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a b s t r a c t 

Machine learning methods exploit similarities in users’ activity patterns to provide recommendations in 

applications across a wide range of fields including entertainment, dating, and commerce. However, in 

domains that demand protection of personally sensitive data, such as medicine or banking, how can we 

learn recommendation models without accessing the sensitive data and without inadvertently leaking 

private information? Many situations in the medical field prohibit centralizing the data from different 

hospitals and thus require learning from information kept in separate databases. We propose a new fed- 

erated approach to learning global and local private models for recommendation without collecting raw 

data, user statistics, or information about personal preferences. Our method produces a set of locally 

learned prototypes that allow us to infer global behavioral patterns while providing differential privacy 

guarantees for users in any database of the system. By requiring only two rounds of communication, 

we both reduce the communication costs and avoid excessive privacy loss associated with typical feder- 

ated learning iterative procedures. We test our framework on synthetic data, real federated medical data, 

and a federated version of Movielens ratings. We show that local adaptation of the global model allows 

the proposed method to outperform centralized matrix-factorization-based recommender system models, 

both in terms of the accuracy of matrix reconstruction and in terms of the relevance of recommenda- 

tions, while maintaining provable privacy guarantees. We also show that our method is more robust and 

has smaller variance than individual models learned by independent entities. 

© 2022 Elsevier Ltd. All rights reserved. 
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. Introduction 

Machine learning models exploit similarities in users’ interac- 

ion patterns to provide recommendations in applications across 

elds including entertainment (e.g., books, movies, and articles), 

ating, and commerce. Such recommendation models are typically 

rained using millions of data points on a single, central system, 

nd are designed under the assumption that the central system 

as complete access to all the data. Further, they assume that ac- 

essing the model poses no privacy risk to individuals. In many 

ettings, however, these assumptions do not hold. In particular, in 

omains such as healthcare, privacy requirements and regulations 

ay preclude direct access to data. Moreover, models trained on 

uch data can inadvertently leak sensitive information about pa- 

ients and clients. In addition to privacy concerns, when data is 

athered in a distributed manner, centralized algorithms may lead 
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o excessive memory usage and generally require significant com- 

unication resources. 

As a concrete example, consider applications of recommender 

ystems in the healthcare domain. There, recommender systems 

ave been used in a variety of tasks including decision support 

14] , clinical risk stratification [21] and automatic detection of 

missions in medication lists [20] . Such systems are typically built 

sing electronic health records (EHRs), which are subject to pri- 

acy constraints that limit the ability to share the data between 

ospitals. This restricts practical applications of recommender sys- 

ems in healthcare settings as single hospitals typically do not have 

ufficient amounts of data to train insightful models. Even when 

raining based on a single hospital’s data is possible, the resulting 

odels will not capture distributional differences between hospi- 

als, thus limiting their applicability to other hospitals. 

In this paper, we present a novel federated and differen- 

ially private recommendation framework for the cross-silo setting 

here each user’s data is associated with one of many silos or en- 

ities that share the same features, e.g., hospitals, schools, or banks. 

he method assumes individuals are grouped into entities, at least 
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Fig. 1. Federated differentially private framework with reduced communication. Silos use their local data, X i ∈ R m i ×n , to produce k differentially private prototypes, P i ∈ R k ×n 

(1), that they then send to the server (2). The server aggegates the prototypes ( P ∈ R H·k ×n ) and factorizes the resulting matrix to estimate ˆ V ∈ R n ×� (3). Then, the server 

broadcasts ˆ V to silos (4). Locally, each silo uses ˆ V to estimate ˆ X i and make recommendations (5). 
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ome of which are large enough to learn informative user proto- 

ypes; we do not require privacy within an entity. Each silo tries 

o predict a user preference on a set of items based on each user 

istorical preferences. Recently, federated learning [43] was pro- 

osed as algorithmic framework for the settings where the data 

s distributed across many clients or silos, and due to practical 

onstraints cannot be centralized. In federated learning, a shared 

erver sends a global model to each client, who then update the 

odel using their local data. The clients send information about 

he local models (for example, gradients) to the server. The server 

pdates the shared model based on the received client informa- 

ion and broadcasts the updated model to the clients. This proce- 

ure is repeated until convergence. Federated learning has proved 

fficient in training deep neural networks for image classification 

22,43] and text generation tasks [19,69] . 

While federated methods address practical computing and com- 

unication concerns, privacy of the users in a federated system is 

otentially vulnerable. Although such systems do not share data di- 

ectly, the model updates sent to the server may contain sufficient 

nformation to uncover model features and raw data information 

9,24,35,48] , possibly leaking information about the users. These 

oncerns motivate us to adopt differential privacy [16] as a frame- 

ork for limiting exposure of users’ data in federated systems. A 

ifferentially private mechanism is a randomized algorithm which 

llows us to bound the dependence of the output on a single data 

oint. This, in turn, translates to bounds on the amount of addi- 

ional information a malicious actor could infer about a single in- 

ividual if that individual were included in the training set. 

The differential mechanism presents itself as a natural solution 

o privacy concerns of users in federated systems, but combin- 

ng the two paradigms faces some major challenges. The key ones 

merge due to the differences in how the two frameworks func- 

ion. On the one hand, federated learning algorithms are typically 

terative and involve multiple querying of the individual entities to 

ollect up-to-date information. On the other hand, in a differen- 

ial privacy setting where the information obtained in each query 

ust be privatized via injecting noise, the total amount of noise 

equired to be added to a query scales linearly with the number of 

terations (thus reducing utility of the system and the information 

ontent) [29,42] . 

We propose a method that allows for learning in federated set- 

ings. We avoid data collection and guarantee user-level differen- 

ial privacy, without the communication and noise overhead intro- 

uced in typical iterative federated learning algorithms. We illus- 

rate our system model in Fig. 1 . Each silo is tasked with main-

aining the privacy of the data entrusted to it against possible at- 

acks by malicious entities. An untrusted server is available to learn 

entralized models and communicate (in both directions) with the 

ndividual silos. Our method learns per-silo recommender models 

y sharing information between silos in a federated manner, with- 
b

2 
ut compromising users’ privacy or requiring excessive communi- 

ation. Specifically, our method learns differentially private proto- 

ypes for each silo, and then uses those prototypes to learn global 

odel parameters on a central server. These parameters are re- 

urned to silos which use them to learn local recommender models 

ithout any further communication (and, therefore, without any 

dditional privacy risk). 

To our knowledge, the proposed framework is the first scheme 

hat introduces differential privacy mechanisms to federated rec- 

mmendations. In Table 1 we compare our algorithm with pre- 

ious and contemporary work. Unlike typical federated learning 

lgorithms, our method requires only two global communication 

teps. Such a succinct communication reduces the amount of noise 

equired to ensure differential privacy while also reducing commu- 

ication overhead and minimizing the risk of communication in- 

erception. Yet despite providing differential privacy guarantees to 

articipating silos, the framework allows each silo to benefit from 

ata held by other silos through building its own private, uniquely 

dapted model. Specific contributions of the paper can be summa- 

ized as follows: 

Private prototypes through efficient data summarization tech- 

iques. Inspired by differentially private k −means [4] we propose 

lgorithm 3 , an efficient recovery algorithm to produce private 

ata representations for each silo. 

A federated, differentially private framework for recommendation 

e propose Algorithm 1 , a federated recommendation frame- 

Algorithm 1: Federated Recommender System (Federated Rec- 

Sys). 

Input : Per-entity ratings matrices { X h ∈ B(0 , �) } H 
h =1 

; 

hyperparameters k, ε, δ, λ. 

Result : Shared n × � item matrix ˆ V , private n h × � user 

matrices ˆ U h , private reconstructions ˆ X h . 

1 for h ∈ { 1 , . . . , H} do 

2 P h ← private_prototypes (X i , ε, δ, k ) 
3 Send P h to server 

4 end 

5 Compile prototypes, P = [ P T 
1 

, P T 
2 

, · · · , P T 
H 

] T 

6 Estimate ˆ V from P following Eq 2 

7 Broadcast ˆ V to all entities. 

8 for h ∈ { 1 , . . . , H} do 

9 Estimate ˆ U h given 

ˆ V following Eq 2. 

10 Predict ˆ X h = 

ˆ U h ̂
 V T 

11 end 

ork, avoiding centralized data collection. Our algorithm allows 

or learning latent representation of products and services while 

ounding the privacy risk to the participating users in indepen- 
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Table 1 

Comparison of our prototype-based federated recommender system with related work. “Fed.” indicates whether the model works without 

collecting federated datasets, “DP” indicates what level of privacy guarantee is achieved (see Section 2.4 ), “Comm.” indicates the number of 

communication rounds (uplink to server and downlink to client), “Cross-silo” indicates if it is suitable for the cross-silo setting. “∼” denotes 

the system can be adapted for this setting but hasn’t been tested on it. In the “Assumptions” column we list additional assumptions needed 

for the method to work. r denotes a bound on silos/client’s number of local records. H denotes the number of silos, H � m . n refers to number 

of items, m is the total number of users. k � m is the number of prototypes for each silo in our framework. p (typically p � n ) is the model 

dimension (number of model parameters) for a specific approach. T denotes number communication rounds. � denotes the number of latent 

factors in MF. All methods assume silos share the same features. 

Method Fed. DP Cross-silo Comm. Assumptions 

Federated Tensor Factorization [12,33] Yes ∼ Yes 2 T pm None 

Centralized rec. sys [44,68] . No User level No nm None 

FedeRank [2] . Yes ∼ ∼ (mk + nk)T None 

Rec sys with public data [66] Yes Alternative guarantee ∼ nm Public data 

Content based recommender [56] Yes User level ∼ 2 T pm Access to items’ side information 

MetaMF [39,49] Yes ∼ ∼ 2 T pm None 

DP-Prototypes Fed-Rec-Sys Yes User level Yes knH + �n At least k -users per silo 
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ent silos. This is accomplished by estimating the column space of 

n interaction matrix from the differentially private prototypes via 

atrix factorization. 

Reducing communication and amplifying privacy by avoiding iter- 

tions. We enable federating recommendations under communica- 

ion constraints by building in the requirement that the number of 

ommunication rounds between participating silos and the shared 

erver is only two, thus reducing the communication compared to 

ontemporary work. Following the notation in Table 1 , the commu- 

ication rate for related work is either linear in time T or in the

otal number of users in the system m . Our system design inher- 

ntly circumvents the dependence in T . We avoid the dependency 

n m by transmitting prototypes ( k · H � m ) instead of privatized 

atasets. 

Extensive experimental verification of the above methodology in 

ealistic federated learning settings. We demonstrate generalizable 

epresentations and strong predictive performance in benchmark- 

ng tests on synthetic and real-world data comparing the pro- 

osed framework with individual models and conventional feder- 

ted schemes that lack privacy guarantees. 

. Background and related work 

.1. Recommender systems 

The goal of recommender systems is to suggest new content 

o users. Recommender systems can be broadly classified in two 

ategories: content filtering and collaborative filtering. Under the 

ontent-based paradigm, user and/or item profiles are constructed 

rom demographic data or item information, respectively. For ex- 

mple, a user profile could include age while movies could be as- 

ociated with genre, principal actors, etc. With this information, 

imilarity between users or items can be computed and utilized for 

ecommendation via, for example, clustering or nearest neighbors 

echniques [37] . In this context, [56] proposes to train an encoder 

hrough differentially private and federated version of SGD for rec- 

mmendation of news articles based on features extracted from 

heir titles. Collaborative filtering [18] relies on past user behaviour 

ratings, views, purchases) to make recommendations, avoiding the 

eed for additional data collection [23,36] . Our focus in this paper 

s on collaborative filtering, an active area of research [3,11,38,70] , 

lthough the proposed methodology could readily be extended to 

ncorporate additional content-based information [3,57] . Below we 

ntroduce notation and summarize relevant techniques. 

Consider a set U of m users and a set I with n items, where 

ach user has interacted with a subset of the items. We assume 

hat the interactions for user i can be summarized via a partially 

bserved feedback vector x i ∈ R 

n , and that all user-item interac- 

ions can be represented by a partially observed matrix X ∈ R 

m ×n . 
3

ntries x i j can be in the form of explicit feedback, e.g. numerical 

atings from 1 to 5, or implicit, such as binary values indicating 

hat a user viewed or clicked on some content [26,28,72] . The goal 

s to predict items that a user would like but has not previously 

nteracted with (i.e., to predict which of the missing values in x i 
ave high values). 

.2. Matrix factorization 

Matrix factorization is a popular and effective collaborative fil- 

ering approach used in many different fields to find low dimen- 

ional representation of users and items [36,37,41,61] . 

A matrix factorization approach assumes that users and items 

an be characterized in a low dimensional space R 

� for some � �
in (m, n ) . Specifically, the partially observed matrix X can be ap- 

roximated by X ≈ UV T , where U ∈ R 

m ×� aggregates users’ repre- 

entations, and V ∈ R 

n ×� collects items’ representations. In this pa- 

er, we constrain the estimates of U and V to be non-negative (i.e., 

on-negative factorization). Such a constraint often results in more 

nterpretable latent factors and improved performance [41,71] . In 

his setting, U and V can be estimated as 

ˆ 
 , ̂  V = argmin U,V ≥0 ‖ X − UV 

T ‖ 

2 
2 + f (U, V ) (1) 

here f (U, V ) is a regularizer. For the remainder of this paper, we 

ssume f (U, V ) = λ(‖ U‖ 2 + ‖ V ‖ 2 ) . 
Since we only have access to a subset of the entries of X , (1) is

olved by minimizing the error over the training set of ratings T , 

rgmin U,V ≥0 
1 

N 

∑ 

x i j ∈ T 
‖ x i j − u i v 

T 
j ‖ 

2 
2 + λ(‖ U‖ 

2 + ‖ V ‖ 

2 ) , (2)

here u i denotes the i th row of U (i.e., the latent representation 

or the i th user) and v j is the jth row of V (i.e., the latent repre-

entation for the jth item). 

.3. Federated learning 

Federated learning [43] was introduced as a framework for 

earning models in a decentralized manner, and originally applied 

o learning with neural networks. The goal of federated learning is 

o infer a global model without collecting raw data from partici- 

ating users. This is achieved by having the users (or entities rep- 

esenting multiple users) locally compute model updates based on 

heir data and share these updates with a central server. The server 

hen updates the global model and sends it back to the users. 

While they avoid directly sharing users’ data, most federated 

earning algorithms offer no formal guarantees that a malicious 

gent could not infer private information from the updates. For 

xample, in a naïve application of the original federated learning 
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ethod [43] to a matrix-factorization-based recommender system, 

ach entity shares parameters including a low-dimensional repre- 

entation of each user, leading to a high risk of potential privacy 

reaches. 

Some adaptations of federated learning have been proposed 

pecifically for recommendation systems [2,10,27,39,49,50] , where 

esting is performed locally, allowing for adaptation. However, the 

terative nature of these procedures requires constant communica- 

ion of parameters without any differential privacy guarantees, as 

efined below. 

Alternative federation methods have been proposed for matrix 

actorization, where the information being shared is less easily 

apped back to individual users. Authors in [33] consider feder- 

ted tensor factorization for computational phenotyping. There, the 

bjective function is broken into subproblems using the Alternat- 

ng Direction Method of Multipliers [ADMM, 8 ] where the alter- 

ated optimization is utilized to distribute the optimization be- 

ween different entities. User factors are learned locally, and then 

erver updates the global factor matrix and sends it back to each 

ntity. In a similar way, [12] perform federated matrix factoriza- 

ion by taking advantage of alternating least squares. They decou- 

le the optimization process, globally updating items’ factors and 

ocally updating users’ factors. These two approaches converge to 

he same solution as non-federated methods. However, since cur- 

ent variables need to be shared at each optimization stage, this 

echnique requires large communication rates and users’ synchro- 

ization. While either of the above factorization methods could 

e adapted to recommender systems, they also lack strict privacy 

uarantees and require extensive communication. 

.4. Privacy 

A number of private recommender systems have been devel- 

ped using a cryptographic approach [25,34,47,58] . Such methods 

se encryption to protect users by encoding personal informa- 

ion via cryptographic functions before it is communicated, e.g., 

 key protected classification model [58] . In the healthcare con- 

ext, authors in [25] have applied cryptographic methods to provid- 

ng physician recommendations. However, these methods require 

entralizing the dataset to perform calculations on the protected 

ata, which may be infeasible when the total data size is large 

r communication bandwidth is limited, or where regulations pro- 

ibit sharing of individuals’ data even under encryption. 

Differential privacy [16] is a statistical notion of privacy that 

ounds the potential privacy loss an individual risks by allowing 

er data to be used in the algorithm. 

efinition 2.1. A randomized algorithm M satisfies ε-differential 

rivacy ( ε-DP) if for any datasets A and B differing by only one

ecord and any subset S of outcomes S ∈ range (M ) , 

 r(M (A ) ∈ S) ≤ e ε · P r(M (B ) ∈ S) . 

In other words, for any possible outcome, including any given 

ndividual record to a data set can change the probability of that 

utcome by at most a multiplicative constant which depends on ε. 

ifferential privacy has been applied to recommender systems by 

dding noise to the average item ratings and the item-item covari- 

nce matrix [44] . However, this approach is designed for systems 

herein a centralized server needs to collect all the data to de- 

ive users and items’ means and covariances. Differential privacy is 

ore difficult to impose in iterative algorithms, such as those com- 

only used in federated learning scenarios, since the iterative na- 

ure of these algorithms requires splitting privacy budget ε across 

terations, thus bringing forth technical challenges [1,22,42,65] . 

In a recommender systems context, [44,68] rely on differential 

rivacy results to obtain privacy guarantees, but they require ac- 
4 
ess to the centralized raw data. This makes it unsuited for the 

ata-distributed setting we consider. 

An alternative to differential privacy is to assume the existence 

f public data coming from the same or a similar distribution to 

he private dataset [66] . considers matrix factorization methods to 

earn X ≈ UV T (see Section 2.2 ) in the setting where we can learn

he item representation matrix V from publicly available data. The 

ublic item matrix is then shared with private entities to locally 

stimate their latent factors matrix U . The applicability of this ap- 

roach is hindered by potentially limited access to public data, 

hich is the case in sensitive applications such as healthcare rec- 

mmendations. Our approach provides an alternative method for 

earning a shared estimate of V from appropriately obscured pri- 

ate data. 

.5. Differentially private prototypes 

Our design of private prototypes is motivated by the effi- 

ient differentially private k -means estimator for high-dimensional 

ata introduced in [4] . This algorithm first relies on the Johnson- 

indenstrauss lemma to project the data into a lower dimensional 

pace that still preserves much of the data’s underlying structure. 

hen, the space is recursively subdivided, with each subregion and 

ts corresponding centroid being considered a candidate centroid 

ith probability that depends on the number of points in the re- 

ion and the desired value of privacy ε (for details, see line 4 in 

lgorithms 2 , and 5 ). The final k -means are selected from the can-

Algorithm 2: private_prototypes( X, k, ε, δ). The overall algo- 

rithm is ε-DP. candidate and localswap are respectively Algo- 

rithms 2 and 3 of Balcan et al. [4] . 

Input : data X ∈ B(0 , �) ⊆ R 

n ×p , hyperparameters k, ε, δ
Result : cluster centers z 1 , z 2 , . . . , z k ∈ R 

m 

1 Set latent dimension p = 8 log n , number of trials T = 2 log 1 
δ

2 for t = 1 , . . . , T do 

3 Randomly project data from R 

m → R 

p via the 

Johnson-Lindenstrauss lemma: Y = 

1 √ 

p 
XG 

T , where 

G ∼ N (0 , 1) p×m 

4 C ← candidate (Y, ε
6 T , δ) 

5 { u 1 , . . . , u k } ← localswap (Y, C, ε
6 T , δ) Partition Y into 

S j = { i : j = argmin l || y i − u l ||} , j = 1 , . . . , k . 

6 Recover z (t) 
j 

= sparse_recovery ({ x i } i ∈ S j , j = 1 , . . . , k, ε, δ) 

7 end 

8 Choose z 1 , . . . , z k by sampling Z from Z (1) , Z (2) , . . . , Z (T ) with 

probability proportional to exp 

(
− εL (Z (t) ) 

24�2 

)
9 return z 1 , . . . , z k 

idate centroids by recursively swapping out candidates using the 

xponential mechanism [45] , selecting a candidate with probabil- 

ty proportional to exp 

(
εq (X,y ) 

2�q 

)
, where q (D, y ) denotes the score 

f output y given dataset D , �q is the sensitivity of the score func-

ion q defined by �q = sup D ∼D ′ ,y | q (D, y ) − q (D 

′ , y ) | , and D ∼ D 

′ de-

otes any two datasets differing by only one record. Here, the score 

or each potential collection is the clustering loss (see line 5 in 

lgorithms 2 and 6 ). The selected candidates are mapped back to 

he original space by taking a noisy mean of data points in the 

orresponding cluster, providing ε-DP. 

The Balcan et al. [4] method is one of a number of differen- 

ially private algorithms for finding cluster representatives or pro- 

otypes. Blum et al. [6] introduced SuLQ k -means, where the server 

pdating clusters’ centers receives only noisy averages. Unlike the 

pproach of Balcan et al. [4] , this algorithm does not have guaran- 
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ees on the convergence of the loss function. Nissim et al. [51] and 

ang et al. [63] use a similar framework but calibrate the noise by 

ocal sensitivity, which is difficult to estimate without assumptions 

n the dataset [73] . Private coresets have been used to construct 

ifferentially private k -means and k -medians estimators [17] , but 

his approach does not scale to large data sets. 

. A Differentially private federated recommender system 

We propose Federated RecSys , a model for learning a rec- 

mmender system in a federated setting where different silos 

ossess independent private datasets with different numbers of 

ecords. We assume the data is distributed across H silos such that 

ach silo possesses data for at least k users. The partially observed 

ser-item interaction matrix associated with the h th entity is de- 

oted by X h . 

We assume that the training data is sensitive and should not 

e shared outside the silo to which it belongs. While each silo will 

eed to communicate information to a non-private server, we wish 

o ensure this communication guarantees differential privacy and 

oes not leak sensitive information. 

In order for differential privacy and federated recommender 

ystems to work in concert, our framework must accomplish two 

bjectives: (1) make recommendations privately by injecting noise 

n a principled way, and (2) reduce the number of communications 

o minimize the amount of injected noise. The solutions to these 

equirements are interrelated. We first describe a method that re- 

uces the number of communication steps to two and then pro- 

eed to describe how to solve the privacy challenge. 

.1. A one-shot private system 

Most federated learning methods require multiple rounds of 

ommunication between entities and a central server, which poses 

 problem for differential privacy requirements. Specifically, we can 

hink of each round of communication from silos to the server as 

 query sent to the individual silos, which has potential to leak 

nformation. If we query an ε-DP mechanism K times, then the 

equence of queries is only Kε-DP [46] . In practice, this means 

hat the more communication we require, the more noise must be 

dded to maintain the same level of differential privacy. 

Our differentially private federated recommender system, intro- 

uced in Algorithm 1 , minimizes the amount of noise a differen- 

ial privacy technique will introduce by limiting the number of 

ommunication calls between the entities. Recall that our objective 

f matrix factorization-based recommendations involves estimating 
ˆ 
 = 

ˆ U ̂

 V T . Given 

ˆ V , each silo can privately estimate ˆ X h = 

ˆ U h ̂
 V T with- 

ut releasing any information about X h . Building upon this idea, we 

onstrain the communication to only two rounds, back and forth. 

nlike [66] , we do not assume access to a public data set. Instead,

e construct a shared item representation 

ˆ V based on privatized 

rototypes P h collected from each silo (step 5). These prototypes 

re designed to: (a) contain similar information as X h , thus allow- 

ng construction of an accurate item representation; (b) be of low 

imension relative to X h , hence minimizing communication load; 

nd (c) maintain differential privacy with respect to the individual 

sers. We elaborate on building prototypes in Section 3.2 . 

Once we have generated prototypes for each silo (locally, steps 

–4), we send them to a centralized server where we learn a 

hared item representation 

ˆ V through traditional matrix factoriza- 

ion (step 7) (see Section 2 ). This shared matrix is then communi- 

ated back to the individual entities that use ˆ V to learn their own 

sers’ profile matrices and make local predictions (step 9–10). 

In contrast to iterative methods (see references in Section 2.3 ), 

he proposed approach requires only two rounds of communica- 

ion: one from the entities to the server and one from the server 
5 
o the entities. In addition to reducing communication costs and 

emoving the need for synchronization, this strategy allows us to 

onserve the privacy budget. With only one communication step 

equiring privatization, we are able to minimize the noise that 

ust be added to guarantee a desired level of privacy. 

.2. Learning prototypes 

In this section we present Algorithm 2 , an efficient and private 

lgorithm to learn prototypes that are representative of each siloed 

rivate local data set. We first discuss their necessity (i.e., the lack 

f public data) and communication advantages. Then, we lay out a 

heoretical intuition and justification for our methods. Finally, we 

resent the algorithm details. 

Reducing communication. One way to ensure user-level privacy 

nd avoid communicating a sanitized data set is by assuming ex- 

stence of a public data that can be learned from. However, this is 

ot a realistic assumption in our use cases; in settings like health- 

are and banking, data sets are never publicly available due to 

ata sensitivity and value. We consider methods that find differ- 

ntially private prototypes with the aim of obtaining fewer samples 

hat still capture much of the variation present in the individual 

ilo data, instead of differentially private dataset synthesis meth- 

ds (see Bowen and Liu [7] for a survey). These methods tend to 

e ill-suited for high-dimensional settings and would involve send- 

ng a large amount of data to the server. 

Since we will use these prototypes to capture low-rank struc- 

ure, provided each silo sends the number of prototypes larger 

han the rank, it is possible for such prototypes to contain the 

nformation required to recover singular vectors of X h yet still be 

maller than X h , thus reducing the amount of information that 

eeds to be communicated. 

Distributional closeness. When selecting the prototype mecha- 

ism, we use the following two observations. The first observation 

mplies k −means is analytically related to NMF, our recommender 

ystem framework. The second observation is that the solution to 

 −means defines the closest distribution with finite support to the 

rivate data underlying distribution, which theoretically justifies 

ur selection of a k −means type algorithm over alternatives dis- 

ussed in Section 2 . 

bservation 1. Non-negative matrix factorization (NMF) and spec- 

ral clustering have been shown to be equivalent [13] . k − means 

s a special case of spectral clustering where the similarities are 

easured using the standard inner-product linear kernel matrix. 

bservation 2. (Theorem 3 in Pollard [53] ) Let m 1 , . . . , m k be the

ptimum of the k -means objective on a dataset X = { x i } n i =1 
dis-

ributed according to some distribution P on �, and let M k be 

he set of discrete distributions on � with support size at most k . 

hen, the discrete distribution implied by m 1 , . . . , m k is the closest 

iscrete distribution to P in M k with respect to the 2-Wasserstein 

etric. 

Since we are learning the item matrix ˆ V via NMF, Observation 1 

uggests that one should capture the centroids of clusters in X h to 

reserve spectral information. Observation 2 implies that the pro- 

otypes obtained via k -means are close, in a distributional sense, 

o the underlying distribution. Following these facts, we consider 

rototype generation methods based on private k -means. Since the 

earned prototypes are created to capture the same latent repre- 

entation that would be captured by NMF, we expect the estimated 

tem matrix ˆ V to be close to the true V . 

Private prototypes algorithm. Our private prototypes generation 

lgorithm is formalized as Algorithm 2 . At its base is the differen- 

ially private candidates framework of Balcan et al. [4] , used to find 

luster assignments for each (potentially high-dimensional) private 
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1 https://github.com/mouwenlong/dp- clustering- icml17 
2 https://github.com/mriberodiaz/federatedRecsys 
ecord on a silo (lines 3–5). However, we significantly alter this 

cheme by augmenting it with a novel recovery algorithm that 

reserves accuracy and privacy. The new algorithm increases over- 

ll efficiency by exploiting sparsity of the data and deploying the 

umbel trick, often used to efficiently sample from discrete distri- 

utions [5,15,52] . In particular, after obtaining cluster assignments 

or each data point (line 5 in Algorithm 2 ), instead of taking noisy

eans or sequentially applying the exponential mechanism to re- 

over the non-zero entries of the centroid, we introduce a proce- 

ure that draws noise from a Gumbel distribution with probability 

ensity function given by p(y ; b) = 

1 
b 

exp 

(
−(y/b + e −y/b ) 

)
, adds it 

o the centroid mean, and takes the top- s entries; here s denotes 

he number of non-zero entries in the dataset. Note that the Gum- 

el trick protects from revealing which entries have large values 

ut does not protect the value itself; therefore, we also add Laplace 

oise to the original value entry in case it has been selected to be

evealed (line 4 in Algorithm 3 ). We formalize this procedure as 

lgorithm 3 . 

Algorithm 3: sparse_recovery Sparse recovery in high dimen- 

sion. 

Input : Data belonging to same cluster { x i } m 

i =1 
⊆ R 

n with 

‖ x i ‖ ∞ 

≤ �, ‖ x i ‖ 0 ≤ s ; hyperparameters ε, δ
Result : Centroid v ∈ R 

n 

1 Compute μ = 

1 
n 

∑ n 
i =1 x i 

2 ˜ μ ← μ + Y with Y ∼ Gumbel ( ε
2 s �

| μ| ) 
3 I ← { i : ˜ μi is in top s } 
4 v ← 

{
μi + Lap 

(
2�s 
εn 

)
if i ∈ I 

0 otherwise 

5 return v 

.3. Private federated recommender system 

Algorithm 1 summarizes our entire differentially private fed- 

rated recommender system. We prove its privacy guarantee in 

heorem 3.1 . 

heorem 3.1. Algorithm 1 is ε-Differentially Private. 

roof. The server interacts with the private datasets X h only once 

hen it is collecting the private prototypes. Let q be a utility or 

core function and �q its sensitivity (see Section 2.5 ). Durfee and 

ogers [15] prove that adding noise Y ∼ Gumbel ( 2�q 
ε ) to the utility 

unction q and selecting the top k values from the noisy utility is 

quivalent to applying the exponential mechanism k times; there- 

ore, transmission of a single prototype is ε-DP. In our algorithm, q 

s determined by each entry’s magnitude. The parallel composition 

heorem [46] establishes that the overall privacy budget is given by 

he maximum of the individual budgets, implying that the overall 

lgorithm is ε-DP. �

.4. Time complexity 

It follows from Corollary 1 in [4] that the runtime of 

lgorithm 2 is polynomial in m, n and � . Although non-negative 

atrix factorization is NP-hard [62] , our method can take advan- 

age of local SGD which, under appropriate regularization, con- 

erges to a local minimum in O ( 1 √ 

T 
) . Hence, our framework runs in

olynomial time, making it suitable for the cross-silo setting where 

ow complexity is desirable despite considerably stronger compu- 

ational resources than in the cross-device scenario. 

Note that while iterative-based methods also involve NMF, 

hese methods evade the computation of prototypes. However, this 
6

omes at the cost of splitting the privacy budget across commu- 

ication rounds and hyperparameter tunning grids, leading to an 

ncreased overall computational cost (due to multiple trials) and 

oor performance as demonstrated in Section 4 . 

. Experiments 

We start this section by describing the datasets and evaluation 

etrics used to assess our methods. To demonstrate the ability of 

ederated Recsys to provide high-quality recommendations in 

ealistic settings, we apply the system to real-world datasets in 

ection 4.5 . We then study prototype learning in Section B.3 and 

ompare it to regular k −means. 

To implement standard k -means we used the Python library 

cikit-learn . For private prototypes, we modified and imple- 

ented in Python the publicly available MATLAB code from [4] 1 . 

e provide an open-source implementation of our code and ex- 

eriments. 2 

.1. Datasets 

We test the proposed scheme on three different datasets. The 

rst one is a synthetic dataset intended to simulate discrete pro- 

esses such as ratings or counting event occurrences. The relevant 

atrices are generated as U ∼ N (0 , 1) ∈ R 

m ×� , V ∼ N (0 , 1) ∈ R 

n ×� ,

nd X ∼ Pois ( exp (UV T )) . We set n = 10 0 , 0 0 0 , m = 500 , � = 100 ,

nd distribute the data uniformly across 10 different entities. 

The second dataset is from the eICU Collaborative Research 

atabase [54] , which contains data collected from critical care 

nits throughout the continental United States in 2014 and 2015. 

roviding a realistic cross-silo federated recommendations setting, 

his dataset has been used in numerous benchmarking tests of 

ethods for healthcare data analysis and prediction [55,60,64] . 

ince different visits can have diverse causes and diagnoses, we 

ount each patient visit as a separate observation. We use the 

aboratories and medicines tables from the database to create a 

-way table where each row represents a patient and each column 

ither a lab or medicine. Matrix X is composed using data from 

ver 190k patients, 457 laboratories and medications, and 205 hos- 

itals. Each entry x i j represents how many times a patient took a 

est or a medication. The goal of this task is to recommend treat- 

ents. 

Finally, we consider the Movielens 1M dataset containing 

,0 0 0,209 anonymous ratings from 6040 MovieLens users on ap- 

roximately 3900 movies. We use the first digit of each user’s ZIP 

ode to set up a natural federation of the data, resulting in 10 dif- 

erent entities. The goal of this task is to recommend movies and 

s a classical benchmark in the recommendation field [30,39,67] . 

.2. Evaluation metrics 

To evaluate the quality of the private prototypes, we use 

he k -means objective, defined as the average Euclidean dis- 

ance from original dataset to the closest mean. Formally, the 

oss L (z 1 , . . . , z k ;D) for dataset D = { x 1 , . . . , x m 

} ∈ R 

n and means

 1 , . . . z k ∈ R 

n is defined as 

 (z 1 , . . . , z k ;D) = 

m ∑ 

i =1 

min 

j 
‖ x i − z j ‖ 

2 . (3) 

o assess the convergence of matrix factorization and perform pa- 

ameter tuning, we use the Root Mean Squared Error (RMSE) be- 

ween the real X and the reconstructed 

ˆ X = 

ˆ U ̂

 V T . In the case of 
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Fig. 2. Comparison of several methods for eICU dataset. The results are averaged over 5 trials. In all cases, the standard deviation is bounded by 5 · 10 −3 and not pictured 

due to scale. 
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he synthetic data, RMSE is a suitable measure to examine the fit 

uality since we have access to the ground truth. 

However, the RMSE is unable to capture the quality of recom- 

endations. To compare the real and predicted rankings for those 

atasets, we use Mean Average Ranking [26] ( rank ) and Mean Av- 

rage Precision ( MAP @ k ) [31,40,59] . 

Concretely, let rank ui be the percentile of the predicted ranking 

f item i for user u , where 0 means very highly ranked and above

ll other items. We calculate rank on a test set T defined as 

ank = 

∑ 

(u,i ): x ui ∈T x ui rank ui ∑ 

(u,i ): x ui ∈T x ui 

. (4) 

his measure compares the similarity between the real and pre- 

icted ranks. Intuitively, for a random ranking the expected rank ui 

s 0.5, so rank ≥ 0 . 5 means a ranking no better than random. 

onversely, lower values indicate highly ranked recommendations 

atching the users’ patterns. 

Precision at k is defined as the proportion of correct recom- 

endations within the top- k prediction scores. Define p(u, k ) = 

1 
k 

∑ k 
i =1 s u,it(i ) where s u,it(i ) is the true rank of user u for item it(i )

anked by a model at position i . Average Precision at k for user

 ( AP @ k (u ) ) measures the relevance of scores of the top- k recom-

endations for each user and its order by computing 

P @ k (u ) = 

∑ k 
i =1 p(u, i ) · rel (i ) 

numb er relevant items 
, (5) 

here rel(i ) is an indicator function with value 1 when item at 

ank k is relevant and 0 otherwise. Finally, MAP @ k is defined as

he mean of individual average precisions over users, 

AP @ k = 

∑ 

u ∈ U AP @ k (u ) 

|U| . (6) 

.3. Comparisons between methods 

To evaluate the proposed framework, Federated RecSys is 

ested on real-world data from the eICU and the Movielens 1M 

atasets. We construct a test set T by randomly selecting 20% of 

he users, and for each selected user, randomly selecting five en- 

ries. 

We reiterate that, to our knowledge, there exists no prior rec- 

mmendation method which both provides privacy guarantees and 
7 
ccommodates federated nature of datasets. In the absence of 

uch methods, we compare our proposed private federated recom- 

ender system with: (1) Full RecSys : a non-private central- 

zed matrix factorization method which provides a lower bound 

n the best result one could achieve using matrix factorization 

hile disregarding privacy and federation constraints; (2) Local 
ecSys : individual local matrix factorization for each silo, which 

s the simplest solution to providing privacy in federated set- 

ings; (3) Random : random recommendations; and (4) MetaMF 1 
poch and MetaMF 10 epochs : A differentially private version 

f Meta-MF [49] through DP-SGD [1] . Details on how we privatize 

eta-MF are provided in the appendix. We report results averaged 

ver 5 trials. 

.4. Hyperparameter selection 

Hyperparameter optimization breaks differential privacy unless 

he privacy budget is split among different hyperparamter config- 

rations. Instead of selecting the latent dimensions, we present re- 

ults for � varying between 10 and 50. We see that performance 

s relatively consistent across different values. In theory, we could 

earn hyperparameter values in a differentially private manner, us- 

ng the exponential mechanism. However, since our method does 

ot seem particularly sensitive to these parameters, we feel this 

ould not be a judicious use of privacy budget. Instead, we suggest 

ractitioners select values for the number of latent factors ahead of 

ime, based on their domain knowledge of the latent dimensional- 

ty of the data. 

For the private prototypes, we fix k = 10 for the hospitals’ 

ata and k = 50 for Movielens, and in both cases set ε = 1 . Given

hat Meta-MF is an iterative procedure, long training requires in- 

reasing noise magnitude. Below we report the performance of 

eta-MF1ep , trained for 1 epoch with small noise magnitude, 

nd Meta-MF10ep , trained for 10 epochs with larger noise mag- 

itude. 

In the appendix, we explore various settings of the regulariza- 

ion parameter λ. Again, we find that performance is not partic- 

larly sensitive to this parameter. In this section, we use λ = 0 . 1

hroughout. 
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Fig. 3. Comparison of several methods on Movielens1M dataset.The results are averaged over 5 trials; the standard deviation for RecSys is bounded by 8 · 10 −4 , for MetaMF 

by 5 · 10 −2 . 

Fig. 4. Varying parameters on synthetic data. 
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.5. Evaluating the federated recommender system 

eICU dataset 

Fig. 2 a shows the average ranking quality for all methods, 

howing the ability of a model to sort items in the correct place. 

ur federated model (Federated RecSys) obtains the best ranking 
8

erformance. As intended, the Federated RecSys allows each hos- 

ital to improve its predictions over local recommendations by ob- 

aining relevant information from other hospitals without compro- 

ising its patients’ information. We note that random predictions 

nd Meta-MF are unable to capture the ordering structure learned 

y our system. The quality of recommendations can also be as- 
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Fig. 5. Comparison of different prototype methods on synthetic data. As k and � increase, k -random exemplars and private k -means maintain competitive performance, 

providing thus a private but still accurate and robust method. 
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essed by their relevance, an effect captured in Fig. 2 c and d where

e observe that our system typically recommends relevant treat- 

ents for patients (i.e., treatments that where on the list of po- 

ential relevant treatments). We note that although local models 

re able to capture the ordering of items (small rank ), this method 

ails at delivering recommendations on the list of recommended 

tems. 

Fig. 2 b shows the average reconstruction error over test data, 

here again matrix factorization techniques outperform other 

odels. We observe that factorization in larger dimensions im- 

roves test RMSE, but does not result in better ratings. On the one 

and, RMSE shows the ability of the model to predict the value 

f a rating but does not provide much insight in the order of that 

ating, i.e., relative comparison to other items. On the other hand, 

he average rank does not necessarily decrease with the number 

f latent factors but provides insight in the rank of the elements. 

or example, always predicting the average rating would result in a 

ood RMSE; however, this strategy does not provide better recom- 

endations than the random model. For example, MetaMF predicts 

n average rating of 4 on the eICU data with a standard deviation 

f only 1, achieving good test RMSE, but has a poor rank due to its

nability to sort items. 
9 
Movielens dataset . As expected, the centralized ( Full ) ap- 

roach, which forms results by processing larger and more hetero- 

eneous datasets, achieves larger test RMSE than the local models 

 Local and Federated ). This is likely due to the fact that siloed

ata may have lower intrinsic dimension than the aggregated data. 

or example, if two silos have datasets lying in (nearly) orthogo- 

al one-dimensional subspaces, local factorization in one dimen- 

ion could have better performance than aggregating both silos 

atasets and still factorizing in one dimension; instead, central- 

zed scheme should be factorizing in two dimensions since there 

re at least two significant latent components. Unlike the eICU 

ataset where patient data can vary more drastically across hos- 

itals, federating by zip code might produce a more uniform dis- 

ribution between entities. This uniformity across silos on Movie- 

ens also explains why Local performs closer to our method than 

n the eICU dataset. Specifically, in Movielens, each zip code con- 

ains enough information to learn a reasonable embedding, which 

s not the case for hospital data. The benefit from collaboration is 

ore evident when we look at the ranking in Fig. 3 a (which is the

ctual task of interest). Recall that an average ranking above 0.5 

eans the ranking is no better than random. Conversely, lower val- 

es indicate highly ranked recommendations matching the users’ 
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Fig. 6. Comparison of various methods for different values of � on synthetic data. Private methods have superior performance for large � . 
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atterns. With a small privacy budget, our method is able to share 

nsights among entities without sacrificing their privacy, and deliv- 

rs better recommendations. We observe that factorization based 

ethods improve over random recommendations. Further, as ob- 

erved in Fig. 3 , although MetaMF is able to achieve lower RMSE 

n this setting, the private model is unable to learn proper ordering 

f elements, ultimately delivering poor recommendations, leaving 

ederated RecSys as the best private model. 

Statistical significance of the results. The results for private meth- 

ds that incorporate randomness are averaged over 5 trials. We 

nd that in the case of eICU dataset, standard deviation is bounded 

y 5 · 10 −3 for all values of � and all methods, and thus not

ictured due to scale. For Movielens, Federated has standard 

eviation bounded by 8 · 10 −4 while the MetaMF’s is bounded 

y 5 · 10 −2 , confirming superior performance of our proposed 

ethod. 

.6. Evaluating the impact of federation and privacy on synthetic 

ata 

Recall that our algorithm differs from the standard matrix fac- 

orization schemes in two key aspects: first, it learns the item ma- 

rix ˆ V using prototypes , rather than the actual data; second, given 

ˆ 
 , it learns the users’ sub-matrices ˆ U h independently, rather than 

ointly. Moreover, instead of learning the prototypes using exact k - 

eans, we ensure differential privacy using an ε-DP algorithm. In 

his section, we explore the effect of these algorithmic features. 
10 
n particular, we compare our framework with the following algo- 

ithms: 

• Matrix factorization : Apply Eq. (2) until convergence on X = 

[ X T 
1 
, . . . , X T 

H 
] T . 

• MF + k -means : Apply Eq. (2) to factorize a matrix of exem- 

plars P ≈ ˆ U ̂

 V T , where P collects the k -means from each matrix 

X 1 , . . . , X H . Use the estimate ˆ V to learn individual matrices ˆ U h 

from X h . 

• MF + k -random : Identical to MF + k -means , but instead of us-

ing the cluster means, use k random samples from X 1 , . . . , X H . 

• MF + ε-private prototypes : Identical to MF + k -means , but in-

stead of using true cluster means, use the generated ε-DP pro- 

totypes. 

We first evaluate how k -means performs in a non-private set- 

ing. Fig. 4 a and b show the RMSE when k and � are fixed, re-

pectively. In both figures, we see unsurprisingly that MF has the 

owest RMSE, with k -random exemplars from the original dataset 

erforming second best. For larger values of k in Fig. 4 b, k -means

erformance deteriorates compared to k -random. By examining the 

entroids, we conclude that this is most likely due to k -means 

verfitting to outliers for large values of k while k -random perfor- 

ance improves as its number of exemplars approaches the full 

. We note that our synthetic data does not contain any clusters, 

o this is the worst-case scenario for the k -means setting. Even 

hough k -means does not perform as well as the other two meth- 

ds, we observe that the difference in reconstructive performance 
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etween the three methods is fairly small. However, none of the 

bove methods guarantee privacy. 

Next, we compare the performance of private k -means and non- 

rivate k -means. We do not include k -random exemplars in the 

omparison of private methods since sharing k random exemplars 

ould disclose the information for these k users. In Fig. 4 c, we 

onsider the relatively small value k = 10 and investigate the effect 

f ε as the number of latent factors changes. As expected, larger 

alues of ε (i.e., less private settings) yield better results. Here we 

bserve little difference in the performance between the private 

nd non-private algorithms. However, in Fig. 4 d we see that for 

arge k , the private methods perform significantly better than the 

on-private k -means, mirroring the results in Fig. 4 b. We hypothe- 

ise that the noise introduced in the private and random scenarios 

cts as a regularizer, helping avoid overfitting. We note that, since 

he sensitivity of the random exemplar mechanism is equal to the 

ange of the data, directly privatizing random exemplars would add 

xcessive noise. 

In both Fig. 4 c and d, we find that decreasing ε (and therefore 

ncreasing privacy) does not have a significant negative effect on 

he reconstruction quality. In Fig. 4 d, for larger values k , MF + pri-

ate k -means performs equally well, even for the smallest value of 

, as the noise is averaged over a large number of samples. Here, 

e can guarantee 0.01-DP instead of 0.5-DP with a minimal drop 

n RMSE. 

.7. Varying parameters 

In this section, we study how the performance of a recom- 

ender system is impacted by the variations in parameter val- 

es: the number of entities, number of latent factors � , and num- 

er of prototypes k . First, recall that the true latent dimension of 

he synthetic dataset is 100, thus we expect RMSE to decrease for 

 ∈ [20 − 80] , as observed in Fig. 5 . In Section 4.6 we showed re-

ults for fixed values of the number of prototypes k and the num- 

er of latent features � . Below we show additional plots for differ- 

nt values of those parameters. 

In Fig. 5 we observe that as the number of samples increases, 

andom k -exemplars outperforms k -means for all values of � . Note 

hat private k -means performs well over a wide range of k . As k

ncreases, private k -means converge to the same value for various 

alues of ε (in our experiments we testd for ε ∈ { 0 . 005 , 0 . 05 , 0 . 5 } ;
e omit ε = 0 . 05 as it performs really closed to surrounding val-

es). Fig. 6 compares all methods for different values of k . The dif-

erence in RMSE is clearer for small values of k . For large values of

 , the performance of k -random and k -private approaches that of 

atrix factorization. 

. Conclusion 

We propose a novel, differentially-private framework for rec- 

mmender systems in federated settings. To enable collabora- 

ion and learning common patterns without compromising users’ 

rivacy, the proposed framework requires minimal communica- 

ion between participating entities and thus avoids scaling up 

he privacy-inducing noise over time. Meanwhile, iterative pro- 

edures do not trivially extend to guarantee differential privacy 

nd may require extensive hyperparameter tuning which consid- 

rably reduces the privacy budget and consequently harms the 

erformance. We demonstrated high accuracy of the proposed 

ramework on two realistically federated datasets. We observe that 

he performance of our method increases with k , and that the 

ramework exhibits robustness with respect to the privacy hy- 

erparameter ε – thus suggesting suitability for the high privacy 

egimes. Our work enables low-cost communication methods that 
11 
ake advantage of local data to learn highly accurate yet private 

tatistics, prototypes, and/or synthetic datasets in the cross-silo 

etting. 

A limitation of the present work is in assuming that each silo 

ontains data from multiple users. In particular, the framework is 

ot suitable for settings where each entity represents a single user. 

n interesting future direction is to explore how the notion of local 

ifferential privacy [32] could be applied in such settings, allow- 

ng us to work directly with single-user data. A second limitation 

s that the presented method has only been tested in the scenarios 

here silos share the same features. We leave to future work adap- 

ations of our method to vertically partitioned data (i.e., scenarios 

here silos do not share features). 
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ppendix A. Private k-means subroutines 

Algorithm 4: private_partition (X, ε, δ, Q) [4] . 

Input : data X ∈ B(0 , �) ⊆ R 

n ×p , parameters ε, δ, initial cube 

Q s.t. { x i } n i =1 
⊆ Q 

Result : Private Grid C ⊆ R 

p 

1 Initialize depth a = 0, active set of cubes A = { Q} , and set 

C = ∅ 
2 while a ≤ n and A � = do 

3 a = a + 1 

4 C = C ∪ 

(
∪ Q i ∈A center (Q i ) 

)
5 for Q i ∈ A do 

6 Remove Q i from A 

7 Partition Q i evenly in each dimension and obtain 2 p 

cubes { Q 

(l) 
i 

} 2 p 
l=1 

8 for l ∈ { 1 , 2 , . . . , 2 p } do 

9 Add Q 

(l) 
i 

to A with probability f 

(
| Q 

(l) 
i 

∩ X| 
)

where 

10 f (m ) = 

{
1 
2 exp −ε′ (γ − m )) m ≤ γ

1 − 1 
2 exp ε′ (γ − m )) , otherwise 

11 ε′ = 

ε
2 log n 

and γ = 

20 
ε′ log n 

δ

12 end 

13 end 

14 end 

15 return C 

Algorithm 5: candidate (X, ε, δ) [4] . 

Input : data X ∈ B(0 , �) ⊆ R 

n ×p , parameters ε, δ
Result : Candidate center set C ⊆ R 

·×p 

1 Initialize C = ∅ 
2 for t = 1 , 2 , . . . T = 25 k log n 

δ
do 

3 Sample shift vector v ∼ U([ −�, �] p ) 

4 Let Q v = [ −�, �] p + v 
5 C = C ∪ private_partition 

(
X, εT , 

δ
T , Q v 

)
6 end 

7 return C 
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Algorithm 6: localswap (X, C, ε, δ) [4] . 

Input : data X ∈ B(0 , �) ⊆ R 

n ×p , parameters ε, δ, Candidate 

set C ⊆ R 

·×p 

Result : Clustering centers Z = [ z 1 , z 2 , . . . , k ] ⊆ C 

1 Uniformly sample k centers i.i.d. from C and form Z (0) 

2 T ← 

n 
δ

3 for t = 1 , 2 , ., T do 

4 Choose x ∈ Z (t−1) , y ∈ C \ Z (t−1) with probability 

proportional to exp −ε L (Z ′ ) −L (Z (t−1) ) 

8�2 (T +1) 

5 where Z ′ = Z (t−1) − { x } + { y } 
6 Z (t) ← Z (t−1) − { x } + { y } 
7 end 

8 Choose t ∈ { 1 , 2 , . . . , T } with probability in proportion to 

exp 

εL (Z (t) ) 

8(T +1)�2 

return Z (t) 
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Fig. B2. k -means objective ( Eq. (3) ) vs. level of privacy. As ε decreases, private k - 

means approaches the objective of non-private k -means. 
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ppendix B. Further experiments on parameters variations. 

1. Regularization in recommender systems. 

We do not perform hyperparameter tuning over latent factors 

ince it degrades privacy. We rather show performance across dif- 

erent values in Section 4 . For the regularization value λ when per- 

orming NMF we report in the main body results for λ = 0 . 1 , since

e did not observed significant variability, as observed in Fig. B.7 . 

2. Differentially private meta-MF 

Meta-MF [39] proposes to learn non-linear embeddings for 

sers and items with multi-layer perceptrons, by minimizing the 

MSE. to this end clients share gradients respect of model pa- 

ameters. Since gradients are calculated on raw data, the model 

s not differentially private. For a fair comparison in our paper, 

e combined MetaMF with the Gaussian Mechanism to privatize 

radients in the following way: after computing gradients, clients 

ocally clip the gradient vector to have a maximum � 2 norm of 

 , and then add zero-mean gaussian noise with standard devia- 

ion σ = 

√ 

T L log (1 δ) 
√ 

T 
ε to the gradient. After T rounds of training 

he procedure is (ε, δ) -Differentially Private. Notice our approach 

rovides pure differential privacy, a more rigurous guarantee com- 

ared to the approximate differential privacy guarantee provided 

y the gaussian mechanism. 
Fig. B1. Regularization value for NMF on the eICU dataset (left) and Movielens (right). F

12 
We do not perform hyperparameter tuning since it degrades 

rivacy, but rather use the same hyperparameters used in the orig- 

nal paper. However, there is a trade-off between training time and 

oise, so we try two models, one trained for 1 epoch (lower noise 

agnitude pero round), and another one for 10 epochs but with 

igher noise magnitude. 

3. Private k -means vs k -means on poisson distributed data 

For this experiment we use the previously described synthetic 

ataset, and study the average behaviour of private k -means. We 

bserve in Fig. B.8 that, as ε increases, the level of privacy de- 

reases. The reduction in privacy results in the k -means objective 

see Eq. (3) ) decreasing until it starts to approach the objective 

chieved by standard, non-private k-means. Additionally, large k 

oes not necessarily result in better performance. Fig. B.9 shows 

hat for large numbers of centers k , the private k -means algorithm 

epeats centers instead of overfitting, stalling the objective mini- 

ization. 

4. Varying number of entities. 

Fig. B.10 shows the RMSE on the synthetic test dataset de- 

cribed in Fig 4.1 . We observe that as the number of entities in-

reases, the convergence improves. This is expected since the num- 

er of observations used to approximate the items’ matrix also 

rows. 
or every value of latent factors regularization does not affect overall performance. 
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Fig. B3. Private k -means on synthetic data. Larger values of ε, i.e. less privacy, decrease the loss value. A large k does not necessarily result in better performance. Unlike 

non-private k-means, for larger values of k , the private k -means algorithm repeats centers instead of overfitting. 

Fig. B4. Convergence of matrix factorization for different number of entities. 
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