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This work starts by considering flow control mechanisms for rate-adaptive services in net-
works with a static number of connections. It spans performance and design of dynamic net-
works supporting rate-adaptive services, and culminates in a collection of tools and methods
for designing multiservice networks. These results lead to some guidelines for the traffic
management and design of networks.

We consider a flow control algorithm to allocate bandwidth for rate-adaptive ser-
vices in a network with a ‘fixed’ number of connections subject to throughput and fairness
constraints. Our algorithm achieves a max-min fair rate allocation among contending users,
and has desirable properties in that it can operate in a decentralized and asynchronous man-
ner. The algorithm is simple in that the network links make local measurements of capacity
and calculate local ‘explicit rates’ without requiring knowledge of the number of ongoing
connections. Connections will receive a bandwidth determined by the minimum explicit
rate along their respective routes. We discuss its stability, convergence, and feasibility is-
sues related to fair allocation and rate-based flow control. We also consider the role of

sessions with priorities under weighted max-min fair allocation of bandwidth, and its use
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for ‘ABR flow control’ in ATM networks.

We next consider the stability and performance of a model for ‘dynamic’ networks
supporting rate-adaptive services. In our model connection arrivals are stochastic and have
a random amount of data to send, so the number of connections in the system changes over
time. In turn bandwidth allocated to connections also may change over time due to feed-
back controle.g.,max-min fair or proportionally fair allocation of bandwidth, that reacts to
congestion and implicitly to the number of ongoing connections. We prove the stability of
such networks when the offered load on each link does not exceed its capacity. Simulations
are used to investigate the performance, in terms of average connection delays, for various
types of bandwidth allocation. Our model can be used to investigate connection level stabil-
ity and performance of networks supporting rate-adaptive services. We also discuss design
issues and possible methods to guarantee delay quality of service requirements to dynamic
connections, as required by interactive services.

We then consider multiservice ATM networks, in which both rate-adaptive ABR
and CBR services, with dynamic arrivals and departures, share a single node. This is mod-
eled by two-dimensional Markov chain, and a matrix-geometric equation is solved to yield
performance estimates for ABR connections,, average delay and available bandwidth.

By a “separation of time scales” between ABR and CBR services, we propose an approx-
imate solution for the steady state performance of the above Markov chain. These perfor-
mance results enable joint design of networks supporting multiple services. These results
are partially extended to large-scale networks to compute available bandwidth for ABR con-

nections in a dynamically changing environment. We find an upper bound on the average
minimum throughput for ABR services and show that the bound is asymptotically achieved

in large-capacity networks. To further increase efficiency, we consider adjustments via net-

work level priority by way of weighted max-min fair allocation of bandwidth.
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Chapter 1

Introduction

Telephone networks, Cable TV (CATV), and the Internet have historically provided single
types of service. However, these networks are quickly becoming “multiservice” networks
partly driven by user demand for new services, by technological advances, and by eco-
nomic factors. Some examples include internet phone, web-TV, and internet service on
Asymmetric Digital Subscriber Line (ADSL).

Multiservice networks will carry various traffic types such as video, voice and data
which require different qualities of service (QoS). Moreover, such networks will transfer
huge volumes of traffic which will grow rapidly as the number of users increases and data
intensive services are provided. The challenge to network providers is to manage high
capacity networks carrying heterogeneous traffic while meeting QoS requireraants,
bandwidth, delay and loss rate. The objective of this dissertation is to consider some aspects
of this problem and to present guidelines which might be used in network design.

Both conventional loss-networks,g.,telephone networks, and packet-networks,
e.g.,the Internet, are limited in their ability to carry heterogeneous traffic subject to vari-
ous service requirements. In an attempt to envision multiservice networks with QoS guar-
antees, two major directions are being considered: Asynchronous Transfer Mode (ATM)
networks and the Internet with differentiated services. In this dissertation, we explore both

approaches, specifically as they relate to adaptive services.



ATM networks are essentially packet networks using small fixed size packets, in
order to 1) reduce packetization delay with a view on delay constrained traffic such as
voice/video and 2) allow the construction of large high capacity switching fabrics. How-
ever by contrast to traditional packet networks, the ATM standard sets up virtual circuits,
i.e.,fixed paths which the cells associated with a given connection will follow. Thus ATM
networks exhibit the same character as that of telephone networks. In designing the ATM
standard, much attention was paid to efficiently managing bandwidth and providing QoS
guarantees to users [12, 14, 29]. However, replacing current networks with new ATM net-
work infrastructure and protocols may take time and be costly.

Another direction being pursued by researchers is to upgrade current Internet in-
frastructure and protocols (TCP/IP) by increasing capacity and introducing service differ-
entiation enabling QoS guarantees [37, 15, 48, 16, 6, 36]. In this approach, it is important
to understand the limitations of the current transport and IP service models, and how they
might be enhanced at low cost. This approach looks promising since whole new networks
and protocols need not to be built. However, it is questionable whether only minor changes
to the Internet can deliver the promised differentiated services.

In both approaches, traffic management is the key element. Networks should allo-
cate proper bandwidth to connections so as to prevent or alleviate congestion while maxi-
mizing network utilization and meeting service requirements. They should also ensure that
users/connections are treated “fairly” when there is contention for bandwidth. In this con-
text, flow control, QoS guarantees, and fairness provisioning are often closely related to one
another.

We first consider a service class aimed at efficiently utilizing varying available band-
width resulting from sharing of resources with variable rate traffic. Connections using the
service class adapt their transmission rate via a flow control mechanism based on either ex-
plicit or implicit indications of congestion. Typically, applications using this service class
require less stringent QoS guaranteeg,,range of bandwidth. In Chapter 2, we present a

flow control mechanism for this type of service.



Typical analysis of rate adaptive services assume a fixed number of connections in
the system and investigate convergence. In practice the number of connections using the
network resources is in constant flux. For example, users can establish World Wide Web
(WWW) connections at any time, and close the connections at will. Viewing the Inter-
net from the transport level, we see TCP connections adapting transmission dynamically
based on congestion status which would in turn reflect dynamic changes in the number of
connections. Similarly in ATM networks, Available Bit Rate (ABR) service would adapt
to varying available bandwidth due to changes in the number of connections as well as
changes in available bandwidth for such connections. In Chapter 3, we will consider the
stability of a stochastic network model which captures both the rate adaptation as well as
the dynamic nature of the environment.

Next we consider the performance of networks supporting adaptive services. In par-
ticular in Chapter 4, we develop methods to control the average delay connections will ex-
perience. It is increasingly important to guarantee delays for interactive or delay-intolerant
applications to be carried by the adaptive services. For example, users may withdraw when
delay response is more than a few seconds in WWW applications.

The next step is to consider multiservice networks carrying adaptive services in
addition to constant and variable bit rate services. In such networks, connections can be
dynamic and have heterogeneous QoS requirements and traffic characteristics. Modeling
is important to support design of multiservice networks. In Chapter 5, we analyze the
performance and consider the dimensioning of multiservice networks. Finally we conclude

and present future research directions in Chapter 6.



Chapter 2

Flow Control of Networks

Supporting Adaptive Services

2.1 Introduction

As various types of traffic and QoS are expected to be carried in integrated services net-
works (.9., ATM networks), traffic control and management are becoming increasingly
important. In this context, flow control is playing a prominent role. Its fundamental roles
are congestion control and fairness provisioning. Since network resources are shared by
many connections, it is important to decide on a policy dictating how the resources are
allocated while achieving high utilization of network resources.

The question of whether flow control mechanisms should (or would) achieve a ‘fair’
allocation of resources among users sharing a network, has been the focus of both intensive
research and debate [12]. There are currently two major views on the meaning of fairness,
leading to alternative approaches to network control. The first, call@dmin fairness
attempts to make the network transparent to usexs,resources are allocated so as to
maximize the minimum throughput of users contending for network resources [8]. More
general definitions of this type of fairness, might give priority, or weights to users, but have

essentially the same structure [23]. The second approach, is economic in nature, and at-



tempts to allocate resources so as to maximize the sum of the user’s utilities - assuming
such utility functions are available. Kelly [30] refers to the associated allocation as being
proportionally fair and discusses cases where these two criteria coincide. Intuitively, in
this case the throughput achieved by various users will in general depend on the number
of bottleneck links the connections share. In a sense, max-min fairness attempts to maxi-
mize the worst casiedividual user performance, while the second approach maximizes the
network’soverall utility to users at the possible expense of some individuals.

We will focus on the problem of achieving max-min fairness. While there has been
much work in this area, we believe that many of the proposed mechanisms are not viable in
a large-scale networking environment where there are strong limitations on the complexity
of the algorithms that can be implemented, egg,[14].

Our starting point is a simple mechanism for flow control proposed in [21]. The
rationale for the mechanism is as follows: suppose thabnnections share a link with

capacityc. If the capacity is to be shared evenly by the connections, then the fair(rate
link

capacity ¢
) apacity

(e
SESSSIoNS
&)

Figure 2.1: A network with one link and sessions (unconstrained sessions).

for each session, called “explicit rate”, shoulddje. Assuming the sessions send traffic at
this explicit rate, the link flow (typically measured) will betimese(t), i.e., f(t) = ne(t).

Now, since the number of active connectionsnay be unknown, we might estimate the
number implicitly rather than monitoring it explicitly as other rate-based control schemes
do [14, 57]. One can estimate the number of active connections asing= f(t)/e(t).

The explicit rate is then computed based on the estimated nungbgr(t + 1) = ¢/n(t).

Due to the capacity constraint, it is desirable to ensuredftatcan not exceed the link

capacityc, that is,e(t + 1) = min[ ¢/n(t), c]. It may be preferable to limit the(t) to be



even smaller than, e.g.,peak session rate for any connection in the network. We will see
that this surprisingly simple mechanism can be extended to a network setting.

We consider a network consisting of a set of buffered lifkesach with a (typically
measured) current bandwidth availability= (c¢, ¢ € £). Suppose a s&t of sessions share
the network, where each sessiog S has a set of link€; associated with it. The sél,
is intended to define an end-to-end connection through the network. More than one session
might share each link, thus we 6t be the set of sessions crossing lihk

Suppose each link € £ measures the aggregate flgiwt) it is currently support-
ing, and computes a local ‘explicit rate;(¢) based on an estimated effective number of
connections. In a scenario with greedy sources the sessionatdte¢sire adjusted to be
the smallest among the explicit rates of all links along the route of the session. So the rate
adjustment for the sessions and the aggregate flows are captured by the following iterative

algorithm, which extends the idea of computing explicit rate in the single link network:

et +1) = min[cﬁcj’ég),q}, ter
fi) = s, ast), el (2.1)
as(t) = minges [e(t)], s€S.

The goal of this type of rate adjustment is to ensure that capacities are fully exploited
while achieving max-min fair rate allocation. Note that the explicit rate at eact/link
updated in alecentralizeananner using local informatian, e,(t) and f;(¢) and exchanges
of information along each session’s path (rate adjustments) rather than requiring exchanges
of global statese.g.,whether each session is constrained or not at the link. The algorithm
has clear advantages in terms of minimizing the information required to determine the max-
min fair allocation in that 1) it need not keep track of the number of active connections and
2) it need not maintain information on which sessions are constrained at each link.

In §2.2 we formally define some notions related to max-min fairness that will be
useful in the sequel, and iR.3 we show that the iterative algorithm (2.1), wherein ex-

plicit rate updates are synchronous, has a unique fixed point and it achieves max-min fair

!In general one might allow for a multi-point session, sapy allowing the set’, to be a rooted tree on
the network.



bandwidth allocation. Moreover we present a totally asynchronous version of the algorithm
and its convergence to the same max-min fairness. Next we consider the role of round trip
delays between sources and links, and extend the algorithm to one with session priorities
leading to the notion ofveighted fairnessAs a specific application of this framework, we
considerate-based flow control for ABR traffic ATM networks in§2.4. We conclude and

re-evaluate the issue of fairnessih5.

2.2 Max-min Fairness

The main idea underlying max-min fairness can be explained as follows: each connection
crossing a link should get as much bandwidth as other such connections unless that session
is constrained elsewhere. In other words, available resources are allocated equally among

unconstrained sessions. Max-min fairness has the following characteristics:
e each session has a bottleneck link;

e and, unconstrained sessions at a given link are given their equal share of the available

capacity.
To formally define max-min fairness, we will use the following bottleneck property [8]:

Definition 2.2.1 (Bottleneck Property) A sessiors has a ‘bottleneck’ link, if there exists

alink ¢ € L, such thatf; = ¢, anda} > a; for all sessions € S, traversing/.
Based on the bottleneck property, max-min fairness can be defined as follows [8]:

Theorem 2.2.1 (Max-min Fairness)A session rate allocatiod* = (a%, s € S) is ‘max-
min fair’ if for each session € S, a; can not be increased without decreasitjgfor some
session for whicha! < a¥. Equivalently,d* is max-min fair if and only if each session

has a bottleneck link. Moreover the max-min fair allocatitnis unique.

It will be useful to consider the max-min fair allocation in terms ofiiararchy

of sets of bottleneck links and sessions [23] &idshares We define the fair shar@} =

7



cr/n} atalink? € £ as afair partition of capacity at the link in thé level of the hierarchy,
wheren; = |S,| is the number of sessions throughThe set ofl** level bottleneck links

and sessions is defined as follows:

W = {teL|ff =ccandforalls € Sy,af = 2' = mina, },
me

SV = {seS|seS,andl e £V}, (2.2)
Thus £V is the set ofL* level bottleneck links such that the sessionsSi® traversing
these links are allocated the minimum bandwidth (‘fair share’) in the netwak,for
s € SW a*f = min,csa’ = z!. These two sets make up th#& level of the bottleneck
hierarchy.

The next level of the hierarchy is obtained by applying the same procedure to a
reduced network. The reduced network is obtained by removing the sessisfis.iThe
capacity at each link i \ £(!) traversed by sessions &) is reduced by the bandwidth
allocated to these sessions. The bottleneck lifiks are also removed from the network.
Thus £(?) and S? are obtained based on a network with fewer links and sessions and
adjusted capacities. The set of these bottleneck links and sessions can now be defined as
follows using the notion of fair share.

Lety®) = Ui_, £U) andV( = Ui_,SU) be the cumulative set of bottleneck links
and sessions, respectively, in levels % tf the hierarchy. The fair shar€ (i > 2) of link
tin¢ e £\ UV is defined as a fair partition of available capacity at the link inithe
level of the hierarchy: ‘

g = L0 (2.3)
Ty
wherea;” = 3 s,~pa-1) a is the total flow of sessions througtwhich are constrained
by bottleneck links ir/—1, andn} = |S, \ V=V, wheren} > 0, is the number of
sessions throughwhich are unconstrained by the linksZif"—) (see Figure 2.2). Based

on the fair share, the set &f' level (i > 2) bottleneck links and sessions can be defined as:
L9 = {tec\U" V| =c¢andforalls € Sp,af =2 = min  2° },
meL\U(—1)

SO = {seS\ViV|se S andl e LD}, (2.4)
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link |

3

. I
constrained ¢

sessions

G ‘?(t) f|(t)
unconstrained—/£ '

sessions nIi

Figure 2.2: A link with constrained and unconstrained sessions iitthmttleneck level.

Here£ () is the set of*" level bottleneck links such that the sessionS i are allocated the
minimum fair share in the reduced netwoile,, for s € S¥, a} = min, cg\0-1 af = 2.
Note thatr’ = 2} for £ € L) is the fair share at the bottleneck links at tHelevel in the
hierarchy.

We repeat this procedure until we exhaust all the links and sessions resulting in a hi-
erarchy of bottleneck links and corresponding sessibhs - - - , £¥) andS™, ... . SOV,
which is uniquely defined by (2.3) and (2.4), whé¥ds the number of levels in the hierar-

chy. We will use the notion of ‘bottleneck hierarchy’ and ‘fair share’ in the sequel.

2.3 Analysis of Algorithm

We shall show that the fixed point equation associated with the iterative algorithm (2.1)
has a unique solution which is the max-min fair allocatioi3.1. The iterative syn-
chronous algorithm is shown to converge geometrically to the fixed pok.B12, and an
asynchronous version of the algorithm is also shown to converg@ 3.

In practice, the explicit rate indicatiorg(t) of links will experience delays while
they propagate back to the sources and until they are eventually reflected in the incident
flows on the link. We assume §2.3.2 anc;2.3.3 that newly modified explicit rates at time
t appear by the time the update is made in the link flow) without delay. That is the
link flow reflects the explicit rates computed at timeThis condition is relaxed i§2.3.4.
As a generalization, the algorithm with session priorities is also presented and the issue of
feasibility, i.e., maintaining link flows not exceeding link capacities is discussed.

We shall assume the following:



Assumption 2.3.1 (Bottleneck Link Assumption) Each bottleneck link has at least one

session for which it is the unique bottleneck link.

This implies that sessions might have more than one bottleneck link, but if this is the case,
each of the bottleneck links should carry at least one session for which it is the unique
bottleneck. Assumption 2.3.1 is a little weaker than that in [8], but more generalized than

that in [23], wherein it is assumed “single” bottleneck link per session.

2.3.1 Existence and Uniqueness

Definee’ = (e, € £) andd = (as,s € S). Consider the following fixed point equation

derived from the iterative algorithm (2.1)

€=g(€) = (g€),L € L) (2.5)
where
¢, = min {Cgf,cﬁ] = g(?) forall fecr, (2.6)
and where
fe=> as, teL and aszgeliﬁli[eg], seS. (2.7)

SESy
We show the existence and unigueness of a solutioto the fixed point equation (2.6),

and further establish that the corresponding rate allocatioobtained by (2.7) is unique

and satisfies the max-min fairness criterion.

Theorem 2.3.1 (Existence and Uniquenessyuppose Assumption 2.3.1 holds, then the
fixed point equation (2.6) has a unique solutiGh= (e;,¢ € £). The associated session

rates@* = (af, s € S) satisfy the max-min fairness criterion, and are thus unique.

Proof: Let 0 denote zero vector with same dimensionAs SinceE = {¢ ¢ RI*l| ( <
€ < ¢} is compact and : E — E is continuous, it follows by the Brouwer Fixed Point

Theorem [9] that (2.6) has at least one solution. It follows from (2.6) that for any lnlC,

cﬂgz :| N 62 =Cy if f; < ¢y

e}f:min{ 5 Co
fi

* Q H *
ey = cuys if f; = ce,
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thus we have that

i = E a,, L€ L and aZzgniﬁn[eZ],sGS.
€Ls
seSy

We will show that the session rate allocati@h corresponds to a max-min fair
allocation. Consider an arbitrary sessioa S, we show that it has at least one bottleneck
link. Considers € S, thena? = min e, [ e; ] = €. for somel* € L. Suppose that the
link flow f}. < c«, butthena} = ej. = c¢«, which contradicts;. < cg+. Thusfj. = c;-.
Now consider the sessions througfh For each such sessiore Sy-, eithera; = ej. = a;
(“constrained” at link¢*) or a;: < ej. = a} (constrained elsewhere). Thu$ > a; for
all r € Sy«, whencel* is a bottleneck link for session Thereforea™* is a max-min fair
allocation which is unique by Theorem 2.2.1.

Now, consider a solutioa™. The explicit ratee;. at each bottleneck link* must
be unique since by Assumption 2.3.1 the link is the only bottleneck for at least one session
s of which the session rate is unique,, a} = minsc., [ e; | = €., and the explicit rate of
non-bottleneck link is its link capacity which is unique. So the uniqueness of the solution

e¢* follows. [ |

2.3.2 Synchronous lIterative Algorithm without Delayed Information

In this subsection, we assume that explicit rate updates and flow adjustments occur syn-
chronously on some discrete time step. In other words, the explicit rates at links are up-
dated exactly at the same time. Based on Assumption 2.3.1, we prove the following result

in Appendix 2.6.

Theorem 2.3.2 (Convergence of Synchronous lterative Algorithm)Suppose Assump-
tion 2.3.1 holds, then the explicit rat€&) = (es(¢), ¢ € £) in the iteration (2.1) converge
geometrically to the fixed poiat* and the associated session rat&sachieve the max-min

fair rate allocation.

The proof of Theorem 2.3.2 uses the following ideas. Consider & mose flow

consists of constrained and unconstrained sessions, see Fig. 2.3. Neither the constrained

11



link |

constrained 9
sessions

¢ & fi@®
unconstrained —Z !
Sessions n,

Figure 2.3: Constrained and unconstrained sessions on & link

flow ay nor the number of unconstrained connectiopsire known explicitly. The explicit
rate update is given by

e . coep(t) A
e/(t+1) = min [ 70 ,Cg:| = min {OWLM@)’CZ} = ge(ep(t)).

It can be shown thay,(.) is a pseudo-contraction [9] amd(t + 1) = gs(e(t)) is a pseudo-

contracting iteration converging tg, the fixed point ofg,(.). Note that we do not have a
fixed point at zero if we start from non-zeeg(0) sincee,(t + 1) > ey(t) wheney(t) < e}

for all t. Fig. 2.4 shows how the pseudo-contracting property arises. Thus
]eg(t—i—l)—e’ﬂ < §Z‘€g(t)_€;‘7 0<é& <1,

wheree; = (c,—ay)/n is the fair share of the remaining capadity — o) to be allocated

|G (t+1)- €

_ ga0
8(t+1) _0(|+—n|q(t) """""""

0 at) §(t+) g X
Figure 2.4: A pseudo-contraction gf(.).
to then, unconstrained sessions (&2 for the definition of ‘fair share’). We can show
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similar pseudo-contraction properties in the network setup using the bottleneck hierarchy.
At each level of the bottleneck hierarchy, the explicit rates of the associated bottle-

neck links can be shown to eventually have lower and upper bounds,
eo(t) < eg(t) < &(t) for £ € L9,

such that converge geometrically to the fair shgre= 2 = (¢, — a}¥)/n} for ¢ € £
at thei'® bottleneck level. So the explicit rates @t level bottleneck links converge t¢g
geometrically. We can show that the algorithm quickly achieves max-min fairness using
these properties by induction on the bottleneck hierarchy. Furthermore, the explicit rates of
non-bottleneck linkg,, (¢t) converge to the link capacitieg, geometrically.

Based on the previous result, we can construct a box in a space of diméfision
at each time by taking the maximum of geometric converging sequences among all the
links, see Lemma 2.6.1. The box shrinks as updates proceed, and it includes all the possible
explicit rates at a specific time so that any sequence of explicit rates converge to the fair
shares or link capacities. These boxes provide the foundation for proving that asynchronous

updates will converge as will be discussed in the following subsection.

2.3.3 Asynchronous Iterative Algorithm without Delayed Information

In the synchronous algorithm, updates of the explicit rates at links are assumed to be per-
fectly synchronized. In practice, this is unlikely to be the case, so next we consider how
asynchronism would affect convergence. We use the asynchronous model in [9] to formu-
late a totally asynchronous version of the algorithm and prove its convergence.

Each link¢ € £ may not have access to the most recent values of components of
€. That is the flow on link’ may reflect old information about other links’ states. &t
denote a set of times at whieh is updated. We shall assume that there is a set of times

T ={0,1,2,---} at which one or more componentsajf) are updated. An asynchronous

13



iteration can be described by

. cre A =
min { ‘}Zé)t),cd = g(ét)), teTt

eo(t), otherwise

e(t+1) = (2.8)

Note thatf,(¢) depends on the possibly outdated explicit rates indication in the network,

i.e.,

fot) = he (er(rf (@), ea(ri(®), -, ealriyy (1)

wherer’ (t) is the most recent time for whiah,, is known to link¢ through incident flow
fe(t) at the link (see (2.1))) < 74,(t) < tforall t € T and7f(t) = tforallt € T*.

In the asynchronous iterative algorithm, the explicit ratés updated using the link flow
carrying explicit rates,, (7, (t)) known to/ whent € T*, otherwise it remains unchanged.
It is assumed here thaf,(t) — oo ast — oco. This assumption implies that every link
updates its explicit rate infinitely often &s— co. In this case following theorem proven in

Appendix 2.7 applies.

Theorem 2.3.3 (Convergence of Asynchronous lterative Algorithm)The explicit rates
é(t) in the asynchronous implementation proposed in (2.8) converge to the fixed'poiint

(2.6) and the associated session raiés converge to the max-min fair ratés'.

Asynchronous convergence ensures that although links update explicit rates independently,
the allocation will converge as in the synchronous algorithm, though it may take longer to
do so.

In §2.3.2 and§2.3.3, we considered the convergence of synchronous and asyn-
chronous decentralized updates based on local information. In practice delays will be in-
curred in the communication between sources and links. We consider the role of the delays

in the following subsection.

14



2.3.4 lterative Algorithm with Round Trip Delays

In the preceding analysis, the link floyy(¢) was assumed to be the sum of session rates
as(t) traversing linkl. The session rates were in turn assumed @ = minge [ eo(t) ],
i.e.,the incident flows at timereflect the computed explicit rates at the titiveith no delay.
In reality, the link flows would be immediately measured at each link, and would depend
on delayedexplicit rate indications computed at links and sent back to sources in order to
control the source rates. We will present an example to show the oscillations that arise due
to propagation delay.

Consider the network shown in Fig. 2.5 with one link shared by two sessions.

Suppose the link capacity i3 = 1, the initial explicit rate is,(0) = 0.25, and theRound

session 1
0 c=1
session 2 y i
a0 5 .

Figure 2.5: Network example with two ABR sessions with round trip delay.

Trip Delay (RTD)is assumed to be 1 time unit for both sessions. Thus the explicit rate takes
at most 1 unit of time to propagate back to the sources and be reflected in the incident flow

on the link,i.e., fo(t) = 2e,(t — 1). The explicit rate update would be

-0 o]

which results in the oscillation shown in Fig. 2.6.

One way of preventing oscillation is to update the explicit rate at each link only
after the worst case RTO), has elapsed, wherBy is the worst case RTD of the sessions
sharing link?. In other words, explicit rate,(¢) is updated only after the link receives
newly modified source rates regulated by the last computed local explicit rate. This scheme
can be shown to converge to the same max-min fair allocation. The explicit rate update of
link ¢ is then

es(t +1) = min [W, 04 . (2.9)
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0 5 10 15 20 25 30
t—th iteration

Figure 2.6: Oscillation of explicit rate in the network example without considering RTD.

Thus stability can be achieved by delaying updates, or alternatively as suggested in [21] by
damping the measurements and computation. The proof of convergence is the same as that

of the synchronous convergence result stated in Theorem 2.3.2.

2.3.5 Feasibility Issue of Rate Control Mechanism

An allocation is said to béeasibleif the link flows do not exceed the link capacities. In our
algorithm, link flow may temporarily exceed capacity causing queue buildups. For example,
Fig. 2.7 and 2.8 show a case where a new session 5 is setup after the other sessions in the

network have reached the max-min fair allocation. The infeasibility can be mitigated by

=1 ¢=1
link 1 link 2

Figure 2.7: A network with a new session 5.

damping the computation of explicit rates. Damping of explicit rates by network adjustment
will lessen the abrupt ramp-up or down of rates, and allow sufficient time for the network
to adapt to the varying session rates and link flows and presumably prevent from excessive
infeasibility. It can be shown that the damped version of the algorithm also converges to

the solution of the algorithm without damping by similar steps followed in the proof of
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Figure 2.8: Explicit rates, link flows and session rates when a new session 5 is setup: before

the new session is setup, it achieves max-min fair allocatios: (3, 2, 1, ), and quickly
adjusts to its new max-min fairnegs = (3, 3, 1, 1, 1) after the new session.

Theorem 2.3.2.

Another approach to manage the variability in a dynamic environment is to con-
strain sources to make slow rate adjustments particularly upon entering and increasing their
rates: the session rates can not be increased rapidly when they are admitted to a network,
rather they are permitted to increase their rates by only a little amount at a time so that the
network will have sufficient time to recognize the number of connections by measuring the
flow. This approach can be considered as damping source behavior.

We believe that single bit indication of queue status can be used in conjunction with
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our scheme to prevent the excessive queue buildup when link flows exceed the available
resource transiently. In the scheme, sources slow down their change of rates if queue starts
to build up, otherwise they speed up to achieve the desired max-min fairness quickly. In

a sense, the single bit indication scheme can take care of the feasibility while the explicit
rate control mechanism can ensure fast convergence to fair rates. The single bit queue
indication scheme might be jointly combined with the damping at sources such as linear
growth of source rate. While damping of explicit rates at network links and/or damping of
session rates at sources manages to keep the queue from growing beforehand, the single bit
indication scheme primarily reduces the queue already built-up.

An even more conservative approach would be to employ a safety margin on avail-
able capacity. Suppose we have network utilization fagtawhere0 < p < 1, and the
link capacity to be shared is onty = pc,. We then have spare capacity — p)c, to ab-
sorb the transient overshoot above virtual capagitgading to implicit control of queue
buildup. The max-min fair allocation of resources would be defined with respect to the new
capacitiesy, £ € L.

Combining these ideas, we can significantly improve the feasibility and thus per-
formance in a dynamic network environment. There have been algorithms designed to
guarantee feasibility. They, however, might also experience transient infeasibility if the
instantaneous available bandwidth is highly variable, which might be typical in integrated

services networks, and buffering should be provided to tackle the problem [14, 57].

2.3.6 Iterative Algorithms with Priority

It may be useful to allow sessions to have different priorities. We can formulate an iterative

algorithm wherein a priorityvs, wherews > 1, of a session plays a role as follows:

et+1) = min { Cﬁi‘{g),cf} , el
fo) = Yes, as(t), (el (2.10)
as(t) = wsmingep [er(t)], se€S.
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Note that the computation of explicit rates is still conducted locally in a decentralized man-
ner and the priorityv, is dealt with at the source leading to the same structure of distributed
computation as in the preceding algorithms.

We can now define bottleneck hierarchy with prioritand a notion ofveighted
fair share following a similar procedure as if2.2. Letzt”) = U;'-:lz(j) and V" =
u;zlg(j) be the cumulative set of bottleneck links and sessions, respectively, in levels 1 to
i of the hierarchy with priority. Theveighted fair sharer), can be defined as a weighted

fair partition of available capacity at linkin thei*" level of the hierarchy:

Tp=——F, (2.11)

wherea’* = Zse 5,pt-D s is the total flow of sessions througltonstrained by bottle-
{4

neck links inﬁ(ifl), andﬁ@ => w; IS the effective number of sessions through

' Se\v(iil)
unconstrained by the links w' Y. Note thatr}* = 0 in the 1! level of the hierarchy.

Based on the weighted fair share, the setdfevel bottleneck links and sessions
with priority can be defined as:

£ = rec\U" V| f; =ciandforalls € S, =7 = min 7.},
Ws mE,C\a(i_1>

SV = ses\ VWV ses ande e £, (2.12)

HereZ'” is the set ofi™" level bottleneck links such that the sessionsifl are allocated
weighted minimum fair share in the netwoile., for s € S(i), Z— = minres\vﬁ,l) Z—T
7', thus each session sharing the link receives bandwidth in proportion to its prigity,

(@)

a; is the weighted fair share of the bottleneck

= w,z'. Note thatz' = 7} for ¢ € L
links in theit” level hierarchy. The construction of the bottleneck hierarchy with priority
is analogous to that df2.2 resulting in set of bottleneck links and sessions with priority
Y, 2™ andsW,... 3",

One can show that (2.10) will converge and allocate bandwidth to the sessions pro-
(i)

portional to the weightsus, i.e., @t = w,z’ for all s € S, which is “weighted fair”

leading toweighted fair allocatior = (@, s €S).
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2.4 ABR Flow Control

We have provided a simple flow control framework using explicit rate. In this section we
discuss how this mechanism might be employed¥BR flow contral

Current and future multi-media applications will require high throughputs driving
the deployment of high speed networksg., ATM networks, to carry such traffic. ABR
service was defined as a new service class for ATM networks to utilize the remaining re-
sources not used by other types of servieeg.(CBR, VBR). There has been much effort
devoted to the design of ABR flow control. For a survey on ABR rate-based flow control
see [12, 14, 28, 29, 56] and references therein.

Several issues arise in reviewing the rate-based control algorithms:
e Theexplicit rate control mechanisimas fast convergence characteristics.

e A simple algorithmis preferred to make the complexity of explicit rate control rea-

sonable.

¢ In a large-scale network environmentditributed and asynchronous algorithisy

desirable.
e Max-min fairnes$12] needs to be provided to treat connections fairly.

e It is desirable taninimize the amount of informatiacequired €.g.,number of on-

going connections and status of links).

We can adopt the flow control mechanism for the control of ABR traffic, in which the above
issues are resolved.

There are several parameters associated with each ABR sessiéh notably the
Minimum Cell Rate (MCR), Allowable Cell Rate (ACR) and Peak Cell Rate (PCR) denoted
by ms, as andps respectively. Definern = (ms,, s € S) anda,  similarly. The allowable
cell rate may be adjusted by the network/source to ensure good performance as long as

m < d < p component-wise.
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We will assume that each sessierhas a dedicated access lilk € £, with a
capacityp; corresponding to the source’s PCR. This will ensure thaK p, and make
the description of algorithm simple since we considgit) = mingc,, [ e¢(t) | instead of
usingas(t) = minger, [ ps, e¢(t) |. Moreover we consider persistent greedy sessions, which
transmit at their current ACR.

In the flow control mechanism, each link measures the aggregateffleyvand
computes a local ‘explicit rate’ paramete(t). Switching devices at links send this infor-
mation to the sources by stamping Resource Management (RM) cells with the local explicit
rate, if the Current Cell Rate (CCR) indication in the packet is higher than the computed
explicit rate at this switch. Note the explicit rate in an RM cell is modified either on the
forward or backward trip. Thus the source receives the minimum explicit rate for links
along its route. The role of each source is to adjust the currentACR so that it does not
exceed the explicit rate indication carried back by RM cells, or the session’s PCR constraint.

The flow control mechanism achieving max-min fairness can be applied to ABR
service exactly as it is conceived when all connections have zero MCR. It has been argued
how to define max-min fair allocation of bandwidth with sessions of non-zero MCR [12].
We consider two options to achieve similar notion of max-min fairness with non-zero MCR.
In the first approach, we pre-allocate bandwidth corresponding to nonszgtto each
sessions and subtractn, from the link capacitye, for ¢ € L, resulting in new available
capacityc;,. By applying the flow control algorithm (2.1) to the adjusted capacities, we
achievemax-min fairness above MCRhis approach is a simple way to handle with MCR

and would be formally described as

C% = G- ZSESg Ms, E S E
. . cpe(t) 4
e((t+1) = min { 70 704} , Lel (2.13)
as(t) = mingeg,[er(t)], s€S.

As another way of handling non-zero MCR, we consider MCR as priority for each session.

In this case, the algorithm with priority (2.10) can be employed by replacin@y m;
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to weight the bandwidth allocated to sessions depending on MCRs leadimgigbted

fairness by MCR

2.5 Summary

In this chapter, we have investigated a simple flow control mechanism using explicit rate.
We have formulated decentralized iterative algorithm and we have shown that the solution
of fixed point equation of the algorithm is unique and the algorithm converges geometrically
to the max-min fair allocation of resources. We have proposed asynchronous version of the
algorithm leading to the same max-min fairness. These algorithms operate in a distributed
manner accounting for the heterogeneity of a large-scale high speed network.

It has been shown that they quickly achieve notion of global max-min fair rate allo-
cation for contending users sharing resources through decentralized adjustment of explicit
rates. The algorithms are simple in that they do not require that the links keep track of the
number of constrained and unconstrained connections as some rate based flow algorithms
did. Hence it has clear scalability advantage in terms of both complexity and state infor-
mation. We have considered the feasibility issue and extended the algorithms so as to deal
with priorities of sessions. As an application example, we have presented ABR rate-based
flow control for ATM networks.

It is debatable whether specifying a uniform notion of fairness across a heteroge-
neous network, including access and backbone facilities makes sense. We believe a more
appropriate notion of fairness might allow for a subdivision of the network into domains
where resources might be allocated based on local administrative policies. For instance, a
domain might want to differentiate amofaral andtransiting flows, see Fig. 2.9. Indeed
it could, for example, decide to give priority to local traffic, because it is critical at the site,
or give priority to transit traffic because backbone or access bandwidth is limited and it is
of utmost importance to achieve high throughput in connecting to remote locations.

Fig. 2.9 shows an interconnection of Domains 1 and 3 which give priority to tran-

siting traffic and Domain 2 which gives priority to local traffic. We propose to consider
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Domain 1

gives priority
tolocal

traffic

local Domain 3
traffi c

Domain 2

give priority to
transiti ng traffic

transiting traffic

Figure 2.9: Domain fairness policies and network level interaction.

approaches at defining fairness policies within domains, and more importantly to study
how interconnected domains would interact. The key issue is to characterize the equilibria,
if any, of the the interconnected networks in terms of ‘fairness’ to users and demand in
various domains. Consider for example the performance of a distributed application run-
ning over various domains, in principle it would be roughly characterized by the throughput
equilibrium of the system which in turn would depend on the fairness policies of the various
network components. In summary, a flexible notion of fairness should allow for possibly
heterogeneous domains to define their local policies with respect to various types of flows,

but would nevertheless achieve a ‘consistent’ notion of fairness across the internetwork.
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Appendix

2.6 Proof of Theorem 2.3.2

Recall the hierarchy of bottleneck links and sessions defingd.lh Note that/(") is the
cumulative set of bottleneck links in levels 1itandV() is the cumulative set of bottleneck
sessions in levels 1 to Theorem 2.3.2 is a consequence of Lemma 2.6.1. |

Lemma 2.6.1 is the key lemma to show the convergence of the synchronous iter-
ative algorithm (2.1). For that purpose, we need Lemma 2.6.2 and 2.6.3, which presents
monotonicity of lower bound,(¢) and upper bound,(t) of explicit ratee,(t). In addition,
we use Lemma 2.6.4 and 2.6.5 where both lower and upper bound are shown to converge

geometrically tcej.

Lemma 2.6.1 (Convergence of Explicit Rates and Session RatgS)ven an initial vector

€(0), there exists a timey, whereN is the number of hierarchy levels, such that for all
t > ty, the explicit rates of bottleneck links < U™N) and the associated session rates
s € VIV) converge geometrically te; anda}, respectively. Moreover, the explicit rates of
non-bottleneck linkg € £\ U™ also converge geometrically to the corresponding link

capacitiesc, fort > tn1, wherety 1 > ty, thatis

t

IN

max,c,,n) |eg(t) — ef| ANy, 0 <y <1,
(

MAaX y)(N) las(t

A

)
)—a¥ < BNfﬁV, 0<yn <1,

maxge oy lee(t) — ol < Aniviygs 0 < <1

Proof : We will prove this lemma by induction on the bottleneck hierarchy.
Step 1 We first show that the explicit rates of* level bottleneck links:(t) for ¢ € /()
and the associated session rates*bfevel bottleneck sessionsg(t) for s € V1) converge

geometrically toe} anda’, respectively, fot > ¢1, wheret/() = £() andy™®) = SO,
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Note that for any linkn € £ and for allt > 0,

) = L =% {pineato)}

SESH SESH
< [Smlem(t) = n}nem(t),

wherenl, = |S,,| denotes the number of sessions through tink |t follows that for all

m € L and for allt > ¢/,

em(t + 1) = min [ C?:It()t),cm] > :L—Tln =zl (2.14)

wherexz}, is the fair share defined in (2.3) ariis the time after which alt,, () have
been updated and have achieved at least the fair sjar€hus, once,, (¢) is updated, the
explicit rate for linkm is at least the fair sham}n. From now on, we consider> ¢}.

Considert € £, then the link flowf,(t) satisfies

10 = 2 { it 0) (i)}

SESy
> i L) A i t 2.15
) §{(k622<w> (et a0) 219
S 14

wherea A b denotes the minimum af andb. Note thatr} = 2! for all ¢ € £V and let

y! = min y}, where  y; = min min  z}, ) . (2.16)
e s€Sp \keL\LD

It follows by the bottleneck hierarchy and by the definition of fair shaii@ thaty' > !

sincez! is the fair share in thé*! level bottleneck links. So (2.15) results in

1 .
fot) > Se% {y A Qeﬁﬁ(u ek(t)) }
> (né — Dzt +yt Ae(t), (2.17)

where we use Assumption 2.3.1, noting that among the sessidnidliere is at least one,
sayr, for which ¢ is the unique bottleneck,e., £, N L) = ¢, and fork € £, N £,
ex(t) > o' by (2.14). It follows from (2.17) that

ceep(t) c :| coep(t)
Fot) 7] T (= Dal +yt Aet)

zt < ey(t+ 1) = min [
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Thus

[ coee(t) ] 1 coeq(t) 1
es(t+1)—2'| = |min o | —x | < —x
A | ' [ fo) (nf — Dzl +y! Aeg(t)
('I’L% — 1)1‘1 1
< t) —
=l = Dal +y' Aet) lee() — =]
(”} - 1)931 1
< t) —
- (n%—l)xl—i-yl/\mlm() 7|
1
< T eu(t) — o
Cy
< Glet) —2t, 0< & <1, (2.18)

sincec, = njz!. So by (2.18) and since; = z!, the explicit ratee,(t) converges te;
geometrically for € ™), i.e.,
Joax feg(t) — €] < Ayg,  0<m <1, (2.19)
whereA; is some positive constant angl = max,,,1)[ & ].
Note that by (2.14) and (2.16) it follows thag(t) > ' for k ¢ /1), andey(t) for
k € £ converges ta:!, wherez! < y'. So there exists; > t| such that for alt > ¢4,

ex(t) < y' for k € £, Thus it follows that

<

< min ep(t) A min ek(t)>—e}7

as(t) —all =
‘ S( ) 8‘ keﬁsﬂﬁ(l) keﬁs\Z//<1>

min e (t) — e}
min k() — e

< < max |eg(t) — ej| < By,

min  ex(t) —e; nax

keL,nc®

where B; is some positive constant. Hence, foe V() and fort > ¢, the session rate

as(t) converges ta; geometrically, where} = ¢, i.e.,

max |as(t) —aX| < Biyh, 0<my <1 (2.20)
sey®)

So the flows of ** level bottleneck links rapidly converge leaving the rest of the sessions to

sort out their rates.

Step 2 Suppose that the explicit rategt) for ¢ € U~V and the associated session rates
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as(t) for s € V=1 converge geometrically far> t;_1, i.e.,

max |eg(t) —e;| < Ai_lfyf_l, 0 <71 <1, (2.21)
Leyi-1)

max |ag(t) —al| < Bi17,, 0<vo1<l1, (2.22)
sep(i=1)

whereA;_; andB;_; are some positive constants. We will then show thét) for ¢ € U
anda,(t) for s € V) converge geometrically far> t;, wheret; > t;_;.

Consider any linkn € £\ /(=1

fm(t) = Yoo oa®+ Y asl)

SES,NYE—1) SESH\ V-1

_ 3 {ireliﬁriek(t)}—l- Z

SES,HNV(E-1)

A
Q
S@.
=
_l’_
“
3
—
=
I
=
S
=
I
Q
)
=
_|_
S
Bl
)
S
=

wheren! = |S,, \ V=] is the number of sessions unconstrained by linkg @t and

o’ (t) is the sum of session rates constrained by linkgr!). Thus

em(t+1) = min [ emem () } > min [ Cmem(t) A

Fult) " 050 + e (@) o |~ (O n0)

It follows by Lemma 2.6.2 that fom € £ \ 4(¢~1), there exists lower bound,, (¢),

em(t) 2 ep(t). (2.24)

7
m

By Lemma 2.6.4¢,,(t) converges tai, geometrically, wherer!, = em—og; andz!, is
the fair sharej.e., fair amount of bandwidth among all the remaining unconstra’vnfgd
sessions at linkn since(c,, — a%*) is the available capacity at linke. Note that we are
dealing with all the links inC \ /¢~ which includes*” level bottleneck linksC(", so for
all m € £ lower bounde,,(t) converges te, = z*, wherez* = x%,. Since there are
only a finite number of links, there exists> ¢;_;, such that for alt > ¢/ the lower bounds

e,,(t) are at least?, — ¢ for arbitrarily smalle and for allm € £\ UV, i.e.,

em(t) > e, (t) > 2t —e. (2.25)
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From now on, we consider> ¢..
Consider an'” level bottleneck link/ € £, by (2.23) and (2.25) we have the

following:

* Z {<k£i\r§<w ek(t)) . <kegiﬂnﬂ“ ek(t)>}

SES@\VU_ 1)

> alb(t i i) A i t .(2.26
> o0 S {(min whoe)a (i ) |- @29

SES[\V“* 1)

Note thatr}, = 2 for all £ € £) and let

y' = min yz, where yz = min ( min 3:2) —e. (2.27)
eL® s€S\VE—1) \keL\Lc®

It follows by the bottleneck hierarchy and by the definition of fair shai thaty’ +¢ >
2" sincez! is a fair share in the’ level bottleneck link, and if we choogesmall enough
theny’ > z°.

S0 (2.26) results in

fot) > ab(t) + Z {yi A ( min ek(t)>}
, keLsnL®

SES[\V“fl)

ap(t) + (np — 1) min e () +y' Aeg(t) (2.28)
keL®

v

> Bi(t)+y Net),

whereg;(t) = a/(t) + (ny — 1) mingc ») € (t). In (2.28), we have used Assumption 2.3.1
that among the sessionsda \ V(~1 there is at least one, sayfor which/ is the unique
bottleneckj.e., £, N L®) = ¢, andey(t) > e, (t) for k € £, N LD by (2.24). Thus

coep(t)
Bit) +y' Ae(t)’

edt%—l)zmin[cﬁg(t),cz] Smin[

0 e | & RBi), ect)).

It follows by Lemma 2.6.3 that far > t; and for? € £, we have
ep(t) < eg(t). (2.29)
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By Lemma 2.6.4 and Lemma 2.6.5, both bound$) ande,(¢) in (2.24) and (2.29),

respectively, converge tg geometrically for € U, i.e.,

max le,(t) —ej] < Anl, 0<7, <1,
Letd(®) L i
max [e,(t) —ej| < A7F, 0<7, <1,
Leu(@®

where A, and A; are some positive constants, &gt) converges te; geometrically for
t >t/ andforl € U,

[nax lee(t) — €] < Ay, 0<7i <1, (2.30)
whereA; = max[4;, 4;] andy; = max| Y i |-

Note thatey(¢) for k& € U~ converges te}, wheree; = 27, for some; such
that1 < j < i — 1 by our induction hypothesis (2.21). Alse,(t) > y' for t > ¢/ and for
k ¢ U® (see (2.25) and (2.27)). Sineg(t) for k € £ converges ta:’, wherez’ < 3,
the explicit rateey (t) eventually becomes smaller thghfor large enougtt > ¢;, where

t; > t., so it follows

las(t) —a:| = |mineg(t) —ep| <

keLls

< min ex(t) A min ek(zf)>—ezk
keLsnL® keLs\U®)

< < max |eg(t) — ej| < By,

LeuU(®

min  eg(t) — e
keL.nL®

Thus fors € V@ and fort > t;, the session rate;(¢) converges ta’ geometrically, where
ay =e€j,i.e,

max |as(t) —a| < Biyl, 0<y < 1. (2.31)
sev(®

Since we have finite number of leveM in the bottleneck hierarchy, the induction termi-
nates atVv.

Step 3 Now consider a non-bottleneck link € £ \U(N), then

em(t—%l):min[m,cm},

where fin(t) = > .cs, as(t). It follows that the link flowf,,(t) converges tof;;, since

all session rates converge dd as shown previously. Notg* < ¢,,, otherwisem would
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be a bottleneck link by Assumption 2.3.1. So there exXists; such that for alk > ¢
the link flow fy () < f% + & < ¢ andep(t + 1) > min [ %ﬁcm} Thus, e (t)
converges t@,, fort > tx1 and form € L\U(N). In fact, e, () is a pseudo-contracting

sequence towards,, = ¢,
lem(t+1)—er | <&nlem(t) —er |, 0<&n <1
Thus we have that

max |em(t) —eh| < Aviivhir, 0 <angr < 1, (2.32)
meL\UW)

whereA 1 is some positive constant angy | = max,, . LU [€m]. This completes the

proof. |

Lemma 2.6.2 (Monotonicity of Lower Bounds) Suppose

eo(t+1) > min Om,@ 2 T(ai(t), eqlt)),

thene,(t) > e (t) for t > t;, wheree,(t;) = eo(t;) ande,(t + 1) = T(ab(t), e,(t)) for

t >t

Proof : Note thatT'(a%(t), . ) is a non-decreasing function in second parameter. Since

eot; + 1) > T(al(t), e,(ti)) = eo(t; + 1), it follows by monotonicity of"(a(t), . ),
eo(t; +2) > T(aj(ti + 1), ep(t; + 1)) > T(o(ts + 1), e0(ti + 1)) = e4(ti +2),

so for allt > ¢;,

ee(t) 2 e(t).

Lemma 2.6.3 (Monotonicity of Upper Bounds) Suppose

coeq(t)
Bi(t) + v Aeg(t)

thene,(t) < e (t) for t > t;, whereg,(t;) = e,(t;) ande,(t + 1) = R(Bi(t),e.(t)) for

ee(t +1) < min o | 2 R(BiD), elt)),

t >t
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Proof : Note thatR(S(t), . ) is a non-decreasing function in second parameter. Since

eo(t; +1) < R(Bi(t;), ee(t;)) = ee(t; + 1), it follows by monotonicity ofR(3(t), . ),
eo(ti +2) < R(Bi(ti +1),e0(t; +1)) < R(Bi(t; + 1), 20(t; + 1)) = eo(t; +2),

thus for allt > ¢;,

Bg(t) < ég(t).

|
Lemma 2.6.4 (Convergence of Lower BoundsBuppose fot > t; 1,
max eg(t) —ej| < Aimini,  0<vi1 <1, (2.33)
ey (i=1)
max |ay(t) —ai| < Biivb,,  0<7i1 <1, (2.34)
sepi=1)
et +1) = T(ab(t),en(t)) 2 min % ¢y
- oo oy (6) + mjee(t) " ]
wheree,(t;) = e;(t;) andt; > t;_1, and that
et) > a' — e, (2.35)
then for some positive constasf,
max |e,(t) —ej| < ANf, 0<7y <1
2eu(® -t -
Proof : ConsiderT( . ,e). Note that
0 cpe Ce
I;lg())( 8@ (a7 6> (Oé + 'I’L%G)Q a=0 n%ze
Since by (2.35)¢ > 2! — ¢, letting Lipschitz constank’ = ig(cﬁ. 5 we have
TLZ xr°—
I T(a(t), eo(t)) — Taf", (1)) < Klag(t) — af|. (2.36)
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FurthermoreI'(a*, . ) is a pseudo-contraction [9], whose sequence converges towards

T(af ef) =ep = %, ie.,
. o
Ty e(t) — T(ay" )] < m@e(ﬁ) — €
< Ele®) —egl,  0<E, <L (2.37)

Note by (2.34) that fot > ¢; 1,

ag(t) —af| < Yoooa - Y as Y las(t) —af

seS,NY(i-1) s€S,NY(i—1) seS,Nyi—=1)
t
S Ci—l%;p (238)

whereC;_, is some positive constant. So it follows by (2.36) and (2.37) that

leo(t +1) —ef| = |T(a}(t), e,t)) — T(ai", )]
< |T(ag(t), e0(t)) = T, e0(0)| + [T (a}, e0(t)) — T(af, 7))
< K|aé(t)—aé*|+§é|gf(t)—e}‘\, 0<§, <L

Thus we obtain by (2.33) and (2.38) that
max |e,(t) —ej| < Anf,  0<7y <1,
Letd(@®) - -

whereA; is some positive constanf, = max[y;—1,p ], and where, = max,c,»[{,]. W

Lemma 2.6.5 (Convergence of Upper Boundsyuppose fot > ¢;_1,

max leo(t) — ¢l < Aty 0<mi1 <L, (2.39)
Leu(i=1)
max Ja(t) —all < Binbi 0<w1<l, (2.40)
sepyi=1)
max les(t) —ej] < AAf,  0<ny. <1, (2.41)
e —t -4
coe(t)

, A
et +1) = R(B4(t),er(t)) = mi : : o |,
65( ) (ﬂf( ) 6@( )) min ﬁz(t) + yt /\ég(t) Ce
wheree,(t;) = e,(t;) andt; > t;_1, then for some positive constast,

max |e,(t) —ej| < A7,  0<7; < 1.
Leu®
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Proof : Note by (2.40) and (2.41) that for> ¢,

Gt - | < ](awmn@—n wmin ek<t>)—(azz*+<nz—1>e3)

keL@
< Jag(t) — aff| + (np — 1) | min e, (t) — €]
keL(®
< > as(t) — ail + (nf — 1)le,(t) — €]
868@0]7(1.71)
< B, (2.42)

whereB, is some positive constant. Following the similar steps in Lemma 2.6.4, we have
[e(t +1) —ej| = |R(Bi(t),ec(t)) — R(G;", e7)]

< [R(Bi(t),2e(t)) — R(BY" ee(t))] + | R(BY", ee(t)) — R(BY", ;)]

< K[Gi(t) = 85| + Eflee(t) — il 0< & <1,

N

whereK is a Lipschitz constant ang(3*, . ) is a pseudo-contraction whose sequence
converges towards;. Thus by (2.39) and (2.42) it follows

max |&,(t) —ej| < A7,  0<7; <1,

LeU®
where A; is some positive constart; = max[y,, p;], and where; = max;c ) [£,)], see

Lemma 2.6.4. [ |

2.7 Proof of Theorem 2.3.3

From Lemma 2.6.1, letl = max[Ay, An11], ¥ = max[yn, Yn+1], C = maxpes|c,], and

B — {ellle—e*lo < Ay}, t>tny1,
{111€—&|oc < max[Ay'¥+1,Cl}, t <y,

then following conditions hold.

1. We haveE(t + 1) C E(t), andg(¢) € E(t+ 1) for all t andé € E(t). The
sequencgé(t)} converges t&™ by Theorem 2.3.2 (Convergence of Synchronous

Iterative Algorithm).
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2. The setE(t) satisfies the Box Condition [9] for afl That is there exist sefS;(t) C
E;(0) for all ¢, such that

E(t) = E1(t) x Ea(t) x - X Ejg(t).

3. Initial explicit rate vectog(0) is in the set(0).

Thus by Asynchronous Convergence Theorem [9], the asynchronous iteration (2.8) con-

verges taz™*. |
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Chapter 3

Stability of Dynamic Networks
Supporting Services with Flow

Control

3.1 Introduction

Future communication networks are likely to suppadsticapplications that permit adap-
tation of the data transmission rate to the available network bandwidth while achieving a
graceful degradation in the perceived quality of service [55]. Transport services that match
the flexibility of such applications are already supported on the Internet via TCP wherein
end-systems adjust their transmissions in response to delayed or lost peekatsplicit
indicators of available bandwidth [26]. Available Bit Rate service, defined for ATM net-
works, draws on both the end-systems and network elements to implement a similar func-
tionality through adaptive rate control mechanisms that strive to allocate the available band-
width among ongoing connections [12]. Typically such mechanisms represent an efficient
way to carry traffic corresponding to elastic applications, ranging from today’s file transfers
to future rate adaptive voice/video applications.

Since mechanisms to adapt transmission rate typically draw on delayed (implicit
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or explicit) feedback from the network, much work has been devoted to establishing their
stability, particularly for networks supportingfixed number of connections. Stability is
usually interpreted as avoiding queue/delay buildups, and/or somewhat loosely as ensuring
that transmission rates converge to an equilibrium corresponding to a bandwidth allocation
among ongoing connections, seg.,[3, 7, 13, 57, 38, 1, 33]. Such equilibria are in turn
usually characterized in terms of their ‘fairness’ to users, such as max-min fairness or pro-
portional fairness [8, 30]. Thus given a fixed number of users and fixed network capacities,
one can typically arrange (through an appropriate control mechanism) to achieve an equi-
librium which represents, according to some criterion, an equitable allocation of resources
among users.

By contrast very little is known about the network’s performance when the num-
ber of connections in the network is in constant flux. Previous work along these lines has
focused on studying transienisg., how quickly will the transmission rates reach a new
equilibrium. In this chapter we consider a novel model that includes stochastic arrivals
and departures. However it abstracts the queueing and rate adaptation that would be tak-
ing place in the network by assuming that an equilibrium, and thus appropriate bandwidth
allocation is immediately achieved. In essence, this corresponds to assusg@pgration
of time scaledbetween the time scales of connection arrivals and departures and those on
which rate control processes converge to equilibria. Our focus is on exploring the stability
and performance of this connection-level model for networks using different types of rate
control and thus operated under different fairness policies.

Paralleling models used in the circuit switched literature, we assume connection
arrivals processes are Poisson and that each connection has a random, exponentially dis-
tributed, amount of data to sefdln contrast to circuit switched models, the bandwidth
allocated to each user will be a function of the global state of the network. Indeed re-

call that the bandwidth allocated to a user depends on the equilibrium achieved by the rate

1This arrivals model is a typical and a reasonable assumption for connections generated by a large population
of independent users. The exponential assumption simplifies our analysis but is likely not to be critical for the
stability results in this chapter.
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control mechanisms and the number of ongoing connections.

In general, one expects work conserving systems to be stable when the offered load
to each link (queue) in the network does not exceed its capacity. However given the com-
plex network-wide interactions underlying the bandwidth allocation mechanism, a demon-
stration of this fact was an open question. Note that our model can be said to be ‘non-work
conserving’ in the sense that a link supporting active connections may not be operating at
a full capacity because its connections are ‘bottlenecked’ elsewhere — a typical sign of a
potential for instability. In this chapter we come to terms with this problem by showing the
stability of our model when natural conditions are satisfied.

Since ours is a higher layer model, it is logical to consider network-level perfor-
mance, say in terms of average connection delays. This is important because the goals of
fairness and low connection delays may not be compatible, and should be examined prior
to committing to a particular architecture for large-scale broadband networks. Moreover
network designers might want to dimension capacities to achieve a reasonable responsive-
ness, say for web browsing, when the network is subject to typical loads. Our preliminary
simulations suggest that indeed it may be of interest to examine more carefully the impact
of a given fairness criterion and topology on the overall network performance.

Based on our model we point out an insidious architectural problem in networks
supporting adaptive services of this type. To achieve connection layer stability we must en-
sure that connection level loads do not exceed link capacities. Clearly this then requires that
the routing layer be aware of the connection level offered loads. However, typical routing
algorithms draw on short term link averages of utilization or packet delays. Such metrics
reflect the connection level offered loads quite poorly, since connections are adapting their
transmission rates depending on link congestion. Loosely speaking, the router is indifferent
to the fact that a 90 % link utilization may be due to a single traffic source or a thousand
sources transmitting at a thousandth of the latter’s rate. Herein lies a possible explanation
for the congestion currently experienced on the Intefireetconnection level instability.

The Chapter is organized as follows. §8.2, we present our model and define the

37



max-min, weighted max-min and proportionally fair bandwidth allocations. NeX{3.i8
we show the stability of the model by constructing appropriate Lyapunov functions. In
§3.4 we return to our question concerning possible connection level instabilities in current

networks and discuss future work.

3.2 Network Model and Bandwidth Allocation Schemes

Our network model consists of a set of linkswith fixed capacities: = (¢;, ¢ € £) in
bits/sec shared by a collection of roufs Routes are undirected and may traverse several
links in the network A 0-1 matrix A = (A, ¢ € £,r € R) indicates which links a route
traverses. In other wordgl,,. = 1 if route r uses link¢ and zero otherwise.

The dynamics of the model are as follows. New connections are initiated on route
r € R at random times forming a Poisson proc&kswith rate \,. connections/sec. The
collection of processed = {II,,r € R}, with ratesA = (\,,r € R) are assumed to be
independent. Each connection has a volume of data (in bits) to transmit, which is assumed
to be an exponentially distributed random variable with miebits. The parametéris the
same for all connections, irrespective of route or arrival time. This assumption simplifies
the description of the system state and, consequently, its analysis. The random variables
representing connection volumes are thus i.i.d. and also independ&nt bfe lety, =
ceb~! denote the capacity of linkexpressed in connections/sec, and/let (v, / € L).

The “state” of the network is denoted by= (n,,r € R) wheren, is the number of
connections currently on route We assume that the bandwidth allocated to each ongoing
connection depends only on the current statef the system. Let.,(n) denote the total
bandwidth allocated to connections on routehen the system state ig expressed as a
service rate in connections/sec. The choice of the functioas(u, : Z¥ — R4, 7 € R)
will be described in the sequel. If the state of the system changes during the sojourn of
a connectiond.g.,due to the establishment of a new connection or the termination of an

existing one), then, there may be a corresponding change (speed-up or slow-down) in its

20ur model is at the connection level, so we can assume undirected routes without loss of generallity.
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service rate. Indeed since no arriving connections are blocked, new connections must be
accommodated by changing the bandwidth allocation, whereas bandwidth made available
by departing connections is reallocated to the remaining ones. We assume that ongoing
connections argreedyin the sense that they will use whatever network bandwidth is made
available to them. Note that in reality a given connection may have a limit on the rate at
which it can transmite.g.,may be limited by the access network or network interface card.
Herein we shall assume that such bottlenecks have been explicitly modeled by incorporating
limited capacity access links in the network.

LetII,.(¢) denote the number of connections arriving on rouba the time interval
(0,t]. This is a rate\, Poisson counting process. L&t (t) be another independent unit
rate Poisson process. LettiRdV,(¢),¢ > 0} be the random process corresponding to the

number of connections on routewe have

N, (t) = N, (0) + IL.(¢t) — @, </Ot pr(N(s)) ds) , TER, >0, (3.1)

which captures the state dependent service rates along each route in the network. It should
be clear that given an initial stat¥,(0), this evolution equation has a unique solution.
Moreover, if the initial condition N, (0), € R) is selected independently of the arrivals
and service processes then Hg—valued process/ (t) = (N, (t),r € R) is Markovian.

In the sequel, we describe various bandwidth allocation schemes, or, equivalently,
various possible functiong. In particular we will useu™, 4 and u? to denote the max-
min, weighted max-min and proportionally fair bandwidth allocation functions. Notice that
these functions, of the state depend on the capacity vectorthe routing matrix4, and
the type of rate control used on the network. By contrast with standard queuing models,
which track packets and queues throughout the network, it is through this dependence that
the evolution (3.1) models the dynamics of the network. Also note that we have assumed
that connections are not rerouted once they are initiated. One could in principle account
for rerouting or splitting of flows across the network but this will not be considered here.
Finally, and to avoid possible confusion, bandwidth will be measured in units of connec-

tions/sec rather than bits/sec — see above discussion.
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3.2.1 Max-min Fair Bandwidth Allocation

We first consider max-min fair bandwidth allocation. An allocation is said to be max-min
fair if the bandwidth allocated to a connection cannot be increased without also decreasing
that of a connection having a less than or equal allocation [8]. For a single link network this
translates to giving each connection traversing the link the same amount of bandwidth. In
general one first determines what would be the maximum minimum bandwidth one could
assign to any connection in the network and allocates it to the most poorly treated connec-
tions. One then removes these connections and the allocated bandwidths from the network,
and iteratively repeats the process of maximizing the minimum bandwidth allocation for the
remaining connections. More formally the max-min fair allocation can be defined in terms
of a hierarchy of optimization problems, described in detail in [23], which is easily solved
via the above procedure. Below we briefly review how given the statithe network one
determines the max-min fair bandwidth allocations per connection and in turn determines
the bandwidth allocationg:;*(n),r € R) per route.

Let the vectorn* = (a},r € R) be the max-min fair allocation whetg denotes
the bandwidth, in connections/sec, allocated to a single connection onrtaNtgice that
we have suppressed the dependence*odn n. All connections on the same route get
the same allocation s@*(n) = n,a:. We determinez* as follows. First for all routes
r € R such that, = 0 we seta’ = 0 and thusu)(n) = 0. Next we solve a hierarchy of
optimization problems starting with

FY(n) := max{mina, : Z Agnra, < vy, L € L}, (3.2)
¢ reR reR

which corresponds to maximizing the minimum bandwidth per connection subject to the
link capacity constraints. It can be shown, see [23], that the solution to this problem is
given by
vy

FO(n) = min fP(n) with £ (n) =

- 3.3
teL >orer Aony’ 33

Wheref,z(l)(n) can be thought of as tHair shareat link 7, i.e.,the bandwidth per connection

at link ¢ if its capacity were equally divided among the connections traversing the link.
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Let £ be the set of linkg such thatf{" (n) = () (n). This is the set of first-level
bottleneck links The set of first-levebottleneck route® (1) is the set of routes traversing
alink in £, These two sets make up the first-level of bagtleneck hierarchyFinally,
for each route € R, leta* = f(M(n). The remaining, if any, components @f are
determined by repeating this process on a reduced network as explained next.

In its second step, if it arises, the algorithm replaces theaisdR by £\ £
andR \ R, respectively. The new state of the system is simply the proje¢tipn- €
R\ RM), and a new link capacity vectar(!) is defined onz \ £(!), wherev, is reduced

to

vV =v = 3 Agul ) =ve— fOm) Y Apny.

reR) reR®)
From (3.2) and the definition @iV, it is clear that the reduced capacities are non-negative.

A new problem paralleling (3.2) but on the reduced network (with reduced sets or routes and
links, reduced state, and reduced capacities—as described above) is then defined and solved
to obtain a new valug(® (n), and second-level bottleneck sets) andR(?). Finally for
r € R® we seta* = f)(n). If necessary this process is once again repeated, but, since
the setsR(), R ... are nonempty, it terminates in a finite number of steps, uniquely
specifying the vectos* and thug(n).

Notice that in the above proceduseneed not be integer valued, hencé(n) can
be easily extended for real-valued arguments. We shall use the same notation to denote
the extension of,™ from ZZ} to R?ﬁ. Some straightforward properties of this function are

summarized below.
Proposition 3.2.1 The functioru™ : ]RZS — ]RZE is radially homogeneous, in the sense that
p"ox) = p™(x), zeRY, a>0.

In the interior of the positive ortharRZ}, the functionu™ is continuous, and has strictly

positive components. Finally,™ is bounded.

The proof of this proposition can be shown by induction on the bottleneck hierarchy and

considering the dependence oof the max-min fair bandwidth allocation.
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Notice that the bandwidth allocation policy reflected,ift satisfies the link ca-
pacity constraints, is fair in the max-min fair sense, but the performange,in terms
of connection delays, may be poor. In the next section we discuss the weighted max-min
fair bandwidth allocation which allows some latitude in controlling performance by giving

different priorities to connections based on their routes.

3.2.2 Weighted Max-min Fair Bandwidth Allocation

Letw = (w,,r € R) be positive “weights” associated with each route in the network, and
a®* = (a*,r € R) denote the weighted max-min fair bandwidth allocation vector. For a
given staten we determine:™* in a similar fashion to the max-min fair allocation. First for

all routesr € R such that, = 0 seta”* = 0. Next, replace (3.2) with

(1)"“) — 1 . <
f (n) : mgx{gé%l{ar/wr} : ;Agmrar <, L €L},

which can again be solved by first defining theighted fair sharen link ¢ as

Vg

= A4
ZT‘GR Aérwrnr (3 )

and then setting )% (n) = minge, fz(l)’w(n). Paralleling the max-min fair case, the first-
level bottleneck links and routes, denotét)-* andR(1)-* respectively, can be defined,
and one can proceed iteratively to determine the bandwidth allocation for connections on
all routes. We will letu™ (n) denote the vector of bandwidths allocated to each route where
pe(n) = wenea®, and letp® = (p¥ : Z¥ — Ry, r € R).

One can again extend’ for real-valued arguments., from ZE to ]R%Z}, and show

that
p?(z) = p™(Dz), (3.5)

wherep™ corresponds to the unweighted max-min fair allocation discussed in the previous
section, andD = diag(w), i.e., a square matrix with components,,r € R) along its

diagonal. Thus one way to view the weighted max-min fair allocation is as a max-min fair
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allocation where the “effective number” of ongoing connection®is Moreover one can
easily see that the results in Proposition 3.2.1 also apply’to

A weighted max-min fair allocation can be used to differentiate among connections
following different routes and thus give priority based on geographic, administrative, or
service requirements by grouping like connections on a route. However specific criteria
for the selection of weights need to be developed. In principle one can consider control
policies which adjust the weights based on the state of the network — a simple example is

briefly considered i1§3.3.4

3.2.3 Proportionally Fair Bandwidth Allocation

As a final alternative we consider a framework where utility functiops Ry — R,r € R
have been associated with connections following various routes. (Héag) is the utility
to a user/connection on rout®f a bandwidth allocation,..® A bandwidth allocation policy
which maximizes the total network utility when the stateiisan be obtained by solving

the following optimization problem:

max, {Z n.Ur(ay) : Z Apnpa, <vp,l € Lia > O} , (3.6)

reR reR
where we assume that the utility functions are concave and so the optimizer is unique.
This approach to allocating bandwidth is pleasing in the sense that it finds an appropri-
ate compromise between the extent to which users value bandwidth aondetfa user
“satisfaction.”

In general it is unclear how to select utility functions. However, [30] and others,
have considered the case whéféa, ) = log a, and shown that in this case the maximizer
aP* = (a¥*,r € R) corresponds to proportionally fair bandwidth allocation in the sense

that the vector is feasibla,e., satisfies the link capacity constraints, and for any other

3If there exist connections with different utility functions that follow the same path, one can define several
routes carrying connections that share the same utility function.
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feasible rate’ = (a],r € R), the aggregate proportional change is negatiee,

an“ _f’" <0. (3.7)

reR ar

Determining the maximizer of (3.6) for log utility functions can be done explicitly

for simple networks. Alternatively, as with max-min fairness, one can design rate control
mechanisms that converge to the associated bandwidth allocation [33]. We wil{1et=
nral” denote the total bandwidth allocated to connections along roat® and . (n) =
(ur(n),r € R) be the bandwidth allocations per route when proportional fairness is used.
Again pP can be easily extended for real-valued arguments. We shall use the same notation

to denote the extension pf from Z% to R”:.
Proposition 3.2.2 The functiory? : R — R is radially homogeneous, in the sense that
pP(ax) = pP(z), = € Rf, a > 0. (3.8)

In the interior of the positive ortharmlf, the functionu? is continuous, and has strictly

positive components. Finally? is bounded.

The continuity ofu? follows by considering the functional dependencerarf the propor-
tionally fair bandwidth allocation, while radial homogeneity is easily shown by a change of

variablesh, = z..a,.. The problem is then

pP(x) = argmay, {Z x, log(by) : Ab < wv;b > 0} , (3.9)

reR
where we note thdt. now corresponds to the bandwidth allocated on reutand thus the

maximizing vector corresponds to proportionally fair bandwidth allocatiti).

3.3 Stability of the Stochastic Network

In this section we will consider the stability of the stochastic network model defirf&ian

for various types of bandwidth allocation. Assumif,, ®,, » € R} are independent
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Poisson processes {ih oo), wherell,. has rate\, and®, has rate 1, the evolution equation

(3.1) defines a Markov chain cﬁ’:ﬁf with transition rates

Ar, m=n+e,reR
q(n,m) =19 p(n), m=n—e,reR , (3.10)
0, otherwise

for m # n, wheree” = (el,s € R), e, = 1(r = s). Thus, when the state is, router
sees arrivals with rate, and departures with raje.(n). Note that whem, = 0 we have
tr(n) =0, thusg(n,n — e”) = 0, and so the rates are supported on the positive orthant.
We use the notatioi) for the infinitesimal generator (viz., rate matrix) of this
continuous-time Markov chain. For a functign: RZ} — R, we write!
Qe(n) = Y aln,m)p(m) = Y q(n,m)lp(m) - p(n)], (3.11)
meZl meZl
where the latter equality follows from the fact th@is conservative:

Q(n7n> - = Z Q(nvm)'

m#n
Note thatQy(n) can be interpreted as the expected dri&t, the change ip(N(¢)) when
N(t) =n.

Clearly the Markov chaiq N (¢), t > 0} is irreducible, and we say that it is stable,
iff it is positive recurrent. We will show positive recurrence by constructing a Lyapunov
function [44, 19]. For our system, a Lyapunov function is any functi’onZZf — R with

the sole property that there exists a finite 5et Z%, such that

sup QV(n) <0, (3.12)
ngK

whereQV is defined as in (3.11). Using our formula (3.10) for the transition rates we can

rewrite QV as

QV(n) = Z{)\T[V(n +e") V) +pum)Vin—e)—V(n)} (3.13)
reR

“Notice that the sums in (3.11) have a finite number of terms, since the chain has only local trarigitjons,
arrivals and departures for every route, thus there are no restrictions on the fundtoi®y(n) to be well
defined.
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Intuitively (3.12) means that when the proc@é&) lies outsidef, itis such that on average
V(N(t)) is decreasing,e., has negative drift.

Searching for such a Lyapunov function can be a tedious procedure, particularly
since the transition rates of our Markov chain are defined via the optimization problem

associated with the various fairness criteria.

3.3.1 Stability under Max-min Fair Bandwidth Allocation

We first consider the stability of the network when bandwidth is allocated according to the
max-min fair criterion and thus the dynamics of the system are captured by (3.1)with
replaced by, as defined ir33.2.1.

We will begin by considering aandidateLyapunov function, related to the max-
min fairness criterion. LeY (n) be the reciprocal of (V) (n) defined in (3.2) and extend it
from Z% to R, namely,

V(z) = I?Eagc{Vgl;Agrmr}, x € RE.

For convenience we introduce the vectors
¢=E,remr), &=y Ap, LeL (3.14)

and lety®(z) = (¢, z), ¢ € £ where(-, -) denotes the standard inner producRift. With
this notation we have that

V() = max ¢(z) = max (¢, ). (3.15)

ThusV is a piecewise linear function. Since the vecigrbave non-negative components,

the sets{z € R : V(z) < a} are compact polytopes, for all > 0. For a fixed

x, one or more of the indice§achieve the maximum in (3.15)— these are the first-level
bottleneck links defined earlier. We will ugg!) (z) to denote the dependence of the first-

level bottleneck links ore. Similarly R™ (z) and vV () will be used to indicate such

dependencies in the sequel.

46



Since for first level bottleneck links the link capacity is fully utilized among ongoing
connections, we would expect that, on average, the number of connections on such a link
> rer Aerny Will decrease as long as the average arrival rate does not exceed the link

capacity. The following lemma makes this clear.

Lemma 3.3.1 Assume thatl\ < v,i.e.,} " .o Apr < vy, forall £ € L£.° Then, there is
a constant: > 0, such that for allz € R%, and all¢* € argmax.¢*(x), i.e., first-level

bottleneck linkg* € £V (z), we have

Qe (z) = (" N — ™ (z)) < —c. (3.16)

Proof: First, using (3.13) and the definition (3.14)&fwe have that

=D & — (@) =€ A= (@) = > vt A (A — (1))
reR reR

Next, sincel* is a first-level bottleneck link, it follows that for routestraversing link¢*

we haveu" (x) = z,a} wherea? is given by (3.2). Thus,

QSOK*(x) _ <Z Ag* ZA(* Z V=X )

Apesa
reR reR sER FHrsls
—1
= Vv (Z App A — VE*)
reR
S —C,

wherec := maxyes{v;, ' (Ve — 3., cr AurAr)} is positive by the stability condition. W
Despite the promise of Lemma 3.3.1 it is unclear wheihés an appropriate Lya-
punov function. Indeed the lemma only suggests that as long as the state makes transitions
on regions having theamefirst level bottleneck linksy (/N (¢)) will experience a negative
drift. To make this more precise we will explicitly identify these regions and for clarity

present an example §8.3.3. LetM be a nonempty subset gfand let

Cum = {z e RY: £W(2) = M}. (3.17)

5In the sequel this will be referred to as the stability condition.
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Itis clear thatifoe > 0,2 € Cpg = ax € Cpy, i.€.,these sets are cones, and that
U cu=r%
MCLM#AD

Suppose that € C, for some nonemptyM, then the driftQV (n) can easily be com-
puted (see (3.13)), provided+ e, n — " € Cpy, for all » € R. In this case, witlf any
element ofM, we haveQV (n) = (¢f, A— ™ (n)) < —c, by Lemma 3.3.1. However when
n andn + " orn — e” belong to different cones an explicit verification of the negative drift
requirement becomes difficult. Indeed when this is the case a transition causes a change
in the bottleneck links — alternatively we are “crossing of a boundary” of one of the cones.
Intuitively we may argue that this effect is negligible, since it occurs at a relatively small
fraction of points in the state space.

To make this intuition into a rigorous statement observe that Lemma 3.3.1 also

implies that there is a > 0, such that
(VV(2),A = p"(z)) < —¢, (3.18)

for all z at which the gradienvV (z) := (0V (x)/0z,, r € R) exists. Itis easy to see that
this gradient exists almost everywhere, and, when it exists, it eglidts somer. We will
start by showing that there exists a smoothened vef§iarf the functionV that satisfies a

drift condition in the sense of (3.18) for alle R%.

Lemma 3.3.2 ([18]) If A < v, then there is a non-negative functiii, defined orR” \
{0}, that is at least twice-continuously differentiable, has a HeSsia W (z), such that
V2W (x) — 0, as|z| — oo, and which satisfies the following drift condition: there is a
d > 0, such that

(VW(z), A = p™(x)) < —d

for all z # 0.

For completeness we have included a proof of the lemma to the appendix. Next we show

that the network is indeed positive recurrent.

®Here VW (z) denotes théR | x |R| matrix with entries{%(m), r,s € R}.
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Theorem 3.3.11f A\ < v then the Markov chai{ N(t), ¢ > 0} associated with the

max-min fair bandwidth allocation is positive recurrent.

Proof: SinceW is twice differentiable it follows by the Mean Value Theorem that for

n,m € Z there exists &,0 < § < 1 such that
1
W(n+m)—-W(n) = (VW(n),m>+§mTV2W(n+9m)m = (VW (n),m)+ B(n,m).

Recall thatV2W (n) — 0 and thus3(n, z) — 0 as|n| — oo. Now, using this approxima-
tion to compute) W, as in (3.13), we have

QW (n) = (VW(n),A— u™(n)) + Y _ q(n,m)B(n,m —n).

It follows by Lemma 3.3.2 that the first term is at mesi. The second term, is a sum of a
finite number of terms, and can be made smaller th@or all |n| sufficiently large. Thus
noting thatsupy,, ., QW (n) < 0, for sufficiently largey, and lettingK' = {n : |n| < v}

we satisfy the drift condition (3.12) which as discussed earlier implies positive recurrence.

3.3.2 Stability under Weighted Max-min Fair Bandwidth Allocation

While the previous result is intuitive, in that the number of connections on bottleneck links
must be decreasing, it is not easily extended it to show the stability of networks under
weighted max-min fair bandwidth allocation. Thus, we develop an alternative approach
which, instead of focusing links, focuses on the relative states of each route. Suppose that a
set of weightsv is selected and the network is operated subject to the bandwidth allocation
function p* defined in§3.2.2. We will lety”(z) = A\ ‘'w,z,.,» € R and consider the
candidate function

_ T _ -1
V(z) = max¢'(z) = max{A wrar}. (3.19)

The following lemma shows why this particular function is useful.
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Lemma 3.3.3 Assume thatiA < v then there is a constant> 0, such that for all: € R

and for allr* € argmax. ¢"(x) we have

*

Q¢" (@) = Atwe (A — i (2)) < —c.

Proof: Suppose the the network staterigind letr* € argmax . {\, 'w,z,} then for all

r € R, we have that
WyLy Wy Ty

)\r - )\r* ’
or equivalently that\,«w,z, < A\.w,«xz.~. Now summing over all routes traversing a link

(3.20)

¢ € L we have that

A Z Appwyxy < Wpx Ty Z Aér)\ra
reER reR

which one can rearrange to show that

Wyp* Lp*

Are < # Z ApAr
ngR LrWr Ly reR
Wy Ty Wy Ty
= A Vp — A (Ve — Z Apr).
ZT’ER Lr Wy Ty ZT‘GR Lr Wy Ty R

Given (3.20) and the stability condition one can easily show the existence of a positive

lower boundg > 0, for the term on the right-hand side :

Wy Ly § : . . Ap )y
- g4 .o\ A r)\r >minmin ————(vp — A T‘)\’I‘ = .
ZreR Apwrz, ( ¢ R ¢ ) leL TER { ZreR Ap )\, ( ¢ 7%:3 ¢ )}

Thus we have that

A < wT*xT*fe(l)’w(x) —c

where we recognize a term corresponding to the fair sbiﬁ?ew(:c) at link ¢, see (3.4).

Moreover since this is true for allwe have that
Ae < Wy e f () — (3.21)

wheref (M (z) = minge, £ () is the fair share at first level bottleneck linR&)® (z:),
Now if 7* is a first level bottleneck routé.e., r* € R (z), thenpu (z) =

wyz, f(z), and it follows by (3.21) thak,- — % (z) < —e. If 7* is not a first level
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bottleneck route, we will show that its bandwidth allocation must exeged,- f (1) ()
and so again by (3.21) we have that — p () < —e.

We begin by showing thaf(®(z) > (0w (). Suppose € £\ LD (z) and
note that

Z Agwpa, fIY () < Z Aerwr:vrfg(l)’w(:v) =y

reR reR
so it follows that

vy — f(l)’w(x) Z Apwypx, > f(l)’w(x) Z App Wy Ty

reR1)w(z) reR\R1L)w (z)
Rearranging terms and recalling the definition of fair share for the links in the second level
of the bottleneck hierarchy we have that
v @)
2o reR\RM v (z) AbrWr Ty
ve — [0 (@) e (py Ay,

ZTG’R\’R(UM () A£7'w’f’$7"
> fOv(a),

Thus f® () = minge, £ (z) > FO(z). Similarly it follows by induction that
fEtDw () > O (g until the bottleneck hierarchy is exhausted.

Now sincep () = wy-z,~ £ (z) for some levelj in the bottleneck hierarchy,
it follows that u® () > wy«z+ f1%(2) and o\« — p (x) < —e. The lemma follows

by selecting: = & min,er {\; 1w, }. [ |

Theorem 3.3.21f A\ < v then Markov chain{N(¢), ¢ > 0} associated with weighted

max-min fair bandwidth allocation is positive recurrent.

Proof: Based on Lemma 3.3.3, and the technique used in Lemma 3.3.2, it should be clear
that an appropriately smooth Lyapunov functidncan be constructed frovi in (3.19).
Positive recurrence then follows as in Theorem 3.3.1. |

Note that since max-min fairness is a special case of weighted max-min fairness,

Theorem 3.3.2 establishes the stability of both. The two different Lyapunov functions we
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have introduced, based on links and routes, may be of interest in further studies of perfor-
mance. These results establish tHat < v is asufficientcondition for stability. In fact, it

is anecessargondition. Say there exists a liflsuch thad __ Ag- A > vy. Clearly such

a link in isolation is unstable.e.,on average will tend to drift off to infinity. When the link

is incorporated within a network, the situation can in fact only get worse, since other links

may slow down the departures for connectiong.on

3.3.3 Example Network

10 2X1: X,
8,
Link1 Link2 Link3
6
A [
1 cErcy o
)‘2 4+
Vl V2 \)3
2 X, =|5X
Figure 3.1: Example network with three ' s
links and two routes. 0 ‘
0 2 4 6 8 10

Figure 3.2: A vector field of the example
network.

In this example we consider max-min fair bandwidth allocation for the network
shown in Fig. 3.1 — it consists of two rout& = {1, 2}, three links,L = {1,2,3}, and

routing matrix

Based on the notion of fair share (3.3), we can define the first and second level bottleneck
link and route sets, for any € R?.. Notice that in this example there are at most 2 levels in

the bottleneck hierarchy. The various cases, and correspondingCanésee (3.17)), are
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defined below.
e Case 1 (Link 1 is the unique 1st level bottleneck link):
V@) = {1}if fP@) < ) andfP (@) < fP(2)  (3.22)

£O@) = )it f2(@) < 17 (@)
LO@) = 3)if f2@) < 12 ()

Cpy = {z e Ry : LW(x) = (1}}.
e Case 2 (Link 2 is the unique 1st level bottleneck link):
LO@) = {20if i) < V(@) and iV (@) < £V (x)  (3.23)
Cryy = {z € RY: LW(2) = (2}}.
e Case 3 (Link 3 is the unique 1st level bottleneck link):

V@) = 3Yif fP@) < Y @) andfM (@) < fM @) (3.24)
L) = {1}if [ (@) < £ ()
L) = {2}if [ (@) < {7 (2)
Cigy = {z eRY: LW () = {3}}.
The sets of bottleneck link&) or £(2) could have more than one element if the fair shares
were the same on two links,g.,£1 = {1,2}if £V = £V < £V and in this case the

cones are defined d% ).

Next we consider the piecewise linear functid(), given in (3.15) :

V(z) = gﬁeagwg(w)zggﬁz,@

= max{yflxl, 1/2_1(:U1 + x9), 1/3_1352}.
and assume the stability condition holds,,
A<, A+ A < 1o, Ao < 3.
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We can compute the drifts in (3.16) explicitly to obtain,

Qpl(z) = EA—pu@)=vi* M —1)<—¢, z€ Ciy
Q902(90) = <£2a)‘ - p"(x)) = Vil(Al + A2 —1n) < —¢, z € Clgy

Qp’(x) = (EA—p"(@) =v3' (M2 —wm) < —¢, we .

The vector field\ — ™ (x) corresponding to the max-min bandwidth allocation
is shown Fig. 3.2 when\ = (1.5,1.5) andv = (5,6,4). According to the bottleneck
condition, we have three cones coincide at boundaries 515 and2x; = xo, which is
obtained by solving (3.22) through (3.24). The congs,, Cyyy andCys, correspond to
lower part, middle one and upper one, respectively. Also shown on the figure is a level set
of the functionV. From the figure it is clear that on each cone the network’s dynamics push
inwards,i.e., have negative drift with respect 6. By smoothingl” as in Lemma 3.3.2 we

obtain a Lyapunov functiofil’ from which the stability of the system follows.

3.3.4 Stability under a State Dependent Weighted Max-min Fair Control Pol-

icy
In this section we briefly consider a simple extension to our model with weighted max-
min fair allocation, wherein a control policy is implemented by letting the weights depend
on the network state. Let = (w, : Z% — Ry,r € R) now denote functions where
w(n) = (wy(n),r € R) are understood to be the weights associated with each route
when the network state is. Assume that when the system is in statéandwidth is
allocated to routes according to a weighted max-min fair allocation with weights.
Let u®(™(n) = (u;”(”) (n),r € R) denote the bandwidths allocated to each route in the
network when the state is. Our interest in this type of model, was motivated by work on
stability of Generalized Processor Sharing networks [53]. Without delving into the details
of their model, we remind the reader that in such networks a connection is assigned a weight
at each node (representing a queue) which determines the fraction of the available capacity it

receives at that node. The authors showed the queue/delay stability of non-acyclic networks
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of this type when connections receivedansistent relative treatmerBy analogy here, we
will say that a state dependent weight based control policy gives routegcam relative
treatmenif Vn € Z§ andr, s € R,

As _ nsws(n)

= > 2
o> (3.25)

newy(n)
An example one on such control policy would be(n) = A, /n, for n,. # 0. Thus upon

admitting or tearing down a connection along a given route the network controller would
need to adjust the weight associated with that route. The following lemma shows that
subject to the natural stability condition, a weight based control policy that gives routes

uniform relative treatment is stable.

Lemma 3.3.4 Assumed )\ < v and a weight based control poliey(-) that gives routes a
uniform relative treatment is used to allocate bandwidth in the network. Vhea Z

andVr € R such that:,, > 0 we have
Ar < ™ ().
It follows that the network is positive recurrent.

The proof of this lemma is almost identical to that of Lemma 3.3.3 and is included in the
appendix. Positive recurrence follows since the number of connections on every route has

negative drift if it is not empty.

3.3.5 Stability under Proportionally Fair Bandwidth Allocation

Unlike (weighted) max-min fair allocation of bandwidth, proportionally fair bandwidth al-
location maximizes the overall utility of the network, rather than focusing on maximizing
the worst case individual utility/performance. This is reflected in our choice of Lyapunov
function. In particular the property that the aggregate proportional change is negative in pro-
portionally fair allocation as in (3.7) will play a role. We propose the following quadratic

Lyapunov function:




Note that the function is continuous and twice differentiable, thus there is no need for the
smoothing process as we used in the case of max-min fair allocation. In Lemma 3.3.5
and Theorem 3.3.3 below we show that this function satisfies the requirements to show the

stability of the proportionally fair allocation.

Lemma 3.3.5 Assume thad\ < v. Then there exists a constafit> 0 such that for all
z € R} \ {0} the following holds

<SVW (), A= pP(x) > = Y Nlzp(h —pl(z) < —d.
reR
Proof: Note thatV, W (z) = A, 'z, so

<YW A=pf(@) > = Y FO—m@) < Y s

reR r reéR:x,>0 T

(Ae—p(x)) (3.26)
where the inequality follows from:

Ar 2z pp(x), i A — () >0,

Ar < p(x), if A, — pf(x) <0.

Note if x(z) = 0 thenz, = 0, so in (3.26) the inequality still holds. By noting that

ur(z) = z,af (x), we have

< VW (@), A —pP(x) > < ZR Mg”*&)w — 1(x))
A2 — al ()
< ;xm (3.27)
< 0, (3.28)

sincea” satisfies the negative aggregate proportional change as given in (3.7%),’ aad
Ar/z, is a feasible vecton.e., > » Apzra,’ < vy is a strict inequality because the
problem is strictly concave and we can not haye= \,/z, = a2"(z) for all r € R in
(3.27). Indeed suppose this were trie,, \, = x.a’" (z) = ph(x) for all r € R, then it

implies that for a bottleneck linke £, > » Ap A = > cr Agrpif () = vy, noting that
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there is at least one bottleneck link per route, which in turn contradicts with our stability
condition A\ < v.
So for a givenz by continuity of< VW (z), A — pP(x) > in x there exists) and
d(z) suchthatfor alyy inaball||y—z|| < d(z), we have< VW (y), A\—pP(y) >< —d(z).
This holds uniformly in a compact subset®f containing 0, and can be extendedr

using the following property witlx > 0
< VW(azx),A — pPlax) > = a<VIW(x),\—pP(x) >

sinceVIV(ax) = aVIW (x) andu?(ax) = pP(z) by radial homogeneity of”, see (3.8).
It follows that

< VW (x),\—pP(x) > < —d

for all 2 in R} \ {0} and a constant > 0. [ |

Theorem 3.3.31f A\ < v the Markov chai{ N (t), t > 0} associated with proportionally

fair bandwidth allocation is positive recurrent.

Proof: The method of proof for this theorem is analogous to that of our previous results.
SincelV is twice differentiable it follows by the Mean Value Theorem thatifom € ZE

there exists &,0 < # < 1 such that
W(n+m) —W(n) = (VW (n),m) + %mTVQW(n + Om)m.

Note that the Hessian term yiel§&W (z) = diag(1/2\,,r € R), so we have from (3.11)

notingm = ¢”
QW (n) = (VW (n),A — pP(n)) + (h, A — pP(n)),
whereh = (1/2),,r € R). By radial homogeneity of” and by Lemma 3.3.5, we have
QW(an) = (VW(an), A~ pP(an)) + (b, A — uP(an))
= a(VW(n),A = pP(n)) + (h, A = p(n))

IN

—ad + (h, A),

IN

—ad +|R|/2,
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10

Figure 3.3: A vector field corresponding
to proportionally fair bandwidth alloca-
tion of the example network.

wherea > 0 and |R|/2 is a finite constant. Thus for sufficiently large|, the drift
can be made negative. Letting = {n : |n| < 7} with large enoughy, we have
sup,¢x @W(n) < 0, which satisfies the drift condition (3.12) and implies positive re-
currence. |

The vector field corresponding to proportionally fair bandwidth allocation is shown
in Fig. 3.3 when\ = (1.5,1.5) andv = (5,6,4). Similarly, a weighted proportionally
fair allocation of bandwidth can be considered as in [16], where the total weighted network

utility is maximized:

max, {Z wyn Up(ay) Z Apwpnpa, <vp,l € Lia > 0} . (3.29)
reR reR

With the utility functionU,.(a,) = loga,, the rate allocatiom®?* = (a;”*",r € R)
solving (3.29) isweighted proportionally faibandwidth allocation in the sense that for
any other feasible rat¢ = (a,.,r € R), the aggregate weighted proportional change is
negativej.e.,

a. —ayP*
Z Wy ————— < 0.

w?p*
reR
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One can show the stability of the weighted proportionally fair allocation of bandwidth fol-
lowing a similar procedures as that for proportional fair allocation of bandwidth with the

Lyapunov function:

_ (wrwr)Q
W (z) Z o,

reR
3.4 Could the Internet be Unstable ?

3.4.1 Modeling of TCP

Internet traffic has been growing dramatically for the last few years. As of January 1999,
the number of hosts advertised in the Domain Name Server (DNS) reached more than 43
million [58]. In many places the increase in demand is outpacing resources leading to
congestion and degradation in performance. Since performance of Internet traffic is closely
linked to the behavior of TCP congestion avoidance algorithm [25, 43], it is crucial to
understand the impact of TCP on the macroscopic network level performance.

However, due to complicated interactions of Internet traffic and TCP transport algo-
rithms [54], most research on the performance of TCP has relied on simulations for various
TCP mechanisms. In an attempt to quantify throughputs of TCP connections more precisely
and predictably, some researchers have started to consider analytical models and through-
puts of TCP connections under various operating conditionsegpg[25, 20, 43, 51].
Recently, this approach has drawn much attention and relevant work is ongoing.

Mathis et. al. [43] formulate a simple TCP model under the assumptions that (1)
TCP is running over lossy path with constant Round Trip Time (RTT), and (2) Packet loss
is random with constant probability f The TCP throughputBW (p), is derived as

1
BW (p) = =TT\ /2?; packets/sec

The model is shown to match with real traffic when assumptions (1) and (2) hold. This
model does not apply in some situatiorsy.,when “timeout” behavior is dominant or for

the case of short connections which require only a few cycles of congestion avoidance. In
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fact, real-life Internet traffic exhibits many timeouts compared with congestion avoidance
behavior,.e., retransmission.

A recently developed model by Padhye et. al. [51] improves upon the previous
one. The model captures not only congestion avoidance but also timeout behaviors that
many real-life TCP traces exhibit. Moreover their model is shown to fit a wider range of
operating conditions,e.,loss regimes. They assume that packet losses are correlated based
on the fact that most current Internet employs drop-tail queueing policy and thus packets are
likely to be lost again once previous packets experienced losses due to a full buffer. Their

approximate model for TCPthroughput as a function of loss rate is

Wmam ]-

BW ((p) = min RTT

packets/sec

RTT /22 + Tomin(1, 31/ 22)p(1 + 32p?)

whereW,,... is the maximum congestion window siZeis the number of packets that are
acknowledged by a received ACK, afiglis the time interval a sender waits before it starts
retransmitting unacknowledged packets when a timeout occurs. Although the model may
not fit into the TCP traces under different implementations such as TCP-tahoe or the Linux
TCP implementation, it has been shown to match a broad range of real TCP traces and to

predict the TCP throughput.

3.4.2 Macroscopic Modeling of the Internet

In this chapter we have considered the stability and performance of an idealized model for
a network supporting services that adjust their transmissions to network loads. The model
is only arough caricatureof the Internet today, in that it assumes TCP operates efficiently
by immediately achieving aaveragethroughput related to a weighted proportionally fair
bandwidth allocation. For a single congested link, weighted max-min or weighted pro-
portionally fair allocation model TCP appropriately [43], [16]. We believe that weighted
max-min fair allocation can be adopted as a network model if weights are selected to re-

flect round-trip delays and TCP dynamics. So a connection’s throughput is dictated by a

"They model TCP-reno which is the most popular implementation of TCP in the Internet.
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weighted allocation of resources at congested or bottleneck links. The average RTT experi-
enced by connections and loss rate can be captured by weights given to connections which
in turn impact the equilibrium throughput achieved by TCP connections. This model par-
allels the one proposed and validated via simulation in [43]. We also assume that packets
associated with a given TCP connection typically follow the same route, and connections
send data in a greedy manner and depart. Subject to these, perhaps fanciful assumptions,
one can show that network stability cannot be guaranteed unless the connection-level of-
fered loads do not exceed the network’s link capacities.

While this result is not entirely surprising, it presents an interesting architectural
dilemma for future networks. Since routing algorithms on the Internet base their decisions
on short term measureise., are not explicitly tracking the long-term averages required to
assess the connection level offered loads, there is no reason to believe that the Internet would
satisfy a connection level stability requirement. Instability would be perceived by users as
an unacceptably low throughput, or inordinate delays, and typically cause them to abandon,
thus in some sense solving the problem. To avoid such extremes one might overprovision
the network. Unfortunately, this may result in a network which is still unstable, resulting in
sporadic long lasting congestion events that are challenging to explain.

Currently we are researching using methodologies similar to those we have used to
prove stability, to explore performance issues and consider in more depth the compromises
one might make to achieve good performance at the connection level. It would of course
be interesting to look at congestion patterns on the Internet today and attempt to explain
them in terms of a connection-level instability. However, given the typically non-stationary
demands on today’s networks and the detailed data that would be required to provide a

conclusive answer to this question this appears to be a challenging task.
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Appendix

3.5 Proof of Lemma 3.3.2

The argument below is taken from Down and Meyn [18] that uses the property of radial
homogeneity. We will construct a smodth that, just ad/, is also radially homogeneous.
It then follows thatv2W (x) — 0, as|x| — oo.

Recall thatV' (z) = maxc.(¢%, ). The idea is that one can perturb the vectors
¢ without changing the drift property. To explicitly exhibit the dependenck oi these
vectors, define

v/
V(& @) = max({,z), @ € R%,

where¢ = [¢¢, ¢ € L]is a|R| x |£| matrix and let|£|| be an appropriate matrix norm. By

Lemma 3.3.1 we have that
(€ X — u(x)) < —c, ifLe LY ), (3.30)

where£™) (¢, z) denotes set of first-level bottleneck links, 6r: L) (¢, 2) < (¢4, x) >
(€ ), forall ¢’ € L.

For a givenz by continuity of (3.30) inz and¢ there exist, ¢, ¢ > 0, such that for
I — €I < 6(2),ly — 2| < e(z) and? € LD (y,n) we have(n’, A — u(y)) < —¢/2. In
fact this statement can be made to hold uniformly for a compact subﬁf @ontaining
the origin and then extended, using radial homogenei@ﬁo

Now pick a smooth probability densipy(n) on the sef||n — ¢|| < §} and define
W(zx) = / V(n, z)p(n)dn.
|In—¢l|<é

One can se®/ () is smooth orR’\ {0}, by noting thal’ (1, z) is smooth at: for p almost

everyn. Moreover it is radially homogeneous, and one can easily show that it satisfies

(VW (2), A — p(z)) < —¢/2 = —d.
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3.6 Proof of Lemma 3.3.4

We will show the result by induction on the bottleneck hierarchy. Suppose the network state
is n, and so the weight vector is(n) and letC (D)) (n) andR(1)-* (") (n) denote the first

level bottleneck links and routes associated with the corresponding weighted max-min fair
problem. By (3.25) for any two routess € R traversing a given link € £ we have

Ar
nywy(n)

s > nsws(n).

Now summing over all routes traversiﬂgve have that

Z Apshs > Z Aésnsws
rwr

SER
This in turn means that

nywy(n

nrwr(n) (1),w(n)(
ZsER Aésnsws

< =
Ar < ZAgS/\ < S sy () v = nywp(n) f,

n),

where the strict inequality foIIows from the stability condition, and we recognize weighted
fair sharef")"""™ (n) atlink £, see (3.4). Suppose thag L2 (n), thenf ) (n) =
fMw)(n), and the right hand term corresponds to the bandwidth allocated to route
whence), < ™ (n), ¥r € RUDw®) ().
To continue by induction we need only show that the reduced problem also satisfies
a stability conditiori.e.,for all ¢ € £\ £M)*() (n) we have that
Z Ap )y < 1/(1) win) _ vy — f(l)’w(") (n) Z Agwp(n)ng.
rER\RMw(m) () reRMW.w(n) (n)
By noting that}", . Agrnrwr(n)fél)’w(") (n) = vy and\, < nrwr(n)fél)’w(") (n), the
above is easily shown, so it follows that

Z Ap ), < Z Agrnrwr(n)fe(l)’w(n) (n)

reR\RML)w () (n) reR\RM):w(n) (n)

= = fg(l),w(n) (n) Z AZv'wT(n)nr

rER(l) sw(n) (n)

< yDu

since £ (n) > M) (n)if £ € £\ LD (), n

63



Chapter 4

Performance and Design of Dynamic
Networks Supporting Services with

Flow Control

4.1 Introduction

In an effort to achieve efficient network utilization and to support elastic applications, adap-
tive services have been adoptedj.,ABR service in ATM networks and TCP in the Inter-
net. Connections using this service class adapt their transmissions, which are controlled im-
plicitly or explicitly based on congestion status and resource availability. Recently, adaptive
services such as TCP and ABR service are drawing increased attention [42, 2, 4, 46, 43, 51].
Most research on adaptive services has focused on stability and transient analysis
of flow control mechanisms of networks with “fixed” numbers of connections. However,
users establish connections, transmit and receive possibly random amount of data, and dis-
connect. Thus connection arrivals and departures are stochastic in nature, which results in
dynamic allocation of available resources. Although it is increasingly important to under-
stand the behavior of dynamic networks supporting adaptive services, very little is known

about their stability and performance.
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In Chapter 3, networks with “dynamically” varying number of connections under
dynamic rate allocations have been modeled via a Markov chaimas been shown that a
natural condition is necessary for the stability of the dynamic model. the total load on any
link does not exceed the link's capacity. However, the performance of dynamic networks
is not readily known due to the “global” interactions underlying in dynamic rate allocation
mechanisms. In this context, it is challenging to characterize exact performaggcaver-
age throughput or connection delays). Extensive simulations will be used to investigate the
behavior of dynamic networks.

In dynamic networks, constrained (bottleneck) links and thus bandwidth alloca-
tion are dynamically changing over time. So it is questionable whether dynamic networks,
operating under fair bandwidth allocation mechanisms (max-min or proportionally fair al-
location), can be designed to meet delay performance requirements. Intuitively, one might
dimension such networks by determining the bandwidth required for each route in ‘isola-
tion’ in order to meet an average delay constraint on connections. Then by allowing routes
to share these resources one would expect the overall average delays on the network to
improve. Contrary to our expectations, this sharing of resources, can lead to degraded per-
formance. In other words, although max-min and proportionally fair bandwidth allocation
maximize individual throughput and overall network utilfyespectively, it is challenging
to meet delay guarantees in a dynamic network.

In this chapter, we first consider usingtate-dependent weighted max-min fair al-
location of bandwidtlin order to guarantee delay requirement of each route. Under the pol-
icy, a network can be designed to meet delay requirements by controlling weights of routes.
This design method, however, has limitations in implementation since the rate allocation re-
quires global information,e., current number of ongoing connections. So we next propose
a design method based on Generalized Processor Sharing (GPS) rate allocation and show
that it indeed satisfies delay QoS requirements. The design method was motivated from

bandwidth allocation in networks with fixed number of connections [52, 53]. We believe

LAn earlier version of Chapter 3 can be found in [17].
2A user’s utility is specified as a logarithmic function of the user’s throughput.
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that it provides a basis to network planning and service provisioning for dynamic network
environmentse.g.,bandwidth allocation of Virtual Path (VP).

We shall explore connection level performance of dynamic networks operating un-
der various bandwidth allocations, and design of dynamic networks guaranteeing delay
performance. This chapter is organized as follows. Simulations are condudjéc iim
order to examine actual performance. The design of networks with dynamic connections
to guarantee delay QoS requirements is presentgd.® Finally we summarize results in

§4.4.

4.2 Simulations

As discussed earlier, it is challenging to fully quantify the performance of dynamic net-
works supporting services with adaptive allocations due to the complicated interactions
among routes. Hence we shall resort to extensive simulations in an effort to further inves-
tigate the behavior of such networks. The objectives of simulations are 1) to understand
the actual performance that we may expect to get, 2) to find how service policies affect
the performance, and 3) to provide a basis to the design of dynamic networks guaranteeing
connection-level delay QoS requirements.

We shall focus on average connection delay as our performance metric. This type
of metric is of interest in dimensioning networks to provide a reasonable call-level quality
of service. One might also wish to design network control mechanisms to assign priori-
ties (weights) to routes, or to spread call level loads across the network in a manner that

improves the individual or overall delays.

Link 1 Link 2 Link K
}\1 )\2 )\KZQ7
A
Vl V2 VK

Figure 4.1: A network for simulations.
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We shall consider a network consisting &flinks in series, see Fig. 4.1. A long
route traverses each link in the network, while short single-link routes, model “cross traffic.”
This network was adopted in order to consider how short (local) and long (transit) traffic
interact each other. To investigate the degradation in performance as connections traverse
an increasing number of links we simulated several configurations whete2, 3,4 and
5. We simulated max-min, weighted max-min, and proportionally fair bandwidth allocation
mechanisms in order to assess their impact on connection delays. In the case of weighted
max-min fairness, short and long connections were given weights 1 and 2 respectively,
ie,w, = 1,r = 1,--- K andwg,1 = 2. Thus priority was given to connections
traversing several links as they are likely to experience the poorest performance. Several
symmetric and asymmetric load conditions were simulated to explore the impact of various

load conditions on the network performance.

4.2.1 Symmetric Load

We first consider symmetric load conditions wherein long and short routes have the same

traffic loads,i.e., A\, = X\s,Vr,s € R. The load conditions are summarized in Table 4.1.

| Load conditiong] A\,,r=1,--- \K+1]v,l=1,--- K |

Light load 0.2 2.4
Moderate load 2.0 6.0
Heavy load 20.0 42.0

Table 4.1: Simulation environment (symmetric loads on all routes).

Both arrival rates and link capacities are in connections/sec. For each of scenario, the
average overall connection delays as well as those on short and long routes, under max-
min, weighted max-min, and proportionally fair allocation are measured as the number of

links K increases, see Fig. 4.2 - Fig. 4.10. In general, as traffic load becomes heavier, and
long routes traverse a larger number of links, average overall connection delay becomes

large, regardless of the bandwidth allocation policy.
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We first contrast the performance of max-min fair bandwidth allocation, which
strives to maximize the worst case individual performance versus proportional fairness,
which strives to maximize the overall network utility. The latter tends to give more band-
width to connections crossing a small number of links, as they are more efficient in terms
of their resource requirements. As a result long routes may linger in the network possibly
degrading the overall performance. For example,Hoe= 5 and moderate load, the rela-
tive change in delays for proportional versus max-min fair bandwidth allocation is -10 %
on short routes, +46 % on long routes, and +5% overall, see Fig. 4.11 - Fig. 4.13. This
effect is aggravated as the number of links in the network increases. For heavy load and
whenK = 2,3,4, and 5, the relative change in delays for long routes is +17.3 %, +38.9 %,
+60.8 %, and +82.7 %, respectively. Moreover as traffic load becomes heavier, the relative
difference in delays for proportional versus max-min fair bandwidth allocation increases.
For example, wheti{ = 5, change in delays on long routes is +3.8 %, +46.4 % and +82.7
% for light, moderate, and heavy load, respectively.

This result demonstrates that the max-min outperforms the proportionally fair allo-
cation in terms of delays on long routes and overall delays. Moreover, the change in delays
for proportional versus max-min becomes larger as the size of network grows and the load
of traffic becomes heavier. This suggests that maximizing overall utilities, which is a func-
tion of throughputs, is not necessarily compatible with minimizing connection delays. Note
that as the number of links increases, proportional fairness leads to a surprisingly flat aver-
age delay on short routes, while long routes see a linear growth in average’daayigs.

4.6 and 4.7.% This suggests that proportional fairness may provide a clean performance
differentiation among routes that have different lengths.

Next, we consider the impact that using a weighted max-min fair bandwidth allo-
cation will have on delays, if weights are selected so as to expedite connections on long

routes. Clearly, weighted max-min fair allocation can provide a flexibility in allocating

3This phenomenon is believed to be a result of the specific network topology.
“The overall delay is not linear since it is an average of delays on short and long routes. Since the relative
total load on short versus long routes is increasing \iitithe overall delay behavior is not linear.
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bandwidth over max-min fair allocation. Continuing with our example, when- 5 and

load is moderate, the relative change in delays for the weighted versus the max-min fair
bandwidth allocation is +9 % on short routes, -33 % on long routes, and -2 % overall (Fig.
4.14 - 4.16). Thus, one can not only dramatically improve the delays experienced on long
routes, but also marginally improve the overall performance.

However, for weighted max-min rate allocation, delays do not vary much with the
length of long route and the intensity of traffic load, see Fig 4.14 - 4.16. When the load is
heavy, the change in delays for weighted max-min versus max-min fair allocation on long
routes is -37.9 %, -40.4 %, -41.6 %, and -42.4 %as- 2, 3, 4, and 5, respectively. When
K = 5, the change in delays is -11.9 %, -33.1 %, and -42.4 % for light, moderate, and
heavy load, respectively. This result suggests that weights can be selected based on load
conditions and lengths of routes, in order to improve network performance.

Hence we have measured the performance of a network with fixadd load con-
dition as weights for long routes vary. It turns out that overall performance is not contin-
uously improved in proportion with the increase of weights given to long routes, although
average delay on long routes decreases. For the moderate load conditin-arij per-
formance is illustrated in Fig. 4.17 - 4.19. The overall delay is minimum when the weight
wg1 = 3, and then degrades as the weight ., increases. This result shows that there is
a tradeoff between improving individual delay performance and maximizing overall delay
performance, which can be achieved by selecting weights (priorities).

In order to see how weights assigned to long routes impact on the performance,
we assign weights for long routes to be the number of links long routes travarse,
wg+1 = K. The performance is shown in Fig. 4.20 - 4.22. “W. max-min2” represents
this type of allocation. By this weighted max-min fair rate rate allocatiog (; = K),
overall performance degrades as the size of network grows compared with that of the other
weighted max-min fair rate rate allocation£; = 2). The reason is that short routes start
to suffer from insufficient bandwidth allocation due to the priority given to long routes as

the length of long routes increases. This result indicates that merely giving high priorities
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to long routes in proportion to the lengths of the routes does not guarantee an overall per-
formance improvement. Herein lies a dilemma that a network designer will have to address

if they truly wish to optimize average delays.

4.2.2 Asymmetric Load

We have also investigated asymmetric load conditions: 1) heavy load on long routes and
2) heavy load on short routes in order to examine the impact of “asymmetric” loads on

the performance interactions between long and short routes. A simulation environment is

| Load conditions [ Ar,r=1,-- K [ Agq1 | v l=1,--- K |
Asymmetric load 1 2 20 24
Asymmetric load 2 20 2 24

Table 4.2: Simulation environment (asymmetric loads).

summarized in Table 4.2. Performance for these asymmetric load conditions is illustrated
in Fig. 4.23 to Fig. 4.28 as the number of linkSincreases.

As expected, the impact of heavy loads on long routes (asymmetric load 1) is much
greater than that on short routes (asymmetric load 2) as shown in Fig. 4.29. For example,
when K = 5, the change in average delay for proportional versus max-min fair rate allo-
cation is +25.1 % and +0.4 % for asymmetric load 1 and asymmetric load 2, respectively.
Moreover, the change in average delay for asymmetric load 1 increases as the number of
links increaseg,e., +2 %, +8.7 %, +16.7 %, and +25.1 % fér = 2,3,4, and 5. This result
confirms that max-min outperforms proportionally fair rate allocation, and the difference
becomes larger as the number of links and the amount of traffic load on long routes in-
crease. As for the impact of weighted max-min fair allocation, the more the load on long
routes is, the change in delays for weighted max-min versus max-min becomes greater, see
Fig. 4.32 - 4.34. Whet( = 5, the change in delays of weighted max-min over max-min

fair rate allocation is -14.4 % and -0.4 % for asymmetric load 1 and asymmetric load 2,
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respectively. As the load becomes heavier and the number of links increases, the effect of
using the weighted max-min rate allocation becomes even more noticeable, which is not the
case in symmetric load conditions.

Although the total load on any link is the same for both of asymmetric load condi-
tions, the average overall delay of a network with heavy load on long routes (asymmetric
load 1) is much higher than that on short routes (asymmetric load 2). Furthermore, the
average delay performance degrades much faster as the number of links increases in the
case of asymmetric load 1 than that of asymmetric load 2. Therefore, heavy loads on long
routes have much greater impact on the overall and individual delay performance, since
long routes take more network resources for which connections are competing.

These results exhibit the potential impact that a fairness criterion selected by de-
signers may have on network performance. However, a better characterization of network
performance and tools to ‘optimally’ select weights, or route connections, will need to be
developed if a call level quality of service such as that considered here is deemed important
in future networks. Also note that one could in theory introduce weights on a proportionally
fair allocation in order to also enhance the performance seen on long connections. Hence
our results do not suggest that a particular mechanism is best, we merely suggest that a

consideration of these issues might be warranted.

4.3 Design Problem

Based on our observations of the performance results, next we consider how one can design

dynamic networks guaranteeing average delay requirements. More specifically,

e given a network topology, a loakl., and average delay requiremedfson router,

how can one dimension link capacities to meet the delay requirements ?

We will consider this design problem in the sequel.

81



0 A
g
3 -5
a
c 6—o6 Asymil
‘> A—A Asym2
()
2
S-10-
(@)
_15 L L 1 1 L
2 2.5 3 35 4 4.5 5
No. of links
Figure 4.32: Change in delays for

weighted max-min versus max-min (over-
all) - Asymmetric loads.

50,
40
S
?30—
o
£
850 o—o Asyml
é A—A Asym2
(@]
10r
2 25 3 35 4 45 5
No. of links
Figure 4.33: Change in delays for

weighted max-min versus max-min (short
routes) - Asymmetric loads.

82

-15

I
N
Q

|
N
Q

I
w
Q

66— Asyml
A—A Asym2

S\A\A\;

4.5 5

Changes in Delay [%]

|
N
ql

-9 25 3 35 4

No. of links
Figure 4.34: Change in delays for
weighted max-min versus max-min (long
routes) - Asymmetric loads.



4.3.1 Design by Separation of Routes

Let's first consider the network shown in Fig. 4.35. We are given demandsnd delay

Link 1 Link 2 Link K
)\1 }\2 )‘K ZQT
Ak+1 ( j ( ) LRI
v, v, Vk

Figure 4.35: A network for design.

requirementsl’ for the connections on route Suppose that a bandwidth is dedicated

to each router € R, and there is no sharing across routes. Then each route would behave
as an M/GI/1-PS (Processor Sharing) queue and the delays experigrggdare easily
computed, see Fig. 4.36. Thus one can design the link capac#ty as to satisfy the delay

My

Alm A2 /\ ks
Hq Mo

Figure 4.36: Separate links for design.

requirement’; of each route from
1
E[D,| = <dy, €eR.
[ 7"] Ly — A'r’ — Yr r

We let the capacity,, = A\, + d%. Now we add the bandwidth associated with each

route traversing each link in the original network to decide the total capacities.g.,

vy = u1 + pr+1, as shown in Fig. 4.37. For example, whgn= 2 connections/sec and

dr = 1 sec, the bandwidth, should be at least 3 connections/sec. Thus the capacity of
each link is designed to be at leagt= 6 connections/sec. Following this procedure, we
expect that connections on all routes would meet their delay requirewiefas max-min

fair bandwidth allocation mechanisms. Contrary to our expectations, simulations reveal that
average delay on the routes in the designed network operating under max-min or propor-

tionally fair bandwidth allocation could in fact exceed the delay requirements.
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Link 1 Link 2 Link K

v, v, V¢
Hat M Mo+ Hga MK+ My

Figure 4.37: Designed network.

Indeed we designed networks for various load conditions subject to delay require-
mentsd; = 1 sec. The average delays experienced by the connections on short and long
routes for each load condition and bandwidth allocation policy are tabulated in Table 4.3.

Boldfaced numbers in the table indicate that the delay requirements are violatéd.>F8r

I Load condition | Policy | K=2 | K=8 | K=4 | K=5 |
Light (A, = 0.2, = 2.4) | Max-min | Short routes| 0.501| 0.503| 0.504 | 0.506
Long routes|| 0.542| 0.585| 0.621| 0.656
Prop. | Shortroutes| 0.499| 0.500| 0.499| 0.500
Long routes|| 0.545| 0.593| 0.635| 0.680

Moderate &, = 2,1, = 6) | Max-min | Short routes| 0.530| 0.546 | 0.554| 0.558
Long routes|| 0.693| 0.835| 0.940| 1.025
Prop. | Shortroutes| 0.500| 0.501| 0.501| 0.500
Long routes|| 0.750| 1.001| 1.253| 1.500

Heavy ¢\, = 20,1, = 42) | Max-min | Short routeg| 0.577 | 0.603| 0.612| 0.616
Long routes|| 0.816| 1.018| 1.160| 1.268
Prop. | Shortroutes| 0.501| 0.501| 0.501| 0.500
Long routes|| 0.957| 1.413| 1.865| 2.317

Table 4.3: Average connection delays on routes in the designed network.

and both moderate and heavy load conditions, all the delays on long routes under propor-
tionally fair bandwidth allocation violate the delay requiremefjt,= 1 sec. For max-

min fair allocation, connections on long routes experience longer delays than 1 sec, when
K = 5 and load is moderate. This surprising result suggests that even individual route is

designed to have enough bandwidth to meet delay QoS requirement, fair bandwidth alloca-
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tion mechanisms may allocate insufficient bandwidth to the long routes when they compete
for bandwidth. Thus even a “conservative” approach to design that ignores the benefits in

sharing bandwidth across route fails to meet the desired delay requirements.

4.3.2 Design by State-dependent Weighted Max-min Fair Rate Allocation

In Chapter 3, a dynamic network model under state-dependent weighted max-min fair al-
location of bandwidth is shown to be positive recurrent. We propose a design method to
guarantee delay requirements of connections under state-dependent weighted max-min fair

allocation of bandwidth.

Link 1 Link 2 Link K
W, W. W,
A L 2 AKZQTK
AK+1 ( j ( j PP W+1
vy v, Vg

Figure 4.38: Network example for the design by state-dependent weighted max-min fair
allocation of bandwidth.

Consider the network shown in Fig. 4.38. Our goal is to determine the link capaci-
tiesyy in such a way that the rate allocation allocates sufficient bandwidth to the connections
on routes to meet delay requiremeirg,, E[D,| < d;. Consider a set of networks consist-
ing of single link with capacity:’ and its associated route. The routes experience the same

loads as those of the original network as shown in Fig. 4.39. One can decide the capacity

}\1/\ )\2/\ w
M1 HY ks
Figure 4.39: Set of networks for design.

of each linky.; to satisfy the delay requiremedit by

1
E\D,| = < d.
[ ] N:_)‘r_ "
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Thus when capacity of each link is at least

L
@’

T

= A+ reR,

the delay requirements are satisfied.
In the network of Fig. 4.38, the weight, can be designed to meet the delay QoS

requirements as follows. If weights, are selected to be

Link 1 Link 2 Link K
M W Ay W Ak (Q%/K
A1 ( ) ( > coe W1
A v, VK
Hi+ Mien Ho+ Hicey Hi+ M

Figure 4.40: Designed network for state-dependent weighted max-min fair allocation of
bandwidth.

*
1

wy = =, reR,
Ty

then the actual bandwidth allocated to roujes,satisfies
IUT Z /J'::v re Ra

and thus meets the average delay experienced by connections will meet the requirements

on each routg,e.,

1
pr = Ar
1
M:_Ar
< d, remR.

E[D;]

Therefore in the designed network shown in Fig. 4.40, average delay on each route is
guaranteed to meet delay requirement.
In order to design a network in this way, weights will have to be adjusted at each new

arrival and departure thus requiring additional control load on network switches. Finally,
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we consider bandwidth allocation when switches support generalized processor sharing
scheduling disciplines [52, 53], in which the number of connections does not need to be

known and delay requirements are satisfied.

4.3.3 Design for Networks Supporting GPS Nodes

Again for our dynamic network model, weights for the routes at each node are to be de-
signed so that delay QoS requiremedjisire met (see Fig. 4.38). First, consider each route
separately from the others and associate it with a link as shown in Fig. 4.39. We have a

delay requirement; for router,

E[D}] = <d R.
[ T‘] M;’: _ )\7" — r re
Let
N 1
Py = Ar + pre (4.1)

Thus if the bandwidth allocated to each royig, satisfies
Pr >y,  TETR,

then the delay requirement will be met on each route.
Now letw,. be the weight assigned to routeand ji,. be minimum service rate for
router. By GPS rate allocation, the minimum service ratewill be

w1

1 = — i,
a w1 + WK1
- w3
H2 = —VU2,
Wy + WK +1
~ WK
UK = — VK,
WK + WK1
_ . WK1
lk+1 = min |:+Vg:| . (4.2)
¢ W+ WK
We select weights and capacities to be
wr:M:7 r=12--- ,K+1 (43)
VZ:MZ—F:U‘}‘(—&-D =12, K. (44)
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Then from (4.2) - (4.4)ji,, = p, i.e.,the minimum service ratg, becomes the bandwidth
required for the connections on routgu;. So the bandwidth allocated to routgey,, is at
leasty:

fr >y = fir, TER.
Hence sufficient bandwidth is allocated to each route and thus guarantees the delay QoS

requirement:

1
E|D,| =
D] =
1
<
TN
< d, rewR.
By (4.1) and (4.4), one can design
1
VZZ()‘K+7*)+()\K+1+ * )7 Ezla aK
dy A1

4.3.4 Comparison of the Designs

We have proposed several design methods in the preceding subsections. Next question
of interest is how much excess bandwidth needs to be provided to guarantee the delay
requirements. We assume the same loads and delay QoS requirements for all the routes,
i.e., A\, = dandd; = d*, r € R, see Fig. 4.41.

Link 1 Link 2

Figure 4.41: A network with the same loads and capacities.

Let's compare the total capacities required in the network.

¢ Design for networks supporting GPS nodes

From the delay requirement




bandwidth allocated to each route must be at least
1

= A4 —.

For the network to meet delay requirements, required total capacity is

K(2u%) = 2K (A + ), (4.5)

since each link needs capacity)i*. Consider, for example, a network wifki =

10, wherein\ = 10 connections/sec, and mean number of bits that connections bring
in is 2 Mbits. If delay requirement® is 2 sec, total capacity needed should be 210
Mbps. Itincreases to 1.2 Ghps if connections require stringent delay requirements of

20 msec.

e Optimal allocation
Consider an optimal allocation, where bandwidth at each link is shared among all the
connections traversing the link. In this allocation, the average delay of connections

on each route should meet

E[D,] = V—le <&, reRr.
So we let
v=2\+ %
Total capacity required in the network is
Kv =K@\ + %). (4.6)

Now we compare total capacities by computing relative gain from (4.5) and (4.6).

The relative gain of optimal allocation over design by GPS can be computed as

2K(A+ ) — K(2A + ) 100 — +

x 100%.
K@\ + +) 2\ + & :

This relative gain corresponds to relative amount of overprovisioning of design by GPS

over optimal allocation. Note that as traffic loadincreases, total capacity needed by
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design by GPS approaches to that of optimal allocation. For example, aherl sec
and )\ = 2 connections/sec, the relative gain is 20 % while it is only 2.4 % when 20

connections/sec.

4.4 Summary

In this chapter we have explored performance of dynamic networks operating under max-
min, weighted max-min or proportionally fair rate allocation. Simulations have revealed the
impact of dynamic rate allocations. We have shown that long routes greatly affect overall
and individual delay performance, which is aggravated as the loads on long routes become
heavier. We have drawn an interesting conclusion that proportionally fair rate allocation
does not necessarily maximize overall delay performance although it maximizes the overall
benefit given by a logarithmic function of the throughput. With a reasonable selection of
weights,i.e., high priorities to long routes, one can improve the performance of the network
over plain max-min fair rate allocation. However, overall delay can be degraded due to
the insufficient bandwidth allocation to short routes although delay performance on long
routes continuously improves. This observation suggests that weights need to be optimized
in order to minimize overall delay.

In dynamic networks under dynamic rate allocations, we have shown that through-
put, e.g.,individual throughput or overall utility, and delay guarantees may not be achieved
simultaneously in general. Thus designing dynamic networks to meet delay requirements
under fair rate allocations is challenging. We believe that it is originated from the global
interactions in dynamic rate allocations. That may lead to an alternative rate allocation tak-
ing delay guarantees into account rather than throughput guarantees. In an effort to provide
design methods guaranteeing delay requirements in dynamic networks, we have proposed
GPS type bandwidth allocations, which will be useful in designing networks with dynamic

connections subject to delay constraints of connections.
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Chapter 5

Performance and Design of

Multiservice Networks

5.1 Analysis and Design of Multiservice ATM Networks: Single
Node

In current networks, various traffic types.g., voice, data) are typically carried through
logically separate networke.@.,telephone networks and the Internet). Service differenti-
ations to efficiently carry various traffic types with different QoS via single network entity
are envisioned for future broadband networks. ATM networks are expected to be a good
candidate to provide this infrastructure.

As part of the efforts to deploy ATM networks, the ATM forum has defined several
service classes including ABR for various conceivable applications [24]. ABR service is
aimed to utilize the remaining bandwidth after other service claseed/BR (Variable Bit
Rate) or CBR (Constant Bit Rate) service, have been assigned their requested bandwidth.
Such networks can provide more efficient network utilization from the network providers
point of view, and let users economically share available resources with loose QoS requests

on the other hand.
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It is expected that heterogeneous service classes will be carried through ATM net-
works simultaneously. In this environment, it is important to understand the overall perfor-
mance both for network design and analysis. Research has been conducted on the perfor-
mance using simulations [50, 27, 21, 22, 40, 49, 59, 39], however, little attention has been
paid to the analytical study of network performance analysis under such environments.

Our purpose in this chapter is to model ABR and CBR traffic, and analyze the per-
formance, where first a single node case is considered. As bandwidth occupied by CBR
connections changes dynamically, the available bandwidth for ABR service also varies. So
it can be considered that ABR is operating under randomly varying bandwidth environment
due to the CBR traffic. We model this by a two dimensional Markov chain, and formu-
late QBD (Quasi-Birth-Death) process and matrix-geometric equation [47]. By solving the
equation, we can identify the performance ABR services will see.

Furthermore, when CBR and ABR are operating on different time scales, one can
use quasi-stationary approximations to evaluate system performance. We observe that typi-
cally such approximations closely follow the exact performances as long as there is indeed
a separation of time scales.

We, then, apply this performance analysis to the design of a network carrying both
types of traffic. For example, we can estimate how many ABR connections we will observe
on average under throughput of ABR connections subject to a fair share service policy and
average delay constraints.

In §5.1.1, we present the model, ancgh 1.2 we formulate a Markov chain for the
model. Next we derive a matrix-geometric equation to provide exact average performance
of ABR connections. Ir£5.1.3, we approximate the performance based on the time scale

separation of two services. Design issues are considergEdlrb.

5.1.1 Model

Consider a single link with capacity' shared by CBR and ABR connections (see Fig.

5.1). CBR connections arrive at the link with Poisson arrival raged have a connection
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ABR sessions
Poisson with arrival rate A
Exponential amount of work m

CBR sessions

Poisson with arrival ratey
Mean holding time p’l
Unit bandwidth

Figure 5.1: Model of ABR and CBR connections to a link.

holding time with exponential distribution and mean'. CBR connections are assumed

to require unit bandwidth. So the number of CBR connections that the link can admit is no
more tharC' . In addition, ABR sessions enter the link with Poisson arrival katnd the
amount of work (bits) to be done is exponentially distributed with parametefhus the
average volume of bits per ABR session will béen. We assume that ABR sessions share

the available resources fairly in the max-min sense, and the available resources are those

not allocated to CBR connections.

5.1.2 Analysis

We can formulate a two dimensional Markov chain for the model above, in which a state
(i,7) denotes a numberof CBR connections ang ABR connections, see Fig 5.2. Let
m(i,j) denote the stationary distribution for the numbers of CBR and ABR connections.
The transition rate fronfi, j) to (i + 1, j) is v, the rate from(: + 1, j) to (¢, 7) is (i + 1),

the rate from(i, j) to (i, j + 1) is A, and the rate fronfi, j + 1) to (¢, j) is n;, wheren, =
((C—1i)+r)/(1/m) is the effective service rate of ABR sessions wh€@BR connections

are present. We introduce a reserved bandwidttith » > p andp = A\/m to guarantee

the connection-level stability of ABR connections. &t = [7(0,j) 7(1,5) --- w(C, j)]

In case CBR requires bandwidihinstead, the number of possible CBR connections to the link will be
C/b.
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Figure 5.2: Markov chain for the model.

be the vector of stationary distribution wifrPABR connections.

Then we have a following balance equation:

#Q =0, (5.1)
where
# =M -]
and
[ A-A) AW 0 ]
A(n) A—AN+n) A(N) 0
Q = 0 A(n) A—A\+n) A(N) :
0 A(n) A—AA+n)
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and where

—v v 0
po —(ptv) v 0
A=1 0 2u —(2u+v) v ;
0 Cu —(Cu+v) v

A(N) = diagh A --- A,
A(n) = diagno m - ncl,
AA+n) = diagh+mn A+m - A+ 1ol

Note that the matriX) constitutes QBD process [47]. The equation has a matrix-geometric
solution given by
I, = I R* = #(I — R)R¥, (5.2)

where7A = 0 with # = [7(0) 7(1) --- 7(C)], which is a balance equation of M/M/C/C

gueue, and® is the minimum non-negative solution to the following equation
R2A(n) + R(A— AN +10)+AN) =0 (5.3)

with boundary conditions foll,

(=1}

Ho(RA(n) +(A—AN)) = (5.4)

Io(I — R)~teh = 1, (5.5)
where¢ = [11 ---].
In general, it is difficult to find a closed form solution of Eg. (5.3). One could

solve the equation numerically and find the mafgixin this case average number of ABR

connections is given by

E[Nagg] = Y kI = #R(I — R)~'é", (5.6)
k
and by Little’s law, the average delay experienced by ABR connections is

E[D.apr] = {E[Nass] (5.7)
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5.1.3 Approximation

If the connection set-up and tear-down of ABR is fast relative to that of GBRABR is
operating in fast time scale while CBR is in slow time scale, we expect that both time scales

can be separated. In fact, we can establish the following theorem.
Theorem 5.1.1 Suppose\, m — oo with p = \/m fixed, then
(i, j) = ' (D)7 (jld), (5.8)

wherer?(j]i) = p2(i)7 (1—po(i)) with po (i) = ni andrl(i) = G—l%i withG = 35 %;1:

andp; = ﬁ
Proof: By rearranging terms in (5.3), we have

(I -~ R)(R—ANA() ™) = RAA(n) ™.
Thus

R = AMNAMm '+ (T -R)RAA(D) ™
= ANAM®) T+ RAAM) T + (I - R)T'R*AA(n) !
= ANA@M T+ ANA®m) TTAAMR) T +
(I —R)"'RAA(n) 'AA(m) '+ (I - R)'R*PAA(n) !
= AMNA@mM T +O0(AM) ). (5.9)
Note thatn, = ((C — i) + r)/(1/m) becomes large since we assume that— oo.

Thus the second ter®(A(n)~2) in (5.9) becomes small. SB can be approximated by
R ~ A(M)A(n)~1, which is independent of CBR matrix A. Thus by (5.2),

I, = #(I-RF

~ @I = Ap)A(p), (5.10)
whereA(p) = A(M)A(n)~! and we have
(i, g) = m' (i) (i) (5.11)
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with 72(jli) = pa(i)7 (1 — pa(i)) andpa(i) = 2, andr (i) = G4 with G = S, %
andp; = ﬁ |
The theorem implies that as the arrival rate of ABRncreases and the mean amount
of work to be donel /m decreases, the stationary distribution of ABR and CBR can be
separated and expressed as product of each individual distribution. Note'{fpts a
stationary distribution of M/M/C/C queue and(j|i) is a stationary distribution of M/M/1
gueue conditioned on CBR is in state

Based on the approximatidi ~ A(A)A(n)~! = A(p) and by (5.6), the approxi-

mate average number of ABR connections will be

E[NABRappm:v] = ﬁ(I_A(P))_IA(P)ET
_ Z pQ(Z) 7T1(’i)

- 2
%
%

Note that in the approximation ABR service constitutes M/M/1 queue conditioned that the

1 — pa(i)
— )\Wl(i) (5.12)
number of CBR connectioniss fixed. The approximate average delay experienced by ABR

connections is given by

1
E{DABRapproz] = *E[NABRappro:c]- (513)

>~

5.1.4 Example

Based ort5.1.2 and5.1.3, we present an example in this section. The simulation environ-
ment is summarized in Table 5.1. We consider an OC3 link with capacity 150 Mbps and
CBR sessions requiring 2 Mbps bandwidth corresponding to MPEG sources.

The proposed approximation is based on the idea that ABR connections might come
and go much faster than CBR connections. Thus conditioning on a given number of CBR
connections, we might assume the distribution of ABR connections has reached “steady
state.” In order for this to be the case, the time scale on which the number of CBR con-

nections in the system changes should be slow relative to that on which the ABR “queue”

97



I Parameter \ Value |

C 150 Mbps
CBR v 10-200 connections/hour
I 1 connections/houlf
b (bandwidth/CBR) 2 Mbps
ABR A 10-200 connections/hour
p=Am 8 kbps
1/m 2.88M - 144k bits/connection
r 9,10 kbps

Table 5.1: Parameters for an example.

reaches steady state.
To determine when this is the case, we compute a ratio between these time scales.
Since the average number of CBR connections is- E[N¢pr], 2 we can approximate

average time until a CBR connection arrives or leaves by
Time-scalepr = (v + kp) . (5.14)

For ABR connections, the link behaves like M/GI/1-Processor Sharing queue which has
the same characteristics as M/M/1 queue. For this queue, the service capacity is typically
(C — kb) 4 r. Since the mean number of bits for ABR connections$/is:, the effective
service rate for ABR connections would typically be about

(C—krb)+r
1/m

g =

We now compute theelaxation timefor this queue,.e., an approximate time to reach
steady state [5]. It has been shown, see [5], that the relaxation time for such a system is

given by

Time-scalagr = (VA — /o) 2
— (A to—-2V0) . (5.15)

2Assuming CBR connections experience small blocking probability, one can also approximate the average
number of CBR connectiorl8[Ncgr| =~ pcer = v/ u.
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Hence, from (5.14) and (5.15), the ratio between the time scales is given by
Time-scalg ggr

Time-scale:gr

AN+o— 2\/)\0)71

(v+rp) "
V+ KU

)\+072\/)\0.

Based on this ratio we can approximately see when our approximation might hold.

Ratio =

For example, if the ratio is small enough, say 0.05, then we could say that the time scales are
separated. Fig. 5.3 illustrates how this ratio varies as CBR and ABR arrival rates change for

the operating condition given in Table 5.1. From the figure, we note that the ratio becomes

D

5

S

BT
X5

Q
(0
0’:’
X
O

o

@)

ik
A%

Ratio between time scales

MR

O
i

000

i

M“

3%‘:’:
N

i

iy
W

Abbii&
0

o
i
H’w,
g

Wi
\

=

v (CBR)
Figure 5.3: Ratio between time scales wirera 9 kbps.

less than 0.05 i\ = 10 conn./hour and < 120 conn./hour. Thus, when ABR sessions are
slow,e.g.,A = 10 andv > 120, we should observe a noticeable difference between the true
value and the approximation since the ratio exceeds 0.05 - Fig. 5.4 shows that this is indeed
the case. When > 50 conn./hour and’ € [10,200] conn./hour, the ratio is shown to be

less thard.05. Thus in this case, we might expect a “separation of time scales” to occur and
the approximation to be good, segy.,Fig. 5.5 when\ = 200 andv € [10,200]. As the

reserved bandwidth for ABR sessions increases from 9 kbps to 10 kbps, the time scales
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are further separated, which results in even higher approximation accuracy, see Figs. 5.6

and 5.7. For example, when= 10 andv = 100, the relative difference between the true
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Figure 5.6: Average delay as (CBR) Figure 5.7: Average delay as (CBR)
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r =10 kbps. r =10 kbps.

value and the approximation is 14 % and 4 %ifer 9 kbps and- = 10 kbps, respectively.
This suggests that the ratio of time scales can serve as a guide for when the approx-
imation can be used for the purpose of performance analysis. One can also use this ratio

to see the impact of other parameters such as reserved banewidithean number of bits
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1/m.

5.1.5 Design

Previous analysis will provide a guide to the design of a multiservice network. For the

design of network, we consider following design examples.

e ABR performance:
Suppose we know apriori demands of CBR and ABR sessions, and want to find ABR
performancee.g.,average delay and number of ABR sessions, in a randomly varying
environment due to CBR sessions. We can decide how many such ABR connections
are in the link and how much delay they will experience through the link based on the
previous analysis. The values of the parameters are in Table 5.2, which models CBR

video calls. Note the mean amount of bits per ABR connedtjon = 32 kbits. If the

| Parameter | Value |
C 150 Mbps
CBR v 60,100 connections/hour
i 1 connections/hou
b (bandwidth/CBR) 2 Mbps
ABR A 7200 connections/hour
p=Am 64 kbps
1/m 32 kbits/connection
r 100 kbps

Table 5.2: Parameters for the design example supporting video.

CBR demand is 100 conn./hour, the average number of CBR connections is 72.60 and
the blocking probability is 0.274. The resulting average number of ABR connections,
then, will be 0.50 and the average delay will be 0.069 msec. Varying the demand of
CBR we obtain the blocking probability of CBR and the corresponding performance
of ABR. If the CBR demand is lowered to 60 conn./hour, the average number of

CBR connections is 59.50 and the resulting blocking probability will then be 0.0083,
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i.e.,less than 1 %. The corresponding average number of ABR connections will be
0.018 with average delay of 0.002 msec. Thus given the CBR characteristics, ABR
arrival rate and required average bandwidth for ABR, the CBR blocking probability

and ABR performance can be found.

¢ Design of link capacity:
As another design example, the link capacity can be decided to accommodate desired
CBR and ABR requirements. Suppose CBR carries voice calls having 64 kbps band-
width and data is transmitted via ABR sessions with 4 kbits per session on average.
The parameters are summarized in Table 5.3. In this scenario, the link bandwidth
to guarantee the QoS (delay performance of ABR msec) should be at least 400
kbps (see Fig. 5.8). We may further impose strict blocking probability for CBR,
which will require more capacity. For example, if the blocking probability of CBR

should be less than 1 %, the bandwidth requirement will be at least 800 kbps (see Fig.

5.9).

I Parameter | Value |
CBR v 6 connections/min
i 1 connections/min

b (bandwidth/CBR) 64 kbps
ABR A 240 connections/min

p=Am 32 kbps
1/m 8 kbits/connection

r 40 kbps

E[DABR] 5 msec

Table 5.3: Parameters for the design example supporting voice calls.

5.2 Dimensioning of Multiservice Networks

Various types of traffic requiring different QoS are expected to be carried by integrated

services networks. This trend is pushing technology towards connection-oriented packet-
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switched networks which can guarantee heterogeneous QoS to various traffic types. In
some cases the available resources will change dynamically and it is importairiyto
allocate them among contending users. In this chapter we consider approaches to dimension
multiservice networks subject to overall performance constraints.

ABR service is a service type defined for ATM networks [12]. The key idea under-
lying ABR service is to utilize the excess bandwidth when different types of sengags (

CBR and/or VBR) are also in use. The available bandwidth for ABR traffic in a network
varies dynamically depending on the presence of other service types so one needs to assess
bandwidth availability and allocate it to ABR service users in an adaptive and efficient way.

A network carrying CBR and/or VBR traffic can be modeled using a loss network model,
i.e., circuit-switched network, via the concept effective bandwidtf45]. With the aid of

this model, it is possible to in turn capture the characteristics of available bandwidth for
ABR traffic.

The performance that will be achieved for ABR services is difficult to assess, not
only because of the random environmerd,, available capacities, but also because of the
resource allocation policies that are currently being considered. Indeed, the, so called, max-
min fair allocation, or alternatively a revenue maximization strategy, are complex functions

of the available capacity. Our approach herein is to consider the average performance one
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might expect.
Suppose a se&f of sessions share the network, where each sess@o®$ has a set
of links £, associated with it. The séi, is intended to define an end-to-end connection
through the network. More than one session might share each link, thus Syebiethe set
of sessions crossing link Leta = (as, s € S) be the vector of session rates ande the

capacity of link¢. Consider the problem of maximizing the minimum utility of useis.,

i <b >0 5.16
max mlgus(as) ; as < by, as > ; ( )
s€Sy

a IS
whereus(as) is a utility for as units of bandwidth on session One can solve this opti-
mization problem to find a set of sessions with minimum utilities. After removing those
sessions and adjusting capacities by those session rates, we obtain a reduced network. If we
formulate the same optimization problem to this reduced network, we have a set of sessions
whose utilities are the second smallest. Repeating this procedure until we exhaust all the
sessions and the links, results in a hierarchy of sessions with the associated utilities result-
ing in session rate allocatian*. Whenus(as) = as, the allocation is said to baax-min
fair allocation [38], in the sense that it maximizes the minimum throughput.
Max-min fairness can be viewed as a hierarchical optimization (allocation) prob-
lem with resource constraints. If the available bandwidth is changing as it would be on a
multiservice network, it may not be easy to assess the performance of a given session. In
order to find the average throughputs under the max-min fairness policy, we shall establish
an upper bound on the average minimum throughput. In practice it would be more desirable
to have a lower bound whence in the sequel we will show that this upper bound is achieved
in large-capacity network environment where the capacities and call arrival rates are scaled.
If a goal is to maximize total utility of a network, the objective function of the

bandwidth allocation policy might be the sum of the user utility functions, resulting in the

following optimization problem:

m?x Zus(rs) z rs <bp,rs >0 3, (5.17)

seS SESy
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wherer = (rg, s € S) denotes the vector of session rates. Solving this optimization, we
obtain session rate allocatiort. By contrast with max-min fair allocations, in this case, the
emphasis is on social welfare (total utility) at the expense of individual users’ performance.
Since max-min fairness may not maximize total throughput, one could try to improve over-
all throughput by introducing priorities to sessions. We consider this issue and provide a
foundation to the network design and management to achieve increased performance.

The organization of this section is as follows. We consider max-min fair band-
width allocation to ABR sessions in a multiservice network and find an upper bound on
the average minimum throughput for ABR sessiong52.3. We show that the upper
bound is achieved in large-capacity network$%2.4. The average available bandwidth
for ABR sessions is given b§5.2.5. We employ circuit-switched network framework to
model bandwidth availability for ABR traffic. In addition possible approaches to increase
the total throughputife., network efficiency) are presented §8.2.6. We summarize in
§5.3.

5.2.1 ABR and CBR Services

Consider a network consisting of a set of linksith capacityc = (¢,, ¢ € L). Suppose a

set of routes for CBR connectiof& share the network, where each route R traverses

a set of links,£,.. More than one CBR route might share each link, thus w&lebe the

set of CBR routes crossing link Suppose that CBR sessionss R arrive as Poisson
process with rate, and that the connection holding times have unit mdaan,ur_l = 1.

We assume that holding times are independent of each other and of earlier call arrival times.
Suppose for simplicity that each CBR connection requires an unit of bandwidth.

We shall estimate available bandwidth for ABR traffic after CBR traffic grabs cer-
tain amount of bandwidth among link capacities. We derte- (Be,t € L) by the
available bandwidth for ABR traffic. Note that is a random vector. We shall distinguish
the available bandwidt# with the capacitye. Suppose a s& of ABR sessions share the

network, where each sessienc S has a set of link€; associated with it. The set;
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is intended to define links for an end-to-end ABR connection (CBR rautiejough the
network. More than one ABR session may share a link, thus w&,lee the set of ABR
sessions crossing link We assume that ABR connections are fixed as might be the case,
when there exist permanent end-to-end LAN connections.

Since resources are limited incoming CBR connections may be blocked, or will af-
fect the throughput of ABR sessions. In this context, two design criteria are reasonable,
a constraint on blocking probability for CBR connections, and an average throughput re-

qguirement for ABR sessions.

5.2.2 Distribution of Number of CBR Circuits

We will use the framework of loss network model [32] to find the stationary distribution of
CBR connections in the network. The stationary distribution of number of CBR connections

7(n), whereri = (n,,r € R), and where, is number of CBR calls on route is given by

m(id) =G@E) " [ = i € S(¢) (5.18)

where

ce) = | X M%)

ieS(@) rerR
whereA = (A4, ¢ € L, € R) is a 0,1 matrix describing whether routeraverses link
£ or not. If Ay is 1, then a route occupies a unit circuit on link. Let N be a random
variable with distributionr. The available bandwidth for ABR traffic is then given by

By =cp— Z N,, [(€L. (5.19)

rer
Note thatB, is a random variable due to the dynanig. We will investigate the impact
of this B, on average throughput for ABR sessions subject to a given bandwidth allocation

policy.
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5.2.3 Average Throughput under a Bandwidth Allocation Policy

Consider max-min fair allocation policy. As mentioned previously this allocation corre-
sponds to a hierarchical optimization problem. IBt= (Bg,¢ € L) be the available

capacity vector. A bound on the minimum throughput, wige: b, is given by

> ag<bpas> o} . (5.20)

a SES
SESy

W (b) = max {min as

Observing thaff (@) = minses as is concave angy(a@) = > s, as is convey, it follows
that the minimum throughplW(E) is concave i by the Strong Duality Theorem [41]. So

the upper bound on average minimum throughput is given by the following theorem.

Theorem 5.2.1 (Bound on Average Throughput)

E[W (B)] < W (E[B]). (5.21)

-,

Proof: SincelV (b) is concave the result follows by Jensen’s inequality. |

A question arises whether this property still holds for the next level of hierarchy.
Note, however, that the second smallest throughput may not be concave in the original ca-
pacityl;. This is explained by the fact that max-min fairness tries to maximize the minimum

throughputiV (b) at the possible expense of next level throughput. This coincides the fact

that max-min fairness may not maximize the overall network throughput or total utility.

5.2.4 Asymptotic Average Throughput in Loss Networks

We will show that the upper bound (5.21) on the minimum average throughput for ABR
session is achieved asymptotically in large-capacity networks. Consider a sequence of net-
works wherein both the arrival raté§” = (1™, r € R) and capacities ™) = (c{™, ¢ ¢

£) are jointly scaled. LeB™ = (B{", ¢ € £) with B{") = ") — > 5 N".
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LetZ, = v, [[4er, (1 — Dy) be the solution to the following primal optimization

problem, given in [31], which determines the most likely state (z,,r € R) under the
stationary probability distribution (5.18)
Z(xr logv, — x,logz, + x,) (5.22)

Maximize
reR
> 0.

subjectto  AZ¥ < ¢,
be the solution to the optimization problem applied to #& network

Similarly let 7\
The Lagrangian for (5.22) is
(Cé - Z Appy — Ze)

() =Y (zrlogyy — zploga, +a,) + >y
Lel rerR

L(Z, 2,y
reR
where?Z' is a vector of slack variables andis a vector of Lagrange multipliers. The dual

problem of the primal optimization can be formulated as
(5.23)

Minimize Z Uy €XP ( Z ygAgr) + Z YeCy

reR el el

subjectto ¢ >0,
which has the solutiog, wherel — D, = exp(—y,). Furthermore let
U™ = p7 V2N — z() (5.24)
for then!” network.
Suppose that the scaling satisfies the following as oo
(n) e
% Ny (5.25)

We will consider two regimes: critically loaded networks, where the difference between ca-

pacity and offered load is ordé€¥(N''/2), and underloaded networks, where this difference

is orderO(N).
—(n)
Iz, (5.26)
n

For the critically loaded networks, it was shown by Kelly [31] thatas> oo
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and

U™ — U, ~N(0,%,) indistribution (5.27)

Using these results we establish the following theorem which claims that the upper

bound is asymptotically achieved.

Theorem 5.2.2 (Asymptotic Average Throughput) Consider a sequence of networks
with demands and capacities are scaled according to the assumption (5.25), then the aver-

age normalized throughput is asymptotically given by

i £ | L W(E)] =W (3),

n—00 n

wherey depends on the loading regime according to:

1. underloaded case:

’W:CZ_ZVT

reRy

2. critically loaded case:

Yo = C¢ — ZV’P H(l_Dﬁ)

reERy el

Proof : We shall first consider the critically loaded case. Note that

. 3(n)
lim EFW(B(”))} = lim E W(B >
n—oo n n—o0 n
Also
(n) (n) N
lim —— = lim (CZ — 7ZT€R£ )
n—oo M n—oo n n
= lim (Cf _ Zrer,( " )> by (5.24)
n—o0 n n
= ¢— Y - lim Y 1—/2 by (5.25) and (5.26)
reRy TR,
- - 5 by (5.27)
reERy
= G- Z Vp H(l_DK)'
re€Ry LeL)
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For underloaded networks, the blocking probabilities become asymptotically small. So it
follows that

limE[;Wl(E(”))} = W(®H).

n—oo

The above asymptotic result has the following interpretation: for large

E[W(B™)] = W (E[B™)).
In this sense we will achieve the upper bound on average minimum throughput in large-

capacity networks.

5.2.5 Average Bandwidth for ABR Traffic

Since the upper bound may be useful in large capacity networks we next consider how
to compute the average available bandwﬂ(lﬁ?}. Note that even in a small state space
with dimension|R|, computingG(¢ ) in the stationary distribution (5.18) easily becomes
intractable and so does computation of number of calls to be carried. A natural approach
one might follow is to find actual carried traffic or average number of connecHON$
approximately and in a manageable wdayrlang fixed point equatiofi32] provides an
approach to computing the mean bandwidth availability.

Let E, denote the blocking probability on linke £ and assume that calls on lidk
are independent of each other and of those on other linksoLed the effective call arrival

rate on link?, then

E; = E(ps,cp)

e\l e
_ P pi’ lecL, (5.28)
n! Cg!
n=0
where
pe=>Y wu ] (A-Ew), (eL (5.29)

r€Re  meL\{¢}
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This can be viewed as a “thinning” process where the offered traffic is thinned-biz,,,
ateach linkm € L, \ {¢} before being offered to link. Egs. (5.28) and (5.29) comprise a
set of fixed point equations with a unique solution [32]. The actual throughput route

r is, then, given by

G=v(1-L) =y [[A-E), rer, (5.30)
LeELy

whereL, is the loss probability on route
Given the throughpug,. it follows by Little’s law and unit mean holding time as-

sumption that the expected number of calls on reutgll be

E[Nr] = 57“ = VT(l - LT)
~ vy [[0-E), rer (5.31)
teL,

Kelly shows in [31] that as the capacities and call arrival rates grow together, the Erlang
fixed point equation provides an accurate estimate.

Next we determine the average bandwidth available for ABR traffic on each link. It
is given by

E[B]=c,— Y E[N,], (€L (5.32)
reRy

whereE[N,] can be estimated via (5.31).

5.2.6 Bandwidth Allocation to Increase Efficiency

The max-min fair bandwidth allocation may not maximize total throughput. From the sys-
tem’s point of view, one may want to increase throughput by introducing priorities to ABR
sessions so as to maximize the weighted minimum throughput. Consider a weighted max-

min fair allocation of bandwidth, associated with

W (b) = max {minas/wS Z as <bgp, as>0, ws>1 } ) (5.33)

€S
s 8634
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wherews is the priority of session for the purpose of weighting sessienNoting f (@) =

minges as/ws is concaveyy(@) = > s, as is convex, andV,(b) is concave, we again

have a bound on average weighted minimum throughput:
E[W.(B)] < Wy (E[B]). (5.34)

The upper bound can be achieved for large-capacity networks in a similar way as in Section
5.2.4.
If the main objective of network design is to maximize total utility or revenue, the

bandwidth allocation is formulated as follows:

Wm(g) = max Zus(as) Z as <bp,as >0 3, (5.35)
¢ | ses s€S,

whereu,(.) is a concave utility function for each sessiarNote thatf (@) = > s us(as)
is concavegy(d) = > cs, as IS CONVeX, andV,,(b) is concave. So the average overall
utility is bounded by

E[Wo(B)] < Wi (E[B]). (5.36)

The upper bound can also be achieved for large-capacity networks similar fashion.

5.3 Summary

We have considered a single link model supporting dynamic multiservice (CBR/ABR)
in ATM networks. By formulating a two-dimensional Markov chain and solving matrix-
geometric equation, we have decided throughput (delay for ABR service). The joint distri-
bution of ABR and CBR sessions has been shown to be separated as product terms when
both services operate in a different time scale, and the approximation is derived for the sim-
ple analysis of network throughput. We have presented design examples (video and voice
services) incorporating the analysis result. It has been shown to provide fundamentals of
network performance analysis and design for multiservice ATM networks.

We have also considered techniques for network dimensioning for static ABR traf-

fic when other types of dynamic traffie.q., CBR) are ongoing. The average minimum
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throughput for ABR sessions under max-min fair allocation is shown to be bounded above
by the minimum throughput obtained from the mean available bandwidth. Moreover we
have shown that the upper bound is achievable when we consider large-capacity networks.
The mean available bandwidth is computed from the loss network framework.

In terms of network design, max-min fairness may not be an appropriate policy
from the network provider’s point of view, since it only manages that minimum through-
put is maximized from each individual user’s point of view. As an approach to increase
total performance, one might introduce priorities or utility functions for ABR sessions so
that the total throughput is improved or total revenue is maximized. In the case of max-
min fair allocation with priority, the goal would be two-fold: guaranteeing the individual
user’s performance in the form of weighted fair allocation while achieving higher overall

performance within a network.
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Chapter 6

Conclusions and Future Work

In this chapter, we summarize our conclusions and insights on the work we have considered

throughout the dissertation and present future research directions.

6.1 Summary of Results

Flow Control of Networks Supporting Rate-adaptive Services

e Adaptive services using available bandwidth require flow control mechanisms en-

abling efficient utilization of network resources and fair allocation of bandwidth.

e We have considered a flow control algorithm for adaptive services, in which rate
allocation achieves a notion ofiax-min fairallocation of bandwidth. It provides
fair allocation of available capacities to contending connections. It is advantageous
in large-scale networks in the sense that gilepleand operates in decentralized
manner. We have shown that rate allocation converges to the max-min fair allocation

of bandwidth both for synchronous and asynchronous implementations.

e Priorities to connections can be givenvirrighted max-min faiallocation of band-
width. Network providers can differentiate users using rate-adaptive service by weights

(priorities), which will impact on performance and design of networks supporting the
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service.

Modeling and Stability of Dynamic Networks Supporting Services with Flow

Control

e Dynamic networks supporting adaptive services under fair rate allocation mecha-
nisms can be modeled by Markov chains. Based on this dynamic connection level
model, one can understand the macroscopic behavior of adaptive services such as

TCP in the Internet and ABR service in ATM networks.

e Using a piecewise-linear and quadratic Lyapunov functions we have shown the sta-
bility of networks subject to (weighted) max-min and proportionally fair bandwidth
allocation policies, respectively. A natural stability condition is required: The total

load on each link should not exceed the link capacity.

e Internet (TCP/IP) traffic is believed to be crudely captured by this type of dynamic
model with reasonable assumptions. We suggest that congestion phenomena on the
Internet might be due to connection-level instabilities. Moreover since the routing
mechanism in the Internet is not aware of connection level load and there are network-

level interactions, one can not solve the problem without judicious overprovisioning.

Performance and Design of Dynamic Networks Supporting Services with Flow

Control

e It is difficult to characterize the performance of dynamic networks due to global in-
teractions arising from dynamic rate allocation mechanisms. In order to observe the

realistic impact on the performance, extensive simulations were conducted.

e Connections traversing a larger number of hops have more adverse effect on over-
all performance, which is aggravated as demand and network size grow. Moreover
networks under proportionally fair rate allocation may experience poor performance

since the policy tends to deemphasize long-path connections which consume more
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network resources. A weighted max-min fair rate allocation can provide flexibility in
bandwidth allocation over max-min fair rate allocation. Weights can be selected to
improve performance although overall and individual performance may not be com-

patible with each other.

e We have shown that dynamic networks under fair allocations of bandwidth may not
minimize the overall or individual connection delays. In this sense, a question arises
as to whether max-min/proportionally fair rate allocation is an appropriate bandwidth
allocation mechanism in terms of delay performance. One might want to evaluate
such bandwidth allocation mechanisms or new mechanisms based on the average
connection delays that are experienced rather than the instantaneous throughput, see

e.g.,[42].

e We have proposed a design method for dynamic networks supporting GPS nodes,
which guarantees average connection level delay to connections on fixed routes. Our
design method can provide a basis to the design of VP networks to guarantee delay

requirements.

Performance and Design of Multiservice Networks

e Multiservice (dynamic CBR and ABR connections) in a single link can be modeled
by a two-dimensional Markov chain. This model provides a stepping-stone to derive
the performance of such servicés., available bandwidth and average delay for

ABR connections.

e When both ABR and CBR connections are dynamic, performance of ABR is derived
analytically by solving matrix-geometric equations in a single link. Approximation
can also be computed assuming they operate in different time scale&BR con-
nections are operating faster than CBR connections. Given CBR demand and/or QoS
(delay) requirement of ABR service, a network can be designed based on the perfor-

mance result.
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e In an attempt to understand dynamic networks with static ABR and dynamic CBR
connections, we derive an upper bound on the average minimum throughput ABR
connections would achieve. Using asymptotics, we showed that the bound becomes
tight as network size and demand become large. Thus multiservice networks could

be dimensioned based on this bound as the demands/capacities become large.

6.2 Future Work

For various flow control mechanisms achieving weighted max-min or proportionally fair
allocation of bandwidth, it would be desirable to understand how to assign weights to con-
nections according to various performance goals. It is also interesting to understand how
network domains with possibly different fair bandwidth allocation policies would interact
with one another and how overall performance would be affected.

Simulations of the performance of networks supporting dynamic connections with
“proportionally” fair allocation of bandwidth require an extensive amount of computation.
When a new event occurse., the arrival of a new connection or the departure of an ex-
isting connectiongonstrained optimizationeeds to be solved for a proportionally fair rate
allocation. The number of events to be simulated and constraints in the optimization grows
exponentially with the size of network. Nevertheless, unless better analytic tools are devel-
oped, simulations for arbitrary large-scale networks are essential since they alone can be
used to estimate network performance.

Our dynamic network model assumes that the amount of work connections bring in
is exponentially distributed. Simulations on connections with arbitrary distribution would
provide further understanding of the impacts of various traffic characteristics on the perfor-
mance. We conjecture that connections with heavy-tail distribution stay and grab network
resources longer, which results in further degradation of performance.

Performance bounds can provide a basis for designing dynamic networksgsee
[35, 34, 11, 10] for methods to establish performance bounds in some queueing networks.

In this sense, design based on tight bounds, especially upper bounds on delay performance,
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would lead to more efficient utilization of network resources. Finally, it is our hope that the
model can be further improved as a network design tool for network designers/operators,

which provides guidelines to design future networks.
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