
Graph-Based Reconstruction and Analysis of

Disease Transmission Networks using Viral

Genomic Data

Ziqi Ke
1⇤

and Haris Vikalo
1

1
Department of Electrical and Computer Engineering

The University of Texas at Austin

⇤
To whom correspondence should be addressed.

E-mail: ziqike@utexas.edu, hvikalo@ece.utexas.edu

May 11, 2023

Keywords: disease transmission networks, deep learning, auto-encoders, con-

volutional neural networks

Abstract: Understanding the patterns of viral disease transmis-

sions helps establish public health policies and aids in controlling

and ending a disease outbreak. Classical methods for studying dis-

ease transmission dynamics that rely on epidemiological data, such

as times of sample collection and duration of exposure intervals,

struggle to provide desired insight due to limited informativeness

of such data. A more precise characterization of disease transmis-

sions may be acquired from sequencing data that reveals genetic

distance between viral genomes in patient samples. Indeed, genetic
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2 1 INTRODUCTION

distance between viral strains present in hosts contains valuable in-

formation about transmission history, thus motivating the design of

methods that rely on genomic data to reconstruct a directed disease

transmission network, detect transmission clusters, and identify sig-

nificant network nodes (e.g., super-spreaders). In this paper, we

present a novel end-to-end framework for the analysis of viral trans-

missions utilizing viral genomic (sequencing) data. The proposed

framework groups infected hosts into transmission clusters based on

the reconstructed viral strains infecting them; the genetic distance

between a pair of hosts is calculated using Earth Mover’s Distance,

and further used to infer transmission direction between the hosts.

To quantify the significance of a host in the transmission network,

the importance score is calculated by a graph convolutional auto-

encoder. The viral transmission network is represented by a directed

minimum spanning tree utilizing the Edmond’s algorithm modified

to incorporate constraints on the importance scores of the hosts. The

proposed framework outperforms state-of-the-art techniques for the

analysis of viral transmission dynamics in several experiments on

semi-experimental as well as experimental data. Source codes are

available at https://github.com/WuLoli/AutoNet

1 Introduction

Understanding the spread of a pathogen across a network of hosts assists in

the development of e↵ective public health interventions and disease prevention,

containment and eradication strategies. Examples include studies of infectious

disease transmissions in support of reconstructing a transmission network, de-

tecting transmission clusters, and identifying super-spreaders in the network.

https://github.com/WuLoli/AutoNet
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Traditional methods for infectious disease outbreak analysis that rely on epi-

demiological data such as the time of testing and duration of exposure su↵er

from labour-intensive contact tracing (Hall et al., 2016), and generally strug-

gle to provide desired insight due to limited informativeness of such data. For

example, the time of testing is an unreliable indicator of the time of infec-

tion, especially for a disease that may be asymptomatic long after the infection

(e.g., in the case of the original COVID-19 strain, the symptoms occur 2-14

days following the infection). With the advance of next-generation sequenc-

ing (NGS) technologies, rapid and accurate reconstruction of viral populations

is feasible and a↵ordable. Since genomic evolutionary distance between viral

strains present in di↵erent hosts contains valuable information about transmis-

sion history, analysis of genomic data collected by NGS technologies may provide

significant insight into disease transmission patterns.

Existing methods for studying disease transmission patterns can be classi-

fied as (i) epidemiological data driven, (ii) genomic data driven, and (iii) meth-

ods that rely on the combination of both epidemiological and genomic data.

Prior work on utilizing epidemiological data includes a social network analy-

sis of Mycobacterium Tuberculosis transmissions using patient medical records

and contact interview forms (Cook et al., 2007); stochastic mathematical mod-

els describing disease transmission process using both behavioral and environ-

mental data (Grassly and Fraser, 2008); analysis of social networks built uti-

lizing existing clinical informatics resources aiming to explore the implications

of patient-healthcare worker interactions on disease transmission (Gundlapalli

et al., 2009); study of a human contact network formed using close proximity

interaction data, meant to provide insight into transmissions of an influenza-like

disease during a typical day at an American high school (Salathe et al., 2010);

a stochastic eco-epidemiological model for the analysis of dengue transmission
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using seasonal and spatial dynamics (Otero and Solari, 2010); a 2009 H1N1 pan-

demic influenza transmission model estimated via Markov chain Monte Carlo

sampling of demographic and clinical data (Cauchemez et al., 2011); likelihood-

based methods for the analysis of influenza A(H1N1) transmission in a school

population using clinical symptom and contact data (Hens et al., 2012); math-

ematical modeling of the transmission of lumpy skin disease virus using direct

and indirect contact information of cattle exhibiting typical clinical signs of the

disease (Magori-Cohen et al., 2012); network models of transmission dynamics in

wild animal and livestock populations using contact data (Craft, 2015); a statis-

tical inference method for the construction of the influenza A virus transmission

tree in a college-based population utilizing epidemiological, clinical and contact

tracing data (Zhang and De Angelis, 2016); a model enabling reconstruction

of the full-spectrum dynamics of COVID-19 using epidemiological data (Hao

et al., 2020); statistical modeling for the reconstruction of transmission pairs for

COVID-19 utilizing detailed demographic characteristics, travel history, social

relationships and epidemiological timelines (Xu et al., 2020); and a visualiza-

tion technique based on individual reports of epidemiological data to construct

disease transmission graphs for the COVID-19 epidemic (Luo et al., 2021).

As an alternative, methods that aim to go beyond traditional techniques for

outbreak analysis by relying on genomic data have recently started gaining at-

tention, including a graph based technique for reconstructing transmission trees

utilizing genomic data from the early stages of the A/H1N1 influenza pandemic

(Jombart et al., 2011); minimum spanning tree based methods for estimat-

ing relationships among individual strains or isolates in molecular epidemiology

(Salipante and Hall, 2011); a Bayesian approach for reconstructing densely sam-

pled outbreaks from whole-genome sequence data and inferring a transmission

network via a Monte Carlo Markov chain (Didelot et al., 2014); an approach
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for analyzing genetic distance between pathogen strains to estimate routes of

transmission in bacterial disease outbreaks (Worby et al., 2014); a method

for molecular detection of hepatitis C virus transmissions in outbreak settings

(Campo et al., 2016); stochastic epidemic models for investigating person-to-

person communicable disease transmission with densely sampled genomic data

(Worby et al., 2016); a statistical framework to infer host-to-host transmissions

built around a computationally e�cient model of pathogen evolution (De Maio

et al., 2016); algorithms to infer genetic relatedness, detect possible transmis-

sions, and analyze clusters’ structure validated using experimental sequencing

data from HCV outbreaks (Glebova et al., 2017); an approach incorporating

shared genetic variants and phylogenetic distance data to identify transmission

routes from pathogen deep-sequence data (Worby et al., 2017); a graph-based

method for modeling viral evolution and epidemic spread via evolutionary anal-

ysis of intra-host viral populations (Skums et al., 2018); a Bayesian approach for

transmission inference that explicitly models evolution of pathogen populations

in an outbreak (De Maio et al., 2018); a statistical learning approach with a

pseudo-evolutionary model to infer epidemiological links from deep sequencing

data for human, animal and plant diseases (Alamil et al., 2019); an algorithm

based on Earth mover’s distance for viral outbreak investigations utilizing raw

NGS reads (Melnyk et al., 2020), and a maximum-likelihood framework that in-

tegrates phylogenetic and random graph models of genomic data (Skums et al.,

2022).

Methods relying on the combination of epidemiological and genomic data

include a minimum spanning tree model to identify the history of transmission

of hepatitis C virus in an outbreak (Spada et al., 2004); a maximum-likelihood

approach for the analysis of HIV-1 transmissions utilizing clinical, epidemiolog-

ical and phylogenomic data (Fisher et al., 2010); a stochastic infectious disease
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model for the analysis of the spread of infectious salmon anaemia among salmon

farms utilizing genetic and space-time data (Aldrin et al., 2011); a likelihood-

based framework drawing upon temporal, geographical and genomic data in

an epidemic of avian influenza A (H7N7) in The Netherlands in 2003 (Ypma

et al., 2012); Bayesian inference frameworks to reconstruct most likely trans-

mission patterns and infection dates for the analysis of UK epidemics of foot-

and-mouth disease virus (Cottam et al., 2008; Morelli et al., 2012; Lau et al.,

2015); a statistical framework to infer key epidemiological and mutational pa-

rameters by simultaneously estimating the phylogenetic and transmission tree in

an outbreak of foot-and-mouth disease (Ypma et al., 2013); a statistical method

exploiting both pathogen sequences and collection dates to reveal dynamics of

densely sampled outbreaks for the analysis of the 2003 Singaporean outbreak of

Severe Acute Respiratory Syndrome (SARS) (Jombart et al., 2014); a Bayesian

inference method for the reconstruction of HIV transmission trees from viral se-

quences and uncertain infection time data (Montazeri et al., 2018); a systematic

Bayesian transmission network model to reconstruct the transmission network

of the foot-and-mouth disease epidemic in Japan in 2010 (Hayama et al., 2019);

a Bayesian methodology that uses contact data for the inference of transmission

trees in a statistically rigorous manner, alongside genomic data and temporal

data (Campbell et al., 2019), and an analysis of mumps virus transmission in the

US utilizing epidemiological data from public health investigations and mumps

virus whole genome sequences (Wohl et al., 2020).

In this paper, we present an end-to-end framework for the reconstruction

and interpretation of disease transmissions from genomic data; the framework

is motivated by an observation that the reconstruction task would benefit from

using not only the genetic distances between hosts but also from quantifying

and leveraging the importance of a host in a viral transmission network. The
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proposed framework aims to first divide patients into di↵erent clusters, where

patients inside the same cluster are infected by the same type of viral variant

of the infectious disease; to this end, we utilize a modified version of the viral

population reconstruction method TenSQR (Ahn et al., 2018). Next, the ge-

netic distance between a pair of patients inside the same cluster is calculated

based on the Earth Mover’s Distance between corresponding k-mer distribu-

tions (Rubner et al., 1998; Melnyk et al., 2020), which reflects the minimal

amount of work that must be performed to transform one distribution into

another by moving ‘distribution mass’ around. Third, possible transmission

directions between pairs of patients are determined using the calculated ge-

netic distances. Fourth, the importance score of every patient is calculated via

a custom-designed graph convolutional auto-encoder inspired by (Salha et al.,

2019). Auto-encoders are neural networks that can be trained to automati-

cally extract salient low-dimensional representations of high-dimensional data

in an unsupervised manner (Goodfellow et al., 2016); graph convolutional auto-

encoders are a variant of auto-encoders specifically designed to analyze graph-

structured data. Finally, a directed minimum spanning tree, incorporating the

local and global information provided by the genetic distances and the impor-

tance scores, is constructed by imposing importance scores constraints in the

classical Edmonds’ algorithm (Edmond, 1967).

Our main contributions are summarized as follows:

• We developed an end-to-end computational framework that utilizes se-

quencing data to detect disease transmission clusters, reconstruct a di-

rected disease transmission network, and quantify the significance of a

viral host within the transmission network.

• Our proposed method reconstructs the directed disease transmission net-

work by leveraging not only the local information captured by the ge-
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netic distances but also the global information provided by the impor-

tance scores of each host extracted by a designed graph convolutional

auto-encoder.

• We conducted several experiments on experimental COVID-19 data and

semi-experimental hepatitis C virus data, and compared the results with

existing state-of-the-art methods, demonstrating the ability of the pro-

posed framework to e�ciently and accurately reconstruct a disease trans-

mission network, outperforming state-of-the-art methods.

2 Methods

2.1 Problem Formulation

The aims of the framework for disease transmission network analysis developed

in this paper include:

1. Discovery of transmission clusters, where the clusters collect hosts infected

by the same pathogen variant.

2. Inference of a directed transmission network of hosts based on genomic

information about viral pathogens infecting them.

3. Identification of super-spreaders/critical hosts in the network.

To detect clusters of hosts/patients, we adapt to the current problem the

viral population reconstruction method TenSQR we previously co-developed in

(Ahn et al., 2018). Specifically, we first successively cluster hosts into commu-

nities represented by the consensus sequences of cluster-specific viral genomes,

and then construct a weighted directed acyclic graph G = (V,E,w) for each

cluster, where V is the set of nodes representing hosts, E is the set of edges
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indicating disease transmission directions, and w is the set of edge weights. For

instance, node vi denotes the i
th host, edge eij = (vi, vj) indicates that the j

th

host may have been infected by the i
th host, and weight wij is the genetic dis-

tance between the pathogens infecting the two hosts. Following (Melnyk et al.,

2020), we represent the genetic distance separating two pathogens via the Earth

Mover’s Distance between corresponding k-mer distributions. While the genetic

distances provide useful local information about transmissions, we further de-

sign a graph convolutional auto-encoder to obtain global information in form

of importance scores quantifying how influential hosts are in the network. The

importance scores are in turn used to guide the search for a directed minimum

spanning tree revealing transmissions along the network. Fig. 1 illustrates the

architecture of the proposed end-to-end framework.

Figure 1: Architecture of the proposed end-to-end framework for disease trans-
mission analysis. Di↵erently colored nodes illustrate three disease transmission
clusters, with arrows showing the transmission directions. The numbers shown
in nodes and on edges are the importance scores and the genetic distances,
respectively.

2.2 Detection of Transmission Clusters

As already mentioned, the method used to detect disease transmission clusters

builds upon TenSQR proposed in our prior work (Ahn et al., 2018). Let P denote
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an n⇥l pathogen matrix where n is the number of hosts and l is the (maximum)

length of the viral genomes; note that the entries in P may be erroneous due

to sequencing errors. After organizing hosts into transmission clusters, where

hosts in the same cluster are infected by the same variant type of the pathogen,

the consensus sequence is formed to represent each cluster. The reconstructed

consensus sequences form a k ⇥ l consensus matrix C, where k denotes the

number of transmission clusters, which our method can determine automatically

(to this end we rely on the framework introduces in our prior work (Ahn et al.,

2018), see Subsection 2.4). To ensure the distances between nucleotides are

consistent, we denote nucleotides by 4-dimensional standard unit vectors e(4)i ,

1  i  4, with 0s in all positions except the ith one that has value 1 (e.g., e(4)1 =

[1 0 0 0], e(4)2 = [0 1 0 0], and so on). The pathogen matrix P can be re-written

as a binary tensor P whose fibers represent nucleotides and horizontal slices

correspond to pathogen strains. The transmission cluster detection can then be

formulated as a tensor factorization problem since P can be thought of as being

obtained by multiplying an n⇥ k pathogen strain membership indicator matrix

M and a binary tensor C that encodes the consensus sequence of each cluster.

Fibers of C are standard unit vectors e(4)i representing alleles, while each lateral

slice of C is one of the k consensus sequences representing cluster centroids.

Note that the pathogen strain membership indicator matrix M has standard

unit vectors e(k)i , 1  i  k, for rows; if the j
th row of M is e(k)i , that indicates

the jth host is assigned to the ith transmission cluster. To proceed, we formulate

the transmission network clustering problem as a collection of k � 1 tensor

factorization problems; after each factorization, pathogens associated with the

most dominant transmission cluster are removed from P and the factorization

(of smaller dimension) is performed anew until only one cluster remains.

Fig. 2 illustrates the detection of transmission clusters. To formalize the
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Figure 2: (a) Detecting transmission clusters. (b) Identifying viral species via
tensor factorization.

tensor factorization representation of the problem, let P 2 {0, 1}n⇥4l and C 2

{0, 1}4l⇥k denote the mode-1 unfoldings of tensors P and C, respectively. The

transmission network clustering problem can be written as

min
M,C

1

2
kP�MC>k2F , (1)

where k · kF denotes the Frobenius norm. This is a non-convex optimization

that can be approximately solved via alternating minimization. For further

details regarding finding a solution to the above optimization problem and thus

successively identifying pathogens associated with the transmission clusters, we

refer a reader to (Ahn et al., 2018).

2.3 Computation of Genetic Distances

Given a cluster of hosts, we build a graph in which the edge weights reflect

genetic similarities between pathogens infecting the hosts. The Earth Mover’s

Distance (EMD) used to measures the di↵erence between two probability dis-

tributions is calculated as a solution to the transportation problem (i.e., the

Monge-Kantorovich problem), which is readily formalized as a linear program

(Rubner et al., 1998, 2000). Let

P = {(p1, wp1), (p2, wp2), ..., (pm, wpm)}
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denote the normalized k-mer frequencies of a viral strain, where pi represents

the ith k-mer and wpi is its frequency; following parameter tuning, we set k = 4

in our experiments.

Similarly, let us denote the normalized k-mer frequencies of another viral

strain by

Q = {(q1, wq1), (q2, wq2), ..., (qn, wqn)}.

Let D = [dij ] be the shortest path distance between k-mers pi and qj in the

undirected De Bruijn graph formed by all the pathogens in a transmission clus-

ter. [Fig. 3 illustrates a sample de Bruijn graph constructed from two sequences

Figure 3: An example of a de Bruijin graph constructed from sequences
TTCAGTGGGCGA and TTCAGGTGGCGA. A few selected pairwise dis-
tances between k-mers are also indicated.

with k = 4.] The Earth Mover’s Distance between P and Q is defined as

EMD(P,Q) =

Pm
i=1

Pn
j=1 dijfijPm

i=1

Pn
j=1 fij

,

where the total flow
Pm

i=1

Pn
j=1 fij = 1. The aforementioned linear program is

focused on finding F = [fij ] minimizing

mX

i=1

nX

j=1

dijfij
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subject to

fij � 0, 1  i  m and 1  j  n

nX

j=1

fij  wpi, 1  i  m,

mX

i=1

fij  wqi, 1  j  n

mX

i=1

nX

j=1

fij = min{
mX

i=1

wpi,

nX

j=1

wqj}.

where fij denotes the flow between pi and qj .

2.4 Inference of Transmission Directions

For two hosts A and B with normalized k-mer frequencies (fA
1 , f

A
2 , ..., f

A
n ) and

(fB
1 , f

B
2 , ..., f

B
n ), where n denotes the total number of unique k-mers in A and

B, the maximum mean k-mer distribution is defined as (Melnyk et al., 2020)

Mean(A,B) =

✓
f
max
1Pn

i=1 f
max
i

, . . . ,
f
max
nPn

i=1 f
max
i

◆
,

where f
max
i = max{fA

i , f
B
i } for all i = 1, 2, . . . , n. Then the transmission

direction between hosts A and B is assumed to be from A to B if

EMD(Mean(A,B), A) < EMD(Mean(A,B), B),

and from B to A otherwise; as before, EMD(·, ·) denotes the Earth Mover’s

Distance between its arguments. Fig. 4 illustrates inference of the transmission

direction between hosts A and B.
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Figure 4: An illustration of inferring transmission direction between host A and
host B.

2.5 Computing Host Importance Scores via Graph Con-

volutional Auto-Encoder

Consider a host network represented by the weighted directed graph G =

(V,E,w), where |V | = n is the number of hosts and where weights w reflect

genetic distances between hosts. Let X denote the n ⇥ n matrix of distances

between pathogens associated with the hosts, and let A denote the adjacency

matrix of G. Motivated by (Salha et al., 2019), we design the graph convolu-

tional encoder (GCE) that learns to construct an n ⇥ (d + 1) node embedding

matrix |Z,M |, where | · | denotes matrix concatenation and the dimensions of Z

and M are n⇥ d and n⇥ 1, respectively. The first d ⌧ f dimensions of the em-

bedding correspond to the latent feature representation of a host, whereas the

last dimension corresponds to a mass parameter mi 2 R
+ of the host; note that

mi is reflective of the impact of host i on the graph flow and thus signifies its

importance in the spread of the disease. By drawing parallels to the Newton’s

theory of universal gravitation (Salha et al., 2019), acceleration ai!j = Gmj

r2

(where r
2 = kzi � zjk22) can be interpreted as an indicator of the likelihood

that the pathogen associated with host i is a genetic ancestor of the pathogen

associated with host j. A graph convolutional encoder with L layers, where
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L � 2, and |Z,M | = H
(L) can be summarized as

H
(0) = X

H
(l) = ReLU(D�1

out(A+ I)H(l�1)
W

(l�1) +B
(l�1))

H
L = D

�1
out(A+ I)H(L�1)

W
(L�1) +B

(L�1)
,

where l 2 {1, 2, ..., L�1}, Dout denotes the diagonal out-degree matrix of A+I,

I represents the identity matrix, and W and B are learnable weight and bias

matrix, respectively. In summary, a graph convolutional encoder learns node

embeddings from A and X as |Z,M | = GCE(A,X). A graph decoder is then

leveraged to reconstruct A from Z and M while allowing for asymmetric connec-

tivity between hosts. The reconstructed adjacency matrix can be represented

as Âij = �(log ai!j) = �(logGmj � log kzi � zjk22), where �(x) = 1/(1 + e
�x)

denotes the sigmoid function and mj is the importance score of the j
th host;

note that, in general, Âij 6= Âji. The loss function in the form of weighted

cross entropy is given by L = �
P

i,j Aij log Âij . We build a two-layer graph

convolutional encoder with layer dimensions set to dn
2 e and dn

4 e. The learning

rate is 0.001, and the number of training epoch is 200.

2.6 Reconstructing the Transmission Network

In the final stage of our framework, the weighted directed graph is pruned to

obtain the disease transmission network. To this end, we modify the classical

Edmond’s algorithm (Edmond, 1967) to enable leveraging both the local and

global information about the transmission dynamics; the former is provided by

the genetic distances while the latter is given by the node importance scores.

In particular, given a weighted directed graph G = (V,E,w, s), where V is the

set of vertices representing the hosts, E is the set of directed edges, w is the
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set of edge weights, and s is the set of importance scores of the hosts, we would

like to find a directed minimum spanning tree T having the smallest weight and

satisfying the constraint that transmission directions are from the hosts with

higher importance scores to the hosts with lower importance scores. Let w(e)

be the weight on edge e, w(u, v) denote the weight on the edge from u to v, and

s(u) be the importance score of host u. A pseudo-code of our modification of the

Edmond’s algorithm, which for convenience we refer to as Edmond+Score, is

given below.

Algorithm [Edmond+Score]:

(1) Select a host with the highest importance score as the root r, and remove

all edges whose destination is r.

(2) For each node v except r, keep the edge with the lowest weight incoming to

v from ⇡(v), where s(⇡(v)) � s(v), and remove other edges whose destination

is v. If the set of edges P = {(⇡(v), v)|v 2 V \ r} does not contain cycles, the

desired directed minimum spanning tree is found. Otherwise, go to step (3).

(3) If there is at least one cycle in P , select one such cycle and denote it by

C. Define a new weighted directed graph G
0 = (V 0

, E
0
,w0

, s) and treat C as a

single (virtual) node, vC . For any edge from u /2 C to v 2 C, add a new edge

e = (u, vC) to E
0 and add w

0(e) = w(u, v)�w(⇡(v), v) to w0, where ⇡(v) is the

source of v in C. For any edge from u 2 C to v /2 C, add a new edge e = (vC , v)

to E
0 and add w

0(e) = w(u, v) to w0. For an edge from u /2 C to v /2 C, add a

new edge e = (u, v) to E
0 and add w

0(e) = w(u, v) to w0.

(4) For all edges incoming to vC , identify (u, v) with the lowest edge weight and

remove (⇡(v), v) from C to break the cycle.
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(5) Repeat steps (3) and (4) until all the cycles in G are broken.

Fig. 5 shows an example of pruning a weighted directed graph with the Ed-

mond+Score algorithm.

Figure 5: An example of a directed minimum spanning tree obtained by lever-
aging both local and global information about the transmission dynamics.

3 Results

In this section, we report results of several benchmarking tests that compare the

performance of the introduced methodology with state-of-the-art techniques for

transmission network inference; for convenience, we refer to the proposed end-to-

end framework as AutoNet, as it relies on scores provided by an auto-encoder

to infer the network.

3.1 Performance on Semi-Experimental Hepatitis C Virus

Data

Performance of AutoNet is first tested on semi-experimental hepatitis C data

and compared with state-of-the-art methods for the reconstruction of disease

transmission networks from viral genomic data, including k-MED (Melnyk et al.,
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2020), QUENTIN (Skums et al., 2018), MinDist (Campo et al., 2016) and SO-

PHIE (Skums et al., 2022). k-MED (Melnyk et al., 2020) is a heuristic for

viral outbreak investigations that relies on the earth mover’s distance metric;

QUENTIN (Skums et al., 2018) is a graph-based method that models viral evo-

lution and epidemic spread; MinDist (Campo et al., 2016) is a heuristic that

detects viral transmission based on a pre-defined threshold using minimal Ham-

ming distances; finally, SOPHIE (Skums et al., 2022) is an algorithmic frame-

work that relies on integrated phylogenetic and random graph models to infer

viral transmission networks from genomic data. The semi-experimental data

is generated using FAVITES (Moshiri et al., 2019), a software for simulating

viral transmission and evolution which we applied to experimentally obtained

sequencing data of pathogens collected from a cardiac surgeon and five patients

infected by the surgeon (Esteban et al., 1996). In particular, pathogens asso-

ciated with the surgeon and five patients are represented by a sequence of 188

nucleotides encompassing the first hypervariable region (HVR-1) at the junction

between the coding regions for envelope glycoproteins E1 and E2. The mean

and standard deviation of the Hamming distance between the 188-nucleotide se-

quences are 11.0 and 3.84, respectively. We follow the steps below to repeatedly

synthesize disease transmission networks using the default settings of FAVITES:

1. Generate a complete contact network which consists of 6 nodes representing

the cardiac surgeon and five patients.

2. Set the pathogen representing the cardiac surgeon as the seed sequence.

3. Simulate a series of transmission events under the transmission model.

4. Determine the patient sequencing events, update the viral phylogenetic tree,

and specify mutation rates.

5. Generate erroneous reads from the sequences on the viral phylogenetic trees,
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and use the obtained reads to simulate assembly of those sequences. This

creates a tree-like disease transmission network that we aim to reconstruct

from the 188 nucleotides-long pathogen sequence information.

The considered methods are compared in terms of the transmission direction

accuracy, defined as the ratio of the number of pairs of hosts with correctly pre-

dicted transmission direction to the total number of host pairs, and the source

identification accuracy, defined as the fraction of the transmission networks with

correctly predicted sources. Table 1 shows the results on a semi-experimental

dataset containing 5000 disease transmission networks, where the transmission

direction accuracy is calculated by aggregating all the possible host pairs in

5000 disease transmission networks. As can be seen, AutoNet achieves both

the highest transmission direction accuracy as well as the highest source iden-

tification accuracy.

Table 1: The performance comparison of AutoNet and the competing methods
on the semi-experimental dataset with 5000 disease transmission networks. Note
that MinDist cannot infer transmission directions (hence, N/A).

Transmission Direction Ac-
curacy

Source Identification
Accuracy

AutoNet (this
paper)

93.4% 85.2%

k-MED 89.5% 79.4%
QUENTIN 86.2% 72.5%
MinDist N/A 45.2%
SOPHIE 90.1% 82.8%

3.2 Performance on Experimental City-Level COVID-19

Data

Next, we compare performance of AutoNet with the selected state-of-the-art

methods on experimental city-level COVID-19 data from the Global Initiative
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Figure 6: Experiments on city-level COVID-19 data. (a) The disease transmis-
sion network reconstructed by AutoNet; note the GISAID accession IDs and
the importance scores for each host node. (b) The result of k-MED. (c) The
result of SOPHIE.

on Sharing All Influenza Data (GISAID) (Shu and McCauley, 2017). The GI-

SAID promotes rapid sharing of data from all influenza viruses and the coron-

avirus causing COVID-19. This includes genetic sequences and related clinical

and epidemiological data associated with human viruses, as well as geographical

and species-specific data associated with the avian and other animal viruses, to

help researchers understand how viruses evolve and spread during epidemics

and pandemics (https://www.gisaid.org). For each host/patient, the experi-

mental COVID-19 data includes the collection date, submission date, location,

gender, patient age, virus variant type, specimen source, sequencing technology,

assembly method, sequencing coverage, originating lab, submitting lab and so

on. We focus on data collected in London between January 1st and January

31st of 2021, which includes 4252 hosts and 2 virus variant types, B.1.1.7 and

B.1.177. We first test the performance of TenSQR (Ahn et al., 2018) adapted

to the task of of detecting transmission clusters using the reported virus variant
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Figure 7: The disease transmission networks reconstructed from city-level
COVID-19 data by AutoNet with the importance scores replaced by the stan-
dard centrality measures. Note the GISAID accession IDs and centrality mea-
sures for each host node. (a) Degree centrality. (b) Closeness centrality. (c)
Betweenness centrality.

types as the ground truth, and then report the spanning trees reconstructed by

AutoNet and k-MED (Shu and McCauley, 2017). Since the sequences of re-

ported pathogens associated with the 4252 hosts are shorter than the sequence

lengths of the COVID-19 reference genome, the host sequences are first aligned

to the COVID-19 reference genome (NCBI Reference Sequence: NC 045512.2)

using BLAST (McGinnis and Madden, 2004); TenSQR is then deployed to de-

tect transmission clusters. The accuracy, precision and recall of the clustering

results achieved by TenSQR are 0.998, 0.995 and 0.984, respectively. The F-1

score and the area under the ROC curve (AUC) are 0.989 and 0.992, respectively.

Figures 6 (a), (b) and (c) illustrate the sub-graphs of the disease transmission

networks reconstructed by AutoNet, k-MED and SOPHIE, respectively. Note

that we only show the results achieved by AutoNet, k-MED and SOPHIE

because QUENTIN could not complete the task in 48 hours, while MinDist

cannot infer transmission directions. It is worth pointing out that our AutoNet

and k-MED reconstruct similar networks. k-MED identifies the host marked

with EPI ISL 919991 as the source, while our AutoNet and SOPHIE identify

the host marked with EPI ISL 919797 as the source and infer that it infected
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the host marked with EPI ISL 919991.

Moreover, we conducted an ablation study to evaluate the significance of

the novel importance scores proposed within our AutoNet framework. In

particular, we systematically replaced these importance scores by the widely-

used centrality measures including degree centrality, closeness centrality, and

betweenness centrality, while keeping the remainder of our framework unaltered.

The findings are visually presented in Fig.7 (a), (b), and (c), which showcase

the disease transmission networks reconstructed from the city-level COVID-19

data using AutoNet with varied centrality measures. As shown in Fig.7 (a),

when the importance scores are replaced by degree centrality, the transmis-

sion network reconstruction fails; this is caused by the failure to satisfy the

condition that transmissions happen from nodes with higher importance scores

to those with lower importance scores. Similarly, as shown in Fig.7 (b), em-

ploying closeness centrality resulted in three fragmented transmission networks

and the exclusion of eight hosts. Furthermore, Fig.7 (c) demonstrates that re-

placing the importance scores with betweenness centrality leads to identifying

EPI ISL 953273 as the source but excludes six hosts in the network. These

empirical results highlight the pivotal role played by our proposed importance

scores in capturing the intricate dynamics of disease transmission.

3.3 Performance on Experimental Country-Level COVID-

19 Data

Next, we compare performance of AutoNet and the considered state-of-the-

art methods on experimental country-level COVID-19 data aiming to discover

how the pathogens are transmitted between di↵erent cities. In addition to Lon-

don’s, COVID-19 data collected in Alderley Edge, Milton Keynes, Cambridge,

Glasgow, Oxford and Edinburgh between January 1st and January 31st of 2021
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Figure 8: Experiments on country-level COVID-19 data. (a) The disease trans-
mission network reconstructed by AutoNet. (b) The result of k-MED. (c) The
result of QUENTIN. (d) The result of SOPHIE.

are also analyzed. The number of hosts present in the data for these additional

cities is 16433, 9977, 7494, 4644, 1085 and 154, respectively. We rely on the

consensus sequence of the dominant viral variant type to represent each city,

and then perform the reconstruction task. The host sequences are aligned to the

COVID-19 reference genome (NCBI Reference Sequence: NC 045512.2) before

obtaining the consensus sequence for each city. Fig. 8 (a), (b), (c) and (d) show

the reconstruction results obtained by AutoNet, k-MED, QUENTIN and SO-

PHIE, respectively. It is worth pointing out that our AutoNet and QUENTIN

reconstruct similar networks, and that all the methods identify Oxford as the

source of the spread, while our AutoNet and QUENTIN both identify London
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Figure 9: The disease transmission networks reconstructed from country-level
COVID-19 data by AutoNet with the importance scores replaced by the stan-
dard centrality measures. Note the cities and centrality measures for each node.
(a) Degree centrality. (b) Closeness centrality. (c) Betweenness centrality.

as the second source.

Finally, we conducted another ablation study to assess the significance of our

proposed importance scores. We replaced these scores with standard centrali-

ties, including degree centrality, closeness centrality, and betweenness centrality,

while keeping the rest of our proposed framework unaltered. Our study findings

are reported in Fig. 9 (a), (b), and (c), depicting the disease transmission net-

works reconstructed from country-level COVID-19 data using AutoNet with

di↵erent centrality measures. As seen in Fig. 9 (a) and (b), the disease transmis-

sion networks reconstructed based on degree centrality and betweeness central-

ity are identical, with London identified as the source of the spread to Alderley

Edge, Cambridge, Glasgow, and Milton Keynes. However, Edinburgh and Ox-

ford are not included in the network as AutoNet only allows transmissions

from the nodes with higher scores to nodes with lower scores. Moreover, Fig. 9

(c) demonstrates that replacing the importance scores with closeness centrality

leads to a network reconstruction failure. This further emphasizes the criti-

cal role of our proposed importance scores in enabling AutoNet to accurately

capture disease transmission dynamics.
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4 Conclusions

In this paper we presented AutoNet, an end-to-end framework for the de-

tection of disease transmission clusters, reconstruction of directed transmission

networks, and the discovery of super-spreaders from genomic data. The frame-

work first clusters infected viral hosts into groups where the hosts in a group

are infected by the same pathogen variant. After quantifying similarity be-

tween pairs of viral hosts in a group, directions of transmission between hosts

are estimated and the importance score of each host is calculated. Finally, a

directed minimum spanning tree is reconstructed by leveraging both the local

and global information about transmissions, provided by the genetic similarity

between hosts and the hosts’ importance scores calculated via a graph auto-

encoder. Benchmarking on semi-experimental and experimental data shows

that the proposed framework is capable of reconstructing disease transmission

networks e�ciently and accurately, outperforming state-of-the-art competing

techniques. Future work includes extending the proposed framework to enable

joint processing of both genomic and epidemiological data.
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Cottam, E., Thébaud, G., Wadsworth, J., et al. Integrating genetic and epidemi-

ological data to determine transmission pathways of foot-and-mouth disease

virus. Proceedings. Biological Sciences, 275(1637):887–895, 2008.

Craft, M. E. Infectious disease transmission and contact networks in wildlife

and livestock. Philos Trans R Soc Lond B Biol Sci, 370(1669):20140107, 2015.

De Maio, N., Wu, C., Wilson, D., et al. Scotti: E�cient reconstruction of trans-

mission within outbreaks with the structured coalescent. PLoS computational

biology, 12(9):e1005130, 2016.

De Maio, N., Worby, C., Wilson, D., et al. Bayesian reconstruction of trans-

mission within outbreaks using genomic variants. PLoS Comput Biol, 14(4):

e1006117, 2018.

Didelot, X., Gardy, J., and Colijn, C. Bayesian inference of infectious disease

transmission from whole-genome sequence data. Molecular Biology and Evo-

lution, 31(7):1869–1879, 5/15/2021 2014. doi: 10.1093/molbev/msu121. URL

https://doi.org/10.1093/molbev/msu121.

Edmond, J. Optimum branchings. Journal of Research of the National Bureau

of Standards Section B, 71B(4):233–240, 1967.

https://doi.org/10.1093/molbev/msu121


28 REFERENCES
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