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Abstract—This paper studies the haplotype assembly problem
from an information theoretic perspective. A haplotype is a
sequence of nucleotide bases on a chromosome, conveniently
represented by a binary string, that differ from the bases in
the corresponding positions on the other chromosome in a ho-
mologous pair. Information about the order of bases in a genome
is readily inferred using short reads provided by high-throughput
DNA sequencing technologies. Here, the recovery of the target
pair of haplotype sequences using short reads is rephrased as a
joint source-channel coding problem. Two messages, representing
haplotypes and chromosome memberships of reads, are encoded
and transmitted over an erasure channel, where the channel
model reflects salient features of high-throughput sequencing. In
the absence of sequencing noise, both the necessary and sufficient
conditions are presented with order-wise optimal bounds for
perfect haplotype recovery. A brief discussion of the erroneous
scenario is also included in the paper.

I. INTRODUCTION

Diploid organisms, including humans, have homologous
pairs of chromosomes. One chromosome in a pair is inherited
from the mother and the other from the father. The two
chromosomes in a pair are similar and essentially carry the
same type of information but are not identical. In particular,
chromosomes in a pair differ at a small fraction of positions
(i.e., loci). Such variations are referred to as single nucleotide
polymorphisms (SNPs). A haplotype is the collection of SNPs
on a single chromosome, of a chromosome pair that are
associated with one another. It is believed that the knowledge
of each haplotype for each individual in the species helps
to understand the genetics of common diseases. However,
direct measurement and identification of the whole haplotype
is generally expensive and inefficient. Therefore, haplotype
determination is more commonly and efficiently done by
computational inference in practice. Data is generally provided
in diploid form known as a genotype, where contributions from
both chromosomes are conflated. Subsequently, the goal is
to determine a good set of haplotypes that resolve a given
collection of genotypes. This body of work has resulted
in the development of haplotype inference algorithms from
genotypes, also known as haplotype phasing [1].

Haplotype assembly (also called “individual haplotyping”)
is rapidly emerging as an alternative to haplotype phasing.
In this approach, haplotypes are reconstructed from numerous
short haploid segments of DNA. In next generation sequenc-
ing methods, the length of each fragment (called “read”) is
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Fig. 1: Paired-end fragments from paired chromosomes. Rect-
angles linked by lines above and below the target chromosome
pair represent paired-end reads, and their relative positions
comparing to chromosome pair show their coverage regions.

approximately 100 to 1000 base pairs [2]. This length is
comparable to the distance between SNPs on chromosomes.
To this end, a single read is statistically incapable of covering
more than one variant site. Further, a single read is unable
to furnish information that can aid in the determination of
which chromosome the read is originally sampled from [3].
Therefore, the approach of paired-end sequencing [4], also
known as mate-paired sequencing [5] is used. This process
produces pairs of short reads that are derived from two
different segments of a DNA sequence, where the insert size
between one and the other is known. These mate-pairs make
it possible to combine information on SNPs within the same
haplotype over a long region, and to further assemble them
together to recover the original haplotype. Fig. 1 illustrates
the procedure of generating paired-end reads from original
pair of chromosomes, where each read may cover two or
more variant sites. The goal of haplotype assembly is to
identify the correct source chromosome from which fragments
are sampled, and to reconstruct both haplotype sequences. A
fragment conflict graph [6] interpretation converts the original
problem into partitioning a bipartite if the data is error free.
Subsequently, for erroneous data, it formulates haplotyping
into a optimization problem of minimizing the number of
transformation steps to generate a bipartite graph [7].

In this paper, we develop an information theoretic under-
standing of haplotype assembly. In this process, we determine
necessary and sufficient conditions for assembly, both in the
absence and presence of noise. The rest of paper is orga-
nized as follows. The next section describes the formulation



of haplotype assembly problem. In Section III, we present
an information theoretic view of haplotype assembly in the
absence of sampling errors, and the erroneous case is discussed
in Section IV. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

A SNP is a single base pair position where nucleotides
from both chromosomes differ from each other. Usually, there
are only two variants at one SNP site in diploid organisms.
The more frequent variant is referred to as the major allele
(which we denote as 0), and the less frequent one as the
minor allele (which we denote as 1). With this notation, a
haplotype consisting of all information of SNP sites on one
of the paired chromosome can be represented as a binary
sequence. Specifically, we focus on a pair of target haplotypes
with complementary relationship, i.e. hhh = hhh, where

hhh = (h1,h2, . . . ,hn),

and n is the length of haplotypes.
Each paired-end read contains partial information about

either of these two haplotypes. Consider an indicator random
variable ci, i ∈ {1, . . . ,m} (m is the number of reads), which
corresponds to the chromosome membership for read i. Here,
ci equals 0 if read i is sampled from hhh and equals 1 otherwise.
Due to a limitation of read length, only a small fraction of
entries are observed. In other words, a paired-end read could
be considered as a sequence drawn from the alphabet {0,1,×},
where “×” refers to a lack of information at this site due to the
absence of coverage. Typically, only 2 entries are numerical
in one paired-end read, if the effect of burst mutations is
ignored. The collection of all reads forms a matrix RRR, whose
rows correspond to m paired-end reads, and whose columns
correspond to n SNP sites. The ith row of RRR is denoted as rrri,
and the jth element of rrri is denoted as ri j.

In the absence of sampling noise, every observed element
in matrix RRR is obtained as an exclusive-OR (XOR) of the
corresponding SNP and associated membership information.
Formally, this relationship is given by

ri j = h j⊕ ci. (1)

At this point, the observed matrix RRR could be understood to
be obtained from a rank 1 matrix SSS, whose row is either hhh or
h̄hh based on the value of ci, and most of entries are erased due
to reading process. Hence, the task of haplotype assembly is
to recover haplotype hhh and chromosome membership vector
ccc, or equivalently the matrix SSS, from the observation matrix
RRR.

An example, illustrated by Fig. 1, corresponds to the
scenario of 6 SNP sites and 8 paired-end reads. Since
only the first 4 reads are (shotgun) sequenced from chro-
mosome 1, we obtain the chromosome membership vector
ccc = (0,0,0,0,1,1,1,1). If denoting the haplotype from chro-
mosome 1 as hhh = (1,1,0,1,0,0), then the observed reads

Ŝ
Encoder

h

c
DecoderChannel

S R

Fig. 2: Information theoretic view of the haplotype assembly
problem.

matrix, without the influence of error, is given by

RRR =



× × 0 × 0 ×
× 1 × × 0 ×
1 × × 1 × ×
× × 0 1 × ×
0 × 1 × × ×
× 0 × × 1 ×
0 × × 0 × ×
× × × × 1 1


. (2)

III. INFORMATION THEORETIC VIEW

From a joint source-channel coding perspective, haplotype
assembly comprises of aiming to recover two sources being
communicated through an erasure channel (see Fig. 2). The
first source is haplotype information, hhh, and the second source
is the chromosome membership vector ccc. Both these vectors
are assumed to originate from a uniform distribution, i.e.
each entry obeys Bernoulli distribution with parameter 1/2.
These two sources are encoded jointly using the function:
f : {0,1}n×{0,1}m→{0,1}m×n such that the encoded code-
word SSS = f (hhh,ccc). In particular, each entry in SSS is given
by si j = h j ⊕ ci, which implies the encoder is a bijection.
After receiving the output from channel, the decoder uses
the decoding function to map its channel observations into
an estimate of the message. Specifically, we consider the
decoder (corresponds to a recovery algorithm for haplotype
assembly) given by g : {0,1}m×n → {0,1,×}m×n, such that
ŜSS = g(RRR), where ŜSS represents the estimate. We define the error
probability of decoding as

Pe , Pr{ŜSS 6= SSS|RRR}. (3)

As in conventional analysis, we consider this probability over
all possible choices of matrix SSS (denote the assemble as S),
and desire m to be large enough such that there exists at least
one decoding function g with small probability of error.

The channel model reflects particular reading technique.
More precisely, for paired-end reading, the channel W :
{0,1}m×n → {0,1,×}m×n considered for the moment is de-
scribed as follows.

1) Erasures happen independently across rows.
2) In each row, only 2 entries remain and their positions

are random.
To this end, we observe only 2 entries of each row from
SSS, and observations are independent across different rows.
A straightforward inference from this channel model is that
for each column of RRR, the number of remaining entries
approximately obeys Poisson distribution, which is consistent
with the basic observation of paired-end reading. Another
point is the expected length of insert size between these 2



sampled entries within a row is given by (n− 2)/3, which
also accords with the practical consideration that this value
could not be made arbitrarily large due to the limitation of
reading technology.

Based on this model for haplotype assembly, we consider
the necessary and sufficient conditions for recovery.

Theorem 1. Given 2 arbitrary observations in each row, the
original haplotype matrix SSS could be reconstructed only if the
number of reads satisfies

m = Ω(n),

where n is the length of target haplotype. Moreover, if
m = Θ(n logn), a reconstruction algorithm, erasure decoding,
could determine SSS accurately with high probability. Specifi-
cally, given a target small constant ε , there exists an n large
enough such that by choosing m = Θ(n lnn) the probability of
error Pe ≤ ε .

A. Necessary Condition for Recovery

Using Fano’s inequality [8], we find that:

H(SSS|RRR)≤ Pe log |S| ≤ Pe(m+n), (4)

where S is the assemble of all possible SSS, and its size is upper
bounded by 2m+n.

Denote the matrix TTT as indicators of locations where SSS is
observed, i.e. ti j = 1 if ri j 6=×, and ti j = 0 otherwise. Then, TTT
is independent of SSS, and its rows are independent due to our
channel assumption. Therefore, we have

H(SSS)
(a)
= H(SSS|TTT )
= I(SSS;RRR|TTT )+H(SSS|TTT ,RRR)
= I(SSS;RRR|TTT )+H(SSS|RRR)
(b)
≤ I(SSS;RRR|TTT )+Pe(m+n)

= H(RRR|TTT )−H(RRR|SSS,TTT )+Pe(m+n)
(c)
= H(RRR|TTT )+Pe(m+n)
(d)
=

m

∑
i=1

H(rrri|ttt i)+Pe(m+n)

(e)
= 2m+Pe(m+n)

where (a) follows from independence between SSS and TTT ; (b)
from Fano’s inequality, i.e. equation (4); (c) from the fact RRR
is deterministic if SSS and TTT are both known; (d) from the row
independence assumption of our channel model; (e) from the
assumption that every row has exactly 2 entries observed.

Finally, by noting that H(SSS) = m+n, we need

m≥ (1−Pe)n
1+Pe

. (5)

for accurate recovery. More precisely, roughly we need m =
Ω(n) for recovery with arbitrary small probability of decoding
error.

Remark 2. Note that in this proof, channel model is only
utilized when bounding H(RRR|TTT ). To this end, similar proof

could be generalized to more types of channel models. For
instance, deterministic choice of reading sites, and paired-
end reading with fixed insert size. As long as the number of
observed entries is sparse, more precisely in proportion to n,
the lower bound m = Ω(n) still holds by tracing similar steps
in this proof.

B. Sufficient Condition for Recovery

The target of a decoding algorithm is to recover SSS (or
equivalently hhh and ccc) from RRR with high confidence. Here,
we show a simple and effective algorithm, called “erasure
decoding”, for haplotype assembly. Detailed steps of this
algorithm are described as follows:

1) Choose the “seed” s as arbitrary non-erased entry in the
first row, i.e. s = r1 j, where j is randomly chosen such
that r1 j 6= ×. Evaluate the membership of first row as
c1 = 0.

2) Find all other rows with position j not erased, i.e.

A= {k|rk j 6=×,k 6= 1}. (6)

3) Evaluate the membership of all rows with indices in A

as
ck =

{
0, if rk j = r1 j,
1, otherwise, (7)

for every k ∈A.
4) Decode SNPs in the first row by

r1l = rkl⊕ ck, (8)

for every k ∈A and rkl 6=×.
5) Delete all rows with indices in A.
6) Arbitrarily choose another non-erased entry in the first

row as the new seed s = r1 j, which has not been chosen
as seed in any of the former steps. Repeat Step 2) to 6)
until no row could be further erased.

7) If the first row is the only remaining one and its entries
are all decoded, claim hhh = rrr1; otherwise claim a failure.

Remark 3. In this algorithm, we arbitrarily evaluate a
chromosome membership for the first row, but it may not be
the correct one. In fact, if the algorithm successfully decodes
both hhh and ccc, then all elements could be flipped due to an
incorrect choice of initial membership. However, the recovered
matrix SSS remains the same, due to the particular exclusive-
OR operation to generate SSS. At this point, the choice of initial
membership does not influence the decoding performance.

Remark 4. Erasure decoding is closely connected to the
bipartite partition interpretation [3]. Note that if our algorithm
successfully recovers the message matrix SSS, we can realign its
rows such that the matrix could be partitioned into two sub-
matrices with different chromosome memberships. To this end,
the erasure decoding provides a practical algorithm to fulfill
partition a bipartite for haplotype assembly.

Fig. 3 shows the details of decoding procedures for the
example illustrated in Fig. 1, where the read matrix is given
by (2).
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Fig. 3: Erasure decoding of the example illustrated in Fig. 1. In
every round (Step 2) to 6)), the seed is marked in a rectangle,
with its column index given by j. Rows that share the same
positions observed as the seed are collected in assemble A. A
straight line crossing a whole row of the matrix represents a
deletion.

Here, we analyze the performance of this proposed algo-
rithm. More precisely, we show that if the number of reads
sample is large enough, i.e. m = Θ(n lnn), the source matrix
SSS could be recovered correctly with high probability. Observe
that in the absence of sampling errors, the erasure decoding
algorithm ensures the output to be the correct haplotype if
both of the following conditions are satisfied.

1) All rows except for the first one are deleted.
2) All entries in the first row are decoded

At this point, decoding error occurs if at least one of the
following events happen.

1) The event E1: at least one of the columns in RRR are erased,
such that the corresponding SNP could not be decoded;

2) The event E2: there exist a partition of row indices
{1, . . . ,m}= U1∪U2, and a partition of column indices
{1, . . . ,n}=V1∪V2, such that |V1| ≥ 2 and |V2| ≥ 2 (to
make sure 2 entries could be sampled from each row),
and ri j = × for any (i, j) ∈ (U1×V2)∪ (U2×V1). In
other words, the sampled entries could be considered as
originated from two disjoint subsets of target haplotypes,
then, there is no hope to recover due to the lack of
information bridging these subsets.

Here gives the details to bound the probability of each
error events. First, note that by coupon collector effect, if
m = Θ(n logn), every column is at least covered by a read
with high probability. More precisely, by taking m = n lnn,
the error event (or equivalently the tail distribution for coupon

collector problem) is given by

Pr{E1}=

n−2
∑

i=1

(n
i

)(n−i
2

)m

(n
2

)m

=
n−2

∑
i=1

(
n
i

)[
(n− i)(n− i−1)

n(n−1)

]m

≤
n−2

∑
i=1

nie−m 2in−i(i+1)
n(n−1)

=
n−2

∑
i=1

O(n−i)

= O(n−1). (9)

On the other hand, the second error event E2 could be
further decomposed into sub-events Eu,v

2 , which represents the
type 2 error event with particular u = |U1| and v = |V1|. Then,
we have

Pr{Eu,v
2 }=

(n
v

)(m
u

)(v
2

)u(n−v
2

)m−u(n
2

)m . (10)

Observe that right hand side of (10) is maximized by two
extreme points on the feasible (u,v)−region, i.e. for any u
and v, Pr{Eu,v

2 } ≤ Pr{E1,2
2 }= Pr{Em−1,n−2

2 }. In particular, we
have

Pr{E1,2
2 }=

(n
2

)(m
1

)(2
2

)1(n−2
2

)m−1(n
2

)m

=
m[(n−2)(n−3)]m−1

[n(n−1)]m−1

≤ n lnn
(

1− 4n−6
n(n−1)

)n lnn−1

≤ n lnne−
4n−6

n(n−1) (n lnn−1)

= O(n−3 lnn).

Hence, the probability of the second error event is upper
bounded by

Pr{E2}=
m−1

∑
u=1

n−2

∑
v=2

Pr{Eu,v
2 }

≤ (m−2)(n−4)Pr{E1,2
2 }

≤ n2 lnnO(n−3 lnn)

= O(n−1(lnn)2). (11)

Combining these two pieces together, we obtain

Pe ≤ Pr{E1}+Pr{E2}= O(n−1)+O(n−1(lnn)2)< ε,

for arbitrary ε > 0 with large enough n.

Remark 5. Note that there is a log-factor gap between
the lower and upper bounds. As analyzed in [9], this log-
factor ensures enough entries sampled from each column for
accurate recovery. If a more systematic reading method could
be adopted to generate the observation matrix, this log-factor
may not be essential for reconstruction.



Remark 6. An alternative interpretation for quantifying the
minimum number of entries needed to recover a rank-1 matrix
is using optimality. In this branch of work [10] [11] [12], an
optimization approach is utilized to determine the necessary
condition, and the recovery is claimed to be possible by solving
this convex program.

IV. DISCUSSION OF ERRONEOUS CASE

When sequencing error happens, the binary entry of RRR is
flipped. Here, we assume errors are independent and identical.
More precisely, from the view of information theory, the
generation of errors could be modeled as messages passing
through a set of independent binary symmetric channels with
parameter p, where p is the probability of flipping. To this
end, denoting the noises as a matrix NNN, where ni j are i.i.d.
Ber(p) distributed, then the final observed matrix

R̃RR = RRR⊕NNN. (12)

Hence, the system model for the erroneous case could be
considered as the one for error-free case cascated with binary
symmetric channels. Then, for perfect recovery, we want to
reconstruct SSS from R̃RR with high probability. More precisely,
if denoting the estimate from a recovery algorithm as ŜSS, we
define the probability of error as

Pe = Pr{ŜSS 6= SSS|R̃RR},

to evaluate the recovery accuracy. We desire this probability
to be arbitrary small, on an average across all possible imple-
mentation of SSS.

From the perspective of necessary condition, Fano’s equality
still holds in this case, i.e.

H(SSS|R̃RR)≤ Pe(m+n).

Using this, we obtain

H(SSS)≤ H(R̃RR|TTT )−H(R̃RR|SSS,TTT )+Pe(m+n).

In this case, H(R̃RR|SSS,TTT ) does not vanish due to the influence of
noise. In particular, by noting noises are assumed to be i.i.d.,
we have

H(R̃RR|SSS,TTT ) =
m

∑
i=1

H(r̃rri|sssi, ttt i) = 2mH(p).

Combining with the observations that H(R̃RR|TTT ) = 2m and
H(SSS) = m+n, we have

(1+Pe−2H(p))m≥ (1−Pe)n.

Thus, in order to obtain arbitrary small Pe, we need H(p) <
1/2 for further requirement of noise, otherwise there where is
no hope for perfect recovery. Then, it is evident to have

m≥ (1−Pe)n
1+Pe−2H(p)

, (13)

which is still an m = Ω(n) scale lower bound, and this bound
is consistent with error-free sampling by letting p = 0.

On the other hand, from the perspective of sufficient con-
dition, if errors happen, erasure decoding algorithm may not

apply. In fact, an effective algorithm with small number of
reads for haplotype assembly remains open. Most algorithms
in use are based on an optimization formulation, by adopting
different objective criteria [6] [7], and their algorithms ba-
sically consider the number of reads as a known parameter
for analysis [13], rather than regarding it as the essential
measurement to argue sufficient condition for haplotyping.

V. CONCLUSION

In this paper, we consider the haplotype assembly prob-
lem from an information theoretic perspective. In order to
determine the chromosome membership and reconstruct paired
haplotypes, we consider them as messages to encode and
transmit over a particular erasure channel. This channel model
reflects the characters of paired-end reading, such that every
row observes only two entries with random site positions. In
the case of error-free sampling, we show that the necessary
condition for the number of reads to reconstruct is at least
the same order of the length of haplotypes, and the erasure
decoding algorithm ensures to implement reconstruction, with
the optimal order regardless of a log-factor gap. The necessary
condition for erroneous sampling case is analogue, and the
sufficient condition remains to be an open problem.
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