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Abstract—In federated learning systems, a server coordinates
the training of machine learning models on data distributed
across a number of participating client devices. In each round of
training, the server selects a subset of devices to perform model
updates and, in turn, aggregates those updates before proceeding
to the next round of training. Most state-of-the-art federated
learning algorithms assume that the clients are always available
to perform training – an assumption readily violated in many
practical settings where client availability is intermittent or even
transient; moreover, in systems where the server samples from an
exceedingly large number of clients, a client will likely participate
in at most one round of training. This can lead to biasing the
learned global model towards client groups endowed with more
resources. In this paper, we consider systems where the clients
are naturally grouped based on their data distributions, and
the groups exhibit variations in the number of available clients.
We present FLICS-OPT, an algorithm for large-scale federated
learning over heterogeneous data distributions, time-varying
client availability and further constraints on client participation
reflecting, e.g., overall energy efficiency objectives that should
be met to achieve sustainable deployment. In particular, FLICS-
OPT dynamically learns a selection policy that adapts to client
availability patterns and communication constraints, ensuring
per-group long-term participation which minimizes the variance
inevitably introduced into the learning process by client sampling.
We show that for non-convex smooth functions FLICS-OPT coupled
with SGD converges at O(1/

√
T ) rate, matching the state-of-the-

art convergence results which require clients to be always available.
We test FLICS-OPT on three realistic federated datasets and show
that, in terms of maximum accuracy, FLICS-AVG and FLICS-
ADAM outperform traditional FEDAVG by up to 280% and 60%,
respectively, while exhibiting robustness in face of heterogeneous
data distributions.

Index Terms—Federated learning, intermittency constraints,
communication efficiency.

I. INTRODUCTION

THE aim of cross-device federated learning (FL) is to
enable training of a global model w ∈ Rd on generally

heterogeneous (i.e., non-i.i.d.) data that is distributed across
a potentially vast number of client devices. By securely
aggregating local model updates, rather than exchanging
potentially massive amounts of possibly personal data, FL
systems promote data privacy [1], [2] and offer operational
advantages that led to their wide adoption in large-scale system
applications by, e.g., Apple [3], Google [4], and Meta [5].

In this paper we consider a large-scale setting where the
clients belong to one of M groups according to the distribution
of their local data. Specifically, each client in group j ∈ [M ]
draws data from distribution Dj , and the objective is to
minimize a weighted average loss
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F (w) :=

M∑
j=1

pjFj(w), (1)

where Fj(w) = Eξ∼Dj [f(w; ξ)] denotes the loss of clients in
group j, and p = (p1, ..., pM ) is a vector on the (M − 1)−
dimensional simplex representing the weights that the system
designer assigns to client groups, e.g., based on the client or
data availability across groups or some other design objective.
Typically, the objective (1) is minimized using distributed
versions of SGD [1], [6] or its more sophisticated variants such
as [7], [8].

In practical FL systems, the clients may be intermittent or
transient, i.e., and the communication bandwidth may vary
with time. These issues impact the performance, especially
when the data is heterogeneous and the availability patterns
vary across the client groups – in such scenarios, the learned
global model is biased towards the groups that enjoy more
resources while the users in other groups may find that the
performance of the global model on their data is poor. Such
a performance imbalance cannot be compensated by tracking
individual clients and adjusting their sampling rates because in
large systems each client will with high probability be selected
by the server at most once.

A strategy that achieves desired long-term per-group client
participation while making the most of the communication
budget is not obvious; informally, the “best” participation levels
avoid biases and minimize model performance variations intro-
duced by client sampling. Moreover, such participation levels
are a priori unknown; even if they were known, devising a client
sampling policy that would ensure the desired participation
under unknown, possibly stochastic, client availability patterns
and time-varying communication constraints is challenging.

Efficient client sampling strategies in large-scale federated
learning systems provide avenues for responsible energy-
efficient gathering of model updates, and thus enable sustainable
deployments that allocate resources more fairly and minimize
the potential adverse impacts on the environment and society.
The basic premise of these strategies is that rather than
collecting all data and/or model updates, only those that provide
the best value towards expediting the desired learning task
should be gathered.

A. Contributions

We propose an algorithm for federated learning with inter-
mittent clients at scale (FLICS-OPT) which employs a client
sampling policy that adaptively achieves desirable per-group
participation. Specifically, FLICS-OPT facilitates training of
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an unbiased model (with respect to weights p) while greedily
minimizing σT , a measure of model variability over groups
after T rounds. We show that in a stationary regime, the
achieved long-term per-group participation converges to the
values achieving the same σT as that achieved by a genie-
aided offline policy which assumes full prior knowledge of
the availability patterns and communication constraints. We
establish the convergence of FL under the proposed sampling
policy for non-convex functions and stationary availability
processes. We test FLICS-OPT on a synthetic dataset as well as
CIFAR100 and EMNIST, and show that it outperforms state-of-
the-art sampling schemes across real and simulated availability
profiles.

B. Related Work

Significant efforts have been invested in studying client
selection policies in FL [9]–[15]. These works use statistical
methods to produce unbiased estimates of gradient over
subsampled pools of clients [9]–[12], [14], and/or rely on
stochastic modeling of the gradient update process [13], [15].
The results of investigating client intermittency in the settings
where the client availability is known to follow block-cyclic
or i.i.d. patterns were reported in [15]–[17]. Other prior
research that explores client selection under intermittency and
communication constraints includes [18], which investigates
FL in cellular wireless networks, and [19], which presents a
selection scheme with availability constraints. However, the
framework in [19] is limited to strongly convex functions and
does not scale efficiently as it requires the server to track
individual clients and maintain counts of their participation
in training. These two approaches do not take into account
the large-scale regime where a client is likely to participate
in training at most once. To our knowledge, FL under time-
varying communication constraints and group-specific client
availability has not been studied. We also note a complementary
line of work on asynchronous methods in FL aiming to
address the problems of device heterogeneity and its impact
on training speed [20]. There, the client sampling policy is
fixed and determined by clients’ training speed, and updates
are incorporated as they arrive to the server individually [21]
or in buffers [22].

Remark 1. Our work is related to clustering [23] and
personalization in federated learning including Model-Agnostic
Meta-Learning (MAML) [24] and its clustering variants [25],
[26], and to fine-tuning over clusters [27]–[29]. This line of
research shows that clustering users can be fruitful and feasible
in practice. We rely on the similar organization of clients into
clusters/groups, but our goal is orthogonal/complementary; in
fact, the client-selection strategy that FLICS-OPT learns may
enhance the performance of various FL methods (including
the aforementioned ones) operating under the real-world
constraints imposed by client intermittency and time-varying
communication constraints.

II. PRELIMINARIES

Notation. We use [N ] to denote the set [N ] = {1, ..., N},
and g(·) to denote an oracle which for the received client’s index

returns that client’s group assignment. We use bold letters to
denote vectors. Given v(t) ∈ Rd for t ≥ 0 and for 0 ≤ i ≤ j,
v(i:j) denotes the collection of vectors v(i), ...,v(j). The
notation is summarized in Table II in Section A of Appendix.

A. Federated Learning

Let X be a data domain and D1, ...,DM denote M distri-
butions over X . Assume that N clients draw data from one
of these M distributions; specifically, let us assume that client
i ∈ [N ] draws its data from Dg(i), where g : [N ] → [M ]
is the mapping that specifies the clients’ group assignments.
We are interested in minimizing the objective (1) where
p = (p1, ..., pM ) denote the weights assigned to client groups,
Fj(w) = Eξ∼Dj

[f(w; ξ)] for j ∈ [M ], and f is a loss
function.

Remark 2. The above formulation implies that the users
which belong to the same group have data generated from
the same distribution. The groups have mutually distinct data
distributions, which models heterogeneity across the groups;
this stands in contrast to the traditional formulation of federated
learning where the weights p are assigned to individual clients,
each one with a potentially distinct data distribution. Our
framework readily accommodates the latter setting by allowing
for single-member groups.

B. System model

We consider a large-scale system characterized by: (i) the
participation of a vast number of intermittent and/or transient
client devices that become available for some period of time but
eventually leave; (ii) given these dynamics and possibly privacy
concerns, the tracking of individual clients is useless and/or un-
desirable but the tracking of group level availability and partic-
ipation is feasible; and (iii) the system operates under soft con-
straints (possibly stochastic) on the average number of partici-
pating clients. To formalize this, let A(t) = (Aj(t) : j ∈ [M ]),
where Aj(t) denotes the (possibly) random number of clients
available at time t from group j and K(t) denotes a constraint
on the average number of clients participating at time t. Given a
realization (a(t), k(t)) ∈ C of (A(t),K(t)) where C is a state
space of the process, we consider a probabilistic sampling of
clients from each group which results in an average number of
participating clients rj(t) from group j; clearly rj(t) ≤ aj(t).
As mentioned, a feasible sampling policy should be such that
the overall average number of participating clients satisfies∑

j∈[M ] rj(t) ≤ k(t). Definition 1 formalizes the notion of a
feasible vector for the average number of participating clients.

Definition 1. Given (A(t),K(t)) = (a, k), we say that
r = [r1, . . . , rM ] is a feasible vector for the average number
of participating clients at time t if

0 ≤ rj ≤ aj for j ∈ [M ] (2)∑
j∈[m]

rj ≤ k. (3)

We denote the set of all such feasible vectors r by R(a, k).
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Definition 2. A stationary state-dependent probabilistic sam-
pling policy f is such that, for every (a, k), it leads to a
feasible vector for the average number of participating clients,
i.e., rf (a, k) ∈ R(a, k).

Definition 3. If the process (A(t),K(t))t is stationary with
marginal distribution π then the long-term group participa-
tion under sampling policy f , denoted as sf , is given by

sf =
∑

(a,k)∈C

π(a, k) rf (a, k). (4)

Remark 3. The group participation in Eq. (4) is a counterpart
to the client participation rate considered in [19]. Utilizing the
latter would require learning each client’s availability pattern
and tracking the client’s contributions to the learning process;
while this is meaningful in small FL systems where in the
absence of resource constraints all clients may participate in
all rounds of training, doing so is clearly not feasible when the
number of clients is very large and exhibit churn thus some
clients may only participate a small number of times in the
learning process.

III. THE SELECTION MODEL

In this section we introduce FLICS-OPT, an algorithm for
large-scale federated learning over heterogeneous data distribu-
tions and availability patterns, formally stated as Algorithm 1.
The intermittently available clients can be organized into groups
according to their data distributions; due to the large size of the
system, each client likely participates in the training process at
most once. The algorithm introduces an online client selection
strategy that ensures adherence to the system constraints while
providing per-group participation minimizing the variance in
the learned model introduced by client sampling.

A. Algorithm description

We assume that clients have local access to an oracle g(·)
returning their group/cluster assignment (see, e.g., [23], [26]
for various methods to achieve this in practice). At a high level,
we propose an online strategy at the server which maintains
an estimate of the long-term group participation ŝk(t) for each
group of clients, and at each round t chooses a number of
clients rk(t) for each group k that: (i) is feasible for that
round (satisfies Eq. (2) and Eq. (3); and (ii) minimizes the
variance introduced at that step. Then, the algorithm pings
clients in group j ∈ [M ] to respond with probability rj(t)/aj(t)
and proceeds to update the estimate of the long-term group
participation ŝ(t) using the received number of updates per
group. Finally, the server produces an estimate of the gradient
for the global model with an importance sampling step that
scales samples by the long-term participation estimate ŝ(t).

We start by describing the proposed client selection policy
and the aggregation step, followed by its derivation and the
formal statement of the algorithm.

Client selection policy. In large-scale settings, client sam-
pling introduces variance into the stochastic optimization
process, impacting convergence rates. This variance depends

on group weights pj in the loss function within our multi-group
analysis (Eq. (1)), as demonstrated later. We now outline the
client selection policy.. The server initializes ŝ(0) = β·1 ∈ RM ,
where β > 0. At round t, given an estimate of the long-
term participation ŝ(t), the number of clients selected from
each group is such that the variance introduced by client
sampling is minimized. To formalize this, below we state
Var(ŝ(t−1), (a(t), k(t)), an optimization problem that receives
as parameters the long-term participation estimate formed in
the previous time step, ŝ(t−1), along with the availabilities and
constraints in the current time step, (a(t), k(t)), and returns
vector r(t) used to determine participation probabilities.

Var(ŝ(t− 1), (a(t), k(t))):

min
r(t)

M∑
j=1

p2j
sj(t)

(5)

s.t. r(t) ≤ a(t),

M∑
j=1

rj(t) ≤ k(t)

ŝ(t) =
1

t
[(t− 1)ŝ(t− 1) + r(t)] (6)

It can be shown that the objective function of
Var(ŝ(t − 1), (a(t), k(t)), stated in expression (5), may
serve as a proxy for the variance that client sampling
introduces in the optimization trajectory (for details, please
see Section III-B).

Aggregation. Let us first remind the reader of the funda-
mental idea behind importance sampling [30], a technique
encountered in a variety of fields including federated learning
[14], [19], used when generating samples from a desired
distribution p is challenging. Assume that we are interested in
estimating the mean of a discrete and finite random variable X
under distribution p = (p1, . . . , pM ), but we only have access
to samples from a different distribution s = (s1, . . . , sM ). To
estimate the mean of X , one can scale the samples and estimate
the mean of X as X̄ = 1

n

∑n
i=1

pi

si
yi, where yi, i ∈ [n] are

drawn from s. The same idea may be applied in the context
of federated learning: when sampling clients according to the
desired per-group participation rates p is not feasible, one
can instead sample clients according to a feasible participation
average s and appropriately scale the client contributions during
the aggregation step to ensure no bias.

To summarize, FLICS-OPT starts by observing (a(t), k(t)),
the client availability and communication constraints at
time t (line 3 in Algorithm 1), and uses them to solve
Var(ŝ(t− 1), (a(t), k(t))) and determine the average number
of sampled clients r(t) from each group (line 4). The server
proceeds by sending r(t) to clients so that they can locally
decide whether to participate or not (line 5), and updating the
long-term group participation ŝ(t) (line 6). The participating
clients in St (line 8) receive the initial model wt, and train using
a local optimizer (lines 9-13). Finally, the server aggregates the
received models, reducing bias through importance sampling
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Algorithm 1 Federated learning with intermittent clients at scale (FLICS-OPT).
Input: Parameters: client learning rate η, the number of global rounds T , the number of client local updates TL, (local) group

information assignment g(·).
Output: Global model wT

1: initialize w0 ∈ Rp arbitrarily initialize ŝ(0) = β · 1 ∈ RM for small β
2: for t = 1→ T do
3: (a(t), k(t)) ← observe constraints at time t.
4: r(t)← Var(ŝ(t− 1), (a(t), k(t)))
5: Any available client ℓ responds according to Bℓ ∼ Bernoulli(rg(ℓ)(t)/ag(ℓ)(t)).
6: r̂j(t)← number of received updates from group j ∈ [M ].
7: ŝ(t) = ŝ(t− 1) + 1

t−1 (r̂(t)− ŝ(t− 1))
8: St ← {ℓ : 1{Bℓ=1}}
9: for Clients ℓ ∈ St, in parallel do

10: Receive wt and ŝ from server.
black

11: ∆t+1
ℓ ← CLIENTOPT(wt, TL steps, ηL)

12: Send pg(ℓ)

ŝg(ℓ)(t)
∆t+1

ℓ back to server
13: end forblack
14: ∆t+1 ← 1

|St|
∑

ℓ∈St
pg(ℓ)

ŝg(ℓ)(t)
∆t+1

ℓ

15: wt+1 ← SERVEROPT(wt,∆t+1, η)
16: end for

1. Server solves

Unavailable client

Available client Cluster 1 Cluster 2 Cluster 3

2. Available clients respond with 
probability  ri  (t) / ai(t)

3. Server aggregates updates using 
importance sampling

Fig. 1: Illustration of one round of communication of Algo-
rithm 1. (1) Server solves the optimization problem in line 4
and sends the solution to available clients. (2) Available clients
in cluster k send an update with probability rk(t)

ak(t)
(lines 5-12). (3) Server updates the global model with

received updates using importance sampling (lines 14-15).

(line 14), and produces a new global model wt+1 (line 15)
using an optimizer that considers ∆t+1 as a pseudo-gradient.

Remark 4. Letting each client decide whether or not to
participate (line 6) does not significantly increase computation,
memory, nor communication. In turn, it allows individual users
to protect their group assignment information from the server,
providing additional privacy. Thanks to secure aggregation
protocols [31], the server observes only the aggregated results.
Alternatively, the server could directly sample a given number
of clients from each group at the expense of learning the group
assignments of those clients.

Remark 5. Complexity of FLICS-OPT. FLICS-OPT builds
upon the FedAvg algorithm that already runs in large-
scale production environments [30]. There are two addi-
tional steps: (i) Line 4 in Algorithm 1, that solves problem

Var(ŝ(t− 1), (a(t), k(t))); this is a convex optimization prob-
lem in M variables that can be efficiently solved at the server
side. (ii) Line 5 in Algorithm 1 adds a communication step that
requires clients to send one bit to the server with a given (small)
probability in order to estimate cluster sizes (see remark 4);
this is negligible compared to the gradients that active clients
are already communicating.

B. Analysis of the algorithm

We start by stating assumptions required to guarantee
convergence of FLICS-AVG, which denotes FLICS-OPT coupled
with TL SGD steps at the clients followed by the averaging
at the server, and then proceed to analyze the convergence.
We show that the resulting long-term group participation
minimizes the variance, and in fact asymptotically provides the
best possible variance – the one achieved by the genie-aided
policy that has a priori access to the availability patterns and
communication constraints rather than seeing them in hindsight.

Algorithm convergence. FLICS-OPT (and its variant being
analyzed, FLICS-AVG) operates under arbitrary loss functions
and time-varying system availability and communication con-
straints; the following assumptions are made to facilitate the
analysis. Note that Assumption 1 is less restrictive than the
assumptions typically made by state-of-the-art FL methods;
the latter typically assume (i) all clients are available at all
times, (ii) availability is i.i.d. across time and clients, (iii) the
communication constraint on the number of selected clients is
time-invariant, etc. [6]–[9], [32].

Assumptions 2-4 are regularly made in the federated learning
literature [7]–[9], [32]. These assumptions hold in a variety
of settings and for a number of common objectives, including
logistic regression, generalized linear models, and non-convex
L−smooth functions.
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Assumption 1. Let A(t) = [A1(t), . . . , AM (t)] be a stochastic
process governing per-group availability. Then (A(t),K(t))t
is an ergodic stochastic process with finite domain C and
stationary distribution π(a, k), (a, k) ∈ C.

Assumption 2. [L−Lipschitz Continuous Gradient.] Let Fi

be the local objective functions defined in Eq. (1). For all v
and w, it holds that ∥∇Fi(v)−∇Fi(v)∥ ≤ L∥v −w∥2, for
i ∈ [M ].

Assumption 3. [Unbiased stochastic gradient with bounded
variance.] If client i ∈ [N ] samples data points ξ indepen-
dently from distribution Dg(i), then Eξ∼Dg(i)

[∇f(w, x)] =
∇Fg(i)(w) and Eξ∼Dg(i)

[∥∇f(w, ξ)−∇Fg(i)(w)∥22] ≤ σ2
L.

Assumption 4. [The clients’ local gradients are bounded.]
Let g(t,j)

i be the gradient of client i, i ∈ [N ], in round t and
at local iteration j; then ∥g(t,j)

i ∥ ≤ G2, i.e., the norm of the
local gradient is bounded by G.

Theorem 1 and Corollary 1.1 below establish the convergence
rate of FLICS-AVG; the proof of Theorem 1 is in Section B
of Appendix. After stating them, we analyze the impact of the
proposed client selection policy on the convergence speed.

Theorem 1. Instate Assumption 1 on the client availabilities
and communication constraints, and Assumptions 2-4 on the
loss functions (5). Assume the clients locally run TL steps of
SGD and SERVEROPT(wt,∆t+1) = wt+∆t+1. Let w∗ be the
minimizer of the objective (1). Then after running FLICS-AVG
for T rounds with the initial global model w0 it holds that

min
t∈[T ]

E
[
∥∇f(wt)∥2

]
≤ f(w0)− f(w∗)

cηηLTLT
+ C,

where

C =
1

cϵ̂
[
LηηLϵ̂

2σ2
L(
∑

i p
2
i )

2

+
5L2ϵ̂η2LTLM(

∑
i p

2
i ))

2
(σ2

L + 6TLσ
2
G)

+
LηηL
2tL

(σ2
L +G2)

T∑
t=1

M∑
i,j=1

pipj
ŝi(t)ŝj(t)

Σij ] ,

s∗ = [s∗1, . . . , s
∗
M ] is the long-term expected number of the

selected clients per group, ŝ(t) = [ŝ1(t), . . . , ŝM (t)] is defined
in line 7 of Algorithm 1 and represents the estimate at time
t of s∗, Σ is the correlation matrix of the (random) numbers
of selected clients per group, ϵ̂ = 1 + ϵ/rmin with ϵ such that
|s∗k− ŝk(t)| < ϵ and rmin such that s∗j > rmin for all j ∈ [M ],
and c is a constant.

Corollary 1.1. Instate the settings of Theorem 1. Letting
σT (r(1:T )) :=

1
T

∑T
t=1

∑M
i,j=1

pipj

ŝi(t)ŝj(t)
Σij , ηL = 1√

TTLL
,

and η =
√
TLM , it holds that

min
t∈[T ]

E
[
∥∇f(wt)∥2

]
= O

(
1 + σT (r(1:T ))√

T
+

1

T

)
.

Discussion of Corollary 1.1. Corollary 1.1 states that FLICS-
AVG converges at a rate bounded by O(1/

√
T ), matching the

rate guarantees for state-of-the-art federated learning algorithms
that make much stronger assumptions on clients availability

and system configurations, e.g., they assume all clients are
available at all times [32], the ability to track participation of
individual clients [19], etc.

We now motivate the objective function of
Var(ŝ(t − 1), (a(t), k(t)). Let us take a closer look into∑M

i,j=1
pipj

ŝi(t)ŝj(t)
Σij , a term in the expression for σT (r(1:T ))

for a fixed t. Assuming that clients from group i ∈ [M ]
participate independently at random from each other and
across time according to a Bernoulli random variable with
parameter ri (as in Lemma 3.4 in [19]), then the correlation
across clients (and, consequently, the groups) is 0, i.e.,
Σi,j = 0 for i ̸= j. Moreover, Σi,i = nri(1 − ri), and the
expected number of selected clients, si, is given by si = nri.
In this case,

M∑
i,j

pipj
ŝi(t)ŝj(t)

Σij =

M∑
i

p2i
ŝi(t)2

nri(1− ri)

=
M∑
i

p2i
ŝi(t)2

(
si −

s2i
n

)
(7)

Since ŝi(t) is the empirical mean, due to the Hoeffding bound
it holds with probability 1− β that

1− ϵ ≤ si
ŝi(t)

≤ 1 + ϵ

for t = O
(

log(1/δ)
ϵ2

)
. Using this result in Eq. (7), we obtain

that with high probability

(1− ϵ)

M∑
i

p2i
ŝi(t)

− p2i
n
≤

M∑
i

p2i
ŝi(t)2

(
si −

s2i
n

)

≤ (1 + ϵ)

M∑
i

p2i
ŝi(t)

− p2i
n
.

Therefore, in this setting, solving Var(ŝ(t− 1), (a(t), k(t))
minimizes the variance at each iteration (ignoring constant
terms in si). The experiments demonstrate efficacy of using
r(t) obtained by solving Var(ŝ(t − 1), (a(t), k(t)) in much
less restrictive settings than the one described above. Next, we
show that this greedy approach, which optimizes the selection
rate at each iteration, asymptotically converges to the offline
strategy that in hindsight selects a schedule for all T iterations.

Asymptotic optimality of the selection policy. Assume,
for the sake of an argument, that we are a priori given
the entire realization (a(t), k(t))Tt=1 of the availability and
communication constraint processes; let r(1:T ) be a sequence
of feasible rates for (a(t), k(t))Tt=1. Then, we could identify
the full sampling policy r(1:T ) by minimizing σT (r(1:T))
rather than iteratively deciding on r(t) as we do when solving
Var(ŝ(t−1), (a(t), k(t))). Furthermore, such prior information
would allow us to perform importance sampling using the
exact long-term group participation s instead of the estimates
ŝ(t). Let us formally define such a genie-aided offline client
sampling policy as the solution to the optimization problem
OffVar

(
(a(t), k(t))Tt=1

)
stated below. Note the distinction

between the objective (5) that utilizes importance sampling with
different group-participations at each time, and the objective
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(8) that uses fixed importance sampling group-participation s
when seeking r(1 : T ).

OffVar
(
(a(t), k(t))Tt=1

)
:

min
r(1:T )

σOff
T (s(r(1 : T ))) :=

M∑
i=1

p2i
si

(8)

s.t. s(r(1 : T )) =
1

T

T∑
t=1

r(t), 0 < rmin ≤ s

0 ≤ r(t) ≤ a(t),

M∑
k=1

rk(t) ≤ k(t), t ∈ [T ].

Of course, the server can access (a(t), k(t))Tt=1 only in
hindsight and thus OffVar

(
(a(t), k(t))Tt=1

)
is not practically

feasible. Interestingly, FLICS-AVG is asymptotically optimal
in the following sense: if rF(1:T ) denote the sampling
rates determined by FLICS-AVG, then as T grows, the
value of σT (r

F(1:T )) converges to the value achieved by
the sampling rates found by the (genie-aided) optimization
OffVar

(
(a(t), k(t))Tt=1

)
. This result is formalized in Theo-

rem 2 below; the proof of Theorem 2 is in Sec B of Appendix.

Theorem 2. Let (a(t), k(t))Tt=1 be a realization of the
client availabilities and communication constraints meet-
ing Assumption 1. Let r∗(1:T ) denote the solution to
OffVar

(
(a(t), k(t))Tt=1

)
, and let rF(1:T ) denote the rates

determined by running FLICS-AVG for T rounds under the
assumptions of Corollary 1.1. Then,

lim
T→∞

(σT (r
F(1:T ))− σOff

T (r∗(1:T ))) = 0.

Theorem 2 states that as T grows, performance of the
FLICS-AVG sampling policy approaches the performance of
the optimal policy found by an offline algorithm using historic
information.

IV. NUMERICAL RESULTS

The numerical results presented in this section demonstrate
major performance improvements FLICS-OPT offers over
methods that ignore client intermittency/transiency and variable
communication constraints. Specifically, we show that FLICS-
OPT: (1) achieves better accuracy on a number of datasets for
both real and synthetic client availability models; (2) provides
a more fair performance than state-of-the-art methods in terms
of the worst-case accuracy, i.e., achieves the highest worst
accuracy across client groups, (3) converges faster, achieving
the maximum accuracy sooner than state-of-the-art methods.

In the experiments below we denote by FLICS-AVG and
FLICS-ADAM the counterparts of FLICS-OPT where the server
optimizer (Line 15 in Algorithm 1) is replaced with gradient
descent and Adam respectively.

A. Datasets and models.

We run experiments on three datasets with varied group
structures. First, a clustered version of Synthetic(.5,.5) for
logistic regression introduced in [33], with 10 groups consisting

of 1000 clients each. For each group j ∈ [10] we draw Wj ∼
N(0, 0.5), Bj ∼ N(0, 0.5), and µj ∼ N(Bj , I60); the samples
for client i in group j, (X(j)

i , y
(j)
i ), are generated as X

(j)
i ∼

N(µj ,C
(j)), y

(j)
i = softmax(wT

j xi) + bj , C(j) = j−1.2I60,
where I60 denotes the 60× 60 identity matrix.

Second, we train ResNet-18 for an image recognition task
on the federated version of CIFAR100 introduced in [7], where
we replace batch normalization by group normalization as in
[7]. Specifically, each client draws samples from CIFAR100
according to a sparse multinomial distribution over 20 coarse
labels formed using the original 100 classes; the group
assignment of each client is specified by the coarse label in the
client’s dataset with the largest probability of being selected.

Third, we consider an image recognition task with a
convolutional neural network on a reprocessed version of
EMNIST where we randomly split clients in 10 groups and
enforce that the clients in group k are assigned samples with
labels k and mod(k + 1, 10). We provide specific network
architectures in the appendix.

B. Availability models.
Below are the stochastic processes used to model client

availability patterns; for process parameters, please see the
appendix. Recall that Ak(t) is the (random) number of available
users in group k at time t. We use synthetic and real availability
data in our benchmarking experiments. We first describe how
the real availability data was collected and then introduce three
simulated and two real profiles modeling client availability.

a) Real availability data.: We extracted the real availabil-
ity data from the dataset introduced by [34], collecting mobile
application records for 5,342 users during 2014. Each record
provides information for one interaction of a user with an app,
including the user identifier, the app used, beginning and ending
timestamps, the duration of the interaction (inferred from the
timestamps), and the amount of transmitted and received bytes.

We create the availability patterns in the following way. First,
we discretize the timestamps at one hour intervals. At hour t,
we treat a client as available if: (1) the client is using an app
(any app), indicating the client has good network connection,
and (2) the client is not heavily using the phone, where the
data download and transmission rate under 10MB during a
given interval is considered “light”. We then calculate each
user’s average availability by counting the number of slots in
which they are available, divided by the overall time they are
active. Finally, we can assign to each client in our experiments
an availability profile described below as Real-random and
Real-correlated processes.

b) Availability processes:
1) Uniform: Ak(t) is a uniform random variable over the

interval [αmin
k , αmax

k ].
2) Poisson: Ak(t) is a Poisson random variable with

parameter λk.
3) Cyclic: Ak(t) is a bi-modal random variable emulating

realistic cyclic patters [35]; Ak(t) ∼ Poisson(λDay
k ) if t

is even, and Ak(t) ∼ Poisson(λNight
k ), otherwise.

4) Real-random: each client receives (uniformly at random)
a real availability pattern from the dataset introduced in
[34]; for more details, please see the appendix.
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Fig. 2: The convergence under different availability models. FLICS-OPT converges to the optimal value at a faster rate than
baselines.

5) Real-correlated: Similar to real-random but we first
sort clients according to their availability, and split
the resulting list into three equal parts. Then equal
number of groups is assigned one of these availability
patterns, thus correlating the availability patterns with
data distributions.

C. Baselines

Let k(t) be the number of clients selected for training in
round t. We use the following baselines:

1) FEDAVG : Server selects k(t) clients from the set of
available clients.

2) NAIVE : Server selects at random min{k(t)·pj , aj(t)}
clients from group j ∈ [M ]. This strategy is the optimal
one if pjk(t) ≤ aj(t) for j ∈ [M ].

3) FEDADAM : Server selects k(t) clients from the set of
available clients and uses Adam optimizer at the server.

Note that FEDADAM achieves state-of-the-art results on the
considered datasets.

D. Results

We ran our experiments on AMD Vega 20 (ROCm) cards.
Accuracy. Table I shows the maximum accuracy achieved by

each method over 500 rounds of federated training on Synthetic
and EMNIST datasets, and up to 10,000 rounds of federated
training on CIFAR100. The methods that sample clients by
relying on some information about the relation between group
data distributions and client availability, NAIVE and FLICS-
OPT, outperform their agnostic counterparts, FEDAVG and
FEDADAM. In the uniform setting, NAIVE achieves better
performance than FLICS-OPT since the sampling according
to pj is always feasible and is thus the optimal strategy.
However, NAIVE ignores instances where the intermittency
constraint rj(t) ≤ aj(t) is active (Poisson and Cyclic models)
and selects fewer users from group j than necessary, thus
falling behind FLICS-OPT in terms of performance as the latter
compensates for the undersampled groups in future rounds.
FEDADAM enhances performance of FEDAVG thanks to the
momentum variable which helps stabilize the training, while its
adaptive learning rate promotes exploration of the optimization
space; overall, FLICS-ADAM achieves the best performance.

In addition to the simulated availability models, the tests
on Synthetic and EMNIST datasets are also conducted under

the real availability models (real-random and real-correlated).
Given the relatively short length of the availability pattern
time-series from real data (∼1000), the results on CIFAR100
are inconclusive (i.e., CIFAR100 requires longer training). As
seen in Table I, FLICS-OPT achieves the best performance in
all setting except on the synthetic dataset under real-correlated
availability model. In this setting, FEDADAM and FLICS-OPT
converge in very few rounds and oscillate around a similar
value (further details in the appendix).

Convergence. The plots showing convergence of different
schemes on the synthetic data are shown in Fig. 2. In
the uniform setting, where it is always feasible to sample
proportionally to p, the NAIVE strategy achieves the best
performance; however, FLICS-AVG, which has to learn the
availability pattern, achieves a comparable accuracy at a
faster rate. In all other settings, FLICS-AVG performs the
best while NAIVE either converges to a sub-optimal value
(cyclic availability model) because it undersamples some groups
whenever sampling according to p is not feasible or achieves
the same optimum (Poisson availability model) but much more
slowly. FEDAVG always under-performs due to ignoring client
intermittency.

Resource constraints. In our experimental setting, all
considered methods are given the same communication budget
per round. Fig. 3 illustrates how FLICS-OPT helps reduce com-
munication by shortening training time; in particular, FLICS-
OPT consistently converges within 200 rounds, accompanied
by improved accuracy.

Fairness. FLICS-OPT not only improves the overall max-
imum accuracy averaged over groups, but also allocates its
resources in a more fair way (via more balanced sampling)
thus maximizing the minimum accuracy over clusters. We
illustrate this effect in Fig. 3 by plotting histograms showing
fractions of groups achieving various accuracies on the synthetic
data. While FEDAVG leads to a very wide range of group
performances, FLICS-AVG and NAIVE succeed in striking
a relative balance, with FLICS-AVG clearly outperforming
NAIVE in terms of the spread around the mean accuracy. Even
for the synthetic dataset under the real-correlated model, where
FEDADAM outperforms FLICS-ADAM, FLICS-ADAM achieves
a better worst-case performance with a minimum accuracy of
38%, compared to the FEDADAM ’s worst group performance
of only 30%.
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TABLE I: The best accuracy under various simulated availability models after training for over 500 rounds on EMNIST and
Synthetic, and 10,000 rounds on CIFAR100.

Availability model
Uniform Poisson Cyclic Real-random Real-correlated

Sy
nt

he
tic FEDAVG 20.4 17.4 31.6 66.3 59.9

FLICS-AVG 66.0 (+223.6 %) 66.9 (284.7 %) 66.8 (+111.4 %) 65.9 67.8
FEDADAM 67.0 66.5 66.2 66.6 66.9
FLICS-ADAM 67.6 (0.9%) 67.4 (1.3 %) 67.0 (+1.2 %) 69.4 (+4.2 %) 66.0 (-1.3%)
NAIVE 65.5 64.1 52.8 65.6 65.9

E
M

N
IS

T FEDAVG 64.4 54.8 47.6 89.7 88.2
FLICS-AVG 93.3 (+44.9 %) 92.7 (+69.3 %) 93.4 (+95.9 %) 93.0 (+3.8 %) 90.9 (+3.0 %)
FEDADAM 70.9 61.8 60.5 93.4 89.0
FLICS-ADAM 94.4 (+33.1 %) 94.1 (+52.2 %) 94.7(+56.4 %) 94.4 (+1. %) 92.7(+4.1 %)
NAIVE 91.7 92.5 93.0 92.8 88.9

C
IF

A
R

10
0 FEDAVG 56.2 53.8 53.1 - -

FLICS-AVG 57.0 (+1.4 %) 57.1 (+6.1 %) 56.9(+7.1 %) - -
FEDADAM 55.7 53.7 53.5 - -
FLICS-ADAM 56.9 (+2.1 %) 56.6 (+5.4 %) 56.0(+4.7 %) - -
NAIVE 55.8 55.0 49.6 - -
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Fig. 3: Histograms showing the fractions of groups achieving various accuracy on EMNIST. FLICS-OPT achieves the highest
accuracy in most settings and less variations in performance across different groups.

V. CONCLUSION

We introduced FLICS-OPT, an algorithm for large-scale fed-
erated learning systems where client availability is intermittent
and/or exhibits churn/transience. We considered the setting
where clients can be partitioned into groups according to
their local data distributions; any group’s size may change
over time, and any client is likely to participate in the
learning process no more than once. FLICS-OPT adaptively
learns a sampling policy that compensates for variations in
availability patterns and communication constraints to achieve
asymptotically optimal long-term per-group participation. The
combinations of FLICS-OPT with different optimizers, FLICS-
AVG and FLICS-ADAM, outperform often significantly their
counterparts that ignore client intermittency/transiency and the
variations in the availability of communication resources.

FLICS-OPT presents a step towards addressing practical FL
design challenges at scale. An interesting avenue of future
work includes designing similar strategies to learn personalized
models.

APPENDIX A
NOTATION

In Table II we introduce the notation used throughout the
paper.

APPENDIX B
PROOFS OF THEOREM 1 AND THEOREM 2

Theorem (Theorem 1 in main body). Instate Assumption 1 on
the client availabilities and communication constraints, and
Assumptions 2-4 on the loss functions (5). Assume the clients
locally run TL steps of SGD and SERVEROPT(wt,∆t+1) =
wt+∆t+1. Let w∗ be the minimizer of the objective (1). Then
after running FLICS-AVG for T rounds with the initial global
model w0 it holds that

min
t∈[T ]

E
[
∥∇f(wt)∥2

]
≤ f(w0)− f(w∗)

cηηLTLT
+ C,
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TABLE II: Frequently used symbols.

Symbol Definition
U the set of all clients
N = |U| the number of clients
M the number of groups/clusters of clients
K(t) the bound on the number of clients participating in round t

T total number of rounds
A(t) the vector of available clients across groups
St set of clients participating at round t

π(·, ·) stationary distribution of the availability and
communication constraint processes

r the feasible vector for the average number of participating clients
sf long-term group participation for sampling policy f

∆t+1 pseudo-gradient for server optimizer
∆t+1

ℓ client ℓ update at time t+ 1

wt global model at the beginning of round t

wt+1
i model at the end of round t at cluster i

vt+1
i expected update at the end of round t at cluster i

vt+1 = Ei∼P
[
vt+1
i

]
=

∑N
k=1 piv

t+1
i expected global update at the end of round t

zt+1 = wt + vt+1 desired global model at the end of round t

where

C =
1

cϵ̂
[
LηηLϵ̂

2σ2
L(
∑

i p
2
i )

2

+
5L2ϵ̂η2LTLM(

∑
i p

2
i ))

2
(σ2

L + 6TLσ
2
G)

+
LηηL
2tL

T∑
t=1

M∑
i,j=1

pipj
ŝi(t)ŝj(t)

Σij ] ,

s∗ = [s∗1, . . . , s
∗
M ] is the long-term expected number of the

selected clients per group, ŝ(t) = [ŝ1(t), . . . , ŝM (t)] is defined
in line 7 of Algorithm 1 and represents the estimate at time
t of s∗, Σ is the correlation matrix of the (random) numbers
of selected clients per group, ϵ̂ = 1 + ϵ/rmin with ϵ such that
|s∗k− ŝk(t)| < ϵ and rmin such that s∗j > rmin for all j ∈ [M ],
and c is a constant.

Proof of Theorem 1: Let wt+1 be the global model after
t + 1 iterations. Let Et [·] denote the expectation respect to
randomness at round t. By L-smoothness,

Et

[
f(wt+1)

]
≤ f(wt) + ⟨∇f(wt), ηEt

[
wt+1 −wt

]
⟩

+
L

2
Et

[
∥wt+1 −wt∥2

]
= f(wt) + ⟨∇f(wt), ηEt

[
∆t+1

]
⟩

+
Lη2

2
Et

[
∥∆t+1∥2

]
. (9)

By adding and subtracting −ϵ̂ηηLK∇f(wt), where ϵ̂ > 0 is
a small constant, the last expression on the right-hand side

becomes

= f(wt)

+ ⟨∇f(wt), ηEt

[
∆t+1

]
− ϵ̂ηηLK∇f(wt)

+ ϵ̂ηηLK∇f(wt)⟩+ Lη2

2
Et

[
∥∆t+1∥2

]
= f(wt)− ϵ̂ηηLK∥∇f(wt)∥2

+ η ⟨∇f(wt),Et

[
∆t+1

]
+ ϵ̂ηLK∇f(wt)⟩︸ ︷︷ ︸

A1

+
Lη2

2
Et

[
∥∆t+1∥2

]︸ ︷︷ ︸
A2

.

Using Lemma 5 and Lemma 7 (stated in Sec C of Appendix)
to bound A1 and A2, respectively, we obtain

Et

[
f(wt+1)

]
≤ f(wt)− ηηLKϵ̂(

1

2
− 15L2K2η2LM(

∑
i

p2i ))∥∇f(wt)∥2

+
ϵ̂2η2η2LLKσ2

L(
∑

i p
2
i )

2

+
5ϵ̂ηη3LL

2K2M(
∑

i p
2
i ))

2
(σ2

L + 6Kσ2
G)

−
(
ϵ̂2η2Lη

2L

2
− ϵ̂ηηL

2K

)
Et

[
∥

M∑
i=1

pi

K−1∑
k=1

∇Fi(w
t)∥2

]

+
Lη2η2L

2

Lη2η2L
2

(σ2
L +G2)Tr(YT

t YtΣ)

≤ f(wt)− ϵ̂ηηLKc∥∇f(wt)∥2 +
η2η2Lϵ̂

2LKσ2
L(
∑

i p
2
i )

2

+
5ηϵ̂η3LL

2K2M(
∑

i p
2
i ))

2
(σ2

L + 6Kσ2
G)

+
Lη2η2L

2
(σ2

L +G2)Tr(YT
t YtΣ),
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where the last inequality holds because ηηL < 1
KL implies(

ϵ̂2η2
Lη2L
2 − ϵ̂ηηL

2K

)
> 0, ηL ≤ 1√

30KLM
∑

i p
2
i

, and there exist

c such that 0 < c < ( 12 − 15L2K2η2LM
∑

i p
2
i )). Rearranging,

taking the sum over t ∈ [T − 1], and taking total expectation,
T−1∑
t=1

ϵ̂ηηLcKE
[
∥∇f(wt)∥2

]
≤ f(w0)− f(wT )

+ TηηLK

[
LηηLϵ̂

2σ2
L(
∑

i p
2
i )

2

+
5L2ϵ̂η2LKM(

∑
i p

2
i ))

2
(σ2

L + 6Kσ2
G)

]
+

Lη2η2L
2

(σ2
L +G2)

T∑
t=1

M∑
i,j=1

pipj
ŝi(t)ŝj(t)

Σij .

Then

min
t∈[T ]

E
[
∥∇f(wt)∥2

]
≤ f(w0)− f(w∗)

cηηLKT
+ C,

where

C =
1

cϵ̂

[
LηηLϵ̂

2σ2
L(
∑

i p
2
i )

2

+
5L2ϵ̂η2LTLM(

∑
i p

2
i ))

2
(σ2

L + 6TLσ
2
G)

+
LηηL
2tL

(σ2
L +G2)

T∑
t=1

M∑
i,j=1

pipj
ŝi(t)ŝj(t)

Σij

 .

Letting ηL = 1√
TKL

and η =
√
KM , we obtain the desired

convergence of O
(

1√
T
+ 1

T

)
.

For the completeness of the results discussed in this sub-
section, we remind the reader of the proposed client selection
policy and the off-line client selection policy baseline that
Theorem 2 compares. FLICS-AVG determines the average
number of sampled clients r(t) from each group by solving
the following optimization problem:

min
r(t)

M∑
j=1

p2j
sj(t)

s.t. r(t) ≤ a(t),

M∑
j=1

rj(t) ≤ k(t)

s(t) =
1

t
[(t− 1)ŝ(t− 1) + r(t)] .

The genie-aided offline policy instead uses r(t) obtained by
solving the following optimization:

min
r(1:T )

M∑
i=1

p2i
si

s.t. s(r(1 : T )) =
1

T

T∑
t=1

r(t), 0 < rmin ≤ s (10)

0 ≤ r(t) ≤ a(t),

M∑
k=1

rk(t) ≤ k(t), t ∈ [T ].

Let rF(1:T ) and r∗(1:T ) denote the solutions to the above
two optimization problems, respectively. Theorem 2 states that
as T grows, performance of the FLICS-AVG sampling policy
approaches the performance of the optimal policy found by
an offline algorithm using historic information. Recall that we
use σOff

T (r∗(1:T )) to denote the optimal value of the objective
of the optimization solved by the genie-aided offline policy
maker, while σT (r

F(1:T )) still denotes the optimal value of
the objective optimized by FLICS-AVG.

Theorem (Theorem 2 in main body). Let (a(t), k(t))Tt=1 be
a realization of the client availabilities and communication
constraints meeting Assumption 1. Let r∗(1:T ) denote the
solution to OffVar

(
(a(t), k(t))Tt=1

)
, and let rF(1:T ) be the

rates determined by running FLICS-AVG for T rounds under
the assumptions of Corollary 1.1. Then,

lim
T→∞

(σT (r
F(1:T ))− σOff

T (r∗(1:T ))) = 0.

Proof of Theorem 2: We first show that

σT (r
F(1:T ))→ σOff

T (rF(1:T )),

and then that σOff
T (rF(1:T ))→ σOff

T (r∗(1:T )) as T →∞.
From Lemma 3 it follows that limT→∞ ŝj(T ) exists and

that

lim
T→∞

ŝj(T ) = lim
T→∞

1

T

T∑
t=1

rF
j (t). (11)

Let s∗j = limT→∞ ŝj(T ) and let ϵ > 0. Then there exists
T0 such that

σT (r
F(1:T )) ≤ 1

T

T0∑
t=1

M∑
i=1

pi
ŝi(t)

+
T − T0

T

M∑
i=1

pi
s∗i − ϵ

=
1

T
σ

T0
(rF(1 : T0))) +

T − T0

T
σOff
T (s∗ − ϵ).

Given that σ
T0
(rF(1 : T0))) is constant, taking ϵ → 0 and

T →∞, we obtain the first result,

σT (r
F(1:T ))→ σOff

T (rF(1:T )). (12)

The analysis that leads to the second claim is inspired by
the results on resource allocation in networks [36]. The idea
of the proof is to define a penalty function for each cluster,
Ui(r), and show through convexity and KKT-conditions that
the result given by FLICS-OPT is feasible for OffVar.

Due to the optimality of r∗(1:T ) we have that

σOff
T (r∗(1:T )) ≤ σOff

T (rF(1:T )). (13)

Note that, by definition, rF(1:T ) is feasible for
OffVar

(
(a(t), k(t))Tt=1

)
. Moreover, the constraints are

linear functions and thus convex. Now, note that U t
i (r) :=

1
r

is a convex function of r, t ∈ [T ], differentiable in an open
interval containing R := [rmin, rmax] for rmin in Eq. (8) and
rmax = maxt k(t) a bound on K(t). Further, being a bounded
differentiable function over a bounded domain, U t

i (r) has a
Lipschitz continuous gradient over R.

Combining all of the above, we conclude that Vart is a
convex optimization problem which satisfies Slater’s condition,
and thus the following KKT-conditions hold for the optimal
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value rF
t at iteration t: There exists non-negative µ∗

t ∈ RM+1

and γ∗
t ∈ RM such that for any r, t ∈ [T ], and i ∈ [M ],

j ∈ [M + 1],

U t′

i (ri(t)) + γ∗
i,t −

∑
j∈[M+1]

µ∗
j,t = 0 (14)

µ∗
j,t(rj(t)− aj(t)) = 0, j ∈ [M ] (15)

µ∗
M+1,t(

M∑
i=1

rj(t)− k(t)) = 0 (16)

γ∗
t,ir

∗
i = 0. (17)

Define ΨT as

Ψ(r1:T ) :=
∑
i∈[M ]

pi
1
T

∑
t ri(t)

−
∑
t

M∑
j=1

µ∗
j,t

T
(rj(t)− aj(t))

+
∑
t

µ∗
j,t

T
(

M∑
i=1

ri(t)− k(t))
∑
i,t

γ∗
i,t

T
ri(t).

ΨT is the Lagrangian of OffVar but evaluated at the Lagrange
multipliers defined in Eq. (14)-(17). Given that these sequences
of multipliers are non-negative and thanks to the optimality of
r∗(1:T ), it holds that

σOff
T (r1:T ) ≥ ΨT (r1:T ). (18)

Since Ψ is differentiable and convex,

ΨT (r
∗(1:T )) ≥ ΨT (r

F(1:T ))

+ ⟨∇ΨT (r
F(1:T )), r∗(1:T )− rF(1:T )⟩

=
∑
i∈[m]

Ui

(
rF
i (t)

T

)
(19)

−
∑
j,t

µ∗
j,t

T
ct,j(r

F(t)) +
∑
i,t

γ∗
i,t

T
rF
i (t) (20)

+

∑
t,i(r

∗
i (t)− rF

i (t))

T

(
U ′
i(r

F
i (t))

T

−
∑
j

µ∗
t,j [∇ct,j(rF(1:T ))]i

T
+

γ∗
t,i

T

 . (21)

Combining Eq. (18), Eq. (19) and KKT conditions [14]-[17],
it follows that

σOff
T (r∗(1:T )) ≥

∑
i∈[m]

Ui

(
1

T

∑
t

rF
i (t)

)
= σOff

T (rF(1:T )).

The result follows from combining Eq. (13), Eq. (22), and
Eq. (12).

APPENDIX C
KEY LEMMAS

Lemma 3. [Theorem 1 in [36]] Let (A(t),K(t)) satisfy
Assumption [1], ŝ be defined by Eq. (6), and rF(1:T ) be the
group participations determined by running FLICS-AVG for
T rounds. Then for all i ∈ [M ], limT→∞ ŝj(T ) exists and

lim
T→∞

ŝj(T ) = lim
T→∞

1

T

T∑
t=1

rF
j (t). (22)

Lemma 4. Let s = limt→∞ ŝ(t) and ϵ be a bound on the error
on ŝ, i.e., |ŝi(t) − si| ≤ ϵ. Instate the setting of Theorem 1.
Then the pseudo-gradient ∆t computed at the server (line 14
in Algorithm 1) is nearly unbiased,

E
[
∆t
]
= (1 + ϵ̂)vt+1, (23)

where ϵ̂ = 1 + ϵ
rmin

and rmin is defined in Eq. (10).

Proof. Let f be any density function achieving s in the
statement of the lemma. Expanding the above expression
using total expectations over availability states and invoking
Definition 3 (i.e., Eq. (4)), we obtain

Et

[
∆t
]
=
∑
c∈C

π(C)

∫
c(r)≤0

f(r|c)E

∑
j∈S

pg(j)

ŝ(t)g(j)
∆t

j

 .

(24)
Let vt

i denote the expected update from cluster i at time
t (expectation is over the randomness of the availability
model π). Since clients’ updates are unbiased (due to
Assumption 3), E

[
∆t

j

]
= vt

g(j), where the expectation is
taken over the randomness of minibatches in local training.
Since this sampling is independent of the availability model,

Et

[
∆t
]
=
∑
c∈C

π(C)

∫
c(r)≤0

f(r|c)E

∑
j∈S

pg(j)

ŝ(t)g(j)
vt
g(j)

 .

(25)
Restating equation Eq. (25) in terms of clusters yields

Et [∆
t] =

=
∑
c∈C

π(C)

∫
c(r)≤0

f(r|c)E

 M∑
i=1

∑
j∈S

pi
ŝ(t)i

vt
i1{g(j)=i}


=
∑
c∈C

π(C)

∫
c(r)≤0

f(r|c)
M∑
i=1

pi
ŝ(t)i

vt
iE

∑
j∈S

1{g(j)=i}

 .

By definition, si is the expected number of clients participating
at round t from cluster i, i.e., E

[∑
j∈S 1{g(j)=i}

]
= si, and

thus

Et

[
∆t
]
=
∑
c∈C

π(C)

∫
c(r)≤0

f(r|c)
M∑
i=1

pi
ŝ(t)i

vt
isi.

Reorganizing the terms,

Et

[
∆t
]
=

M∑
i=1

pi
ŝ(t)i

vt
isi
∑
c∈C

π(C)

∫
c(r)≤0

f(r|c)

=

M∑
i=1

pi
ŝ(t)i

vt
isi · 1 =

M∑
i=1

pi
ŝ(t)i

vt
isi.

The last equality follows because we are integrating over the
entire density f . Finally, by assumption |ŝi(t)−si| ≤ ϵ, which
implies that si

ŝi(t)
≤ 1 + ϵ

rmin
, it follows that

M∑
i=1

pi
ŝ(t)i

vt
isi = (1 +

ϵ

rmin
)

M∑
i=1

piv
t
i = (1 +

ϵ

rmin
)vt.
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Lemma 5. Instate the settings of Theorem 1. Then

⟨∇f(wt), Et

[
∆t+1

]
+ ϵ̂ηLK∇f(wt)⟩

≤ ϵ̂ηLK

2
(1 + 30K2L2η2Lm

∑
i

p2i )∥f(wt)∥2

+
5ϵ̂η3LL

2K2m
∑

i p
2
i

2
(σ2

L + 6Kσ2
G)

− ϵ̂ηL
2K

E

∥pi K−1∑
j=0

∇Fi(w)∥2
 .

Proof. Using the definition of ∆t+1 and unbiasedness of local
gradients,

⟨∇f(wt), Et

[
∆t+1

]
+ ϵ̂ηLK∇f(wt)⟩

=
〈
∇f(wt),

Et

−ηL m∑
i=1

K−1∑
k=0

∑
j∈S

pg(j)

ŝg(j)(t)
∇Fg(j)(w

(t,k)
j )

+ ϵ̂ηLK

M∑
i=1

∇piFi(w
t)

]〉
.

Using Lemma 4, the right-hand side expression above
becomes

⟨∇f(wt),−ϵ̂ηL
m∑
i=1

piEt

[
K−1∑
k=0

∇Fi(w
t,k
i )−∇Fi(w

t)

]
⟩,

which after factoring
√
ϵ̂ηLK to the left term of the dot product

readily modifies to

⟨
√
ϵ̂ηlK∇f(wt),
√
ϵ̂ηL√
K

m∑
i=1

piEt

[
K−1∑
k=0

∇Fi(w
t,k
i )−∇Fi(w

t)

]
⟩.

Using the identity ⟨x, y⟩ = 1
2 (∥x∥

2 + ∥y∥2 − ∥x − y2∥), the
latest expression can be written as

ϵ̂ηLK

2
∥∇f(wt)∥2

+
ϵ̂ηL
2K

Et

[
∥

m∑
i=1

K−1∑
k=0

pi(∇Fi(w
t,k
i )−∇Fi(w

t))∥2
]

− ϵ̂ηL
2K

Et

[
∥

m∑
i=1

p1

K−1∑
k=0

∇Fi(w
t,k
i )∥2

]
. (26)

We proceed by focusing on the middle term in the above ex-
pression and applying the identity ∥

∑n
i=1 xi∥ ≤ n

∑n
i=1 ∥xi∥

as well as the L-Lipschitz assumption to bound (26) as

≤ ϵ̂ηLK

2
∥∇f(wt)∥2

+
ϵ̂ηLm

2K
∥

m∑
i=1

p2i

K−1∑
k=0

E
[
∥∇Fi(w

t,k
i )−∇Fi(w

t))∥2
]

− ϵ̂ηL
2K

E

[
∥

m∑
i=1

p1

K−1∑
k=0

∇Fi(w
t,k
i )∥2

]

≤ ϵ̂ηLK

2
∥∇f(wt)∥2

+
ϵ̂ηLmL2

2K
∥

m∑
i=1

p2i

K−1∑
k=0

E
[
∥wt,k

i −wt∥2
]

− ϵ̂ηL
2K

Et

[
∥

m∑
i=1

p1

K−1∑
k=0

∇Fi(w
t,k
i )∥2

]

≤ ϵ̂ηLK

(
1

2
+ 30K2L2η2Lm

m∑
i=1

p2i

)
∥∇f(wt)∥2

+
5ϵ̂η3LL

2K2m
∑m

i=1 p
2
i

2
(σ2

L + 6Kσ2
G)

− ϵ̂ηL
2K

E

[
∥

m∑
i=1

pi

K−1∑
k=0

∇Fi(w
t,k
i )∥2

]
,

where the last inequality follows from Lemma 2 in [32].

Lemma 6. Let s be the long-term user participation produced
by FLICS-OPT, and Si be the random variable denoting the
expected number of users selected from group i under any
policy with long-term participation s. Let ϵ̂ be as in Lemma 4
and Σ be the covariance matrix of S1, ..., SM . Let xi be a
(potentially random but independent from Si) vector in Rp for
i ∈ [M ]. Then

E

[
∥

m∑
i=1

pi
ŝi(t)

Sixi∥2
]
≤ ϵ̂2E

[
∥
∑
i

pixi∥2
]

+

m∑
i,j=1

pipjΣij

ŝi(t)ŝj(t)
⟨xi,xj⟩.

Proof. Recalling that E [Si] = si,

E

[
∥

m∑
i=1

pi
ŝi(t)

Sixi∥2
]

=

m∑
i=1

E
[
p2iS

2
i

ŝ2i (t)
∥xi∥2

]
+

m∑
i ̸=j

E
[
pipjSiSj

ŝi(t)ŝj(t)
⟨xi,xj⟩

]

=

m∑
i=1

p2i (s
2
i +Σii)

s2i (t)
∥xi∥2 +

∑
i ̸=j

pipj(sis
2
j +Σij)

ŝi(t)ŝj(t)
⟨xi,xj⟩

≤ ϵ̂2

 m∑
i=1

p2i ∥xi∥2 +
∑
i ̸=j

pipj⟨xi,xj⟩


+

m∑
i,j=1

pipjΣij

ŝi(t)ŝj(t)
⟨xi,xj⟩

= ϵ̂2E

[
∥
∑
i

pixi∥2
]
+

M∑
i,j=1

pipjΣij

ŝi(t)ŝj(t)
⟨xi,xj⟩.
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Lemma 7. Instate the setting of Theorem 1. Then

Et

[
∥∆t+1∥2

]
≤ ϵ̂2η2LKσ2

L(

m∑
i=1

p2i ) (27)

+ η2Lϵ̂
2Et

[
∥

m∑
i=1

pi

K−1∑
k=1

∇F (wt,k
i )∥2

]
(28)

+ η2L(σ
2
L +G2)Tr(YT

t YtΣ). (29)

Proof. Recall that, as in Lemma 6, Si denotes the (random)
number of users from cluster i ∈ [M ] participating in round t
of training. Then

Et

[
∥∆t+1∥2

]
= Et

∥∑
j∈S

pg(j)

ŝg(j)(t)
∆t

g(j)∥
2


= Et

[
∥

M∑
i=1

pi
ŝi(t)

Si∆
t
i∥2
]

= η2LEt

[
∥

M∑
i=1

piSi

ŝi

K−1∑
k=0

gt,ki ∥
2

]

= η2LEt

[
∥

M∑
i=1

piSi

ŝi

K−1∑
k=0

gt,ki −∇F (wt,k
i )∥2

]

+ ϵ̂η2LEt

[
∥

M∑
i=1

piSi

ŝi(t)

K−1∑
k=1

∇F (wt,k
i )∥2

]
.

The last expression can be bounded as

≤ η2Lϵ̂
2

(
Et

[
∥

M∑
i=1

pi

K−1∑
k=1

gt,ki −∇F (wt,k
i )∥2

]

+ Et

[
∥

M∑
i=1

pi

K−1∑
k=1

∇F (wt,k
i )∥2

])

+ η2L

M∑
i,j=1

pipjΣij

ŝi(t)ŝj(t)
⟨gt,ki −∇Fi(w

t,k
i ), gt,kj −∇Fj(w

t,k
j )⟩

+ η2L

M∑
i,j=1

pipjΣij

ŝi(t)ŝj(t)
⟨∇Fi(w

t,k
i ),∇Fj(w

t,k
j )⟩

≤ ϵ̂2η2LKσ2
L(

M∑
i=1

p2i ) + η2Lϵ̂
2Et

[
∥

M∑
i=1

pi

K−1∑
k=1

∇F (wt,k
i )∥2

]

+ η2L(Kσ2
L +G2)η2L

M∑
i,j=1

pipjΣij

ŝi(t)ŝj(t)
,

where we applied Lemma 6 to obtain the first inequality, and
the bounded variance (Assumption [3]) and bounded gradient
norm (Assumption [4]) assumptions to obtain the second one,
thus completing the proof.
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