EE 302, Introduction to Electrical and Computer Engineering Dr. Archie Holmes, Jr.

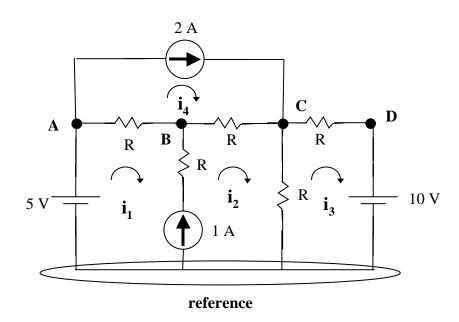
Exam #3

Name: _				
CCM.				

Please remember....

- Read the entire exam before starting
- If you feel you need more information than is given, please ask!!!
- Show all work for credit!!!
- Relax!!!

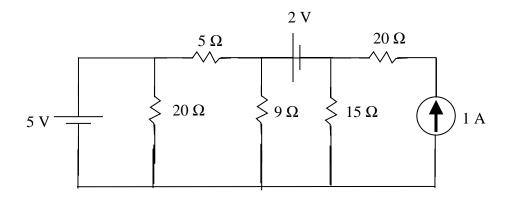
This exam contains	11 pages and 4 problems	along with some	extra credit	questions
	Give units to all answers	where applicable	e	


Problem #1	
Problem #2	
Problem #3	
Problem #4	
Bonus (Extra Credit)	
Total	

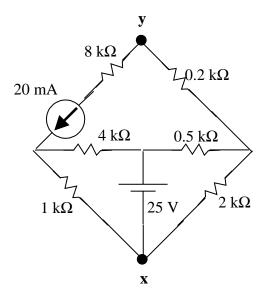
This information will be provided when I return the exam

Class Average = ______
Standard Deviation = _____

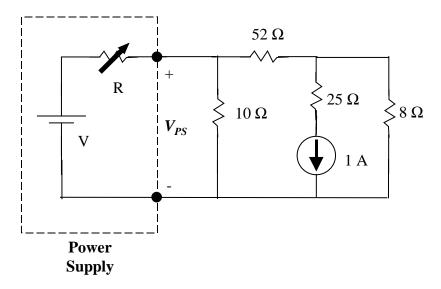
PROBLEM #1: NODE VOLTAGE AND MESH CURRENT ANALYSIS (30 POINTS)


In the circuit below:

- (a) Write <u>all</u> of the equations needed to analyze the circuit using nodal analysis and the node definitions provided.
- (b) Write <u>all</u> of the equations needed to analyze the circuit using mesh current analysis and the mesh current definitions provided.
- (c) Picking <u>one of these two methods</u>, solve for the power being supplied by the 1-A current source when $R = 7\Omega$. Use the next page to show your work as needed.


PROBLEM #2: THEVENIN AND NORTON EQUIVALENT CIRCUITS (20 POINTS)

Using <u>superposition</u>, determine the Thevenin and Norton equivalent circuits when the 9- Ω resistor is considered the load resistor.


PROBLEM #3: GENERAL CIRCUIT ANALYSIS I (20 POINTS)

Using <u>any</u> of the methods discussed in class (Node voltages, mesh currents, or superposition), calculate v_{xy} in the circuit below.

PROBLEM #4: GENERAL CIRCUIT ANALYSIS II (30 POINTS)

The goal of this problem is to design the power supply (which consists of a voltage source and a resistor as shown in the dashed box) in the circuit below.

- a) For the specific application, it is required that both of these conditions be true:
 - Maximum power is being dissipated by the $10-\Omega$ resistor
 - The 8- Ω resistor dissipates **no** power

Calculate values for the resistor and the voltage source within the power supply which makes **both** conditions true.

- b) Using the values from part (a), calculate the power being dissipated in the $10-\Omega$ resistor and the power being <u>supplied by the power supply</u>.
- c) What <u>values</u> can the 10- Ω resistor become in order for the new resistor to absorb 100 W of power?

BONUS SECTION (3 POINTS)

1)	As of the end of the day on Tuesday, indicate in which range the Dow Industrial Average resides:			
	Less than 10,000			
	Between 10,000 and 10,500			
	Between 10,500 and 11,000			
	More than 11,000			
2)	Briefly, what did the judge find in the suit by the US government against Microsoft?			
3)	I am always looking for good fiction or non-fiction book to read. Please recommend one which you really enjoyed and tell me which genre (mystery, sci-fi, etc.) it is in.			