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Speeding up the Sphere Decoder With H and
SDP Inspired Lower Bounds

Mihailo Stojnic, Haris Vikalo, and Babak Hassibi

Abstract—It is well known that maximum-likelihood (ML) de-
coding in many digital communication schemes reduces to solving
an integer least-squares problem, which is NP hard in the worst-
case. On the other hand, it has recently been shown that, over a
wide range of dimensions and signal-to-noise ratios (SNRs), the
sphere decoding algorithm can be used to find the exact ML solu-
tion with an expected complexity that is often less than 3. How-
ever, the computational complexity of sphere decoding becomes
prohibitive if the SNR is too low and/or if the dimension of the
problem is too large. In this paper, we target these two regimes and
attempt to find faster algorithms by pruning the search tree be-
yond what is done in the standard sphere decoding algorithm. The
search tree is pruned by computing lower bounds on the optimal
value of the objective function as the algorithm proceeds to descend
down the search tree. We observe a tradeoff between the computa-
tional complexity required to compute a lower bound and the size
of the pruned tree: the more effort we spend in computing a tight
lower bound, the more branches that can be eliminated in the tree.
Using ideas from semidefinite program (SDP)-duality theory and

estimation theory, we propose general frameworks for com-
puting lower bounds on integer least-squares problems. We pro-
pose two families of algorithms, one that is appropriate for large
problem dimensions and binary modulation, and the other that
is appropriate for moderate-size dimensions yet high-order con-
stellations. We then show how in each case these bounds can be
efficiently incorporated in the sphere decoding algorithm, often
resulting in significant improvement of the expected complexity
of solving the ML decoding problem, while maintaining the exact
ML-performance.

Index Terms—Branch-and-bound algorithm, estimation,
convex optimization, expected complexity, integer least-squares,
maximum-likelihood (ML) detection, sphere decoding.

I. INTRODUCTION

I n this paper, we are interested in solving exactly the fol-
lowing problem:

(1)

where , and refers to some subset of the
integer lattice . The main idea of the sphere decoder algo-
rithm [1] for solving the previous problem is based on finding
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all points such that lies within a sphere of some adequately
chosen radius centered at , i.e., on finding all such that

(2)

and then choosing the one that minimizes the objective function.

Using the -decomposition ,

where is upper triangular, and and
are such that is unitary, we

can reformulate (2) as

(3)

where we have defined and .
Now using the upper-triangular property of , (3) can be fur-

ther rewritten as

(4)

for any , where the subscripts determine the en-
tries the various vectors and matrices run over (e.g., is
a column vector whose components are , and
similarly is a matrix and

are the components of its th row). A
necessary condition for (3) can therefore be obtained by omit-
ting the second term on the right-hand side (RHS) of the above
expression to yield

(5)

The sphere decoder finds all points in (2) by proceeding
inductively on (5), starting from and proceeding to

. In other words, for , it determines all one-dimensional
lattice points such that

and then, for each such one-dimensional lattice point, deter-
mines all possible values for such that
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This gives all two-dimensional lattice points that satisfy (3);
we proceed in a similar fashion until . The sphere de-
coding algorithm thus generates a tree, where the branches at the

th level of the tree correspond to all -di-
mensional lattice points satisfying (5). Therefore, at the bottom
of the tree (the th level), all points satisfying (2) are found.
(For more details on the sphere decoder and for an explicit de-
scription of the algorithm, the reader may refer to [1],[4], and
[10].)

The computational complexity of the sphere decoding algo-
rithm depends on how is chosen. In a digital communication
context, is the received signal, i.e., a noisy version of the
symbol vector transmitted across the channel

(6)

where the entries of the additive noise vector are indepen-
dent, identically distributed (i.i.d.) random variables.
In [4], it is shown that, if elements of are i.i.d. Gaussian with
zero mean and unit variance and if the radius is chosen appropri-
ately based on the statistical characteristics of the noise , then
over a wide range of signal-to-noise ratios (SNRs) and problem
dimensions, the expected complexity of the sphere decoding al-
gorithm is low and comparable to the complexity of the best
known heuristics, which are cubic.

The above assertion unfortunately fails and the computational
complexity becomes increasingly prohibitive if the SNR is too
low and/or if the dimension of the problem is too large (in fact
as shown in [19] the expected computational complexity of the
sphere decoder is always exponential). Increasing the dimen-
sion of the problem clearly is useful.1 Moreover, the use of the
sphere decoder in low-SNR situations is also important, espe-
cially when one is interested in obtaining soft information to
pass onto an iterative decoder (see, e.g., [7] and [8]). One way
to reduce the computational complexity is to resort to subop-
timal methods based either on heuristics (see, e.g., [6]) or some
form of statistical pruning (see [9]). Also, the interested reader
may find more about recent improvements and alternative tech-
niques in [20]–[24].

In this paper, we attempt to reduce the computational com-
plexity of the sphere decoder while still finding the exact solu-
tion. Let us surmise on how this may be done. As mentioned
above, the sphere decoding algorithm generates a tree whose
number of branches at each level corresponds to the number of
lattice points satisfying (5). Clearly, the complexity of the algo-
rithm depends on the size of this tree since each branch in the
tree is visited and appropriate computations are then performed.
Thus, one approach to decrease the complexity is to reduce the
size of the tree beyond that which is suggested by (5). To this
end, consider a lower bound (LB) on the optimal value of the
second term on the RHS of (4)

LB LB

1Various space–time codes result in integer least-squares problems where the
problem dimension is much larger than the number of transmit antennas. Also,
in distributed space–time codes for wireless relay networks, the problem dimen-
sion is equal to the number of relay nodes which can be quite large [36], [37].

where we have emphasized the fact that the lower bound is a
function of , , and . Provided our lower
bound is nontrivial, i.e., LB , we can replace (5) by2

LB (7)

This is certainly a more restrictive condition than (5), and so
will lead to eliminating more points from the tree. Note that (7)
will not result in missing any lattice points from (2) since we
have used a lower bound for the remainder of the cost in (4)
(for more on branch and bounding ideas, the interested reader
may refer to, e.g., [25] and the references therein). Assuming
that we have some way of computing a lower bound LB
as suggested above, we state the modification of the standard
sphere decoding algorithm based on (7). The algorithm uses
the Schnorr–Euchner (S-E) strategy with radius update [11].
[Note that in this paper, we consider several modifications of
the sphere decoding algorithm, and all are implemented using
Algorithm 1 below. The difference between the various modifi-
cations is how the value of LB in step 4 of the algorithm is com-
puted. Also, note that in the Algorithm 1 given below, is the
full integer lattice while later in the paper in different modifica-
tions of the original algorithm it will be restricted to its subsets.]

Algorithm 1:

Input: , , , , , .

1. Set , , .

2. (Bounds for ) Set

,

lb ,
lb , .

3. (Zig-zag through )

If , , , , otherwise ,
, .

If lb , go to 4, else go to 5.

4. If

LB

go to step 3, else go to step 6.

5. (Increase ) ; if terminate algorithm,
else go to step 3.

6. (Decrease ) If go to step 7. Else
, ,

, and go to step 2.

7. Solution found. Save and its distance from ,
, and go to step 3.

2LB = 0, of course, simply corresponds to the standard sphere decoder.
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Clearly, the tighter the lower bound LB, the more points will
be pruned from the tree. Of course, we cannot hope to find
the optimal lower bound since this requires solving an integer
least-squares problem (which was our original problem to begin
with). Therefore, in what follows, we focus on obtaining com-
putationally feasible lower bounds on the integer least-squares
problem

(8)

where, for simplicity, we introduced
. Also, in the rest of the paper, we

will assume

the case which is of interest in communications applications.
Before proceeding any further, however, we note that finding

a lower bound on (8) requires some computational effort. There-
fore, it is a natural question to ask whether the benefits of ad-
ditional pruning outweigh the additional complexity incurred
by computing a lower bound. An even more basic question,
perhaps, is what are the potential pruning capabilities of the
lower bounding technique that we use to modify the sphere
decoding algorithm. To illustrate this, consider a simple lower
bound (which is only valid in the binary case, i.e., if

) on (8), used earlier in [12] and further con-
sidered in Section II, which is based on duality and may be com-
puted by solving the following semidefinite program (SDP):

subject to is diagonal (9)

where

We mention that bounds of this type are very well known in
the literature on semidefinite programming relaxations. More
on them and their history can be found in [27]. Here, we would
like to only briefly mention the reason for their popularity. Al-
though it is difficult to prove how tight these bounds are, it turns
out that in practice they perform very well. On the top of that, the
optimization problem given above is convex (the objective func-
tion is convex and the region of optimization is convex as well),
which means that these bounds can be computed very efficiently
using a host of numerical methods [5]. Even more surprising, it
can be proved that they can be computed in polynomial time.

Although these bounds have been known for a very long time,
they attracted enormous interest in the algorithms and optimiza-
tion areas after the work of [26]. Quite remarkably, in [26] the
authors were able to give a hard bound on the performance of
the previously mentioned SDP-relaxation bound for a specific
case of the matrix . Since then the SDP-relaxation techniques
have become a standard tool in solving complicated combi-
natorial optimization problems. Naturally, many of these tech-
niques have also been applied in detection problems (see, e.g.,
[28]–[32] and [35]). More specifically, in [30] and [31], the au-
thors considered applications of SDP relaxation to problems
in multiuser detection in CDMA systems. In [28], [29], [32],
and [35], the authors applied the SDP relaxation to the problem

Fig. 1. Comparison of the number of points per level in the search tree vis-
ited by the SD and the SDSDP algorithm, m = 100, SNR = 10 dB, D =
f�(1=2); (1=2)g .

of maximum-likelihood (ML) detection in multiple-input mul-
tiple-output (MIMO) systems (the same one that we consider in
this paper). In [35], the authors generalized the applications of
SDP algorithm from binary to larger constellations, and in [29]
the authors proved that under certain conditions related to the
dimension of the problem in high SNR regime the SDP relax-
ation is tight.

As demonstrated in these references, the SDP technique can
be very powerful in producing a very good approximate solu-
tion of the original integer least-squares problem. However, in
this work, we focus on solving the integer least-squares problem
exactly, and therefore we will only use its lower-bounding fea-
ture. It should also be noted that although in general suboptimal,
the SDP technique can sometimes produce the exact solution to
the original problem (for more on when this happens, see, e.g.,
[32]).

After a brief chronology on the SDP relaxations, we now turn
our attention again to (9). We denote the optimal value of the ob-
jective function in (9) by LB . Fig. 1 compares the number
of points (for more on why the number of points may be im-
portant, interested readers can refer to [40] and [41]) on each
level of the search tree visited by the basic sphere decoding al-
gorithm with the corresponding number of points visited by the
modified sphere decoding algorithm which employs LB for
additional, lower bound based, pruning. We refer to the former
as the SD algorithm and to the latter as the SDSDP algorithm.
As evident from Fig. 1, for a problem of dimension ,
SNR 10 dB, and (i.e., BPSK mod-
ulation), the number of points in the search tree visited by the
SDSDP algorithm is several orders of magnitude smaller than
that visited by the SD algorithm. [The additional pruning of the
search tree varies across the tree levels. The total number of the
points visited by the SDSDP algorithm is roughly times
smaller than that visited by the SD algorithm.] Therefore, a
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good lower bound can help prune the tree much more efficiently
than the standard sphere decoding alone. However, computing
LB requires solving an SDP per each point in the search tree.
The computational effort of solving an SDP is , which is
significantly greater than the linear complexity of the operations
performed by the standard sphere decoding algorithm at every
visited node. Furthermore, although the complexity scaling be-
havior of solving an SDP is provably , even for mod-
erately large ( ), the real complexity of solving
the SDP given in (9) is . On the other hand, the standard
sphere decoder performs per each node a number of operations
that is . Therefore, there is merit in searching not only for
tight lower bounds such as the one in (9), but also for those that
may not be as tight but which require significantly smaller com-
putational effort.

In this paper, we therefore introduce a lower bound LB
on the quantity LB which can be computed with com-
plexity linear in . The idea is based on efficient propagation
of LB through the search tree. We will show that the lower
bound LB significantly improves the expected complexity
of the standard sphere decoder. However, LB defined
in (9) (and hence LB ) is a valid lower bound only when

. To address the case of general , we
derive another family of lower bounds on integer least-squares
problems using ideas from estimation theory. We show
that several lower bounds that may otherwise be obtained by
relaxing the optimization constraints, are in fact special cases
of our general based lower bound. When employing the
above lower bounds to modify sphere decoding, we observe
a tradeoff between the computational complexity required to
compute a lower bound and the size of the pruned tree: the
more effort we spend in computing a tight lower bound, the
more branches can be eliminated from the tree. We show that
the most computationally efficient among the special cases, the
so-called eigenbound, provides a significant improvement in
the expected complexity over the sphere decoding algorithm.

The paper is organized as follows. In Section II we derive
a computationally efficient lower bound LB on LB . In
Section III, we derive the general estimation-based lower
bound on the integer least-squares problem. In Sections IV, V,
and VII, special cases of this general bound are considered. In
particular, the so-called spherical relaxation bound is derived
in Section IV, the polytope relaxation bound is considered in
Section V, and the eigenbound is studied in Section VII. The
effects of the aforementioned bounds on the number of search
tree points and/or the total expected complexity of the modified
sphere decoding algorithm are studied throughout. Some sim-
ulations are presented in Section VI, and finally, Section VIII
contains conclusions and a discussion of potential extensions of
the current work.

II. SDP-BASED LOWER BOUND

Let LB denote the optimal value of the
following optimization problem:

LB subject to is diagonal
(10)

where

Qk�1=
1
4
RT

1:k�1;1:k�1R1:k�1;1:k�1 �

1
2
RT

1:k�1;1:k�1z
(k�1)

�

1
2
(z(k�1))TR1:k�1;1:k�1 (z(k�1))T z(k�1) :

In this section, we derive LB , a lower bound on LB .
To this end, let denote the optimal solution of

subject to is diagonal (11)

where

Let , where is a lower trian-
gular matrix. Also, let . Using the fact that the
matrices and are lower triangular, we obtain

and . Further-
more, let

(12)

and let

LB
if

if .
(13)

Now, it is clear that LB LB since

LB

and is an admissible matrix
in (10). On the other hand, if , LB ,

and clearly LB LB .
We refer to Algorithm 1 which, in step 4, makes use of

LB as the SDsdp algorithm. The subroutine for computing

LB is given below. Clearly, using LB instead of

LB results in pruning fewer points in the search tree.
However, the computation of LB is quite more efficient
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than the cubic computation of LB . In particular, unlike in
the SDSDP-algorithm, we need to solve only one SDP—the
one given by (11). Then, we may compute LB recursively

from LB , which requires complexity linear in [15]. This
is shown next.

Recall that . It is easy to
see that we can compute from as

(14)

Furthermore, note that can be
computed recursively as

(15)

Using and , we compute from (12), and
LB from (13). The computation of LB in each node
at the th level of the search tree requires

additions and multiplications. For the basic sphere
decoder, the number of operations per each node at the

th level is . This essentially means that the SDsdp
algorithm performs about four times more operations per each
node of the tree than the standard sphere decoder algorithm. In
other words, if the SDsdp algorithm prunes at least four times
more points than the basic sphere decoder, the new algorithm is
faster in terms of the flop count.

Subroutine for computing LB :

Input: , , , , , , .

1. If , solve (11) and set to be the optimal solution
of (11);

2. If ,

2.1 ,

.

2.2 .

3. If , LB , otherwise
LB .

Fig. 2 compares the expected complexity of the SDsdp
algorithm to the expected complexity of the standard sphere

Fig. 2. Computational complexity of the SD and SDsdp algorithms, m = 50,
D = f�(1=2); (1=2)g .

decoder algorithm (SD algorithm). The two algorithms are
employed for solving a high dimensional binary integer
least-squares problem. The SNR in Fig. 2 is defined as
SNR , where is the variance of each
component of the noise vector . Both algorithms choose an
initial search radius statistically as in [4] (the sequence of ’s,

, , , etc.), and update the radius every
time the bottom of the tree is reached.

As can be seen from Fig. 2, the SDsdp algorithm can run
up to ten times faster than the SD algorithm at SNR 4–5 dB.
At higher SNR, the speed-up decreases, and at SNR 8 dB, the
SD algorithm is faster. We can attribute this to the complexity
of performing the original SDP (11). In fact, Fig. 2, subplot 1,
shows the flop count of the SDsdp, when the computations of
the SDP (11) are removed (denoted there as SDsdp-sdp), which
can be seen to be uniformly faster than the SD. Thus, the main
bottleneck is solving (11), and any computational improvement
there can have a significant impact on our algorithm. In our nu-
merical experiments, we solved (11) exactly, i.e., with very high
numerical precision, which requires a significant computational
effort. This is, of course, not necessary. In fact, how precisely
(11) needs to be solved is a very interesting question. For this
reason, we emphasize again that constructing faster SDP algo-
rithms would significantly speed up the SDsdp algorithm.

In subplot 2 of Fig. 2, the distribution of points per level in
the search tree is shown for both SD and SDsdp algorithms. As
stated in [40] and [41], in some practical realizations, the size of
the tree may be as important as the overall number of multipli-
cation and addition operations. In subplot 3 of Fig. 2, the com-
parison of the total number of points kept in the tree by SD and
SDsdp algorithms is shown. As expected, the SDsdp algorithm
keeps significantly less points in the tree than SD algorithm.

Finally, in subplot 4 of Fig. 2, the comparison of the
bit error rate (BER) performance of the exact ML detector
(SDsdp algorithm) and the approximate minimum mean-square
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error (MMSE) nulling and canceling with optimal ordering
heuristic is shown. Over the range of SNRs considered here,
the ML detector outperforms the MMSE detector significantly,
thereby justifying our efforts in constructing more efficient ML
algorithms.

Remark: Recall that the lower bound introduced in this
section is valid only if the original problem is binary,
i.e., . A generalization to case

can be found in [42].
It is not difficult to generalize it to any

by noting that any -dimensional vector whose elements
are numbers from can be
represented as a linear transformation of a -di-
mensional vector from (inter-
ested readers can find more on this in [35]). However, this sig-
nificantly increases the dimension of the SDP problem in (11),
which may cause our algorithm to be inefficient. Motivated by
this, in the following section, we consider a different framework,
based on estimation theory, which will (as we will see in
Section VII) produce as a special case a general lower bound
applicable for any .

III. -BASED LOWER BOUND

In this section, we derive the lower bound LB in (7) based
on estimation theory [13]. In estimation theory, is a
concept where the goal is to minimize the worst-case energy
gain from the disturbances to the estimation errors. In what fol-
lows, we will try to exploit mathematical similarity between the
problem at hand and the concept.

To simplify the notation, we rewrite (8) as

(16)

where we introduced , , and
.

Consider an estimation problem where and are
unknown vectors, is the observation, and the quantities we
want to estimate are and . In the framework, the goal is
to construct estimators and , such that for
some given , some , and some diagonal matrix ,
we have

(17)

for all and (see, e.g., [16]).
Obtaining a desired lower bound from (17) is now straight-

forward. Note that for all and , we can write

(18)

Fig. 3. H estimation analogy used in deriving a lower bound on integer
least-squares problem.

and, in particular

(19)

Note that the minimization on the RHS of (19) is straightfor-
ward since it can be done componentwise (which is why we
chose diagonal). Thus, for any estimators

and , (19) provides a readily computable lower
bound. The issue, of course, is how to obtain the best and
(and and ). To this end, let us assume that the estimators are
linear, i.e., and for some matrices and

(see Fig. 3).

Introducing and noting that

maps to , from (18) we see that for all it must

hold that

(see [16]). Since is square, this implies either of the equivalent
inequalities

or (20)

The tighter the bound in (20), the tighter the bound in (19). In
other words, the closer is to a unitary matrix, the tighter
(19) becomes. Hence, we attempt to choose and to make

as close to identity as possible.
To this end, postmultiply with the unitary matrix

and are found via the factorizations

and
(21)
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to obtain

(22)

where

and (23)

Thus, implies

(24)

Note that we have many degrees of freedom when choosing
and and wish to make judicious choices. So, to simplify
things, let us choose such that for some

. (Clearly, this can always be done, since from (21) we
have that is invertible, and the simple choice
will do the job.) To make half the eigenvalues of unity,
we set the Schur complement of the (2,2) entry of (24) to zero,
i.e.,

(25)

Using , it easily follows that

(26)

Using the definitions of and from (23), we obtain

(27)

From the (1,1) entry of (24), it follows that

which is the only constraint on . Combining this constraint
with the definition of from (23), the definition of from (21),
and the expression for from (26), we obtain that

We summarize the results of this section in the following
theorem:

Theorem 1: Consider the integer least-squares problem (16).
Then, for any , , and any
matrices , , and satisfying
and

Proof: It follows from the previous discussion, noting that

and

The next corollary directly follows from Theorem 1.
Corollary 1: Consider the setting of the Theorem 1 and let

. Then

(28)

where is the unique symmetric square root of
, and is any vector of the

squared length .
It should be noted that we have several degrees of freedom in

choosing the parameters ( ), and we can exploit that
to tighten the bound in (28) as much as possible. Optimizing
simultaneously over all these parameters appears to be rather
difficult. However, we can simplify the problem and let .
This has two benefits: it maximizes the third term in (28), and it
sets so that we need not worry about the vector . Finally,
to maximize the first term, we need to take as its smallest
possible value, i.e., we set

This leads to the following result.
Corollary 2: Consider the setting of the Theorem 1 and let

. Then

(29)

Remark: We would like to note that the bound given in the
previous Corollary could have been also obtained in a faster
way. Below we show a possible derivation that an anonymous
reviewer has provided to us.

Let be a diagonal matrix such that . Then, we have

It is not difficult to see that this is precisely the same bound as
the bound given in the Corollary 2. The interested reader can
find more on this type of bounds in, e.g., [33] and [34].

In the following sections, we show how various choices of
the free parameters in the general lower bound from Theorem 1
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yield several interesting special cases of lower bounds. In par-
ticular, in Section IV, we show that the lower bound obtained
by solving a related convex optimization problem, where the
search space is relaxed from integers to a sphere, can be deduced
as a special case of the lower bound from Theorem 1. Then, in
Section V, we show that the lower bound obtained by solving
another convex optimization problem, where the search space
is now relaxed from integers to a polytope, can also be deduced
as a special case of the lower bound from Theorem 1. Finally,
in Section VII, we use (29) to deduce the lower bound based on
the minimum eigenvalue of .

IV. SPHERICAL RELAXATION

Assume the setting of the Theorem 1. Let , ,
, and . Then

LB (30)

is a special case of the general bound given in Theorem 1 and,
therefore, a lower bound on the integer least-squares problem
(8). In addition, since being a special case, it is less tight than
the general bound given in Theorem 1. Clearly, to make LB
as tight as possible, we should maximize (30) over .

Consider the singular value decomposition (SVD) of ,
, where and are unitary matrices, and where is di-

agonal matrix. Let be the th component on the main diagonal
of , and let be the rank of . Also, let .
Then we can write

LB (31)

To maximize over , we differentiate to obtain

LB
(32)

Let denote the value of which maximizes LB . Then, it
easily follows that

(33)

Note that if , we set .
Hence, we can state a lower bound on (8) as

LB (34)

where is any matrix such that
, , and is the

unique solution of (33) if , and
zero otherwise.

To obtain an interpretation of the bound we have de-
rived, let us consider a bound obtained by a simple

spherical relaxation. To this end, let us denote LB
, where is the solution

of the following optimization problem:

min
s

kz1:k�1 �R1:k�1;1:k�1s1:k�1k
2

2 subject to
k�1

i=1

s
2

i �
k � 1

4
:

(35)

This is a lower bound since the integer constraints have been re-
laxed to a spherical constraint that includes .
The solution of (35) can be found via Lagrange multipliers (see.
e.g., [3]), and it turns out that the optimal value of its objective
function coincides with (34). Therefore, we conclude that

LB LB

and the lower bound obtained via spherical relaxation is indeed
a special case of the general lower bound given in Theorem 1.

We would also like to note that we could get a tighter bound
in (35) if we replace inequality with an equality. Although the
resulting problem would be nonconvex, following the proce-
dure from, e.g., [3] and [39], we would obtain a result similar
to the one obtained in (34). The difference would be that now
in (33), would be allowed to take negative values as well.

This would certainly give a bound which is tighter than LB .
However, in general, we did not find that solving (33) for nega-
tive would be more useful for our algorithms than solving
it only for positive . In addition, we would like to emphasize
that the bound given in (35) is valid for the binary case. It can,
however, be used for if the constraint in (35) is replaced
by . However, we believe that
this type of bound is more useful in the binary case.

Now, let us unify the notation and write LB LB

LB . We employ LB to modify the sphere decoding algo-
rithm by substituting it in place of the lower bound in step 4
of Algorithm 1. The subroutine for computing LB is given
below.

Subroutine for computing LB :

Input: .

1. .

2. Compute the SVD of ,
.

3. Set and .

4. If , find such
that , and
compute and
LB .

5. If , set
and LB .
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The computational complexity of finding the spherical lower
bound by the above subroutine is quadratic in , and the bound
needs to be computed at each point visited by Algorithm 1. That
the complexity is only quadratic may not immediately seem
obvious since we do need to compute the SVD of the matrix

. Fortunately, however, this operation has to be per-
formed only once for each level of the search tree, and hence
can be done in advance (i.e., before Algorithm 1 even starts).
Computing the SVD of matrices
would require performing factorizations that are cubic in for
any . However, using the results from [17] and [18],
it can be shown that all SVDs can, in fact, be computed with
complexity that is cubic in .

The computational effort required for finding LB beyond
performing the SVD is clearly quadratic in at the

th level of the search tree. Note that unlike the SVD, these
remaining operations do need to be performed per each point
visited by the algorithm. In particular, computing the vector
requires finding , which is quadratic in . Now, the
matrix is constant at each level of the search tree, but the
vector differs from node to node. Clearly, this is the most
significant part of the cost, and the computational complexity of
finding LB is indeed quadratic.

A. Generalized Spherical Relaxation

In this subsection, we propose a generalization of the spher-
ical lower bound. This generalization is given by

LB LB LB if ,
otherwise

(36)
where, as in (34),

LB

, , ,
, , is the unique solution of (33)

if , and 0 otherwise, and where

LB

(37)
Clearly, (36) is obtained from (29) by setting

and is, therefore, a lower bound on the integer least-squares
problem (8). Also, since LB LB , the generalized
spherical bound is tighter than the spherical bound. It is inter-
esting to mention that LB was also obtained in [33] based
on a different approach.

We refer to Algorithm 1 with LB LB as the GSPHSD
algorithm. Since the generalized spherical bound is at least as
tight as the spherical bound, we expect that the GSPSD algo-
rithm prunes more points from the search tree than the SPHSD
algorithm.

We give the subroutine for computing LB below.

Subroutine for computing LB :

Input:

1. .

2. Compute the SVD of ,
.

3. Set and .

4. If , find such that
, and compute

and

LB

5. If , set
and LB .

At first, the complexity of computing LB in (37) may seem
cubic in ; however, it can actually be reduced to quadratic.
Clearly, finding the inverse of is of cubic complexity
and required in each node of the search tree ( is constant per
level but differs from node to node). However, instead of in-
verting the matrix directly, we can do it in several
steps. In particular, using the SVD , we can write

Since is a diagonal matrix, the inversion of is only
linear in . Therefore, the computationally dominant operation
in finding is multiplication of a matrix
and a vector, which requires quadratic complexity. Recall what
we argued earlier in this section: although the SVD decompo-
sition of the matrix is of cubic complexity, it can be per-
formed offline since is constant on each level in the search
tree. Furthermore, instead of computing separately SVDs of
all matrices , we can employ effi-
cient techniques from [17] and [18] to obtain all relevant ma-
trices in these SVDs with complexity cubic in . Therefore,
computing LB is essentially quadratic in . Since, computing
LB is also quadratic, the computational effort required for
finding LB in (36) is quadratic as well.

V. POLYTOPE RELAXATION

In this subsection, we show that the lower bound on the in-
teger least-squares problem (8) obtained by solving the related
convex optimization where the search space is relaxed from inte-
gers to a polytope is yet another special case of the lower bound
derived in Section III.
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Assume the setting of the Theorem 1. Let , ,
and . Then

LB (38)

is a special case of the general bound given in Theorem 1 and,
therefore, a lower bound on the integer least-squares problem
(8). Now, since the matrix is a free parameter, we can make
the bound (38) tighter by optimizing over . Hence, we can
obtain a lower bound to the integer least-squares problem (8) as

LB (39)

Clearly, LB is also a lower bound on the integer least-squares
problem (8). Furthermore, since (39) allows for any posi-
tive-semidefinite diagonal matrix , while (30) allows only for
scaled version of identity, it is clear that the bound in (39) will
be tighter than the one in (30). However, as we will see in the
rest of this section, computing (39) is of greater complexity
than computing (30).

Now, before further discussing and comparing the merits
of the bounds defined in (30) and (39), we will show that the
lower bound (39) is equivalent to the lower bound obtained by
relaxing the search space in the integer least-squares problem
(8) to a polytope and solving the resulting convex optimization
problem. In particular, such a relaxation yields

subject to (40)

Let us denote LB , where is a solution of (40).

We want to show that LB LB . To this end, consider the
Lagrange dual of the problem (40)

where is any matrix such that . Using ,
we can pose a dual problem to the primal in (40) as

subject to is diagonal

Clearly, the previous problem is equivalent to

subject to is diagonal

which, after straightforward algebraic transformations in-
volving the matrix inversion lemma, can be written as

subject to is diagonal (41)

Since the primal problem is strictly feasible, the duality gap be-
tween the problems in (40) and (41) is zero. Therefore, if we
denote the optimal solution of (41) by

LB (42)

Comparing (39) and (42), we conclude that

LB LB

which implies that the bound on the integer least-squares
problem (8) is indeed a special case of the general bound
we derived in Section II. To unify the notation, we write

LB LB LB . We refer to Algorithm 1 which,
in step 4, makes use of LB as the PLTSD algorithm. The
subroutine for computing LB is given below.

Subroutine for computing LB :

Input:

1.

2.

LB quadprog

(quadprog is MATLAB function for solving quadratic
optimization problems).

The lower bound studied in this subsection is tighter than the
spherical one considered earlier in the paper. It is clear that (39)
results in a tighter lower bound than (30) since (39) includes
maximization over all diagonal positive semi-definite matrices

, whereas (30) assumes only the special case .
The geometric interpretation implies the difference between
(30) and (39) as well. In particular, in (30) the set of integers
from the basic problem (8) is relaxed to a sphere, while in
(39) the same set of integers is relaxed to a polytope, i.e., to a
smaller set. However, although the lower bound based on the
polytope relaxation is tighter than the one based on the spher-
ical relaxation, the total computational effort is not necessarily
improved. The reason is the additional computational effort
required to calculate the LB per each node; these additional
computations are of quadratic complexity, while the additional
operations for calculating the LB are cubic (see, e.g., [2]).
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Fig. 4. Computational complexity and the distribution of the points in
the search tree for SD, SPHSD, GSPHSD, PLTSD, and SDsdp algorithms,
m = 45, D = f�(1=2); (1=2)g .

Therefore, there is no general answer to which bound is better
for improving the standard sphere decoding algorithm.

VI. PERFORMANCE COMPARISON

In this section, we study and compare the performances of the
SPHSD, GSPHSD, PLTSD, SDsdp, and SD algorithms.

A. Flop Count

In Fig. 4 the average flop count and the distribution of the
number of visited nodes per each level of the search tree are
shown for each of the SPHSD, GSPHSD, PLTSD, SD, and
SDsdp algorithms. The parameters of the system are ,

, and SNR . The
initial search radius was chosen statistically as in [4] (the se-
quence of ’s, , , , etc.), and updated
every time the bottom of the tree is reached. As can be seen,
the SPHSD, GSPHSD, PLTSD, and SDsdp prune more points
than the SD algorithm. Also, as it is expected, the PLTSD
prunes more points than the SPHSD and GSPHSD since it uses
a tighter lower bound. However, the large improvement in tree
pruning does not always reflect in improving the overall flop
count. The reason is, as we have already said, the additional
amount of computation that has to be performed at each node of
the search tree. For the system parameters simulated on Fig. 4,
we have that the SDsdp algorithm has the best flop count, the
GSPHSD still has better flop count than the SD algorithm, and
the PLTSD and SPHSD have worse flop count than the SD
algorithm.

B. Flop Count Histogram

In Fig. 5, the flop count histograms of the SPHSD, GSPHSD,
PLTSD, SD, and SDsdp algorithms are shown obtained from
performing 560 numbers of independent runs of the algorithms.
As before the parameters of the system are ,

, and SNR 3 dB . It can be seen that the

Fig. 5. Flop count histograms for SD, SPHSD, GSPHSD, PLT, and SDsdp al-
gorithms, m = 45, SNR = 3 [dB], D = f�(1=2);(1=2)g .

GSPHSD and SDsdp have significantly better shaped (shorter
tail) histograms than the SD algorithm. This implies that the
probability of encountering large flop counts is significantly
less. It should be noted that SPHSD and PLTSD have longer
tail than the SD.

VII. EIGENBOUND

In principle, the lower bound (29) still requires an optimiza-
tion over the diagonal matrix . A particular choice that
may be computationally feasible is , for some . How-
ever, in this section, we focus on an even more simple choice
for . Namely, as noted in [14], letting in Corollary 2,
we obtain

LB (43)

We also mention that this bound could have been obtained in an
easier fashion as

LB

(44)

Although this may raise concern that the resulting bound will
be too loose, it turns out that it yields an algorithm with smaller
flop count than the standard sphere decoder. The key observa-
tion is that, with , all the computations required at any
point in the tree are linear in the dimension. (The standard sphere
decoder also requires a linear number of operations per point.)
Since it is based on the minimum eigenvalue, we refer to this
bound as the eigenbound.

Clearly, since (43) can be regarded as a special case of (29),
it is a lower bound on the integer least-squares problem (8).
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Note that it appears as if (43) may not be a good bound since
could become very small. However, since the mini-

mization in (43) is performed over integers, the resulting bound
turns out to be sufficiently large to serve our purposes (i.e., tree
pruning in sphere decoding), especially in the case of higher
symbol constellations. Furthermore, we will show that the com-
putation required to find LB for a node at a level in the
search tree is linear in .

The key observation that enables efficient computation of
LB in (43) is that the vector can be propagated as the
search progresses down the tree. Before proceeding any further,
we will simplify notation. First, recall that

and

Let us denote and introduce

(45)

We wish to find a recursion that relates the vector to the
already calculated vector . See equation (46) at the bottom
of the page. From (46), we see that

(47)

Similarly

(48)

Using (47) and (48), we relate and as

(49)

All operations in the recursion (49) are linear, except for the
matrix-vector multiplication which is
quadratic. However, this multiplication needs to be computed
only once for each level of the tree, and the resulting term is
used for computing (49) for all points visited by the algorithm at
a level. Therefore, this multiplication may be treated as a part of
preprocessing, i.e., we compute it for all before actually run-
ning Algorithm 1. Hence, updating the vector in the (43)
requires a computational effort that is linear in . Furthermore,
since it is done componentwise, the minimization in (43) also
has complexity that is linear in . Hence, we conclude that the
complexity of computing the eigenbound is linear in . Also, it
should be noted that in addition to standard sphere decoder, we
have to compute

. However, computing these ’s requires an effort that
is negligible to the overall flop count for the model parameters
that we will consider.

We state the subroutine for computing LB below.

Subroutine for computing LB :

Input: , , ,
,

, .

1. If , ;
otherwise,

.

2. if , LB , otherwise,
LB .

We refer to the modification of the sphere decoding algorithm
which makes use of the lower bound LB as EIGSD algo-
rithm and study its expected computational complexity in the
following subsection.

A. Eigenbound-Performance Comparison

In this subsection we study the performance of EIGSD-
algorithm.

In particular, Fig. 6 compares the expected complexity and
total number of points in the tree of the EIGSD algorithm to
the expected complexity and total number of points of the stan-
dard sphere decoder algorithm. We employ both algorithms for

(46)
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Fig. 6. Computational complexity of the SD and EIGSD algorithms, m = 12,
D = f�(15=2);�(13=2); . . . ; (13=2); (15=2)g .

Fig. 7. Flop count histograms for SD and EIGSD algorithms,m = 12, SNR =
18 [dB], D = f�(15=2);�(13=2); . . . ; (13=2); (15=2)g .

detection in a multiantenna communication system with 6 an-
tennas, where the components of the transmitted symbol vec-
tors are points in a 256-QAM constellation. Note that the SNR
in Fig. 6 is defined as SNR , where
is the variance of each component of the noise vector . Both
algorithms choose the initial search radius statistically as in [4]
(the sequence of ’s, , , , etc.), and
employ the Schnor–Euchner search strategy updating the radius
every time the bottom of the tree is reached. As the simulation
results in Fig. 6 indicate, the EIGSD algorithm runs more than
4.5 times faster than the SD algorithm.

In Fig. 7, the flop count histograms of SD and EIGSD al-
gorithms are shown. As can be seen, the EIGSD algorithm has
significantly better shaped (shorter tail) distribution of the flop
count than the SD algorithm.

We would also like to point out that the EIGSD algorithm
is not restricted to applications in communication systems.
In Fig. 2, we show what its potential can be if applied to a
random integer least squares problem. In the problem simulated
in Fig. 8, was generated as an matrix with i.i.d.
Gaussian entries and entries of were generated uniformly

Fig. 8. Computational complexity of the SD and EIGSD algorithms,

D = �
M � 1

2
;�

M � 3

2
; . . . ;

M � 3

2
;
M � 1

2
:

from the interval . The problem
that we were solving was again

(50)

where

The initial radius was chosen as

(51)

where is obtain by rounding the components of to the
closest element in . generated in this way is sometimes called
the Babai estimate [38]. Fig. 8 compares the expected flop count
of the EIGSD and SD algorithms for different large values of .
As it can be seen, the larger the set of allowed integers, the better
the EIGSD performance.

VIII. SUMMARY AND DISCUSSION

In this paper, we attempted to improve the computational
complexity of sphere decoding in the regimes of low SNR
and/or high dimensions, by further pruning points from the
search tree. The main idea is based on computing a lower bound
on the remainder of the cost function as we descend down the
search tree (the standard sphere decoder simply uses a lower
bound of zero). If the sum of the current cost at a given node and
the lower bound on the remaining cost from that node exceeds
the cost of an already found solution, then that node (and all its
descendants) are pruned from the search tree. In this sense, we
are essentially using a “branch and bound” technique.
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Adding a lower bound on the remainder of the cost function
has the potential to prune the search tree significantly more than
the standard sphere decoding algorithm. However, more signif-
icant pruning of the search tree does not, in general, guarantee
that the modified algorithm will perform faster than the standard
sphere decoding algorithm. This is due to the additional compu-
tations required by the modified algorithm to find a lower bound
in each node of the search tree. Hence, a natural conclusion of
our work: a lower bound on one hand has to be as tight as pos-
sible in order to prune the search tree as much as possible, and on
the other hand it should be efficiently computable. Led by these
two main requirements, in this paper, we introduced a general
framework, based on the estimation theory, for computing
the desired lower bounds. Several special cases of lower bounds
were deduced from this framework. We explicitly studied four
such lower bounds, and employed them for sphere decoding.
The first two correspond to relaxation of the search space to ei-
ther a sphere or a polytope, while the third one is a slight gen-
eralization of the spherical lower bound. The last special case
corresponds to bounding the integer least-squares problem with
the smallest eigenvalue and requires smaller computational ef-
fort than any of the previously mentioned bounds. In addition
to framework for computing lower bound on the integer
least-squares problem, we introduced an SDP-based framework
for computing desired lower bound relevant in cases when the
original problem is binary.

Simulation results show that the modified sphere decoding
algorithm, incorporating the lower bound based on the smallest
eigenvalue and on the SDP-duality theory, outperforms in terms
of complexity the basic sphere decoding algorithm. This is not
always the case with the aforementioned alternative bounds and
is due to their efficient implementation, which is effectively only
linear in the dimension of the problem.

Effectively all algorithms developed in this paper can be di-
vided in two groups depending on the type of the problem that
they were designed for. The first group (which includes SDsdp,
GSPHSD, SPHSD, and PLTSD) is specifically designed for bi-
nary problems, while the second group (EIGSD) is specifically
designed for higher order constellation problems. From the re-
sults that we presented, the SDsdp, GSPHSD, and EIGSD al-
gorithms seem to outperform the standard SD in the simulated
regimes in terms of flop count. Furthermore, the distributions of
their flop counts have significantly shorter tail than the distribu-
tion of the SD. However, SPHSD and PLTSD do not perform as
well as the standard SD in terms of the flop count and flop count
histogram. These results suggest that using a lower-bounding
technique is useful, but only if the lower bound can be com-
puted in a fast manner.

We should also point out that although we derived it in order
to improve the speed of the sphere decoding algorithm, the gen-
eral lower bound on integer least-squares problems is an in-
teresting result in itself. In fact, the proposed estimation
framework for the efficient computation of lower bounds on the
difficult integer least-squares problems may find applications
beyond the scope of the current paper.

The results we present indicate potentially significant im-
provements in the speed of the sphere decoding algorithm. How-
ever, we should note that the proposed estimation based

framework for bounding integer least-squares problem is only
partially utilized. In fact, there are several degrees of freedom
in the general based bound that are not fully exploited. It
is certainly of interest to extend the current work and use the
previously mentioned degrees of freedom to further tighten the
lower bound. If, in addition, this can be done efficiently, it might
even further improve the speed of the modified sphere decoding
algorithm.
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