

"Wireless Networks Without Edges": Dynamic Radio Resource Clustering and User Scheduling

Yuhuan Du, Gustavo de Veciana (University of Texas at Austin)

Cloud-based Radio Access Networks (CRANs)

- RRs distributed to serve users.
- Computing tasks done at computing center.

Benefits:

- Reduced setup and maintenance cost
 - Resource sharing
 - Fewer centers
 - Simple RRs
- Facilitate cooperation

Challenges:

 Tight turnaround deadline (in LTE, deadline is 1-10ms)

Cooperation in CRAN

Consider Downlink

Cooperation in CRAN

Consider Downlink

- Coordinated Multi-Point (CoMP) Tx/Rx helps to control interference
- Why not cooperate across all RRs? *
- Clustering RRs into static collections is not enough

We need to dynamically cluster RRs into collections of limited size.

Problem Formulation: Utility-Driven Resource Allocation

Downlink, best-effort traffic, OFDMA-based system

What Needs to Be Decided?

For each time & sub-band need to choose

- VBS partition (RR clusters) and schedule associated users
- Tx power & precoding vectors, etc.

Choices are interdependent because of interference

This Problem is Extremely "Complex"

- Need to be solved over and over again.
- We do not aim to perfectly solve this problem.
- Instead, we aim to adopt several suboptimal techniques to decompose this problem for efficient computation.

Related Work

	Single RR	Multiple RR, Static Partition	Multiple RR, Dynamic Clustering
SISO Y	[Bodas et al.'10]	[Stolyar et al.'09]	
MU-MIMO	[Costa 83] [Yoo et al.'06]	[Heath et al.'11] [Wunder et al.'10]	
CoMP		[Irmer et al.'11] [Sawahashi et al.'10]	

Theorem*: If $U_i(\cdot)$ are concave, this can be solved asymptotically by using the following greedy strategy at each time & sub-band

$$\max_{\substack{\text{resource}\\ i}} \sum_{i} \frac{\text{Marginal Utility for}}{\text{user }i \text{ under decision }d}$$

*A. L. Stolyar, "On the asymptotic optimality of the gradient scheduling algorithm for multiuser throughput allocation".

Approach: Dealing with Interdependence

Slowly adapt RRs' power allocation limits ${\bf P}$ on different sub-bands*

- Pros
 - Make "interference" from other VBSs predictable
 - Decouple decisions across VBSs
 - Combined with CoMP to provide instantaneous power allocation to users given constraints ${f P}$
 - Explore opportunistic benefits
- Cons
 - Lose some flexibility, but not much

*Based on ideas used in prior work by Stolyar et al.

$\mathbf{P} \longleftrightarrow \mathsf{Desirable} \ \mathsf{Partitioning} \ \& \ \mathsf{Scheduling}$

RR 1 RR 2 RR 3

Power allocation table:

	RR 1	RR 2	RR 3
•••			
Sub-band j	High	High	Low

Power allocation table:

	RR 1	RR 2	RR 3
Sub-band j	High	High	Low

Framework

Dynamic Clustering & User Scheduling

How do we choose optimal VBS partitions?

Exponential number of possible partitions

- Assign weight (measure of "marginal utility") to each VBS
- Find Max Weight Exact Cover ←→ NP-hard

Theorem: If the set of possible VBSs is **2-decomposable**, the maximum weight exact cover problem is solvable in polynomial time.

Possible VBSs: {1}, {2}, {3}, {4}, {5}, {6}, {7}, {1,2,5}, {3,6,7}, {2,5,6}, {3,4,7}

Theorem: If the set of possible VBSs is **2-decomposable**, the maximum weight exact cover problem is solvable in polynomial time.

Possible VBSs:

{1}, {2}, {3}, {4},
{5}, {6}, {7},
{1,2,5}, {3,6,7},
{2,5,6}, {3,4,7}

Theorem: If the set of possible VBSs is **2-decomposable**, the maximum weight exact cover problem is solvable in polynomial time.

Possible VBSs:

{1}, {2}, {3}, {4},
{5}, {6}, {7},
{1,2,5}, {3,6,7},
{2,5,6}, {3,4,7}

Theorem: If the set of possible VBSs is **2-decomposable**, the maximum weight exact cover problem is solvable in polynomial time.

Possible VBSs:

{1}, {2}, {3}, {4}, {5}, {6}, {7}, {1,2,5}, {3,6,7}, {2,5,6}, {3,4,7}

What is 2-Decomposable?

Set of possible VBSs \rightarrow Possible VBS partitions:

- Two RRs are equivalent, if in any partition,
 OR
 They are in the same VBS

 Each of them is a VBS.
- Such relation partitions all RRs into equivalence classes
- If each VBS covered by ≤ 2 equivalence classes, the set of possible VBSs is 2-decomposable.

If the Set of VBSs is 2-Decomposable

Theorem: If the set of possible VBSs is **2-decomposable**, the maximum weight exact cover problem is solvable in polynomial time.

Static Clustering Constrained Dynamic Dynamic Clustering Clustering

In cellular context

- VBSs of interest are of limited size.
- VBSs of interest include RRs that are close by.
- We can design a 2-decomposable set of VBSs where all RRs can work alone .

Framework

Adapting Power Allocation Limit on a Slower Time Scale

- Utility fn
- Avg channels
- \mathbf{P} / RR & sub-band

Ouputs:

New \mathbf{P} / RR & sub-band

depends on avg rate

We want to compute sensitivity of max system utility to \mathbf{P}

We introduce a virtual system* which is based on average channels.

• Captures the time fraction of each decision.

*Based on ideas used in prior work by Stolyar et al.

Framework

Simulation Setup

- 7 RRs (2 antennas / RR)
- 100 Users (not moving)
- Flat and fast fading
- CoMP used
- A 2-decomposable set of VBSs
- Objective:
- Baseline:
 - No Dynamic Clustering (NO-DC)

max

Power Control (PC): adapting power across RR & subband

log

- Multi User MIMO scheduling
- A very aggressive baseline!

average rate

for user i

Traditional Edge User Improvement

Traditional edge user: worst 10% of users under PC/NO-DC

Moving Edges

Let worst 10% users' positions represent edges

Main Take Away

- Cloud-RAN provides same benefits of other cloudbased systems, and potentially enables cooperation.
- We deal with complexity of joint clustering and user scheduling BY structuring the solution space
 - 2-decomposable
- Performance benefits for "edge users" can be substantial

Backup Slides

Computing Weight (Marginal Utility) for Each VBS

Weight \leftarrow scheduled users and power per user

Exponential # choices for users and power

Our solution:

- Based on ZFBF, we propose greedy orthogonal user selection
- Optimal power allocation for scheduled users given constraints P
- Works well in dense networks

Optional: What If We Have More Antennas?

Num of users scaled with num of antennas/RR

	Edge Users' Throughput Gain	All Users' Throughput Gain
2 ant/RR, 100 Users	80%	10%
4 ant/RR, 200 Users	146%	17%
8 ant/RR, 400 users	61%	3%

Comments:

- Recall we are comparing to a very aggressive baseline
- We conjecture that with large # of antennas & users we need to be more careful in scheduling too many users.