1 = αivi,k + ζi,k,∀i ∈ V, (6.3)

and where (ζi,k)∞k=1 is a stationary white Gaussian process, such that ζi,k ∼

N(0, σ2
i ) for all k, and 0 ≤ αi < 1 for all i in V. In this model, α = (αi :

i ∈ V) and σ2 = (σ2
i : i ∈ V) are known system parameters that can be

interpreted respectively as the autocorrelation factor between two consecutive

sample errors, and the variance of an independent measurement noise process.

For instance, αi can be small in a fast-moving environment relative to the

sampling rate τ−1, or when the relative velocity between vehicle i and the

target is large, while σ2
i can be large when vehicle i is equipped with few

imprecise sensors.

In the sequel, we shall assume that hi = 1 for any sensor i without

loss of generality, as zi,k can be processed (more specifically divided by hi)

and the variance of vi,k can be adapted accordingly leading to an equivalent

expression virtually independent of hi. The linear dynamical system equations

characterizing the environment and the sensors’ measurements can therefore

be summarized as: 
xk+1 = xk + wk,

zi,k = xk + vi,k, ∀i ∈ V

vi,k+1 = αivi,k + ζi,k, ∀i ∈ V

(6.4)
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such that wk ∼ N(0, Q), ζi,k ∼ N(0, σ2
i ) for any vehicle i, and E[ζi,kζj,k] = 0,

for any vehicle i ̸= j, for all k.

A classical filtering technique to track such a linear dynamical process

with autocorrelated measurements is to perform time-differencing on succes-

sive measurements and feed the resulting process into a standard Kalman Fil-

ter. Petovello’s method [126] is a standard approach that we shall adopt in this

chapter. We provide a technical description of this method in Appendix E.1.

Note, however, that we envision the collaborative sensing system to be imple-

mented somewhat differently than in [126] as the MF is not filtering the local

measurements at every iteration but is combining the local estimates instead,

similarly to the Distributed Kalman Filtering (DKF) technique, see [69, 187].

The equivalence between the two filtering approaches has been established in

the Track-to-Track fusion literature, see, e.g., [156].

6.4 Information Control Mechanism

In this section, we study the performance of the collaborative sensing

network introduced in the previous section by formally characterizing its un-

derlying information control mechanism. We then formulate our problem that

we shall address in the sequel.

6.4.1 Peak Local Error Variance Characterization

We start by providing a more formal characterization of the peak local

error variance function P̃ ∗
i of vehicle i, and shed light on the role of the feed-
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back loop from the MF to the LFs. We study the regime where the MF’s (a

posteriori) error variance has reached its steady-state of P ∗.

Consider initially a setting where the LF of vehicle i receives a single

reset signal from the MF at time t0 and is left to operate autonomously in-

definitely after that time. The sensor would accumulate information about

the environment from its own sensor. Subsequently, the local estimation error

variance continuous-time process alternately (1) increases linearly at a rate ν2

m2/s in between local measurements, consistently with the properties of the

environment process noise introduced in Section 6.3.3, and (2) drops (by less

than Q) when a new local measurement is integrated in the LF. As illustrated

in black in Figure 6.2, this process eventually reaches a steady-state where

the local error variance fluctuates between the a posteriori P ∗
i and the a priori

P
∗
i = P ∗

i +Q levels.

The sequence of sensor i’s a posteriori local estimation error variances

(Pi,k|k)∞k=0 can be fully characterized through a recurrence equation expressed

in the result below.

Definition 6.4.1 (Local Estimation Error Variance Recurrence). Consider the

dynamical system defined in Equation 6.4 tracked using a Kalman Filter, then

the local a posteriori estimation error variance of sensor i can be characterized

recursively as follows:

Pi,k+1|k+1 =
Pi,k|k(σ2

i +Qα2
i ) +Qσ2

i

Pi,k|k(1− αi)2 + σ2
i +Q

≜ Ti(Pi,k|k) (6.5)
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Figure 6.2: Illustration of the measurement error variance temporal process
with and without assistance from the MF.

Proof. The result follows directly from combining Equations E.3 and E.10 for

the system described in Equation 6.4.

Now consider a setting where the MF resets the LF of vehicle i pe-

riodically at a rate 1/ρi - we motivate this constraint on the selection of ρi

later in this section. At every multiple of τ , the MF estimation error variance

process drops to P ∗, as it just integrated sensing information from the LFs in

C. Thus, after every MF reset, the error variance of the specific LF also drops

to P ∗. The error variance process then evolves independently from this point

as discussed earlier until a new reset signal is received, as illustrated in blue

in Figure 6.2. The periodic feedback hence induces a peak LF error variance

P̃ ∗
i that is never exceeded for a specific choice of ρi = γτ for γ ∈ N, and

that can be computed numerically using the local error variance recurrence
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Equation 6.5 as follows:

P̃ ∗
i = T

(γ−1)
i (P ∗) +Q (6.6)

where T
(n)
i (x) = Ti

(
T

(n−1)
i (x)

)
,∀n ∈ N, and T

(0)
i (x) = x.

6.4.2 Network Design Objective

We seek to design a collaborative sensing system that satisfies a tar-

get environment estimation accuracy level while using a minimal amount to

communication resources.

To this end, we introduce the environment target peak error variance

vector β = (βi, i ∈ V) (in m2) that each vehicle is willing to experience. For

instance, vehicles desiring to drive at higher velocities might require lower

thresholds to guarantee the safety of their passengers. We formulate the Ve-

hicle Information Sharing Problem (VISP), for a given set of vehicles V, au-

tocorrelation parameter vector α, independent measurement noise variance

vector σ2, sensor sampling rate τ−1, and environment velocity ν2, as follows:

Problem 6.4.2 (Vehicle Information Sharing Problem). Consider a vehicular

network consisting of a set of vehicles V, then the VISP consists in determining

the optimal sets of data contributors C∗ ⊆ V, sensing data recipients R∗ ⊆ V,

and the feedback rate vector ρ∗ = (ρ∗i , i ∈ V), such that:

min
ρ,C,R

{
|C| · τ−1 +

∑
i∈R

ρi : P̃ ∗
i (C,ρ) ≤ βi,∀i ∈ V

}
, (6.7)
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i.e., minimizing the aggregate uplink and downlink data rate required to guaran-

tee that all the vehicles’ target peak estimation error variances are not exceeded

in steady-state.

As the uplink and downlink packets have the same data size (both containing a

state estimate and the associated variance), this parameter can be factored out

of the cost function and does not appear in Equation 6.7, that only depends

on the packet rates. Note that this problem is non-trivial as P̃ ∗
i is a complex

function of ρ and P ∗ that is itself a function of C (see Equation 6.6), and also

depends on the vehicular network parameters α, σ2, τ−1, and ν2.

6.5 Vehicle Information Sharing Algorithm

In this section, we introduce our Vehicle Information Sharing Algorithm

(VISA) to solve the VISP. We propose to decompose this complex problem into

two stages: (1) assume a fixed contributor set C and determine the correspond-

ing optimal recipient set R∗(C) and feedback rates ρ∗(C); (2) determine the

optimal contributor set C∗ given the associated optimal R∗(C) and ρ∗(C). We

discuss these two stages separately, before summarizing the overall algorithm.

6.5.1 Recipient Set and Feedback Rate Determination

In this first stage, we consider a fixed contributor set C which reveals

two key underlying parameters. First, it induces a MF steady-state a posteriori

estimation error variance P ∗ that can be computed using the theorem below,

proven in Appendix E.2:
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Theorem 6.5.1 (MF steady-state estimation error variance). Consider a

given a set of vehicles C contributing to a collaborative sensing system and

tracking an environment characterized by Equation 6.4. The resulting MF

steady-state a posteriori estimation error variance is given by

P ∗(C) =
−QE +

√
Q2FB + 4QB

2(B +Q(BA− CD))
(6.8)

where

A =
∑
C

αi

σ2
i

, B =
∑
C

(1− αi)
2

σ2
i

, C =
∑
C

αi(1− αi)

σ2
i

,

D =
∑
C

1− αi

σ2
i

, E =
∑
C

1− α2
i

σ2
i

, F =
∑
C

(1 + αi)
2

σ2
i

.

Second, the corresponding peak local steady-state error P̃ ∗
i can be de-

termined by solving the fixed-point Equation 6.5 such that Pi,k+1|k+1 = Pi,k|k.

Equivalently, one could use Theorem 6.5.1 and the fact that P
∗
i = P ∗

i + Q

leading to the following corollary:

Corollary 6.5.2 (Peak local steady-state error variance).

P
∗
i = Q− Q

2

1 + αi

1− αi

+

√(
Q

2

1 + αi

1− αi

)2

+Qσ2
i ,∀i ∈ V. (6.9)

Given the peak local steady-state error variance expression, it becomes

clear that the following policy determining the recipient set R∗ is optimal:

Policy 6.5.3 (Recipient set selection).

R∗(V) = {i ∈ V : P
∗
i > βi} (6.10)
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i.e., only the vehicles that need assistance to achieve their desired target error

will receive data from the infrastructure node.

In addition, it directly follows from Problem 6.4.2 that the most spec-

trally efficient feedback rate ρ∗i to any vehicle i in R∗ is the slowest one that

satisfies the constraint P̃ ∗
i ≤ βi. We obtain the following feedback rate selec-

tion policy:

Policy 6.5.4 (Feedback rate selection policy).

ρ∗i (C)−1 = τ · arg max
γ
{γ : T

(γ−1)
i (P ∗(C)) +Q ≤ βi} (6.11)

We observe that Policy 6.5.3 ensures that T
(γ−1)
i (P ∗) is increasing in γ and

hence ρ∗i > 0 for any vehicle i in R∗. We also note that the constraint in

Problem 6.4.2 may not be slack under Policy 6.5.4, yet the following result

proved in Appendix E.3 holds.

Theorem 6.5.5. Consider the VISP defined in Problem 6.4.2 and a given

contributor set C. The feedback rate selection policy described in Policy 6.5.4

determining vector ρ∗(C) is optimal.

6.5.2 Data Contributor Set Determination

We shall now use the two policies described earlier to determine one

that selects the best set of data contributors C∗. Here again, we shall solve

this problem in two stages: (1) fix |C| and solve VISP given this constraint, (2)

search exhaustively over all possible values of |C| from 0 to |V| and determine

the one that minimizes the VISP’s cost function.

184



Consider a fixed |C| = m and given Policy 6.5.3 and 6.5.4, VISP reduces

to the simple form:

min
C

{∑
i∈R∗

ρ∗i (C) : |C| = m

}
. (6.12)

where ρ∗i is a function of P ∗ that is itself a function of C. To solve this problem,

we propose to solve an equivalent one as suggested in Theorem 6.5.6, proven

in Appendix E.4:

Theorem 6.5.6. Let C∗
m be a solution of the following problem

C∗
m = arg min

C
{P ∗(C) : |C| = m} . (6.13)

Then C∗
m is also a solution of Problem 6.12.

To solve Problem 6.13, we observe that it consists in minimizing a

non-increasing supermodular function, see [158], over a uniform matroid con-

straint [143, 78]. This class of optimization problems is known to be NP-hard

but a greedy approximation algorithm provided in Algorithm 6.1 has been

shown to be (1− 1
e
)-optimal, see [143, 55].

Note that this algorithm ensures that P ∗(C∗) ≤ P ∗
i for any vehicle i ∈ V

as P ∗(·) is a non-increasing set function. Equipped with Algorithm 6.1, the

following policy can suggested

Policy 6.5.7 (Sensor selection policy). C∗ can be determined via Algorithm 6.1

and searching exhaustively over {C∗
m}

|V|
m=0 for the element that solves the VISP.
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Algorithm 6.1: Greedy(V,m,Q)

Data: V,m ∈ N, Q ∈ R+

Result: Solves for C∗
m

1 C∗
0 ← ∅

2 S← V

3 for k=1 to m do
4 C∗

k ← C∗
k−1 ∪ arg mini∈S P

∗(C∗ ∪ {i})
5 S← S \ C∗

k

6 end
7 return C∗

m

An interesting property of Algorithm 6.1 is that while the problem does

not have an optimal substructure, the solution C∗
m+1 returned by Algorithm 6.1

for |C| = m + 1 is a superset of C∗
m. This property allows us to find the final

C∗ efficiently by calling Algorithm 6.1 only once with m = |V|, and saving

the sequence {C∗
k}

|V|
k=1 in memory. Policy 6.5.7 can then be executed with an

algorithmic complexity of O(|V|2).

6.5.3 Algorithm Summary

We now summarize VISA, the general procedure unifying the three

policies described previously. We envision this subroutine described in Algo-

rithm 6.2 to be continuously re-executed in an outer-loop as some network

parameters such as ν, α and V are varying over time and might need to be

frequently re-evaluated, albeit at a slower time-scale than the sampling period

τ . Indeed, the outer-loop need to give enough time for the MF to reach its

estimation error steady-state and operate in it for a significant fraction of time.
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Algorithm 6.2: Vehicle Information Sharing Algorithm

Data: V, Q ∈ R+

Result: Solves for R∗,ρ∗,C∗

1 R∗ ← R∗(V)
2 if R∗ is empty then
3 C∗ ← ∅
4 else

5 {C∗
m}

|V|
m=1 ← Greedy(V, |V|, Q)

6 for m = 1 to |V| do
7 ρ∗i,m ← ρ∗i (C

∗
m),∀i ∈ R∗

8 Costm ← m · τ−1 +
∑

i∈R∗ ρ∗i,m
9 end

10 m∗ ← arg minmCostm
11 ρ∗ ← (ρ∗i,m∗ : i ∈ R∗)

12 C∗ ← C∗
m∗

13 end

6.6 Network Performance Evaluation

We now proceed to evaluate the performance of the collaborative sens-

ing system presented in this chapter. We shall first provide simulation results

that characterize a simple two-vehicle system before providing additional in-

sights on the characteristics of more general networks.

6.6.1 Communication Cost Analysis in Two-vehicle Networks

We start by studying a simple scenario wherein two vehicles having the

same sensing accuracy also have the same environment error threshold param-

eter, i.e., σ2
1 = σ2

2 = σ2 and β1 = β2 = β. The two vehicles may have different

perspectives of the environment modeled by potentially different measurement
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autocorrelation parameters α1 and α2, which induces different individual esti-

mation error performance (i.e., in general P ∗
1 ̸= P ∗

2 ). Hence, depending on the

values of α1 and α2, the vehicles may require more or less assistance from each

other to ensure that both can satisfy their respective estimation error con-

straint, leading to different communication costs as exhibited in Figure 6.3.

Figure 6.3: Communication Cost (in data transmissions/s) required to guar-
antee the two vehicles to achieve their estimation error target, for different
combinations of (α1, α2), where σ2 = 1 m2, β = 0.12 m2, τ = 0.1 s and
ν2 = 0.1 m2/s.

One can distinguish four separate regimes in Figure 6.3, as marked on

the figure. In the first regime, both α1 and α2 are small, leading to small

individual estimation errors P ∗
1 and P ∗

2 . In fact, both P ∗
1 and P ∗

2 are below β,

indicating that none of the vehicles needs assistance to satisfy their estimation

error target. Thus, no communication cost is necessary.

188



In the second regime, one of the two vehicles has a large autocorrela-

tion parameter requiring it to request assistance from the other, via the infras-

tructure node. Some communication cost is incurred as one vehicle sends its

environment state estimation data to the base station/edge server, while the

other receives it from the centralized node. Note that the communication cost

increases (in discrete levels) within the region as either of the autocorrelation

parameters increase in value. Indeed, as the contributor vehicle’s estimate

deteriorates, the value of P ∗ at the base station/edge server also deteriorates

and the data recipient gets reset with estimates of poorer quality. Conversely,

as the data recipient’s estimate quality deteriorates, its associated local error

sequence increases faster and hence risks to exceed β earlier. Both of these

effects need to be compensated with larger feedback rate, inducing larger com-

munication costs increasing in discrete steps consistent with Policy 6.5.4.

In the third regime, neither vehicle can satisfy their maximum target

error requirement autonomously. Yet, they remain able to rely on each other

by combining their estimates to form one of improved quality, leading to a

peak error below the β threshold. As both vehicles need to send and receive

data from/to the centralized node, the communication costs are the largest in

this regime.

In the fourth regime too, none of the vehicles can satisfy their respective

error threshold even with cooperation, as both provide estimates are of very

poor quality. To operate in this regime, the vehicles will need to increase their

estimation error target β (which may impact their safe driving speed), and/or
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wait for assistance from another vehicle when one joins the network.

Note that we evaluated the network performance by studying its sensi-

tivity to α1 and α2, but a similar analysis can be performed via the variations

in σ1 and σ2 which also affect P ∗
1 and P ∗

2 .

6.6.2 Feasibility Analysis in General Networks

We now study properties of more general networks, and we more par-

ticularly attempt to provide additional insights on the extent to which vehicles

in collaborative sensing networks can feasibly reduce their target error thresh-

old as compared to the autonomous scenario. For instance, in Figure 6.3,

we discussed how collaborative sensing can grow the α-feasibility region of a

two-vehicle system from Region 1 to the union on Regions 1, 2 and 3.

In general, we let β∗(α,σ2, Q) represent the smallest feasible value of β

that any vehicle can achieve in the network, regardless of the communication

cost. We now consider a network composed of three vehicles having the same

sensing accuracy (i.e., σ2
1 = σ2

2 = σ2
3 = σ2), and we study in Figure 6.4 the

sensitivity of β∗ to the vector α. More particularly, we consider six scenarios

where α2 and α3 take different combinations of low, moderate and high values,

and we study the effect of varying α1 is each of these situations. While we

consider a network of three vehicles for clarity of presentation, the analysis

and conclusions hold for any general network.

The first major observation that can be made from Figure 6.4 is that

β∗(·, ·, ·) is hardly sensitive to α1 when at least one of the other vehicles has
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1

*

Figure 6.4: Study of the sensitivity of β∗ to the measurement autocorrelation
vector α, where σ2 = 1 m2, τ = 0.1 s and ν2 = 0.1 m2/s.

a low measurement correlation parameter, implying that having at least a

single vehicle with a low P ∗
i can be enough to ensure an excellent network

performance as characterized by a small β∗. We note that the worse the joint

quality of the observations from vehicles 2 and 3, the more critical it is for the

ones originating from vehicle 1 to be of better quality to ensure that low values

of β are feasible. The network performance is therefore mostly characterized

by the quality of the estimate from the best vehicle, i.e., the one with the

smallest P ∗
i . In the extreme case, when both α1 and α2 are close to 1, β∗ can

be well approximated by P
∗
1 = P ∗

1 +Q, as depicted in Figure 6.4. This property

makes the proposed procedure particularly attractive in large-scale networks

composed of a large collection of vehicles with various sensor qualities and

measurement autocorrelation factors, as it becomes increasingly likely to find
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at least one very accurate sensor as the network grows in size.

The second key observation that can be made from this figure is that the

collaborative sensing procedure can allow vehicle i to considerably reduce its

estimation error target, especially when vehicle i has a poor P
∗
i , e.g., when αi is

large, as observable by the considerable gap between the dashed and any solid

line in Figure 6.4 that grows quickly with αi. This reduction in threshold for

instance can allow the concerned vehicles to increase their safe driving speed,

benefiting the transportation system as a whole.

6.7 Value of Information in Vehicular Systems

6.7.1 Environment Evolution Model: an Information-centric Ex-
amination

The results presented in this chapter were derived under Assump-

tion 6.3.1. Below we present an information-centric argument establishing

that the analysis remains relevant in more general settings.

The first premise underlying Assumption 6.3.1 is that dynamic objects

in the environment evolve as a Brownian motion. This may be seen as the

evolution model with maximum entropy, among the class of continuous-time

stationary processes whose random increments over a period of τ seconds have

variance ν2τ . While the dynamics of the environment may not be as uncer-

tain in reality, the work presented in this chapter can be seen as providing a

fundamental bound on the rate/quatity of information that can be exchanged

in collaborative vehicular sensor networks, by considering the setting with the
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least available a priori information. For instance, the actual optimal feed-

back rate will be no larger than the one determined by VISA assuming the

Brownian motion model.

A similar argument can be made to motivate the second premise in

Assumption 6.3.1, i.e., the independent models based on single-state envi-

ronment elements. While real-wold environments are multidimensional, and

states might be correlated with each other (e.g., velocity and position states),

assuming independence among the tracked states also leads to information

loss, and VISA will only overestimate the amount of information that should

be shared over the network.

6.7.2 Value of Information Sharing in Vehicular Networks

So far, we have showcased how cooperation through VISA allows vehi-

cles to improve their local environment estimates. We now examine how this

improved accuracy benefits vehicles via a by simulating a specific scenario.

As previously argued, we envision that vehicles will already be able to

drive safely in the environment, even without assistance from the network.

However, opportunistically leveraging such assistance when it is available to

provide vehicles with a better perception of their environment can be bene-

ficial. We envision these benefits to translate to an increase in the vehicles’

throughput. More specifically, we define the Safe Driving Throughput (SDT)

to be the maximum mean vehicle rate (in vehicles/s) that can safely pass

through a given cut of road of length lR, see [164], and we shall show how col-
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laboration can help increase this metric. From Little’s formula [92], it should

be clear that the following equality holds:

SDT =
η

lR/vS
=⇒ SDT ∝ vS. (6.14)

where η represents the mean number of vehicles in the cut of road of length

lR. Hence, the safe driving velocity vS can be seen as an equivalent efficiency

metric as the SDT.

The challenge in assessing the value of information sharing is thus to

characterize vS. We shall consider a simple scenario, illustrated in Figure 6.5

and described below, with cooperating vehicles in an environment where the

only source of uncertainty is the motion of a pedestrian.

• An ego-vehicle (vehicle of interest) is driving along a straight road (say

the positive direction of the x-axis), with a breaking deceleration rate of

a m/s2, i.e., it can brake to slow down at a constant rate of a m/s every

second. It follows that if it drives at velocity v0, its breaking time tb to

reach a full stop is tb(v0) = v0
a

and its breaking distance is db(v0) =
v20
2a

.

• A pedestrian is jaywalking on the road, and is detected/tracked by a

set of n vehicles, including the ego-vehicle. The pedestrian’s motion

is modeled as a Brownian motion along the x-dimension with velocity

ν2 m2/s for some time, and then leaves the network, e.g., it eventually

crosses the road.
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• While the pedestrian is on the road, a set of n vehicles, including the

ego-vehicle, are detecting/tracking it using VISA, with heterogeneous

sensing abilities characterized by the vectors σ2 and α. Without loss of

generality, we use the convention that the ego-vehicle’s sensing abilities

are captured by the first entries of these vectors. We assume that all the

vehicles share the same (feasible) error target β m2.

Figure 6.5: Pedestrian collision avoidance scenario

The ego-vehicle picks its driving velocity to be the largest one that

ensures with high confidence p < 1 that it will not collide with the pedestrian,

i.e., guaranteeing that it can completely stop before a potential collision. To

that end, it constructs a worst-case uncertainty region around the estimated

pedestrian location x̂ with confidence level 2p − 1, of radius zp(β) =
√

2β ·

erf(2p− 1) meters.

The ego-vehicle at location c on the road can set its safe driving speed vS

so as to ensure that it can come to a full stop before entering the uncertainty

region, while taking into account the motion of the pedestrian during the

vehicle breaking time. It follows that vS satisfies the following equation:

x̂− zp(β + ν2tb(vS))− c = db(vS) (6.15)
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where we equate the breaking distance (right-hand side) to the distance be-

tween c and the closest point in the uncertainty region (left-hand side), given

that the pedestrian keeps moving during the breaking time tb increasing the

radius of the uncertainty region. This equation can be solved numerically and

Figure 6.6 illustrates how the resulting vS varies as a function of the target

error
√
β for different confidence levels, when the estimated distance between

the ego-vehicle and the pedestrian is 15 meters.

Figure 6.6: Figure of the maximum safe vehicle velocity as a function of the
peak local estimation error standard deviation threshold

√
β, for a = 7 m/s2,

ν2 = 0.5 m2/s, c = x̂− 15 m.

This figure exhibits an increasing sensitivity of vS to β as p increases,

i.e., as the safety requirement becomes tighter. For β large enough, the pedes-

trian’s location uncertainty becomes so large that the vehicle needs to fully

stop to avoid a collision, and wait for the pedestrian to eventually cross the
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road. When the ego-vehicle opportunistically benefits from our proposed in-

formation sharing framework, it can afford reducing its error target β, allowing

it to considerably increase its safe driving velocity vS, but at a cost of con-

suming additional communication resources. The value of information sharing

can then be evaluated by studying how vS increases as a function of the com-

munication cost induced by the choice of β (recall that this relationship can

be obtained by solving the VISP using VISA, while the one between vS and β

has been obtained in Figure 6.6), as depicted in Figure 6.7.

Figure 6.7: Figure of the maximum safe vehicle velocity as a function of the
overall communication cost, for a = 7 m/s2, ν2 = 0.5 m2/s, c = x̂ − 15 m,
n = 4 vehicles, σ2 = [32, 32, 32, 32] m2, α = [0.75, 0.8, 0.82, 0.85], τ = 0.1 s.

One can observe in this figure a general trend of diminishing marginal

value (in terms of increasing vS, or equivalently SDT) in the allocated network

communication resources allocated for collaborative sensing. Multiple regimes
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can be distinguished in this figure as the communication cost budget increases,

corresponding to different numbers of contributors in C. In the first regime,

i.e., when the communication budget is below 10 packets/s for this example vS

is insensitive to an increased communication budget as any budget below 1/τ

packets/s would not allow any vehicle to belong to C, making vehicle collabo-

ration unnecessary. In the other regimes, vS exhibits diminishing returns for

any fixed |C|. We also observe that most of the benefits of increasing the com-

munication budget originate from the vehicles added earliest to C, consistent

with the supermodularity property of P ∗(C).

Another important observation is that, consistent with the findings in

Figure 6.6, vS is more sensitive to the communication budget for tighter safety

constraint. This confirms the considerable benefits that wireless communication-

assisted collaborative-sensing systems promise for the design of future vehicu-

lar networks.

6.8 Chapter Conclusion

This chapter introduced a novel procedure for collaborative sensing and

information sharing in vehicular sensor networks. It distinguishes itself from

others as it allows the vehicles to operate autonomously by default, and oppor-

tunistically improve their estimates about the environment by participating in

the collaborative sensing process. We presented a set of three policies to de-

termine the three key system parameters using the communication resources

efficiently, namely the set of data recipients, the feedback rate from the base
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station/edge server to the vehicles in that set, and the set of data contributors.

We showed how network properties such as the monotonicity and supermodu-

larity of the MF steady-state estimation error variance allows us to devise ef-

ficient algorithms with suboptimality guarantees such as VISA, allowing them

to be ran in real-time and hence, to adapt to varying network conditions over

time. Performance analysis results are promising and show that inter-vehicle

collaboration can considerably improve the local vehicles’ situational aware-

ness, and hence the safe driving throughput on the roads, making the proposed

procedure propitious for adoption in advanced driver-assistance/autonomous

systems.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, we exhibited how substantial gains can be achieved

through efficient collaborative resource management and operations strate-

gies in next generation wireless networks, using mathematical modeling and

analysis tools. We focused particularly on two classes of network, namely

collaborative vehicular ad-hoc networks, and networks supporting real-time

collaborative applications wherein timely information sharing is key to high

performance. We showed how different combinations of techniques, including

(but not limited to) load balancing, opportunism, rate adaptation, fairness

considerations, and suboptimal algorithm design, can be leveraged to improve

the quality of service offered to the network users at lower capital and oper-

ating costs in a wide variety of networks and scenarios. We envision that the

performance improvements suggested in this thesis will allow service providers

to rely on these networks to satisfy their network users’ ever-increasing de-

mands, and embrace emerging trends in their lifestyle that might shape traffic

patterns in future wireless networks (e.g., ride-sharing services, autonomous

vehicles, edge-computing supported XR services, multi-user collaborative ser-

vices).
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Some valuable insights can be extracted from both parts of this thesis.

In the first part, we demonstrated the benefits of jointly leveraging V2V and

V2I connectivity to form vehicle clusters, able to route traffic among each other

from/to the network infrastructure. We established that considerable gains

are achievable in terms of (1) improved connection reliability, (2) reduced

user shared-rate variability, (3) improved mean shared rate per vehicle, (4)

improved mean shared rate for non-vehicle-bound users, (5) improved shared

rate fairness among network users and (6) improved resilience to spatial traffic

surges.

In the second part of this thesis, we showcased the power of effective in-

formation rate-adaptation in a wide variety of networks supporting real-time

applications. We argued that “more information is not always beneficial”

since besides the associated communication resource utilization costs, massive

information sharing creates network congestion, delaying the time-sensitive in-

formation reception/integration, thereby reducing the value of the information

being transmitted. We have shown how device-specific rate adaptation tech-

niques can be used to negotiate the associated information timeliness tradeoff.

The optimal rate-adaptation strategy is often non-trivially coupled with other

decisions that need to be made in real-time, e.g., service placement, or sensor

selection, but efficient (possibly suboptimal) algorithms have been be devised

to address these problems jointly, while considering the network environment’s

stochasticity/temporal variability.
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7.2 Future Work

The research conducted in this thesis lays the foundations for multiple

research directions. We propose three future directions of interest.

First, cluster management mechanisms and protocols need to be de-

vised to ensure the validity of the network performance benefits promised by

V2V clustering architecture proposed in the first part of this thesis. Spe-

cific problems that need to be addressed include (1) interference management

among the V2V links, (2) cluster breakup/merging detection, (3) cluster-head

election, (4) incentive mechanisms associated with V2V clustering, and (5)

packet delay management as clusters increase in size, possible associated with

admission control policies.

Second, as the research conducted in this thesis essentially relies on

mathematical modeling and analysis of wireless networks to extract insights

and salient features of the studied systems, the presented results are intrinsi-

cally contingent on the modeling assumptions made in the successive chapters.

Besides the validation of these assumptions in real-world settings, the algo-

rithms devised and described throughout this thesis need to be implemented

in real networks and proof-of-concept testbeds. We expect that additional in-

sightful results on the behavior and characteristics of the networks studied can

stem from the comparison between the theoretical and practical performances

of these algorithms.

Third, this thesis presented network models that were constructed to be
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general enough to provide high-level insight on their main features and under-

lying tradeoffs, yet specific enough to allow for tractable theoretical analysis.

It follows that most of the models examined in this thesis can be extended

to capture more general or more realistic scenarios. For instance, in the first

part of this thesis, vehicular networks with more orderly infrastructure can

be investigated (e.g., more regular base station deployment, road placement

capturing structures in metropolitan areas, clustered model for mobile de-

vices’ placement, etc.). In the second part of the thesis, general graphs could

be considered for service placement in the cloud-edge continuum instead of

trees, multi-server multi-player games could be studied, and asynchronous ve-

hicle sensing information sharing schemes for multiple correlated environment

tracks estimation could be devised. While such systems might be too involved

to be modeled and studied analytically, simulation-based experiments could

be performed to study such networks and quantify the benefits associated with

the features that were not captured in this thesis.
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Appendix A

Chapter 2 Definitions and Proofs

A.1 Stochastic Ordering Definitions

Definition A.1.1 (Stochastic/Increasing Convex Dominance). As in [116],

we define stochastic dominance as

X ≤st Y =⇒ P (X > x) ≤ P (Y > x), ∀x (A.1)

and increasing convex dominance

X ≤icx Y =⇒ E[f(X)] ≤ E[f(Y )], ∀f ∈ F, (A.2)

where F is the set of increasingly convex functions for which the expected value

is defined. Note further that if X ≤icx Y and E[X] = E[Y ] then X ≤cx Y for

convex functions, e.g., Var(X) ≤ Var(Y ).

A.2 Proof Lemma 2.4.2

Proof. We denote as φ the probability of not having any V2V capable vehicle

in the communication range d ahead of a typical vehicle. From the Poisson

assumption, the distance between vehicles follows an exponential distribution

denoted by a random variable E ∼ exp(λv). The probability of having one

or more vehicles within the communication range d of a participant is then:
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FE(d) = 1 − e−λvd. Since the market penetration is considered independent

of the interarrival time, the probability of the next car being a V2V+V2I

capable vehicle within the communication range d is given by γ(1 − e−λvd),

thus φ = 1− γ(1− e−λvd).

Now since the number of users in a cluster is determined by the num-

ber of the successive V2V capable vehicles in range of each other, pN(n) =

φ (1− φ)n−1 , i.e., N is a geometric random variable with parameter φ, and

mean E[N ] = 1/φ.

A.3 Proof Lemma 2.4.3

Proof. From the analysis in [166], it is well known that the average cluster

communication range is E[L] = λv
−1 ·

(
eλvd − λvd− 1

)
(defined as distance

between the first and the last vehicle plus 2 times the communication range).

However, the density function of the length has been only evaluated via sim-

ulations [136]. The length of the cluster, given that there are N vehicles,

corresponds to L = 2d+
∑N−1

i=1 Ti, where Ti denotes the inter-spacing of V2V

capable vehicles in the same cluster. Note that the distribution of Ti is that

of an exponential conditioned on being smaller than d, thus

fTi
(l) =

λe−λvl

1− e−λvd
, 0 < l ≤ d. (A.3)

The moment generating function for Ti is thus

MTi
(s) =

∫ d

0

esl
λe−λvl

1− e−λvd
dl =

λve
d(s−λv) − λv

(s− λv)(1− e−λvd)
(A.4)
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and consequently the conditional moment generating function of the length of

a cluster, given its number of vehicles, denoted as ML|N=n(s) is given by:

ML|N=n(s) = e2sd
n−1∏
i=1

MTi
(s) = e2sd

[
λve

d(s−λv) − λv
(s− λv)(1− e−λvd)

]n−1

. (A.5)

Given the conditional distribution, we can compute the moment gen-

erating function of L via:

ML(s) =
∞∑
n=1

ML|N=n(s)pN(n) =
e2sdφ

1−MT (s) + φMT (s)
. (A.6)

For the case of full market penetration, this simplifies to:

ML(s) =
ed(2s−λv) (s− λv)
s− λved(s−λv)

. (A.7)

The distributions fL(l) and fL|N(l) can be then obtained by the inverse

Laplace transform of ML(−s) and ML|N=n(−s), respectively.

A.4 Proof Lemma 2.4.4

Proof. The conditional c.d.f. of the number of RSUs M serving a cluster of

length L is given by

FM |L(m | L = l) =


1 if mλ−1

r < l,

1− l
m·λ−1

r
if (m− 1)λ−1

r < l ≤ m · λ−1
r ,

0 otherwise

(A.8)

since the cluster process is stationary on the line and independent of the RSU

locations. Given N it is direct to see, applying the chain rule that:

F c
M |N (m | N = n) =

∞∫
0

F c
M |L(m | L = l)fL|N(l | N = n)dl. (A.9)
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where F c(·) stands for the complementary c.d.f.. Substituting the distributions

obtained above, the simplified expression is given by Equation 2.7.

A.5 Proof Lemma 2.5.3

Proof. In order to derive an expression for the probability of coverage of a

typical vehicle πv, we will first relate the number of vehicles as seen in a

typical cluster N to that seen by a typical vehicle in its cluster Nv :

pNv(n) =
nP (N = n)

E[N ]
, (A.10)

represents the probability for a typical vehicle to be in a cluster of size n,

where the n
E[N ]

biases the distribution of N as a typical vehicle is more likely

to belong to larger clusters. Therefore,

πv =
∞∑
n=1

pNv(n)F c
M |N (0 | N = n) = φ2

∞∑
n=1

n(1− φ)n−1F c
M |N (0 | N = n) .

(A.11)

In the case with networks with only V2I links enabled, the probability that

a typical vehicle is connected corresponds to the probability that the vehicle

lands in the fraction of the road covered by RSUs given by: π∗
v = 2d

λ−1
r

.

A.6 Proof Theorem 2.5.4

Proof. Under our sharing model, vehicles in a typical cluster with (N,M) users

and RSU connections will see a shared rate no larger than ρRSUM
N

. This is exact

if the cluster does not share any of the RSUs with another cluster; otherwise

this is an upper bound. Note that an RSU can be shared by two clusters,
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each approaching from one side, and both not close enough to form one larger

cluster. The mean rate seen by a typical vehicle Rv is then bounded by:

E[Rv] ≤ E
[
N

E[N ]

ρRSU

N
M

]
=
ρRSU · E[M ]

E[N ]
(A.12)

where once again we have moved from the typical cluster shared rate to the

typical vehicle shared rate by weighting by N/E[N ].

In the V2I-only setting, the typical vehicle’s rate is:

E[R∗
v] = E

[
ρRSU

N∗ + 1
| I∗v
]
π∗
v = ρRSU 2d

λ−1
r

E
[

1

N∗ + 1

]
(A.13)

where I∗v denotes the event of probability π∗
v that a vehicle is connected, and

N∗ denotes the number of (other) vehicles that a typical connected vehicle

would see sharing its RSU. Note that the distribution of N∗, i.e., the re-

duced Palm distribution of the Poisson, is equal to its original distribution

(Poisson(2dγλv)), given the Slivnyak’s theorem [14]. Therefore E
[

1
N∗+1

]
=

∞∑
n=0

P (N∗=n)
n+1

= 1−e−2γλvd

2γλvd
and E[R∗

v] = ρRSU · 1−e−2γλvd

λvγλ
−1
r

.

Finally, by coupling the vehicle locations for the V2V+V2I network

and V2I network without relaying it is easy to observe that the number of

busy RSUs is the same, so the mean rate seen by a typical vehicle in this two

settings is the same, i.e., E[Rv] = E[R∗
v].

A.7 Proof Theorem 2.5.5

Proof. Paralleling Theorem 2.5.4, an upper bound on the complementary CDF

of the shared rate a typical vehicle sees in the V2V+V2I architecture, for r > 0
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is given by:

F c
Rv

(r) = P (Rv > r) ≤ E
[
N

E[N ]
E
[
1

(
MρRSU

N
≥ r

)
| N
]]

(A.14)

=
∞∑
n=1

n

E[N ]
· pN(n) · F c

M |N

(⌈ rn

ρRSU

⌉
| N = n

)
(A.15)

= φ2

∞∑
n=1

n · (1− φ)n−1 · F c
M |N

(⌈ rn

ρRSU

⌉
| N = n

)
, (A.16)

where F c(·) stands for the complementary c.d.f. Therefore, Equation 2.12

holds and P (Rv = 0) = 1 − πv. Similarly the complementary c.d.f. for the

shared rate for a typical vehicle in the V2I network, for r > 0 is

P (R∗
v > r) = P

(
ρRSU

N∗ + 1
> r

)
d

λ−1
r

(A.17)

= P

(
ρRSU − r

r
> N∗

)
d

λ−1
r

(A.18)

=
2d

λ−1
r

⌊ ρRSU−r
r

⌋∑
i=0

(
(2γλvd)i

i!
e−2γλvd

)
(A.19)

=
2d

λ−1
r

·Q
(
ρRSU − r

r
, 2γλvd

)
(A.20)

where Q(.) is the regularized gamma function. Consequently, Equation 2.13

holds and P (R∗
v = 0) = 1 − π∗

v . In order to prove the increasing convex

dominance relation, we can use a coupling argument. We generate a single

lane highway instance. It is clear that, for this instance, the number of vehicles

and the total rate out of the network is the same, but the clusters are bigger

in the V2V+V2I system (since the V2I only system only have clusters of one

vehicle). It is proven in [129] that a max-min fairness allocation achieves the

lexicographically minimum vector, i.e., for a max-min share rate allocation
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R̂ and any other shared rate allocation R then R̂ is majorized by R [68]

and further implies R̂ ≤icx R. The proof is then completed by noticing that

the max-min shared rate allocation of the V2I system R∗ is a feasible rate

allocation in the V2V+V2I system, so R ≤icx R∗.

A.8 Proof Theorem 2.6.3

Proof. The proof relies on constructing a coupling between a random process

ξM denoting vehicle locations on a multilane highway M and an auxiliary

process ξS denoting their locations on a single lane highway S.

Let (Ti, Ki)i∈N denote the sequence of locations of V2V+V2I capable

vehicles on M, where Ti denotes the location of the ith vehicle and Ki its

associated lane. We define the aggregated V2V+V2I capable vehicle intensity

on highway M as λV2V, and their intensity on lane k as λV2V
k . Note that under

our Poisson assumption (Ti)i∈N is a PPP(λV2V) and (Ki)i∈N is distributed as

pKi
(k) =

(
λV2V
k

λV2V
: k = 1, 2, . . . , η

)
,∀i ∈ N, (A.21)

since aggregation of independent PPPs is also a PPP.

The first step of the coupled single-lane highway S construction consists

in including V2V+V2I capable vehicles at locations (Ti)i∈N in the auxiliary

process ξS.

Let us now consider the blocking vehicles in the multilane highway M.

These vehicles also correspond to PPPs of intensity λbk on each lane k and

independent of (Ti, Ki)i∈N. For a given realization (ti, ki)i∈N let Bki(ti, ti+1]
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denote a set of locations of blocking vehicles on lane k in the time interval

(ti, ti+1] in the multilane highway. Note that Bki(ti, ti+1] for any i are mutually

independent by the definition of PPP.

Figure A.1: Examples of configurations and their associated Bi(., .] sets, for
η = 4 and ki ≤ ki+1.

We shall let B(ti, ti+1] denote blocking vehicles’ locations that the pro-

cess M will share with S. Specifically, according to the blocking model in

Definition 2.6.2 we let

B(ti, ti+1] =



ki+1−1⋃
j=ki+1

Bj(ti, ti+1] if ki+1 > j > ki,

Bj(ti, ti+1] if ki = ki+1 = j,
ki−1⋃

j=ki+1+1

Bj(ti, ti+1] if ki > j > ki+1,

∅ otherwise.

(A.22)

Note that in each interval (ti, ti+1], B(ti, ti+1] are Poisson process in-

dependent but with different intensities depending on ki and ki+1. Note also

that given our blocking model B(·, ·] includes all vehicles that may block con-

nectivity of V2V+V2I capable cars in M. Figure A.1 shows examples of con-

figurations and their associated B(., .]. Finally, for each i ∈ N we define
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BS(ti, ti+1] = B(ti, ti+1] ∪ A(ti, ti+1] (A.23)

where A(ti, ti+1] is an independent PPP on (ti, ti+1] with intensity needed to

ensure that the overall intensity is equalized in all intervals; ensuring that

BS(ti, ti+1] is a PPP with intensity λbeff. We shall introduce BS(ti, ti+1]i∈N in

each of the intervals in the process ξS.

At this point, it is worth noting that given our construction,

LoS interrupted in ξM
=⇒

⇍=
LoS interrupted in ξS. (A.24)

and the distributions of ξM ∼M = H(η,λV2V, λb) and ξS ∼ S = H(1, γλ, λbeff)

where λ = λV2V + λb, γ = λV2V

λ
and λbeff = max(λb0, λ

b
k,
∑η−1

i=2 λ
b
i).

This implies the following fact.

Fact A.8.1. Based on the aforementioned coupling one can show that NM
v ≥st

NS
v , LM

v ≥st LS
v and MM

v ≥st MS
v , and, π

M
v ≥ πS

v , RM
v ≤icx RS

v.

Proof. Note that by ergodicity of the cluster process, P (NM
v > n) and P (NS

v >

n) correspond to:

P (NM
v > n) = lim

c→∞

1
c∑

i=1

NM
i

c∑
i=1

NM
i · 1(NM

i > n) (A.25)

P (NS
v > n) = lim

c→∞

1
c∑

i=1

NM
i

c∑
i=1

Yi∑
j=1

NS
i,j · 1(NS

i,j > n), (A.26)
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where NM
i is the number of vehicles in the ith cluster in the multilane and Yi

is the number of subclusters in the single lane originated from the ith cluster

in the multilane. NS
i,j denotes the number of vehicles in the jth subcluster in

the single lane process.

By noting that the clusters in S are created by splitting the clusters of

M, we can see that

1(NM
i > n) ≥ 1(NS

i,j > n), ∀i, j, (A.27)

and given the fact that NM
i =

Yi∑
j=1

NS
i,j, we have that

P (NM
v > n) = lim

c→∞

1
c∑

i=1

NM
i

c∑
i=1

Yi∑
j=1

NS
i,j · 1(NM

i > n) (A.28)

≥ lim
c→∞

1
c∑

i=1

NM
i

c∑
i=1

Yi∑
j=1

NS
i,j · 1(NS

i,j > n) (A.29)

= P (NS
v > n) (A.30)

and therefore NM
v ≥st NS

v . Similarly, LM
v ≥st LS

v and MM
v ≥st MS

v by noting

that 1(LM
v,i > l) ≥ 1(LS

v,i,j > l) and 1(MM
v,i > m) ≥ 1(MS

v,i,j > m) are direct

implications of Equation A.24. Additionally it also has the implication that,

within a cluster, if we denote as πv,i the probability that a typical vehicle in

cluster ith is connected then πM
v,i ≥ πS

v,i,j.

Noting that NM
i =

Yi∑
j=1

NS
i,j and observing that the expected shared rate

per vehicle is equal in both systems we can directly infer the RM
v ≤icx RS

v.

214



It is proven in [129] that a max-min fairness allocation achieves the lexico-

graphically minimum vector, i.e., for a max-min share rate allocation R̂ and

any other shared rate allocation R then R̂ is majorized by R [68] and further

implies R̂ ≤icx R. The max-min shared rate allocation of the single lane sys-

tem RS is always a feasible rate allocation in the multilane system; since the

single lane system has the same number of vehicles and the same mean rate,

but the ability for the vehicles to reach the RSUs is reduced and we have that

RM
v ≤icx RS

v.

215



Appendix B

Chapter 3 Proofs

B.1 Proof Theorem 3.5.1

Proof. Figure B.1a exhibits the geometry of vehicular cluster-based oppor-

tunistic relaying. The distance D between a typical vehicle on the x-axis and

its closest BS assumed without loss of generality to be at the origin follows

the distribution in Equation 3.7. The typical vehicle belongs to a cluster of

size Z∗ vehicles whose distribution corresponds to the size biased distribution

of the typical cluster length Z such that pZ∗(z) = z·pZ(z)
E[Z]

, for z ∈ N, i.e., typi-

cal vehicles are more likely to belong to longer clusters. The typical vehicle’s

cluster size induces a typical vehicle’s cluster length L∗ (in meters), such that

L∗ = (Z∗ − 1) · dV. The random orientation Θ of the typical vehicle’s clus-

ter (acute angle) is such that Θ ∼ Unif[0, π
2
] which is independent of Z∗, L∗

and D.

To prove Theorem 3.5.1, we note that the location of a typical vehicle

within its cluster is uniformly distributed, and “breaks” its cluster into two

fragments. We denote as Z∗,b and L∗,b the size and length of the typical

vehicle’s cluster fragment “pointing in the direction of the BS”, where there

may be candidate opportunistic relays with better channels to the BS at the
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origin. The distribution of Z∗,b is shown to be:

Lemma B.1.1 (Typical Cluster Size Distribution). Given a typical cluster

size Z distribution pZ(·), the distribution of Z∗,b is

pZ∗,b(z) =
P(Z ≥ z)

E[Z]
, z ∈ N (B.1)

Proof. As the typical vehicle can be any one in its cluster with the same

probability, i.e., pZ∗,b|Z∗(z|Z∗ = i) = 1/i, z = 1, · · · , i, the distribution of Z∗,b

is

pZ∗,b(z) =
∞∑
i=1

pZ∗,b|Z∗(z|Z∗ = i) · pZ∗(i), ∀z ∈ N (B.2)

=
∞∑
i=z

1

i
· i · pZ(i)

E[Z]
, ∀z ∈ N (B.3)

=
P (Z ≥ z)

E[Z]
, ∀z ∈ N (B.4)

The distribution of L∗,b directly follows from the relation L∗,b = (Z∗,b−1) ·dV,

giving

pL∗,b(l) =
P (Z ≥ l

dV
+ 1)

E[Z]
, l = 0, dV, 2 · dV, · · · . (B.5)

We seek to determine the distribution of the minimum distance D∗

between a relay vehicle on the cluster of length L∗,b and the BS at the origin

with the additional requirement that the relay vehicle also belongs to the

typical vehicle’s cell, conditional on the distance D = d between the typical
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vehicle and the BS. Note that D∗ ≤ D almost surely, since a typical vehicle

can of course receive data directly from its closest BS.

Figure B.1b exhibits the definition of two key functions of the geometry:

(1) θ0(d, d
∗) the angle of the tangent to a disc of radius d∗, and (2) l0(d, d

∗, θ)

which for Θ ≤ θ0(d, d
∗) is the length of the segment starting from (d, 0) with

angle θ to the disc of radius d∗.

(a) Geometry of vehicle clus-
ter based opportunistic relay-
ing.

(b) Illustration of d∗,
θ0(d, d

∗), l∗,b and l0(d, d
∗, θ).

Figure B.1: Geometry of the typical vehicle’s cluster and environment.

With these definitions one can evaluate P(D∗ ≤ d∗|D = d) by identify-

ing a partition E1,E2 and E3 corresponding to the three cases/events exhibited

in Figure B.2 and given by :

• Case 1: E1 = {Θ > θ0(d
∗, d)}

• Case 2: E2 = {Θ ≤ θ0(d
∗, d), L∗,b < l0(d, d

∗,Θ)}

• Case 3: E3 = {Θ ≤ θ0(d
∗, d), L∗,b ≥ l0(d, d

∗,Θ)}
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In general we have from independence of Θ and L∗,b:

P(D∗ ≤ d∗|D = d)

=

∫ π
2

0

∞∑
i=0

P(D∗ ≤ d∗|D = d,Θ = θ, L∗,b = i · dV)pL∗,b(i · dV)fΘ(θ)dθ (B.6)

(a) Case 1 Configuration. (b) Case 2 Configuration.

(c) Case 3 Configuration.

(d) Case 3 Region of Interest.

Figure B.2: Typical Vehicle’s Cluster Configuration Analysis

We consider the three cases individually.

Case 1. For a given d, d∗ the critical angle, i.e., the angle of the tangent line

to the circle of radius d∗, is given by

θ0(d, d
∗) ≜ sin−1(d∗/d) (B.7)
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and note from Figure B.2a that if Θ ≥ θ0(d, d
∗) then the cluster does not hit

the radius d∗ disc, whence D∗ > d∗, and P(D∗ ≤ d∗|E1, D = d) = 0.

Case 2. For a given d, d∗ and Θ = θ < θ0(d, d
∗) note from Figure B.2b that

a cluster extending a length L∗,b = l where

l ≤ l0(d, d
∗, θ) ≜ d cos(θ)−

√
d∗2 − (d sin(θ))2 (B.8)

will not hit the disc of radius d∗, whence D∗ > d∗. Here l0(d, d
∗, θ) is de-

termined by studying the triangle of side lengths l0, d and d∗, knowing θ.

Therefore, here again, P(D∗ ≤ d∗|E2, D = d) = 0.

Case 3. The last case corresponds to event E3 illustrated in Figure B.2c.

Given d, d∗,Θ ≤ θ = θ0(d, d
∗) and L∗,b = l ≥ l0(d, d

∗, θ), the vehicle cluster

extends into the circle C1 of radius d∗. In order for D∗ ≤ d∗, two conditions

must be true: (1) at least one vehicle in the cluster must be in the disk of

radius d∗, and (2) none of the vehicles within that disk must be closer to

another BS than the one at the origin.

The first condition can be shown to be equivalent to⌊ l0
dV

⌋
̸=
⌊ l0 + 2

√
d∗2 − (d sin(θ))2

dV

⌋
, (B.9)

i.e., when the two intersections between the cluster fragment and the circle

of radius d∗ occur between two different pairs of consecutive vehicles. If this

condition does, not hold, then P(D∗ ≤ d∗|E2, D = d) = 0.

The second condition is related to the scenario illustrated in Figure B.2d

where we draw two additional circles. The first is C2 whose center the closest
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vehicle from the one at (d, 0) that lies within C1 and whose radius is its distance

to the BS at the origin. The second, C3, is centered at the typical vehicle (d, 0)

and has radius d, i.e. also crosses the origin. Recalling that the origin is the

location of the closest BS to (d, 0), and thus C3 contains no other base stations.

A necessary and sufficient condition to ensure that at least one vehicle in the

cluster fragment within C1 is associated with the BS at the origin is that there

are no BSs in the shaded region R(d, d∗, θ) representing all locations that are

closer to the first vehicle in C1 than to the origin. This follows because

• if there is a BS in R(d, d∗, θ) then not only will the first cluster vehicle

in C1 not be associated with b, but so will all the others, since the circle

centered on each such vehicle and traversing the origin, will contain

R(d, d∗, θ). We can then conclude that D∗ > d∗.

• if R(d, d∗, θ) is empty, then at least one vehicle in the cluster is less than

d∗ meters away from b, and will associate with it, i.e. D∗ ≤ d∗.

Using basic algebra and the law of cosines one can show that the dis-

tance d0 between the typical vehicle and the first cluster vehicle in C1 is given

by

d0(d, d
∗, θ) ≜ dV ·⌈ l0(d, d

∗, θ)

dV
⌉ (B.10)

and the distance r0 from that vehicle to the origin (i.e., radius of C2) is given

by

r0(d, d
∗, θ) ≜

√
d2 + d20 − 2d · d0 cos(θ). (B.11)
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where we have suppressed the arguments of d0 for conciseness. Using the

expression in [165] for the area of C2 ∩ C3, as a function of d, d0 and r0, one

can find an expression for the area a0 of R(d, d∗, θ):

a0(d, d
∗, θ) ≜ πr20 −

[
r20 cos−1(

d20 + r20 − d2

2d0r0
) + d2 cos−1(

d20 + d2 − r20
2d0d

)−√
(−d0 + r0 + d)(d0 + r0 − d)(d0 − r0 + d)(d0 + r0 + d)

2

]
(B.12)

where we have suppressed the arguments of d0 and r0 for conciseness. Since

BSs form a PPP, the probability there is no BS in R is given by

P(ΦBS ∩ R(d, d∗, θ) = ∅) = e−λBSa0(d,d
∗,θ). (B.13)

Now considering the two necessary and sufficient conditions to ensure

that at least one vehicle in the cluster fragment is within a distance d∗ to the

origin, we get

e0(d, d
∗, θ) ≜ P(D∗ ≤ d∗|E3, D = d)

= e−λBSa0(d,d
∗,θ) · 1

{⌊ l0
dV

⌋
̸=
⌊ l0 + 2

√
d∗2 − (d sin(θ))2

dV

⌋}
(B.14)

Therefore, Equation B.6 now reduces to

P(D∗ ≤ d∗|D = d)

=

∫ θ0(d,d∗)

0

∞∑
i=⌈ l0(d,d

∗,θ)
dV

⌉

e0(d, d
∗, θ)pL∗,b(i · dV)fΘ(θ)dθ (B.15)

=

∫ θ0(d,d∗)

0

P(L∗,b ≥ d0(d, d
∗, θ)) · e0(d, d∗, θ)fΘ(θ)dθ (B.16)
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where fΘ(θ) = 1
π/2

, for θ ∈ [0, π/2]. The result follows from this expression

and Lemma B.1.1.

B.2 Proof Theorem 3.6.1

Proof. The sequential algorithm is executed in |ϕV,c| steps, where one seeks to

associate at step t one additional vehicle to one of the serving BSs that provides

the largest marginal improvement in cluster utility given that t − 1 vehicles

have already been associated. We shall prove the theorem by contradiction.

We shall need the following two definitions.

• Define ∆b
c(n) to be the change in cluster utility if an additional vehicle in

cluster c were to associate to BS b. More specifically, ∆b
c(n) = Lc,α(n +

eb) − Lc,α(n) = (nb + 1) · Uα

(
rb,∗c

(nb+1)+kbc

)
− nb · Uα

(
rb,∗c

nb+kbc

)
. Note that

∆b
c(n) is decreasing in the entries of n as Lc,α(n) is concave in these

entries.

• Similarly, define ∆−b
c (n) to be the change in cluster utility if a vehicle

in cluster c associated to BS b were to be removed. We have, ∆−b
c (n) =

Lc,α(n−eb)−Lc,α(n) = (nb− 1) ·Uα

(
rb,∗c

(nb−1)+kbc

)
−nb ·Uα

(
rb,∗c

nb+kbc

)
. Note

that ∆−b
c (n) = −∆b

c(n− eb).

Suppose Lc,α(n∗
c) > Lc,α(ñ

(|ϕV,c|)
c ). Then ∃ b+, b− ∈ ϕBS,c such that

nb+,∗
c > ñ

b+,(|ϕV,c|)
c and nb−,∗

c < ñ
b−,(|ϕV,c|)
c . Let t0 be the index of the last

iteration of the sequential algorithm that associated an additional vehicle to
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BS b−. We seek to show that ∆b−
c (n∗

c) + ∆−b+
c (n∗

c) ≥ 0. We have successively:

∆b−
c (n∗

c) ≥ ∆b−
c (ñ(t0−1)

c ) (B.17)

≥ ∆b+
c (ñ(t0−1)

c ) (B.18)

≥ ∆b+
c (n∗

c − eb+) (B.19)

= −∆−b+
c (n∗

c) (B.20)

Where inequality B.17 follows from the facts that nb−,∗
c ≤ ñ

b−,(t0−1)
c and

∆b−
c is decreasing. Inequality B.18 is a necessary condition for the sequential

algorithm to associate the vehicle to BS b− at step t0, and inequality B.19

follows from the facts that nb+,∗
c ≥ 1 + ñ

b+,|ϕV,c|
c ≥ 1 + ñ

b+,(t0−1)
c and ∆b+

c is

decreasing in nb+
c . Finally equality B.20 follows from the definition of ∆b

c(n).

Therefore, we get ∆b−
c (n∗

c) + ∆−b+
c (n∗

c) ≥ 0, hence n∗
c is not optimal. We

conclude from this contradiction that the sequential algorithm finds an optimal

association vector.
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Appendix C

Chapter 4 Proofs

C.1 Timeliness Metric Motivation

We show that the timeliness metric 1
2ρ

+ dt + dc is reasonable in the

setting under study. In [172], the authors show in Theorem 3 that the mean

AoI τm of device m is:

τm =
E[ImDm] + E[I2m]/2

E[Im]
(C.1)

where Im represents the inter-arrival time between updates originating from

m, and Dm is the system delay experienced by its updates. Intuitively, Im and

Dm are correlated, as a long inter-arrival time would be associated with the

compute node having more time to process the tasks currently queued. More

formally, we have the following result proved in Appendix C.2:

Lemma C.1.1. E[ImDm] ≤ E[Im] · E[Dm]

Therefore, for deterministic Im , E[Im] = 1
ρ
, E[I2m] = 1

ρ2
and E[Dm] =

dt + dc, we get τm ≤ 1
2ρ

+ dt + dc. Now, with increasing number of devices (our

regime of interest), the incremental impact of an individual device m on the

delay experienced by its own packets becomes negligible. Hence, by separation
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of time scales, one can conclude that this bound becomes tight in the limit,

motivating our timeliness metric.

C.2 Proof of Lemma C.1.1:

Proof. We start by proving a useful result:

Lemma C.2.1 (Extension of the FKG inequality [58]). Let f and g be respec-

tively non-increasing and non-decreasing functions, then

E[f(X)g(X)] ≤ E[f(X)]E[g(X)]. (C.2)

Proof. Let X1 and X2 be two independent copies of the same random vari-

able X. We have:

(g(X1)− g(X2))(f(X1)− f(X2)) ≤ 0
(C.3)

⇐⇒ E[f(X1)g(X1)] + E[f(X2)g(X2)] ≤ E[f(X2)g(X1)] + E[f(X1)g(X2)]
(C.4)

⇐⇒ E[f(X)g(X)] ≤ E[f(X)]E[g(X)] (C.5)

Let Nm be the number of arrivals to the queue during the inter-arrival

time Im, and let {Ri}i be the residual times of the update packets in the

compute node queue upon arrival of the update from m. By the law of total

covariance, we have:

Cov(Im, Dm) = E[Cov(Im, Dm|{Ri}i, Nm)]+
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Cov(E[Im|{Ri}i, N ],E[Dm|{Ri}i, Nm])

By observing that Dm is a deterministic function of {Ri}i and Nm, we con-

clude that the first term must be 0 as the covariance of two random variables

is 0 if one of them is deterministic. Moreover, we note that E[Im|{Ri}i, Nm] =

f({Ri}i, Nm) and E[Dm|{Ri}i, Nm] = g({Ri}i, Nm), where f and g are de-

terministic functions. Clearly, f and g are respectively nonincreasing and

nondecreasing in {Ri}i and Nm. Hence, from Lemma C.2.1,

Cov(E[Im|{Ri}i, Nm],E[Dm|{Ri}i, Nm]) ≤ 0, (C.6)

thus Cov(Im, Dm) ≤ 0, hence E[ImDm] ≤ E[Im]E[Dm].

C.3 Proof of Theorem 4.6.1

Proof. We start from Algorithm 4.1’s decision policy. We have:

arg min
s∈S̃a

∫ u′
a,s(t)

us(t)

f(u)du (C.7)

= arg min
s∈S̃a

∫ u′
a,s(t)

us(t)

1

1− u
du (C.8)

= arg max
s∈S̃a

log(1− u′a,s(t))− log(1− us(t)) (C.9)

= arg max
s∈S̃a

log(1− u′a,s(t))− log(1− us(t)) (C.10)

+
∑
s′∈S̃a

log(1− us′(t)) (C.11)

= arg max
s∈S̃a

log(1− u′a,s(t)) +
∑

s′∈S̃a\s

log(1− us′(t)) (C.12)

where the third step consists in adding a constant w.r.t. s.
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C.4 Proof of Theorem 4.6.2

Proof. This lower-bound proof is a generalization of the one proposed in [6].

As in [6], we introduce a virtual overflow compute node so of infinite capacity

hosting the VMs of devices that have been blocked. Define βa(t) to be the

number of Type a customers that have been blocked, i.e., that have been

hosted in so, in [0, t), Tm to be the random holding time of device m, and

Xa,s(t) to be the state of the network at time t, i.e., the number of Type a

customers served by s. We have successively:

CD(w,λ,µ,∆,κ) (C.13)

=
∑
a∈A

waµ
−1
a λaP (Ba;λ,µ,∆,κ) (C.14)

=
∑
a∈A

waµ
−1
a λa lim

t→∞

E[βa(t)]

tλa
(C.15)

(a)
= lim

t→∞

∑
a∈A

waµ
−1
a

t
E[

βa(t)∑
m=1

Tm
µ−1
a

] (C.16)

(b)

≥ lim
t→∞

∑
a∈A

wa

t
E[

∫ t

0

Xa,so(y) dy] (C.17)

= lim
t→∞

∑
a∈A

wa

t
(E[

∫ t

0

∑
s∈S∪so

Xa,s(y) dy] (C.18)

− E[

∫ t

0

∑
s∈S

waXa,s(y) dy]) (C.19)

(c)
= lim

t→∞

∑
a∈A

waλa
µat

∫ t

0

1− e−yµa dy (C.20)

− lim
t→∞

1

t

∫ t

0

E[
∑
a∈A

∑
s∈S

waXa,s(y)] dy (C.21)
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(d)

≥
∑
a∈A

waλa
µa

lim
t→∞

t+ e−tµa − 1

t
(C.22)

− (
∑
a∈A

∑
s∈S

waA
∗
a,s) lim

t→∞

1

t

∫ t

0

1 dy) (C.23)

=
∑
a∈A

wa(λaµ
−1
a −

∑
s∈S

A∗
a,s) (C.24)

= CD(w,λ,µ,∆,κ) (C.25)

Step (a) follows from the algebraic limit theorem as the number of types is

finite and from the fact that Tm are i.i.d. of mean µ−1
a , i.e., Tm

µ−1
a

have unit mean.

Step (b) is a bound because some customers that arrived to so before time t

may still be in the system at time t. Step (c) follows from the idea that the

augmented network can be viewed as an M/M/∞ queue, using the expression

of the mean number of users in such a system at time t starting from the empty

state at t = 0, as well as the Fubini-Tonelli theorem. In step (d), we use the

fact that at every time y, E[
∑

a∈A
∑

s∈SwaXa,s(y)] ≤
∑

a∈A
∑

s∈SwaA
∗
a,s by

definition of LP-MKP(w,λ,µ,∆,κ).
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Appendix D

Chapter 5 Proofs

D.1 Proof Theorem 5.5.7

Proof. In this proof, we restrict our attention to a region R(x, a0), where

R(x, a0) = {y ∈ R2 : ∥y∥2 ≤ η+σ(x)}, and η is such that dt(η) = a0. Defining

R(x, a0) in this way leads to the following observation: g /∈ R(x, a0) =⇒

q(x,g) < 1 − ϵ,∀x ∈ Rn×2,∀ϵ ∈ [0, 1]. Therefore, Fϵ(x) ⊂ R(x, a0), allowing

us to study it by only considering points in R(x, a0). We now prove a useful

lemma.

Lemma D.1.1 (Stochastic Majorization of Max Distance). Let x and x′ ∈

Rn×2 be any two configurations of n players, where σ(x) ≥ σ(x′), and let G be

a random G-server coordinate vector uniformly distributed on R(x, a0). Define

∆,∆′ ∈ Rn
+ to be the random vectors of induced distances between G and each

point in x and x′, respectively.

If maxi ∆i ≤st maxi ∆′
i, then under the JMRA algorithm

|Fϵ(x)| ≥ |Fϵ(x
′)|,∀ϵ ∈ [0, 1]. (D.1)

Proof. We start this proof by noting that

|Fϵ(x)| =
∫∫

R(a0,x)

1{q(d̄t(x,g)) > 1− ϵ}dg (D.2)
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= |R(a0,x)| · EG[1{q(d̄t(x,G)) > 1− ϵ}] (D.3)

Similarly, |Fϵ(x
′)| = EG[1{q(d̄t(x′,G)) > 1 − ϵ}]. Hence |Fϵ(x)| ≥

|Fϵ(x
′)|,∀ϵ ∈ [0, 1] ⇐⇒ EG[1{q(d̄t(x,G)) > 1 − ϵ}] ≥ EG[1{q(d̄t(x,G)) >

1− ϵ}],∀ϵ ∈ [0, 1].

Furthermore, we note that 1{q(dt) > 1− ϵ} =

1{maxρ

{
P(ADt

δ ,ρ
≤ a0 | Dt

δ = dt) : dc(
∑

j ρj) ≤ τ
}
> 1− ϵ} is a symmetric

function of the delay vector dt, see Equation 5.5, and decreasing in each of

the components of this random vector. Besides, the indicator function returns

non-negative values, less than or equal to 1. Therefore, 1{q(Dt
∆) > 1 − ϵ} is

a symmetric joint survival function of the random delay vector Dt
∆, hence of

the random distance vector ∆. Now we have:

max
i

∆i ≤st max
i

∆′
i (D.4)

⇐⇒ P(max
i

∆i ≤ t) ≥ P(max
i

∆′
i ≤ t), ∀t ∈ R (D.5)

⇐⇒ P(∆1 ≤ t, · · · ,∆n ≤ t) ≥ P(∆′
1 ≤ t, · · · ,∆′

n ≤ t), ∀t ∈ R (D.6)

⇐⇒ max
i

∆i ≤slo max
i

∆′
i (D.7)

⇐⇒ E[ψ(∆)] ≥ E[ψ(∆′)],∀ψ ∈ C. (D.8)

where C is the class of symmetric joint survival functions. The definition of the

symmetric lower orthant ordering and its properties can be found in [141, 142].

The result follows from the fact that 1{q(d̄t(x,G)) > 1−ϵ} ∈ C,∀ϵ ∈ [0, 1].

We now proceed to prove the theorem. The proof is subdivided in two

parts: we first show that for any player configuration x in a disk of radius σ(x)

231



moving the players to the boundary of the disk reduces |Fϵ(x)|; we then show

that equispacing the players on the boundary of the disk minimizes this area.

Part 1: Equalizing the radial coordinate components. In this

part, we construct a coupling between any configuration of players x, of geo-

graphical spread σ(x) and the configuration x′ of players having the same polar

angular coordinates, as in x, but all the polar radial coordinate components

equal to σ(x), i.e., all the players are located on the boundary of the circle

centered at the origin and of radius σ(x). We observe that under configuration

x′ region R(x, a0) can be partitioned into n sectors, where sector R′
k(x, a0) is

defined to be the region of points such that player k is the furthest player,

or equivalently, R′
k(x, a0) = {g ∈ R(x, a0) : arg maxi ∆′

i = k}. Similarly, we

define Rk(x, a0) = {g ∈ R(x, a0) : arg maxi ∆i = k}. Since no adjacent players

are separated by an angle larger than π, by construction of the circle of ra-

dius σ(x) to be the circle of smallest radius encompassing all the players, it is

clear that ⟨xk,g⟩ ≤ 0,∀g ∈ Rk(x, a0),∀k and ⟨x′
k,g⟩ ≤ 0,∀g ∈ R′

k(x, a0),∀k.

Now we have: maxi δi = δk = ∥xk − g∥2 =
√
∥xk∥22 + ∥g∥22 − 2⟨xk,g⟩ ≤√

∥x′
j∥22 + ∥g∥22 − 2⟨x′

j,g⟩ = δ′j = maxi δ
′
i, where the inequality follows from

the facts that ∥xk∥2 ≤ ∥x′
j∥2, ⟨xk,g⟩ ≤ 0, ⟨x′

j,g⟩ ≤ 0, and the angle be-

tween xk and g being equal to the one between x′
j and g, by construction.

Therefore, for any realization g ∈ R(x, a0) we have maxi δi ≤ maxi δ
′
i, thus

maxi ∆i ≤ maxi ∆′
i, almost surely. It follows that maxi ∆i ≤st maxi ∆′

i, hence

we get from Lemma D.1.1, |Fϵ(x)| ≥ |Fϵ(x
′)|,∀ϵ ∈ [0, 1].

Part 2: Equalizing the angular coordinate components. In this
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part, we prove that for any configuration x such that all the players are on

the boundary of a circle of radius σ(x), spacing the players regularly on the

boundary minimizes |Fϵ(x)|. In this setting, the player configuration can be

parametrized by θ the vector of differential angles between adjacent players

on the circle.

We start by deriving an expression for P(maxi ∆i ≥ t|∥G∥2,θ), the

conditional c.d.f. of maxi ∆i, given ∥G∥2 = r and parametrized by θ ∈ [0, 2π]n,

where
∑

i θi = 2π. One can show that:

P(max
i

∆i ≥ t|∥G∥2 = r,θ) =

∑
k min[γ(t, r), θk/2]

π
(D.9)

where γ(t, r) = π − cos−1(max[min[σ(x)
2+r2−t2

2rσ(x)
, 1],−1]).

We observe that P(maxi ∆i ≥ t|∥G∥2 = r,θ) is symmetric and concave

in θ, it is therefore Schur-concave in θ. Let θ′ parametrize the equispaced

configuration, i.e., θ′i = 2π
n
,∀i, then clearly θ′ ≺ θ,∀θ ∈ [0, 2π]n, where

∑
i θi =

2π. We say that θ′ is majorized by θ. Therefore, from Schur-concavity, we

have

P(max
i

∆′
i ≥ t|∥G∥2 = r,θ′) ≥ P(max

i
∆i ≥ t|∥G∥2 = r,θ),∀r, (D.10)

which implies that

P(max
i

∆′
i ≥ t) ≥ P(max

i
∆i ≥ t), ∀θ ∈ [0, 2π]n, (D.11)

by integrating over all values of r so as to span R(x, a0). It follows that

maxi ∆i ≤st maxi ∆′
i, hence we get from Lemma D.1.1,

|Fϵ(x)| ≥ |Fϵ(x
′)|,∀ϵ ∈ [0, 1]. (D.12)

233



D.2 Proof of Theorem 5.6.3

Proof. We know that q̄(δ) = P(q(Dt
δ) > ϵ) is a Schur-concave function in δ as

q(dt) is Schur-concave in dt, see [112]. The Schur-concavity property of q(dt)

directly follows from the fact that the function is symmetric in the entries of dt,

and concave in dt, see section 3.2.5 in [24]. In addition, from Assumption 5.5.1,

we know that ∀z ∈ Rn
+, D

t
δ ≤icx Dt

δ+z. Since q(dt) is decreasing and concave

in dt, we have

q̄(δ) = P(q(Dt
δ) > 1− ϵ) ≥ P(q(Dt

δ+z) > 1− ϵ) = q̄(δ + z), (D.13)

i.e., q̄(δ) is decreasing in δ. Therefore, q̄(δ) is a Schur-concave decreasing

function in δ, thus given δ and δ′ ∈ Rn
+ be two distance vectors induced by

two feasible game servers, δ ≺w δ′ =⇒ q̄(δ) ≥ q̄(δ′), as argued in [112].
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Appendix E

Chapter 6 Supplementary Material and Proofs

E.1 Petovello’s Method Overview

Consider the following general linear dynamic system:
xk+1 = Φxk + Γwk

zk = Hxk + vk

vk+1 = Ψvk + ζk,

(E.1)

where xk ∈ Rn is the true state at time k, and zk ∈ Rm is the vector of

m measurements at time k, such that wk ∼ N(0, Q), ζk ∼ N(0, R), and

E[wkζ
⊤
l ] = 0n×m, for all k, l.

Similarly to the classical Kalman filter, the filtering procedure at any

time k can be decomposed into a prediction and measurement update steps.

In Petovello’s method [126], the prediction step is performed at time k as

x̂k|k−1 = Φx̂k−1|k−1 (E.2)

Pk|k−1 = ΦPk−1|k−1Φ
⊤ +Q (E.3)

while the measurement update step is performed at time k as

z̃k = zk − Φzk−1 (E.4)

H̃ = H −ΨHΦ−1 (E.5)
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S = QΓ⊤(Φ−1)⊤H⊤Ψ⊤ (E.6)

R̃ = ΨHΦ−1ΓQΓ⊤(Φ−1)⊤H⊤Ψ⊤ +R (E.7)

Kk = [Pk|k−1H̃
⊤ + S][H̃Pk|k−1H̃

⊤ + R̃ + H̃S + S⊤H̃⊤]−1 (E.8)

x̂k|k = x̂k|k−1 +Kk[z̃k − H̃x̂k|k−1] (E.9)

Pk|k = Pk|k−1 −Kk[H̃Pk|k−1H̃
⊤ + R̃ + H̃S + S⊤H̃⊤]K⊤

k (E.10)

E.2 Proof Theorem 6.5.1

Proof. To study the steady-state error variance of the DKF tracking the envi-

ronment characterized by Equation 6.4, we invoke a result in [156] showcasing

the equivalence between centralized and decentralized Kalman Filtering when

the MF performs Track-to-Track Fusion with Memory. We can therefore study

the steady-state error variance of the associated Centralized Kalman Filter,

whose equations are provided in Appendix E.1 with the following simplifica-

tions: Ψ = diag(α), R = diag(σ2), Φ = 1, Γ = 1, H = 1|C|×1.

Lemma E.2.1. Let W ∈ R∗
+, X ∈ R∗,1×n

+ , Y ∈ R∗,n×1
+ , Z ∈ R∗,n×n

+ and Z

invertible. We have:

W = X[Y X + Z]−1X⊤ ⇐⇒ W = XZ−1[X⊤ − YW ] (E.11)

Proof.

W = X[Y X +B]−1X⊤ (E.12)

⇐⇒ YW = Y X[Y X + Z]−1X⊤ + Z[Y X + Z]−1X⊤ − Z[Y X + Z]−1X⊤

(E.13)
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⇐⇒ YW + Z[Y X + Z]−1X⊤ = X⊤ (E.14)

⇐⇒ X⊤ = [Y X + Z]Z−1[X⊤ − YW ] (E.15)

⇐⇒ X⊤ = Y XZ−1[X⊤ − YW ] +X⊤ − YW (E.16)

⇐⇒ Y ⊤YW = Y ⊤Y XZ−1[X⊤ − YW ] (E.17)

⇐⇒ W = XZ−1[X⊤ − YW ] (E.18)

From Equations E.3, E.10 and E.8, we know that P ∗ must satisfy the

following fixed point equation:

P ∗ = P ∗ +Q− [P ∗H̃⊤ +QH̃⊤ + S]×

[H̃P ∗H̃⊤ + H̃QH̃⊤ + R̃ + H̃S + S⊤H̃⊤]−1[P ∗H̃⊤ +QH̃⊤ + S]⊤ (E.19)

⇐⇒ Q = [P ∗H̃⊤ +QH⊤]×

[H̃(P ∗H̃⊤ +QH⊤) + R̃ + S⊤H̃⊤]−1[P ∗H̃⊤ +QH⊤]⊤ (E.20)

⇐⇒ Q = [P ∗(1−α) +Q1]⊤[Qα1⊤ +R]−1[P ∗(1−α) +Qα] (E.21)

where the last step directly follows from Lemma E.2.1. Also, we have from

the matrix inversion lemma:

[Qα1⊤ +R]−1 = R−1 −R−1Qα(1 +Q
∑
i

αi

σ2
i

)−11⊤R−1. (E.22)

It follows that for A,B,C,D,E and F defined in Theorem 6.5.1:

Q = [P ∗(1−α) +Q1]⊤R−1[P ∗(1−α) +Qα]
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− Q

1 +QA
[P ∗(1−α) +Q1]⊤R−1α1⊤R−1[P ∗(1−α) +Qα] (E.23)

Now given that R = diag(σ2), expanding the above expression com-

bining and simplifying the terms in (P ∗)2, P ∗ and independent ones lead to

the following quadratic equation:

(B − QCD

1 +QA
) · (P ∗)2 + (

QE

1 +QA
) · P ∗ − (Q2A− Q3A2

1 +QA
−Q) = 0

⇐⇒ (B +Q(BA− CD)) · (P ∗)2 +QE · P ∗ −Q = 0 (E.24)

Now given that P ∗ ≥ 0, the unique solution of this quadratic equation is

P ∗ =
−QE +

√
Q2FB + 4QB

2(B +Q(BA− CD))
. (E.25)

E.3 Proof Theorem 6.5.5

Proof. Consider the feedback rate selection policy that triggers a reset signal

to vehicle i whenever the estimation error variance reaches βi. This policy

is clearly optimal as it minimizes number of feedback signals transmitted to

any LF i, while ensuring that the error constraint is slack. We now show that

this policy sends the same number of feedback signals as the one described in

Theorem 6.5.5.

Let t be one of those trigger times, in general t can be expressed as

t = kτ + δ for some k ∈ N and 0 ≤ δ < τ . Then the estimation error variance

of LF i would drop at time t to P ∗ + ν2δ and would evolve independently
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from there until it reaches βi again. Now consider that the feedback signal is

transmitted at time kτ instead of time t. Then the estimation error variance

of LF i successively drops to P ∗ at time kτ , rises to P ∗ + ν2δ at time t and

evolves independently from there until it reaches βi again at the same time

as it would have without the time shift. Therefore, shifting the feedback time

to the immediate preceding multiple of τ has no effect on the future trigger

times. Thus, all the feedback times can be shifted without affecting the total

number of transmitted feedback signals.

In retrospect, this is not surprising as the information contained in the

feedback signal at time kτ and t = kτ + δ is the same.

E.4 Proof Theorem 6.5.6

Proof. To prove this theorem, we prove first two useful lemmas.

Lemma E.4.1. The function Ti(x) is increasing in x, for any i in V.

Proof. We have Ti(x) =
x(σ2

i +Qα2
i )+Qσ2

i

x(a−αi)2+σ2
i +Q

, and we verify that its derivative is

∂Ti(x)
∂x

=
(σ2

i +Qαi)
2

(x(1−αi)2+σ2
i +Q)2

> 0,∀x.

Lemma E.4.2.
∑

i∈R∗ ρ∗i is a non-decreasing function of P ∗.

Proof. Let x1, x2 ∈ R+, such that x1 < x2. From Lemma E.4.1, we deduce

that Tk(x1) < Tk(x2) and hence

T
(n)
i (x1) < T

(n)
i (x2),∀n ∈ N (E.26)
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Now let γ∗1 = arg maxγ{γ : T
(γ−1)
i (x1) + Q ≤ βi} and γ∗2 = arg maxγ{γ :

T
(γ−1)
i (x2)+Q ≤ βi}. Then it must be that γ∗1 ≥ γ∗2 . Indeed, suppose γ∗1 < γ∗2 ,

then from Equation E.26, T
(γ∗

2−1)
i (x1)+Q < T

(γ∗
2−1)

i (x2)+Q ≤ βi which, given

the definition of γ∗1 , contradicts the premise. It follows from Equation 6.11

that ρ∗i (x1) = (τγ∗1)−1 ≤ (τγ∗2)−1 = ρ∗i (x2). It follows that
∑

i∈R∗ ρ∗i is non-

decreasing in P ∗ as a sum of non-decreasing functions is non-decreasing.

Let C∗
m,1 = arg minC {P ∗(C) : |C| = m} and

C∗
m,2 = arg minC

{∑
i∈R∗ ρ∗i (C) : |C| = m

}
.

First, we know that
∑

i∈R∗ ρ∗i (C
∗
m,2) ≤

∑
i∈R∗ ρ∗i (C

∗
m,1) from the defini-

tion of C∗
m,2. Now assume that

∑
i∈R∗ ρ∗i (C

∗
m,2) <

∑
i∈R∗ ρ∗i (C

∗
m,1), then it must

be that P ∗(C∗
m,2) < P ∗(C∗

m,1) from Lemma E.4.2, which contradicts the defini-

tion of C∗
m,1. Therefore, it must be that

∑
i∈R∗ ρ∗i (C

∗
m,2) =

∑
i∈R∗ ρ∗i (C

∗
m,1).
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