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Abstract

Microarrays are used for collecting information about a large number of different genomic particles si-
multaneously. Conventional fluorescent-based microarrays acquire data after the hybridization phase. Dur-
ing this phase, the targets analytes (e.g., DNA fragments) bind to the capturing probes on the array and, by
the end of it, supposedly reach a steady state. Therefore, conventional microarrays attempt to detect and
quantify the targets with a single data point taken in the steady-state. On the other hand, a novel technique,
the so-called real-time microarray, capable of recording the kinetics of hybridization in fluorescent-based
microarrays has recently been proposed. The richness of the information obtained therein promises higher
signal-to-noise ratio, smaller estimation error, and broader assay detection dynamic range compared to con-
ventional microarrays. In the current paper, we study the signal processing aspects of the real-time microar-
ray system design. In particular, we develop a probabilistic model for real-time microarrays and describe a
procedure for the estimation of target amounts therein. Moreover, leveraging on system identification ideas,
we propose a novel technique for the elimination of cross-hybridization. These are important steps toward
developing optimal detection algorithms for real-time microarrays, and to understanding their fundamental
limitations.
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1 Introduction

DNA microarrays [1]-[8] are affinity-based biosensors capable of testing tens of thousands of different genes

simultaneously. Sensing in DNA microarrays is based on hybridization, a chemical processes in which single

DNA strands bind to each other creating structures in lower energy states. Typically, the surface of a DNA

microarray comprises an array of spots, each spot containing a large number of identical single-stranded

DNA sequences (probes) designed to capture DNA molecules (targets) of interest. Microarrays are often

used to measure gene expression levels, i.e., to quantify the process of transcription of DNA information

into messenger RNA molecules (mRNA). The information transcribed into mRNA is further translated to

proteins, the molecules that perform most of the functions in cells. Therefore, by measuring gene expression

levels, we may be able to infer critical information about the functionality of cells or whole organisms [9]-

[11], study diseases and the effects of drugs on them [12]-[18], etc.

Today, the sensitivity, dynamic range, and resolution of the conventional DNA microarrays is limited by

shot-noise, cross-hybridization, saturation, probe density variations, sample preparation, as well as several

other sources of noise and systematic errors in the detection procedure [7], [19], [20]. For instance, during

a hybridization phase, including the steady-state, the number of formed target-probe pairs varies due to the

probabilistic nature of hybridization. It has been observed that these variations are very similar to shot-noise

(Poisson noise) at high expression levels, yet more complex at low expression levels where interference

becomes the dominating limiting factor of the signal strength [19], [21]. The interference is due to cross-

hybridization, a process in which targets may bind not only to their specific probes but to others as well.

On the other hand, saturation may limit dynamic range if the number of targets is much larger than the

number of available probes. Additionally, the measurements are also corrupted by the noise due to imperfect

instrumentation and other biochemistry independent noise sources. The sources of noise in conventional
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DNA microarrays are illustrated in Figure 1.

Figure 1: Sources of noise in conventional microarrays.

Many of the aforementioned limitations of conventional microarrays stem from the fact that they attempt

to characterize hybridization process based on a single measurement of its steady-state. In conventional mi-

croarrays, measured signals emanate from the fluorescently labeled target molecules which have hybridized

to the probes on the surface of a microarray. Typically, detection of the captured targets is carried out by

scanning and/or various other imaging techniques after the hybridization step is completed. The reason

for this is simple: a large concentration of floating (i.e., unbounded) labeled targets in the hybridization

solution may overwhelm the specific signal emanating from the captured targets. Hence, the conventional

microarrays typically do not allow the presence of the solution during the fluorescent and reporter intensity

measurements. Therefore, the solution is typically washed away before the measurements are taken.

Intuitively, acquiring larger amount of useful data may improve the signal-to-noise ratio (SNR) and the
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Figure 2: Illustration how the target-probe binding event is reported in conventional (left) and real-time
(right) microarrays.

performance of microarrays. However, the conventional fluorescent-based DNA microarray are incapable

of providing such additional data. This is the motivation behind real-time microarrays which are capable of

evaluating the abundance of multiple targets in a sample by performing a real-time detection of the target-

probe binding events [22], [23]. Real-time microarrays comprise probes that are labeled with fluorescent

molecules and are used to evaluate the abundance of targets that are labeled with quenchers, entities that

deactivate (quench) excited states of fluorescent molecules (by, say, energy transfer). In particular, in the

event of a target-probe binding, the quencher attached to the target sequence gets in close proximity of

the fluorescent molecule located at the end of the probe sequence. The fluorescence resonance energy

transfer (FRET) interaction between the fluorescent molecule and the quencher results in quenching, which

in turn indicates the amount of targets captured. Since in real-time microarrays the floating targets are not

fluorescently-labeled, it is possible to image the array as the hybridization reaction is unfolding. This allows

one to measure the kinetics of the reaction in real-time by observing the rate at which the light intensity

of the interacting probes decrease (due to the quenching). Moreover, real-time microarrays may employ

various time averaging schemes to suppress the Poisson noise and fluctuation of the target bindings. Due to

all these advantages, the real-time microarray systems achieve higher SNR, potentially significantly smaller
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estimation error, and broader detection dynamic range compared to the conventional microarrays. Figure 2

illustrates how the target-probe binding event is reported in conventional (on the left) and real-time (on the

right) microarrays.

Figure 3 indicates which of the problems that affect conventional microarrays (shown in Figure 1) are

circumvented in real-time microarrays. In particular, since we can scan a real-time microarray before adding

any of the targets, we can acquire information about the probe spots prior to an actual experiment and thus

correct for variations due to the array fabrication process. Moreover, the wealth of data provided by real-time

microarrays enables us to deal with the hybridization noise and saturation (see the discussion in Section 2

and Section 3); ultimately, it improves the detection and quantification of targets. We should also note that

due to the real-time data acquisition, real-time microarrays do not require the washing step and are thus not

affected by array washing artifacts (as implied by comparing Figure 3 with Figure 1).

Figure 3: Sources of noise in real-time microarrays. The effects of array fabrication variations, hybridiza-
tion noise, and saturation are lessened, the array washing artifacts are eliminated, and the quality of detec-
tion is improved, as compared to conventional microarrays (see Figure 1).
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As a preview of the more detailed experimental results which will follow later, the process of data

acquisition in real-time microarrays is illustrated in Figure 4. There, a few of the images acquired at different

stages of the hybridization process in a custom-designed array are shown. It can be seen how the light in the

probe spots which capture targets vanishes over time.

Figure 4: A series of images acquired during a real-time microarray experiment.

The paradigm shift in data acquisition, from measuring a single steady-state data point in the con-

ventional microarrays to obtaining full hybridization kinetics in the real-time microarray systems, requires

novel detection algorithms. These need to be preceded by the development of probabilistic models of the hy-
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bridization process. There has been a significant amount of prior work on modeling hybridization (see, e.g.,

[24], [25]) and on modeling of hybridization in microarrays (see, e.g., [19], [21], [28], and the references

therein). However, there are relatively few attempts on modeling the kinetics of hybridization, and consec-

utive experimental verification of those models. Examples include the real-time study of hybridization with

optical wave guides in [26], and the study of the hybridization process in a fluorescence-based system with

a single surface-bound probe and a single target in [27].

In this paper, we study the modeling of and estimation in real-time microarrays [23]. The paper is

organized as follows. In Section 2, we develop a probabilistic model of the hybridization process and

propose an estimator of the model parameters. The model parameters – in particular, the binding rate – can

be used for quantification of the targets that are being tested. This is discussed in Section 3. Motivated by

system identification ideas, in Section 4 we develop techniques for canceling cross-hybridization in real-

time microarray experiments. Section 5 presents experimental results, while the summary and conclusion

are given in Section 6.

2 A probabilistic model of the hybridization process

Before entering the discussion about target estimation, we first need to develop a probabilistic model of the

hybridization process. Let the hybridization process start at t = 0. Consider the change in the number of

target molecules bound to the probes in one of the spots of a real-time microarray during the time interval

(i∆t, (i+ 1)∆t). We can write

nb(i+ 1)− nb(i) = [nt − nb(i)]pb(i)∆t− nb(i)pr(i)∆t,
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where nt denotes the total number of the target molecules present, nb(i) and nb(i+1) are the numbers of the

bound target molecules at t = i∆t and t = (i+ 1)∆t, respectively. Moreover, pb(i) denotes the probability

that a free target binds to a probe during the ith time interval; we note that pb(i) consists of two components,

the probability that a target molecule is close to a probe and the probability that it binds to the probe. Finally,

pr(i) denotes the probability that a bound target is released from the probe it is bound to during the ith time

interval.

Hence, we can write

nb(i+ 1)− nb(i)
∆t

= [nt − nb(i)]pb(i)− nb(i)pr(i). (1)

The probability of an event where a target binds to a probe depends upon availability of the probes on the

surface of an array – depletion of the number of available free probes means that, at any time, free targets

compete for the remaining available probes and thus the binding probability decreases as the number of

bound targets grows. If we denote the number of probes in a spot by np, a simple model for pb(i) is given

by

pb(i) =
(

1− nb(i)
np

)
pb =

np − nb(i)
np

pb, (2)

where pb denotes the probability of the event where a target bounds to a probe assuming an unlimited

abundance of the probes. [Note that, if the number of probes were infinite, one could approximate the

binding probability by a constant.] On the other hand, probes depletion does not affect the release probability

and it is reasonable to assume that the probability of an event where a bound target molecule gets released

from a probe does not change between time intervals, i.e., pr(i) = pr, for all i.
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By combining (1) and (2) and letting ∆t→ 0, we arrive to the following differential equation,

dnb
dt

= (nt − nb)
np − nb
np

pb − nbpr

= ntpb −
[
(1 +

nt
np

)pb + pr

]
nb +

pb
np
n2
b . (3)

[We note that in [28], the number of hybridized target-probe pairs is modeled by a rate equation similar to the

nonlinear differential equation (3) (although derived differently). However, [28] employs the model only to

analyze the equilibrium (i.e., the steady-state) of the reaction, and do not study kinetics of the hybridization

process.]

Note that in (3), only nb = nb(t), while all other quantities are constant parameters, albeit unknown.

Before proceeding any further, we will find it useful to denote

α = (1 +
nt
np

)pb + pr, β = ntpb, γ =
pb
np
. (4)

Clearly, from (4) we can express pb, pr, and np as pb = β
nt

, pr = α− (1 + nt
np

)pb, and np = pb
γ . Moreover,

using (4), we can write (3) as

dnb
dt

= β − αnb + γn2
b = γ(nb − λ1)(nb − λ2), (5)

where λ1 and λ2 are introduced for convenience and are given by

λ1,2 =
np
2

(
pr
pb

+ 1 +
nt
np

)
± np

2

√(
nt
np
− 1
)2

+
(
pr
pb

+ 1
)2

+ 2
ntpr
nppb

− 1.
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Note that γ = β/(λ1λ2). The solution to (5) is found as

nb(t) = λ1 +
λ1(λ1 − λ2)

λ2e
β( 1
λ1
− 1
λ2

)t − λ1

. (6)

We should point out that (3) describes the change in the amount of target molecules, nb, captured by

the probes in a single probe spot of the microarray. Similar equations, possibly with different values of the

parameters np, nt, pb, and pr, hold for other spots and other targets.

From (6) it follows that

β = ntpb =
dnb
dt

∣∣∣∣
t=0

. (7)

Thus, the slope of the hybridization curve at t = 0 contains information about the amount of the target.

Note that, in the real-time microarray experiments, we actually observe a decrease in the light intensity of

fluorescent tags as targets bind to probes and quenchers ”turn-off” the light, which is essentially information

about np − nb, not nb; nevertheless, since

dnb
dt

∣∣∣∣
t=0

= − d(np − nb)
dt

∣∣∣∣
t=0

,

we can indeed estimate the amount of targets from the early-stage hybridization data. This allows for broader

dynamic range than that of conventional microarrays since by not waiting for steady-state of the reaction we

alleviate the effect of saturation. Moreover, detection in real-time microarrays is potentially much faster than

in conventional microarrays – the former may be done within minutes from the start of the hybridization

process, while the latter requires hybridization to reach steady-state which may take several hours.

On a related note, inverse of the time constant reflecting how fast nb(t) in (6) reaches steady-state is
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given by

τ−1
nb

= −β
(

1
λ1
− 1
λ2

)
= γ (λ1 − λ2)

= pb

√(
nt
np
− 1
)2

+
(
pr
pb

+ 1
)2

+ 2
ntpr
nppb

− 1. (8)

Clearly, τ−1
nb

is a function of nt/np. In fact, if nt >> np, τ−1
nb

is a linear function of the amount of targets

since, in this case, τ−1
nb
≈ pbnt/np. Now, the larger the number of targets, nt, the faster the reaction since

more targets compete for np probes. For the same reason, the smaller the number of available probes, np, the

faster the reaction. This can be used to further expand the dynamic range of a real-time microarray system.

In particular, the dynamic range provided by a single probe spot is limited by the span of observable reaction

rates – say, from seconds to hours. On the other hand, by having several probe spots with different amounts

of probe molecules, we can observe a broader range reaction rates than with just one spot.

3 Estimating parameters of the model

In this section, we outline a procedure for the estimation of parameters of the model developed in Sec-

tion 2. Ultimately, by observing the hybridization process, we would like to obtain nt, the number of target

molecules. In addition, to fully characterize the hybridization process (including the computation of the

reaction rate), we also need to find the parameters pb , pr, and np. However, we do not have direct access

to nb(t) in (6), but rather to yb(t) = knb(t), where k denotes a transduction coefficient. In particular, we
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observe

yb(t) = λ∗1 +
λ∗1(λ∗1 − λ∗2)

λ∗2e
β∗( 1

λ∗1
− 1
λ∗2

)t
− λ∗1

, (9)

where λ∗1 = kλ1, λ∗2 = kλ2, and β∗ = kβ. For convenience, we also introduce

γ∗ =
β∗

λ∗1λ
∗
2

=
γ

k
, and α∗ = γ∗(λ∗1 + λ∗2) = α. (10)

From (9), it follows that

β∗ =
dyb
dt

∣∣∣∣
t=0

. (11)

Assume, without a loss of generality, that λ∗1 is the smaller and λ∗2 the larger of the two, i.e., λ∗1 =

min(λ∗1, λ
∗
2) and λ∗2 = max(λ∗1, λ

∗
2). From (9), we find the steady-state of yb(t),

λ∗1 = lim
t→∞

yb(t). (12)

So, from (11) and (12) we can determine β∗ and λ∗1, two out of the three parameters in (9). To find λ∗2, γ∗,

and β∗, one needs to estimate τ−1
nb

= γ∗(λ∗1 − λ∗2) from the acquired data (more on this in Subsection 3.1)

and use it in combination with (10). Then, we may attempt to use (4) to obtain pb, pr, np, and nt from α∗,

β∗, and γ∗. However, (4) provides only 3 equations while there are 4 unknowns that need to be determined.

Therefore, we need at least 2 different experiments to find all of the desired parameters. Assume that the

arrays and the conditions in the two experiments are the same except for the target amounts applied. Denote

the target amounts by nt1 and nt2 ; on the other hand, it is reasonable to assume that pb and pr remain the

same in the two experiments. Let the first experiment yield α∗1, β∗1 , and γ∗1 , and the second one yield α∗2, β∗2 ,

12



and γ∗2 , where γ∗2 = γ∗1 . Then it can be shown that

pb =
β∗1γ

∗
1 − β∗2γ∗2
α∗1 − α∗2

, pr = α∗1 − pb −
β∗1γ

∗
1

pb
. (13)

Moreover,

np =
pb
kγ∗1

, nt1 =
β∗1γ

∗
1

p2
b

np, nt2 =
β∗2γ

∗
2

p2
b

np. (14)

Note that np, nt1 , and nt2 in (13) - (14) are known within the transduction coefficient k, where k = yb(0)
np

.

To find k and thus unambiguously quantify np, nt1 , and nt2 , we need to perform a calibration experiment

(i.e., an experiment with a known amount of targets nt).

3.1 Estimating the amount of targets via least-squares

At the early stage of the hybridization reaction, the quadratic term in (5) can be neglected and we can write

dnb
dt

= β − αnb, (15)

where α and β are given by (4). The solution to (15) is given by nb(t) = C(1 − e−t/τ ). The amount of

unbound probes (which we measure), is given by

yb(t) = Ce−t/τ , (16)

where τ = 1/α and C = β/α. The amount of targets, nt, can be estimated from C and τ . In particular, in a

comparative experimental trial where a test sample containing nt1 of a target is compared against a reference
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sample containing nt2 of the same target, we can write

nt1
nt2

=
β1

β2
=
C1/τ1

C2/τ2
=
C1

C2

τ2

τ1
,

where {C1, τ1} and {C2, τ2} are the parameters of the model (16) for the early stage of the target’s hy-

bridization process in the test and the reference sample, respectively. [We should also note that for nt � np,

the measured signal follows (16) not only at the early stage but throughout the reaction. This holds since as

seen from (8), for nt � np we have τ−1
nb
≈ α = pbnt/np.]

The real-time microarray system samples the signal (i.e., the light intensity) of the probe spots at certain

time intervals (multiples of ∆, say) and thus obtains the sequence

yn = Ce−n∆/τ + v(n∆),

where v(t) denotes the noise. Assume that the length of the sequence {yn} is N . To estimate τ and C, we

solve the inconsistent linear system of equations,



log yb(1)

log yb(2)

...

log yb(N)


︸ ︷︷ ︸

z

=



1 −∆

1 −2∆

...

1 −N∆


︸ ︷︷ ︸

H

·

 logC

1/τ


︸ ︷︷ ︸

x

.

A straightforward solution minimizing the mean-square error is given by x̂ = (H∗H)−1H∗z. This can be

implemented via the computationally efficient recursive least-squares (RLS) algorithm (e.g., [33]).
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4 Cross-hybridization

Focusing on the early phase of the hybridization process and its reaction rate opens up the possibility of

suppressing cross-hybridization, an event where interfering targets bind to probes designed to test another

target. When a single target analyte is present, the number of available probe molecules, or equivalently

the light intensity of a probe spot, decays exponentially with time according to (16). If, in addition to

hybridization of the target of interest, a number of other targets cross-hybridize to the same probe spot, the

light intensity of the probe spot will decay as the sum of several exponentials,

I(t) =
K∑
k=0

Cke
−αkt, (17)

where index k = 0 corresponds to the desired target, and k = 1, . . . ,K correspond to the cross-hybridizing

analytes. The reaction rates for the different analytes differ due to different numbers of analytes, binding

probabilities, etc. (we omit explicit expressions for brevity). Therefore, if we can estimate the reaction rates

from (17), we should be able to determine the number of molecules for each of the analytes binding to the

spot.

The real-time microarray system samples the signal and obtains the sequence

yn = I(n∆) + v(n∆) =
K∑
k=0

Cke
−n∆αk + v(n∆),

for n = 0, 1, . . . , T , where T is the total number of samples, and v(t) represents the measurement noise.

Defining uk = e−∆αk , we may write

yn =
K−1∑
k=0

Cku
n
k + v(n). (18)
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The goal is to

(i) determine the value of K (i.e., how many analytes are binding to the probe spot),

(ii) estimate the values of the pairs {Ck, uk} for all k = 0, . . . ,K − 1, and

(iii) determine the number of copies of each analyte.

To solve (i), i.e., to determine the number of exponential components in a noisy signal, the measurements

are used to form the so-called Hankel matrix of the form



yT/2 yT/2−1 . . . y1 y0

yT/2+1 yT/2 . . . y2 y1

...
...

. . .
...

...

yT yT−1 . . . yT/2+1 yT/2


.

When yn is the sum of K exponentials, the above Hankel matrix has rank K, i.e., only K nonzero eigen-

values. When yn is noisy, the standard practice is to compute the singular values of the Hankel matrix and

estimate K as being the number of significant singular values.

The problem of determining the number of exponential signals in noisy measurements, and estimating

the individual rates of each component, is a classical one in signal processing and is generally referred to

as system identification (see, e.g., [29], [30], [31], [32], and the references therein). The basic idea is that,

when the signal yn is the sum of K exponentials, it satisfies a Kth order homogenous difference equation

yn + h1yn−1 + · · ·+ hK−1yn−K+1 + hKyn−K = 0, (19)
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whose characteristic equation

zK + h1z
K−1 + · · ·+ hK−1z + hK = 0 (20)

has roots equal to the uk in (18). Therefore, to find the uk, from which we determine the rates αk and thereby

the amounts of targets present, we first must find the coefficients h1, h2, . . . , hK . In a noiseless scenario,

Prony’s method (see [29] and the references therein) provides an exact solution: using the measured data

sequence {yn}, from (19) we write



yK−1 yK−2 . . . y1 y0

yK yK−1 . . . y2 y1

...
...

. . .
...

...

yT−1 yT−2 . . . yT−K+1 yT−K


︸ ︷︷ ︸

B



h1

h2

...

hK


︸ ︷︷ ︸

h

= −



yK

yK+1

...

yT


︸ ︷︷ ︸

b

(21)

for T = 2K − 1, which is solved to obtain h. The uk are then obtained as the roots of (20). Finally, to find

c = [C0 C1 . . . CK−1], we solve the system V c = b, where the Vandermonde matrix,

V =



1 . . . 1

z1 . . . zK

...
. . .

...

zT−1
1 . . . zT−1

K



spans the K-dimensional data subspace.

In practice, the measured data is noisy and thus we require robust estimation of the uk. To this end, we
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may use a variety of different techniques including – but not limited to – total least squares (TLS), ESPRIT,

modified Prony’s method, etc.

The TLS approach [29], in particular, addresses limitations of the ordinary least-squares (LS) solution

to (21) (given by ĥ = −(B∗B)−1B∗b). The LS limitations arise from the assumption that the data matrix

B is noise free. In the TLS approach, one forms the (T −K + 1)× (K + 1) Hankel matrix

[ b B ] =



yK yK−1 . . . y1 y0

yK+1 yK . . . y2 y1

...
...

. . .
...

...

yT yT−1 . . . yT−K+1 yT−K


(22)

and then identifies the h = [h1 . . . hK ] as the (K + 1)st right singular vector of (22) (for more details,

see [29]). The complexity of the TLS approach is essentially determined by computing the singular value

decomposition (SVD) of (22), which requires O(K3) computations.

The SVD is often the first step in the ESPRIT algorithm [31], too, where it is used to obtain a T ×K

matrix U which spans the signal subspace. Let U1 denote the matrix comprising all but the last row of U ,

and let U2 denote the matrix comprising all but the first row of U . It can be shown (see [31] for details) that

the eigenvalues of Ψ = U †1U2 are good estimates of the uk in (18), where (·)† denotes the Moore-Penrose

pseudo-inverse of its argument. The complexity of performing the SVD, computing the Ψ, and finding the

eigenvalues of Ψ, is O(T 3), O(TK2), and O(K3), respectively.

In Figure 5, the left plot compares the performances of the TLS approach, the ESPRIT algorithm, and the

so-called modified Prony algorithm [32] (for brevity, we omit the discussion on the modified Prony algorithm

and refer the interested reader to [32]). We plot the mean-square error as a function of the signal-to-noise

ratio (SNR) (the SNR is computed with signal energy averaged over the time interval 0 < t < 200min, the
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Figure 5: Mean-square estimation error (relative) plotted as a function of the ratio nh/nc, given ph/pc = 5,
nh = 109.

same interval during which the samples processed by the estimation algorithms were collected). We consider

the situation where two targets bind to the same probe spot – one due to hybridization, and the other due

to cross-hybridization. The parameters of the systems are chosen so as to mimic realistic experimental

scenarios; in particular: np = 1.6 × 1011, nt1 = nt2 = 1010, pb1 = 4 × 10−2, pb2 = 2 × 10−2. The TLS

algorithm performs the best, followed by the ESPRIT algorithm, and the modified Prony approach.

On the right plot in Figure 5, we focus on the best performing one of the three considered algorithms,

the TLS, and study its minimum mean-square estimation error over the range of ratios nt1/nt2. The prob-

ability of hybridization is assumed to be 5 times greater than the probability of cross-hybridization (i.e.,

pt1/pt2 = 5). The number of hybridizing target molecules is nt1 = 109, while the number of cross-

hybridizing molecules is varied. The simulation studies indicate potentially successful suppression of cross-

hybridization over 3 orders of magnitude of nt1/nt2.
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5 Experimental Verification

In this section, we present a series of experimental results which demonstrate the data acquisition and es-

timation in real-time microarrays. The microarrays were manufactured and the materials for experiments

was prepared in the Millard and Muriel Jacobs Genetics and Genomics Laboratory at California Institute of

Technology. The hybridization data is acquired with a Zeiss Pascal laser scanning microscope. The details

of the experiments are given below.

Example 1 [Oligo targets.]

For the first set of experiments, we designed and printed a number of custom 6 × 6 microarrays, and

employed them to test a set of oligo targets. For each target analyte there are multiple probe spots printed

on an array, where different spots have different densities of probe molecules. The probes were labeled with

Cy5 dyes, and the targets with BlackHoleTM quenchers.

We consider two experiments and the data acquired therein; in the first experiment, 2ng/50µl of the

target is applied to the microarray, whereas in the second experiment 0.2ng/50µl of the target is applied. Let

us focus on one of the targets and two of the probe spots designed to test that target. One of the probe spots

contains twice as many probe molecules as the other one; we refer to the former as the high density and to

the latter as the low density probe spot. The hybridization process data acquired at the low and high density

probe spots is shown in Figure 6 and Figure 7, respectively.

We employ the least-squares approach of Section 3.1 to process the signal measured in the early part of

the reaction and compute the corresponding time constants (since the starting light intensities are the same,

C1 = C2, and we normalized the signal). The computed time constants are illustrated with the exponential fit

e−t/τ , shown as the dashed curves in Figure 6 and Figure 7. As discussed in Section 3.1, the ratio of the time

constants should correspond to the ratio of the target amounts in the respective experiments (in particular, as

20



Figure 6: The signal measured at a low density probe spot in an experiment with 2ng (left) and 0.2ng (right)
of the oligo target applied to an array. The dashed line represents the exponential fit according to (16),
where the time constant is computed using the least-squares as described in Section 3.1.

stated in Section 3.1, nt1/nt2 = τ2/τ1). This is indeed the case: the ratio of the time constants of the signal

measured at the low density spots in the two experiments shown in Figure 6 is τ2/τ1 = 10.0. Moreover, the

ratio of the time constants of the signal measured at the high density spots in the two experiments shown in

Figure 7 is τ2/τ1 = 11.6. On the other hand, the ratio of the amounts of the target in the two experiments

is precisely nt1/nt2 = 10 (recall that the amounts of the target in the two experiments are nt1 = 2ng and

nt2 = 0.2ng, respectively). This implies that we can accurately estimate relative ratio of the number of

targets in a test and a reference sample by comparing the time constant of the hybridization process in the

test sample with the time constant of the hybridization process in the reference sample.

Note that, in this example, conventional microarrays would not give reliable answers. For the low

density spots in Figure 6, for instance, the reaction with the larger amount of target molecules reaches the

steady-state in 2.5− 3 hours. The reaction with the smaller amount of target molecules takes 25− 30 hours

to enter the equilibrium (the figure shows only 10 hours). A conventional microarray is typically left to

hybridize for several hours, and then the corresponding measurements (a single data point for each spot) are
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Figure 7: The signal measured at a high density probe spot in an experiment with 2ng (left) and 0.2ng
(right) of the oligo target applied to an array. The dashed line represents the exponential fit according to
(16), where the time constant is computed using the least-squares as described in Section 3.1.

compared against each other. But this implies that the conventional microarray technique would generate a

result based on comparing a hybridization process which entered its equilibrium with another hybridization

process which is far from its equilibrium – this certainly leads to quantitatively erroneous conclusions.

Example 2 [cDNA targets.]

For the following experiment, we used a number of cDNA targets. In particular, the targets were gener-

ated from The RNA SpikesTM, a commercially available set of 8 purified Escherichia Coli RNA transcripts

purchased from Ambion Inc. Lengths of the RNA sequences in the set are (750, 752, 1000, 1000, 1034,

1250, 1475, 2000), respectively. [These spikes are typically used for calibration purposes in conventional

microarrays.] The RNA sequences were reverse transcribed to obtain the cDNA targets, which were then

labeled with Cy5 dyes. Moreover, we designed 8 probes (25mer oligonucleotides) and printed slides where

each probe was repeated in 6 different spots; hence, the printed slides have 48 spots.

We focus on two experiments, one where the concentrations of the targets was 80ng/50µl, and the other

where the concentrations of the targets was 5 times smaller, i.e., 16ng/50µl. Consider the hybridization

22



Figure 8: The signal measured at a single probe spot in an experiment where 80ng (left) and 16ng (right) of
the target is applied to the array. The smooth line represents the fit obtained using (9).

data acquired by one of the probe spot in the two experiments. The signal measured in the first experiment,

where 80ng of the target is applied to the array, is shown in the left plot of Figure 8. The dashed line shown

in the same figure represents the fit obtained according to (9). In the second experiment, 16ng of the target

is applied to the array. The measured signal, and the corresponding fit obtained according to (9), are both

shown in the right plot of Figure 8.

By estimating the slopes of the hybridization signals, we find that

nt1/nt2 = β2/β1 = 3.75. (23)

Note that the above ratio is fairly close to its true value, 80/16 = 5. Furthermore, from the acquired data we

can estimate the parameters of the model developed in the previous sections. In particular, applying (13),

we obtain pb = 1.9× 10−3, pr = 2.99× 10−5. Moreover, assuming that one of the experiments is used for

calibration, we find that the value of the transduction coefficient is k = 4.1× 10−4, and that the number of

probe molecules in the observed probe spots is np = 1.6× 1011.
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Example 3 [cDNA targets in biological background.]

Finally, we repeated the experiments of Example 2 but with added biological background in order to

emulate a realistic microarray experiment. The biological background employed is the total mouse DNA.

Figure 9: The signal measured at a single probe spot in an experiment where 80ng (left) and 16ng (right) of
the target, and 2µg of the mouse DNA background, is applied to the array. The dashed line represents the
derivative at t = 0 computed as (7).

The signal measured in the first experiment, where 80ng of the target and 2µg of the mouse DNA is

applied to the array, is shown in the left plot at Figure 9. The dashed line shown in the same plot represents

the exponential fit according to (16), with the time constant computed via the least-squares as described in

Section 3.1. In the second experiment, 16ng of the target and 2µg of the mouse DNA is applied to the array.

The measured signal, and the corresponding exponential fit according to (16), are both shown in the right

plot of Figure 9.

The ratio of the time constants of the measured signal in the two experiments is τ2/τ1 = 4, while

the ratio of the amounts of targets is nt1/nt2 = 80/16 = 5. This indicates robustness of the real-time

microarrays with respect to the presence of rich biological background.
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6 Summary and Conclusion

In this paper, we considered a novel real-time microarray system and the techniques for estimating the

amounts of targets tested therein. Unlike the conventional ones which measure only the steady-state of a

hybridization reaction, the real-time microarrays are capable of acquiring the entire kinetics of the reaction.

We developed a probabilistic model for the kinetics of the hybridization process, and showed how to estimate

the parameters of the model, including the amount of targets. Since the estimation is performed early in the

hybridization process, the real-time microarray systems need not wait for the steady-state of the experiment;

thus they have a significant speed advantage over the conventional microarrays.

In fact, many of the problems that affect conventional microarrays are circumvented in real-time mi-

croarrays. Since a real-time microarray can be scanned before a sample containing targets is applied to it,

we can acquire information about the probe spots prior to an actual experiment; hence, we can correct for

the inevitable variations occurring in the array fabrication process. In addition, the wealth of the data that

the real-time microarrays provide enables us to deal with the hybridization noise and saturation. Ultimately,

an increased amount of acquired data improves the accuracy, reliability, and dynamic range of the detection

and quantification of targets.

Moreover, the real-time microarray data acquisition enables elimination of cross-hybridization. In par-

ticular, if more than one target binds to a microarray spot, each contributes an exponentially decaying com-

ponent to the total signal acquired by the real-time microarray. Leveraging on the system identification

ideas, we proposed techniques for separating the components of the composite signal, thus estimating the

amounts of both the hybridizing as well as cross-hybridizing target analytes. This is a signal processing

problem and we have solved it using advanced signal processing methods such as the total least-squares

algorithm, modified Prony approach, the ESPRIT algorithm, etc.
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Finally, we presented extensive experimental results verifying the validity of the model and demonstrated

that the amounts of targets can be estimated with high accuracy. The experimental results suggest robustness

of the platform and the estimation methodology with respect to the presence of rich biological background.
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