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This work starts by considering flow control mechanisms for rate-adaptive services in net-

works with a static number of connections. It spans performance and design of dynamic net-

works supporting rate-adaptive services, and culminates in a collection of tools and methods

for designing multiservice networks. These results lead to some guidelines for the traffic

management and design of networks.

We consider a flow control algorithm to allocate bandwidth for rate-adaptive ser-

vices in a network with a ‘fixed’ number of connections subject to throughput and fairness

constraints. Our algorithm achieves a max-min fair rate allocation among contending users,

and has desirable properties in that it can operate in a decentralized and asynchronous man-

ner. The algorithm is simple in that the network links make local measurements of capacity

and calculate local ‘explicit rates’ without requiring knowledge of the number of ongoing

connections. Connections will receive a bandwidth determined by the minimum explicit

rate along their respective routes. We discuss its stability, convergence, and feasibility is-

sues related to fair allocation and rate-based flow control. We also consider the role of

sessions with priorities under weighted max-min fair allocation of bandwidth, and its use
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for ‘ABR flow control’ in ATM networks.

We next consider the stability and performance of a model for ‘dynamic’ networks

supporting rate-adaptive services. In our model connection arrivals are stochastic and have

a random amount of data to send, so the number of connections in the system changes over

time. In turn bandwidth allocated to connections also may change over time due to feed-

back control,e.g.,max-min fair or proportionally fair allocation of bandwidth, that reacts to

congestion and implicitly to the number of ongoing connections. We prove the stability of

such networks when the offered load on each link does not exceed its capacity. Simulations

are used to investigate the performance, in terms of average connection delays, for various

types of bandwidth allocation. Our model can be used to investigate connection level stabil-

ity and performance of networks supporting rate-adaptive services. We also discuss design

issues and possible methods to guarantee delay quality of service requirements to dynamic

connections, as required by interactive services.

We then consider multiservice ATM networks, in which both rate-adaptive ABR

and CBR services, with dynamic arrivals and departures, share a single node. This is mod-

eled by two-dimensional Markov chain, and a matrix-geometric equation is solved to yield

performance estimates for ABR connections,i.e., average delay and available bandwidth.

By a “separation of time scales” between ABR and CBR services, we propose an approx-

imate solution for the steady state performance of the above Markov chain. These perfor-

mance results enable joint design of networks supporting multiple services. These results

are partially extended to large-scale networks to compute available bandwidth for ABR con-

nections in a dynamically changing environment. We find an upper bound on the average

minimum throughput for ABR services and show that the bound is asymptotically achieved

in large-capacity networks. To further increase efficiency, we consider adjustments via net-

work level priority by way of weighted max-min fair allocation of bandwidth.
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Chapter 1

Introduction

Telephone networks, Cable TV (CATV), and the Internet have historically provided single

types of service. However, these networks are quickly becoming “multiservice” networks

partly driven by user demand for new services, by technological advances, and by eco-

nomic factors. Some examples include internet phone, web-TV, and internet service on

Asymmetric Digital Subscriber Line (ADSL).

Multiservice networks will carry various traffic types such as video, voice and data

which require different qualities of service (QoS). Moreover, such networks will transfer

huge volumes of traffic which will grow rapidly as the number of users increases and data

intensive services are provided. The challenge to network providers is to manage high

capacity networks carrying heterogeneous traffic while meeting QoS requirements,e.g.,

bandwidth, delay and loss rate. The objective of this dissertation is to consider some aspects

of this problem and to present guidelines which might be used in network design.

Both conventional loss-networks,e.g., telephone networks, and packet-networks,

e.g.,the Internet, are limited in their ability to carry heterogeneous traffic subject to vari-

ous service requirements. In an attempt to envision multiservice networks with QoS guar-

antees, two major directions are being considered: Asynchronous Transfer Mode (ATM)

networks and the Internet with differentiated services. In this dissertation, we explore both

approaches, specifically as they relate to adaptive services.
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ATM networks are essentially packet networks using small fixed size packets, in

order to 1) reduce packetization delay with a view on delay constrained traffic such as

voice/video and 2) allow the construction of large high capacity switching fabrics. How-

ever by contrast to traditional packet networks, the ATM standard sets up virtual circuits,

i.e.,fixed paths which the cells associated with a given connection will follow. Thus ATM

networks exhibit the same character as that of telephone networks. In designing the ATM

standard, much attention was paid to efficiently managing bandwidth and providing QoS

guarantees to users [12, 14, 29]. However, replacing current networks with new ATM net-

work infrastructure and protocols may take time and be costly.

Another direction being pursued by researchers is to upgrade current Internet in-

frastructure and protocols (TCP/IP) by increasing capacity and introducing service differ-

entiation enabling QoS guarantees [37, 15, 48, 16, 6, 36]. In this approach, it is important

to understand the limitations of the current transport and IP service models, and how they

might be enhanced at low cost. This approach looks promising since whole new networks

and protocols need not to be built. However, it is questionable whether only minor changes

to the Internet can deliver the promised differentiated services.

In both approaches, traffic management is the key element. Networks should allo-

cate proper bandwidth to connections so as to prevent or alleviate congestion while maxi-

mizing network utilization and meeting service requirements. They should also ensure that

users/connections are treated “fairly” when there is contention for bandwidth. In this con-

text, flow control, QoS guarantees, and fairness provisioning are often closely related to one

another.

We first consider a service class aimed at efficiently utilizing varying available band-

width resulting from sharing of resources with variable rate traffic. Connections using the

service class adapt their transmission rate via a flow control mechanism based on either ex-

plicit or implicit indications of congestion. Typically, applications using this service class

require less stringent QoS guarantees,e.g.,range of bandwidth. In Chapter 2, we present a

flow control mechanism for this type of service.

2



Typical analysis of rate adaptive services assume a fixed number of connections in

the system and investigate convergence. In practice the number of connections using the

network resources is in constant flux. For example, users can establish World Wide Web

(WWW) connections at any time, and close the connections at will. Viewing the Inter-

net from the transport level, we see TCP connections adapting transmission dynamically

based on congestion status which would in turn reflect dynamic changes in the number of

connections. Similarly in ATM networks, Available Bit Rate (ABR) service would adapt

to varying available bandwidth due to changes in the number of connections as well as

changes in available bandwidth for such connections. In Chapter 3, we will consider the

stability of a stochastic network model which captures both the rate adaptation as well as

the dynamic nature of the environment.

Next we consider the performance of networks supporting adaptive services. In par-

ticular in Chapter 4, we develop methods to control the average delay connections will ex-

perience. It is increasingly important to guarantee delays for interactive or delay-intolerant

applications to be carried by the adaptive services. For example, users may withdraw when

delay response is more than a few seconds in WWW applications.

The next step is to consider multiservice networks carrying adaptive services in

addition to constant and variable bit rate services. In such networks, connections can be

dynamic and have heterogeneous QoS requirements and traffic characteristics. Modeling

is important to support design of multiservice networks. In Chapter 5, we analyze the

performance and consider the dimensioning of multiservice networks. Finally we conclude

and present future research directions in Chapter 6.
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Chapter 2

Flow Control of Networks

Supporting Adaptive Services

2.1 Introduction

As various types of traffic and QoS are expected to be carried in integrated services net-

works (e.g., ATM networks), traffic control and management are becoming increasingly

important. In this context, flow control is playing a prominent role. Its fundamental roles

are congestion control and fairness provisioning. Since network resources are shared by

many connections, it is important to decide on a policy dictating how the resources are

allocated while achieving high utilization of network resources.

The question of whether flow control mechanisms should (or would) achieve a ‘fair’

allocation of resources among users sharing a network, has been the focus of both intensive

research and debate [12]. There are currently two major views on the meaning of fairness,

leading to alternative approaches to network control. The first, calledmax-min fairness,

attempts to make the network transparent to users,i.e., resources are allocated so as to

maximize the minimum throughput of users contending for network resources [8]. More

general definitions of this type of fairness, might give priority, or weights to users, but have

essentially the same structure [23]. The second approach, is economic in nature, and at-
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tempts to allocate resources so as to maximize the sum of the user’s utilities - assuming

such utility functions are available. Kelly [30] refers to the associated allocation as being

proportionally fair and discusses cases where these two criteria coincide. Intuitively, in

this case the throughput achieved by various users will in general depend on the number

of bottleneck links the connections share. In a sense, max-min fairness attempts to maxi-

mize the worst caseindividualuser performance, while the second approach maximizes the

network’soverallutility to users at the possible expense of some individuals.

We will focus on the problem of achieving max-min fairness. While there has been

much work in this area, we believe that many of the proposed mechanisms are not viable in

a large-scale networking environment where there are strong limitations on the complexity

of the algorithms that can be implemented, seee.g.,[14].

Our starting point is a simple mechanism for flow control proposed in [21]. The

rationale for the mechanism is as follows: suppose thatn connections share a link with

capacityc. If the capacity is to be shared evenly by the connections, then the fair ratee(t)

n
sesssions

link
capacity c

e(t)

f(t)

Figure 2.1: A network with one link andn sessions (unconstrained sessions).

for each session, called “explicit rate”, should bec/n. Assuming the sessions send traffic at

this explicit rate, the link flow (typically measured) will ben timese(t), i.e.,f(t) = ne(t).

Now, since the number of active connectionsn may be unknown, we might estimate the

number implicitly rather than monitoring it explicitly as other rate-based control schemes

do [14, 57]. One can estimate the number of active connections usingn̂(t) = f(t)/e(t).

The explicit rate is then computed based on the estimated number,i.e.,e(t + 1) = c/n̂(t).

Due to the capacity constraint, it is desirable to ensure thate(t) can not exceed the link

capacityc, that is,e(t + 1) = min[ c/n̂(t), c ]. It may be preferable to limit thee(t) to be
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even smaller thanc, e.g.,peak session rate for any connection in the network. We will see

that this surprisingly simple mechanism can be extended to a network setting.

We consider a network consisting of a set of buffered linksL each with a (typically

measured) current bandwidth availability~c = (c`, ` ∈ L). Suppose a setS of sessions share

the network, where each sessions ∈ S has a set of linksLs associated with it. The setLs

is intended to define an end-to-end connection through the network. More than one session

might share each link, thus we letS` be the set of sessions crossing link`. 1

Suppose each link̀∈ L measures the aggregate flowf`(t) it is currently support-

ing, and computes a local ‘explicit rate’e`(t) based on an estimated effective number of

connections. In a scenario with greedy sources the session ratesas(t) are adjusted to be

the smallest among the explicit rates of all links along the route of the session. So the rate

adjustment for the sessions and the aggregate flows are captured by the following iterative

algorithm, which extends the idea of computing explicit rate in the single link network:

e`(t + 1) = min
[

c`e`(t)
f`(t)

, c`

]
, ` ∈ L

f`(t) =
∑

s∈S`
as(t), ` ∈ L

as(t) = min`∈Ls [ e`(t) ], s ∈ S.

(2.1)

The goal of this type of rate adjustment is to ensure that capacities are fully exploited

while achieving max-min fair rate allocation. Note that the explicit rate at each link` is

updated in adecentralizedmanner using local informationc`, e`(t) andf`(t) and exchanges

of information along each session’s path (rate adjustments) rather than requiring exchanges

of global states,e.g.,whether each session is constrained or not at the link. The algorithm

has clear advantages in terms of minimizing the information required to determine the max-

min fair allocation in that 1) it need not keep track of the number of active connections and

2) it need not maintain information on which sessions are constrained at each link.

In §2.2 we formally define some notions related to max-min fairness that will be

useful in the sequel, and in§2.3 we show that the iterative algorithm (2.1), wherein ex-

plicit rate updates are synchronous, has a unique fixed point and it achieves max-min fair
1In general one might allow for a multi-point session, says, by allowing the setLs to be a rooted tree on

the network.
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bandwidth allocation. Moreover we present a totally asynchronous version of the algorithm

and its convergence to the same max-min fairness. Next we consider the role of round trip

delays between sources and links, and extend the algorithm to one with session priorities

leading to the notion ofweighted fairness. As a specific application of this framework, we

considerrate-based flow control for ABR trafficin ATM networks in§2.4. We conclude and

re-evaluate the issue of fairness in§2.5.

2.2 Max-min Fairness

The main idea underlying max-min fairness can be explained as follows: each connection

crossing a link should get as much bandwidth as other such connections unless that session

is constrained elsewhere. In other words, available resources are allocated equally among

unconstrained sessions. Max-min fairness has the following characteristics:

• each session has a bottleneck link;

• and, unconstrained sessions at a given link are given their equal share of the available

capacity.

To formally define max-min fairness, we will use the following bottleneck property [8]:

Definition 2.2.1 (Bottleneck Property) A sessions has a ‘bottleneck’ link, if there exists

a link ` ∈ Ls such thatf∗` = c` anda∗s ≥ a∗r for all sessionsr ∈ S` traversing`.

Based on the bottleneck property, max-min fairness can be defined as follows [8]:

Theorem 2.2.1 (Max-min Fairness)A session rate allocation~a ∗ = (a∗s, s ∈ S) is ‘max-

min fair’ if for each sessions ∈ S, a∗s can not be increased without decreasinga∗r for some

sessionr for whicha∗r ≤ a∗s. Equivalently,~a ∗ is max-min fair if and only if each session

has a bottleneck link. Moreover the max-min fair allocation~a ∗ is unique.

It will be useful to consider the max-min fair allocation in terms of ahierarchy

of sets of bottleneck links and sessions [23] andfair shares. We define the fair sharex1
` =
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c`/n1
` at a link` ∈ L as a fair partition of capacity at the link in the1st level of the hierarchy,

wheren1
` = |S`| is the number of sessions through`. The set of1st level bottleneck links

and sessions is defined as follows:

L(1) = {` ∈ L | f∗` = c` and for alls ∈ S`, a
∗
s = x1 = min

m∈L
x1

m},

S(1) = {s ∈ S | s ∈ S` and` ∈ L(1)}. (2.2)

ThusL(1) is the set of1st level bottleneck links such that the sessions inS(1) traversing

these links are allocated the minimum bandwidth (‘fair share’) in the network,i.e., for

s ∈ S(1), a∗s = minr∈S a∗r = x1. These two sets make up the1st level of the bottleneck

hierarchy.

The next level of the hierarchy is obtained by applying the same procedure to a

reduced network. The reduced network is obtained by removing the sessions inS(1). The

capacity at each link inL \ L(1) traversed by sessions inS(1) is reduced by the bandwidth

allocated to these sessions. The bottleneck linksL(1) are also removed from the network.

ThusL(2) andS(2) are obtained based on a network with fewer links and sessions and

adjusted capacities. The set of these bottleneck links and sessions can now be defined as

follows using the notion of fair share.

LetU (i) = ∪i
j=1L(j) andV(i) = ∪i

j=1S(j) be the cumulative set of bottleneck links

and sessions, respectively, in levels 1 toi of the hierarchy. The fair sharexi
` (i ≥ 2) of link

` in ` ∈ L \ U (i−1) is defined as a fair partition of available capacity at the link in theith

level of the hierarchy:

xi
` =

c` − αi∗
`

ni
`

, (2.3)

whereαi∗
` =

∑
s∈S`∩V(i−1) a∗s is the total flow of sessions through` which are constrained

by bottleneck links inU (i−1), andni
` = |S` \ V(i−1)|, whereni

` > 0, is the number of

sessions through̀which are unconstrained by the links inU (i−1) (see Figure 2.2). Based

on the fair share, the set ofith level (i ≥ 2) bottleneck links and sessions can be defined as:

L(i) = {` ∈ L \ U (i−1) | f∗` = c` and for alls ∈ S`, a
∗
s = xi = min

m∈L\U(i−1)
xi

m},

S(i) = {s ∈ S \ V(i−1) | s ∈ S` and` ∈ L(i)}. (2.4)

8



constrained
  sessions

unconstrained 
    sessions

link

cl ,
e
l(t) f

l(t)

α
l
i*

n l
i

l

Figure 2.2: A link with constrained and unconstrained sessions in theith bottleneck level.

HereL(i) is the set ofith level bottleneck links such that the sessions inS(i) are allocated the

minimum fair share in the reduced network,i.e., for s ∈ S(i), a∗s = minr∈S\V(i−1) a∗r = xi.

Note thatxi = xi
` for ` ∈ L(i) is the fair share at the bottleneck links at theith level in the

hierarchy.

We repeat this procedure until we exhaust all the links and sessions resulting in a hi-

erarchy of bottleneck links and corresponding sessionsL(1), · · · ,L(N) andS(1), · · · ,S(N),

which is uniquely defined by (2.3) and (2.4), whereN is the number of levels in the hierar-

chy. We will use the notion of ‘bottleneck hierarchy’ and ‘fair share’ in the sequel.

2.3 Analysis of Algorithm

We shall show that the fixed point equation associated with the iterative algorithm (2.1)

has a unique solution which is the max-min fair allocation in§2.3.1. The iterative syn-

chronous algorithm is shown to converge geometrically to the fixed point in§2.3.2, and an

asynchronous version of the algorithm is also shown to converge in§2.3.3.

In practice, the explicit rate indicationse`(t) of links will experience delays while

they propagate back to the sources and until they are eventually reflected in the incident

flows on the link. We assume in§2.3.2 and§2.3.3 that newly modified explicit rates at time

t appear by the time the update is made in the link flowf`(t) without delay. That is the

link flow reflects the explicit rates computed at timet. This condition is relaxed in§2.3.4.

As a generalization, the algorithm with session priorities is also presented and the issue of

feasibility, i.e.,maintaining link flows not exceeding link capacities is discussed.

We shall assume the following:
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Assumption 2.3.1 (Bottleneck Link Assumption) Each bottleneck link has at least one

session for which it is the unique bottleneck link.

This implies that sessions might have more than one bottleneck link, but if this is the case,

each of the bottleneck links should carry at least one session for which it is the unique

bottleneck. Assumption 2.3.1 is a little weaker than that in [8], but more generalized than

that in [23], wherein it is assumed “single” bottleneck link per session.

2.3.1 Existence and Uniqueness

Define~e = (e`, ` ∈ L) and~a = (as, s ∈ S). Consider the following fixed point equation

derived from the iterative algorithm (2.1)

~e = g(~e ) = (g`(~e ), ` ∈ L) (2.5)

where

e` = min
[

c`e`

f`
, c`

]
= g`(~e ) for all ` ∈ L, (2.6)

and where

f` =
∑

s∈S`

as, ` ∈ L and as = min
`∈Ls

[ e` ], s ∈ S. (2.7)

We show the existence and uniqueness of a solution~e ∗ to the fixed point equation (2.6),

and further establish that the corresponding rate allocation~a ∗ obtained by (2.7) is unique

and satisfies the max-min fairness criterion.

Theorem 2.3.1 (Existence and Uniqueness)Suppose Assumption 2.3.1 holds, then the

fixed point equation (2.6) has a unique solution~e ∗ = (e∗` , ` ∈ L). The associated session

rates~a ∗ = (a∗s, s ∈ S) satisfy the max-min fairness criterion, and are thus unique.

Proof: Let ~0 denote zero vector with same dimension as|L|. SinceE = {~e ∈ R|L|| ~0 ≤
~e ≤ ~c} is compact andg : E → E is continuous, it follows by the Brouwer Fixed Point

Theorem [9] that (2.6) has at least one solution. It follows from (2.6) that for any link` ∈ L,

e∗` = min
[

c`e
∗
`

f∗`
, c`

]
⇒





e∗` = c` if f∗` < c`

e∗` = c`
e∗`
f∗`

if f∗` = c`,
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thus we have that

f∗` =
∑

s∈S`

a∗s, ` ∈ L and a∗s = min
`∈Ls

[ e∗` ], s ∈ S.

We will show that the session rate allocation~a ∗ corresponds to a max-min fair

allocation. Consider an arbitrary sessions ∈ S, we show that it has at least one bottleneck

link. Considers ∈ S, thena∗s = min `∈Ls [ e∗` ] = e∗`∗ for some`∗ ∈ Ls. Suppose that the

link flow f∗`∗ < c`∗ , but thena∗s = e∗`∗ = c`∗ , which contradictsf∗`∗ < c`∗ . Thusf∗`∗ = c`∗ .

Now consider the sessions through`∗. For each such sessionr ∈ S`∗ , eithera∗r = e∗`∗ = a∗s

(“constrained” at link`∗) or a∗r < e∗`∗ = a∗s (constrained elsewhere). Thusa∗s ≥ a∗r for

all r ∈ S`∗ , whencè ∗ is a bottleneck link for sessions. Therefore,~a ∗ is a max-min fair

allocation which is unique by Theorem 2.2.1.

Now, consider a solution~e ∗. The explicit ratee∗`∗ at each bottleneck link̀∗ must

be unique since by Assumption 2.3.1 the link is the only bottleneck for at least one session

s of which the session rate is unique,i.e.,a∗s = min`∈Ls [ e∗` ] = e∗`∗ , and the explicit rate of

non-bottleneck link is its link capacityc` which is unique. So the uniqueness of the solution

~e ∗ follows. ¥

2.3.2 Synchronous Iterative Algorithm without Delayed Information

In this subsection, we assume that explicit rate updates and flow adjustments occur syn-

chronously on some discrete time step. In other words, the explicit rates at links are up-

dated exactly at the same time. Based on Assumption 2.3.1, we prove the following result

in Appendix 2.6.

Theorem 2.3.2 (Convergence of Synchronous Iterative Algorithm)Suppose Assump-

tion 2.3.1 holds, then the explicit rates~e(t) = (e`(t), ` ∈ L) in the iteration (2.1) converge

geometrically to the fixed point~e ∗ and the associated session rates~a ∗ achieve the max-min

fair rate allocation.

The proof of Theorem 2.3.2 uses the following ideas. Consider a link` whose flow

consists of constrained and unconstrained sessions, see Fig. 2.3. Neither the constrained
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Figure 2.3: Constrained and unconstrained sessions on a link`.

flow α` nor the number of unconstrained connectionsn` are known explicitly. The explicit

rate update is given by

e`(t + 1) = min
[

c`e`(t)
f`(t)

, c`

]
= min

[
c`e`(t)

α` + n`e`(t)
, c`

]
4
= g`(e`(t)).

It can be shown thatg`(¦) is a pseudo-contraction [9] ande`(t+1) = g`(e`(t)) is a pseudo-

contracting iteration converging toe∗` , the fixed point ofg`(¦). Note that we do not have a

fixed point at zero if we start from non-zeroe`(0) sincee`(t + 1) ≥ e`(t) whene`(t) ≤ e∗`

for all t. Fig. 2.4 shows how the pseudo-contracting property arises. Thus

|e`(t + 1)− e∗` | ≤ ξ`|e`(t)− e∗` |, 0 < ξ` < 1,

wheree∗` = (c`−α`)/n` is the fair share of the remaining capacity(c`−α`) to be allocated

x0

+

cl 
=

lαle (t+1)

-

le (t)

-

le (t+1)

le (t)

le (t)

le (t)

le (t+1)

nl

l
e*

l
e*

l
e*

l
e*

x
x+ nl

cl 

lα
g (x) = 

l

Figure 2.4: A pseudo-contraction ofg`(¦).

to then` unconstrained sessions (see§2.2 for the definition of ‘fair share’). We can show
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similar pseudo-contraction properties in the network setup using the bottleneck hierarchy.

At each level of the bottleneck hierarchy, the explicit rates of the associated bottle-

neck links can be shown to eventually have lower and upper bounds,

e`(t) ≤ e`(t) ≤ e`(t) for ` ∈ L(i),

such that converge geometrically to the fair sharee∗` = xi = (c` − αi∗
` )/ni

` for ` ∈ L(i)

at theith bottleneck level. So the explicit rates ofith level bottleneck links converge toe∗`

geometrically. We can show that the algorithm quickly achieves max-min fairness using

these properties by induction on the bottleneck hierarchy. Furthermore, the explicit rates of

non-bottleneck linksem(t) converge to the link capacitiescm geometrically.

Based on the previous result, we can construct a box in a space of dimension|L|
at each timet by taking the maximum of geometric converging sequences among all the

links, see Lemma 2.6.1. The box shrinks as updates proceed, and it includes all the possible

explicit rates at a specific timet, so that any sequence of explicit rates converge to the fair

shares or link capacities. These boxes provide the foundation for proving that asynchronous

updates will converge as will be discussed in the following subsection.

2.3.3 Asynchronous Iterative Algorithm without Delayed Information

In the synchronous algorithm, updates of the explicit rates at links are assumed to be per-

fectly synchronized. In practice, this is unlikely to be the case, so next we consider how

asynchronism would affect convergence. We use the asynchronous model in [9] to formu-

late a totally asynchronous version of the algorithm and prove its convergence.

Each link` ∈ L may not have access to the most recent values of components of

~e. That is the flow on link̀ may reflect old information about other links’ states. LetT `

denote a set of times at whiche` is updated. We shall assume that there is a set of times

T = {0, 1, 2, · · · } at which one or more components of~e(t) are updated. An asynchronous
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iteration can be described by

e`(t + 1) =





min
[

c`e`(t)
f`(t)

, c`

] 4
= g`(~e(t)), t ∈ T `

e`(t), otherwise.
(2.8)

Note thatf`(t) depends on the possibly outdated explicit rates indication in the network,

i.e.,

f`(t) = h`

(
e1(τ `

1(t)), e2(τ `
2(t)), · · · , e`(τ `

|L|(t))
)

=
∑

s∈S`

min
m∈Ls

[ em(τ `
m(t)) ],

whereτ `
m(t) is the most recent time for whichem is known to link` through incident flow

f`(t) at the link (see (2.1)),0 ≤ τ `
m(t) ≤ t for all t ∈ T andτ `

` (t) = t for all t ∈ T `.

In the asynchronous iterative algorithm, the explicit ratee` is updated using the link flow

carrying explicit ratesem(τ `
m(t)) known to` whent ∈ T `, otherwise it remains unchanged.

It is assumed here thatτ `
m(t) → ∞ ast → ∞. This assumption implies that every link

updates its explicit rate infinitely often ast →∞. In this case following theorem proven in

Appendix 2.7 applies.

Theorem 2.3.3 (Convergence of Asynchronous Iterative Algorithm)The explicit rates

~e(t) in the asynchronous implementation proposed in (2.8) converge to the fixed point~e ∗ of

(2.6) and the associated session rates~a(t) converge to the max-min fair rates~a ∗.

Asynchronous convergence ensures that although links update explicit rates independently,

the allocation will converge as in the synchronous algorithm, though it may take longer to

do so.

In §2.3.2 and§2.3.3, we considered the convergence of synchronous and asyn-

chronous decentralized updates based on local information. In practice delays will be in-

curred in the communication between sources and links. We consider the role of the delays

in the following subsection.
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2.3.4 Iterative Algorithm with Round Trip Delays

In the preceding analysis, the link flowf`(t) was assumed to be the sum of session rates

as(t) traversing link̀ . The session rates were in turn assumed to beas(t) = min`∈Ls [ e`(t) ],

i.e.,the incident flows at timet reflect the computed explicit rates at the timet with no delay.

In reality, the link flows would be immediately measured at each link, and would depend

on delayedexplicit rate indications computed at links and sent back to sources in order to

control the source rates. We will present an example to show the oscillations that arise due

to propagation delay.

Consider the network shown in Fig. 2.5 with one link shared by two sessions.

Suppose the link capacity isc` = 1, the initial explicit rate ise`(0) = 0.25, and theRound

session 1

session 2

c = 1
a

1(t)

2
a (t)

l

e (t)l

f (t)
l

Figure 2.5: Network example with two ABR sessions with round trip delay.

Trip Delay (RTD)is assumed to be 1 time unit for both sessions. Thus the explicit rate takes

at most 1 unit of time to propagate back to the sources and be reflected in the incident flow

on the link,i.e.,f`(t) = 2e`(t− 1). The explicit rate update would be

e`(t + 1) = min
[

c`e`(t)
f`(t)

, c`

]
= min

[
e`(t)

2e`(t− 1)
, 1

]
,

which results in the oscillation shown in Fig. 2.6.

One way of preventing oscillation is to update the explicit rate at each link only

after the worst case RTD,D` has elapsed, whereD` is the worst case RTD of the sessions

sharing link`. In other words, explicit ratee`(t) is updated only after the link receives

newly modified source rates regulated by the last computed local explicit rate. This scheme

can be shown to converge to the same max-min fair allocation. The explicit rate update of

link ` is then

e`(t + 1) = min
[
c`e`(t−D`)

f`(t)
, c`

]
. (2.9)
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Figure 2.6: Oscillation of explicit rate in the network example without considering RTD.

Thus stability can be achieved by delaying updates, or alternatively as suggested in [21] by

damping the measurements and computation. The proof of convergence is the same as that

of the synchronous convergence result stated in Theorem 2.3.2.

2.3.5 Feasibility Issue of Rate Control Mechanism

An allocation is said to befeasibleif the link flows do not exceed the link capacities. In our

algorithm, link flow may temporarily exceed capacity causing queue buildups. For example,

Fig. 2.7 and 2.8 show a case where a new session 5 is setup after the other sessions in the

network have reached the max-min fair allocation. The infeasibility can be mitigated by

1

2
3

link 1 link 2

4

new 

= 1c1 = 1c2

5

Figure 2.7: A network with a new session 5.

damping the computation of explicit rates. Damping of explicit rates by network adjustment

will lessen the abrupt ramp-up or down of rates, and allow sufficient time for the network

to adapt to the varying session rates and link flows and presumably prevent from excessive

infeasibility. It can be shown that the damped version of the algorithm also converges to

the solution of the algorithm without damping by similar steps followed in the proof of
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Figure 2.8: Explicit rates, link flows and session rates when a new session 5 is setup: before
the new session is setup, it achieves max-min fair allocation~a ∗ = (1

3 , 2
3 , 1

3 , 1
3), and quickly

adjusts to its new max-min fairness~a ∗ = (1
4 , 1

2 , 1
4 , 1

4 , 1
4) after the new session.

Theorem 2.3.2.

Another approach to manage the variability in a dynamic environment is to con-

strain sources to make slow rate adjustments particularly upon entering and increasing their

rates: the session rates can not be increased rapidly when they are admitted to a network,

rather they are permitted to increase their rates by only a little amount at a time so that the

network will have sufficient time to recognize the number of connections by measuring the

flow. This approach can be considered as damping source behavior.

We believe that single bit indication of queue status can be used in conjunction with
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our scheme to prevent the excessive queue buildup when link flows exceed the available

resource transiently. In the scheme, sources slow down their change of rates if queue starts

to build up, otherwise they speed up to achieve the desired max-min fairness quickly. In

a sense, the single bit indication scheme can take care of the feasibility while the explicit

rate control mechanism can ensure fast convergence to fair rates. The single bit queue

indication scheme might be jointly combined with the damping at sources such as linear

growth of source rate. While damping of explicit rates at network links and/or damping of

session rates at sources manages to keep the queue from growing beforehand, the single bit

indication scheme primarily reduces the queue already built-up.

An even more conservative approach would be to employ a safety margin on avail-

able capacity. Suppose we have network utilization factorρ, where0 < ρ < 1, and the

link capacity to be shared is onlȳc` = ρc`. We then have spare capacity(1 − ρ)c` to ab-

sorb the transient overshoot above virtual capacityc̄` leading to implicit control of queue

buildup. The max-min fair allocation of resources would be defined with respect to the new

capacities̄c`, ` ∈ L.

Combining these ideas, we can significantly improve the feasibility and thus per-

formance in a dynamic network environment. There have been algorithms designed to

guarantee feasibility. They, however, might also experience transient infeasibility if the

instantaneous available bandwidth is highly variable, which might be typical in integrated

services networks, and buffering should be provided to tackle the problem [14, 57].

2.3.6 Iterative Algorithms with Priority

It may be useful to allow sessions to have different priorities. We can formulate an iterative

algorithm wherein a priorityws, wherews ≥ 1, of a sessions plays a role as follows:

e`(t + 1) = min
[

c`e`(t)
f`(t)

, c`

]
, ` ∈ L

f`(t) =
∑

s∈S`
as(t), ` ∈ L

as(t) = ws min`∈Ls [ e`(t) ], s ∈ S.

(2.10)
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Note that the computation of explicit rates is still conducted locally in a decentralized man-

ner and the priorityws is dealt with at the source leading to the same structure of distributed

computation as in the preceding algorithms.

We can now define abottleneck hierarchy with priorityand a notion ofweighted

fair share following a similar procedure as in§2.2. LetU (i) = ∪i
j=1L

(j)
andV(i) =

∪i
j=1S

(j)
be the cumulative set of bottleneck links and sessions, respectively, in levels 1 to

i of the hierarchy with priority. Theweighted fair sharexi
` can be defined as a weighted

fair partition of available capacity at link̀in theith level of the hierarchy:

xi
` =

c` − αi∗
`

ni
`

, (2.11)

whereαi∗
` =

∑
s∈S`∩V(i−1) a∗s is the total flow of sessions through` constrained by bottle-

neck links inU (i−1)
, andni

` =
∑
S`\V(i−1) ws is the effective number of sessions through`

unconstrained by the links inU (i−1)
. Note thatα1∗

` = 0 in the1st level of the hierarchy.

Based on the weighted fair share, the set ofith level bottleneck links and sessions

with priority can be defined as:

L(i) = {` ∈ L \ U (i−1) | f∗` = c` and for alls ∈ S`,
a∗s
ws

= xi = min
m∈L\U(i−1)

xi
m},

S(i) = {s ∈ S \ V(i−1) | s ∈ S` and` ∈ L(i)}. (2.12)

HereL(i)
is the set ofith level bottleneck links such that the sessions inS(i)

are allocated

weighted minimum fair share in the network,i.e., for s ∈ S(i)
, a∗s

ws
= min

r∈S\V(i−1)
a∗r
wr

=

xi, thus each session sharing the link receives bandwidth in proportion to its priority,i.e.,

a∗s = wsx
i. Note thatxi = xi

` for ` ∈ L(i)
is the weighted fair share of the bottleneck

links in theith level hierarchy. The construction of the bottleneck hierarchy with priority

is analogous to that of§2.2 resulting in set of bottleneck links and sessions with priority

L(1)
, · · · ,L(N)

andS(1)
, · · · ,S(N)

.

One can show that (2.10) will converge and allocate bandwidth to the sessions pro-

portional to the weightsws, i.e., a∗s = wsx
i for all s ∈ S(i)

, which is “weighted fair”

leading toweighted fair allocation~a
∗

= (a∗s, s ∈ S).
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2.4 ABR Flow Control

We have provided a simple flow control framework using explicit rate. In this section we

discuss how this mechanism might be employed forABR flow control.

Current and future multi-media applications will require high throughputs driving

the deployment of high speed networks,e.g.,ATM networks, to carry such traffic. ABR

service was defined as a new service class for ATM networks to utilize the remaining re-

sources not used by other types of services (e.g.,CBR, VBR). There has been much effort

devoted to the design of ABR flow control. For a survey on ABR rate-based flow control

see [12, 14, 28, 29, 56] and references therein.

Several issues arise in reviewing the rate-based control algorithms:

• Theexplicit rate control mechanismhas fast convergence characteristics.

• A simple algorithmis preferred to make the complexity of explicit rate control rea-

sonable.

• In a large-scale network environment, adistributed and asynchronous algorithmis

desirable.

• Max-min fairness[12] needs to be provided to treat connections fairly.

• It is desirable tominimize the amount of informationrequired (e.g.,number of on-

going connections and status of links).

We can adopt the flow control mechanism for the control of ABR traffic, in which the above

issues are resolved.

There are several parameters associated with each ABR sessions ∈ S, notably the

Minimum Cell Rate (MCR), Allowable Cell Rate (ACR) and Peak Cell Rate (PCR) denoted

by ms, as andps respectively. Define~m = (ms, s ∈ S) and~a, ~p similarly. The allowable

cell rate may be adjusted by the network/source to ensure good performance as long as

~m ≤ ~a ≤ ~p component-wise.
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We will assume that each sessions has a dedicated access link`s ∈ Ls with a

capacityps corresponding to the source’s PCR. This will ensure thatas ≤ ps and make

the description of algorithm simple since we consideras(t) = min`∈Ls [ e`(t) ] instead of

usingas(t) = min`∈Ls [ ps, e`(t) ]. Moreover we consider persistent greedy sessions, which

transmit at their current ACR.

In the flow control mechanism, each link measures the aggregate flowf`(t) and

computes a local ‘explicit rate’ parametere`(t). Switching devices at links send this infor-

mation to the sources by stamping Resource Management (RM) cells with the local explicit

rate, if the Current Cell Rate (CCR) indication in the packet is higher than the computed

explicit rate at this switch. Note the explicit rate in an RM cell is modified either on the

forward or backward trip. Thus the source receives the minimum explicit rate for links

along its route. The role of each source is to adjust the current ACRas(t) so that it does not

exceed the explicit rate indication carried back by RM cells, or the session’s PCR constraint.

The flow control mechanism achieving max-min fairness can be applied to ABR

service exactly as it is conceived when all connections have zero MCR. It has been argued

how to define max-min fair allocation of bandwidth with sessions of non-zero MCR [12].

We consider two options to achieve similar notion of max-min fairness with non-zero MCR.

In the first approach, we pre-allocate bandwidth corresponding to non-zeroms to each

sessions and subtractms from the link capacityc` for ` ∈ Ls resulting in new available

capacityc′`. By applying the flow control algorithm (2.1) to the adjusted capacities, we

achievemax-min fairness above MCR. This approach is a simple way to handle with MCR

and would be formally described as

c′` = c` −
∑

s∈S`
ms, ` ∈ L

e`(t + 1) = min
[

c′`e`(t)

f`(t)
, c′`

]
, ` ∈ L

f`(t) =
∑

s∈S`
as(t), ` ∈ L

as(t) = min`∈Ls [ e`(t) ], s ∈ S.

(2.13)

As another way of handling non-zero MCR, we consider MCR as priority for each session.

In this case, the algorithm with priority (2.10) can be employed by replacingws by ms
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to weight the bandwidth allocated to sessions depending on MCRs leading toweighted

fairness by MCR.

2.5 Summary

In this chapter, we have investigated a simple flow control mechanism using explicit rate.

We have formulated decentralized iterative algorithm and we have shown that the solution

of fixed point equation of the algorithm is unique and the algorithm converges geometrically

to the max-min fair allocation of resources. We have proposed asynchronous version of the

algorithm leading to the same max-min fairness. These algorithms operate in a distributed

manner accounting for the heterogeneity of a large-scale high speed network.

It has been shown that they quickly achieve notion of global max-min fair rate allo-

cation for contending users sharing resources through decentralized adjustment of explicit

rates. The algorithms are simple in that they do not require that the links keep track of the

number of constrained and unconstrained connections as some rate based flow algorithms

did. Hence it has clear scalability advantage in terms of both complexity and state infor-

mation. We have considered the feasibility issue and extended the algorithms so as to deal

with priorities of sessions. As an application example, we have presented ABR rate-based

flow control for ATM networks.

It is debatable whether specifying a uniform notion of fairness across a heteroge-

neous network, including access and backbone facilities makes sense. We believe a more

appropriate notion of fairness might allow for a subdivision of the network into domains

where resources might be allocated based on local administrative policies. For instance, a

domain might want to differentiate amonglocal andtransitingflows, see Fig. 2.9. Indeed

it could, for example, decide to give priority to local traffic, because it is critical at the site,

or give priority to transit traffic because backbone or access bandwidth is limited and it is

of utmost importance to achieve high throughput in connecting to remote locations.

Fig. 2.9 shows an interconnection of Domains 1 and 3 which give priority to tran-

siting traffic and Domain 2 which gives priority to local traffic. We propose to consider

22



 

 

Domain 1

Domain 2

Domain 3

give priority to 
   transiting traffic
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 to local 
  traffic

transiting traffic

local
 traffic

Figure 2.9: Domain fairness policies and network level interaction.

approaches at defining fairness policies within domains, and more importantly to study

how interconnected domains would interact. The key issue is to characterize the equilibria,

if any, of the the interconnected networks in terms of ‘fairness’ to users and demand in

various domains. Consider for example the performance of a distributed application run-

ning over various domains, in principle it would be roughly characterized by the throughput

equilibrium of the system which in turn would depend on the fairness policies of the various

network components. In summary, a flexible notion of fairness should allow for possibly

heterogeneous domains to define their local policies with respect to various types of flows,

but would nevertheless achieve a ‘consistent’ notion of fairness across the internetwork.
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Appendix

2.6 Proof of Theorem 2.3.2

Recall the hierarchy of bottleneck links and sessions defined in§2.2. Note thatU (i) is the

cumulative set of bottleneck links in levels 1 toi andV(i) is the cumulative set of bottleneck

sessions in levels 1 toi. Theorem 2.3.2 is a consequence of Lemma 2.6.1. ¥

Lemma 2.6.1 is the key lemma to show the convergence of the synchronous iter-

ative algorithm (2.1). For that purpose, we need Lemma 2.6.2 and 2.6.3, which presents

monotonicity of lower bounde`(t) and upper bounde`(t) of explicit ratee`(t). In addition,

we use Lemma 2.6.4 and 2.6.5 where both lower and upper bound are shown to converge

geometrically toe∗` .

Lemma 2.6.1 (Convergence of Explicit Rates and Session Rates)Given an initial vector

~e(0), there exists a timetN , whereN is the number of hierarchy levels, such that for all

t ≥ tN , the explicit rates of bottleneck links̀∈ U (N) and the associated session rates

s ∈ V(N) converge geometrically toe∗` anda∗s, respectively. Moreover, the explicit rates of

non-bottleneck links̀ ∈ L \ U (N) also converge geometrically to the corresponding link

capacitiesc` for t ≥ tN+1, wheretN+1 ≥ tN , that is

max`∈U(N) |e`(t)− e∗` | ≤ ANγt
N , 0 < γN < 1,

maxs∈V(N) |as(t)− a∗s| ≤ BNγt
N , 0 < γN < 1,

max`∈L\U(N) |e`(t)− c`| ≤ AN+1γ
t
N+1, 0 < γN+1 < 1.

Proof : We will prove this lemma by induction on the bottleneck hierarchy.

Step 1: We first show that the explicit rates of1st level bottleneck linkse`(t) for ` ∈ U (1)

and the associated session rates of1st level bottleneck sessionsas(t) for s ∈ V(1) converge

geometrically toe∗` anda∗s, respectively, fort ≥ t1, whereU (1) = L(1) andV(1) = S(1).
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Note that for any linkm ∈ L and for allt ≥ 0,

fm(t) =
∑

s∈Sm

as(t) =
∑

s∈Sm

{
min
k∈Ls

ek(t)
}

≤ |Sm|em(t) = n1
mem(t),

wheren1
m = |Sm| denotes the number of sessions through linkm. It follows that for all

m ∈ L and for allt ≥ t′1,

em(t + 1) = min
[

cmem(t)
fm(t)

, cm

]
≥ cm

n1
m

= x1
m, (2.14)

wherex1
m is the fair share defined in (2.3) andt′1 is the time after which allem(t) have

been updated and have achieved at least the fair sharex1
m. Thus, onceem(t) is updated, the

explicit rate for linkm is at least the fair sharex1
m. From now on, we considert ≥ t′1.

Consider̀ ∈ L(1), then the link flowf`(t) satisfies

f`(t) =
∑

s∈S`

{(
min

k∈Ls\L(1)
ek(t)

)
∧

(
min

k∈Ls∩L(1)
ek(t)

)}

≥
∑

s∈S`

{(
min

k∈Ls\L(1)
x1

k

)
∧

(
min

k∈Ls∩L(1)
ek(t)

)}
, (2.15)

wherea ∧ b denotes the minimum ofa andb. Note thatx1
` = x1 for all ` ∈ L(1) and let

y1 = min
`∈L(1)

y1
` , where y1

` = min
s∈S`

(
min

k∈Ls\L(1)
x1

k

)
. (2.16)

It follows by the bottleneck hierarchy and by the definition of fair share in§2.2 thaty1 > x1

sincex1 is the fair share in the1st level bottleneck links. So (2.15) results in

f`(t) ≥
∑

s∈S`

{
y1 ∧

(
min

k∈Ls∩L(1)
ek(t)

)}

≥ (n1
` − 1)x1 + y1 ∧ e`(t), (2.17)

where we use Assumption 2.3.1, noting that among the sessions inS` there is at least one,

sayr, for which ` is the unique bottleneck,i.e., Lr ∩ L(1) = `, and fork ∈ Ls ∩ L(1),

ek(t) ≥ x1 by (2.14). It follows from (2.17) that

x1 ≤ e`(t + 1) = min
[

c`e`(t)
f`(t)

, c`

]
≤ c`e`(t)

(n1
` − 1)x1 + y1 ∧ e`(t)

.

25



Thus

|e`(t + 1)− x1| =
∣∣∣∣min

[
c`e`(t)
f`(t)

, c`

]
− x1

∣∣∣∣ ≤
∣∣∣∣

c`e`(t)
(n1

` − 1)x1 + y1 ∧ e`(t)
− x1

∣∣∣∣

≤ (n1
` − 1)x1

(n1
` − 1)x1 + y1 ∧ e`(t)

|e`(t)− x1|

≤ (n1
` − 1)x1

(n1
` − 1)x1 + y1 ∧ x1

|e`(t)− x1|

≤ c` − x1

c`
|e`(t)− x1|

≤ ξ`|e`(t)− x1|, 0 < ξ` < 1, (2.18)

sincec` = n1
`x

1. So by (2.18) and sincee∗` = x1, the explicit ratee`(t) converges toe∗`

geometrically for̀ ∈ U (1), i.e.,

max
`∈U(1)

|e`(t)− e∗` | ≤ A1γ
t
1, 0 < γ1 < 1, (2.19)

whereA1 is some positive constant andγ1 = max`∈U(1) [ ξ` ].

Note that by (2.14) and (2.16) it follows thatek(t) ≥ y1 for k /∈ U (1), andek(t) for

k ∈ L(1) converges tox1, wherex1 < y1. So there existst1 ≥ t′1 such that for allt ≥ t1,

ek(t) < y1 for k ∈ L(1). Thus it follows that

|as(t)− a∗s| =
∣∣∣∣min
k∈Ls

ek(t)− e∗`

∣∣∣∣ ≤
∣∣∣∣
(

min
k∈Ls∩L(1)

ek(t) ∧ min
k∈Ls\U(1)

ek(t)
)
− e∗`

∣∣∣∣

≤
∣∣∣∣ min
k∈Ls∩L(1)

ek(t)− e∗`

∣∣∣∣ ≤ max
`∈U(1)

|e`(t)− e∗` | ≤ B1γ
t
1,

whereB1 is some positive constant. Hence, fors ∈ V(1) and fort ≥ t1, the session rate

as(t) converges toa∗s geometrically, wherea∗s = e∗` , i.e.,

max
s∈V(1)

|as(t)− a∗s| ≤ B1γ
t
1, 0 < γ1 < 1. (2.20)

So the flows of1st level bottleneck links rapidly converge leaving the rest of the sessions to

sort out their rates.

Step 2: Suppose that the explicit ratese`(t) for ` ∈ U (i−1) and the associated session rates
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as(t) for s ∈ V(i−1) converge geometrically fort ≥ ti−1, i.e.,

max
`∈U(i−1)

|e`(t)− e∗` | ≤ Ai−1γ
t
i−1, 0 < γi−1 < 1, (2.21)

max
s∈V(i−1)

|as(t)− a∗s| ≤ Bi−1γ
t
i−1, 0 < γi−1 < 1, (2.22)

whereAi−1 andBi−1 are some positive constants. We will then show thate`(t) for ` ∈ U (i)

andas(t) for s ∈ V(i) converge geometrically fort ≥ ti, whereti ≥ ti−1.

Consider any linkm ∈ L \ U (i−1),

fm(t) =
∑

s∈Sm∩V(i−1)

as(t) +
∑

s∈Sm\V(i−1)

as(t)

=
∑

s∈Sm∩V(i−1)

{
min
k∈Ls

ek(t)
}

+
∑

s∈Sm\V(i−1)

{
min
k∈Ls

ek(t)
}

(2.23)

≤ αi
m(t) + |Sm \ V(i−1)|em(t) = αi

m(t) + ni
mem(t),

whereni
m = |Sm \ V(i−1)| is the number of sessions unconstrained by links inU (i−1) and

αi
m(t) is the sum of session rates constrained by links inU (i−1). Thus

em(t+1) = min
[

cmem(t)
fm(t)

, cm

]
≥ min

[
cmem(t)

αi
m(t) + ni

mem(t)
, cm

]
4
= T (αi

m(t), em(t)).

It follows by Lemma 2.6.2 that form ∈ L \ U (i−1), there exists lower boundem(t),

em(t) ≥ em(t). (2.24)

By Lemma 2.6.4,em(t) converges toxi
m geometrically, wherexi

m = cm−αi∗
m

ni
m

andxi
m is

the fair share,i.e., fair amount of bandwidth among all the remaining unconstrainedni
m

sessions at linkm since(cm − αi∗
m) is the available capacity at linkm. Note that we are

dealing with all the links inL \ U (i−1) which includesith level bottleneck linksL(i), so for

all m ∈ L(i) lower boundem(t) converges toe∗m = xi, wherexi = xi
m. Since there are

only a finite number of links, there existst′i ≥ ti−1, such that for allt ≥ t′i the lower bounds

em(t) are at leastxi
m − ε for arbitrarily smallε and for allm ∈ L \ U (i−1), i.e.,

em(t) ≥ em(t) ≥ xi
m − ε. (2.25)
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From now on, we considert ≥ t′i.

Consider anith level bottleneck link̀ ∈ L(i), by (2.23) and (2.25) we have the

following:

f`(t) =
∑

s∈S`∩V(i−1)

{
min
k∈Ls

ek(t)
}

+
∑

s∈S`\V(i−1)

{(
min

k∈Ls\L(i)
ek(t)

)
∧

(
min

k∈Ls∩L(i)
ek(t)

)}

≥ αi
`(t) +

∑

s∈S`\V(i−1)

{(
min

k∈Ls\L(i)
xi

k − ε

)
∧

(
min

k∈Ls∩L(i)
ek(t)

)}
. (2.26)

Note thatxi
` = xi for all ` ∈ L(i) and let

yi = min
`∈L(i)

yi
`, where yi

` = min
s∈S`\V(i−1)

(
min

k∈Ls\L(i)
xi

k

)
− ε. (2.27)

It follows by the bottleneck hierarchy and by the definition of fair share in§2.2 thatyi+ε >

xi sincexi is a fair share in theith level bottleneck link, and if we chooseε small enough

thenyi > xi.

So (2.26) results in

f`(t) ≥ αi
`(t) +

∑

s∈S`\V(i−1)

{
yi ∧

(
min

k∈Ls∩L(i)
ek(t)

)}

≥ αi
`(t) + (ni

` − 1) min
k∈L(i)

ek(t) + yi ∧ e`(t) (2.28)

≥ βi
`(t) + yi ∧ e`(t),

whereβi
`(t) = αi

`(t) + (ni
`− 1)mink∈L(i) ek(t). In (2.28), we have used Assumption 2.3.1

that among the sessions inS` \ V(i−1) there is at least one, sayr, for which` is the unique

bottleneck,i.e.,Lr ∩ L(i) = `, andek(t) ≥ ek(t) for k ∈ Ls ∩ L(i) by (2.24). Thus

e`(t + 1) = min
[

c`e`(t)
f`(t)

, c`

]
≤ min

[
c`e`(t)

βi
`(t) + yi ∧ e`(t)

, c`

]
4
= R(βi

`(t), e`(t)).

It follows by Lemma 2.6.3 that fort ≥ t′i and for` ∈ L(i), we have

e`(t) ≤ e`(t). (2.29)
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By Lemma 2.6.4 and Lemma 2.6.5, both boundse`(t) ande`(t) in (2.24) and (2.29),

respectively, converge toe∗` geometrically for̀ ∈ U (i), i.e.,

max
`∈U(i)

|e`(t)− e∗` | ≤ Aiγ
t
i
, 0 < γ

i
< 1,

max
`∈U(i)

|e`(t)− e∗` | ≤ Aiγ
t
i, 0 < γi < 1,

whereAi andAi are some positive constants, soe`(t) converges toe∗` geometrically for

t ≥ t′i and for` ∈ U (i),

max
`∈U(i)

|e`(t)− e∗` | ≤ Aiγ
t
i , 0 < γi < 1, (2.30)

whereAi = max[Ai, Ai] andγi = max[ γ
i
, γi ].

Note thatek(t) for k ∈ U (i−1) converges toe∗k, wheree∗k = xj , for somej such

that1 ≤ j ≤ i− 1 by our induction hypothesis (2.21). Also,ek(t) ≥ yi for t ≥ t′i and for

k /∈ U (i) (see (2.25) and (2.27)). Sinceek(t) for k ∈ L(i) converges toxi, wherexi < yi,

the explicit rateek(t) eventually becomes smaller thanyi for large enought ≥ ti, where

ti ≥ t′i, so it follows

|as(t)− a∗s| =
∣∣∣∣min
k∈Ls

ek(t)− e∗`

∣∣∣∣ ≤
∣∣∣∣
(

min
k∈Ls∩L(i)

ek(t) ∧ min
k∈Ls\U(i)

ek(t)
)
− e∗`

∣∣∣∣

≤
∣∣∣∣ min
k∈Ls∩L(i)

ek(t)− e∗`

∣∣∣∣ ≤ max
`∈U(i)

|e`(t)− e∗` | ≤ Biγ
t
i ,

Thus fors ∈ V(i) and fort ≥ ti, the session rateas(t) converges toa∗s geometrically, where

a∗s = e∗` , i.e.,

max
s∈V(i)

|as(t)− a∗s| ≤ Biγ
t
i , 0 < γi < 1. (2.31)

Since we have finite number of levelsN in the bottleneck hierarchy, the induction termi-

nates atN .

Step 3: Now consider a non-bottleneck linkm ∈ L \ U (N), then

em(t + 1) = min
[

cmem(t)
fm(t)

, cm

]
,

wherefm(t) =
∑

s∈Sm
as(t). It follows that the link flowfm(t) converges tof∗m since

all session rates converge toa∗s as shown previously. Notef∗m < cm, otherwisem would
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be a bottleneck link by Assumption 2.3.1. So there existstN+1 such that for allt ≥ tN+1

the link flow fm(t) ≤ f∗m + ε < cm andem(t + 1) ≥ min
[

cmem(t)
f∗m+ε , cm

]
. Thus,em(t)

converges tocm for t ≥ tN+1 and form ∈ L \U (N). In fact,em(t) is a pseudo-contracting

sequence towardse∗m = cm,

|em(t + 1)− e∗m| ≤ ξm|em(t)− e∗m|, 0 < ξm < 1.

Thus we have that

max
m∈L\U(N)

|em(t)− e∗m| ≤ AN+1γ
t
N+1, 0 < γN+1 < 1, (2.32)

whereAN+1 is some positive constant andγN+1 = maxm∈L\U(N) [ξm]. This completes the

proof. ¥

Lemma 2.6.2 (Monotonicity of Lower Bounds) Suppose

e`(t + 1) ≥ min
[

c`e`(t)
αi

`(t) + ni
`e`(t)

, c`

]
4
= T (αi

`(t), e`(t)),

thene`(t) ≥ e`(t) for t ≥ ti, wheree`(ti) = e`(ti) and e`(t + 1) = T (αi
`(t), e`(t)) for

t ≥ ti.

Proof : Note thatT (αi
`(t), ¦ ) is a non-decreasing function in second parameter. Since

e`(ti + 1) ≥ T (αi
`(ti), e`(ti)) = e`(ti + 1), it follows by monotonicity ofT (αi

`(t), ¦ ),

e`(ti + 2) ≥ T (αi
`(ti + 1), e`(ti + 1)) ≥ T (αi

`(ti + 1), e`(ti + 1)) = e`(ti + 2),

so for allt ≥ ti,

e`(t) ≥ e`(t).

¥

Lemma 2.6.3 (Monotonicity of Upper Bounds) Suppose

e`(t + 1) ≤ min
[

c`e`(t)
βi

`(t) + yi ∧ e`(t)
, c`

]
4
= R(βi

`(t), e`(t)),

thene`(t) ≤ e`(t) for t ≥ ti, wheree`(ti) = e`(ti) and e`(t + 1) = R(βi
`(t), e`(t)) for

t ≥ ti.
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Proof : Note thatR(βi
`(t), ¦ ) is a non-decreasing function in second parameter. Since

e`(ti + 1) ≤ R(βi
`(ti), e`(ti)) = e`(ti + 1), it follows by monotonicity ofR(βi

`(t), ¦ ),

e`(ti + 2) ≤ R(βi
`(ti + 1), e`(ti + 1)) ≤ R(βi

`(ti + 1), e`(ti + 1)) = e`(ti + 2),

thus for allt ≥ ti,

e`(t) ≤ e`(t).

¥

Lemma 2.6.4 (Convergence of Lower Bounds)Suppose fort ≥ ti−1,

max
`∈U(i−1)

|e`(t)− e∗` | ≤ Ai−1γ
t
i−1, 0 < γi−1 < 1, (2.33)

max
s∈V(i−1)

|as(t)− a∗s| ≤ Bi−1γ
t
i−1, 0 < γi−1 < 1, (2.34)

e`(t + 1) = T (αi
`(t), e`(t))

4
= min

[
c`e`(t)

αi
`(t) + ni

`e`(t)
, c`

]
,

wheree`(ti) = e`(ti) andti ≥ ti−1, and that

e`(t) ≥ xi − ε, (2.35)

then for some positive constantAi,

max
`∈U(i)

|e`(t)− e∗` | ≤ Aiγ
t
i
, 0 < γ

i
< 1.

Proof : ConsiderT ( ¦ , e). Note that

max
α≥0

∣∣∣∣
∂

∂α
T (α, e)

∣∣∣∣ =
c`e

(α + ni
`e)

2

∣∣∣∣
α=0

=
c`

ni
`
2
e
.

Since by (2.35),e ≥ xi − ε, letting Lipschitz constantK = c`

ni
`
2
(xi−ε)

, we have

|T (αi
`(t), e`(t))− T (αi∗

` , e`(t))| ≤ K|αi
`(t)− αi∗

` |. (2.36)
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Furthermore,T (αi∗
` , ¦ ) is a pseudo-contraction [9], whose sequence converges towards

T (αi∗
` , e∗` ) = e∗` = c`−αi∗

`

ni
`

, i.e.,

|T (αi∗
` , e`(t))− T (αi∗

` , e∗`)| ≤ αi∗
`

αi∗
` + ni

`e`(t)
|e`(t)− e∗` |

≤ ξ
`
|e`(t)− e∗` |, 0 < ξ

`
< 1. (2.37)

Note by (2.34) that fort ≥ ti−1,

|αi
`(t)− αi∗

` | ≤
∣∣∣∣∣∣

∑

s∈S`∩V(i−1)

as(t)−
∑

s∈S`∩V(i−1)

a∗s

∣∣∣∣∣∣
≤

∑

s∈S`∩V(i−1)

|as(t)− a∗s|

≤ Ci−1γ
t
i−1, (2.38)

whereCi−1 is some positive constant. So it follows by (2.36) and (2.37) that

|e`(t + 1)− e∗` | = |T (αi
`(t), e`(t))− T (αi∗

` , e∗`)|

≤ |T (αi
`(t), e`(t))− T (αi∗

` , e`(t))|+ |T (αi∗
` , e`(t))− T (αi∗

` , e∗`)|

≤ K|αi
`(t)− αi∗

` |+ ξ
`
|e`(t)− e∗` |, 0 < ξ

`
< 1.

Thus we obtain by (2.33) and (2.38) that

max
`∈U(i)

|e`(t)− e∗` | ≤ Aiγ
t
i
, 0 < γ

i
< 1,

whereAi is some positive constant,γ
i
= max[γi−1, ρi

], and whereρ
i
= max`∈L(i) [ξ

`
]. ¥

Lemma 2.6.5 (Convergence of Upper Bounds)Suppose fort ≥ ti−1,

max
`∈U(i−1)

|e`(t)− e∗` | ≤ Ai−1γ
t
i−1, 0 < γi−1 < 1, (2.39)

max
s∈V(i−1)

|as(t)− a∗s| ≤ Bi−1γ
t
i−1, 0 < γi−1 < 1, (2.40)

max
`∈U(i)

|e`(t)− e∗` | ≤ Aiγ
t
i
, 0 < γ

i
< 1, (2.41)

e`(t + 1) = R(βi
`(t), e`(t))

4
= min

[
c`e`(t)

βi
`(t) + yi ∧ e`(t)

, c`

]
,

wheree`(ti) = e`(ti) andti ≥ ti−1, then for some positive constantAi,

max
`∈U(i)

|e`(t)− e∗` | ≤ Aiγ
t
i, 0 < γi < 1.
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Proof : Note by (2.40) and (2.41) that fort ≥ ti,

|βi
`(t)− βi∗

` | ≤
∣∣∣∣
(

αi
`(t) + (ni

` − 1) min
k∈L(i)

ek(t)
)
− (

αi∗
` + (ni

` − 1)e∗`
)∣∣∣∣

≤ |αi
`(t)− αi∗

` |+ (ni
` − 1)

∣∣∣∣ min
k∈L(i)

ek(t)− e∗`

∣∣∣∣
≤

∑

s∈S`∩V(i−1)

|as(t)− a∗s|+ (ni
` − 1)|e`(t)− e∗` |

≤ Biγ
t
i
, (2.42)

whereBi is some positive constant. Following the similar steps in Lemma 2.6.4, we have

|e`(t + 1)− e∗` | = |R(βi
`(t), e`(t))−R(βi∗

` , e∗`)|

≤ |R(βi
`(t), e`(t))−R(βi∗

` , e`(t))|+ |R(βi∗
` , e`(t))−R(βi∗

` , e∗`)|

≤ K|βi
`(t)− βi∗

` |+ ξ`|e`(t)− e∗` |, 0 < ξ` < 1,

whereK is a Lipschitz constant andR(βi∗
` , ¦ ) is a pseudo-contraction whose sequence

converges towardse∗` . Thus by (2.39) and (2.42) it follows

max
`∈U(i)

|e`(t)− e∗` | ≤ Aiγ
t
i, 0 < γi < 1,

whereAi is some positive constant,γi = max[γ
i
, ρi], and whereρi = max`∈L(i) [ξ`], see

Lemma 2.6.4. ¥

2.7 Proof of Theorem 2.3.3

From Lemma 2.6.1, letA = max[AN , AN+1], γ = max[γN , γN+1], C = max`∈L[c`], and

E(t) =




{~e | ||~e− ~e ∗||∞ ≤ Aγt }, t ≥ tN+1,

{~e | ||~e− ~e ∗||∞ ≤ max[AγtN+1 , C] }, t < tN+1,

then following conditions hold.

1. We haveE(t + 1) ⊂ E(t), andg(~e ) ∈ E(t + 1) for all t and~e ∈ E(t). The

sequence{~e(t)} converges to~e ∗ by Theorem 2.3.2 (Convergence of Synchronous

Iterative Algorithm).
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2. The setE(t) satisfies the Box Condition [9] for allt. That is there exist setsEi(t) ⊂
Ei(0) for all t, such that

E(t) = E1(t)× E2(t)× · · · × E|L|(t).

3. Initial explicit rate vector~e(0) is in the setE(0).

Thus by Asynchronous Convergence Theorem [9], the asynchronous iteration (2.8) con-

verges to~e ∗. ¥

34



Chapter 3

Stability of Dynamic Networks

Supporting Services with Flow

Control

3.1 Introduction

Future communication networks are likely to supportelasticapplications that permit adap-

tation of the data transmission rate to the available network bandwidth while achieving a

graceful degradation in the perceived quality of service [55]. Transport services that match

the flexibility of such applications are already supported on the Internet via TCP wherein

end-systems adjust their transmissions in response to delayed or lost packets,i.e., implicit

indicators of available bandwidth [26]. Available Bit Rate service, defined for ATM net-

works, draws on both the end-systems and network elements to implement a similar func-

tionality through adaptive rate control mechanisms that strive to allocate the available band-

width among ongoing connections [12]. Typically such mechanisms represent an efficient

way to carry traffic corresponding to elastic applications, ranging from today’s file transfers

to future rate adaptive voice/video applications.

Since mechanisms to adapt transmission rate typically draw on delayed (implicit
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or explicit) feedback from the network, much work has been devoted to establishing their

stability, particularly for networks supporting afixednumber of connections. Stability is

usually interpreted as avoiding queue/delay buildups, and/or somewhat loosely as ensuring

that transmission rates converge to an equilibrium corresponding to a bandwidth allocation

among ongoing connections, seee.g.,[3, 7, 13, 57, 38, 1, 33]. Such equilibria are in turn

usually characterized in terms of their ‘fairness’ to users, such as max-min fairness or pro-

portional fairness [8, 30]. Thus given a fixed number of users and fixed network capacities,

one can typically arrange (through an appropriate control mechanism) to achieve an equi-

librium which represents, according to some criterion, an equitable allocation of resources

among users.

By contrast very little is known about the network’s performance when the num-

ber of connections in the network is in constant flux. Previous work along these lines has

focused on studying transients,i.e., how quickly will the transmission rates reach a new

equilibrium. In this chapter we consider a novel model that includes stochastic arrivals

and departures. However it abstracts the queueing and rate adaptation that would be tak-

ing place in the network by assuming that an equilibrium, and thus appropriate bandwidth

allocation is immediately achieved. In essence, this corresponds to assuming aseparation

of time scalesbetween the time scales of connection arrivals and departures and those on

which rate control processes converge to equilibria. Our focus is on exploring the stability

and performance of this connection-level model for networks using different types of rate

control and thus operated under different fairness policies.

Paralleling models used in the circuit switched literature, we assume connection

arrivals processes are Poisson and that each connection has a random, exponentially dis-

tributed, amount of data to send.1 In contrast to circuit switched models, the bandwidth

allocated to each user will be a function of the global state of the network. Indeed re-

call that the bandwidth allocated to a user depends on the equilibrium achieved by the rate

1This arrivals model is a typical and a reasonable assumption for connections generated by a large population
of independent users. The exponential assumption simplifies our analysis but is likely not to be critical for the
stability results in this chapter.
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control mechanisms and the number of ongoing connections.

In general, one expects work conserving systems to be stable when the offered load

to each link (queue) in the network does not exceed its capacity. However given the com-

plex network-wide interactions underlying the bandwidth allocation mechanism, a demon-

stration of this fact was an open question. Note that our model can be said to be ‘non-work

conserving’ in the sense that a link supporting active connections may not be operating at

a full capacity because its connections are ‘bottlenecked’ elsewhere – a typical sign of a

potential for instability. In this chapter we come to terms with this problem by showing the

stability of our model when natural conditions are satisfied.

Since ours is a higher layer model, it is logical to consider network-level perfor-

mance, say in terms of average connection delays. This is important because the goals of

fairness and low connection delays may not be compatible, and should be examined prior

to committing to a particular architecture for large-scale broadband networks. Moreover

network designers might want to dimension capacities to achieve a reasonable responsive-

ness, say for web browsing, when the network is subject to typical loads. Our preliminary

simulations suggest that indeed it may be of interest to examine more carefully the impact

of a given fairness criterion and topology on the overall network performance.

Based on our model we point out an insidious architectural problem in networks

supporting adaptive services of this type. To achieve connection layer stability we must en-

sure that connection level loads do not exceed link capacities. Clearly this then requires that

the routing layer be aware of the connection level offered loads. However, typical routing

algorithms draw on short term link averages of utilization or packet delays. Such metrics

reflect the connection level offered loads quite poorly, since connections are adapting their

transmission rates depending on link congestion. Loosely speaking, the router is indifferent

to the fact that a 90 % link utilization may be due to a single traffic source or a thousand

sources transmitting at a thousandth of the latter’s rate. Herein lies a possible explanation

for the congestion currently experienced on the Internet,i.e.,connection level instability.

The Chapter is organized as follows. In§3.2, we present our model and define the
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max-min, weighted max-min and proportionally fair bandwidth allocations. Next, in§3.3

we show the stability of the model by constructing appropriate Lyapunov functions. In

§3.4 we return to our question concerning possible connection level instabilities in current

networks and discuss future work.

3.2 Network Model and Bandwidth Allocation Schemes

Our network model consists of a set of linksL with fixed capacitiesc = (c`, ` ∈ L) in

bits/sec shared by a collection of routesR. Routes are undirected and may traverse several

links in the network.2 A 0-1 matrixA = (A`r, ` ∈ L, r ∈ R) indicates which links a route

traverses. In other words,A`r = 1 if route r uses link̀ and zero otherwise.

The dynamics of the model are as follows. New connections are initiated on route

r ∈ R at random times forming a Poisson processΠr with rateλr connections/sec. The

collection of processesΠ = {Πr, r ∈ R}, with ratesλ = (λr, r ∈ R) are assumed to be

independent. Each connection has a volume of data (in bits) to transmit, which is assumed

to be an exponentially distributed random variable with meanb bits. The parameterb is the

same for all connections, irrespective of route or arrival time. This assumption simplifies

the description of the system state and, consequently, its analysis. The random variables

representing connection volumes are thus i.i.d. and also independent ofΠ. We let ν` =

c`b
−1 denote the capacity of link̀expressed in connections/sec, and letν = (ν`, ` ∈ L).

The “state” of the network is denoted byn = (nr, r ∈ R) wherenr is the number of

connections currently on router. We assume that the bandwidth allocated to each ongoing

connection depends only on the current staten of the system. Letµr(n) denote the total

bandwidth allocated to connections on router when the system state isn, expressed as a

service rate in connections/sec. The choice of the functionsµ = (µr : ZR+ → R+, r ∈ R)

will be described in the sequel. If the state of the system changes during the sojourn of

a connection (e.g.,due to the establishment of a new connection or the termination of an

existing one), then, there may be a corresponding change (speed-up or slow-down) in its

2Our model is at the connection level, so we can assume undirected routes without loss of generality.
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service rate. Indeed since no arriving connections are blocked, new connections must be

accommodated by changing the bandwidth allocation, whereas bandwidth made available

by departing connections is reallocated to the remaining ones. We assume that ongoing

connections aregreedyin the sense that they will use whatever network bandwidth is made

available to them. Note that in reality a given connection may have a limit on the rate at

which it can transmit,e.g.,may be limited by the access network or network interface card.

Herein we shall assume that such bottlenecks have been explicitly modeled by incorporating

limited capacity access links in the network.

Let Πr(t) denote the number of connections arriving on router on the time interval

(0, t]. This is a rate-λr Poisson counting process. LetΦr(t) be another independent unit

rate Poisson process. Letting{Nr(t), t ≥ 0} be the random process corresponding to the

number of connections on router, we have

Nr(t) = Nr(0) + Πr(t)− Φr

(∫ t

0
µr(N(s)) ds

)
, r ∈ R, t ≥ 0, (3.1)

which captures the state dependent service rates along each route in the network. It should

be clear that given an initial stateNr(0), this evolution equation has a unique solution.

Moreover, if the initial condition(Nr(0), r ∈ R) is selected independently of the arrivals

and service processes then theZR+–valued processN(t) = (Nr(t), r ∈ R) is Markovian.

In the sequel, we describe various bandwidth allocation schemes, or, equivalently,

various possible functionsµ. In particular we will useµm, µw andµp to denote the max-

min, weighted max-min and proportionally fair bandwidth allocation functions. Notice that

these functions, of the staten, depend on the capacity vectorν, the routing matrixA, and

the type of rate control used on the network. By contrast with standard queuing models,

which track packets and queues throughout the network, it is through this dependence that

the evolution (3.1) models the dynamics of the network. Also note that we have assumed

that connections are not rerouted once they are initiated. One could in principle account

for rerouting or splitting of flows across the network but this will not be considered here.

Finally, and to avoid possible confusion, bandwidth will be measured in units of connec-

tions/sec rather than bits/sec – see above discussion.

39



3.2.1 Max-min Fair Bandwidth Allocation

We first consider max-min fair bandwidth allocation. An allocation is said to be max-min

fair if the bandwidth allocated to a connection cannot be increased without also decreasing

that of a connection having a less than or equal allocation [8]. For a single link network this

translates to giving each connection traversing the link the same amount of bandwidth. In

general one first determines what would be the maximum minimum bandwidth one could

assign to any connection in the network and allocates it to the most poorly treated connec-

tions. One then removes these connections and the allocated bandwidths from the network,

and iteratively repeats the process of maximizing the minimum bandwidth allocation for the

remaining connections. More formally the max-min fair allocation can be defined in terms

of a hierarchy of optimization problems, described in detail in [23], which is easily solved

via the above procedure. Below we briefly review how given the staten of the network one

determines the max-min fair bandwidth allocations per connection and in turn determines

the bandwidth allocations(µm
r (n), r ∈ R) per route.

Let the vectora∗ = (a∗r, r ∈ R) be the max-min fair allocation wherea∗r denotes

the bandwidth, in connections/sec, allocated to a single connection on router. Notice that

we have suppressed the dependence ofa∗ on n. All connections on the same route get

the same allocation soµm
r (n) = nra

∗
r. We determinea∗ as follows. First for all routes

r ∈ R such thatnr = 0 we seta∗r = 0 and thusµm
r (n) = 0. Next we solve a hierarchy of

optimization problems starting with

f (1)(n) := max
a
{min

r∈R
ar :

∑

r∈R
A`rnrar ≤ ν`, ` ∈ L}, (3.2)

which corresponds to maximizing the minimum bandwidth per connection subject to the

link capacity constraints. It can be shown, see [23], that the solution to this problem is

given by

f (1)(n) = min
`∈L

f
(1)
` (n) with f

(1)
` (n) :=

ν`∑
r∈RA`rnr

, (3.3)

wheref (1)
` (n) can be thought of as thefair shareat link `, i.e.,the bandwidth per connection

at link ` if its capacity were equally divided among the connections traversing the link.
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LetL(1) be the set of links̀ such thatf (1)
` (n) = f (1)(n). This is the set of first-level

bottleneck links. The set of first-levelbottleneck routesR(1) is the set of routes traversing

a link in L(1). These two sets make up the first-level of thebottleneck hierarchy. Finally,

for each router ∈ R(1), let a∗r = f (1)(n). The remaining, if any, components ofa∗ are

determined by repeating this process on a reduced network as explained next.

In its second step, if it arises, the algorithm replaces the setsL andR by L \ L(1)

andR \ R(1), respectively. The new state of the system is simply the projection(nr, r ∈
R \ R(1)), and a new link capacity vector,ν(1) is defined onL \ L(1), whereν` is reduced

to

ν
(1)
` = ν` −

∑

r∈R(1)

A`rµ
m
r (n) = ν` − f (1)(n)

∑

r∈R(1)

A`rnr.

From (3.2) and the definition ofL(1), it is clear that the reduced capacities are non-negative.

A new problem paralleling (3.2) but on the reduced network (with reduced sets or routes and

links, reduced state, and reduced capacities–as described above) is then defined and solved

to obtain a new valuef (2)(n), and second-level bottleneck setsL(2) andR(2). Finally for

r ∈ R(2) we seta∗r = f (2)(n). If necessary this process is once again repeated, but, since

the setsR(1),R(2), . . . are nonempty, it terminates in a finite number of steps, uniquely

specifying the vectora∗ and thusµm(n).

Notice that in the above proceduren need not be integer valued, henceµm(n) can

be easily extended for real-valued arguments. We shall use the same notation to denote

the extension ofµm from ZR+ to RR+ . Some straightforward properties of this function are

summarized below.

Proposition 3.2.1 The functionµm : RR+ → RR+ is radially homogeneous, in the sense that

µm(αx) = µm(x), x ∈ RR+ , α > 0.

In the interior of the positive orthantRR+ , the functionµm is continuous, and has strictly

positive components. Finally,µm is bounded.

The proof of this proposition can be shown by induction on the bottleneck hierarchy and

considering the dependence onx of the max-min fair bandwidth allocation.
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Notice that the bandwidth allocation policy reflected inµm satisfies the link ca-

pacity constraints, is fair in the max-min fair sense, but the performance,e.g., in terms

of connection delays, may be poor. In the next section we discuss the weighted max-min

fair bandwidth allocation which allows some latitude in controlling performance by giving

different priorities to connections based on their routes.

3.2.2 Weighted Max-min Fair Bandwidth Allocation

Let w = (wr, r ∈ R) be positive “weights” associated with each route in the network, and

aw∗ = (aw
r
∗, r ∈ R) denote the weighted max-min fair bandwidth allocation vector. For a

given staten we determineaw∗ in a similar fashion to the max-min fair allocation. First for

all routesr ∈ R such thatnr = 0 setaw
r
∗ = 0. Next, replace (3.2) with

f (1),w(n) := max
a
{min

r∈R
{ar/wr} :

∑

r∈R
A`rnrar ≤ ν`, ` ∈ L},

which can again be solved by first defining theweighted fair shareon link ` as

f
(1),w
` (n) :=

ν`∑
r∈RA`rwrnr

(3.4)

and then settingf (1),w(n) = min`∈L f
(1),w
` (n). Paralleling the max-min fair case, the first-

level bottleneck links and routes, denotedL(1),w andR(1),w respectively, can be defined,

and one can proceed iteratively to determine the bandwidth allocation for connections on

all routes. We will letµw(n) denote the vector of bandwidths allocated to each route where

µw
r (n) = wrnra

w
r
∗, and letµw = (µw

r : ZR+ → R+, r ∈ R).

One can again extendµw for real-valued argumentsi.e., fromZR+ toRR+ , and show

that

µw(x) = µm(Dx), (3.5)

whereµm corresponds to the unweighted max-min fair allocation discussed in the previous

section, andD = diag(w), i.e., a square matrix with components(wr, r ∈ R) along its

diagonal. Thus one way to view the weighted max-min fair allocation is as a max-min fair
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allocation where the “effective number” of ongoing connections isDx. Moreover one can

easily see that the results in Proposition 3.2.1 also apply toµw.

A weighted max-min fair allocation can be used to differentiate among connections

following different routes and thus give priority based on geographic, administrative, or

service requirements by grouping like connections on a route. However specific criteria

for the selection of weights need to be developed. In principle one can consider control

policies which adjust the weights based on the state of the network – a simple example is

briefly considered in§3.3.4

3.2.3 Proportionally Fair Bandwidth Allocation

As a final alternative we consider a framework where utility functionsUr : R+ → R, r ∈ R
have been associated with connections following various routes. HereUr(ar) is the utility

to a user/connection on router of a bandwidth allocationar.
3 A bandwidth allocation policy

which maximizes the total network utility when the state isn can be obtained by solving

the following optimization problem:

maxa

{∑

r∈R
nrUr(ar) :

∑

r∈R
A`rnrar ≤ ν`, ` ∈ L; a ≥ 0

}
, (3.6)

where we assume that the utility functions are concave and so the optimizer is unique.

This approach to allocating bandwidth is pleasing in the sense that it finds an appropri-

ate compromise between the extent to which users value bandwidth and theoverall user

“satisfaction.”

In general it is unclear how to select utility functions. However, [30] and others,

have considered the case whereUr(ar) = log ar and shown that in this case the maximizer

ap∗ = (ap
r
∗
, r ∈ R) corresponds to aproportionally fair bandwidth allocation in the sense

that the vector is feasible,i.e., satisfies the link capacity constraints, and for any other

3If there exist connections with different utility functions that follow the same path, one can define several
routes carrying connections that share the same utility function.
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feasible ratea′ = (a′r, r ∈ R), the aggregate proportional change is negative,i.e.,

∑

r∈R
nr

a′r − ap
r
∗

ap
r
∗ < 0. (3.7)

Determining the maximizer of (3.6) for log utility functions can be done explicitly

for simple networks. Alternatively, as with max-min fairness, one can design rate control

mechanisms that converge to the associated bandwidth allocation [33]. We will letµp
r(n) =

nra
p
r
∗ denote the total bandwidth allocated to connections along router ∈ R andµp(n) =

(µp
r(n), r ∈ R) be the bandwidth allocations per route when proportional fairness is used.

Againµp can be easily extended for real-valued arguments. We shall use the same notation

to denote the extension ofµp fromZR+ toRR+ .

Proposition 3.2.2 The functionµp : RR+ → RR+ is radially homogeneous, in the sense that

µp(αx) = µp(x), x ∈ RR+ , α > 0. (3.8)

In the interior of the positive orthantRR+ , the functionµp is continuous, and has strictly

positive components. Finally,µp is bounded.

The continuity ofµp follows by considering the functional dependence onx of the propor-

tionally fair bandwidth allocation, while radial homogeneity is easily shown by a change of

variablesbr = xrar. The problem is then

µp(x) = argmaxb

{∑

r∈R
xr log(br) : Ab ≤ ν; b ≥ 0

}
, (3.9)

where we note thatbr now corresponds to the bandwidth allocated on router, and thus the

maximizing vector corresponds to proportionally fair bandwidth allocationµp(x).

3.3 Stability of the Stochastic Network

In this section we will consider the stability of the stochastic network model defined in§3.2,

for various types of bandwidth allocation. Assuming{Πr, Φr, r ∈ R} are independent
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Poisson processes on[0,∞), whereΠr has rateλr andΦr has rate 1, the evolution equation

(3.1) defines a Markov chain onZR+ with transition rates

q(n,m) =





λr, m = n + er, r ∈ R
µr(n), m = n− er, r ∈ R
0, otherwise

, (3.10)

for m 6= n, whereer = (er
s, s ∈ R), er

s = 1(r = s). Thus, when the state isn, router

sees arrivals with rateλr and departures with rateµr(n). Note that whennr = 0 we have

µr(n) = 0, thusq(n, n− er) = 0, and so the rates are supported on the positive orthant.

We use the notationQ for the infinitesimal generator (viz., rate matrix) of this

continuous-time Markov chain. For a functionϕ : RR+ → R, we write4

Qϕ(n) :=
∑

m∈ZR+

q(n,m)ϕ(m) =
∑

m∈ZR+

q(n,m)[ϕ(m)− ϕ(n)], (3.11)

where the latter equality follows from the fact thatQ is conservative:

q(n, n) = −
∑

m6=n

q(n,m).

Note thatQϕ(n) can be interpreted as the expected drift,i.e., the change inϕ(N(t)) when

N(t) = n.

Clearly the Markov chain{N(t), t ≥ 0} is irreducible, and we say that it is stable,

iff it is positive recurrent. We will show positive recurrence by constructing a Lyapunov

function [44, 19]. For our system, a Lyapunov function is any functionV : ZR+ → R+ with

the sole property that there exists a finite setK ⊆ ZR+ , such that

sup
n 6∈K

QV (n) < 0, (3.12)

whereQV is defined as in (3.11). Using our formula (3.10) for the transition rates we can

rewriteQV as

QV (n) =
∑

r∈R
{λr[V (n + er)− V (n)] + µr(n)[V (n− er)− V (n)]}. (3.13)

4Notice that the sums in (3.11) have a finite number of terms, since the chain has only local transitions,i.e.,
arrivals and departures for every route, thus there are no restrictions on the functionϕ for Qϕ(n) to be well
defined.
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Intuitively (3.12) means that when the processN(t) lies outsideK, it is such that on average

V (N(t)) is decreasing,i.e.,has negative drift.

Searching for such a Lyapunov function can be a tedious procedure, particularly

since the transition rates of our Markov chain are defined via the optimization problem

associated with the various fairness criteria.

3.3.1 Stability under Max-min Fair Bandwidth Allocation

We first consider the stability of the network when bandwidth is allocated according to the

max-min fair criterion and thus the dynamics of the system are captured by (3.1) withµ

replaced byµm as defined in§3.2.1.

We will begin by considering acandidateLyapunov function, related to the max-

min fairness criterion. LetV (n) be the reciprocal off (1)(n) defined in (3.2) and extend it

fromZR+ toRR+ , namely,

V (x) = max
`∈L

{ν−1
`

∑

r∈R
A`rxr}, x ∈ RR+ .

For convenience we introduce the vectors

ξ` = (ξ`
r, r ∈ R), ξ`

r := ν−1
` A`r, ` ∈ L. (3.14)

and letϕ`(x) = 〈ξ`, x〉, ` ∈ L where〈·, ·〉 denotes the standard inner product inRR. With

this notation we have that

V (x) = max
`∈L

ϕ`(x) = max
`∈L

〈ξ`, x〉. (3.15)

ThusV is a piecewise linear function. Since the vectorsξ` have non-negative components,

the sets{x ∈ RR+ : V (x) ≤ α} are compact polytopes, for allα ≥ 0. For a fixed

x, one or more of the indices̀achieve the maximum in (3.15)– these are the first-level

bottleneck links defined earlier. We will useL(1)(x) to denote the dependence of the first-

level bottleneck links onx. Similarly R(1)(x) andν(1)(x) will be used to indicate such

dependencies in the sequel.
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Since for first level bottleneck links the link capacity is fully utilized among ongoing

connections, we would expect that, on average, the number of connections on such a link
∑

r∈RA`rnr will decrease as long as the average arrival rate does not exceed the link

capacity. The following lemma makes this clear.

Lemma 3.3.1 Assume thatAλ < ν, i.e.,
∑

r∈RA`rλr < ν`, for all ` ∈ L.5 Then, there is

a constantc > 0, such that for allx ∈ RR+ , and all `∗ ∈ argmax̀∈Lϕ`(x), i.e., first-level

bottleneck links̀∗ ∈ L(1)(x), we have

Qϕ`∗(x) = 〈ξ`∗ , λ− µm(x)〉 ≤ −c. (3.16)

Proof: First, using (3.13) and the definition (3.14) ofξ` we have that

Qϕ`∗(x) =
∑

r∈R
ξ`∗
r (λr − µm

r (x)) = 〈ξ`∗ , λ− µm(x)〉 =
∑

r∈R
ν−1

`∗ A`∗r(λr − µm
r (x)).

Next, sincè ∗ is a first-level bottleneck link, it follows that for routesr traversing link`∗

we haveµm
r (x) = xra

∗
r wherea∗r is given by (3.2). Thus,

Qϕ`∗(x) = ν−1
`∗

(∑

r∈R
A`∗rλr −

∑

r∈R
A`∗r

ν`∗xr∑
s∈RA`∗sxs

)

= ν−1
`∗

(∑

r∈R
A`∗rλr − ν`∗

)

≤ −c,

wherec := max`∈L{ν−1
` (ν` −

∑
r∈RA`rλr)} is positive by the stability condition. ¥

Despite the promise of Lemma 3.3.1 it is unclear whetherV is an appropriate Lya-

punov function. Indeed the lemma only suggests that as long as the state makes transitions

on regions having thesamefirst level bottleneck links,V (N(t)) will experience a negative

drift. To make this more precise we will explicitly identify these regions and for clarity

present an example in§3.3.3. LetM be a nonempty subset ofL and let

CM = {x ∈ RR+ : L(1)(x) = M}. (3.17)

5In the sequel this will be referred to as the stability condition.
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It is clear that ifα > 0, x ∈ CM ⇒ αx ∈ CM, i.e., these sets are cones, and that

⋃

M⊆L,M6=∅
CM = RR+ .

Suppose thatn ∈ CM, for some nonemptyM, then the driftQV (n) can easily be com-

puted (see (3.13)), providedn + er, n − er ∈ CM, for all r ∈ R. In this case, with̀ any

element ofM, we haveQV (n) = 〈ξ`, λ−µm(n)〉 ≤ −c, by Lemma 3.3.1. However when

n andn+ er or n− er belong to different cones an explicit verification of the negative drift

requirement becomes difficult. Indeed when this is the case a transition causes a change

in the bottleneck links – alternatively we are “crossing of a boundary” of one of the cones.

Intuitively we may argue that this effect is negligible, since it occurs at a relatively small

fraction of points in the state space.

To make this intuition into a rigorous statement observe that Lemma 3.3.1 also

implies that there is ac > 0, such that

〈∇V (x), λ− µm(x)〉 ≤ −c, (3.18)

for all x at which the gradient∇V (x) := (∂V (x)/∂xr, r ∈ R) exists. It is easy to see that

this gradient exists almost everywhere, and, when it exists, it equalsξ`, for somè . We will

start by showing that there exists a smoothened versionW of the functionV that satisfies a

drift condition in the sense of (3.18) for allx ∈ RR+ .

Lemma 3.3.2 ([18]) If Aλ < ν, then there is a non-negative functionW , defined onRR+ \
{0}, that is at least twice-continuously differentiable, has a Hessian6, ∇2W (x), such that

∇2W (x) → 0, as |x| → ∞, and which satisfies the following drift condition: there is a

d > 0, such that

〈∇W (x), λ− µm(x)〉 ≤ −d

for all x 6= 0.

For completeness we have included a proof of the lemma to the appendix. Next we show

that the network is indeed positive recurrent.

6Here∇2W (x) denotes the|R| × |R| matrix with entries{ ∂2W
∂xr∂xs

(x), r, s ∈ R}.
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Theorem 3.3.1 If Aλ < ν then the Markov chain{N(t), t ≥ 0} associated with the

max-min fair bandwidth allocation is positive recurrent.

Proof: SinceW is twice differentiable it follows by the Mean Value Theorem that for

n,m ∈ ZR+ there exists aθ, 0 ≤ θ ≤ 1 such that

W (n+m)−W (n) = 〈∇W (n),m〉+ 1
2
mT∇2W (n+θm)m := 〈∇W (n),m〉+β(n,m).

Recall that∇2W (n) → 0 and thusβ(n, z) → 0 as|n| → ∞. Now, using this approxima-

tion to computeQW , as in (3.13), we have

QW (n) = 〈∇W (n), λ− µm(n)〉+
∑
m

q(n,m)β(n,m− n).

It follows by Lemma 3.3.2 that the first term is at most−d. The second term, is a sum of a

finite number of terms, and can be made smaller thand/2 for all |n| sufficiently large. Thus

noting thatsup|n|>γ QW (n) < 0, for sufficiently largeγ, and lettingK = {n : |n| ≤ γ}
we satisfy the drift condition (3.12) which as discussed earlier implies positive recurrence.

¥

3.3.2 Stability under Weighted Max-min Fair Bandwidth Allocation

While the previous result is intuitive, in that the number of connections on bottleneck links

must be decreasing, it is not easily extended it to show the stability of networks under

weighted max-min fair bandwidth allocation. Thus, we develop an alternative approach

which, instead of focusing links, focuses on the relative states of each route. Suppose that a

set of weightsw is selected and the network is operated subject to the bandwidth allocation

function µw defined in§3.2.2. We will letϕr(x) = λ−1
r wrxr, r ∈ R and consider the

candidate function

V (x) = max
r∈R

ϕr(x) = max
r∈R

{λ−1
r wrxr}. (3.19)

The following lemma shows why this particular function is useful.
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Lemma 3.3.3 Assume thatAλ < ν then there is a constantc > 0, such that for allx ∈ RR+
and for all r∗ ∈ argmaxr∈Rϕr(x) we have

Qϕr∗(x) = λ−1
r∗ wr∗(λr∗ − µw

r∗(x)) ≤ −c.

Proof: Suppose the the network state isx and letr∗ ∈ argmaxr∈R{λ−1
r wrxr} then for all

r ∈ R, we have that
wrxr

λr
≤ wr∗xr∗

λr∗
, (3.20)

or equivalently thatλr∗wrxr ≤ λrwr∗xr∗ . Now summing over all routes traversing a link

` ∈ L we have that

λr∗
∑

r∈R
A`rwrxr ≤ wr∗xr∗

∑

r∈R
A`rλr,

which one can rearrange to show that

λr∗ ≤ wr∗xr∗∑
r∈RA`rwrxr

∑

r∈R
A`rλr

=
wr∗xr∗∑

r∈RA`rwrxr
ν` − wr∗xr∗∑

r∈RA`rwrxr
(ν` −

∑

r∈R
A`rλr).

Given (3.20) and the stability condition one can easily show the existence of a positive

lower bound,ε > 0, for the term on the right-hand side :

wr∗xr∗∑
r∈RA`rwrxr

(ν` −
∑

r∈R
A`rλr) ≥ min

`∈L
min
r∈R

{
A`rλr∑

r∈RA`rλr
(ν` −

∑

r∈R
A`rλr)

}
= ε.

Thus we have that

λr∗ ≤ wr∗xr∗f
(1),w
` (x)− ε

where we recognize a term corresponding to the fair sharef
(1),w
` (x) at link `, see (3.4).

Moreover since this is true for all` we have that

λr∗ ≤ wr∗xr∗f
(1),w(x)− ε (3.21)

wheref (1),w(x) = min`∈L f
(1),w
` (x) is the fair share at first level bottleneck linksL(1),w(x).

Now if r∗ is a first level bottleneck route,i.e., r∗ ∈ R(1),w(x), thenµw
r∗(x) =

wr∗xr∗f
(1),w(x), and it follows by (3.21) thatλr∗ − µw

r∗(x) ≤ −ε. If r∗ is not a first level
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bottleneck route, we will show that its bandwidth allocation must exceedwr∗xr∗f
(1),w(x)

and so again by (3.21) we have thatλr∗ − µw
r∗(x) ≤ −ε.

We begin by showing thatf (2),w(x) ≥ f (1),w(x). Supposè ∈ L \ L(1),w(x) and

note that
∑

r∈R
A`rwrxrf

(1),w(x) ≤
∑

r∈R
A`rwrxrf

(1),w
` (x) = ν`

so it follows that

ν` − f (1),w(x)
∑

r∈R(1),w(x)

A`rwrxr ≥ f (1),w(x)
∑

r∈R\R(1),w(x)

A`rwrxr.

Rearranging terms and recalling the definition of fair share for the links in the second level

of the bottleneck hierarchy we have that

f
(2),w
` (x) =

ν
(1),w
` (x)∑

r∈R\R(1),w(x) A`rwrxr

=
ν` − f (1),w(x)

∑
r∈R(1),w(x) A`rwrxr∑

r∈R\R(1),w(x) A`rwrxr

≥ f (1),w(x).

Thusf (2),w(x) = min`∈L f
(2),w
` (x) ≥ f (1),w(x). Similarly it follows by induction that

f (i+1),w(x) ≥ f (i),w(x), until the bottleneck hierarchy is exhausted.

Now sinceµw
r∗(x) = wr∗xr∗f

(j),w(x) for some levelj in the bottleneck hierarchy,

it follows thatµw
r∗(x) ≥ wr∗xr∗f

(1),w(x) and soλr∗ − µw
r∗(x) ≤ −ε. The lemma follows

by selectingc = εminr∈R{λ−1
r wr}. ¥

Theorem 3.3.2 If Aλ < ν then Markov chain{N(t), t ≥ 0} associated with weighted

max-min fair bandwidth allocation is positive recurrent.

Proof: Based on Lemma 3.3.3, and the technique used in Lemma 3.3.2, it should be clear

that an appropriately smooth Lyapunov functionW can be constructed fromV in (3.19).

Positive recurrence then follows as in Theorem 3.3.1. ¥

Note that since max-min fairness is a special case of weighted max-min fairness,

Theorem 3.3.2 establishes the stability of both. The two different Lyapunov functions we
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have introduced, based on links and routes, may be of interest in further studies of perfor-

mance. These results establish thatAλ < ν is asufficientcondition for stability. In fact, it

is anecessarycondition. Say there exists a link` such that
∑

r∈RA`rλr > ν`. Clearly such

a link in isolation is unstable,i.e.,on average will tend to drift off to infinity. When the link

is incorporated within a network, the situation can in fact only get worse, since other links

may slow down the departures for connections on`.

3.3.3 Example Network

λ1

λ2

Link1 Link2 Link3

ν1 ν2 ν3

Figure 3.1: Example network with three
links and two routes.
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Figure 3.2: A vector field of the example
network.

In this example we consider max-min fair bandwidth allocation for the network

shown in Fig. 3.1 – it consists of two routesR = {1, 2}, three links,L = {1, 2, 3}, and

routing matrix

A =




1 0

1 1

0 1


 .

Based on the notion of fair share (3.3), we can define the first and second level bottleneck

link and route sets, for anyx ∈ R3
+. Notice that in this example there are at most 2 levels in

the bottleneck hierarchy. The various cases, and corresponding conesCM (see (3.17)), are
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defined below.

• Case 1 (Link 1 is the unique 1st level bottleneck link):

L(1)(x) = {1} if f
(1)
1 (x) < f

(1)
2 (x) andf

(1)
1 (x) < f

(1)
3 (x) (3.22)

L(2)(x) = {2} if f
(2)
2 (x) < f

(2)
3 (x)

L(2)(x) = {3} if f
(2)
3 (x) < f

(2)
2 (x)

C{1} = {x ∈ R3
+ : L(1)(x) = {1}}.

• Case 2 (Link 2 is the unique 1st level bottleneck link):

L(1)(x) = {2} if f
(1)
2 (x) < f

(1)
1 (x) andf

(1)
2 (x) < f

(1)
3 (x) (3.23)

C{2} = {x ∈ R3
+ : L(1)(x) = {2}}.

• Case 3 (Link 3 is the unique 1st level bottleneck link):

L(1)(x) = {3} if f
(1)
3 (x) < f

(1)
1 (x) andf

(1)
3 (x) < f

(1)
2 (x) (3.24)

L(2)(x) = {1} if f
(2)
1 (x) < f

(2)
2 (x)

L(2)(x) = {2} if f
(2)
2 (x) < f

(2)
1 (x)

C{3} = {x ∈ R3
+ : L(1)(x) = {3}}.

The sets of bottleneck linksL(1) orL(2) could have more than one element if the fair shares

were the same on two links,e.g.,L(1) = {1, 2} if f
(1)
1 = f

(1)
2 < f

(1)
3 , and in this case the

cones are defined asC{1,2}.

Next we consider the piecewise linear functionV (x), given in (3.15) :

V (x) = max
`∈L

ϕ`(x) = max
`∈L

〈ξ`, x〉

= max{ν−1
1 x1, ν

−1
2 (x1 + x2), ν−1

3 x2}.

and assume the stability condition holds,i.e.,

λ1 < ν1, λ1 + λ2 < ν2, λ2 < ν3.
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We can compute the drifts in (3.16) explicitly to obtain,

Qϕ1(x) = 〈ξ1, λ− µm(x)〉 = ν−1
1 (λ1 − ν1) ≤ −c, x ∈ C{1}

Qϕ2(x) = 〈ξ2, λ− µm(x)〉 = ν−1
2 (λ1 + λ2 − ν2) ≤ −c, x ∈ C{2}

Qϕ3(x) = 〈ξ3, λ− µm(x)〉 = ν−1
3 (λ2 − ν3) ≤ −c, x ∈ C{3}.

The vector fieldλ − µm(x) corresponding to the max-min bandwidth allocation

is shown Fig. 3.2 whenλ = (1.5, 1.5) andν = (5, 6, 4). According to the bottleneck

condition, we have three cones coincide at boundariesx1 = 5x2 and2x1 = x2, which is

obtained by solving (3.22) through (3.24). The conesC{1}, C{2} andC{3} correspond to

lower part, middle one and upper one, respectively. Also shown on the figure is a level set

of the functionV. From the figure it is clear that on each cone the network’s dynamics push

inwards,i.e.,have negative drift with respect toV . By smoothingV as in Lemma 3.3.2 we

obtain a Lyapunov functionW from which the stability of the system follows.

3.3.4 Stability under a State Dependent Weighted Max-min Fair Control Pol-

icy

In this section we briefly consider a simple extension to our model with weighted max-

min fair allocation, wherein a control policy is implemented by letting the weights depend

on the network state. Letw = (wr : ZR+ → R+, r ∈ R) now denote functions where

w(n) = (wr(n), r ∈ R) are understood to be the weights associated with each route

when the network state isn. Assume that when the system is in staten bandwidth is

allocated to routes according to a weighted max-min fair allocation with weightsw(n).

Let µw(n)(n) = (µw(n)
r (n), r ∈ R) denote the bandwidths allocated to each route in the

network when the state isn. Our interest in this type of model, was motivated by work on

stability of Generalized Processor Sharing networks [53]. Without delving into the details

of their model, we remind the reader that in such networks a connection is assigned a weight

at each node (representing a queue) which determines the fraction of the available capacity it

receives at that node. The authors showed the queue/delay stability of non-acyclic networks
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of this type when connections received aconsistent relative treatment. By analogy here, we

will say that a state dependent weight based control policy gives routes auniform relative

treatmentif ∀n ∈ ZR+ andr, s ∈ R,

λs

λr
≥ nsws(n)

nrwr(n)
. (3.25)

An example one on such control policy would bewr(n) = λr/nr for nr 6= 0. Thus upon

admitting or tearing down a connection along a given route the network controller would

need to adjust the weight associated with that route. The following lemma shows that

subject to the natural stability condition, a weight based control policy that gives routes

uniform relative treatment is stable.

Lemma 3.3.4 AssumeAλ < ν and a weight based control policyw(·) that gives routes a

uniform relative treatment is used to allocate bandwidth in the network. Then∀n ∈ ZR+
and∀r ∈ R such thatnr > 0 we have

λr < µw(n)
r (n).

It follows that the network is positive recurrent.

The proof of this lemma is almost identical to that of Lemma 3.3.3 and is included in the

appendix. Positive recurrence follows since the number of connections on every route has

negative drift if it is not empty.

3.3.5 Stability under Proportionally Fair Bandwidth Allocation

Unlike (weighted) max-min fair allocation of bandwidth, proportionally fair bandwidth al-

location maximizes the overall utility of the network, rather than focusing on maximizing

the worst case individual utility/performance. This is reflected in our choice of Lyapunov

function. In particular the property that the aggregate proportional change is negative in pro-

portionally fair allocation as in (3.7) will play a role. We propose the following quadratic

Lyapunov function:

W (x) =
∑

r∈R

x2
r

2λr
.
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Note that the function is continuous and twice differentiable, thus there is no need for the

smoothing process as we used in the case of max-min fair allocation. In Lemma 3.3.5

and Theorem 3.3.3 below we show that this function satisfies the requirements to show the

stability of the proportionally fair allocation.

Lemma 3.3.5 Assume thatAλ < ν. Then there exists a constantd > 0 such that for all

x ∈ RR+ \ {0} the following holds

< ∇W (x), λ− µp(x) > =
∑

r∈R
λ−1

r xr(λr − µp
r(x)) ≤ −d.

Proof: Note that∇rW (x) = λ−1
r xr, so

< ∇W (x), λ−µp(x) > =
∑

r∈R

xr

λr
(λr−µp

r(x)) ≤
∑

r∈R:xr>0

xr

µp
r(x)

(λr−µp
r(x)) (3.26)

where the inequality follows from:

λr ≥ µp
r(x), if λr − µp

r(x) ≥ 0,

λr < µp
r(x), if λr − µp

r(x) < 0.

Note if µp
r(x) = 0 thenxr = 0, so in (3.26) the inequality still holds. By noting that

µp
r(x) = xra

p
r(x), we have

< ∇W (x), λ− µp(x) > ≤
∑

r∈R

xr

µp
r(x)

(λr − µp
r(x))

≤
∑

r∈R
xr

λr/xr − ap∗
r (x)

ap∗
r (x)

(3.27)

≤ 0, (3.28)

sinceap satisfies the negative aggregate proportional change as given in (3.7), andar
′ =

λr/xr is a feasible vector,i.e.,
∑

r∈RA`rxrar
′ ≤ ν` is a strict inequality because the

problem is strictly concave and we can not havear
′ = λr/xr = ap∗

r (x) for all r ∈ R in

(3.27). Indeed suppose this were true,i.e., λr = xra
p∗
r (x) = µp

r(x) for all r ∈ R, then it

implies that for a bottleneck link̀∈ L,
∑

r∈RA`rλr =
∑

r∈RA`rµ
p
r(x) = ν`, noting that
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there is at least one bottleneck link per route, which in turn contradicts with our stability

conditionAλ < ν.

So for a givenx by continuity of< ∇W (x), λ − µp(x) > in x there existsδ and

d(x) such that for ally in a ball||y−x|| < δ(x), we have< ∇W (y), λ−µp(y) >≤ −d(x).

This holds uniformly in a compact subset ofRR+ containing 0, and can be extended toRR+
using the following property withα > 0

< ∇W (αx), λ− µp(αx) > = α < ∇W (x), λ− µp(x) >

since∇W (αx) = α∇W (x) andµp(αx) = µp(x) by radial homogeneity ofµp, see (3.8).

It follows that

< ∇W (x), λ− µp(x) > ≤ −d

for all x in RR+ \ {0} and a constantd > 0. ¥

Theorem 3.3.3 If Aλ < ν the Markov chain{N(t), t ≥ 0} associated with proportionally

fair bandwidth allocation is positive recurrent.

Proof: The method of proof for this theorem is analogous to that of our previous results.

SinceW is twice differentiable it follows by the Mean Value Theorem that forn,m ∈ ZR+
there exists aθ, 0 ≤ θ ≤ 1 such that

W (n + m)−W (n) = 〈∇W (n),m〉+
1
2
mT∇2W (n + θm)m.

Note that the Hessian term yields∇2W (x) = diag(1/2λr, r ∈ R), so we have from (3.11)

notingm = er

QW (n) = 〈∇W (n), λ− µp(n)〉+ 〈h, λ− µp(n)〉,

whereh = (1/2λr, r ∈ R). By radial homogeneity ofµp and by Lemma 3.3.5, we have

QW (αn) = 〈∇W (αn), λ− µp(αn)〉+ 〈h, λ− µp(αn)〉

= α〈∇W (n), λ− µp(n)〉+ 〈h, λ− µp(n)〉

≤ −αd + 〈h, λ〉,

≤ −αd + |R|/2,
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Figure 3.3: A vector field corresponding
to proportionally fair bandwidth alloca-
tion of the example network.

whereα > 0 and |R|/2 is a finite constant. Thus for sufficiently large|n|, the drift

can be made negative. LettingK = {n : |n| ≤ γ} with large enoughγ, we have

supn/∈K QW (n) < 0, which satisfies the drift condition (3.12) and implies positive re-

currence. ¥

The vector field corresponding to proportionally fair bandwidth allocation is shown

in Fig. 3.3 whenλ = (1.5, 1.5) andν = (5, 6, 4). Similarly, a weighted proportionally

fair allocation of bandwidth can be considered as in [16], where the total weighted network

utility is maximized:

maxa

{∑

r∈R
wrnrUr(ar) :

∑

r∈R
A`rwrnrar ≤ ν`, ` ∈ L; a ≥ 0

}
. (3.29)

With the utility functionUr(ar) = log ar, the rate allocationaw,p∗ = (aw,p
r

∗
, r ∈ R)

solving (3.29) isweighted proportionally fairbandwidth allocation in the sense that for

any other feasible ratea′ = (a′r, r ∈ R), the aggregate weighted proportional change is

negative,i.e.,
∑

r∈R
wrnr

a′r − aw,p
r

∗

aw,p
r

∗ < 0.
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One can show the stability of the weighted proportionally fair allocation of bandwidth fol-

lowing a similar procedures as that for proportional fair allocation of bandwidth with the

Lyapunov function:

W (x) =
∑

r∈R

(wrxr)
2

2λr
.

3.4 Could the Internet be Unstable ?

3.4.1 Modeling of TCP

Internet traffic has been growing dramatically for the last few years. As of January 1999,

the number of hosts advertised in the Domain Name Server (DNS) reached more than 43

million [58]. In many places the increase in demand is outpacing resources leading to

congestion and degradation in performance. Since performance of Internet traffic is closely

linked to the behavior of TCP congestion avoidance algorithm [25, 43], it is crucial to

understand the impact of TCP on the macroscopic network level performance.

However, due to complicated interactions of Internet traffic and TCP transport algo-

rithms [54], most research on the performance of TCP has relied on simulations for various

TCP mechanisms. In an attempt to quantify throughputs of TCP connections more precisely

and predictably, some researchers have started to consider analytical models and through-

puts of TCP connections under various operating conditions, seee.g., [25, 20, 43, 51].

Recently, this approach has drawn much attention and relevant work is ongoing.

Mathis et. al. [43] formulate a simple TCP model under the assumptions that (1)

TCP is running over lossy path with constant Round Trip Time (RTT), and (2) Packet loss

is random with constant probability ofp. The TCP throughput,BW (p), is derived as

BW (p) =
1

RTT

√
3
2p

packets/sec.

The model is shown to match with real traffic when assumptions (1) and (2) hold. This

model does not apply in some situations,e.g.,when “timeout” behavior is dominant or for

the case of short connections which require only a few cycles of congestion avoidance. In
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fact, real-life Internet traffic exhibits many timeouts compared with congestion avoidance

behavior,i.e., retransmission.

A recently developed model by Padhye et. al. [51] improves upon the previous

one. The model captures not only congestion avoidance but also timeout behaviors that

many real-life TCP traces exhibit. Moreover their model is shown to fit a wider range of

operating conditions,i.e., loss regimes. They assume that packet losses are correlated based

on the fact that most current Internet employs drop-tail queueing policy and thus packets are

likely to be lost again once previous packets experienced losses due to a full buffer. Their

approximate model for TCP7 throughput as a function of loss rate is

BW (p) = min


Wmax

RTT
,

1

RTT
√

2bp
3 + T0 min(1, 3

√
3bp
8 )p(1 + 32p2)


 packets/sec

whereWmax is the maximum congestion window size,b is the number of packets that are

acknowledged by a received ACK, andT0 is the time interval a sender waits before it starts

retransmitting unacknowledged packets when a timeout occurs. Although the model may

not fit into the TCP traces under different implementations such as TCP-tahoe or the Linux

TCP implementation, it has been shown to match a broad range of real TCP traces and to

predict the TCP throughput.

3.4.2 Macroscopic Modeling of the Internet

In this chapter we have considered the stability and performance of an idealized model for

a network supporting services that adjust their transmissions to network loads. The model

is only arough caricatureof the Internet today, in that it assumes TCP operates efficiently

by immediately achieving anaveragethroughput related to a weighted proportionally fair

bandwidth allocation. For a single congested link, weighted max-min or weighted pro-

portionally fair allocation model TCP appropriately [43], [16]. We believe that weighted

max-min fair allocation can be adopted as a network model if weights are selected to re-

flect round-trip delays and TCP dynamics. So a connection’s throughput is dictated by a

7They model TCP-reno which is the most popular implementation of TCP in the Internet.
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weighted allocation of resources at congested or bottleneck links. The average RTT experi-

enced by connections and loss rate can be captured by weights given to connections which

in turn impact the equilibrium throughput achieved by TCP connections. This model par-

allels the one proposed and validated via simulation in [43]. We also assume that packets

associated with a given TCP connection typically follow the same route, and connections

send data in a greedy manner and depart. Subject to these, perhaps fanciful assumptions,

one can show that network stability cannot be guaranteed unless the connection-level of-

fered loads do not exceed the network’s link capacities.

While this result is not entirely surprising, it presents an interesting architectural

dilemma for future networks. Since routing algorithms on the Internet base their decisions

on short term measures,i.e., are not explicitly tracking the long-term averages required to

assess the connection level offered loads, there is no reason to believe that the Internet would

satisfy a connection level stability requirement. Instability would be perceived by users as

an unacceptably low throughput, or inordinate delays, and typically cause them to abandon,

thus in some sense solving the problem. To avoid such extremes one might overprovision

the network. Unfortunately, this may result in a network which is still unstable, resulting in

sporadic long lasting congestion events that are challenging to explain.

Currently we are researching using methodologies similar to those we have used to

prove stability, to explore performance issues and consider in more depth the compromises

one might make to achieve good performance at the connection level. It would of course

be interesting to look at congestion patterns on the Internet today and attempt to explain

them in terms of a connection-level instability. However, given the typically non-stationary

demands on today’s networks and the detailed data that would be required to provide a

conclusive answer to this question this appears to be a challenging task.
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Appendix

3.5 Proof of Lemma 3.3.2

The argument below is taken from Down and Meyn [18] that uses the property of radial

homogeneity. We will construct a smoothW that, just asV , is also radially homogeneous.

It then follows that∇2W (x) → 0, as|x| → ∞.

Recall thatV (x) = max`∈L〈ξ`, x〉. The idea is that one can perturb the vectors

ξ` without changing the drift property. To explicitly exhibit the dependence ofV on these

vectors, define

V (ξ, x) = max
`∈L

〈ξ`, x〉, x ∈ RR+ ,

whereξ = [ξ`, ` ∈ L] is a|R| × |L|matrix and let||ξ|| be an appropriate matrix norm. By

Lemma 3.3.1 we have that

〈ξ`, λ− µ(x)〉 ≤ −c, if ` ∈ L(1)(ξ, x), (3.30)

whereL(1)(ξ, x) denotes set of first-level bottleneck links, or,` ∈ L(1)(ξ, x) ⇔ 〈ξ`, x〉 ≥
〈ξ`′ , x〉, for all `′ ∈ L.

For a givenx by continuity of (3.30) inx andξ there existδ, ε, c′ > 0, such that for

||η − ξ|| < δ(x), |y − x| < ε(x) and` ∈ L(1)(y, η) we have〈η`, λ − µ(y)〉 ≤ −c/2. In

fact this statement can be made to hold uniformly for a compact subset ofRR+ containing

the origin and then extended, using radial homogeneity, toRR+ .

Now pick a smooth probability densityp(η) on the set{||η − ξ|| < δ} and define

W (x) =
∫

||η−ξ||<δ
V (η, x)p(η)dη.

One can seeW (x) is smooth onRR+ \{0}, by noting thatV (η, x) is smooth atx for p almost

everyη. Moreover it is radially homogeneous, and one can easily show that it satisfies

〈∇W (x), λ− µ(x)〉 ≤ −c/2 = −d.

¥
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3.6 Proof of Lemma 3.3.4

We will show the result by induction on the bottleneck hierarchy. Suppose the network state

is n, and so the weight vector isw(n) and letL(1),w(n)(n) andR(1),w(n)(n) denote the first

level bottleneck links and routes associated with the corresponding weighted max-min fair

problem. By (3.25) for any two routesr, s ∈ R traversing a given link̀ ∈ L we have

λs ≥ λr

nrwr(n)
nsws(n).

Now summing over all routes traversing` we have that

∑

s∈R
A`sλs ≥ λr

nrwr(n)

∑

s∈R
A`snsws(n).

This in turn means that

λr ≤ nrwr(n)∑
s∈RA`snsws(n)

∑

s∈R
A`sλs <

nrwr(n)∑
s∈RA`snsws(n)

ν` = nrwr(n)f (1),w(n)
` (n),

where the strict inequality follows from the stability condition, and we recognize weighted

fair sharef (1),w(n)
` (n) at link `, see (3.4). Suppose that` ∈ L(1),w(n)(n), thenf

(1),w(n)
` (n) =

f (1),w(n)(n), and the right hand term corresponds to the bandwidth allocated to router

whenceλr < µ
w(n)
r (n), ∀r ∈ R(1),w(n)(n).

To continue by induction we need only show that the reduced problem also satisfies

a stability conditioni.e., for all ` ∈ L \ L(1),w(n)(n) we have that

∑

r∈R\R(1),w(n)(n)

A`rλr < ν
(1),w(n)
` = ν` − f (1),w(n)(n)

∑

r∈R(1),w(n)(n)

A`rwr(n)nr.

By noting that
∑

r∈RA`rnrwr(n)f (1),w(n)
` (n) = ν` andλr < nrwr(n)f (1),w(n)

` (n), the

above is easily shown, so it follows that

∑

r∈R\R(1),w(n)(n)

A`rλr <
∑

r∈R\R(1),w(n)(n)

A`rnrwr(n)f (1),w(n)
` (n)

= ν` − f
(1),w(n)
` (n)

∑

r∈R(1),w(n)(n)

A`rwr(n)nr

< ν
(1),w(n)
`

sincef
(1),w(n)
` (n) > f (1),w(n)(n) if ` ∈ L \ L(1),w(n)(n). ¥
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Chapter 4

Performance and Design of Dynamic

Networks Supporting Services with

Flow Control

4.1 Introduction

In an effort to achieve efficient network utilization and to support elastic applications, adap-

tive services have been adopted,e.g.,ABR service in ATM networks and TCP in the Inter-

net. Connections using this service class adapt their transmissions, which are controlled im-

plicitly or explicitly based on congestion status and resource availability. Recently, adaptive

services such as TCP and ABR service are drawing increased attention [42, 2, 4, 46, 43, 51].

Most research on adaptive services has focused on stability and transient analysis

of flow control mechanisms of networks with “fixed” numbers of connections. However,

users establish connections, transmit and receive possibly random amount of data, and dis-

connect. Thus connection arrivals and departures are stochastic in nature, which results in

dynamic allocation of available resources. Although it is increasingly important to under-

stand the behavior of dynamic networks supporting adaptive services, very little is known

about their stability and performance.

64



In Chapter 3, networks with “dynamically” varying number of connections under

dynamic rate allocations have been modeled via a Markov chain.1 It has been shown that a

natural condition is necessary for the stability of the dynamic model: the total load on any

link does not exceed the link’s capacity. However, the performance of dynamic networks

is not readily known due to the “global” interactions underlying in dynamic rate allocation

mechanisms. In this context, it is challenging to characterize exact performance (e.g.,aver-

age throughput or connection delays). Extensive simulations will be used to investigate the

behavior of dynamic networks.

In dynamic networks, constrained (bottleneck) links and thus bandwidth alloca-

tion are dynamically changing over time. So it is questionable whether dynamic networks,

operating under fair bandwidth allocation mechanisms (max-min or proportionally fair al-

location), can be designed to meet delay performance requirements. Intuitively, one might

dimension such networks by determining the bandwidth required for each route in ‘isola-

tion’ in order to meet an average delay constraint on connections. Then by allowing routes

to share these resources one would expect the overall average delays on the network to

improve. Contrary to our expectations, this sharing of resources, can lead to degraded per-

formance. In other words, although max-min and proportionally fair bandwidth allocation

maximize individual throughput and overall network utility,2 respectively, it is challenging

to meet delay guarantees in a dynamic network.

In this chapter, we first consider using astate-dependent weighted max-min fair al-

location of bandwidthin order to guarantee delay requirement of each route. Under the pol-

icy, a network can be designed to meet delay requirements by controlling weights of routes.

This design method, however, has limitations in implementation since the rate allocation re-

quires global information,i.e.,current number of ongoing connections. So we next propose

a design method based on Generalized Processor Sharing (GPS) rate allocation and show

that it indeed satisfies delay QoS requirements. The design method was motivated from

bandwidth allocation in networks with fixed number of connections [52, 53]. We believe

1An earlier version of Chapter 3 can be found in [17].
2A user’s utility is specified as a logarithmic function of the user’s throughput.
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that it provides a basis to network planning and service provisioning for dynamic network

environments,e.g.,bandwidth allocation of Virtual Path (VP).

We shall explore connection level performance of dynamic networks operating un-

der various bandwidth allocations, and design of dynamic networks guaranteeing delay

performance. This chapter is organized as follows. Simulations are conducted in§4.2 in

order to examine actual performance. The design of networks with dynamic connections

to guarantee delay QoS requirements is presented in§4.3. Finally we summarize results in

§4.4.

4.2 Simulations

As discussed earlier, it is challenging to fully quantify the performance of dynamic net-

works supporting services with adaptive allocations due to the complicated interactions

among routes. Hence we shall resort to extensive simulations in an effort to further inves-

tigate the behavior of such networks. The objectives of simulations are 1) to understand

the actual performance that we may expect to get, 2) to find how service policies affect

the performance, and 3) to provide a basis to the design of dynamic networks guaranteeing

connection-level delay QoS requirements.

We shall focus on average connection delay as our performance metric. This type

of metric is of interest in dimensioning networks to provide a reasonable call-level quality

of service. One might also wish to design network control mechanisms to assign priori-

ties (weights) to routes, or to spread call level loads across the network in a manner that

improves the individual or overall delays.

λ1 λ2

Link 1 Link 2 Link K

ν1 ν2
νK

λK

λK+1

Figure 4.1: A network for simulations.
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We shall consider a network consisting ofK links in series, see Fig. 4.1. A long

route traverses each link in the network, while short single-link routes, model “cross traffic.”

This network was adopted in order to consider how short (local) and long (transit) traffic

interact each other. To investigate the degradation in performance as connections traverse

an increasing number of links we simulated several configurations whereK = 2, 3, 4 and

5. We simulated max-min, weighted max-min, and proportionally fair bandwidth allocation

mechanisms in order to assess their impact on connection delays. In the case of weighted

max-min fairness, short and long connections were given weights 1 and 2 respectively,

i.e., wr = 1, r = 1, · · · ,K and wK+1 = 2. Thus priority was given to connections

traversing several links as they are likely to experience the poorest performance. Several

symmetric and asymmetric load conditions were simulated to explore the impact of various

load conditions on the network performance.

4.2.1 Symmetric Load

We first consider symmetric load conditions wherein long and short routes have the same

traffic loads,i.e., λr = λs,∀r, s ∈ R. The load conditions are summarized in Table 4.1.

Load conditions λr, r = 1, · · · ,K + 1 ν`, ` = 1, · · · ,K

Light load 0.2 2.4
Moderate load 2.0 6.0

Heavy load 20.0 42.0

Table 4.1: Simulation environment (symmetric loads on all routes).

Both arrival rates and link capacities are in connections/sec. For each of scenario, the

average overall connection delays as well as those on short and long routes, under max-

min, weighted max-min, and proportionally fair allocation are measured as the number of

links K increases, see Fig. 4.2 - Fig. 4.10. In general, as traffic load becomes heavier, and

long routes traverse a larger number of links, average overall connection delay becomes

large, regardless of the bandwidth allocation policy.
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Figure 4.2: Average overall delay (ight
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Figure 4.3: Average delay on short routes
(light load).
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Figure 4.4: Average delay on long routes
(light load).
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Figure 4.5: Average overall delay (moder-
ate load).
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Figure 4.6: Average delay on short routes
(moderate load).
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Figure 4.7: Average delay on long routes
(moderate load).

69



2 2.5 3 3.5 4 4.5 5
0.6

0.65

0.7

0.75

0.8

0.85

No. of links

D
el

ay
 [s

ec
]

Max−min   
W. max−min
Prop.     

Figure 4.8: Average overall delay (heavy
load).
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Figure 4.9: Average delay on short routes
(heavy load).
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Figure 4.10: Average delay on long routes
(heavy load).
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We first contrast the performance of max-min fair bandwidth allocation, which

strives to maximize the worst case individual performance versus proportional fairness,

which strives to maximize the overall network utility. The latter tends to give more band-

width to connections crossing a small number of links, as they are more efficient in terms

of their resource requirements. As a result long routes may linger in the network possibly

degrading the overall performance. For example, forK = 5 and moderate load, the rela-

tive change in delays for proportional versus max-min fair bandwidth allocation is -10 %

on short routes, +46 % on long routes, and +5% overall, see Fig. 4.11 - Fig. 4.13. This

effect is aggravated as the number of links in the network increases. For heavy load and

whenK = 2, 3, 4, and 5, the relative change in delays for long routes is +17.3 %, +38.9 %,

+60.8 %, and +82.7 %, respectively. Moreover as traffic load becomes heavier, the relative

difference in delays for proportional versus max-min fair bandwidth allocation increases.

For example, whenK = 5, change in delays on long routes is +3.8 %, +46.4 % and +82.7

% for light, moderate, and heavy load, respectively.

This result demonstrates that the max-min outperforms the proportionally fair allo-

cation in terms of delays on long routes and overall delays. Moreover, the change in delays

for proportional versus max-min becomes larger as the size of network grows and the load

of traffic becomes heavier. This suggests that maximizing overall utilities, which is a func-

tion of throughputs, is not necessarily compatible with minimizing connection delays. Note

that as the number of links increases, proportional fairness leads to a surprisingly flat aver-

age delay on short routes, while long routes see a linear growth in average delay,3 see Figs.

4.6 and 4.7.4 This suggests that proportional fairness may provide a clean performance

differentiation among routes that have different lengths.

Next, we consider the impact that using a weighted max-min fair bandwidth allo-

cation will have on delays, if weights are selected so as to expedite connections on long

routes. Clearly, weighted max-min fair allocation can provide a flexibility in allocating

3This phenomenon is believed to be a result of the specific network topology.
4The overall delay is not linear since it is an average of delays on short and long routes. Since the relative

total load on short versus long routes is increasing withK, the overall delay behavior is not linear.
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max-min (overall) - Symmetric loads.

2 2.5 3 3.5 4 4.5 5
−20

−15

−10

−5

0

No. of links

C
ha

ng
es

 in
 D

el
ay

 [%
]

Light   
Moderate
Heavy   

Figure 4.12: Change in delays, prop.
over max-min (short routes) - Symmetric
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bandwidth over max-min fair allocation. Continuing with our example, whenK = 5 and

load is moderate, the relative change in delays for the weighted versus the max-min fair

bandwidth allocation is +9 % on short routes, -33 % on long routes, and -2 % overall (Fig.

4.14 - 4.16). Thus, one can not only dramatically improve the delays experienced on long

routes, but also marginally improve the overall performance.

However, for weighted max-min rate allocation, delays do not vary much with the

length of long route and the intensity of traffic load, see Fig 4.14 - 4.16. When the load is

heavy, the change in delays for weighted max-min versus max-min fair allocation on long

routes is -37.9 %, -40.4 %, -41.6 %, and -42.4 % asK = 2, 3, 4, and 5, respectively. When

K = 5, the change in delays is -11.9 %, -33.1 %, and -42.4 % for light, moderate, and

heavy load, respectively. This result suggests that weights can be selected based on load

conditions and lengths of routes, in order to improve network performance.

Hence we have measured the performance of a network with fixedK and load con-

dition as weights for long routes vary. It turns out that overall performance is not contin-

uously improved in proportion with the increase of weights given to long routes, although

average delay on long routes decreases. For the moderate load condition andK = 2, per-

formance is illustrated in Fig. 4.17 - 4.19. The overall delay is minimum when the weight

wK+1 = 3, and then degrades as the weightwK+1 increases. This result shows that there is

a tradeoff between improving individual delay performance and maximizing overall delay

performance, which can be achieved by selecting weights (priorities).

In order to see how weights assigned to long routes impact on the performance,

we assign weights for long routes to be the number of links long routes traverse,i.e.,

wK+1 = K. The performance is shown in Fig. 4.20 - 4.22. “W. max-min2” represents

this type of allocation. By this weighted max-min fair rate rate allocation (wK+1 = K),

overall performance degrades as the size of network grows compared with that of the other

weighted max-min fair rate rate allocation (wK+1 = 2). The reason is that short routes start

to suffer from insufficient bandwidth allocation due to the priority given to long routes as

the length of long routes increases. This result indicates that merely giving high priorities
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Figure 4.14: Change in delays, weighted
max-min over max-min (overall) - Sym-
metric loads.
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Figure 4.15: Change in delays, weighted
max-min over max-min (short routes) -
Symmetric loads.
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Figure 4.16: Change in delays, weighted
max-min over max-min (long routes) -
Symmetric loads.
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Figure 4.17: Overall delay as the weight
on a long route increases (symmetric
moderate load,K = 2).
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Figure 4.18: Average delay on short
routes as the weight on a long route in-
creases (symmetric moderate load,K =
2).
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Figure 4.19: Average delay on long routes
as the weight on a long route increases
(symmetric moderate load,K = 2).
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to long routes in proportion to the lengths of the routes does not guarantee an overall per-

formance improvement. Herein lies a dilemma that a network designer will have to address

if they truly wish to optimize average delays.

4.2.2 Asymmetric Load

We have also investigated asymmetric load conditions: 1) heavy load on long routes and

2) heavy load on short routes in order to examine the impact of “asymmetric” loads on

the performance interactions between long and short routes. A simulation environment is

Load conditions λr, r = 1, · · · ,K λK+1 ν`, ` = 1, · · · ,K

Asymmetric load 1 2 20 24
Asymmetric load 2 20 2 24

Table 4.2: Simulation environment (asymmetric loads).

summarized in Table 4.2. Performance for these asymmetric load conditions is illustrated

in Fig. 4.23 to Fig. 4.28 as the number of linksK increases.

As expected, the impact of heavy loads on long routes (asymmetric load 1) is much

greater than that on short routes (asymmetric load 2) as shown in Fig. 4.29. For example,

whenK = 5, the change in average delay for proportional versus max-min fair rate allo-

cation is +25.1 % and +0.4 % for asymmetric load 1 and asymmetric load 2, respectively.

Moreover, the change in average delay for asymmetric load 1 increases as the number of

links increases,i.e.,+2 %, +8.7 %, +16.7 %, and +25.1 % forK = 2,3,4, and 5. This result

confirms that max-min outperforms proportionally fair rate allocation, and the difference

becomes larger as the number of links and the amount of traffic load on long routes in-

crease. As for the impact of weighted max-min fair allocation, the more the load on long

routes is, the change in delays for weighted max-min versus max-min becomes greater, see

Fig. 4.32 - 4.34. WhenK = 5, the change in delays of weighted max-min over max-min

fair rate allocation is -14.4 % and -0.4 % for asymmetric load 1 and asymmetric load 2,
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Figure 4.20: Overall delay whenwK+1 =
K (symmetric moderate load).
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Figure 4.21: Average delay on short
routes whenwK+1 = K (symmetric
moderate load).
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Figure 4.22: Average delay on long routes
whenwK+1 = K (symmetric moderate
load).
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Figure 4.23: Average overall delay (asym-
metric load 1).
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Figure 4.24: Average delay on short
routes (asymmetric load 1).
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Figure 4.25: Average delay on long routes
(asymmetric load 1).
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Figure 4.26: Average overall delay (asym-
metric load 2).
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Figure 4.27: Average delay on short
routes (asymmetric load 2).
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Figure 4.28: Average delay on long routes
(asymmetric load 2).
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Figure 4.29: Change in delays for prop.
versus max-min (overall) - Asymmetric
loads.
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Figure 4.30: Change in delays for prop.
versus max-min (short routes) - Asym-
metric loads.
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versus max-min (long routes) - Asymmet-
ric loads.
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respectively. As the load becomes heavier and the number of links increases, the effect of

using the weighted max-min rate allocation becomes even more noticeable, which is not the

case in symmetric load conditions.

Although the total load on any link is the same for both of asymmetric load condi-

tions, the average overall delay of a network with heavy load on long routes (asymmetric

load 1) is much higher than that on short routes (asymmetric load 2). Furthermore, the

average delay performance degrades much faster as the number of links increases in the

case of asymmetric load 1 than that of asymmetric load 2. Therefore, heavy loads on long

routes have much greater impact on the overall and individual delay performance, since

long routes take more network resources for which connections are competing.

These results exhibit the potential impact that a fairness criterion selected by de-

signers may have on network performance. However, a better characterization of network

performance and tools to ‘optimally’ select weights, or route connections, will need to be

developed if a call level quality of service such as that considered here is deemed important

in future networks. Also note that one could in theory introduce weights on a proportionally

fair allocation in order to also enhance the performance seen on long connections. Hence

our results do not suggest that a particular mechanism is best, we merely suggest that a

consideration of these issues might be warranted.

4.3 Design Problem

Based on our observations of the performance results, next we consider how one can design

dynamic networks guaranteeing average delay requirements. More specifically,

• given a network topology, a loadλr, and average delay requirementsd∗r on router,

how can one dimension link capacitiesν`, to meet the delay requirements ?

We will consider this design problem in the sequel.
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Figure 4.32: Change in delays for
weighted max-min versus max-min (over-
all) - Asymmetric loads.
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Figure 4.33: Change in delays for
weighted max-min versus max-min (short
routes) - Asymmetric loads.
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Figure 4.34: Change in delays for
weighted max-min versus max-min (long
routes) - Asymmetric loads.
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4.3.1 Design by Separation of Routes

Let’s first consider the network shown in Fig. 4.35. We are given demandsλr, and delay

λ1 λ2

Link 1 Link 2 Link K

ν1 ν2
νK

λK

λK+1

Figure 4.35: A network for design.

requirementsd∗r for the connections on router. Suppose that a bandwidthµr is dedicated

to each route,r ∈ R, and there is no sharing across routes. Then each route would behave

as an M/GI/1-PS (Processor Sharing) queue and the delays experiencedE[Dr] are easily

computed, see Fig. 4.36. Thus one can design the link capacityµr so as to satisfy the delay

λ1 λ2

µ1 µ2
µK+1

λK+1

Figure 4.36: Separate links for design.

requirementd∗r of each route from

E[Dr] =
1

µr − λr
≤ d∗r, r ∈ R.

We let the capacityµr = λr + 1
d∗r

. Now we add the bandwidth associated with each

route traversing each link in the original network to decide the total capacitiesν`, e.g.,

ν1 = µ1 + µK+1, as shown in Fig. 4.37. For example, whenλr = 2 connections/sec and

d∗r = 1 sec, the bandwidthµr should be at least 3 connections/sec. Thus the capacity of

each link is designed to be at leastν` = 6 connections/sec. Following this procedure, we

expect that connections on all routes would meet their delay requirementsd∗r for max-min

fair bandwidth allocation mechanisms. Contrary to our expectations, simulations reveal that

average delay on the routes in the designed network operating under max-min or propor-

tionally fair bandwidth allocation could in fact exceed the delay requirements.
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Figure 4.37: Designed network.

Indeed we designed networks for various load conditions subject to delay require-

mentsd∗r = 1 sec. The average delays experienced by the connections on short and long

routes for each load condition and bandwidth allocation policy are tabulated in Table 4.3.

Boldfaced numbers in the table indicate that the delay requirements are violated. ForK ≥ 3

Load condition Policy K=2 K=3 K=4 K=5

Light (λr = 0.2, ν` = 2.4) Max-min Short routes 0.501 0.503 0.504 0.506
Long routes 0.542 0.585 0.621 0.656

Prop. Short routes 0.499 0.500 0.499 0.500
Long routes 0.545 0.593 0.635 0.680

Moderate (λr = 2, ν` = 6) Max-min Short routes 0.530 0.546 0.554 0.558
Long routes 0.693 0.835 0.940 1.025

Prop. Short routes 0.500 0.501 0.501 0.500
Long routes 0.750 1.001 1.253 1.500

Heavy (λr = 20, ν` = 42) Max-min Short routes 0.577 0.603 0.612 0.616
Long routes 0.816 1.018 1.160 1.268

Prop. Short routes 0.501 0.501 0.501 0.500
Long routes 0.957 1.413 1.865 2.317

Table 4.3: Average connection delays on routes in the designed network.

and both moderate and heavy load conditions, all the delays on long routes under propor-

tionally fair bandwidth allocation violate the delay requirement,d∗r = 1 sec. For max-

min fair allocation, connections on long routes experience longer delays than 1 sec, when

K = 5 and load is moderate. This surprising result suggests that even individual route is

designed to have enough bandwidth to meet delay QoS requirement, fair bandwidth alloca-
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tion mechanisms may allocate insufficient bandwidth to the long routes when they compete

for bandwidth. Thus even a “conservative” approach to design that ignores the benefits in

sharing bandwidth across route fails to meet the desired delay requirements.

4.3.2 Design by State-dependent Weighted Max-min Fair Rate Allocation

In Chapter 3, a dynamic network model under state-dependent weighted max-min fair al-

location of bandwidth is shown to be positive recurrent. We propose a design method to

guarantee delay requirements of connections under state-dependent weighted max-min fair

allocation of bandwidth.

λ1 λ2

Link 1 Link 2 Link K

ν1 ν2
νK

λK

λK+1

W1 W2 WK

WK+1

Figure 4.38: Network example for the design by state-dependent weighted max-min fair
allocation of bandwidth.

Consider the network shown in Fig. 4.38. Our goal is to determine the link capaci-

tiesν` in such a way that the rate allocation allocates sufficient bandwidth to the connections

on routes to meet delay requirement,i.e.,E[Dr] ≤ d∗r. Consider a set of networks consist-

ing of single link with capacityµ∗r and its associated route. The routes experience the same

loads as those of the original network as shown in Fig. 4.39. One can decide the capacity

λ1 λ2

µ1 µ2
µK+1

λK+1

* * *

Figure 4.39: Set of networks for design.

of each linkµ∗r to satisfy the delay requirementd∗r by

E[Dr] =
1

µ∗r − λr
≤ d∗r.
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Thus when capacity of each link is at least

µ∗r = λr +
1
d∗r

, r ∈ R,

the delay requirements are satisfied.

In the network of Fig. 4.38, the weightwr can be designed to meet the delay QoS

requirements as follows. If weightswr are selected to be

λ1 λ2

Link 1 Link 2 Link K

ν1 ν2
νK

λK

λK+1

µ µK+1+2 µ µK+1K+µ1 µK+1+* * *** *

W1 W2 WK

WK+1

Figure 4.40: Designed network for state-dependent weighted max-min fair allocation of
bandwidth.

wr =
µ∗r
nr

, r ∈ R,

then the actual bandwidth allocated to routes,µr, satisfies

µr ≥ µ∗r , r ∈ R,

and thus meets the average delay experienced by connections will meet the requirements

on each route,i.e.,

E[Dr] =
1

µr − λr

≤ 1
µ∗r − λr

≤ d∗r, r ∈ R.

Therefore in the designed network shown in Fig. 4.40, average delay on each route is

guaranteed to meet delay requirement.

In order to design a network in this way, weights will have to be adjusted at each new

arrival and departure thus requiring additional control load on network switches. Finally,
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we consider bandwidth allocation when switches support generalized processor sharing

scheduling disciplines [52, 53], in which the number of connections does not need to be

known and delay requirements are satisfied.

4.3.3 Design for Networks Supporting GPS Nodes

Again for our dynamic network model, weights for the routes at each node are to be de-

signed so that delay QoS requirementsd∗r are met (see Fig. 4.38). First, consider each route

separately from the others and associate it with a link as shown in Fig. 4.39. We have a

delay requirementd∗r for router,

E[D∗
r ] =

1
µ∗r − λr

≤ d∗r, r ∈ R.

Let

µ∗r = λr +
1
d∗r

. (4.1)

Thus if the bandwidth allocated to each route,µr, satisfies

µr ≥ µ∗r , r ∈ R,

then the delay requirement will be met on each route.

Now let wr be the weight assigned to router andµ̃r be minimum service rate for

router. By GPS rate allocation, the minimum service rateµ̃r will be

µ̃1 =
w1

w1 + wK+1
ν1,

µ̃2 =
w2

w2 + wK+1
ν2,

...

µ̃K =
wK

wK + wK+1
νK ,

µ̃K+1 = min
`

[
wK+1

w` + wK+1
ν`

]
. (4.2)

We select weights and capacities to be

wr = µ∗r , r = 1, 2, · · · ,K + 1 (4.3)

ν` = µ∗` + µ∗K+1, ` = 1, 2, · · · ,K. (4.4)
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Then from (4.2) - (4.4),̃µr = µ∗r, i.e., the minimum service ratẽµr becomes the bandwidth

required for the connections on router, µ∗r. So the bandwidth allocated to router, µr, is at

leastµ∗r:

µr ≥ µ∗r = µ̃r, r ∈ R.

Hence sufficient bandwidth is allocated to each route and thus guarantees the delay QoS

requirement:

E[Dr] =
1

µr − λr

≤ 1
µ∗r − λr

≤ d∗r, r ∈ R.

By (4.1) and (4.4), one can design

ν` = (λ` +
1
d∗`

) + (λK+1 +
1

d∗K+1

), ` = 1, · · · ,K.

4.3.4 Comparison of the Designs

We have proposed several design methods in the preceding subsections. Next question

of interest is how much excess bandwidth needs to be provided to guarantee the delay

requirements. We assume the same loads and delay QoS requirements for all the routes,

i.e.,λr = λ andd∗r = d∗, r ∈ R, see Fig. 4.41.

λ

Link 1 Link 2 Link K

ν

µ*µ*µ*

µ*µ*µ*

ν ν

λ

λ

λ

Figure 4.41: A network with the same loads and capacities.

Let’s compare the total capacities required in the network.

• Design for networks supporting GPS nodes

From the delay requirement

E[Dr] =
1

µ∗ − λ
≤ d∗, r ∈ R,

88



bandwidth allocated to each route must be at least

µ∗ = λ +
1
d∗

.

For the network to meet delay requirements, required total capacity is

K(2µ∗) = 2K(λ +
1
d∗

), (4.5)

since each link needs capacity of2µ∗. Consider, for example, a network withK =

10, whereinλ = 10 connections/sec, and mean number of bits that connections bring

in is 2 Mbits. If delay requirementd∗ is 2 sec, total capacity needed should be 210

Mbps. It increases to 1.2 Gbps if connections require stringent delay requirements of

20 msec.

• Optimal allocation

Consider an optimal allocation, where bandwidth at each link is shared among all the

connections traversing the link. In this allocation, the average delay of connections

on each route should meet

E[Dr] =
1

ν − 2λ
≤ d∗, r ∈ R.

So we let

ν = 2λ +
1
d∗

.

Total capacity required in the network is

Kν = K(2λ +
1
d∗

). (4.6)

Now we compare total capacities by computing relative gain from (4.5) and (4.6).

The relative gain of optimal allocation over design by GPS can be computed as

2K(λ + 1
d∗ )−K(2λ + 1

d∗ )
K(2λ + 1

d∗ )
× 100 =

1
d∗

2λ + 1
d∗
× 100%.

This relative gain corresponds to relative amount of overprovisioning of design by GPS

over optimal allocation. Note that as traffic loadλ increases, total capacity needed by
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design by GPS approaches to that of optimal allocation. For example, whend∗ = 1 sec

andλ = 2 connections/sec, the relative gain is 20 % while it is only 2.4 % whenλ = 20

connections/sec.

4.4 Summary

In this chapter we have explored performance of dynamic networks operating under max-

min, weighted max-min or proportionally fair rate allocation. Simulations have revealed the

impact of dynamic rate allocations. We have shown that long routes greatly affect overall

and individual delay performance, which is aggravated as the loads on long routes become

heavier. We have drawn an interesting conclusion that proportionally fair rate allocation

does not necessarily maximize overall delay performance although it maximizes the overall

benefit given by a logarithmic function of the throughput. With a reasonable selection of

weights,i.e.,high priorities to long routes, one can improve the performance of the network

over plain max-min fair rate allocation. However, overall delay can be degraded due to

the insufficient bandwidth allocation to short routes although delay performance on long

routes continuously improves. This observation suggests that weights need to be optimized

in order to minimize overall delay.

In dynamic networks under dynamic rate allocations, we have shown that through-

put,e.g.,individual throughput or overall utility, and delay guarantees may not be achieved

simultaneously in general. Thus designing dynamic networks to meet delay requirements

under fair rate allocations is challenging. We believe that it is originated from the global

interactions in dynamic rate allocations. That may lead to an alternative rate allocation tak-

ing delay guarantees into account rather than throughput guarantees. In an effort to provide

design methods guaranteeing delay requirements in dynamic networks, we have proposed

GPS type bandwidth allocations, which will be useful in designing networks with dynamic

connections subject to delay constraints of connections.

90



Chapter 5

Performance and Design of

Multiservice Networks

5.1 Analysis and Design of Multiservice ATM Networks: Single

Node

In current networks, various traffic types (e.g.,voice, data) are typically carried through

logically separate networks (e.g.,telephone networks and the Internet). Service differenti-

ations to efficiently carry various traffic types with different QoS via single network entity

are envisioned for future broadband networks. ATM networks are expected to be a good

candidate to provide this infrastructure.

As part of the efforts to deploy ATM networks, the ATM forum has defined several

service classes including ABR for various conceivable applications [24]. ABR service is

aimed to utilize the remaining bandwidth after other service classes,i.e.,VBR (Variable Bit

Rate) or CBR (Constant Bit Rate) service, have been assigned their requested bandwidth.

Such networks can provide more efficient network utilization from the network providers

point of view, and let users economically share available resources with loose QoS requests

on the other hand.
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It is expected that heterogeneous service classes will be carried through ATM net-

works simultaneously. In this environment, it is important to understand the overall perfor-

mance both for network design and analysis. Research has been conducted on the perfor-

mance using simulations [50, 27, 21, 22, 40, 49, 59, 39], however, little attention has been

paid to the analytical study of network performance analysis under such environments.

Our purpose in this chapter is to model ABR and CBR traffic, and analyze the per-

formance, where first a single node case is considered. As bandwidth occupied by CBR

connections changes dynamically, the available bandwidth for ABR service also varies. So

it can be considered that ABR is operating under randomly varying bandwidth environment

due to the CBR traffic. We model this by a two dimensional Markov chain, and formu-

late QBD (Quasi-Birth-Death) process and matrix-geometric equation [47]. By solving the

equation, we can identify the performance ABR services will see.

Furthermore, when CBR and ABR are operating on different time scales, one can

use quasi-stationary approximations to evaluate system performance. We observe that typi-

cally such approximations closely follow the exact performances as long as there is indeed

a separation of time scales.

We, then, apply this performance analysis to the design of a network carrying both

types of traffic. For example, we can estimate how many ABR connections we will observe

on average under throughput of ABR connections subject to a fair share service policy and

average delay constraints.

In §5.1.1, we present the model, and in§5.1.2 we formulate a Markov chain for the

model. Next we derive a matrix-geometric equation to provide exact average performance

of ABR connections. In§5.1.3, we approximate the performance based on the time scale

separation of two services. Design issues are considered in§5.1.5.

5.1.1 Model

Consider a single link with capacityC shared by CBR and ABR connections (see Fig.

5.1). CBR connections arrive at the link with Poisson arrival rateν and have a connection
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ABR sessions

CBR sessions

C

Poisson with arrival rate ν
Mean holding time µ-1

Unit bandwidth

Poisson with arrival rate λ
Exponential amount of work m

Figure 5.1: Model of ABR and CBR connections to a link.

holding time with exponential distribution and meanµ−1. CBR connections are assumed

to require unit bandwidth. So the number of CBR connections that the link can admit is no

more thanC 1. In addition, ABR sessions enter the link with Poisson arrival rateλ, and the

amount of work (bits) to be done is exponentially distributed with parameterm. Thus the

average volume of bits per ABR session will be1/m. We assume that ABR sessions share

the available resources fairly in the max-min sense, and the available resources are those

not allocated to CBR connections.

5.1.2 Analysis

We can formulate a two dimensional Markov chain for the model above, in which a state

(i, j) denotes a numberi of CBR connections andj ABR connections, see Fig 5.2. Let

π(i, j) denote the stationary distribution for the numbers of CBR and ABR connections.

The transition rate from(i, j) to (i + 1, j) is ν, the rate from(i + 1, j) to (i, j) is (i + 1)µ,

the rate from(i, j) to (i, j + 1) is λ, and the rate from(i, j + 1) to (i, j) is ηi, whereηi =

((C− i)+ r)/(1/m) is the effective service rate of ABR sessions wheni CBR connections

are present. We introduce a reserved bandwidthr with r > ρ andρ = λ/m to guarantee

the connection-level stability of ABR connections. LetΠj = [π(0, j) π(1, j) · · · π(C, j)]

1In case CBR requires bandwidthb instead, the number of possible CBR connections to the link will be
C/b.
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Figure 5.2: Markov chain for the model.

be the vector of stationary distribution withj ABR connections.

Then we have a following balance equation:

≯Q = ~0, (5.1)

where

≯ = [Π0 Π1 · · · ]

and

Q =




A−∆(λ) ∆(λ) 0
... ...

∆(η) A−∆(λ + η) ∆(λ) 0
...

0 ∆(η) A−∆(λ + η) ∆(λ)
...

... 0 ∆(η) A−∆(λ + η)
...

... ... ... ... ...




,
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and where

A =




−ν ν 0
... ...

µ −(µ + ν) ν 0
...

0 2µ −(2µ + ν) ν
...

... ... ... ... ...

... 0 Cµ −(Cµ + ν) ν




,

∆(λ) = diag[λ λ · · · λ],

∆(η) = diag[η0 η1 · · · ηC ],

∆(λ + η) = diag[λ + η0 λ + η1 · · · λ + ηC ].

Note that the matrixQ constitutes QBD process [47]. The equation has a matrix-geometric

solution given by

Πk = Π0R
k = ~π(I −R)Rk, (5.2)

where~πA = ~0 with ~π = [π(0) π(1) · · · π(C)], which is a balance equation of M/M/C/C

queue, andR is the minimum non-negative solution to the following equation

R2∆(η) + R(A−∆(λ + η)) + ∆(λ) = ~0 (5.3)

with boundary conditions forΠ0

Π0(R∆(η) + (A−∆(λ))) = ~0 (5.4)

Π0(I −R)−1~eT = 1, (5.5)

where~e = [1 1 · · · ].
In general, it is difficult to find a closed form solution of Eq. (5.3). One could

solve the equation numerically and find the matrixR. In this case average number of ABR

connections is given by

E[NABR] =
∑

k

kΠk = ~πR(I −R)−1~eT , (5.6)

and by Little’s law, the average delay experienced by ABR connections is

E[DABR] =
1
λ
E[NABR]. (5.7)
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5.1.3 Approximation

If the connection set-up and tear-down of ABR is fast relative to that of CBR,i.e.,ABR is

operating in fast time scale while CBR is in slow time scale, we expect that both time scales

can be separated. In fact, we can establish the following theorem.

Theorem 5.1.1 Supposeλ, m →∞ with ρ = λ/m fixed, then

π(i, j) = π1(i)π2(j|i), (5.8)

whereπ2(j|i) = ρ2(i)j(1−ρ2(i)) withρ2(i) = λ
ηi

, andπ1(i) = G−1 ρi
1

i! withG =
∑C

k=0
ρk
1

k!

andρ1 = ν
µ .

Proof: By rearranging terms in (5.3), we have

(I −R)(R−∆(λ)∆(η)−1) = RA∆(η)−1.

Thus

R = ∆(λ)∆(η)−1 + (I −R)−1RA∆(η)−1

= ∆(λ)∆(η)−1 + RA∆(η)−1 + (I −R)−1R2A∆(η)−1

= ∆(λ)∆(η)−1 + ∆(λ)∆(η)−1A∆(η)−1 +

(I −R)−1RA∆(η)−1A∆(η)−1 + (I −R)−1R2A∆(η)−1

= ∆(λ)∆(η)−1 + O(∆(η)−2). (5.9)

Note thatηi = ((C − i) + r)/(1/m) becomes large since we assume thatm → ∞.

Thus the second termO(∆(η)−2) in (5.9) becomes small. SoR can be approximated by

R ≈ ∆(λ)∆(η)−1, which is independent of CBR matrix A. Thus by (5.2),

Πj = ~π(I −R)Rj

≈ ~π(I −∆(ρ))∆(ρ)j , (5.10)

where∆(ρ) = ∆(λ)∆(η)−1 and we have

π(i, j) = π1(i)π2(j|i), (5.11)
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with π2(j|i) = ρ2(i)j(1− ρ2(i)) andρ2(i) = λ
ηi

, andπ1(i) = G−1 ρi
1

i! with G =
∑C

k=0
ρk
1

k!

andρ1 = ν
µ . ¥

The theorem implies that as the arrival rate of ABRλ increases and the mean amount

of work to be done1/m decreases, the stationary distribution of ABR and CBR can be

separated and expressed as product of each individual distribution. Note thatπ1(i) is a

stationary distribution of M/M/C/C queue andπ2(j|i) is a stationary distribution of M/M/1

queue conditioned on CBR is in statei.

Based on the approximationR ≈ ∆(λ)∆(η)−1 = ∆(ρ) and by (5.6), the approxi-

mate average number of ABR connections will be

E[NABRapprox] = ~π(I −∆(ρ))−1∆(ρ)~eT

=
∑

i

ρ2(i)
1− ρ2(i)

π1(i)

=
∑

i

λ

ηi − λ
π1(i). (5.12)

Note that in the approximation ABR service constitutes M/M/1 queue conditioned that the

number of CBR connectionsi is fixed. The approximate average delay experienced by ABR

connections is given by

E[DABRapprox] =
1
λ
E[NABRapprox]. (5.13)

5.1.4 Example

Based on§5.1.2 and§5.1.3, we present an example in this section. The simulation environ-

ment is summarized in Table 5.1. We consider an OC3 link with capacity 150 Mbps and

CBR sessions requiring 2 Mbps bandwidth corresponding to MPEG sources.

The proposed approximation is based on the idea that ABR connections might come

and go much faster than CBR connections. Thus conditioning on a given number of CBR

connections, we might assume the distribution of ABR connections has reached “steady

state.” In order for this to be the case, the time scale on which the number of CBR con-

nections in the system changes should be slow relative to that on which the ABR “queue”
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Parameter Value

C 150 Mbps
CBR ν 10 - 200 connections/hour

µ 1 connections/hour
b (bandwidth/CBR) 2 Mbps

ABR λ 10 - 200 connections/hour
ρ = λ/m 8 kbps

1/m 2.88M - 144k bits/connection
r 9, 10 kbps

Table 5.1: Parameters for an example.

reaches steady state.

To determine when this is the case, we compute a ratio between these time scales.

Since the average number of CBR connections isκ := E[NCBR], 2 we can approximate

average time until a CBR connection arrives or leaves by

Time-scaleCBR = (ν + κµ)−1. (5.14)

For ABR connections, the link behaves like M/GI/1-Processor Sharing queue which has

the same characteristics as M/M/1 queue. For this queue, the service capacity is typically

(C − κb) + r. Since the mean number of bits for ABR connections is1/m, the effective

service rate for ABR connections would typically be about

σ =
(C − κb) + r

1/m
.

We now compute therelaxation timefor this queue,i.e., an approximate time to reach

steady state [5]. It has been shown, see [5], that the relaxation time for such a system is

given by

Time-scaleABR = (
√

λ−√σ)−2

= (λ + σ − 2
√

λσ )
−1

. (5.15)

2Assuming CBR connections experience small blocking probability, one can also approximate the average
number of CBR connectionsE[NCBR] ≈ ρCBR = ν/µ.
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Hence, from (5.14) and (5.15), the ratio between the time scales is given by

Ratio =
Time-scaleABR

Time-scaleCBR

=
(λ + σ − 2

√
λσ )

−1

(ν + κµ)−1

=
ν + κµ

λ + σ − 2
√

λσ
.

Based on this ratio we can approximately see when our approximation might hold.

For example, if the ratio is small enough, say 0.05, then we could say that the time scales are

separated. Fig. 5.3 illustrates how this ratio varies as CBR and ABR arrival rates change for

the operating condition given in Table 5.1. From the figure, we note that the ratio becomes
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Figure 5.3: Ratio between time scales whenr = 9 kbps.

less than 0.05 ifλ = 10 conn./hour andν ≤ 120 conn./hour. Thus, when ABR sessions are

slow,e.g.,λ = 10 andν > 120, we should observe a noticeable difference between the true

value and the approximation since the ratio exceeds 0.05 - Fig. 5.4 shows that this is indeed

the case. Whenλ ≥ 50 conn./hour andν ∈ [10, 200] conn./hour, the ratio is shown to be

less than0.05. Thus in this case, we might expect a “separation of time scales” to occur and

the approximation to be good, seee.g.,Fig. 5.5 whenλ = 200 andν ∈ [10, 200]. As the

reserved bandwidthr for ABR sessions increases from 9 kbps to 10 kbps, the time scales
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Figure 5.5: Average delay asν (CBR)
changes for a givenλ = 200 (ABR) with
r = 9 kbps.

are further separated, which results in even higher approximation accuracy, see Figs. 5.6

and 5.7. For example, whenλ = 10 andν = 100, the relative difference between the true
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Figure 5.6: Average delay asν (CBR)
changes for a givenλ = 10 (ABR) with
r = 10 kbps.
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Figure 5.7: Average delay asν (CBR)
changes for a givenλ = 200 (ABR) with
r = 10 kbps.

value and the approximation is 14 % and 4 % forr = 9 kbps andr = 10 kbps, respectively.

This suggests that the ratio of time scales can serve as a guide for when the approx-

imation can be used for the purpose of performance analysis. One can also use this ratio

to see the impact of other parameters such as reserved bandwidthr or mean number of bits
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1/m.

5.1.5 Design

Previous analysis will provide a guide to the design of a multiservice network. For the

design of network, we consider following design examples.

• ABR performance:

Suppose we know apriori demands of CBR and ABR sessions, and want to find ABR

performance,e.g.,average delay and number of ABR sessions, in a randomly varying

environment due to CBR sessions. We can decide how many such ABR connections

are in the link and how much delay they will experience through the link based on the

previous analysis. The values of the parameters are in Table 5.2, which models CBR

video calls. Note the mean amount of bits per ABR connection1/m = 32 kbits. If the

Parameter Value

C 150 Mbps
CBR ν 60,100 connections/hour

µ 1 connections/hour
b (bandwidth/CBR) 2 Mbps

ABR λ 7200 connections/hour
ρ = λ/m 64 kbps

1/m 32 kbits/connection
r 100 kbps

Table 5.2: Parameters for the design example supporting video.

CBR demand is 100 conn./hour, the average number of CBR connections is 72.60 and

the blocking probability is 0.274. The resulting average number of ABR connections,

then, will be 0.50 and the average delay will be 0.069 msec. Varying the demand of

CBR we obtain the blocking probability of CBR and the corresponding performance

of ABR. If the CBR demand is lowered to 60 conn./hour, the average number of

CBR connections is 59.50 and the resulting blocking probability will then be 0.0083,
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i.e., less than 1 %. The corresponding average number of ABR connections will be

0.018 with average delay of 0.002 msec. Thus given the CBR characteristics, ABR

arrival rate and required average bandwidth for ABR, the CBR blocking probability

and ABR performance can be found.

• Design of link capacity:

As another design example, the link capacity can be decided to accommodate desired

CBR and ABR requirements. Suppose CBR carries voice calls having 64 kbps band-

width and data is transmitted via ABR sessions with 4 kbits per session on average.

The parameters are summarized in Table 5.3. In this scenario, the link bandwidth

to guarantee the QoS (delay performance of ABR≤ 5 msec) should be at least 400

kbps (see Fig. 5.8). We may further impose strict blocking probability for CBR,

which will require more capacity. For example, if the blocking probability of CBR

should be less than 1 %, the bandwidth requirement will be at least 800 kbps (see Fig.

5.9).

Parameter Value

CBR ν 6 connections/min
µ 1 connections/min

b (bandwidth/CBR) 64 kbps
ABR λ 240 connections/min

ρ = λ/m 32 kbps
1/m 8 kbits/connection

r 40 kbps
E[DABR] 5 msec

Table 5.3: Parameters for the design example supporting voice calls.

5.2 Dimensioning of Multiservice Networks

Various types of traffic requiring different QoS are expected to be carried by integrated

services networks. This trend is pushing technology towards connection-oriented packet-
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Figure 5.9: Blocking Probability of CBR
as link capacity changes.

switched networks which can guarantee heterogeneous QoS to various traffic types. In

some cases the available resources will change dynamically and it is important tofairly

allocate them among contending users. In this chapter we consider approaches to dimension

multiservice networks subject to overall performance constraints.

ABR service is a service type defined for ATM networks [12]. The key idea under-

lying ABR service is to utilize the excess bandwidth when different types of services (e.g.,

CBR and/or VBR) are also in use. The available bandwidth for ABR traffic in a network

varies dynamically depending on the presence of other service types so one needs to assess

bandwidth availability and allocate it to ABR service users in an adaptive and efficient way.

A network carrying CBR and/or VBR traffic can be modeled using a loss network model,

i.e., circuit-switched network, via the concept ofeffective bandwidth[45]. With the aid of

this model, it is possible to in turn capture the characteristics of available bandwidth for

ABR traffic.

The performance that will be achieved for ABR services is difficult to assess, not

only because of the random environment,i.e., available capacities, but also because of the

resource allocation policies that are currently being considered. Indeed, the, so called, max-

min fair allocation, or alternatively a revenue maximization strategy, are complex functions

of the available capacity. Our approach herein is to consider the average performance one
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might expect.

Suppose a setS of sessions share the network, where each sessions ∈ S has a set

of links Ls associated with it. The setLs is intended to define an end-to-end connection

through the network. More than one session might share each link, thus we letS` be the set

of sessions crossing link̀. Let~a = (as, s ∈ S) be the vector of session rates andb` be the

capacity of link`. Consider the problem of maximizing the minimum utility of users ,i.e.,

max
~a



min

s∈S
us(as)

∣∣∣∣∣∣
∑

s∈S`

as ≤ b`, as ≥ 0



 , (5.16)

whereus(as) is a utility for as units of bandwidth on sessions. One can solve this opti-

mization problem to find a set of sessions with minimum utilities. After removing those

sessions and adjusting capacities by those session rates, we obtain a reduced network. If we

formulate the same optimization problem to this reduced network, we have a set of sessions

whose utilities are the second smallest. Repeating this procedure until we exhaust all the

sessions and the links, results in a hierarchy of sessions with the associated utilities result-

ing in session rate allocation~a ∗. Whenus(as) = as, the allocation is said to bemax-min

fair allocation [38], in the sense that it maximizes the minimum throughput.

Max-min fairness can be viewed as a hierarchical optimization (allocation) prob-

lem with resource constraints. If the available bandwidth is changing as it would be on a

multiservice network, it may not be easy to assess the performance of a given session. In

order to find the average throughputs under the max-min fairness policy, we shall establish

an upper bound on the average minimum throughput. In practice it would be more desirable

to have a lower bound whence in the sequel we will show that this upper bound is achieved

in large-capacity network environment where the capacities and call arrival rates are scaled.

If a goal is to maximize total utility of a network, the objective function of the

bandwidth allocation policy might be the sum of the user utility functions, resulting in the

following optimization problem:

max
~r





∑

s∈S
us(rs)

∣∣∣∣∣∣
∑

s∈S`

rs ≤ b`, rs ≥ 0



 , (5.17)
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where~r = (rs, s ∈ S) denotes the vector of session rates. Solving this optimization, we

obtain session rate allocation~r ∗. By contrast with max-min fair allocations, in this case, the

emphasis is on social welfare (total utility) at the expense of individual users’ performance.

Since max-min fairness may not maximize total throughput, one could try to improve over-

all throughput by introducing priorities to sessions. We consider this issue and provide a

foundation to the network design and management to achieve increased performance.

The organization of this section is as follows. We consider max-min fair band-

width allocation to ABR sessions in a multiservice network and find an upper bound on

the average minimum throughput for ABR sessions in§5.2.3. We show that the upper

bound is achieved in large-capacity networks in§5.2.4. The average available bandwidth

for ABR sessions is given by§5.2.5. We employ circuit-switched network framework to

model bandwidth availability for ABR traffic. In addition possible approaches to increase

the total throughput (i.e., network efficiency) are presented in§5.2.6. We summarize in

§5.3.

5.2.1 ABR and CBR Services

Consider a network consisting of a set of linksL with capacity~c = (c`, ` ∈ L). Suppose a

set of routes for CBR connectionsR share the network, where each router ∈ R traverses

a set of links,Lr. More than one CBR route might share each link, thus we letR` be the

set of CBR routes crossing link̀. Suppose that CBR sessionsr ∈ R arrive as Poisson

process with rateνr and that the connection holding times have unit mean,i.e., µ−1
r = 1.

We assume that holding times are independent of each other and of earlier call arrival times.

Suppose for simplicity that each CBR connection requires an unit of bandwidth.

We shall estimate available bandwidth for ABR traffic after CBR traffic grabs cer-

tain amount of bandwidth among link capacities. We denote~B = (B`, ` ∈ L) by the

available bandwidth for ABR traffic. Note that~B is a random vector. We shall distinguish

the available bandwidth~B with the capacity~c. Suppose a setS of ABR sessions share the

network, where each sessions ∈ S has a set of linksLs associated with it. The setLt
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is intended to define links for an end-to-end ABR connection (CBR route)t through the

network. More than one ABR session may share a link, thus we letS` be the set of ABR

sessions crossing link̀. We assume that ABR connections are fixed as might be the case,

when there exist permanent end-to-end LAN connections.

Since resources are limited incoming CBR connections may be blocked, or will af-

fect the throughput of ABR sessions. In this context, two design criteria are reasonable,

a constraint on blocking probability for CBR connections, and an average throughput re-

quirement for ABR sessions.

5.2.2 Distribution of Number of CBR Circuits

We will use the framework of loss network model [32] to find the stationary distribution of

CBR connections in the network. The stationary distribution of number of CBR connections

π(~n), where~n = (nr, r ∈ R), and wherenr is number of CBR calls on router, is given by

π(~n) = G(~c )−1
∏

r∈R

νnr
r

nr!
, ~n ∈ S(~c ) (5.18)

where

S(~c ) =
{
~n ∈ Z|R|+ | A~n ≤ ~c

}
,

G(~c ) =


 ∑

~n∈S(~c )

∏

r∈R

νnr
r

nr!


 ,

whereA = (A`r, ` ∈ L, r ∈ R) is a 0,1 matrix describing whether router traverses link

` or not. If A`r is 1, then a router occupies a unit circuit on link̀. Let ~N be a random

variable with distributionπ. The available bandwidth for ABR traffic is then given by

B` = c` −
∑

r∈R
Nr, ` ∈ L. (5.19)

Note thatB` is a random variable due to the dynamicNr. We will investigate the impact

of thisB` on average throughput for ABR sessions subject to a given bandwidth allocation

policy.
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5.2.3 Average Throughput under a Bandwidth Allocation Policy

Consider max-min fair allocation policy. As mentioned previously this allocation corre-

sponds to a hierarchical optimization problem. Let~B = (B`, ` ∈ L) be the available

capacity vector. A bound on the minimum throughput, when~B = ~b, is given by

W (~b) = max
~a



min

s∈S
as

∣∣∣∣∣∣
∑

s∈S`

as ≤ b`, as ≥ 0



 . (5.20)

Observing thatf(~a) = mins∈S as is concave andg`(~a) =
∑

s∈S`
as is convex, it follows

that the minimum throughputW (~b) is concave in~b by the Strong Duality Theorem [41]. So

the upper bound on average minimum throughput is given by the following theorem.

Theorem 5.2.1 (Bound on Average Throughput)

E[W ( ~B)] ≤ W (E[ ~B]). (5.21)

Proof: SinceW (~b) is concave the result follows by Jensen’s inequality. ¥

A question arises whether this property still holds for the next level of hierarchy.

Note, however, that the second smallest throughput may not be concave in the original ca-

pacity~b. This is explained by the fact that max-min fairness tries to maximize the minimum

throughputW (~b) at the possible expense of next level throughput. This coincides the fact

that max-min fairness may not maximize the overall network throughput or total utility.

5.2.4 Asymptotic Average Throughput in Loss Networks

We will show that the upper bound (5.21) on the minimum average throughput for ABR

session is achieved asymptotically in large-capacity networks. Consider a sequence of net-

works wherein both the arrival rates~ν(n) = (ν(n)
r , r ∈ R) and capacities~c (n) = (c(n)

` , ` ∈
L) are jointly scaled. Let~B(n) = (B(n)

` , ` ∈ L) with B
(n)
` = c

(n)
` −∑

r∈R`
N

(n)
r .

107



Let x̄r = νr
∏

`∈Lr
(1 − D`) be the solution to the following primal optimization

problem, given in [31], which determines the most likely state~̄x = (x̄r, r ∈ R) under the

stationary probability distribution (5.18)

Maximize
∑

r∈R
(xr log νr − xr log xr + xr) (5.22)

subject to A~x ≤ ~c, ~x ≥ 0.

Similarly let x̄(n)
r be the solution to the optimization problem applied to thenth network.

The Lagrangian for (5.22) is

L(~x, ~z; ~y) =
∑

r∈R
(xr log νr − xr log xr + xr) +

∑

`∈L
y`

(
c` −

∑

r∈R
A`rxr − z`

)

where~z is a vector of slack variables and~y is a vector of Lagrange multipliers. The dual

problem of the primal optimization can be formulated as

Minimize
∑

r∈R
νr exp

(
−

∑

`∈L
y`A`r

)
+

∑

`∈L
y`c` (5.23)

subject to ~y ≥ 0,

which has the solution̄y` where1−D` = exp(−ȳ`). Furthermore let

U (n)
r = n−1/2(N (n)

r − x̄(n)
r ) (5.24)

for thenth network.

Suppose that the scaling satisfies the following asn →∞

~ν(n)

n
→ ~ν,

~c (n)

n
→ ~c. (5.25)

We will consider two regimes: critically loaded networks, where the difference between ca-

pacity and offered load is orderO(N1/2), and underloaded networks, where this difference

is orderO(N).

For the critically loaded networks, it was shown by Kelly [31] that asn →∞

x̄
(n)
r

n
→ x̄r, (5.26)
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and

U (n)
r → Ur ∼ N(0, x̄r) in distribution. (5.27)

Using these results we establish the following theorem which claims that the upper

bound is asymptotically achieved.

Theorem 5.2.2 (Asymptotic Average Throughput) Consider a sequence of networks

with demands and capacities are scaled according to the assumption (5.25), then the aver-

age normalized throughput is asymptotically given by

lim
n→∞E

[
1
n

W ( ~B(n))
]

= W (~γ),

where~γ depends on the loading regime according to:

1. underloaded case:

γ` = c` −
∑

r∈R`

νr

2. critically loaded case:

γ` = c` −
∑

r∈R`

νr

∏

`∈Lr

(1−D`).

Proof : We shall first consider the critically loaded case. Note that

lim
n→∞E

[
1
n

W ( ~B(n))
]

= lim
n→∞E

[
W

(
~B(n)

n

)]
.

Also

lim
n→∞

B
(n)
`

n
= lim

n→∞

(
c
(n)
`

n
−

∑
r∈R`

N
(n)
r

n

)

= lim
n→∞

(
c
(n)
`

n
−

∑
r∈R`

(x̄(n)
r + n1/2U

(n)
r )

n

)
by (5.24)

= c` −
∑

r∈R`

x̄r − lim
n→∞

∑

r∈R`

U
(n)
r

n1/2
by (5.25) and (5.26)

= c` −
∑

r∈R`

x̄r by (5.27)

= c` −
∑

r∈R`

νr

∏

`∈Lr

(1−D`).
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For underloaded networks, the blocking probabilities become asymptotically small. So it

follows that

lim
n→∞E

[
1
n

W 1( ~B(n))
]

= W (~γ).

¥

The above asymptotic result has the following interpretation: for largen,

E[W ( ~B(n))] ∼= W (E[ ~B(n)]).

In this sense we will achieve the upper bound on average minimum throughput in large-

capacity networks.

5.2.5 Average Bandwidth for ABR Traffic

Since the upper bound may be useful in large capacity networks we next consider how

to compute the average available bandwidthE[ ~B]. Note that even in a small state space

with dimension|R|, computingG(~c ) in the stationary distribution (5.18) easily becomes

intractable and so does computation of number of calls to be carried. A natural approach

one might follow is to find actual carried traffic or average number of connectionsE[ ~N ]

approximately and in a manageable way.Erlang fixed point equation[32] provides an

approach to computing the mean bandwidth availability.

Let E` denote the blocking probability on link̀∈ L and assume that calls on link`

are independent of each other and of those on other links. Letρ` be the effective call arrival

rate on link`, then

E` = E(ρ`, c`)

=

(
c∑̀

n=0

ρn
`

n!

)−1
ρc`

`

c`!
, ` ∈ L, (5.28)

where

ρ` =
∑

r∈R`

νr

∏

m∈Lr\{`}
(1− Em), ` ∈ L. (5.29)
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This can be viewed as a “thinning” process where the offered traffic is thinned by1 − Em

at each linkm ∈ Lr \ {`} before being offered to link̀. Eqs. (5.28) and (5.29) comprise a

set of fixed point equations with a unique solution [32]. The actual throughputξr on route

r is, then, given by

ξr = νr(1− Lr) ∼= νr

∏

`∈Lr

(1−E`), r ∈ R, (5.30)

whereLr is the loss probability on router.

Given the throughputξr it follows by Little’s law and unit mean holding time as-

sumption that the expected number of calls on router will be

E[Nr] = ξr = νr(1− Lr)

∼= νr

∏

`∈Lr

(1−E`), r ∈ R. (5.31)

Kelly shows in [31] that as the capacities and call arrival rates grow together, the Erlang

fixed point equation provides an accurate estimate.

Next we determine the average bandwidth available for ABR traffic on each link. It

is given by

E[B`] = c` −
∑

r∈R`

E[Nr], ` ∈ L (5.32)

whereE[Nr] can be estimated via (5.31).

5.2.6 Bandwidth Allocation to Increase Efficiency

The max-min fair bandwidth allocation may not maximize total throughput. From the sys-

tem’s point of view, one may want to increase throughput by introducing priorities to ABR

sessions so as to maximize the weighted minimum throughput. Consider a weighted max-

min fair allocation of bandwidth, associated with

Ww(~b) = max
~a



min

s∈S
as/ws

∣∣∣∣∣∣
∑

s∈S`

as ≤ b`, as ≥ 0, ws ≥ 1



 , (5.33)
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wherews is the priority of sessions for the purpose of weighting sessions. Notingf(~a) =

mins∈S as/ws is concave,g`(~a) =
∑

s∈S`
as is convex, andWw(~b) is concave, we again

have a bound on average weighted minimum throughput:

E[Ww( ~B)] ≤ Ww(E[ ~B]). (5.34)

The upper bound can be achieved for large-capacity networks in a similar way as in Section

5.2.4.

If the main objective of network design is to maximize total utility or revenue, the

bandwidth allocation is formulated as follows:

Wm(~b) = max
~a





∑

s∈S
us(as)

∣∣∣∣∣∣
∑

s∈S`

as ≤ b`, as ≥ 0



 , (5.35)

whereus(¦) is a concave utility function for each sessions. Note thatf(~a) =
∑

s∈S us(as)

is concave,g`(~a) =
∑

s∈S`
as is convex, andWm(~b) is concave. So the average overall

utility is bounded by

E[Wm( ~B)] ≤ Wm(E[ ~B]). (5.36)

The upper bound can also be achieved for large-capacity networks similar fashion.

5.3 Summary

We have considered a single link model supporting dynamic multiservice (CBR/ABR)

in ATM networks. By formulating a two-dimensional Markov chain and solving matrix-

geometric equation, we have decided throughput (delay for ABR service). The joint distri-

bution of ABR and CBR sessions has been shown to be separated as product terms when

both services operate in a different time scale, and the approximation is derived for the sim-

ple analysis of network throughput. We have presented design examples (video and voice

services) incorporating the analysis result. It has been shown to provide fundamentals of

network performance analysis and design for multiservice ATM networks.

We have also considered techniques for network dimensioning for static ABR traf-

fic when other types of dynamic traffic (e.g.,CBR) are ongoing. The average minimum
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throughput for ABR sessions under max-min fair allocation is shown to be bounded above

by the minimum throughput obtained from the mean available bandwidth. Moreover we

have shown that the upper bound is achievable when we consider large-capacity networks.

The mean available bandwidth is computed from the loss network framework.

In terms of network design, max-min fairness may not be an appropriate policy

from the network provider’s point of view, since it only manages that minimum through-

put is maximized from each individual user’s point of view. As an approach to increase

total performance, one might introduce priorities or utility functions for ABR sessions so

that the total throughput is improved or total revenue is maximized. In the case of max-

min fair allocation with priority, the goal would be two-fold: guaranteeing the individual

user’s performance in the form of weighted fair allocation while achieving higher overall

performance within a network.
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Chapter 6

Conclusions and Future Work

In this chapter, we summarize our conclusions and insights on the work we have considered

throughout the dissertation and present future research directions.

6.1 Summary of Results

Flow Control of Networks Supporting Rate-adaptive Services

• Adaptive services using available bandwidth require flow control mechanisms en-

abling efficient utilization of network resources and fair allocation of bandwidth.

• We have considered a flow control algorithm for adaptive services, in which rate

allocation achieves a notion ofmax-min fairallocation of bandwidth. It provides

fair allocation of available capacities to contending connections. It is advantageous

in large-scale networks in the sense that it issimpleand operates in adecentralized

manner. We have shown that rate allocation converges to the max-min fair allocation

of bandwidth both for synchronous and asynchronous implementations.

• Priorities to connections can be given inweighted max-min fairallocation of band-

width. Network providers can differentiate users using rate-adaptive service by weights

(priorities), which will impact on performance and design of networks supporting the
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service.

Modeling and Stability of Dynamic Networks Supporting Services with Flow

Control

• Dynamic networks supporting adaptive services under fair rate allocation mecha-

nisms can be modeled by Markov chains. Based on this dynamic connection level

model, one can understand the macroscopic behavior of adaptive services such as

TCP in the Internet and ABR service in ATM networks.

• Using a piecewise-linear and quadratic Lyapunov functions we have shown the sta-

bility of networks subject to (weighted) max-min and proportionally fair bandwidth

allocation policies, respectively. A natural stability condition is required: The total

load on each link should not exceed the link capacity.

• Internet (TCP/IP) traffic is believed to be crudely captured by this type of dynamic

model with reasonable assumptions. We suggest that congestion phenomena on the

Internet might be due to connection-level instabilities. Moreover since the routing

mechanism in the Internet is not aware of connection level load and there are network-

level interactions, one can not solve the problem without judicious overprovisioning.

Performance and Design of Dynamic Networks Supporting Services with Flow

Control

• It is difficult to characterize the performance of dynamic networks due to global in-

teractions arising from dynamic rate allocation mechanisms. In order to observe the

realistic impact on the performance, extensive simulations were conducted.

• Connections traversing a larger number of hops have more adverse effect on over-

all performance, which is aggravated as demand and network size grow. Moreover

networks under proportionally fair rate allocation may experience poor performance

since the policy tends to deemphasize long-path connections which consume more
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network resources. A weighted max-min fair rate allocation can provide flexibility in

bandwidth allocation over max-min fair rate allocation. Weights can be selected to

improve performance although overall and individual performance may not be com-

patible with each other.

• We have shown that dynamic networks under fair allocations of bandwidth may not

minimize the overall or individual connection delays. In this sense, a question arises

as to whether max-min/proportionally fair rate allocation is an appropriate bandwidth

allocation mechanism in terms of delay performance. One might want to evaluate

such bandwidth allocation mechanisms or new mechanisms based on the average

connection delays that are experienced rather than the instantaneous throughput, see

e.g.,[42].

• We have proposed a design method for dynamic networks supporting GPS nodes,

which guarantees average connection level delay to connections on fixed routes. Our

design method can provide a basis to the design of VP networks to guarantee delay

requirements.

Performance and Design of Multiservice Networks

• Multiservice (dynamic CBR and ABR connections) in a single link can be modeled

by a two-dimensional Markov chain. This model provides a stepping-stone to derive

the performance of such services,i.e., available bandwidth and average delay for

ABR connections.

• When both ABR and CBR connections are dynamic, performance of ABR is derived

analytically by solving matrix-geometric equations in a single link. Approximation

can also be computed assuming they operate in different time scales,i.e., ABR con-

nections are operating faster than CBR connections. Given CBR demand and/or QoS

(delay) requirement of ABR service, a network can be designed based on the perfor-

mance result.
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• In an attempt to understand dynamic networks with static ABR and dynamic CBR

connections, we derive an upper bound on the average minimum throughput ABR

connections would achieve. Using asymptotics, we showed that the bound becomes

tight as network size and demand become large. Thus multiservice networks could

be dimensioned based on this bound as the demands/capacities become large.

6.2 Future Work

For various flow control mechanisms achieving weighted max-min or proportionally fair

allocation of bandwidth, it would be desirable to understand how to assign weights to con-

nections according to various performance goals. It is also interesting to understand how

network domains with possibly different fair bandwidth allocation policies would interact

with one another and how overall performance would be affected.

Simulations of the performance of networks supporting dynamic connections with

“proportionally” fair allocation of bandwidth require an extensive amount of computation.

When a new event occurs,i.e., the arrival of a new connection or the departure of an ex-

isting connection,constrained optimizationneeds to be solved for a proportionally fair rate

allocation. The number of events to be simulated and constraints in the optimization grows

exponentially with the size of network. Nevertheless, unless better analytic tools are devel-

oped, simulations for arbitrary large-scale networks are essential since they alone can be

used to estimate network performance.

Our dynamic network model assumes that the amount of work connections bring in

is exponentially distributed. Simulations on connections with arbitrary distribution would

provide further understanding of the impacts of various traffic characteristics on the perfor-

mance. We conjecture that connections with heavy-tail distribution stay and grab network

resources longer, which results in further degradation of performance.

Performance bounds can provide a basis for designing dynamic networks, seee.g.,

[35, 34, 11, 10] for methods to establish performance bounds in some queueing networks.

In this sense, design based on tight bounds, especially upper bounds on delay performance,
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would lead to more efficient utilization of network resources. Finally, it is our hope that the

model can be further improved as a network design tool for network designers/operators,

which provides guidelines to design future networks.
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