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Evolutionary Self-Expressive Models for
Subspace Clustering

Abolfazl Hashemi

Abstract—The problem of organizing data that evolves over time
into clusters is encountered in a number of practical settings. We
introduce evolutionary subspace clustering, a method whose ob-
jective is to cluster a collection of evolving data points that lie on
a union of low-dimensional evolving subspaces. To learn the par-
simonious representation of the data points at each time step, we
propose a non-convex optimization framework that exploits the
self-expressiveness property of the evolving data while taking into
account representation from the preceding time step. To find an ap-
proximate solution to the aforementioned non-convex optimization
problem, we develop a scheme based on alternating minimization
that both learns the parsimonious representation as well as adap-
tively tunes and infers a smoothing parameter reflective of the rate
of data evolution. The latter addresses a fundamental challenge
in evolutionary clustering—determining if and to what extent one
should consider previous clustering solutions when analyzing an
evolving data collection. Our experiments on both synthetic and
real-world datasets demonstrate that the proposed framework out-
performs state-of-the-art static subspace clustering algorithms and
existing evolutionary clustering schemes in terms of both accuracy
and running time, in a range of scenarios.

Index Terms—subspace clustering, evolutionary clustering, self-
expressive models, temporal data, real-time clustering.

I. INTRODUCTION

ASSIVE amounts of high-dimensional data collected

by contemporary information processing systems create
new challenges in the fields of signal processing and machine
learning. High dimensionality of data presents computational
and memory burdens and may adversely affect performance
of the existing data analysis algorithms. An important unsu-
pervised learning problem encountered in such settings deals
with finding informative parsimonious structures characterizing
large-scale high-dimensional datasets. This task is critical for
detection of meaningful patterns in complex data and enabling
accurate and efficient clustering. The problem of extracting low-
dimensional structures for the purpose of clustering is encoun-
tered in many applications including motion segmentation and
face clustering in computer vision [1], [2], image representation
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and compression in image clustering [3], [4], robust principal
component analysis (PCA), and robust subspace recovery and
tracking [5]-[9]. In these settings, the data can be thought of as
being a collection of points lying on a union of low-dimensional
subspaces. In addition to having such structural properties, data
is often acquired at multiple points in time. Exploiting the under-
lying temporal behavior provides more informative description
and enables improved clustering accuracy. For example, it is
well-known that feature point trajectories associated with mo-
tion in a video lie in an affine subspace [10]. Motion during any
given short time interval is related to the motion in recent past.
Therefore, in addition to the union of subspaces structure of
the video data, there exists an underlying evolutionary structure
characterizing the motion. Therefore, it is of interest to design
and investigate frameworks that exploit both union of subspaces
and temporal smoothness structures to perform fast and accu-
rate clustering, particularly in real-time applications where a
clustering solution is required at each time step.

In this paper, we formulate and study evolutionary subspace
clustering — the task of clustering data points that lie on a union
of evolving subspaces. We provide a mathematical formulation
of evolutionary subspace clustering and introduce the convex
evolutionary self-expressive model (CESM), an optimization
framework that exploits the self-expressiveness property of data
and learns sparse representations while taking into account prior
representations. The task of learning parameters of the CESM
leads to a non-convex optimization problem which we solve
approximately by relying on the alternating minimization ideas.
In the process of learning data representation, we automatically
tune a smoothing parameter which characterizes the significance
of prior representations, i.e., quantifies similarity of the repre-
sentation in successive time steps. The smoothing parameter
is reflective of the rate of evolution of the data and signifies
the amount of temporal changes in consecutive data snapshots.
Note that although we only consider the case of sparse repre-
sentations, the proposed framework can readily be extended to
enforce any structures on the learned representations, including
low rank or low rank plus sparse structures that are often encoun-
tered in subspace clustering applications. Following extensive
simulations on synthetic datasets and two real-world datasets
originating from real-time motion segmentation (as opposed to
offline motion segmentation considered in, e.g., [11], [12]) and
oceanography, we demonstrate that the proposed framework sig-
nificantly improves the performance and shortens runtimes of
state-of-the-art static subspace clustering algorithms that only
exploit the self-expressiveness property of the data.
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The rest of this paper is organized as follows. Section II
overviews existing approaches to subspace clustering and evolu-
tionary clustering. In Section III, we introduce the evolutionary
subspace clustering problem and describe the proposed convex
evolutionary self-expressive model. Section IV presents algo-
rithms for finding parameters of the CESM. In Section V, we
discuss how the proposed framework can be extended to handle
issues that often arise in practice. Section VI presents ex-
perimental results, and the concluding remarks are stated in
Section VII.

II. BACKGROUND

In this section, we first define notation used throughout the
paper. Then we overview existing subspace clustering and evo-
lutionary clustering methods, and highlight distinctive charac-
teristics of evolutionary subspace clustering that we introduce
and study in the following sections.

A. Notation

Bold capital letters denote matrices while bold lowercase let-
ters represent vectors. Sets as well as subspaces are denoted by
calligraphic letters, [n] := {1,2,...,n}, and |S| denotes cardi-
nality of set S. X;; denotes the (4, j) entry of X, x; is the jth
column of X, and X_; is the matrix constructed by removing
the jth column of X. Additionally, X is the submatrix of X
that contains the columns of X indexed by the set S. Objects
Xy, x:, X, and x; denote evolving matrix, vector, set, and scalar
at time ¢, respectively. P& = I — XSX:(S is the projection oper-
ator onto the orthogonal complement of the subspace spanned
by the columns of X, where XE = (ngs)*l Xg denotes
the Moore-Penrose pseudo-inverse of X and I is the identity
matrix. Further, ||X||. denotes the nuclear norm of X defined
as the sum of singular values of X. Finally, () returns its
argument if it is non-negative and returns zero otherwise, and
sgn(x) returns the sign of its argument.

B. Subspace Clustering

Subspace clustering has drawn significant attention over the
past decade (see, e.g., [13] and the references therein). The goal
of subspace clustering is to organize data into clusters such that
each cluster collects points that belong to the same subspace.
Among various approaches to subspace clustering, methods that
rely on spectral clustering [14] to analyze the similarity ma-
trix which represents relations among data points have received
much attention due to their simplicity, theoretical rigor, and
superior performance. These methods assume that the data is
self-expressive [11], i.e., each data point can be represented by
a linear combination of other points in the union of subspaces.
The self-expressiveness property of data motivates the search
for a so-called subspace preserving similarity matrix that is re-
flective of similarities among data points originating from the
same subspace. To form the similarity matrix, the sparse sub-
space clustering (SSC) method in [11], [12] employs a sparse
reconstruction algorithm known as basis pursuit (BP) which
aims to minimize an /;-norm objective by means of convex
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optimization techniques such as the interior point method [15]
or alternating direction method of multipliers (ADMM) [16]. In
[17], [18], orthogonal matching pursuit (OMP) is used to greed-
ily build the similarity matrix while in [19]-[23] the similarity
matrix is constructed by exploring different selection criteria.
Low rank representation (LRR) subspace clustering approaches
in [24]-[27] perform convex optimization of objective functions
that consist of /;-norm and nuclear norm regularization terms
and build the similarity matrix via singular value decomposition
(SVD) of data. Feng et al. [28] search for a block-diagonal sim-
ilarity matrix capturing relations among data points that lie on a
union of subspaces. In the scenarios where self-expressive data
can be represented by multiple distinct feature sets, multi-view
subspace clustering [29] attempts to perform subspace cluster-
ing on each view simultaneously, while providing guarantees of
the consistence of clustering structures associated with differ-
ent views. In [30], the task of low-rank representation learning
and segmentation of data is performed jointly by identifying in-
dividually low-rank segmentations and exploiting the Schatten
p-norm relaxation of the non-convex rank objective function.
Finally, [31] presents an algorithm that constructs the similarity
matrix via thresholding the correlations among data points.

Let X; and C, denote the data and representation matrices at
time ¢, respectively. At their core, all self-expressive subspace
clustering schemes attempt to solve variants of the optimization
problem

H(ljin ||Ct|| S.t. ||X_f — XtCtH%‘ < €, dlag(Cf) = 0,
‘ (1)

where, for instance, the norm in the objective function is || - ||1,
Il lo, and || - ||« for SSC-BP, SSC-OMP, and LRR schemes,
respectively, and € is a predefined threshold that determines
to what extend a representation matrix C; should preserve self-
expressiveness of X;. One then defines an affinity (or similarity)
matrix A; = |C;| + |C;|" and applies spectral clustering [14]
to find the clustering solution.

Performance of self-expressiveness-based subspace cluster-
ing schemes was analyzed in various settings. It was shown in
[11], [12] that when the subspaces are disjoint (independent), the
BP-based method is subspace preserving. Authors of [32], [33]
take a geometric point of view to further study the performance
of BP-based SSC algorithm in the setting of intersecting sub-
spaces and in the presence of outliers. These results are extended
to the OMP-based SSC [17], [18] and matching pursuit-based
SSC [19].

Recently, further extensions of SSC and LRR frameworks
were developed. In particular, an SSC-based approach that
jointly performs representation learning and clustering is pro-
posed in [34] while the authors of [35]-[39] extend the SSC
framework to handle datasets with missing information. Time
complexity and memory footprint challenges of the LRR frame-
work motivated the development of its online counterpart in
[40]. The temporal subspace clustering scheme [41] assumes
that one data point is sampled at each time step and sets the goal
of grouping the data points into sequential segments, followed
by clustering the segments into their respective subspaces. How-
ever, neither of these approaches considers the possibility of an
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evolutionary structure in the feature space, the setting studied
in the current paper. Instead, prior works assume that the data
points are received in an online fashion (as opposed to hav-
ing evolving features) and, once acquired, are fixed and do not
evolve with time. Therefore, just as the original SSC and LRR
frameworks, the subsequent variants of subspace clustering can
be categorized as being static. In contrast, the evolutionary sub-
space clustering problem studied in the current paper is focused
on improving clustering quality by judiciously combining par-
simonious representations from multiple time steps while ex-
ploiting the union of subspaces structure of the data.

A related problem to subspace clustering is that of robust
principal component analysis (PCA) and robust subspace re-
covery and tracking [S]-[9]. There, the goal is to identify out-
liers (which in some applications may actually be the objects
of interest) to perform PCA and find a single low-dimensional
subspace which best fits a collection of points taken from a
high-dimensional space. State-of-the-art methods perform this
task by decomposing the data matrix into a sum of low rank and
sparse matrices. Note that, in robust subspace recovery, the data
matrix consists of all the snapshots of data which are assumed
to lie on a single subspace (except for outliers). Therefore, this
problem, too, is inherently different from the evolutionary sub-
space clustering framework that we study in the current paper.

C. Evolutionary Clustering

The topic of evolutionary clustering has attracted significant
attention in recent years [42]-[45]. The problem was originally
introduced in [42] where the authors proposed a framework
for evolutionary clustering by adding a temporal smoothness
penalty to a static clustering objective. Evolutionary extensions
of agglomerative hierarchical clustering and k-means were pre-
sented as examples of the general framework. Evolutionary clus-
tering has been applied in a variety of practical settings such as
tracking in dynamic networks [44], [46] and study of climate
change [47], generally improving the performance of static clus-
tering algorithms. Non-parametric Bayesian evolutionary clus-
tering schemes employing hierarchical Dirichlet process are
developed in [48]-[50]. An evolutionary affinity propagation
clustering algorithm that relies on message passing between the
nodes of an appropriately defined factor graph is developed in
[45]. Chi et al. [51], [52] proposed two frameworks for evolu-
tionary spectral clustering referred to as preserving cluster qual-
ity (PCQ) and preserving cluster membership (PCM) schemes.
In the PCQ formulation, the temporal cost at time ¢ is determined
based on the quality of the partition formed using data from time
t — 1; in PCM, the temporal cost is a result of comparing the
partition at time ¢ with the partition at ¢ — 1. The authors of [53]
proposed evolutionary extensions of k-means and agglomera-
tive hierarchical clustering by filtering the feature vectors using
a finite impulse response filter which combines the measure-
ments of feature vectors and uses them to find an affinity matrix
for clustering. Their approach essentially tracks clusters across
time by extending the similarity between points and cluster cen-
ters to include their positions at previous time steps. However,
the method in [53] is limited to the settings where the number
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of clusters does not change with time. Following the idea of
modifying similarities followed by static clustering, Xu et al.
proposed AFFECT, an evolutionary clustering method where
the matrix indicating similarity between data points at a given
time step is assumed to be the sum of a deterministic matrix (the
affinity matrix) and a Gaussian noise matrix [43].

To find clustering solutions at multiple points in time for
evolutionary data characterized by union-of-subspaces struc-
ture, one might consider concatenating the data snapshots from
the first until the current time instance and performing sub-
space clustering on such a set. In this approach, which we
refer to as concatenate-and-cluster (C&C), finding the clus-
tering solution at time ¢ would involve forming the matrix
X, =[X],..., X/ ]T and performing clustering X; via sub-
space clustering approaches. However, due to a significant in-
crease in the number of features (caused by data concatenation),
such a procedure would incur computational complexity that
grows with time (depending on the subspace clustering method,
the complexity would be either quadratic or cubic in time). Per-
haps more importantly, the C&C approach lacks the ability to
discover subtle temporal changes in data organization and at-
tempts to fit a clustering solution to a single union-of-subspaces
structure; in other words, clustering of concatenated data fails
to account for temporal evolution of subspaces.

As an illustrative example, consider the task of real-time mo-
tion segmentation [54], [55] where the goal is to identify and
track motions in a video sequence. Real-time motion segmen-
tation is related to the offline motion segmentation task studied
in [11], [12]. The difference between the two is that in the of-
fline setting clustering is performed once, after receiving all the
frames in the sequence, while in the real-time setting cluster-
ing steps are performed after receiving each snapshot of data
(See Section VI-B). The subspaces representing the motions
evolve; while subspaces in subsequent snapshots are similar,
those that are associated with snapshots separated more widely
in time may be drastically different. For this reason, imposing a
single structure, as in the aforementioned C&C approach, may
lead to poor clustering solutions. Therefore, a scheme that judi-
ciously exploit the evolutionary structure while acknowledging
the union-of-subspaces structure is needed.

Let A;,_; and A, denote the affinity matrix at time ¢ — 1
and the affinity matrix constructed solely from X, respectively.
State-of-the-art evolutionary clustering algorithms, e.g., [43],
[51]-[53], apply a static clustering algorithm such as spectral
clustering to process the following affinity matrix

A=A+ (1 —ap)Ay g, (@)

where «; is the so-called smoothing parameter at time ¢. The
affinity matrix A, is typically constructed from X; using general
similarity notions such as the negative Euclidean distance of the
data points or its exponential variant.

The recursive construction of the affinity matrix shown above
brings up several questions. First, note that when A; is deter-
mined from (2), one does not take into account representation
of data points in previous time steps; as we show in our exper-
imental studies, this may lead to poor performance in subspace
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clustering applications. More importantly, apart from the
AFFECT algorithm [43], none of the existing evolutionary clus-
tering schemes provides a procedure for finding the smoothing
parameter o which determines how much weight is placed on
historic data. Instead, existing methods typically set a;; accord-
ing to the user’s preference for the temporal smoothness of the
clustering results. AFFECT relies on an iterative shrinkage es-
timation approach to automatically tune «;. However, to find
the smoothing parameter, AFFECT makes certain strong as-
sumptions on the structure of the affinity matrix. In particular,
it assumes a block structure that holds only if the data at each
time ¢ is a realization of a dynamic Gaussian mixture model,
which is typically not the case in practice, especially in subspace
clustering applications such as motion segmentation. Indeed, as
our simulation results demonstrate, typical values of smooth-
ing parameter found by the shrinkage estimation approach of
AFFECT in motion segmentation application is «o; ~ 0.5 re-
gardless of whether the data is static or evolutionary. This is
counterintuitive since, e.g., for static data we expect a; ~ 0.

To address the above challenges, we develop a novel frame-
work for clustering temporal high-dimensional data that con-
tains points lying on a union of low-dimensional subspaces.
The proposed framework exploits the self-expressiveness prop-
erty of data to learn a representation for X; while at the same
time takes into account data representation learned in the previ-
ous time step. Moreover, we propose a novel strategy that relies
on alternating minimization to automatically learn the smooth-
ing parameter «; at each time step. As our extensive simulation
results demonstrate, the smoothing parameter inferred by the
proposed CESM framework captures temporal behavior and
adapts to sudden changes in data. Therefore, the smoothing pa-
rameter found by the proposed framework is reflective of the
rate of data evolution and quantifies the significance of prior
representations when clustering data at time ¢. Note that even
though in this paper we focus on evolutionary self-expressive
models with sparse representation, the proposed framework can
be extended in straightforward manner to include other repre-
sentation learning frameworks such as LRR.

III. EVOLUTIONARY SUBSPACE CLUSTERING

Let {X17}f\21 be a collection of (evolving) real-valued D;-
dimensional data points at time ¢ and let us organize those points
in a matrix X; = [x;1,...,% x,] € RPNt The data points
are drawn from a union of n, evolving subspaces {S; ; } | with
dimensions {d; ; };* . Without a loss of generality, we assume
that the columns of Xy, i.e., the data points, are normalized
vectors with unit #; norm." Due to the underlying union of sub-
spaces structure, the data points satisfy the self-expressiveness
property [11] formally stated below.

Definition 1: A collection of evolving data points {x; ; }.\',
satisfies the self-expressiveness property if each data point has a
linear representation in terms of the other points in the collection,
i.e., there exist a representation matrix C, such that

X; =X;Cy, diag(Cy) =0. (3)

! As we proceed, for the simplicity of notation we may omit the time index.
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The goal of subspace clustering is to partition {x; ;}.\', into
n; groups such that the data points that belong to the same sub-
space are assigned to the same cluster. To distinguish between
different methods, we refer to subspace clustering schemes that
find a representation matrix C; which satisfies (3) as the static
subspace clustering methods. As stated in Sections I and 1II, in
many applications the subspaces and the data points lying on
the union of those subspaces evolve over time. Imposing the
self-expressiveness property helps exploit the fact that the data
points belong to a union of subspaces. However, (3) alone does
not capture potential evolutionary structure of the data. To this
end, we propose to find a representation matrix C;, for each
time ¢, such that

Ci = fo(Ci1),

In other words, the representation matrix C; is assumed to be
a matrix-valued function parametrized by 6 that captures the
self-expressiveness property of data while also promoting a re-
lation to the representation matrix at a preceding time instance,
C;_;. The function fj : Pc — Pc may in principle be any ap-
propriate parametric function while the set Pc € RV >V stands
for any preferred parsimonious structures imposed on the repre-
sentation matrices at each time instant, e.g., sparse or low-rank
representations. We refer to subspace clustering schemes that
satisfy (4) as evolutionary subspace clustering methods. To find
such a representation matrix C;, we formulate and solve the
optimization

X; = X;Cy, diag(Ct) =0. 4

min Xy — X fo(Cro)ll7

st. fo (Ct_1) € Pc, ©)

and use the resulting representation matrix C; = f3(C;_1) to
segment the data.

The evolutionary subspace clustering problem (5) is essen-
tially a general constrained representation learning problem.
Given any combination of ( fy, Pc ), a solution to (5) results in a
distinct evolutionary subspace clustering framework. After find-
ing a solution to (5) and setting C; = fy-(C;_1), we construct
an affinity matrix A, = |C;| + |C;|" and then apply spectral
clustering to A;.

In this paper, we restrict our studies to the case where Pc
is the set of sparse representation matrices and consider a sim-
ple and interpretable form of the parametric function fy. Other
structures and more complex parametric functions are left for
future work.

A. Convex Evolutionary Self-Expressive Model

Consider the function
Ci = fo(Ci1) =aU+ (1 —a)Cy 4, (6)

where the values of parameters § = (U, «) specify the rela-
tionship between C;_; and C;, and need to be learned from
data. Intuitively, the innovation representation matrix U cap-
tures changes in the representation of data points between con-
secutive time steps. The other term on the right-hand side of (6),
(1 — a)C;_q, is the part of temporal representation that carries
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over from the previous snapshot of data. Therefore, the para-
metric function in (6) assumes that the representation at time ¢
is a convex combination of the representation at t — 1, C;_1,
and the “innovation” in the representation captured by matrix
U. Parameter 0 < o < 1 quantifies significance of the previous
representation on the structure of data points at time ¢ (i.e., it is
reflective of the “memory” of representations). Intuitively, if the
data is static we expect parameters to take on the values (o = 0,
U=0)or (o« =1, U= C,;_). Conversely, if the temporally
evolving data is characterized by a subspace structure that un-
dergoes significant changes, we expect « to be relatively close
to 0.5.

Since at each time step we seek a sparse self-representation
of data, the innovation matrix U should be sparse and satisfy
diag(U) = 0. Therefore, for the evolutionary model (6), search
for the best collection of parameters that relate C;_; and C;
leads to optimization
IIIJli(IIl [X: — X; (U + (1 — )Cy1) |3

)

s.t. diag(U) =0, ||Uljp <k,
0<a<l. (7

In the above optimization, & determines sparsity level of the
innovation. Since each point in S; can be expressed in terms of
at most d points in S;, we typically set & < d.

We refer to (7) as the convex evolutionary self-expressive
model (CESM) for the evolutionary subspace clustering. Note
that due to the cardinality constraint, (7) is a non-convex opti-
mization problem. In Section IV, we present methods that rely
on alternating minimization to efficiently find an approximate
solution to (7).

IV. ALTERNATING MINIMIZATION ALGORITHMS FOR
EVOLUTIONARY SUBSPACE CLUSTERING

In this section, we present alternating minimization schemes
for finding the innovation representation matrix U and smooth-
ing parameter a, i.e., for solving (7).

A. Finding Parameters of the CESM Model

We solve (7) for U and « in an alternating fashion. In par-
ticular, given U, _1, the innovation representation matrix found
at time ¢ — 1, we determine value of the smoothing parameter
according to

a = argmin | X; — Xy (aU;_; + (1 —a)C;1)|[%. ()
0<a<l

The objective function in (8) is unimodal and convex; in our

implementation, we rely on the golden-section search algorithm

[56] to efficiently find . Having found «, we arrive at the

representation learning step which requires solving
min [ X; = X (aU + (1 = 2)Cpa) |7
st diag(U) =0, |[U], <&, )

which is a non-convex optimization problem due to the car-
dinality constraint. Let X; = 1 (X, — (1 — a)X;C;_1). Then,
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(9) can equivalently be written as

Hlljin IX, - X, U||%

s.t. diag(U) =0, |[|Ul|p <k. (10)

The optimization problem (10) is clearly related to static sub-
space clustering with sparse representation (cf. (1)) and, in gen-
eral, to compressed sensing problems [57]. Similar to static
sparse subspace clustering schemes [11], [12], [17], [18], [22],
one can employ compressed sensing approaches such as ba-
sis pursuit (BP) [58] (or the related LASSO [59]), orthogo-
nal matching pursuit (OMP) [60], and orthogonal least squares
(OLS) [61] algorithms to find a suboptimal innovation matrix
U in polynomial time.

In particular, the basis pursuit representation learning strategy
leads to the convex program

. Y ——
min 1011 + §||Xt - X, U|%

1)

which can be solved using any conventional convex solver (see
Section V for an ADMM-based implementation). Here, A > 0
is a regularization parameter that determines sparsity level of
the innovation representations.

For the OMP-based strategy, to learn the representation for
each data point x; ;, j € [N], we define an initial residual
vector rg = X; ; and greedily select & data points indexed by
A = {i1,...,i;} C [N] that contribute to the innovation rep-
resentation of x; ; according to

s.t. diag(U) =0,

. 2
ig = argmax |ry_1x|, (12)

PE[N\A -1 U}

where ¢ € [k]. The residual vector is updated according to ry =
P jé X ;j, where P 4, is the projection operator onto the subspace
spanned by X; 4, (i.e., the columns of X, that are indexed by
A¢). Once Ay is determined, the innovation representation is
computed as the least square solution u; = XI‘ A Xt -

The OLS-based representation learning strategy is similar to
that of OMP, except the selection criterion is modified to

\I'zf71Xt,7:|2

iy = argmax (13)

eV Uy 1P, xeill3

Finally, (6) yields the desired representation matrix C;.

B. Complexity Analysis

The computational complexity of the proposed alternating
minimization schemes is analyzed next.

Since it takes O(N?) to evaluate the objective functions in
(8), the complexity of finding the smoothing parameter using
the golden-section search or any other linearly convergent opti-
mization algorithm is O(N?).

The computational cost of using BP-based strategy to learn
the innovation representation matrix U in 7 iterations of the
interior-point method is O(7DN?). However, as we demon-
strate in Section V, by using an efficient ADMM implemen-
tation the complexity can be reduced to O(r,, D> N?) where
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T,, denotes the maximum number of iterations of the ADMM
algorithm.

Since they require search over O(N) D-dimensional data
points in k iterations, the complexity of learning innovation rep-
resentation matrix using OMP and OLS methods is O(kDN?)
and O(kD?N?), respectively. In Section V we discuss how
one can reduce the complexity of OMP and OLS-based repre-
sentation learning methods to O(DN?) using accelerated and
randomized greedy strategies.

V. PRACTICAL EXTENSIONS

Here we discuss potential practical issues and challenges that
may come up in applications, and demonstrate how the proposed
frameworks can be extended to handle such cases.

A. Tracking the Evolution of Clusters

The CESM framework promotes consistent assignment of
data points to clusters over time. However, subspaces and the
corresponding clusters evolve and thus one still faces the chal-
lenge of matching the clusters formed at consecutive time steps.
This task essentially entails searching over permutations of clus-
ters at time ¢ and identifying the one that best matches the col-
lection of clusters at time ¢ — 1. Quality of a matching (i.e., the
weight of a matching) is naturally quantified by the number of
data points common to the pairs of matched clusters. The solu-
tion to the so-called maximum weight matching problem can be
found in polynomial time using the well-known Hungarian al-
gorithm [62], or its variants that handle more sophisticated cases
such as one-to-many and many-to-one maximum weight match-
ing [63], [64]. In our numerical studies, we use the Hungarian
algorithm to match clusters across time and evaluate clustering
accuracy in experiments where the ground truth is known.

B. Adding and Removing Data Points Over Time

In practice, it may happen that some of the data points vanish
over time while new data points are introduced. In such settings,
the number of data points and hence the dimension of representa-
tion matrices varies over time. Our proposed framework readily
deals with such scenarios, as explained next.

Let 7 denote the set of indices of data points introduced at
time ¢ that were not present at time ¢ — 1. To incorporate these
points into the model, we expand C,;_; by inserting all-zero
vectors in rows and columns indexed by 7. New data points
do not play a role in the temporal representations of other data
points but they may participate in the innovation representation
matrix (i.e., U). Finally, let 7 denote the set of indices of data
points that were present at time ¢ — 1 but have vanished at time
t; those points are removed from the model by excluding rows
and columns of C,_; indexed by 7.

C. Accelerated Representation Learning

The most computationally challenging step of the proposed
evolutionary self-expressive model is the representation learn-
ing step, i.e., the task of computing the innovation represen-
tation matrix U. Therefore, when handling evolutionary data
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containing a large number of high-dimensional data points, ef-
ficient representation learning methods are needed. To this end,
we here discuss how to employ BP, OMP, and OLS-based strate-
gies in an accelerated fashion.

1) BP-Based Representation Learning: We first develop an
ADMM algorithm for finding the innovation matrix U in (11)
following a similar approach to that of [12].

Define X; = 1(X; — (1 — a)X;C;_1). Introduce an auxil-
iary matrix Z and consider the optimization

. A ,
%11%1 10 + §||Xt - X\Z||%

st. Z=U — diag(U), (14)

which is equivalent to the optimization problem (11) considered
in Section I'V. Form the augmented Lagrangian of (14) to obtain

A~
L£,(U,Z,Y)=|Ul; + §HXz — X, Z|[%

14 . 2

+§HZ7U+d1ag(U)||F

+tr(Y ' (Z — U + diag(U))),  (15)

where p > 0 and Y are the so-called penalty parameter and dual
variable, respectively. Since adding the penalty term makes the
objective function (15) strictly convex in the optimization vari-
ables, we can apply ADMM to solve it efficiently. The ADMM
consists of the following iterations:
e Z't! =miny £,(UYZ°,Y").
According to [12], [16], this problem has a closed-form
solution that can be expressed as

Z = OX[] X, + D) (WX X, — Y 4 pUY). (16)

Note that a naive way to compute matrix inversion in (16)

requires O(N?) arithmetic operations. However, employ-

ing the matrix inversion lemma and caching the result of

the inversion reduces the computational cost to O(DN?).
o Ul = miny: £,(U4 ZL Y.

Note that the update of U also has a closed-form solution

given by
Y!
J:ﬁ<ﬂ“+>,
P p

Ut = J — diag(J), (17)

where 7, (x) = (|z| —n) +sgn(xz) is the so-called
shrinkage-thresholding operator that acts on each element
of the given matrix.

o YH =Y 4 p(Z't' —U'*!), which is a dual gradient

ascent update with step size p.

The above three steps are repeated until convergence crite-
ria are met or the number of iterations exceeds a predefined
maximum number. Although here we focus on ADMM as the
optimization method, similar update rules can be obtained by
using more advanced techniques including fast and linearized
ADMM [65]-[68].

2) OMP and OLS-Based Representation Learning: In each
iteration of the OMP and OLS-based representation learning
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methods, one performs search over O (V') data points to identify
which among them contribute to the innovation representation.
In the case of large-scale datasets containing many data points,
having O(N) “oracle calls” might be prohibitive. Recently, it
was shown in [69] that when optimizing a submodular function
[70], use of a randomized greedy algorithm enables reduction
of the number of oracle calls to O(kﬂ) at the cost of a negligible
performance degradation. While the objective function (10) is
not submodular, it is weak submodular [71], [72]. That is, if
the matrix XtT X, is well-conditioned (i.e., characterized with
a small condition number), the objective function (10) is close
to being submodular. The results of [69] imply one can still
use the randomized greedy method in OMP and OLS instead of
the conventional greedy strategy to accelerate the representation
learning process.

The complexity of the OLS-based method can further be re-
duced using the accelerated OLS (AOLS) algorithm, introduced
in [73]. AOLS improves performance of OLS while requiring
significantly lower computational costs. As opposed to OLS
which greedily selects data points according to (13), AOLS ef-
ficiently builds a collection of orthogonal vectors to represent
the basis of PLF1 in order to reduce the cost of projection in-
volved in (13). In addition, AOLS anticipates future selections
via choosing L data points in each iteration, where L > 1 is
an adjustable hyper-parameter. Selecting multiple data points
in each iteration essentially reduces the number of iterations
required to identify the representation of data points while typ-
ically leading to improved performance. Therefore, in our im-
plementations, we employ the AOLS strategy instead of OLS to
learn the innovation matrix U.

D. Dealing With Outliers and Missing Entries

The evolving data may contain outliers or missing entries at
some or all of the time steps. The proposed framework allows for
application of convex relaxation methods to handle such cases.
Specifically, let E denote a sparse matrix containing outliers, and
let €2 denote the set of observed entries of the corrupted data X .
Define the operator Pg : RP*N — RP*N a5 the orthogonal
projector onto the span of matrices having zero entries on [D] X
[N]\€2, but agreeing with X{ on entries indexed by the set (2.
Prior to employing greedy representation learning methods, we
identify outliers and values of the missing entries by solving the
convex program

in | X¢|l. + A |[E
min Xl + A |[Elly

s.t. Pq (Xf) = Pq (Xt), Xf =X; +E. (18)

Then we can apply the CESM framework using any of the greedy
representation learning methods to process the “clean” data X,
ultimately finding the representations and clustering results.

In contrast to the greedy representation learning methods, BP-
based approach benefits from joint representation learning and
corruption elimination. That is, within the CESM framework,
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we may solve

. ——
Xr[nllInE U] + §||Xt — X, U||% + A | Xt ||+ + 2 ||E|2

st Po(Xf) =Pa(Xy), Xi=X;+E,

X, ==(X;, - (1-a)X,C,_,), diag(U)=0,

19)

to simultaneously learn the innovation, detect the outliers, and
complete the missing entries.

1
o

VI. SIMULATION RESULTS

We compare performance of the proposed CESM framework
to that of static subspace clustering schemes and the evolution-
ary clustering strategy of AFFECT [43] on synthetic, motion
segmentation, and ocean water mass datasets. Note that AF-
FECT in general does not exploit the fact that the data points lie
on a union of low dimensional subspaces and its default choices
for affinity matrix are the negative squared Euclidean distance
or its exponential form (i.e., an RBF kernel). We found that AF-
FECT performs poorly compared to other schemes (including
static algorithms) when using default choices of affinity matri-
ces. Hence, in all experiments we use the representation learning
methods introduced in Section IV for CESM as well as for AF-
FECT to ensure a fair assessment of the proposed evolutionary
strategy.”

A. Synthetic Data

In a variety of applications including motion segmentation
[10], the data points and their corresponding subspaces are char-
acterized by rotational and transitional motions. Therefore, to
simulate an underlying evolutionary process for data points ly-
ing on a union of subspaces, we consider the following sce-
nario of rotating subspaces where we repeat each experiment
for 150 trials.

Attime ¢ = 1, we construct n = 10 linear subspaces in R”,
D = 10, each with dimension d = 6 by choosing their bases as
the top d left singular vectors of a random Gaussian matrix in
RP*DP  Then, we sample N = 500 data points, 50 from each
subspace, by projecting random Gaussian vectors to the span
of each subspace. Note that, in this setting, all the subspaces
are distributed uniformly at random in the ambient space and
all data points are uniformly distributed on the unit sphere of
each subspace. According to the analysis in [18], [32], [33], this
in turn implies that the subspace preserving property and the
performance of representation learning methods based on BP,
OMP, and AOLS is similar. However, we intentionally generate
relatively low number of data points compared to the dimen-
sion of subspaces and the dimension of the ambient space; this
creates a setting that is challenging for static subspace cluster-
ing algorithms. After constructing subspaces at time ¢t = 1, we
evolve the subspaces by rotating their basis 45° or 90° around

2MATLAB implementation of the proposed algorithm in this paper will be
made freely available at https://github.com/realabolfazl.
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Comparison of clustering accuracy of static and various evolutionary subspace clustering schemes employing OMP-based representation learning strategy

on a simulated data containing 500 points that belong to a union of 10 rotating random subspaces in R'?, each of dimension 6. The proposed CESM framework
significantly improves the clustering accuracy and is superior to the AFFECT strategy. Moreover, CESM framework adapts to subspace changes at times ¢t = 6, 13

as shown in the right-most plots.

a random vector and project the data points X; on the span of
the rotated subspaces to obtain X,. We continue this process
for T = 20 time steps. Note that for each subspace we perform
rotation around a different random vector. Otherwise, if the ro-
tations were around the same vector, the above setting would
not be an evolutionary process as the relative positions of sub-
spaces and data points would not vary over time. For brevity,
we only present results of using OMP-based learning to find the
representation matrices for static and competing evolutionary
subspace clustering algorithms; however, we observed similar
results for representation learning methods based on BP and
AOLS.

Next, we consider a related experiment where in addition to
rotation, at time ¢ = 6 all data points generated from subspace
810 are absorbed by subspace Sg. That is, at £ = 6 we project
X5.s5,, to the span of Sy. At time ¢ = 13, these data points
are separated from Sy and lie once again on Syo. Hence, for
6 <t <12 the effective number of subspaces is n =9 and
there are 100 data points in Sy.

The clustering accuracy results for these two experiments
are illustrated in Fig. 1. For the first experiment, as seen from
Fig. 1(a) and Fig. 1(c), the static SSC-OMP algorithm performs
poorly compared to CESM and AFFECT. Since CESM and AF-
FECT exploit the evolutionary behavior of the data points, after a
few time steps their accuracy significantly increases. We further
observe that the proposed CESM framework achieves better ac-
curacy than AFFECT,; this is likely because the former exploits
the self-expressiveness property of data points in the represen-
tation learning process while the latter simply combines cur-
rent and prior representations to enforce the self-expressiveness
property.

A comparison of the performance results in the second ex-
periment is shown in Fig. 1(b) and Fig. 1(d). We observe that
the performance of all evolutionary schemes suffers temporary
degradations at times ¢ = 6 and ¢t = 13. The reason for this phe-
nomenon is that the data points Xg s,, att = 6 are significantly
different from X s,, attime ¢ = 5 due to being absorbed by Sy
at time ¢ = 6 and not belonging to Sy . Therefore, since the sub-
spaces are nearly independent, prior representations {cs ; }ies,,
and {c12,; }ies,, are simply not well-aligned with the sudden
changes taking place at times ¢ = 6, 13. We further note that the
deterioration in clustering accuracy is more severe for AFFECT

than for CESM. We also observe from the figure that the pro-
posed evolutionary scheme is able to quickly adapt to changes.
At ¢t = 13, the data points that were previously absorbed by Sy
are projected back to the span of Sy; as a result of this change,
the performance of evolutionary schemes decreases. However,
accuracy of the evolutionary methods recovers at ¢ = 14 and
improves onward as they exploit the evolving property of the
data. Similar to the first experiment, due to exploiting the fact
that data points lie on a union of subspaces, the proposed CESM
framework outperforms the AFFECT’s strategy.

Next, we investigate the value of «, i.e., the smoothing
parameter discovered and used by CESM and AFFECT in
the previously described experiments to further assess which
scheme more accurately captures the evolutionary nature of the
subspaces. Fig. 2 illustrates changes in the value of « over
time, where in addition to the above two experiments we con-
sider the scenario where subspaces are not rotating. The figure
indicates that the smoothing parameter of AFFECT remains ap-
proximately 0.5 regardless of how rapidly the subspaces evolve.
Note that the smoothing parameter essentially quantifies evo-
lutionary character of a dataset: if the data is static, we expect
o = 0ora = 1for both CESM and AFFECT. As opposed to the
AFFECT’s smoothing parameter, the value of « for the CESM
framework quickly converges to the anticipated level; note that
we initialized « as 0.5. Fig. 2(d)—(f) further suggest that the
smoothing parameter of the proposed CESM framework notice-
ably changes at times ¢ = 6, 13. This is a strong indication that
CESM is capable of detecting subspace changes at ¢t = 6, 13,
while AFFECT fails to detect that the subspaces are rotating.

The above results suggest that the proposed framework im-
proves performance of static subspace clustering algorithms
when the data is evolving, while also being superior to state-
of-the-art evolutionary clustering strategies in the considered
settings. In contrast to prior schemes, the smoothing parameter
of the proposed framework is meaningful and interpretable, and
timely adapts to the underlying evolutionary behavior of the
subspaces.

B. Real-Time Motion Segmentation

Motion segmentation is the problem of clustering a set of
two dimensional trajectories extracted from a video sequence
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on a simulated data containing 500 points lying on a union of 10 rotating random subspaces in R'", each of dimension 6. AFFECT’s smoothing parameter
remains approximately constant regardless of the underlying evolutionary behavior while the smoothing parameter for the CESM framework dynamically reflects

the structure and reacts to cluster changes.

Fig. 3.

with multiple rigidly moving objects into groups; the resulting
clusters correspond to different spatiotemporal regions (Fig. 3).
The video sequence is often received as a stream of frames and
it is desirable to perform motion segmentation in a real-time
fashion [54], [S5]. In the real-time setting, the ¢th snapshot of
X; (a time interval consisting of multiple video frames) is of
dimension 2F; x Ny, where N, is the number of trajectories at
tth time interval, F} is the number of video frames received in
tth time interval, n; is the number of rigid motions at ¢th time
interval, and F' = )", F; denotes the total number of frames.
Real-time motion segmentation falls within the scope of evolu-
tionary subspace clustering since the received video sequence
is naturally characterized by temporal properties; at tth time
interval, the trajectories of n,; rigid motions lie in a union of n;
low-dimensional subspaces in R2 | each with the dimension
of at most d; = 3n; [74].

In contrast to the real-time motion segmentation, clustering
in offline settings is performed on the entire sequence, i.e.,

T .
X = [X],...,X]] . Therefore, one expects to achieve more

Example frames from the videos in the Hopkins 155 dataset [10].

accurate segmentation in the offline settings. However, offline
motion segmentation cannot be used in scenarios where some
motions vanish or new motions appear in the video, or in cases
where a real-time motion segmentation solution is desired.

To benchmark the performance of the proposed CESM frame-
work, we consider Hopkins 155 database [10] which consists
of 155 video sequences with 2 or 3 motions in each video (cor-
responding to 2 or 3 low-dimensional subspaces). Unlike the
majority of prior work that process this data set in an offline set-
ting, we consider the following real-time scenario: each video
is divided into 7" data matrices {X;}._; such that F; > 2n for
a video with n motions. Then, we apply PCA on X, and take
its top D = 4n left singular vectors as the final input to the
representation learning algorithms.

We benchmark the proposed framework by comparing it to
static subspace clustering and AFFECT; the former applies sub-
space clustering at each time step independently from the pre-
vious clustering results while the latter applies spectral cluster-
ing [14] on the weighted average of affinity matrices A; and
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TABLE 1
PERFORMANCE COMPARISON OF STATIC AND VARIOUS EVOLUTIONARY SUBSPACE CLUSTERING ALGORITHMS ON REAL-TIME MOTION SEGMENTATION DATASET.
THE BEST RESULTS FOR EACH ROW ARE IN BOLDFACE FONTS. FOR THE CESM FRAMEWORK, THE TOP RESULTS IN EACH ROW CORRESPOND TO THE CASE OF
USING A CONSTANT SMOOTHING FACTOR WITH THE LOWEST AVERAGE ERROR WHILE THE BOTTOM RESULTS IN EACH ROW ARE ACHIEVED BY USING THE
PROPOSED ALTERNATING MINIMIZATION SCHEMES TO LEARN THE SMOOTHING PARAMETER AT EACH TIME STEP

Static AFFECT CESM
Learning method error (%) RI (%) runtime (s) error (%) RI (%) runtime (s) error (%) RI (%) runtime (s)
BP 10.76 86.29 46.16 9.86 87.78 47.35 ggg gg?i ii;(l)
OMP 31.66 62.00 1.80 14.47 86.21 3.31 Zgg gg;g ggg
AOLS (L =1) 16.27 78.41 4.08 9.27 90.76 5.39 ggz g(l)?; %g;
AOLS (L = 2) 8.54 89.10 3.75 6.17 93.08 5.17 gg(s) gggg ig;
AOLS (L = 3) 6.97 91.09 3.14 5.92 93.40 4.28 ggg gg;g i;g

A, ;. The default choices for the affinity matrix in AFFECT
are the negative squared Euclidean distance or its exponential
form. Under these choices, AFFECT achieves a clustering er-
ror of 44.1542 and 21.9643 percent for the negative squared
Euclidean distance or its exponential form, respectively, which
as we present next is inferior even to the static subspace clus-
tering algorithms. Hence, to fairly compare the performance of
different evolutionary clustering strategies, we employ BP [11],
[12], [58], OMP [17], [18], [60], and AOLS [22], [75] with L =
1,2, 3 to learn the representations for all schemes, including
AFFECT.

The performance of various schemes are presented in Table I;
there, the results are averaged over all sequences and all time in-
tervals excluding the initial time interval £ = 1. The initial time
interval is excluded because for a specific representation learn-
ing method (e.g., BP), the results of static subspace clustering
and evolutionary schemes coincide. Note that for the proposed
CESM framework, the top results in each row of Table I cor-
respond to the case of using a constant smoothing factor with
the lowest average error while the bottom results in each row
are achieved by using the proposed alternating minimization
schemes to learn the best smoothing parameter for each time
interval.

As we can see from the table, static subspace clustering has
higher clustering errors than their evolutionary counterparts;
this is due to not incorporating any knowledge about the rep-
resentations of the data points at other times. Furthermore, the
proposed CESM framework is superior to AFFECT in terms of
clustering error for all the representation learning methods. In
addition, the proposed CESM framework achieves lower run-
ning time than static and AFFECT strategies, especially for the
case of using OMP and AOLS as the representation learning
methods. This supports the observation that CESM promotes
sparser U; by leveraging C;_; in the process of learning C;
which in turn leads to faster convergence of OMP and AOLS.
Similar to what we observed on synthetic datasets, the smooth-
ing parameter of AFFECT (with both the default choices for
the affinity matrix and the SSC-based affinity learning meth-
ods) was approximately 0.5 for all sequences and thus unable to

capture evolutionary structure of the subspaces in a meaningful
and interpretable manner.

C. Ocean Water Mass Clustering

Ocean temperature and salinity has been tracked by Argo
ocean observatory system comprising more than 3000 floats
which provide 100,000 plus temperature and salinity profiles
each year. These floats cycle between the ocean surface and
2000 m depth every 10 days, taking salinity and temperature
measurements at varying depths. A water mass is characterized
as a body of water with a common formation and homogeneous
features, such as salinity and temperature. Study of water masses
can provide insight into climate change, seasonal climatological
variations, ocean biogeochemistry, and ocean circulation and its
effect on transport of oxygen and organisms, which in turn
affects the biological diversity of an area.

To illustrate the abilities of evolutionary subspace clustering
in modeling various real-world problems, including those out-
side the computer vision community, we analyze the global grid-
ded dataset produced via the Barnes method that was collected
and made freely available by the international Argo program.
This dataset contains monthly averages (since January 2004) of
ocean temperature and salinity with 1 degree resolution world-
wide [76], [77].

In order to identify homogeneous water masses, we apply
static and various evolutionary subspace clustering schemes,
using AOLS-based representation learning method with L = 3
on the temperature and salinity data at the location near the
coast of South Africa where the Indian Ocean meets the South
Atlantic (specifically, the area located at latitudes 25° S to 55°
S and longitudes 10° W to 60° E).

According to prior studies in [78]-[80], there are three well-
known and strong mater masses in this area: (1) Agulhas cur-
rents, (2) the Antarctic intermediate water (AAIW), and (3) the
circumpolar deep water mass. Therefore, following the discus-
sion in [78] we set the number of clusters to n = 4 to further
account for other water masses in the area.

The area described above accounts for N = 1921 evolv-
ing data points, each containing the monthly salinity and
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Clustering results of four different types of water masses at 1000 dbar near the coast of south Africa (colored with blue). using static and various

evolutionary subspace clustering schemes employing AOLS-based representation learning strategy with L = 3. The static subspace clustering scheme and
AFFECT fail to keep track of the orange water mass at time ¢ = 6 and ¢ = 4, respectively. However, our proposed CESM framework detects homogeneous water

masses across all time steps.

temperature from April to September for two years acquired
starting in the year 2004 and 2005 (¢ = 1) until year 2014 and
2015 (t = 6). Temperature and salinity were normalized by sub-
tracting the mean and dividing by the standard deviation of the
entire time frame of interest. This procedure results in 24 x N
data matrices {X; }Y_, which are then used as inputs to the evo-
lutionary subspace clustering algorithms. As stated in Section V,
we employ the Hungarian method [62] to match the clustering
solution at each time to the previous result.

The identified water masses by static, AFFECT, and CESM
schemes using AOLS with L = 3 as the representation learning
method are illustrated in Fig. 4 for ¢t = 1,2, 4, 6. The area col-
ored with blue corresponds to the coast of south Africa and other
islands in the target location. As we can see from the figure, all
schemes are able to identify homogeneous water masses. How-
ever, the static subspace clustering and AFFECT schemes fail
to properly detect the temporal changes in the formation of the
green and orange water masses. In particular, the formation of
the orange cluster evolves, as captured by the clustering results
of the CESM framework. Since the CESM framework accounts
for the underlying temporal behavior in the representation learn-
ing process and are able to infer appropriate smoothing factors,
they are able to accurately keep track of the orange and green
clusters across different time steps. Note that similarly to the re-
sults on synthetic and real-time motion segmentation datasets,
the smoothing parameter of AFFECT was approximately 0.5.
In addition, compared to AFFECT, CESM framework is capa-
ble of a faster adaptation to the changes in the formation of the
orange water mass from¢ = 1tot = 2.

The temperature and salinity averages for the water masses
clustered by the CESM framework are shown in Table II where

TABLE II
AVERAGE SALINITY AND TEMPERATURE OF FOUR DIFFERENT TYPES OF WATER
MASSES AT 1000 DBAR NEAR THE COAST OF SOUTH AFRICA IDENTIFIED BY
CESM FRAMEWORK EMPLOYING AOLS-BASED REPRESENTATION LEARNING
STRATEGY WITH L = 3 AT DIFFERENT TIME STEPS. THE RESULTS IN TOP,
MIDDLE AND BOTTOM FOR EACH CLUSTER CORRESPOND
TOt = 2,4, 6, RESPECTIVELY

water mass salinity level temperature (°C)
34.4554 3.4971
orange 34.3564 3.6164
34.5008 3.2141
34.3452 3.5849
green 34.6693 1.9910
34.3640 3.6482
34.6603 2.0177
yellow 34.4974 6.4445
34.6680 2.0914
34.4998 6.3313
purple 34.4649 3.4162
34.4997 6.5522

the results in top, middle and bottom for each cluster correspond
to ¢t = 2,4, 6, respectively. A combination of these values, the
geographic location of the clusters, and prior studies in [78], [79]
suggest that the purple, orange, and yellow clusters corresponds
to Agulhas currents, AAIW, and the circumpolar deep water
masses, respectively.

VII. CONCLUSION

In this paper, we studied the problem of evolutionary subspace
clustering that is concerned with organizing a collection of data
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points that lie on a union of low-dimensional temporally evolv-
ing subspaces. Unlike existing evolutionary clustering frame-
works, the evolving data in evolutionary subspace clustering is
assumed to be self-expressive, i.e., each data point can be rep-
resented by a linear combination of other data points in the set.
By relying on the self-expressiveness property, we proposed
a non-convex optimization framework that enables learning
parsimonious representations of data points at each time step
while taking into account representations from the preceding
time step. The proposed framework utilizes a convex evolution-
ary self-expressive model (CESM) to establish a relation be-
tween current and previous representations. Finding parameters
of CESM leads to a non-convex optimization problem; we de-
veloped schemes that rely on alternating minimization to solve
it approximately and to adaptively tune a smoothing parameter
that is reflective of the rate of evolution, i.e., indicates to what
extent the representations in consecutive time steps are similar
to each other. Our extensive studies on both synthetic and real-
world datasets illustrate that the proposed CESM framework
outperforms state-of-the-art static subspace clustering and evo-
lutionary clustering schemes in majority of scenarios in terms
of both accuracy and running time. Furthermore, the smoothing
parameter learned by the proposed framework is interpretable
and reflective of the “memory” of data representation in con-
secutive time steps.

As part of the future work, it would be of interest to extend
the CESM framework to other subspace clustering algorithms,
including the schemes that rely on finding low rank representa-
tions of data points. It is also valuable to exploit the theoretical
foundation of subspace clustering to analyze the performance of
the proposed frameworks, e.g., in the setting of rotating random
subspaces that we considered in this paper. Finally, it would be
of interest to develop more complex models for the evolutionary
subspace clustering problem, e.g., by using neural networks as
the parametric function or a matrix of smoothing parameters
in place of the proposed convex evolutionary self-expressive
model.
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