SPHERE DECODING ALGORITHMS FOR DIGITAL
COMMUNICATIONS

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Haris Vikalo
October, 2002



(© Copyright by Haris Vikalo 2003
All Rights Reserved

i



I certify that I have read this dissertation and that, in
my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Thomas Kailath
(Principal Adviser)

I certify that I have read this dissertation and that, in
my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Babak Hassibi

I certify that I have read this dissertation and that, in
my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Stephen P. Boyd

Approved for the University Committee on Graduate

Studies:

il



Abstract

The problem of finding the least-squares solution to a system of linear equations
where the unknown vector is comprised of integers, while the given vector and the
coefficient matrix are comprised of real entries, arises in many applications: digital
communications, cryptography, GPS, to name a few. This problem is equivalent
to the closest-point search in a lattice and is known to be NP-hard. However, in
communications applications, where maximum-likelihood detection often reduces to
solving an integer-least-squares problem, the given vector is not arbitrary, but rather
is an unknown point in a finite lattice that has been perturbed by an additive noise
vector of known statistical properties. We study the expected complexity of the
integer-least-squares problem, averaged over the noise and over the lattice. For the
”sphere decoding” algorithm of Fincke and Pohst we find analytic expressions for
the expected complexity, both for the case when the lattice generator matrix is full
(which models flat-fading multiple-antenna channels) and when the generator matrix
is Toeplitz (which models frequency-selective channels). We show that for a wide
range of signal-to-noise ratios the expected complexity is polynomial, in fact often
sub-cubic. Many communication systems operate at noise levels for which this is the
case, suggesting that the maximum-likelihood detection, which was hitherto thought
to be computationally intractable, can in fact be implemented with the complexity
similar to the heuristic methods, but with significant performance gains — a result

with many practical implications.

In addition, extending the sphere-constrained search idea of the Fincke-Pohst al-

gorithm, we develop algorithms that solve several important integer least-squares

v



related problems in the communications setting. For channels with memory, we pro-
pose a combination of the constrained search technique of sphere decoding and the
dynamic programming principles of the Viterbi algorithm. The resulting algorithm
has the worst-case complexity of the Viterbi algorithm but is significantly faster on
average. Furthermore, motivated by the prospect of high reliability that iterative
decoding techniques have been shown to provide on single-antenna channels, and by
the absence of efficient techniques to obtain the soft-information (which is required of
the iterative scheme) in multiple-antenna systems, we propose a modification of the
Fincke-Pohst algorithm that solves the maximum a posteriori detection problem and
efficiently approximates the required soft-information. We demonstrate that the al-
gorithm provides near-capacity performance when used for soft iterative detection in
multiple antenna communication systems that employ powerful turbo and low density
parity check codes. Furthermore, we develop a new algorithm for solving integer least-
squares problems when the lattice points are generated by a linear block transform
of elements in a (alois field and employ it for joint maximum-likelihood detection
and decoding of the linear block codes. The joint detection and decoding algorithm
exhibits superior performance over traditional receivers whereas it has comparable

complexity.



Contents

Abstract
Acknowledgements
1 Introduction
1.1 Fundamentals of Digital Communications . . . . . .. ... ... ...
1.2 Limits of Performance . . ... ... ... .. ... ... .......
1.3 Integer Least-Squares Problem . . . . . . . . ... ... ... ... ..
1.4  Overview of Solution Techniques . . . . . . . . .. ... ... .. ...
1.4.1 Heuristic Techniques . . . . . ... . ... ... ... .....
1.4.2 Lattice Reduction . . . . . . . ... ... ... .. .......
1.4.3 Exact Methods . . ... ... ... ... ... ........
1.5 Qutline of the Thesis . . . . . . . .. ... .. ... ... .......
2 Expected Complexity of Sphere Decoding
2.1 Sphere Decoding . . . . .. ... Lo
2.1.1 The Sphere Decoding Algorithm . . . . . . ... ... .. ...
2.1.2 A First Look at Complexity . . . .. ... ... ... .....
2.2 Expected Complexity . . . . . . . . . .. . ... .. ...
221 ARandom Model . . . . . ... ... ... oL
2.2.2 Infinite Lattice Case . . . . . . .. . . ... ... .. .....
2.2.3 Finite Lattice Case . . . . . . . . . .. ... ... .......
2.3 Some Remarks . . . . . . . . . . . ... ...

iv

vi



24 Conclusions . . . . . . ...

Sphere Decoding for Channels with Memory

3.1 The Algorithm for Channels with Memory . . . .
3.2 Combining Sphere Decoding and Viterbi Algorithm
3.3 Sphere Decoding for MIMO Channels with Memory

34 Conclusion . . . . . . . ...

The FP-MAP Algorithm

4.1 Soft iterative decoding . . . . . . .. .. ... ..
4.1.1 Turbocodes . . . . ... ... ... ...
4.1.2 Low-density parity check codes . . . . ..

4.2 System Model . . . . ..o

4.3 Modified FP Algorithm for MAP Detection . . . .

4.4 Computational Complexity of FP-MAP Algorithm

4.5 Simulation Results . . . . ... ... .. ... ..

4.6 Conclusion . . . . .. ...

Joint Detection and Decoding

5.1 The JDD-ML Algorithm . . .. ... .. ... ..
5.2 The Computational Complexity of JDD-ML . . .
5.3 The JDD-MAP Algorithm and its Complexity . .
5.4 Performance Simulations . . . . .. ... ... ..
5.5 Conclusion. . . . ... ... ... ... .. ...
Conclusion

6.1 Future Research . . . . .. ... ... ... ....

Probability of Finding a Point Inside a Sphere

A.l Full Channel Matrix . .. ... ... .......
A.2 Toeplitz Channel Matrix . . . . ... .. ... ..

1X

63
66
70
77
82

84
87
89
95
100
104
110
113
119

121
122
132
138
141
142

145
147

149



Bibliography 152



List of Figures

1.1
1.2
1.3
14
1.5
1.6
1.7
1.8

1.9
1.10

2.1
2.2

2.3

24
2.5
2.6
2.7

Digital Communication System . . . . . . . . .. ... .. ... ...
Transmutter . . . . . . .o e
4-QAM and 16-QAM Constellations . . . . . . . . . . . .. ... ...
The Gray mapping for 16-QAM constellation . . . . . . . .. . .. ..
General Channel Model . . . . . . . . . . . ... ... ...
Recetver . . . . . . .o
Ergodic capacity comparison of the 1 x 1, 1 x 4, and 4 x 4 systems . .
Mutual information of the QAM modulation technigues on the single-
wnput single-output channel. The dashed line is the mutual information
for the input signal with Gaussian distribution. . . . . . . . . . . . ..
Geometric interpretation of the integer least-squares problem . . . . .
Bit error performance of a sphere decoding vs. nulling and cancelling
with optimal ordering, M =8, N =12, 16-QAM. . . . . .. ... ..

Idea behind sphere decoder . . . . . . . . ... ... ... ... ...
Sample tree generated to determine lattice points in a 4-dimensional
hypersphere. . . . . . . L . L e
A 4-dimensional example of the closest point search by Fincke-Pohst
algorithm . . . . . . . e e
The complexity exponent as a function of m for ¢ =0.01,0.1,1,10. .
Counting for D5 . . . . . . . . ...
Counting for D¥ . . . . . . . . . . ...

Multiple antenna system . . . . . . . . .. ... o

xi

=~

] = & Ut

13

14

17

29

37

41
48
49
50



2.8 The complexity exponent as a function of m for p = 20db and L =

24,8, 16, o o
2.9  The complexity exponent as a function of p form =10 and L = 2,4,8,16. ¢
2.10 The complexity exponent distribution for M = N =5, L = 4, and

2.11 Sphere decoder vs. nulling and cancelling, M = N =5, L = 4.
2.12 Sphere decoder vs. nulling and cancelling, M = N =2, L. = 4.
2.13 Sphere decoder vs. nulling and cancelling, M =8 N =12, 16-QAM. .
3.1  Freguency-selective channel . . . . . . . . . ... ... .. ... ..
3.2 Expected complexity exponent of SD, T =20,1=12, L=2. .. ..
3.3  Performance of SD compared to generalized DFE, T =16, [ =8, L = 4.
3.4 Trellis example . . . . . . . . ..
3.5 Sphere-constrained search on trellis . . . . . . . ... .. ... ...
3.6 Distribution of complexity exponent, | =8, T =20, L =2, SNR = 104B.
3.7 The expected complexity exponent of the sphere-constrained ML detec-
tion on trellis, | =8, T =20, L=2. .. . . ... ... .. .....
3.8 FIR MIMQ channel model . . . . . . .. . .. ... ... ......
39 M=2 N=21=4,T =4, L =2 performance and complexity
310 M =2, N=2,1=4,T =8, L =4: performance and complexity
311 M =4, N=4,1=4,T =8, L =4: performance and complexity
4.1 Turbo FEncoder . . . . . . . . . ..
4.2 Convolutional code . . . . . . . . . . . .. .. ... .. ...
4.3 Turbo Decoder . . . . . . . . ..
4.4  Graph representation of the block code . . . . . . . . .. . ... ...
4.5 Bit-lo-check message in node Nib) ...................
4.6 Parity check node . . . . . .. . Lo
4.7 System model . . . . .. Lo
4.8 Rate 1/2 convolutional code, 4 x 4 system, 16-QAM . . . . . . . ..
4.9 Rate 1/2 turbo code, 4 x 4 system, 16-QAM . . . . . . . ... ...

SNR=16,18,20,22dB. . . . . . . i

xii

76
77
81
82
83



410 Rate 8/9 LDPC code, 4 x 4 system, 4-QAM . . . . . . . . ... ... 115
411 Complexity exponents for rate 1/2 turbo and rate 8/9 LDPC codes . . 116

4.12 Clapacity for 4 x 4 system, and mutual information for the system of

same size and 4-QAM and 16-QAM modulation schemes. . . . . . . . 118
Approzimately upper-triangular form of generator matriz G . . . . . . 125
The tree-pruning interpretation of the JDD-ML algorithm . . . . .. 129
Generator matriz G . . . . . . . . L 130

An illustration of the expected complexity of the JDD-ML algorithm: a

rate 1/2 binary code, m=10. . . . . . .. .. ... 142
BER performance of the JDD-ML for Golay 24 code compared to the

hard detection followed by the hard decoding. . . . . . . . .. ... .. 143
Complexity exponent of the JDD-ML for Golay 24 code. . . . . . . .. 144

xiii



xXiv



Chapter 1
Introduction

In his landmark work [1] which sprang the fields of digital communications and infor-
mation theory, Claude Shannon stated that ”the fundamental problem of communi-
cation is that of reproducing at one point either exactly or approximately a message
selected at another point.” The design of efficient yet simple communications systems
that are capable of solving this problem has been the ongoing focus of research in
the communications and information theory fields ever since. The communication
systems should be designed to be effective, i.e., to be capable of exploiting the avail-
able resources to the fullest extent possible. On the other hand, they should remain

simple to be implementable in practice.

The measure of the effectiveness of a communication system on a given channel
mocdel is provided by information theory. The ultimate limit of the performance
— the channel capacity — was first calculated by Shannon in [1]. As shown there,
there exist codes such that, for any data transmission rate less than the channel
capacity, allow the probability of the decoding error to be made arbitrarily small.
However, the proof of this statement was non-constructive and the codes achieving
the capacity were allowed to be arbitrarily long random codes. Gallager [2] later
showed that the decoding error probability decreases exponentially with the length of
the code. However, in both [1] and [2], it was assumed that the decoder was designed

according to the maximum-likelihood criteria. Maximum-likelihood decoding of a
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random code requires an exhaustive search over all the possible codewords, and so
the computational complexity of the optimal decoding scheme is exponential in the
length of the codeword. As it was shown in the years to come, the major obstacle to
the design of the practical effective communications systems has been the complexity

of the detection and decoding algorithms.

The most meaningful statistical measure of the performance of a digital com-
munication system is the probability of the transmission error, i.e., the probability
that a received message is mistaken for another one from the available ensemble
of the messages. For equally likely codewords, maximum-likelihood decoding mini-
mizes the probability of decoder error. Hence, maximum-likelihood naturally arises
as the target criterion for the decoder design. Nevertheless, the existing algorithms
for maximum-likelihood decoding have computational complexity that is not feasible
for implementation in practical systems. Hence, in order to recover the transmitted
message, designers often turn to other design criteria and to heuristic techniques.
Traditionally, rather than trying to directly decode the transmitted message, the re-
ceivers are often designed to first attempt to invert the effect of the communication
channel and to optimize for the recovered signal in some sense. For instance, when
recovering the transmitted signal at the receiver, some form of the mean-square error
criterion is often considered. Essentially, by exploiting the knowledge of the channel
at the receiver, this technique performs the minimization of the mean-square error be-
tween the original transmitted signal and and its recovered estimate. If, in addition,
the filters in the receiver are constrained to be linear, one obtains a low complexity
solution readily implementable in practice. However, since the probability of error
is the most important criterion, the performance of this (and other) low-complexity

heuristic solution is inferior in comparison to the optimal decoding scheme.

The implementation details of the algorithm which solves for a particular target
criterion depend on the channel model. The mathematical model of the channel
needs to reflect the physical characteristics of the communication medium while, at
the same time, remaining tractable and allowing for implementable algorithms of low

complexity. This may be satisfied by assuming appropriate forms for the stochastic
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processes that play a role in the transmission. For instance, relying on the central limit
theorem, we often model the noise disturbance affecting transmission as a Gaussian
process. As a result, maximum-likelihood detection is equivalent to a least-squares
problem, and often to a so-called integer least-squares minimization problem, which
we discuss later in this section.

There are various important aspects of the data transfer that need to be considered

in the design of a communication system. Some of the most prominent ones are:

e Compressing the data to the most compact form which still conveys all the
information contained in the original message, and, after the transmission, re-

covering the data to the original form.

e Embedding redundancy into the data in order to provide protection from the

adversities that occur in the form of the channel and noise disturbances.

e Statistically modeling the effects of the transmission medium, i.e., modeling the
communication channel and statistically describing the noise. Also, developing

techniques for channel estimation and tracking.
e Designing a receiver which efficiently recovers the transmitted data.

These are all areas of study in their own right. However, in this thesis we shall focus
on the design of efficient algorithms for the optimal data detection. The other mod-
ules of the digital communications system will be briefly addressed in this chapter.
Furthermore, since the design of the elements of a communication system is often
tightly intertwined, we shall occasionally revisit some of them in more details in the
remainder of the thesis, when their closer examination contributes to the understand-
ing of the structure and the derivation of the optimal receiver.

We continue this chapter by describing the basic setting of the digital communi-
cations problem. We proceed by discussing the capacity of various communication
systems. Then we introduce the integer least-squares problem and give an overview
of existing techniques for solving it. We close the chapter by providing an outline of

the thesis.
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1.1 Fundamentals of Digital Communications

The general scheme of data transmission in a digital communication system is illus-

trated in Figure 1.1.  The information source in Figure 1.1 generates a message

Message Message

Transmitter Channel Receiver -
Sender Receiver

Figure 1.1: Digital Communication System

in the form of a digital sequence of bits. The transmitter then sends an appropri-
ate continuous-time waveform representing the message through the communication
channel. The receiver recovers the transmitted signal that was corrupted by the
transmission media, and decides upon the message that has been sent.

Figure 1.2 shows the transmitter in more detail. The source encoder removes the

Message Symbol

Source Channel Digital
Encoder Encoder Modulator

Figure 1.2: Transmitter

redundancies in the original message by compressing it into a more compact form.
Then the channel encoder embeds some redundancies into the message in order to
protect it from the errors caused by the communication channel. [We should note
that the design of the source and channel encoder may also be done jointly. In fact,
joint source-channel coding has been an active and fruitful area of research in the field
of coding theory — see, e.g., [3] and references therein.] A digital modulator converts
the output from the channel encoder to an analog waveform that is convenient for

transmission through the communication medium. This is done in two stages. First,
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(1]

the modulator maps the message into a symbol. The symbol is a vector with, in
general, complex valued entries and it corresponds to a point in Euclidean space. The
collection of all possible symbol points that are allowed to be transmitted across the
channel is called the constellation. The constellation is typically designed by making
a compromise between the opposing requirements that the constellation points be set
as far apart from each other as possible while, at the same time, keeping the expected
energy of the transmitted symbols as low as possible. Figure 1.3 illustrates a popular
rectangular constellation — quadrature amplitude modulation (QAM) [4]. Typically,
the spacing between any two constellation points in Figure 1.3 along either axis is an

(possibly scaled) integer.

16-QAM |
. @ ® ® ® |
| A-QAM ] |
& & & @& |
@ @ e o
@ ® ® ®

Figure 1.3: 4-QAM and 16-QAM Constellations

A possible mapping of the bits at the output of the channel encoder to the 16-QAM
constellation from Figure 1.3 is shown in Figure 1.4. The bits (in groups of 4} are
assigned to the symbol points using the so-called Gray mapping. The Gray mapping
has the property that the nearest neighbors in the constellation are separated by a
Hamming distance of 1. This mapping strategy is justified by the observation that for
the uncoded transmission, the most likely error — confusing the transmitted symbol
for its nearest neighbor — results in only one bit error. [For the best labeling strategies

in coded systems, see, e.g., [5], [6].]
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0011 0001 0101 0111
| | | @

0010 0000 0100 0110
| | | @

1010 1000 1100 1110
| | | @

1011 1001 1101 1111
| | | @

Figure 1.4: The Gray mapping for 16-QAM constellation

Once the message is mapped onto a constellation point, each component of the
symbol vector is used to modulate an appropriate continuous-time basis function.
The linear combination of the modulated components of the symbol vector is the
analog waveform that is sent through the transmission media. The rate of the data
transmission is determined by the number of bits sent across the channel each time the
channel is used, i.e., by the total number of bits represented by the single modulated
analog waveform sent. Note that in order to find the effective rate, or the information
rate, we need to also factor in the amount of the redundancy that the channel encoder
plants into the transmitted bit sequence.

The communication channel models the effects of the transmission medium. For
example, in wireless communication systems, because of the interaction of the signal
with the environment (e.g., scattering, reflection and refraction), the transmitted
signal effectively propagates along a number of different paths. As a result of the
propagation loss and fading, the signal gets attenuated during the transmission. These
effects of the propagation medium are often modeled by a multiple path channel with

interfering signals and additive white Gaussian noise (see Figure 1.5).

Primarily motivated by the desire to keep the model tractable, we frequently as-
sume that the channel is linear time-invariant (LTI). Linearity is often justified by the
practical limitations set on the dynamic range of the signals that are being transmit-

ted. Because of these limitations, the non-linear distortions that might be caused by
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v(t)

Symbol Receed

H(t) N Signal

Figure 1.5: General Channel Model

the physical channel do not actually take place. On the other hand, time-invariance
is an appropriate assumption for quasi-stationary channels, i.e., for scenarios where
the channel changes slowly over the time interval that is being considered. For in-
stance, the discrete-time “block-fading” model, where the channel is constant for
some discrete interval 7°, after which it changes and remains constant for a duration
of another interval 7', is a tractable approximation of the continuously fading channel
models, such as Jakes’ model [7]. In general, the channel in Figure 1.5 has a memory
and is mathematically described by an impulse response. Furthermore, the inputs
and/or the outputs of the channel may be vector (rather than scalar) valued, as is
the case in wireless communications systems employing multiple antennas. Therefore,
under the LTT assumption, the most general mathematical description of the channel

in Figure 1.5 is a (finite) sequence of matrices that comprise the channel impulse

response.
Received Digital Channel Source Message
Signal Demodulator Decoder Decoder

Figure 1.6: Receiver

The receiver is pictured in more detail in Figure 1.6. The task of the demodulator
in Figure 1.6 is to recover the discrete message that was the output of the channel
encoder. To do so, the received signal is first converted to baseband (if needed) and

then filtered. The receive filter are matched either to the pulse shaping filter or to
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the overall channel response, i.e., the combination of the pulse shaping filter and the
channel. The output of the receive filters is then sampled and quantized to perform
an analog to digital conversion. The resulting discrete sequence is processed by an
algorithm that recovers the channel encoder output.

The last two stages of the receiver in Figure 1.6 use the output of the demodulator
to recover the original message. First, the channel decoder recovers the compressed
message that is the output of the source encoder. Then, the source decoder decom-
presses the original message.

The performance of the system in Figure 1.1 is typically measured in terms of
a bit-error-rate. The bit-error-rate (BER) is the average (over time) fraction of the
information bit sequence that was erroneously recovered at the receiver. Modern
communication systems are characterized by ever increasing demands for high data

rate service with high reliability (i.e., the low BER).

1.2 Limits of Performance

Channel capacity, error exponent, and cutoff rate are some of the information-theoretic
concepts most often used to measure the efficiency of a communications scheme. We
shall primarily focus on channel capacity as the most important one. Channel capac-
ity provides a limit to the amount of the information that can be transmitted across
the channel and still be recovered at the receiver with negligible probability of the
error.

In information theory, communication channel is abstracted by a statistical de-
scription. Both the input and the output of the channel are random variables. Denot-
ing the transmitted signal in Figure 1.5 by 2 and the received signal by y, the channel
is described by the conditional probability distribution py|x(¥|#). To quantify the
amount of information about transmitted signal that is gained by observing received

signal, one considers mutual information between X and Y, defined as

I(X;Y) = hY) — h(Y

X)7
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where /i(Y') is the entropy of the of the received signal, and A(Y'|X) is the entropy of
the received signal conditioned that the signal z was transmitted. Since the entropy

of the random variable X,

WX) = — [ px()log (px(2)) da,

is a measure of its uncertainty, the mutual information can be described as the re-
duction in the uncertainty about one random variable due to the acquired knowledge

about the other [8].

Channel capacity of a single user system where the transmitter sends the signal
drawn from the distribution described by the probability density function px(z) is
given by [1]

C=maxI(X;Y),

px (%)
i.e., channel capacity is mutual information between input and output signals, max-
imized over all possible distributions of the input. The significance of capacity is
noted in Shannon’s famous coding theorem. Essentially, assuming the communica-
tion scheme that employs the channel code at the transmitter, the theorem states that
for all transmission rates R < ', there exist a coding scheme with arbitrarily low
block and bit error rates as the length of the channel code goes to infinity. Conversely,

for rates greater than channel capacity, error-free communication is not possible.

Information capacity is the maximum number of bits per channel use that can be
reliably transmitted. i.e, information capacity is the actual communication capacity.
For an additive white Gaussian noise (AWGN) channel H that is constant and known

to the receiver, the capacity can be found as

C= m(a)xI(X, Y|H) = log(1 + p) bits/sec/Hz, (1.1)

p(x
where p denotes the signal-to-noise ratio (SNR}, defined as the ratio of the transmit
power and the power of the noise disturbance. From (1.1} it can be inferred that to

transmit an additional bit, we require an increase of the transmit power corresponding



10 CHAPTER 1. INTRODUCTION

to the 3dB increase of the SNR.

The channel is not always constant. In wireless communications, for instance, the
channel varies (fades) with time. The capacity, in that case, is a random variable.
The statistics of the channel capacity provide insight to the system designer about the
acceptable range of the system parameters. For an ergodic fading channel, expectation
of mutual information can be achieved by coding which is long in comparison to the
fading speed. For such a channel, the average mutual information is referred to as

the ergodic capacity [9] and is defined as

C = Elog(1 + p|h|*), (1.2)

where |h|? is the squared value of the random, complex-valued channel gain, and the
expectation is taken over all channel realizations. If the channel gain is a complex
Gaussian random variable, |h|? is a random variable itself, described by a chi-square

distribution with two degrees of freedom.

On the other hand, outage capacity is a frequently used measure of performance
of practical systems [10]. Outage capacity is defined as the probability 7, that the

channel will not be able to support transmission at the given rate,
Prob(C < C,) = n,.

This can also be expressed as the lower bound: the outage capacity C, is the data

rate that can be sustained with probability 1 — 7, i.e.,
Prob(C > C,) =1 —1,.

For instance, the 7, = 5% outage capacity €, means that 95% of time the channel
will be able to support data transmission at the rate ® = C',. We should note that
the outage capacity is not a capacity in an information-theoretic sense but is still

often used in practice.

Expression (1.2} gives the ergodic capacity for flat-fading (memoryless) channels.
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Channels with memory (or the frequency-selective channels), are often represented
by a tapped delay line model. Assuming [ taps, the channel impulse response is given
by

h(t) = hoé(t) + hgé(t - 1) + ...+ hlflé(t -1+ 1)

The ergodic capacity for such a channel is given by

C= E/flog (1 + W) df, (1.3)

where S;(f) and S,(f) denote the power spectral densities of the input signal and the
noise, respectively, H () is the channel frequency response (i.e., the Fourier transform
of the channel impulse response}, and the integration is over the frequency range of

signaling, that is, over the allotted bandwidth.

The capacity expressions often indicate the optimal transmitter signaling schemes.
For instance, when the channel information is available at the transmitter, the capac-
ity expression (1.3) is maximized by the so-called frequency water-pouring strategy
[8]. However, the knowledge of the channel realization at the transmitter assumes
that there is an information feedback from the receiver, which is not always readily
available, as, for instance, in the mobile communications. Hence in this thesis, unless
stated differently, we shall be making the assumption that the transmitter does not

know the realization of the channel.

The variations in the frequency response of the channel provide the frequency
branches that can mitigate the bad conditions (i.e., the low SNRs) in others. This
frequency diversity is especially beneficial to the outage capacity — as the length of the
channel impulse response increase while the power is being uniformly distributed over
the channel taps, the outage capacity approaches the ergodic capacity in probability
[11]. In general, diversity techniques exploit the variations (in time, frequency, etc.)
of the channel to help improve the performance of the system. In the quest for the ever
higher rates of the data transmission, the communication schemes seek for the various

ways of exploiting the existing diversity provided by the channel or embedding the
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additional ones by means of the system design. Recently, spatial diversity originating
from the use of multiple antennas, and its effect on the channel capacity, have received
significant attention ([12], [13]}.

The ergodic capacity for systems with a single transmit and multiple (say, )
receive antennas, which is an often used configuration in practical wireless schemes,
is given by

C = Flog(1+ p||h]|*), (1.4)

||* denotes the norm of its vector argument. Assuming that h;,7=1,..., N

where || -
is a Gaussian A (0, 1) random variable, we see from (1.4) that the increase in capacity

that comes with the use of multiple antennas at the receiver is only logarithmic.

In [12], the capacity of systems employing multiple antennas at both the trans-

mitter and the receiver was considered. The ergodic capacity was found as

HRyxxH*
det (L‘vf + &7_}‘)] ;

C = FElog N
N

where Ry is the signal covariance matrix and N, is the noise power. When the
channel is white and its realization is not known at the transmitter, the ergodic

capacity is given by

C = Elog [éet (IN n %HH*)] , (1.5)
where the SNR p is defined via the total transmit energy F; as p = f{o Denoting
the eigenvalues of HH* by A;, (1.5) can be written as

! p
C=Elog]] (1 + —,\i) , (1.6)
P A V]

where g < min(M, N} is the rank of H. Assuming rich scattering, i.e., assuming that
H is not rank deficient, capacity of the multiple antenna system increases linearly

with the minimum of the number of the transmit and receive antennas, min(M, N).

In Figure 1.7, we plot the ergodic capacity versus signal-to-noise ratio for a single-

input single-output (M = N = 1}, a single-input multiple-output (M = 1, N = 4),
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Figure 1.7: Ergodic capacity comparison of the 1 x 1, 1 x 4, and 4 x 4 systems

and a multiple-input multiple-output (M = 4, ¥ = 4) systems. The linear increase in
the capacity of the MIMO system over the capacity of the SISO system at the same
SNR is evident.

We should mention that the capacity expressions discussed in this section are
derived under the assumption that the transmitter can generate any distribution of
the input signal — and, hence, it can also generate the Gaussian, being the optimal
one. However, as we have discussed earlier, practical modulation schemes, such as
the QAM modulation, impose a constraint on the achievable distributions of the
transmitted signals. The mutual information for various constellation schemes was
considered in [5]. Figure 1.8 shows the mutual information as a function of the
SNR for the often used 4-QAM, 16-QAM, and 64-QAM constellations and compares
them with the mutual information achieved with the (Gaussian distribution of the
input signal. The significance of these curves is that, as pointed out in [5], a QAM
constellation of size 2% is likely to yield a code with near-optimal performance at
rate R because, under those assumptions, the mutual information is within 1 — 2 dB

from the capacity curve. Therefore, when designing a system, one needs to consult
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Figure 1.8: Mutual information of the QAM modulation techniques on the single-input
single-output channel. The dashed line is the mutual information for the input signal
with Gaussian distribution.

to Figure 1.8 for the proper choice of the modulation scheme.

1.3 Integer Least-Squares Problem

The main focus of this thesis is the design of demodulator algorithms that recover the
channel encoder output or, in some cases, the channel encoder input. [In this text, we
shall refer to the process of recovering the channel encoder output as detection and
to the process of recovering the channel encoder input as decoding.| In the design, we
shall consider those target criteria that minimize the probability of error: maximum-
likelihood and maximum a posteriori criteria.

We consider transmission of data packets across linear time-invariant channels,
corrupted by additive (zaussian noise. When the transmitted symbols are elements
of a QAM constellation, the maximum-likelihood and the maximum a posteriori cri-

teria can be expressed as equivalent non-linear optimization problems with integer
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unknowns. We shall illustrate this equivalence for the case of the detection with the

maximum-likelihood (ML) criterion. Assume that the received signal is given by
x=Hs+v, (1.7)

where H is the complex valued channel whose realization is known to the receiver
(and is estimated, for instance, by means of sending a known training sequence), s
is the transmitted symbol, and v is Gaussian € (0, ¢?) noise. Furthermore, assume
that the entries in the transmitted symbol vectors s in (1.7) are coming from a QAM
constellation. For later discussion, it will be useful to first find a real-valued equivalent
of the equation (1.7). To this end, let the vector s be comprised of the real and

imaginary parts of the vector s, organized as
T
s=[R(s)" I(s)"] .

Furthermore, let z denotes

let » denotes

and let H be given by

Then the real-valued equivalent of the model (1.7) is given by
z=Hs+u. (1.8)

The ML detector maximizes the likelihood that z was received given that s was sent,
i.e., performs the optimization

max py|s(%|s). (1.9)
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The optimization in (1.9) is performed over the entire symbol space, i.e., over all
constellation points s. Since we assumed additive Gaussian noise, the conditional

distribution of z given s is

1 _lle—ms)?

Pals(]5) = ot

Hence the maximization of the conditional probability in (1.9) is equivalent to the

non-linear optimization problem
min ||z — Hs|]?, (1.10)

where the components of the unknown vector s are integer numbers. We now state

the optimization problem (1.10} more formally.

Integer least-squares problem over infinite lattice:

Given the vector z € ‘R"™, matrix H € R™™, and an m-dimensional integer lattice

Zm find the vector s € Z™ that minimizes

min ||z — Hs|,, (1.11)

SEZM

The optimization problem (1.11) is over an infinite space of m-dimensional vectors
s with integer entries. It is an appropriate search space for, e.g., spatial lattices, as in
the case of finding coordinates of a point using the global positioning system (GPS)
[31]. However, in digital communication applications where the lattice models symbol
constellations, the power constraints on the transmitted signal means that the search
space is a (finite) subset of the infinite lattice, D C Z™. There we have the following

problem.

Integer least-squares problem over finite lattice:




1.3. INTEGER LEAST-SQUARES PROBLEM 17

Given the vector z € R", matriz H € R™™, and a finite subset D of an m-
dimensional infinite integer lattice Z™, find the vector s € D™ that minimizes

min ||z — Hs||,. (1.12)

sehczm

The integer least-squares problem has a simple geometric interpretation. As the
entries of s run over the integers, s spans the “rectangular” m-dimensional lattice,
Z™. However, for any given lattice-generating matriz H, the n-dimensional vector H s
spans a “skewed” lattice. (When n > m, this skewed lattice lives in an m-dimensional
subspace of R™.) Therefore, given the skewed lattice Hs, and given a vector z € R",
the integer least-squares problem is to find the “closest” lattice point (in a Euclidean

sense) to z, as is illustrated in Figure 1.9.

Figure 1.9: Geometric interpretation of the integer least-squares problem

Compared to the standard least-squares problem where the unknown vector s is
an arbitrary vector in R™, and the solution is obtained via a simple pseudo-inverse,
it is much more difficult to find the solution to (1.11) or (1.12). The main reason is
that the search space is discrete (whether it is finite or infinite). In fact, it is well
known that problems (1.11) and (1.12) are, for a general H, exponentially complex,
both in a worst-case sense [14], as well as in an average sense [25].

As we have just shown, when the channel is linear and the noise independent,

identically distributed (i.i.d.) Gaussian, maximum-likelihood decoding leads to a
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least-squares cost function. When the transmitted symbols are from a finite set, this
can be often cast as an integer least-squares problem (1.12). However, integer least-
squares problems do not arise only in the context of the simple uncoded transmission
modeled by (1.7). It is also encountered in lattice codes [26, 38|, CDMA systems
[27, 28], multi-antenna systems possibly employing space-time codes [13, 29, 30], etc.
In all these applications, the unknown vector s represents the transmitted signal, the
matrix H represents the equivalent channel, and the vector z represents the received
signal. For example, in the multi-antenna context of V-BLAST [13] where we have M
transmit and N receive antennas, H is a (m = 2M) x (n = 2N) real channel matrix,
and for linear space-time codes (such as those in [30]), H is the equivalent channel
matrix. The integer least-squares problem also arises when we have a frequency
selective finite-impulse response (FIR) channel H(z) = hy + hiz7' + ... 27!, in

which case the channel matrix takes the form of a Toeplitz matrix

ho
hl h()
H=|h . . hy|. (1.13)
Iif h
| hl

We should point out that aside from the detection problem in the context of digital
communications, integer least-squares problems appear in a host of other applications.
Prominent applications include the GPS systems [31] and cryptography. In fact, there
is a whole family of public-key cryptosystems based on the NP-hardness of the integer

least-squares problem [32, 33, 34].
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1.4 Overview of Solution Techniques

In this section, we review the existing techniques that are commonly used for solving
integer least-squares problems. In particular, the solution techniques that we discuss

are the following:

e heuristic techniques, which provide an approximate but readily implementable

low-complexity solutions to the integer least-squares problem,

e lattice reduction methods that, when used for pre-processing of the channel

matrix, improve the performance of the previously mentioned heuristics, and

e exact methods that, by exploiting the structure of the integer lattice, generally

obtain the solution faster than straightforward exhaustive search.

1.4.1 Heuristic Techniques

Since the integer least-squares problem arises in many applications and finding the
exact solution is, in general, NP hard, all practical systems employ some approxima-
tions, heuristics or combinations thereof with the manageable computational complex-
ity. In communications applications, these approximations can be broadly grouped

into several classes.

Zero-forcing:

Solve the unconstrained least-squares problem to obtain § = H'z, where HT
denotes the pseudo-inverse of H. Since the entries of § will not necessarily be integers,

round them off to the closest integer (a process referred to as slicing) to obtain
ip = [H'a] (1.14)
5B & z .

The above &5 is often called Babai estimate [14]. In the communications parlance,
this procedure is referred to as the zero-forcing equalization.
The complexity of finding the Babai estimate is essentially determined by the

complexity of finding pseudo-inverse of the matrix H in (1.14). The simplest way of
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calculating the pseudo-inverse is by means of QR factorization, H = ¢ R. However, it
can be calculated in a more stable way (which avoids inverting the upper triangular
matrix ) by means of singular value decomposition (SVD) of H, H = UXV*. The
complexity of performing the SVD of nxm matrix H, as given in [15], is 2n2m+11m3.
The complexity of finding the pseudoinverse H' = VE~10* is 2nm?. Hence, assuming
that H is square (i.e, n = m), the complexity of finding the Babai estimate is of cubic
order, O(m?).

Nulling and cancelling:

In this method, the Babai estimate is used for only one of the entries of s, say the
first entry s;. Then this entry, s;, is assumed to be known and its effect is cancelled
out to obtain a reduced-order integer least-squares problem with y — 1 unknowns.
The process is then repeated to find so, etc. In communications parlance this is known
as the decision-feedback equalization.

We will find it convenient to denote the partition of the channel matrix H into

columns as
H=h hy ... hyl

The nulling and cancelling algorithm can be stated by the following pseudo-code:

Y1 =2

fork=0tom—1
find weighting vector u,, x
Sm—k 1= decision (W, —kYk+1)
Ykt2 = Ybt1 — Pk Sk

end

In the algorithm, for each value of the index %, the entries of the auxiliary vector w1
are weighted by the components of the weight vector u:,_, and linearly combined
to account for the effect of the interference. Depending on the criterion chosen for
the design of u,  (i.e., for performing the nulling operation}, we can distinguish

between the following cases:
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1. Zero-forcing (ZF) nulling

In this case, interference from the vet undetected symbols is nulled. Denoting
Hopp =y by ... By y],
this condition can be stated as
H Wy k= €m_k,

where e, is a (m — k) x 1 column vector that consists of all zeros and has 1
for (m — k)™ entry. The weighting vector w,,_j, for the zero-forcing nulling and

cancelling algorithm is then given by the least-norm solution of the form
\ — gt
Wm—k m—kEm—k

where (-)! denotes a pseudo-inverse, i.e., H , = Hy o (H: _ Hpp) .

2. Minimum mean-square error { MMSE) nulling

Objective in MMSE nulling is to minimize the expected mean-square error be-
tween the receiver’s estimate and the transmitted symbol. This can be expressed

as

E [Sm—ky;ck+1] = W 1 B [yk—l—lyl:—l—l] .

Furthermore, we shall assume that the previous decisions made by the detector
were correct, i.e.,

Defining

we can write

Yk+1 = Hy kStam—k + v,
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where ¢ is the noise vector in (1.8). Furthermore, assuming that the transmitted

symbol sequence is white and has variance &, we find

E [Sm—k’g;+1] = gsﬁ:nfk’

and
E [yk+1y2+1] = gsHmka:sz + 0'2[’

where o2 denotes noise variance. Then the weighting vector 2, ; for the MMSE

nulling and cancelling algorithm is given by

-1
1
U = (H;ka—k + ;I) .

where p = % denotes signal-to-noise ratio (SNR).

Computational complexity is again determined by the complexity of solving the
underlying unconstrained least-squares problem, i.e., calculating pseudo-inverse at
each step of the algorithm. Since we need to evaluate the pseudo-inverse of a series of
matrices with dimensions (n +4) % i, where i = m,m —1,..., 1, total computational
complexity is

: 2 3 2 2,2 o 3, 19 4
> [Z(n +3)% + 113° 4+ 2(n + i) ] =n"m” + 2nm° + R

i=1
When m = n this complexity expression simplifies and is clearly of the fourth order,
i.e., O(m*). Therefore, computational complexity of the nulling and cancelling is by

an order of magnitude higher than the complexity of finding the Babai estimate.

Nulling and cancelling with optimal ordering.

In the nulling and cancelling algorithm we assumed that the previously made de-
cisions are correct. However, the nulling and cancelling algorithm can suffer from

error-propagation: if s; is estimated incorrectly it can have an adverse effect on
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estimation of the remaining unknowns ss, s3, etc. To minimize effects of error prop-
agation, it is advantageous to perform nulling and cancelling from the “strongest” to
the “weakest” signal. This is the method proposed for V-BLAST [13].

Consider, for instance, the MMSE nulling and cancelling algorithms. To perform

optimal ordering, we consider the covariance matrix of the estimation error s — 3,

-1
P=E(s—8)(s— ) = (H*H + %1) |
Consider entries of the estimated symbol §, i.e., {§;,4 = 1,2,...,m}. The “strongest”
signal, corresponding to the “best” estimate, is the one with the smallest variance,
i.e., s; for which Fj; is the smallest. If we reorder the entries of s so that the strongest
signal is s,,, then the estimate 3, is going to be better than it would be for any other
ordering of the entries in s. This ordering we perform at each step of the nulling
and cancelling algorithm, i.e., for each entry s, (k =m,m —1,...,1}, of the symbol

vector s.

Therefore, the MMSE nulling and cancelling with optimal ordering can be de-

scribed by the following pseudo-code:

=
Fork=0tom—1
Find P = (H}, Hpy+ 1) and Py = mini_y, . s P
Reorder [s; ... Sp_g| so that .sglff) = 5j;
Wi = (Hyp_yH + 21) 7 B
Sk = Decision(wyy, k¥k+1)
Ye+2 = Yol — By Sk
End

The computational complexity of the algorithm is as same as the complexity of
the standard nulling and cancelling, augmented by the complexity of the ordering

operation, which, for the set of & elements, is O(k3).



24 CHAPTER 1. INTRODUCTION

Square-root algorithm for nulling and cancelling:

In order to avoid repeatedly evaluating the pseudo-inverse of the deflated matrices
Hpyy Hp1, ..., Hy, one can use square-root algorithm as in [16]. Using the square-
root algorithm, the computational complexity can be decreased by roughly an order

of magnitude and is cubic, i.e., O(m?).

Solving relaxed convex optimization problems:

Another heuristic approach to the maximum-likelihood detection is via convex
optimization techniques. The integer least-squares problem is essentially transformed
into an optimization problem with both objective and constraint being convex func-
tions. To illustrate the technique, we consider the detection problem where the entries
in the symbol s are chosen from 4 — () AA{ constellations, i.e., for each entry in the
symbol vector s it holds that s = 1.

Note that
|z — Hs|?> = sTHTHs—22TH s+ 2"z

= TrHTHS —22"HTs + 2"z,

where S = ss’. Therefore, the integer least-squares problem can be expressed as
min TrHTHS — 22TH s + 27z

subject to S;; = 1,5 > ss7, rank(S) =1

Using
S

sT 1

>0

S > sst e [

and relaxing the rank one constraint, one can obtain semi-definite program (with

variables S, s} of the form

min TrHTHS — 22T H s + 7=

> 0.

S
subject to 5;; =1,
sT 1
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Solving this SDP for s, an approximate solution to the detection problem can be

found as § = sgn(s).

1.4.2 Lattice Reduction

The aforementioned heuristic methods are exact only if the columns of H are orthog-
onal. In this case H can be diagonalized by a unitary transformation on the left, and
so slicing the unconstrained least-squares solution yields the exact solution.

In practice, however, the columns of H are rarely orthogonal. Orthogonalizing the
columns of H via a QR decomposition, or otherwise, generally destroys the lattice
structure. (The reason being that, if s has integer entries, Rs need not have integer
entries.} One method that attempts to alleviate this is lattice reduction. In these
methods, one attempts to find an invertible A4 x A matrix 7, such that 7T and
T! have integer entries (thereby preserving the lattice structure), and such that the
matrix G = HT is as “orthogonal as possible”. Having found such a 7', rather than

solve (1.11), one can solve the integer least-squares problem

min |z — G|, (1.15)

using the earlier mentioned heuristics and set s = 7 't. However, lattice reduction
is itself NP-hard.
Let A denotes the lattice generated by the matrix H. The classic lattice reduced

basis for A are due to Minkowski [21] and Korkin and Zolotarev [22] (see also [23]).

Minkowski-reduced basis:

AbasisG=[g, g, ... g _|is Minkowski-reduced if

e g, is the shortest nonzero vector in the lattice A,

e Foreach k =2,...,m, g, is the shortest nonzero vector in A such that (9,5--- ,gk)

may be extended to a basis of A.

The reduced basis & clearly contains the shortest nonzero vector in the lattice A,
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g,- For every k = 2,...,m, the basis vector g, is the shortest nonzero vector in A
independent of (g,,...,g, ). Of course, finding shortest nonzero vector in a lattice
is an NP-hard problem and there are no polynomial-time algorithms that could find

the Minkowski-reduced basis.

Korkine-Zolotarev reduction:

AbasisG=[g, g, ... g _|is Korkin-Zolotarev-reduced if

e g, is the shortest nonzero vector in the lattice A,

e Foreach k = 2,...,m, define Ay to be the (k—1)-dimensional subspace spanned
by Gx-1=1g,---g,_,], and denote the orthogonal complement of Ay in R™ by
Aj. Furthermore, let S(A) denote the orthogonal projection of A onto Aj.

Then g, is such that Sk(g,) is the shortest nonzero vector in Sg(A).

o For1 <k <j<m,

1
(Sk(g,), Selg,)] < SISkl
and Si(g,) = g, for each k.

Therefore, in Korkine-Zolotarev reduction, the basis vector g, is chosen based on
its length in the orthogonal complement of the space spanned by Gy 1 = [31 e G 1].
It is known that every lattice has at least one KZ-reduced generator matrix [24]. As
in the case of Minkowski-reduced basis, there are no known polynomial-time algo-
rithms which find Korkin-Zolotarev reduced basis. Therefore, there is a need for
lattice reduction techniques which could be performed in polynomial time, even if
the orthogonality conditions are relaxed. The most famous such algorithm is the
Lenstra-Lenstra-Lovasz (LLL) reduction. Permitting a gross oversimplification, LLL

algorithm can be regarded as Gram-Schmidt over integers.

Lenstra-Lenstra-Lovasz reduction:

AbasisG=1[g g, ... g |is LLL-reduced if
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° |,uz-j|§%for1§j<i§m,

o |15 + pii—ahi o |I* 2 mllA7, || for 1 < i <m,

where i
. (g, 5)
ij =
(b5, h7)
H*=1[h] hy ... h;]is a Gram-Schmidt orthogonalized basis generated from H,

and parameter 7 € (,1).

Both the Minkowski and Korkin-Zolotarev reductions produce bases that are
“more orthogonal” than the LLL-reduced basis (i.e., the orthogonality conditions are
more strict). However, unlike for the other two, there is an efficient polynomial-time
algorithm for finding the LLL-reduced basis [35]:

e Compute vectors k], b5, . .., b, by performing Gram-Schmidt orthogonalization
procedure on the vectors Ay, ho, ..., h,,, i.e., perform the recursion
L pTh:
hi=h;— Z”—;—”ZQQZ, hi=h, i=2,...q. (1.16)
The vectors {A},A;,...,h,,} comprise an orthogonal basis for the subspace
spanned by {fj,hs,...,h,}. From (1.16}, it is clear that any vector f; can
be expressed as a linear combination of vectors {A], k3, ..., A, } as
J
hy =" pjhy, (1.17)
i=1
where pj; = b by /||B3||1? for i =1,2,...,5 — 1, and py; = 1.

e Forj=1,2,...,¢,and given j, fori = 1,2,...,7—1, replace h; by h; — [p1;:] b,
where [tj;] is the integer nearest to j;;,. Update the h7’s and pyj;’s with the new

h;’s according to (1.16) and (1.17).



28 CHAPTER 1. INTRODUCTION

e If there is a subscript 7 = 1,..., ¢ violating
* * 3 *
||ﬂj+1 + H(j+1)jﬁj||2 > leﬁjHZ,

interchange h; and h;, and return to the first step; otherwise, stop. The matrix

G =1[h hy ... hg]is the reduced generator matrix'.

While lattice reduction may lead to some improvement in the solution of (1.11},
the integer least-squares problem over infinite lattice, it is not useful for (1.12}, where
the solution belongs to a finite subset of the infinite lattice. The reason is that the
lattice transforming matrix 7" often destroys properties of the subset D C Z™. In
communications applications, we are typically interested in finite subsets of infinite
integer lattice. Therefore, we shall not consider lattice reduction methods in this

thesis.

1.4.3 Exact Methods

With such an abundance of heuristic methods, it is natural to ask what their perfor-
mance is, and how close they come to the optimal solution? In [29] this question is
studied in the context of V-BLAST where it is shown, by simulation, that an exact
solution significantly outperforms even the best heuristics. This is shown in Fig-
ure 1.10, where a bit-error rate performance of an exact solution is compared with
ordered nulling and cancelling for a multiple antenna system with 4/ = 8 transmit and
N = 12 receive antennas employing 16-QAM modulation scheme (the same system
specifications as in V-BLAST [13]}.

The above discussion shows that there is merit in studying exact solutions. The
most obvious one is to search over the entire lattice which, although theoretically
feasible for finite lattices, invariably requires an exponential search. When the channel
matrix has the Toeplitz structure of (1.13), the Viterbi algorithm (see, e.g., [37]) can

be used to exploit the special structure and provide the exact solution to the integer

I The coefficient % is arbitrary; any number between i and 1 is allowed
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Figure 1.10: Bit error performance of a sphere decoding vs. nulling and cancelling
with optimal ordering, M = 8, N =12, 16-QAM.

least-squares problem with considerable computational savings. Nevertheless, these
techniques can not help in the case of a channel matrix with no special structure.
There do, however, exist exact methods that are more sophisticated than exhaustive
search and can be employed for an arbitrary H. There are two such algorithms
(along with some variations thereof [38]}), Kannan’s algorithm and the Fincke-Pohst

algorithm:

e Kannan’s algorithm [39], which searches only over those lattice points that

belong to a restricted parallelogram, and

e Fincke and Pohst (or sphere decoding) algorithm [40], which performs search

only over those lattice points that belong to a hyperdimensional sphere.

Although these exact algorithms do not perform exhaustive search over the entire
lattice, intuition tells us that the complexity of the search may still be rather high.
For instance, if the noise disturbance is unbounded, the point z may be anywhere

in space. Clearly, any bounded part of the space where the search is performed
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needs to include the point z as well. Therefore, in the case of unbounded noise, it
is likely that any search region would contain quite a large number of lattice points
and sorting through all of them may require close to the complexity of the exhaustive
search. However, this scenario is unlikely in the context of digital communications.
The point z is not just any point in space — it is the lattice point perturbed by the
noise of the known (often assumed i.i.d. Gaussian) statistics. As we will show in
the next chapter, statistics of the channel and noise may be exploited to determine
size of the sphere for the Fincke-Pohst algorithm. Solving integer least-squares (and
related) problems by means of a localized search inside a sphere is the main focus of

this thesis.

1.5 QOutline of the Thesis

In this section, we give the motivation for the studies undertaken in the remainder of
the thesis and describe the scope and contributions thereof.

In Chapter 2, we derive an analytical expression for the expected complexity of
the sphere decoding algorithm. We start the chapter by giving a detailed description
of the Fincke-Pohst procedure. Then we propose a tree pruning interpretation of the
sphere decoding algorithm, and relate the complexity of the algorithm to the size of
the tree. The radius of the sphere that needs to be searched is chosen according to the
statistical properties of the noise. The statistical nature of the size of the region of
search implies that computational complexity of the algorithm is a random variable.
We use the intuition gained by the introduction of the previously mentioned tree
structure to find the expected number of points in the search sphere and the first-
order statistics of the computational complexity. As we show, over a wide range of
data rates and signal-to-noise ratios, the expected complexity of sphere decoding is
polynomial-time and, in fact, often sub-cubic, implying that in many cases of interest
maximume-likelihood performance can be obtained with complexity similar to that of
nulling and cancelling. The second-order statistics as well as the density function of

the complexity are computed numerically.
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The study of Chapter 2 was motivated by the current intensive research on the
design of systems capable of providing high-speed wireless data services. In particu-
lar, physical limitations of the wireless medium present many challenges to the design
of reliable communication systems. Multipath fading, interference, noise, as well as
bandwidth restrictions, severely limit achievable transmission rates. As shown in
[12], multiple antenna wireless communication systems are capable of providing data
transmission at potentially very high rates. However, good decoding schemes for the
multiple antenna systems may result in high complexity of the receiver. Therefore,
in Chapter 2 we apply sphere decoding to the wireless systems with multiple anten-
nas at both transmitter and receiver and compare its performance with that of the
nulling and cancelling schemes. It will be shown that sphere decoding significantly
outperforms the best among the existing heuristic techniques. Moreover, in the range
of signal-to-noise ratios of interest, the expected complexity of the sphere decoding is

shown to be polynomial.

In Chapter 3, we study sphere decoding for the channels with memory. The
Viterbi algorithm [36] provides an elegant solution to the maximum-likelihood detec-
tion problem on frequency-selective channels but is computationally inefficient when
employed for detection on long channels. Therefore, techniques that allow for easy im-
plementation, albeit of inferior performance when compared to the Viterbi algorithm,
are often considered in practice (see, e.g., [66]-[68]).

We first study how the sphere decoding algorithm can be employed on channels
with memory without performing generally required QR factorization, and derive
probabilistic quantities required to compute the expected complexity of the algorithm.
Then we propose an algorithm that combines the sphere-constrained search strategy
of the sphere decoding algorithm with the dynamic programming principles of the
Viterbi algorithm. We consider computational complexity of the hybrid algorithm
and show that it combines best of both worlds: it has polynomial expected complexity
and deterministic worst-case complexity.

In Chapter 4, we derive a modification of the Fincke-Pohst algorithm to per-

form maximum a posteriori search and vields the probabilistic information needed
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for decoding in soft iterative schemes. We start the chapter by a review of the most
commonly used soft iterative decoding techniques. Soft iterative decoding has been
reported to achieve impressive results for codes with long codeword length. Following
the seminal paper by Berrou et al [49], there have been many results on turbo decod-
ing, with performance approaching the Shannon limit on single-input single-output
systems (see [46] and the references therein). More recently, low-density parity check
(LDPC) codes, long neglected since their introduction by Gallager [47], have also

been resurrected ([50]-[52]).

Crucial to both turbo and LDPC decoding techniques is the use of probabilistic
(“soft” ) information about each bit in the transmitted sequence. For multiple antenna
systems it is not clear what is the best way to obtain this soft-information with low
complexity. As noted in [54], where turbo-coded modulation for multiple antenna
systems has been studied, if soft information is obtained by means of an exhaustive
search, the computational complexity grows exponentially in the number of transmit
antennas and in the size of the constellation. Hence, for high-rate systems with large
number of antennas, exhaustive search proves to be practically infeasible. Therefore,
heuristic techniques are often employed to obtain the soft channel information (][54,
55]). To solve this problem, we modify the integer least-squares metric so that by
optimizing for it, we are searching for the maximum a posteriori optimal point in
the neighborhood of the received point z. The solution, along with the other points
in the region, is used to approximate soft detector decisions and employ them as an
input to the soft decoder. The performance of the algorithm is illustrated in systems
employing both simple (convolutional) as well as turbo and LDPC error-correcting
codes. When combined with the powerful channel codes, the algorithm results in
near-capacity system performance. An upper bound on the expected complexity of
the algorithm is also provided.

In Chapter 5, we consider the problem of joint detection and decoding in multi-
input multi-output systems and develop algorithms that solve it for both the maximum-
likelihood (JDD-ML) and the maximum a posteriori (JDD-MAP) criteria. Both al-

gorithms that we propose in Chapter 5 draw on the ideas of sphere decoding. In
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particular, they are based on searching the space in vicinity of the observed signal
and looking for nearby lattice points. However, there is an important additional
constraint imposed on the lattice points — they must be admissible codewords. Error-
correcting codes that we consider are the linear block codes. Therefore, the symbol
space is a subspace of the entire lattice, specified by the linear block transform.

Just as for sphere decoding, the computational complexity of the JDD algorithms
is a random variable. We consider the expected complexity of the JDD-ML algorithm,
which we find analytically. Furthermore, we provide an upper bound on the expected

computational complexity of the JDD-MAP algorithm.



Chapter 2

Expected Complexity of Sphere
Decoding

In this chapter, we study the computational complexity of sphere decoding algorithm.
We assume a digital communication setup, in which channel model and noise statis-
tics are readily available and are used to choose the size of the sphere to be searched.
Due to probabilistic nature of the size of the sphere, complexity of the algorithm is a
random variable. Thus, knowledge of the statistics of the complexity would provide a
good indication of practical feasibility. To this end, we derive a closed-form expected
complexity expressions for the closest point search in both infinite and finite lattices.
We first find expected complexity for the lattice generating matrices that model flat-
fading multiple antenna channels. Then we find the same for the lattice generating
matrices that model frequency-selective channels. We show that the expected com-
plexity is polynomial over a wide range of signal-to-noise ratios and often comparable
to the complexity of the best known heuristic techniques. This implies that, con-
trary to common belief, maximum-likelihood detection may, in fact, be implemented
in practical systems. The result is particularly interesting in multiple antenna sys-
tems because the benefits of finding the maximum-likelihood solution rather than

an approximate solution provided by heuristic techniques, increase drastically with

34
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the number of the antennas.! The findings are illustrated with extensive simulations
of multiple antenna systems transmitting across both the flat-fading as well as the

frequency-selective channels.

2.1 Sphere Decoding

The basic premise in sphere decoding is rather simple: we attempt to search over
only those lattice points that lie in a certain hypersphere of radius r around the given
vector z, thereby reducing the search space and hence the required computations (see
Figure 2.1). Clearly, the closest lattice point inside the hypersphere will also be the
closest lattice point for the whole lattice. However, close scrutiny of this basic idea

leads to two key questions.

7

Figure 2.1: Idea behind sphere decoder

1. How to choose r¥¢ Clearly, if r is too large, we obtain too many points and the
search remains exponential in size, whereas if 7 is too small, we obtain no points

inside the hypersphere.

A natural candidate for r is the covering radius of the lattice, defined to be the
smallest radius of spheres centered at the lattice points that cover the entire

space. This is clearly the smallest radius that guarantees the existence of a

! This is due to increased number of degrees of freedom in the channel matrix, i.e., higher spatial
diversity. Note that, at the same time, complexity of the full search grows exponentially with the
number of antennas.
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point inside the hypersphere for any vector z. The problem with this choice of
r is that determining the covering radius for a given lattice is itself NP hard
[41]. Another choice is to use r as the distance between the Babai estimate and
the vector z, i.e., r = ||z — H$g||, since this radius guarantees the existence
of at least one lattice point (here the Babai estimate) inside the hypersphere.
However, it is again not clear in general whether this choice of radius leads to

too many lattice point lying inside the hypersphere.

2. How can we tell which lattice points are inside the hypersphere? If this requires
testing the distance of each lattice point from z (to determine whether it is
less than ), then there is no point in sphere decoding as we will still need an

exhaustive search.

Sphere decoding does not really address the first question. However, it does pro-
pose an efficient way to answer the second, and more pressing, one. The basic obser-
vation is the following. Although it is difficult to determine the lattice points inside a
general m-dimensional hypersphere, it is trivial to do so in the (one-dimensional) case
of m = 1. The reason is that a one-dimensional hypersphere is simply an interval and
so the desired lattice points will be the integer values that lie in this interval. We can
use this observation to go from dimension & to £+ 1. Suppose we have determined all
k-dimensional lattice points that lie in a hypersphere of radius . Then for any such
k-dimensional point, the set of admissible values of the (k4 1)-th dimensional coordi-
nate that lie in the higher dimensional sphere of the same radius r can be expressed
in the form of an interval.

The above means that we can determine all lattice points in a hypersphere of di-
mension 1 and radius r by successively determining all lattice points in hyperspheres
of lower dimensions 1,2, ...,m and the same radius r. Such an algorithm for deter-
mining the lattice points in an m-dimensional hypersphere essentially constructs and
prunes a tree where the nodes in the k-th level of the tree correspond to the lattice
points inside the hypersphere of radius r and dimension &—see Figure 2.2. The paths

that survive the tree pruning operation correspond to the vector points that belong
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k=2

O m=4
k=3
k=4

Figure 2.2: Samyple tree generated to determine lattice points in a 4-dimensional hy-
persphere.

to the sphere of radius r centered at the given point z. Moreover, the complexity of
such an algorithm will depend on the size of the tree, i.e., on the number of nodes

that the algorithm visits.

With this brief introduction we can now be more specific about the problem at
hand. To this end, we shall assume that n > m, i.e., that there are at least as many
equations as unknowns in z ~ Hs (the case n < m is considered further below). Note

that the lattice point Hs lies in a hypersphere of radius r if, and only if,
rt > ||z — Hs|. (2.1)

In order to break the problem into the subproblems described above, it is useful to

consider the QR factorization of the matrix H
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where R is an m X m upper triangular matrix and ¢ = [ Q1 Qo ] isan n xn
orthogonal matrix. The matrices {J; and ¢J9 represent the first m and last n — m

orthonormal columns of ¢, respectively. The condition (2.1} can therefore be written

as
2 . 2
2 e [ G Q2 } ; 5= Hl v ] = ; s|| = 11Q1z — Rs|”+|| Q3"
0 5 0
Or in other words,
r? —||@sal® > [|Qix — Rs|?. (2.2)

Defining y = @iz and 72 = r* — ||@5z||° allows us to rewrite (2.2) as

Here is where the upper triangular property of 2 comes in handy. The RHS of the

above inequality can be expanded as
r 2 Z (ym - Tmmsm)Q + (ym—l - Tm—l,msm - T'm—l,m—lsm—l)Q + ... (23)

where the first term depends only on s,,, the second term on {s,,, s,,_1} and so on.
Therefore, considering the first term only, a necessary condition for Hs to lie inside
the hypersphere is that

T’2 Z (ym - rmmsm)2-

This condition is equivalent to s,, belonging to the interval

{ﬂ} s < { + me | (2.4)

rmm rmm

Of course, (3.3) is by no means sufficient. For every s,, satisfying (3.3), defining

T;i—l = 2 (ym - Tfmmsm)2 )
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and

Ym—1m = Ym—-1 — T'm—1,m5m,

a stronger necessary condition can be found by looking at the first two terms in (3.2},

which leads to s,,_; belonging to the interval

’V_T;n—l + ym—1|m-‘ < . < \‘Tfm—l + ym—1|mJ (2 5)

T'm—1,m—1 T'm—1,m—1

One can continue in a similar fashion for s,, o, and so on until s;, thereby obtaining

all lattice points satisfying (2.1).

2.1.1 The Sphere Decoding Algorithm
We can now formalize the algorithm.
Input: ) = [ Q1 Qo ], R oz, y=0Qz,
1. Set k =m, r2 =1 — || Qsz]|% Ymm+1 = Ym
2. (Bounds for s;) Set UB(s;) = L%J, Sp = [%] -1

3. (Increase si) sp = s + 1. If s < U B(sg) go to 5, else to 4.

4. (Increase k) k =k + 1; if £ = m + 1 terminate algorithm, else go to 3.

[

(Decrease k) If £ = 1 go to 6. Else k = k — 1, Y1 = ¥k + Xjeps1 ThiS)s

7“;3 = T;CQ+1 — (Yh+1 — Tlc—l—l,lc—l—lsk—l—l)Qa and go to 2.
6. Solution found. Save s and go to 3.

We should mention that the original paper of Fincke and Pohst [40] used slightly
different notation to the one we have used. For completeness, we shall include it here.
The paper [40] makes use of the unconstrained least-squares solution 8 = H'z =

R7'Q%z. In this case, it follows that

1Q5l” = ll=lI” — 11531,
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and so inequality (2.2) becomes

==l + 1 H301* > [[R(s = $)II*.

The expansion (3.2} becomes

2
T
2 A m—1,m ~
+ Th—1me1 (sml —Sm1t+ ——(Sm — em)) + ...

Tm—1,m—1

and the intervals (3.3) and (3.4)

and

! !
T T
A m—]_ ~ m—l
’V'Sm—lm - -‘ < Sm1 < {'gm—lm + J

T'm—1,m—1

respectively, where we have defined

A ~ Tm—1,m ~
Sm—1m = Sm—1 + 7_7 Sm — q'm)
m—1,m—1

We can now alternatively write the algorithm as

la.

2a.

3a.

4a.

Input: R, z, §, r.

Set k=m, 12 =71~ ||z|? + | H|?, $mms1 = ém

!

(2.6)

2.7)

(2.8)

(2.9)

(Bounds for s3) Set z = &, UB(s) = [2 + 8kk1a), 55 = [—2 + 8] — 1

(Increase si) s, = sp + 1. If s < UB(sg) go to Ha, else to 4a.

(Increase k) k =k + 1; if k = m + 1, terminate algorithm, else go to 3a.

ba. (Decrease k) If k =1 goto6a. Else k= k—1, & 1= 8+ 2741y

9 _ 12 2 - 2 ‘
T = Tii1 — Thetke1(Ske1 — Skt1jkt2)” and go to 2a.

Tkj
rkk

(s

_SJ')’
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6a. Solution found. Save s and go to 3a.

Figure 2.3: A 4-dimensional example of the closest point search by Fincke-Pohst
algorithm

We can now elaborate on details of the tree pruning interpretation of sphere algo-
rithm that we discussed earlier. Figure 2.3 illustrates the closest point search in a
4-dimensional lattice (i.e., s is a 4-dimensional vector). The algorithm starts with
determining an interval for s, (based on step [2a]) and descends down the tree (i.e.,
looks for s3, s9, s1) as long as there are any points in the next dimension that satisfy
condition [3a]. Whenever the algorithm reaches a point from which it cannot descend
any further, it looks for other points in the same dimension that satisfy [3a]; if all
the points in the particular dimension are exhausted, the parent node that led to
this dimension is terminated and the search continues. If there are no points in 4-
dimensional lattice that satisfy (2.1), the search radius is increased and the algorithm
is restarted. Figure 2.3 implies that there are two solutions found for the example at
hand (which is illustrated by two paths that reached the level s;). In this case, the
solution to the closest point search is the point with the smaller metric ||z — Hs||? of

the two.

2.1.2 A First Look at Complexity

The paper [40] gives a complexity analysis of the above algorithm. The main re-

sult is that the number of arithmetic operations of both of the previously described
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algorithms (excluding Steps 1, 2, 3) is at most

1, o 25 {0 = |4r?d] +m — 1 .
S2m’ +3 )+ 5 ((2[\/—dj +1) ( 4] ) + 1) . (2.10)

where d = max(r,...,7.2,). In practice d grows proportional to n (r?,, for example,
is simply the squared norm of the first column of H, which has n entries) and r?
grows proportional to m (for more on this see below} and so the upper bound on the
number of computations in (2.10} can be quite large. Our experience with numerical
implementations of the algorithm shows that the bound is quite loose. Moreover,
although it does depend on the lattice-generating matrix H (through the quantity
d}, it offers little insight into the complexity of the algorithm. We will therefore not
further consider it.

In this chapter we study the complexity of sphere decoding algorithm using the
geometric interpretation we have developed so far. As mentioned earlier, the com-
plexity of sphere decoding algorithm depends on the size of the generated tree in
Fig. 2.2, which is equal to the total number of lattice points in hyperspheres of radius
r and dimensions k¥ = 1,...,m. The size of this tree depends on the matrix H, as
well as on the vector z. Therefore, unlike the complexity of solving an unconstrained

least-squares problem which only depends on m and n and not on the specific H and

z, complexity of sphere decoding algorithm is data-dependent.

2.2 Expected Complexity

Of course, since the integer least-squares problem is NP hard, the worst-case com-
plexity of sphere decoding is exponential. However, if we assume that matrix H and
vector z are generated randomly (according to some known distributions), then the
complexity of the algorithm will itself be a random variable. In this case, it is mean-
ingful to study expected (or average) complexity of sphere decoding, and perhaps

even some of its higher order moments.
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For a start, assume that there is no known model that relates z, H, and s, i.e.,
given H and s, z can be any point in R". In what follows we will give a rough
argument for the expected complexity of sphere decoding for this case, although it is
not too difficult to make it rigorous. (For a rigorous treatment, albeit using a different
approach, see [25].) For an arbitrary point z, and an arbitrary lattice H, it is not too
difficult to show that the expected number of lattice points inside the k-dimensional

sphere of radius r is proportional to its volume,
k/2 i

VA —
T(k/2+1)

Therefore, the expected total number of points is

k
d 2%k

“T'(k+1 )T

k/2

Z L'(k/2+1) k>

2
~ ", for large m.

gl

To have a nonvanishing probability of finding a point in the m-dimensional sphere,
its volume must be
R G
Ve = mr = 0O(1).
But from Stirling’s formula this implies that r?> = O(m) and that the expected com-

plexity of the algorithm is exponential, e?(™).

2.2.1 A Random Model

Although not unexpected, the above is a discouraging result. In communications
applications, however, the vector z is not arbitrary, but rather is a lattice point

perturbed by additive noise with known statistical properties. Thus, we will assume
z=Hs+wv,

where the entries of v are independent N(0,c?) random variables. We will also as-

sume that the lattice-generating-matrix H is random and is comprised of independent
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N(0,1) entries. We further assume, for simplicity, that m = n. (The more general

case of m # n can also be studied without much more effort.)

The first by-product of these assumptions is a method to determine the desired

radius 7. Note that ||v]|?> = ||z — Hs||? is a x? random variable with m/2 degrees of

freedom. Thus we may choose the radius to be a scaled variance of the noise,
r? = amno?,

in such a way that with a high probability p;, we find a lattice point inside the sphere,

am ,‘\m/2—1
o I'(m/2)

e N\ = Deps

where py, is set to a value close to 1, say, p;, = 0.99. [If the point is not found, we can
increase the probability py,, adjust the radius, and search again.|

As argued in the previous section of this chapter, the complexity of sphere decod-
ing algorithm is proportional to the number of nodes visited on the tree in Figure 2.2
and, consequently, to the number of points visited in the spheres of radius r and
dimensions k£ = 1,2,...,m. Hence the expected complexity is proportional to the
number of points in such spheres that the algorithm visits on average. Thus the

expected complexity of sphere decoding algorithm is given by

ki)
C(m,0”) = > (expected # of points in k-sphere of radius r) - (flops/point). (2.11)
k=1 ~ = g
éEp(k,ﬁ:omw?)

2k+17

The summation in (2.11) goes over the dimensions & = 1 through k¥ = m. The
coefficient 2k + 17 is the number of elementary operations (additions, subtractions,
and multiplications) that Fincke-Pohst algorithm performs per each visited point in
dimension k.

To calculate (2.11), we need to compute the expected number of points in the
sphere, E,(k,r?). Note that if the lattice point s, was transmitted and the vector

x = Hs; + v received, the probability that the lattice point s, lies in a hypersphere
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of radius 7 around z is (see Appendix A.1)

r? k e ML
. EY o [ A, 2.12
’(a2+||,sa_.st||2 2) /0 T(k/2)° (212)

where v(p, ¢) denotes an incomplete gamma function of argument p and g degrees of

freedom.

(Given this probability, one could in principle proceed by finding the argument
of the gamma function in (2.12) for each pair of points (s,, s}, and sum their con-
tributions; however, even for a finite lattice this would clearly be a computationally
formidable task (and not doable at all in the infinite lattice case). Therefore, we shall
find it useful to enumerate the lattice, i.e., count the number of points with the same
argument of the gamma function in (2.12). Enumeration of infinite and finite lattices

is treated separately.

2.2.2 Infinite Lattice Case

The probability (2.12) depends only on Euclidean distance between the points s;
and s,, that is, on ||s, — s]|?. However, in an infinite lattice, s, — s; = s is yet
another lattice point and thus the probability (2.12) depends only on ||s||?, i.e., on
the squared norm of an arbitrary lattice point in the k-dimensional lattice. It is thus

straightforward to see that

> r?  k
E,(k,m*y =3y ——, = | - (# of lattice points with |[s]|* = [).
) =31 (G s) p sl =1
Since ||s||* = s? + ... + s%, we basically need to figure out in how many ways a non-
negative integer [ can be represented as a sum of & squared integers. This is a classic
problem in number theory and the solution is denoted by 74(l) [42]. There exist a

plethora of results on how to compute 74(l). The simplest technique is by means of

Jacobi’s theta functions (which were originally proposed by Euler):
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Fact 1 Consider the generating function

ad 2 ad 2
Plz)y=1+ > 2™ =1+2> ™.

m=—00 m=1

(2.13)

The number of ways a non-negative integer number | can be represented as a sum of
k squares, ri (1), is given by the coefficient of z* in the expansion of the k' power of

the generating function ®(z),
=1

This can be illustrated by an example: consider the representations of an integer
as a sum of k = 2 squares. ®2(z) is clearly a series in which each term has an exponent
that is obtained as a sum of two squares; since the summation in (2.13) goes over all
integer numbers, coefficients in front of each term in the series ®%(z) must be equal
to the number of ways that the exponent in that same term can be represented as a

sum of two squares.

[As an interesting sidenote, we should mention that the problem of finding r4(n)
was first posed by Waring in 1770 and has attracted significant attention within
number theorists community. In fact, Waring posed the problem in a more general
form, not limiting representations on sum of squares but allowing powers higher than
the second. Since then, many number theorists have tackled the problem but with
a limited success. Closed-form solutions for r;(l) have been found for only several
k’s. For instance, Jacobi has found analytical expressions for & € {2,4,6,8} using
relationships between elliptic and theta functions ([42], chapter 9). Solutions for
k =10 and k& = 12 were found by Liouville and Eisenstein. Later, Ramanujan, Hardy,
and Littlewood obtained formulas for even k& < 24. For odd %, the only results are
due to Dirichlet, who found r3(1), and Eisenstein, Smith, and Minkowski, who found
r5(1) and r7(l). However, this exhausts known closed-form analytical solutions. There

exist many asymptotic results (asymptotic both in % and [}). For our purpose, using
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the original Euler’s idea will suffice. Mathematical software, in particular Wolfram’s
Mathematica, has a built-in (/) function.]
The above arguments lead to the result on the expected complexity of the Fincke-

Pohst algorithm for an infinite lattice which we summarize in the following theorem.

Theorem 1 [Expected complexity of the Fincke-Pohst algorithm for an

infinite lattice| Consider the model
r=Hs+wv,

where v € R™! is comprised of i.i.d. N(0,0?) entries, H € R"™™ s comprised
of i.i.d. N(0,1) entries, and s € Z™ is an m-dimensional vector whose entries are
wnteger numbers. Then the expected complexity of the sphere decoding algorithm for
the integer least-squares problem,

min ||z — Hs||?,
sezm

15 given by -
” > ama® k

(2k 4+ 17) Dyt ——, =
o) = k11 St (57 5)

where o is such that v(am,m) =1—¢, ¢ < 1.

Proof:
The proof follows from the discussion in this chapter.

As a measure of complexity, it is often useful to look at the complexity exponent,

defined as
_logC(m,o?)
" logm

Considering e, is visually appealing since complexity exponent approaches a constant

if the expected complexity is polynomial, and grows like if C'(m,o?) is expo-

log m

nential. The complexity exponent is plotted as a function of m for different values
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of ¢? in Figure 2.4. As it can be seen from the figure, for small enough noise the
expected complexity is polynomial, indicated by the constant e. over a wide range of
m. On the other hand, for large noise e. clearly exhibits the % behavior and the

computational complexity of the algorithm is exponential.

16

T
— o%=10
- - %=1
- o%=0.1

1N o o?=001

= =
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I I

®
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complexity exponent

Figure 2.4: The complexity exponent as a function of m for 2 = 0.01,0.1, 1, 10.

2.2.3 Finite Lattice Case

In communications problems, rather than being unbounded integers, the entries in
the unknown m-dimensional vector s are often points that belong to an L-PAM

constellations,

L-1 L-3 L—-3 L—l}

Dy =1{— - .
L{ 2) 2552:2

We say that the point s then belongs to the lattice D7,

‘DZLZLDLXDLX...X‘D[;,

1m-times
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where x-operation denotes the Cartesian product.
Furthermore, in this case, rather than the noise variance ¢2, one is interested in

the signal-to-noise ratio p,
_m(L*—1)
P= 1202

The probability expression (2.12) for finding an arbitrary lattice point s, inside
a sphere around the given point s;, holds for a finite lattice case as well. However,
counting lattice points which have the same argument of the gamma incomplete
function in (2.12) is not as easy. The reason is that unlike in the infinite lattice case,
the difference between two lattice points, s, — s;, is not necessarily another lattice
point. Thus, the lattice enumeration that we used in the previous section needs to
be performed over pairs of points, (s, $¢).

For this, we propose a modification of the Euler’s generating functions technique.
In particular, for various finite lattices we will define generating polynomials that,

when combined appropriately, perform the counting operations for us.

Let us do the case study for various L:

1. D% The constellation D% consists of the corners of a k-dim hypercube, as

illustrated in Figure 2.5. Due to the symmetry, any point in the cube is as

Figure 2.5: Counting for D}

likely to be transmitted as any other point. Therefore, we can assume that the

1 1

30 g —%] has been transmitted. Then the vector

“corner” point s; = [—

Sq — S i1s comprised of zeros and ones. The number of such vectors whose
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k
squared norm is [ is given by ( l ) and that is the number of points in D¥ at

distance [ from s;.

2. D% In this case, all points in the constellation are not the same. For each

entry of s;, we can distinguish between the “corner” and the “center” points,

as illustrated in Figure 2.6. Extending the Euler’s idea, for the corner points

"corner” points: s; — s, € {0, £1,+2, +3}

w!w

I
N =
N[
[\v}

”center” points: s; — s, € {F1,0, £1,+2}

Figure 2.6: Counting for DF

we identify the generating polynomial
do(z)=1+z+a*+2°,
and for the center points the polynomial
by (z) =1+ 2z + z*,

Essentially, the powers in the polynomials ¢g(z) and ¢ (z) contain information
about possible squared distances between an arbitrary point s, and the trans-
mitted point s;. For instance, if an entry in the transmitted vector s;, say s 1,
is a corner point, then s, — s¢1 € {0,£1,£2,£3}, depending on s, € Di.
Thus the squared norm of their difference |s,1 — s;1|? can be either 0, 1, 4, or
9, as described by powers of ¢(z). On the other hand, if s,;, is a center point,

then 5,1 — s¢1 € {0, %1, F1, £2} (which explains coefficient 2 in front of term z
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in ¢1(z)). Now, if among the k entries of s;, we choose a corner point j times,
the number of ways ||s; — 54||? can add up to [ is given by the coefficient of z!
in the polynomial

( " ) H()dt ().
Z

3. D¥: Note that
7 5 3

11 3 5 7
Dby -~ _- - Z T 1k
8 { 2: 2: 27 27 27 27 25 2}

Let us denote subsets of Dg,

{_
{_

NWw N[N
Nw NI~

S
53

Y

Similarly to the L. = 4 case, we identify the following polynomials for counting

Sq — 5¢ in DF lattice:

= 14+z+z*+2°+ 2% + 2% + 230 4+ 29,

’#0(-’3)

() 142z +z* +2° + 210 + 22° + 2%
io(z) = 1+2z+ 22" +2° + 2" + 2%,
i3(z) = 1+ 2z + 2z* + 22° + z'6.

Therefore, if among £ entries of s;, we choose j; points from &;, ¢ € {1,2, 3,4},
then the number of ways ||s; — s5,||* can add up to [ is given by the coefficient

of z! in the polynomial

( ' )tﬁ%l(m)iiffz(m)ﬁ;éa(m)tiff4(m),

J1,d2,73, 44

ki .
wherej1+jz+j3+j4=kand( S )=k7
2,732,735 74 IR

Counting for D¥; and higher order lattices is done similarly to the previously described
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cases.
We can now summarize results for the computational complexity of the Fincke-

Pohst algorithm for finite lattices in the following theorem:

Theorem 2 [Expected complexity of the Fincke-Pohst algorithm for a finite
lattice] Consider the model
r=Hs+ v,

where v € R™! is comprised of i.i.d. N(0,1) entries, H € R™™ is comprised
of i.i.d. N(0,p/m) entries, and s € DT is an m-dimensional vector whose entries
are elements of an L-PAM constellation. Then the expected complexity of a sphere
decoding algorithm for the integer least-squares problem

min ||z — Hs|?,
seD

for a 2-PAM constellation is

C(m, p) = i 2k 4+ 17 Ek: ( ) (%,g) : (2.14)

1+ m(L2—1)

For a 4-PAM constellation it is

ik 1 & am k -
C(m,p) = Z (2k +17) Z ok Z ge(g)Y 1+ 120 '3}’ (2.15)
k=1 q 1=0

m(L2—1)

where gy (q) is the coefficient of z7 in the polynomial
(1+z+z* + 22 (1 + 2z + z*)*

Similar expressions can be obtained for 8-PAM, 16-PAM, etc., constellations.

Proof:

The proof follows from the discussion in this chapter.
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We shall illustrate the complexity calculations with a communications example.
Figure 2.7 shows the multiple antenna system with 3/-transmit and N-receive anten-

nas. The received signal x is related to the transmitted symbol s via

M-transmit N-receive
r=Hs+v
Figure 2.7: Multiple antenna system
_ /P :
x=/—Hs+v, (2.16)

M

where H € C¥** is the known channel matrix, and v € C¥*! is the additive noise
vector, both comprised of independent, identically distributed complex-(Gaussian en-
tries C(0,1). Furthermore, entries in the symbol vector s are chosen from a complex-
valued QAM constellation. If we assume that the entries of s and H have, on the
average, unit variance, then p is the expected received signal-to-noise ratio (SNR)
at each receive antenna. To find a real-valued equivalent to the model (2.7}, we let
m = 2M, n = 2N, and let s denote an m-dimensional real vector obtained from the

M-dimensional complex vector s,
T
s=[R(s)" Z(s)"] .
Furthermore, let z € R™*! denotes

r=[Rx)" Ix)"]
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let v € R™™! denotes
v=[REv)" I,

and let H € R™™ be given by

R(H) Z(H)
—I(H) R(H)

P

M

Then the real-valued equivalent of (2.7) is given by
z=Hs+wv.

We consider the expected complexity of sphere decoding algorithm for signal detec-
tion in the system shown in Figure 2.7 for various (QAM modulation schemes. The
expected complexity C'(p,m) is a function of both the symbol vector size m and the
SNR p. We shall consider “snapshots” in each dimension, i.e., we keep either m or p

variable fixed and plot the complexity as a function of the other variable.

Figure 2.8 shows the complexity exponent as a function of m for a fixed SNR
p = 20db and L-PAM constellations with L = 2,4,8,16. For low rates (i.e., small
constellations) the expected complexity is polynomial, whereas for high rates (i.e.,
large constellations} it is exponential. Simulation results suggest that the complexity
is polynomial as long as the rate is sufficiently, but not necessarily all that much,
below the Shannon capacity corresponding to the SNR. Since this is the regime at
which most communication systems operate, it suggests that ML decoding can be
feasible. For instance, the complexity exponents curves in Figure 2.8 that correspond
to L = 8 and L = 16 modulation schemes appear to be in the exponential regime.
However, as is illustrated in Figure 2.8 for m = 10, the data rates corresponding to

the points on those two curves are larger than the corresponding ergodic capacity,

C,—E [1og det (Im + %HHT)] .
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Figure 2.8: The complexity exponent as a function of m for p = 20db and L =
2,4,8,16.

For instance, when m = 10 (and SNR 20dB), ergodic capacity is C,,, = 27. For
the same system parameters, only the rates provided by the modulation schemes
corresponding to L = 2 and L = 4 (R = 10 and R = 20, respectively) can be
supported by the channel. The other two modulation schemes cannot be employed
(we assume uncoded transmission}. Note that expected complexity exponent in the
data transmission regime that is supportable by the channel complexity is roughly

cubic — which, in fact, is the complexity of the heuristic techniques.  Figure 2.9

shows the complexity as a function of SNR for a fixed m = 10 (ie., M = N =5
transmit and receive antennas) and L-PAM constellations with L = 2,4,8,16. A
particular modulation scheme can be used only in the range of SNEs that supports
the transmission at the rate corresponding to that modulation scheme. We note that
in such a range, complexity exponent is roughly cubic. For instance, although the
complexity for L = 16 appears to be high over a wide range of SNR, it is only for
P > pgo that this modulation scheme can be employed (pyo is the SNR for which
the capacity C.,, = 40 = R(L = 16)). The complexity exponent at pso and L =
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Figure 2.9: The complezity exponent as a function of p form =10 and L = 2,4, 8, 16.

16 is ¢, =~ 4. The other SNRs marked on Figure 2.9, p3o, and pyg, have similar

meanings (only for L = 8 and L = 4, respectively). Figures 2.8-2.9 show expected

complexity, that is, the first-order statistics. In Figure 2.10, empirical distribution
of the complexity is shown for 44 = N = 5 transmit and receive antennas, 16-QAM
modulation scheme, and for 4 different SNR values. From Figure 2.9, we see that the
lowest SNR in Figure 2.10 (16dB) roughly corresponds to the minimum SNR required
for transmission on the particular system with the modulation scheme of choice. The
outer dashed lines in each graph of Figure 2.10 correspond to three standard deviations
of the corresponding distribution. The middle dashed line denotes the mean, i.e., the
expected complexity that we previously obtained analytically. We can make the

following observations in relation to the distributions as a function of the SNR:

e Expected complexity decreases, which was already anticipated from the results

illustrated in Figure 2.9.

e Variance of the complexity decreases, as illustrated with tightening of the stan-

dard deviation.
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Figure 2.10: The complexity exponent distribution for M = N = 5, L = 4, and

SNR = 16,18, 20, 22dB.
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e As SNR increases, some “point-mass” like segments occur in the distribution.
This is expected: for large SNRs, the radius of the sphere will be small and only

a small (discrete} number of lattice points are found inside.

For a comparison, exhaustive search in 4 = N = 5, 16-QAM system requires exam-

ining & = 4'° a2 10® points, which is of the O(m'°#1019) = O(m®) order.

10° : 4.5
sphere decoding
‘| — — null and cancel |i
107 \—\‘,‘\\~\\\ 4
a4t i
1072 3
107°F 3
o
% D 3.5 b
107k E
fl_O_5 E E
3 3 - =
10°F 3
107’ : ‘ 2.5 ‘ ‘
10 15 20 10 15 20
snr (dB) snr (dB)
Figure 2.11: Sphere decoder vs. nulling and cancelling, M = N =5, L = 4.
Figure 2.11 shows the improvement in performance of sphere decoding over nulling
and cancelling for a multi-antenna system employing 4 = N = 5 transmit and

receive antennas and 16-QGAM modulation scheme. The complexity of ML decoding
via sphere decoding here is comparable to that of nulling and cancelling, whereas
the performance improvement is significant. The range of signal-to-noise ratios in

Figure 2.11 is typical for indoor applications ([13]).

Figure 2.12 compares the performance of sphere decoding and nulling and can-

celling for a multi-antenna system with M = N = 2 antennas, employing 16-QAM.
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Figure 2.12: Sphere decoder vs. nulling and cancelling, M = N =2, L = 4.

The expected complexity exponent is also shown in Figure 2.12. In the SNR range
of interest, expected complexity of sphere decoding is again comparable to that of
nulling and cancelling.

Comparing Figure 2.11 and Figure 2.12 we note that the performance gap between
ML detection (provided by sphere decoding) and nulling and cancelling increases
as the system employs more antennas. The analytical expression for the average
probability of error appears difficult to derive. As an alternative, a pairwise error
probability, as in [43], may be considered instead. The pairwise error probability that
the vector sU) was detected while s() was transmitted can be upper bounded at high

SNRs as [43]
1

0 N 9 )
(&) Idisl3

where d; ; = s() —sU). The bound (2.17) indicates that BER decreases exponentially

P(s®) — sy <

(2.17)

with receive diversity — the number of receive antennas. ML decoder, as evident
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from Figure 2.11, fully exploits the receive diversity — the slope of the BER curve
implies improvement by N = 4 orders of magnitude per SNR decade. On the other
hand, nulling and cancelling (assuming no error propagation) converts the channel
into a set of parallel channels with increasing diversity [11]. However, due to the
error propagation, the performance is dominated by the first stream decoded by the
receiver. Thus to improve the performance of nulling and cancelling, the decoding is
often ordered according to the signal-to-interference-and-noise ratio of the incoming
data streams.

Finally, Figure 2.13 illustrates the symbol error rate performance comparison of
the sphere decoding and nulling and cancelling for the system employing 44 = 8
transmit and N = 12 receive antennas and 16-QAM modulation, the system specifi-
cations of V-BLAST [13]. Corresponding expected complexity is sub-cubic over entire

SNR range of interest.

10° ‘ ‘ ‘ 2.8
sphere decoding
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14 16 18 20 22 24 26 14 16 18 20 22 24 26
snr (dB) snr (dB)

Figure 2.13: Sphere decoder vs. nulling and cancelling, M =8, N =12, 16-QAM.



2.3. SOME REMARKS 61

2.3 Some Remarks

The expected complexity that we discussed in this section accounts for finding all the
lattice points in the sphere. The point among the found ones with the smallest metric
(1.10) is the solution to maximum-likelihood problem. There are some variations on

the basic sphere decoding algorithm which we briefly mention here:

o Sphere decoding with radius update.

Every time the point s; in the sphere is found, we set the new radius of the
sphere 72 = ||z — Hs||? and restart the algorithm. The radius update may be
particularly useful at lower SNRs, where the number of points in the initial

sphere is relatively large.

o Schnorr-Euchner version of the sphere decoding.

This strategy was proposed in [45]. The likelihood that the point will be find

early is maximized if the search at each dimension % is performed in the order
8], [84] — 1, [8a] + 1,[3a] — 2,. ..

The expected complexity of the Schnorr-Euchner version of sphere decoding
algorithm is no greater than the expected complexity of the basic algorithm

that we derived in this chapter.

2.4 Conclusions

In this chapter, we considered the Fincke-Pohst (sphere decoding) algorithm for solv-
ing integer least-squares problems and its computational complexity. Geometrically,
solving an integer least-squares problem is equivalent to searching for the closest
point in a lattice. The sphere decoding algorithm performs such search only within
a hypersphere centered at a given point. Based on the proposed tree-search geomet-

ric interpretation of the algorithm, we calculated its expected complexity, averaged
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over the noise and the lattice. We obtained closed-form expressions for the expected
complexity in terms of the noise variance and the dimension of the lattice for both
the lattices with infinite span in each dimension as well as for the finite lattices (i.e.,
constellations). The expected complexity of the sphere decoding for finite lattices is,
not surprisingly, also a function of the constellation size.

In many communication scenarios, maximum-likelihood detection reduces to solv-
ing an integer least-squares problem, i.e., to finding a point in a multidimensional
finite lattice which is closest to the point observed at a receiver. In such applica-
tions, ML detection is rarely performed, on the grounds that it requires exponential
complexity and is, therefore, computationally intractable.

It turns out that over a wide range of noise variances and dimensions, the expected
complexity is often cubic or sub-cubic. Since many communications systems oper-
ate at noise levels for which this is the case, this suggests that maximum-likelihood
detection, which was hitherto thought to be computationally intractable, can in fact
be implemented with complexity similar to heuristic methods, but with significant

performance gains — a result with many practical implications.



Chapter 3

Sphere Decoding for Channels with
Memory

The Fincke-Pohst algorithm that we considered in Chapter 2 assumes no special
structure of the channel matrix H and requires computing its ()@ factorization. In
this chapter, we demonstrate how the sphere decoding idea can be employed for de-
tection on frequency-selective channels directly, without performing ¢J R factorization
of the equivalent (banded Toeplitz) channel matrix. We also consider the expected

complexity of the algorithm for this special case of the lattice generator matrix.

Figure 3.1: Frequency-selective channel

Consider the frequency-selective channel model in Figure 3.1, with the input/output

relation given by

l
T; = Z hjsi—j + i,
=1

63
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where f;,7 = 1,...,1 are the coefficients of the channel impulse response, s; is i*?

symbol in a transmitted sequence (chosen from an L-PAM constellation), and #;
denotes Gaussian noise sample N (0,1). To employ the Fincke-Pohst algorithm, we

write the channel model as
z=Hs+uv, (3.1)

where

s=[s1 5y ... s7] € DL
is the vector of the transmitted data sequence, and

‘ ‘ ! T+—-1)x1
'Zf2 “ e ZfT+l_1] G R( )

is the vector of an additive white Gaussian noise. The matrix H € RIH-DxT g

given by ) )
hl
hQ hl
hl cen hl
H= ,hiER.
hl Ce }11
hl hl—l
hl

Here is where the banded Toeplitz structure of H comes in handy. The RHS of (2.1)

can be expanded as
7"2 Z (‘TT—Hfl — hl.S'T)Q + (.‘ITT_H,Q — hlST,1 — hlflsT)Q + ... (32)

where the first term depends only on sz, the second term on {sr,sr 1} and so on.

Therefore, considering the first term only, a necessary condition for Hs to lie inside
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the hypersphere is that

r? > (zr1 — hisr)’.

This condition is equivalent to s belonging to the interval

—r+ $T+z1" V + $T+11J
— T <sp < | ——=. 3.3
’V hy =T = fy ( )

Of course, (3.3) is by no means sufficient. For every s; satisfying (3.3), defining
7“%,1 =r?— (@711 — hlST)za

and

Tr T = Try1 — Mast,

a stronger necessary condition can be found by looking at the first two terms in (3.2),

which leads to s7_; belonging to the interval

’V_TT—l + Zroqr (3.4)

rr—1+ -’L‘T—1|TJ
hl )

-‘ <spog < {
hl

One can continue in a similar fashion for sr_s, and so on until s;. However, these T’
conditions used to find s are necessary but still not sufficient. Only if an additional

constraint,
T% > (.’L‘l_l — hl_151 — ... hlsl_l)Q + ...+ (.‘15'1 — }1181)2, (35)

is satisfied, the point s indeed does belong to the sphere, i.e., it satisfies condition
(2.1). [Remark: one can immediately notice a potential drawback to the aforemen-
tioned algorithm. Additional constraint (3.5) means that the 7" previously considered
constraints might have not been particularly stringent. This would clearly have neg-
ative impact on the complexity. Indeed, as we shall argue shortly, we observe that
there are scenarios where performing QR factorization and then employing sphere

decoding as in Chapter 2 may, in fact, be more favorable approach. In general, one
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should consult the calculated complexity expressions.]

3.1 The Algorithm for Channels with Memory

We can summarize the algorithm as follows:

Input: H, z, r.
(1b) Set k=T, r3. = 1%, Zrr41 = Try1-1
(2b) (Bounds for s;) Set UB(s;) = LW}#J, Sp = [%ﬁ’“'k“] -1
(3b) (Increase si) s = s + 1. If s < UB(s) go to (5b), else to (4b).
(4b) (Increase k) k =k + 1 and go to (3b).

(5b) (Decrease k) If £ =1 go to (6b).

in(k+1,T
Else k = ]{‘-—1, Tklk—1 = 1Ek+l_1+z;-nzullc(_i_1 )hl—l—k—jsj; T‘,% = 7'1%+1_($k+l_hl5k+1)2-
(6b) Tfr2 > (21— My 181 — ... — hisp 1)+ ...+ (z1 — h151)?, solution found. Save

s and go to (3b).

Just as we reasoned in Chapter 2 in the context of multi-antenna systems, vector
z in (3.1} is not arbitrary, but is a lattice point Hs perturbed by an additive noise
with known statistical properties. Thus, we can talk about average complexity of the
sphere decoding algorithm. The expected complexity of the algorithm is proportional
to the expected number of lattice points that the algorithm visits. To calculate it,
we need a probability that an arbitrary lattice point s, belongs to a k-dimensional
sphere of radius r around the transmitted point s;.

Suppose that the lattice point s; was transmitted and that the vector z = Hs; + v
was observed. Then an arbitrary point Hs, belongs to the hypersphere of radius r

around z if
n=r"—|lo— Hso|” = r* = [lv + H(s, — 52| > 0.
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Therefore, probability that the point Hs, belongs to the hypersphere of radius r

around z is
P(n > 0) :/0 p(n) :/0 [—/ O (w)e 7"dw| dy, (3.6)

where
P(w) = Eelwn

is the characteristic function of 5. It can be shown (see Appendix A.2) that

ejw1"2
P(w) = , 3.7
)= U T T, [+ G0(0” + ) 0
where pg, k = 1,...,[ are the eigenvalues of the matrix
AA = (Sa — St)*(Sa — St),
where i i
51 PN S1
S = sSroo... ST—1+1
ST
ST7-1
L ST A T'xl

By taking an inverse Fourier transform of the characteristic function, one can show
that the probability in (3.6) is a linear combination of a number of incomplete gamma
functions; the eigenvalues of (A*A) determine the arguments of the incomplete gamma
functions whereas the degrees of freedom of the gamma functions depend on the chan-
nel and the data block length (I and T'). The general closed form expression for this
probability appears hard to obtain, as the number of constituent incomplete gamma
functions varies with [ and T. However, for the calculation purposes, one can use

numerical techniques in, e.g., Mathematica or MATLAB. Summing the probabilities
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in (3.6) over all possible eigenvalues of (A*A) yields the expected complexity. [Note
that the calculation of the complexity via exhaustive summation is feasible only for

small to moderate sizes of [ and 7]
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Figure 3.2: Expected complexity exponent of SD, T =20, [ =12, L = 2.

For illustration, consider an example with the channel that has [ = 12 taps,
the data block of the length T = 20, and 2-PAM modulation scheme (L = 2). In
Figure 3.2, we plot the (empirically calculated) complexity exponent e as a function
of SNR. Note that the complexity exponent is sub-cubic over a wide range of SNRs.
Therefore, the algorithm is less complex than the standard sphere decoding (which
requires J R factorization).

We should repeat, however, that one can find sets of system parameters (i.e., [, T,
L) for which it is better to first perform R factorization. This is due to the fact that
the sphere decoding on H imposes less strict conditions than the sphere decoding on R

— as evident by the need to pose the additional condition (62) when doing the former.
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A system for which this is the case is our next example: consider a channel of length
l = 8, the data block with 7 = 16 symbols, and a 4-PAM modulation scheme (L = 4).
Here the sphere decoding is employed on the matrix R in the ()R factorization of H,
rather than H directly, as it is more favorable that way. The performance comparison
with generalized decision-feedback equalization is given on the left plot in Figure 3.3.
Note that in the range of SNRs for which the system performance is good (i.e.,
for which the bit-error-rate is small, say, < 1073), the expected complexity of the

algorithm is roughly cubic and sub-cubic. In fact, for a wide range of T, [, L, and p,
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Figure 3.3: Performance of SD compared to generalized DFE, T =16, 1 =8, L = 4.

sphere decoding algorithm for frequency-selective channels has expected complexity
comparable to cubic-time methods such as nulling and cancelling (cubic in 7', the data
block size). As a comparison, the Viterbi algorithm, which has the same performance
as the sphere decoding, has complexity which is exponential in the channel length
(i.e., L') and linear in the block length 7. Therefore, for the example in Figure 3.3,
the complexity of the Viterbi algorithm is TL' ~ 10° flops. On the other hand, the
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sphere decoding algorithm solves the same maximum-likelihood detection problem
with 7¢ ~ 4 % 10 flops on average, which is a considerable computational saving.
The sphere decoding offers computational savings over the Viterbi algorithm for this
particular set of parameters and, in general, for the cases where the length of the
channel is large. However, for short channels, low modulation schemes, and very long
block lengths, the Viterbi algorithm will have lower (essentially linear in the data

block length} complexity than the sphere decoding.

3.2 Combining Sphere Decoding and Viterbi Al-
gorithm

For channels with large memory, sphere decoding provides significant savings with
respect to the Viterbi algorithm. On short channels, however, the Viterbi algorithm
is often computationally superior. In practical schemes, a hybrid receiver structure
that would combine the sphere decoding depth-first search strategy with the dynamic
programming principles of the Viterbi algorithm, might be desired.

The Viterbi algorithm allows for exact ML sequence detection (MLSD). The
Viterbi algorithm is commonly defined on a trellis, a directed graph that describes
systems with memory. An example of the trellis is shown in Figure 3.4. It represents,
for instance, a frequency selective channel of length [ = 3 and a 2-PAM modulation
scheme used for transmitting data on it.

The vectors of vertical black dots in the trellis in Figure 3.4 denote the state
sets &. These vectors are labeled by & = 1,...,7T, and arranged into an array of
length 7. The size of the state set & depends on the channel memory. In particular,
each element of the set & represent one possible state of the channel memory. For
instance, there are L'~! = 4 states in the trellis in Figure 3.4, each one representing
a possible content of the channel memory (00, 01, 10, and 11}.

Adjacent state sets in the trellis are connected via branches. The branches are

typically labeled to describe the input/output relation of the system corresponding
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SO S So 83 St

Figure 3.4: Trellis exzample

to the particular state transition. There is a total of L branches emanating from
each state, corresponding to L possible values of the input. [Note that the trellis
in Figure 3.4 starts from the all zeros state.] The state that a branch sinks in to
depends upon the source state and the value of the current input bit. A concatenated
sequence of trellis branches is called a path. The length of the path is determined by
the number of branches in it. Each path corresponds to a distinct sequence of input

symbols, indicated by the labels on the branches that comprise the path.

The Viterbi algorithm uses the trellis representation to find the solution to
min ||z — Hs|%.
S

In particular, it finds the trellis path corresponding to the smallest ||z — H s||*> without
actually performing an exhaustive search over the entire trellis. To this end, we

describe the argument of the ML optimization problem by

k+1

!
Coo1= 3 |7j = D homSjomy|*. (3.8)
j=1 m=1

The value of Cr 1 depends on the current state and the trellis path that led to that
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particular state. To find the ML optimal sequence, one needs to determine the trellis
path with the smallest cost. An exhaustive search over all possible paths would clearly
not be feasible even for trellises with moderate number of states. However, C 1 can

be expressed as

l
Ck_|_1 = Ck -+ ‘Ilfk_}_l — Z hjskfj-kl‘? (39)

j=1
Clearly, the second term of the RHS of (3.9) does not depend on si_y, ..., so. There-
fore, to find the smallest cost path to the state .5; in the set &i41, it is sufficient to
consider all possible state transitions to S; (along the L branches emanating from the
states in set 8y). This procedure can be done recursively. Finally, the trellis path of
length 7" that has the smallest cost Cr is the optimal path. The signal sequence that
corresponds to the branch transitions along the optimal trellis path is the solution to

the ML detection problem.

The complexity of the Viterbi algorithm is proportional to the number of states
and thus grows exponentially with the length of the channel. On the other hand, it

is linear in the length of the data sequence.

The Viterbi algorithm efficiently solves ML detection problem on trellises with a
moderate number of states. However, for long channels and/or modulations with high
cardinality constellations, the Viterbi algorithm is often inefficient and occasionally
non-feasible. On the other hand, the sphere decoding algorithm has expected com-
plexity often significantly below the complexity of the Viterbi algorithm. However,
the worst-case complexity of the sphere decoding algorithm is exponential and corre-
sponds to the exhaustive search. Therefore, a hybrid receiver structure that combines
the sphere decoding constrained search strategy with the trellis based decoding of the
Viterbi algorithm, is desired. This can be obtained by either modifying the sphere
decoding algorithm to impose the channel memory state constraints or imposing a

sphere-constrained search onto the Viterbi algorithm.

Before proceeding to explain the hybrid schemes, it will be useful to revisit (3.2)
and re-examine it. In particular, we will find it useful to state the conditions on the

components of s in a reverse order.
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We write (3.2) as
7‘2 Z (1111 — 11151)2 + (.’L‘Q - }1,132 - ]3,251)2 + ... (310)

where the first term depends only on s;, the second term on {si,s2} and so on.
Therefore, considering the first term only, a necessary condition for Hs to lie inside
the hypersphere is

r? > (21 — his)> (3.11)

This condition is equivalent to s; belonging to the interval

—'f'+.771-‘ V-I—:mJ .
— | <5 <L . 12
’V }11 == ]?,1 (3 )

Furthermore, for every s; satisfying (3.12), s, needs to satisfy
7'2 Z (1171 — 111-5'1)2 + (.’2’72 — ]2,1.5'2 — }1281)2 (313)
Defining
2 _ 2 2
re =1r° — (21 — hy1s1)7, (3.14)

and a1 = T2 — hysy, a stronger necessary condition can be found by looking at the

first two terms in (3.10), which leads to so belonging to the interval

[—7‘2 +-’52|1" <5 < V2+3721J .
}11 - = }11

One can continue in a similar fashion for s3, and so on until sp. Note that these T’
conditions used to find s are necessary but still not sufficient. Only if an additional

constraint,
TT2 > (2741 — Wyst - —h ‘-?T)Q + + (zr —h qT)2
1 by | 1ST—142 Ce 25 c. ET41-1 15 s

is satisfied, the point s indeed does belong to the sphere, i.e., it satisfies condition
(2.1).
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Now, recall the tree search interpretation of the sphere decoding algorithm illus-
trated in Figure 2.2. The sphere decoding algorithm does not account for the special
structure (banded Toeplitz) of the lattice generating matrix in (3.1}. We propose the
following modification to fix that: Assume that the algorithm is currently examining
a point on the k™ level of the tree. Based on the current, and up to [ — 2 points
on levels k — 1,k — 2,..., we identify the corresponding state S;, j = 1,2,...,L"!
(where the state is defined as on the trellis}. Furthermore, from (3.14}, it is easy to
see (by writing out the recursion for any r,) that the cost associated with this state
is given by

Ce(S;) =1" — resq

Now, in addition to the standard steps that the sphere decoding algorithm undertakes,
it also compares this Cj(S;) with the previously stored C;(S;) and, if the current one
is greater, prunes the tree (i.e., discard the current tree node). If the current C;(S;) is
smaller than the previously stored C(S;) (or there are no previously stored Ci(.S;)), it

stores the current value of Ci(.S;) and proceeds with the other sphere decoding steps.

Alternatively, we modify the Viterbi algorithm by imposing the sphere-constrained
trellis search. Consider the trellis representation of a frequency-selective channel and
a finite data block transmission. We impose the constraint (2.1) that the transmitted
signal belongs to a sphere of a radius r. As we have shown in the previous section,
an obvious necessary condition that the transmitted signal needs to satisfy is given
by (3.11). However, from (3.8), this condition is equivalent to the constraint 72 > C;.

Similarly, comparing (3.13) and (3.8), we obtain that r? > C,. In general,
2>, k=1,2...,T. (3.15)

On the trellis, condition (3.15) means that the cost Cj should, for each state and
time index %, be smaller than the radius of the sphere. The states that violate
condition (3.15) can be neglected, i.e., no branches emanating from such states need
to be considered when searching for the optimal trellis path. Therefore, the search on

trellis can, on average, be performed faster that the Viterbi algorithm. The worst case
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SO Sl 82 83 ST

Figure 3.5: Sphere-constrained search on trellis

complexity, on the other hand, coincides with the complexity of the Viterbi algorithm.

The sphere-constrained trellis search is illustrated in Figure 3.5, where the “empty”

states denote those from which no branch on optimal path can emanate.

As an example, consider a channel of length [ = &, transmitting BPSK modulated
(L = 2) data in blocks of length 7 = 20 at SNR = 10dB and employ the sphere-
constrained detection on the trellis. Figure 3.6 shows the empirical distribution of

the complexity exponent.

As evident from Figure 3.6, the complexity exponent is always smaller than the
complexity exponent corresponding to the Viterbi algorithm (denoted by the vertical
dashed line). Figure 3.7 shows the expected complexity exponent as a function of

SNR. The expected complexity is roughly cubic over the considered SNR range.
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3.3 Sphere Decoding for MIMO Channels with Mem-

ory

We should point out that the sphere decoding algorithm can be employed for detection
in multi-antenna systems transmitting over frequency-selective channels. To this end,
consider a multiple antenna system with M transmit and N receive antennas. The
MIMO channel is modeled as block-fading frequency-selective, where the channel
impulse response is constant for some discrete interval 7°, after which it changes to
another (independent) impulse response that remains constant for another interval
7T, and so on. The additive noise is spatially and temporally independent identically
distributed circularly-symmetric complex-Gaussian. The MIMO channel model is
shown in Figure 3.8. The channel is represented by its complex baseband equivalent

"

i) Y R Y X5

N

o

Figure 3.8: FIR MIMO channel model

mociel. Let the column vector

hG9) — [hgi’j) 2 hl(f;i'))]l



78 CHAPTER 3. SPHERE DECODING FOR CHANNELS WITH MEMORY

denote the single-input single-output (SISO) channel impulse response from the ;%
transmit to the i"* receive antenna. For convenience, we shall make the following

assumptions on the SISO channels h):

116D =, 1<i<N, 1<j< M, that is, all SISO channels have impulse

responses of the same length, and

2. the channel coefficients h,g’j), 1<p<l, 1<i<M 1<j<N areiid.
C(0,1).
The received signal at the i* antenna can then be expressed as
, Mo ,
XE;Z) =33 hgﬂ)s,(j_)p + 1/,(;). (3.16)

j=1p=1

Equation (3.16) can be written in a matrix form as

l
X =Y H,Sp+ Vs, (3.17)
p=1
where
e Vi, € (! is the additive noise vector defined as Vj = [u,(cl) 7S U,EN)]I,
' I
e 5, = [,s,(cl) .922) e si‘m] is the transmit vector, whose entries typically come

from a QAM constellation, and

o H, e C™*M isthe p™ coefficient matrix in the MIMO channel impulse response,

h’z(Jl’l) ]7“1()1’2) h;,l’M)
2,1 2,2 2,Af
H, = hl(, ) hz(, ) h,é )

N N2 NM
hl(, ) hé ). h]g )
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In other words, the z-transform of the MIMO channel impulse response is given by

H()=H +Hyz ' ...+ Hz (7Y

Define the following vectors:

X = [Xl XQ e XT_H_l]I ,
V = [V1 VQ e VT_H_1]I ,
S = [81 82 e ST]I .

[Note that the random vector V € C¥T*=1) has unit variance complex Gaussian

ii.d. entries, E [VV*] = Iy4-1).] Then from (3.17) we can write the input-output

relation for the FIR MIMQO channel in the matrix form as

X=HS+V (3.18)
where H € ¢NT+H-1)xMT ig constructed as
_ o .
H, H;
F: f,
H= (3.19)
o H,
H H_,
H,

We shall assume that symbol bursts are uncorrelated (which is an appropriate as-

sumption when modeling, for instance, packet transmission in TDMA systems).
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As earlier in this chapter, we will find it useful to rewrite (3.18) in terms of real

quantities. To this end, define

and

H =

R(H) —S(H)
S(H) RMH) |
Thus, with the previously defined x € R2¥Tx1 v ¢ R2¥T*1 and H € R2NTH-1)x2MT

we can rewrite (3.18) as
x =Hs + v, (3.20)

where the signal vectors s are typically obtained upon modulation input bits onto an
L-PAM constellation D?¥7T

D2MT_{ L-1 L-3 L—3 L__1}2MT
L - N o .

2 ) 2 yr 2 ) 2
This particular structure of vector s stems from an assumption that the entries of &
in (3.18) are points in L x L QAM constellation. Notice that DT is a finite lattice

carved from an infinite one, Z2¥7.

With the notation introduced earlier in this chapter, since the noise is assumed

to be additive Gaussian, we can express ML detection problem as the optimization

min lx — Hs||,, (3.21)
SE/L)%}»{TCIZQ_-‘JT
where the minimization is over all points in the constellation D#”. This can be

solved with sphere decoding algorithm.

To illustrate performance of the algorithm, we consider couple of examples. We
first consider a communication system with 44 = 2 transmit and N = 2 receive
antennas. The MIMO channel memory is assumed to be [ = 4, and coherence interval

time 7 = 4. Data is modulated onto 4-QAM constellation (corresponding to 2-PAM,
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or L = 2, in the real-valued set of equation (3.20}). The resulting transmission rate is
therefore 4 bits/channel use. Performance comparison of an uncoded transmission in
terms of bit error rate (BER) of sphere decoding and nulling and canceling is shown
in Figure 3.9. Corresponding complexity exponent as a function of SNR is shown
in the same figure. Note that for SNRs above 7dB we obtain sub-cubic complexity.

As another example we consider the same 2 x 2 system (M = 2, N = 2}, with
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Figure 3.9: M =2, N=2,1=4,T =4, L = 2: performance and complexity

[ = 4, but now increase the block length to 7 = &, and the constellation to 16-QAM,
corresponding to L = 4 and a transmission rate of 8 bits/channel use. Performance
comparison of sphere decoding and nulling and cancelling is shown in Figure 3.10.

Corresponding expected complexity exponent for this system is also shown.

As a final example, consider the 4 x 4 communication system (M = 4, N = 4),
with [ = 4 and block length 7 = 8 (and thus m = 64). The constellation used is
4-QAM (hence L = 2, and corresponding transmission rate is 8 bits/channel use}).
Performance comparison of sphere decoding and nulling and cancelling for this system

is shown in Figure 3.11. The same figure shows corresponding complexity exponent
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Figure 3.10: M =2, N =2 (=4, T =8, L =4: performance and complexity

of sphere decoding, which is sub-cubic for SNRs above 12dB.

3.4 Conclusion

In this chapter, we considered sphere decoding algorithms for channels with mem-
ory. In particular, for a single-input single-output frequency-selective channels, we
demonstrate that there is no need to perform QR factorization in order to employ the
algorithm. The banded Toeplitz structure of the channel matrix can be exploited to
directly perform the search. Furthermore, we have derived a necessary probabilistic
description required for the calculation of the expected complexity in this case.
Moreover, we proposed algorithms that combine the principles of a constrained
search of the sphere decoding and a dynamic programming of the Viterbi algorithm.
The algorithm can be implemented either on the tree where additional constrains on
the state of the channel memory improve the speed of the pruning. Alternatively, a

combined algorithm can be employed on trellis, so that the optimal trellis path search
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Figure 3.11: M =4, N =4,1=4,T =8, L = 4: performance and complexity

becomes sphere-constrained.

It turns out that, over a wide range of signal-to-noise ratios and channel/data
block lengths, the expected complexity is often cubic or sub-cubic. Moreover, the
combined sphere decoding and Viterbi algorithm has a worst-case complexity that

equals the complexity of the Viterbi algorithm whereas is much faster on average.



Chapter 4

The FP-MAP Algorithm

In this chapter, we consider a design of soft iterative detection schemes in multi-input
multi-output communication systems that employ error-correcting codes. In partic-
ular, we propose a new multi-input multi-output detector, based on a modification
of the original Fincke-Pohst algorithm, which efficiently obtains the so-called soft in-
formation for the transmitted symbols and, hence, the soft information for the coded
bit sequence. In the traditional hard detection, the only decision being made by the
detector is a crisp decision for each received symbol. Soft detection, on the other
hand, provides a decision reliability information — that is, it provides the probabilistic
measure of the confidence that we have in the hard decisions. The proposed mod-
ified Fincke-Pohst algorithm uses information about the transmitted symbols that
are available prior to the transmission to essentially perform a maximum a posteriori
(MAP) search in the vicinity of the received signal. The points which are returned
by the algorithm search (and those are the points that are “good” in MAP sense) are
used to generate soft information for the transmitted coded bit sequence, which is
then passed on to the channel decoder. The channel decoder, exploiting the proper-
ties of the particular error-correcting code that is being used, improves the reliability
information and feeds it back to the Fincke-Pohst MAP (FP-MAP) detector for the
next iteration. Note that, in general, the channel decoder may have an iterative

structure as well, as, for instance, in the cases when the channel code is comprised

84
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of serial or parallel concatenation of codes (as in the turbo codes) or is a low-density
parity check code.

Employing error-correcting codes in the communication systems tends to signifi-
cantly improve the system performance over an uncoded scheme. The error-correcting

code protects the signal by

e embedding a redundancy in a form of additional bits to the coded word, hence
distributing the information content and enabling the recovery of the bits in

error; clearly, decreased information rate is the price one has to pay.

e systematically choosing the order in which the symbols obtained by modulating
the codeword are sent across the channel; note that a single codeword may map

into a sequence of symbols.

The good error-correcting codes have a wide separation among the codewords. In
his work, Shannon [1] showed that one can achieve the channel capacity in systems
employing very long random codes at the transmitted and maximum-likelihood de-
coding at the receiver. However, due to the lack of any structure in the codewords,
the maximum-likelihood decoding of such random codes grows exponentially with the
codeword length. Finding practical codes that approach capacity has been an open
problem in the communications ever since.

Early steps towards designing the efficient coding schemes that can approach ca-
pacity were taken in the 1960’s. In particular, Gallager [47] invented the low-density
parity check codes (LDPC), which are essentially long random codes of a special struc-
ture that allows for the efficient decoding algorithms. Furthermore, Forney in his PhD
thesis [48] studied classes of the concatenated codes with the optimal tradeoff of per-
formance versus complexity. Some thirty yvears later, the code concatenation became
an essential idea behind the turbo codes, first introduced in [49]. It is only after the
advent of the turbo codes that the Gallager’s LDPC codes regained significant atten-
tion ([50], [51], [52]). Both turbo and LDPC codes exhibit impressive performance
that brings them very close to the channel capacity. For instance, the rate 1/2 LDPC

codes in [53] get to 0.0045dB away from the channel capacity.
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The common features of the decoders for both the turbo and LDPC codes are the
iterative structure and the use of the soft information. The traditional detectors, such
as the one shown in the receiver’s scheme in Figure 1.6, make hard decisions based
on the received signal and pass them on to the channel decoder. Making the hard
decision corresponds to finding the symbol constellation point which is closest to the
received noise-perturbed signal. The hard detector does not provide any information
about the reliability of the hard decisions it makes. However, in order to fully exploit
the information contained in the received signal as well as the protection provided
by the error-correcting code, one needs to employ the detection algorithms which are
capable of producing the soft information and passing them to the channel decoder.
It is not clear, though, what is the best way of obtaining this soft information in
the multi-input multi-output systems, such as the communications schemes that are

employing multiple antennas.

We start the chapter by briefly explaining the coding structures in which the
demand for the soft iterative decoding algorithms occurs. In particular, we revisit
the turbo and the low-density parity check codes. We follow up by explaining the
fundamentals of the iterative decoding techniques and the structure of the decoders
for the previously mentioned coding schemes. Then we proceed by describing the
coded multi-input multi-output communication system model and deriving the soft
FP-MAP detection algorithm. Next, we discuss the expected complexity of the FP-
MAP algorithm and show how it can be efficiently upper bounded by the complexity
of the Fincke-Pohst algorithm discussed in the Chapter 2. Finally, we employ the FP-
MAP algorithm for the soft detection in the multi-antenna communication systems.
The simulation results illustrate the bit-error rate performance of the new iterative
detection algorithm when it is employed in the combination with both the simple
(convolutional) and the powerful (turbo and LDPC) codes. We demonstrate that
the system using powerful error-correcting codes achieves near-capacity performance.
The bounds for the corresponding expected complexity of the algorithm, which imply

that the practical implementation is in fact feasible, are also provided.
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4.1 Soft iterative decoding

Before deriving the FP-MAP algorithm for the MAP detection in the multi-input
multi-output systems and using it to obtain the soft information for the transmitted
symbols, it will be instructive to briefly review the probabilistic notions that are often
encountered in the design of the soft iterative detection and decoding schemes. Fur-
thermore, to shed some light on the interaction between the detector and the decoder,
we provide brief overview of the two classes of the powerful error-correcting codes that
we employ later in this chapter for the coding in the multi-antenna communication
systems: the turbo and the LDPC codes.

Let Y denotes the set of all possible values that a random variable Y can take.
There are various types of the probabilistic information that, in a relation to a ran-
dom event £, can be assigned to Y. In the context of the soft iterative decoding
techniques, we shall find it useful to distinguish among the following three types of

the probabilistic information:

e A priori or intrinsic information is the probability that a random variable Y

takes a particular value y € Y, i.e.,
Py (Y =y)=PY =y)

This probability is drawn prior to the observation of the event E and does not

depend on its outcome.

e A posteriori information is the conditional probability that a random variable
Y takes a particular value y € Y upon observing the outcome of the random

event F, i.e., it is the probability

P (Y =y) = P(Y = y|E)

e (iven the a priori and the a posteriori information, the definition of the eztrinsic
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information follows from the Bayes’ rule,

P(Y = y|E) = ﬁ P(E[Y = ) P(Y = ),

1 pext
cy PE‘

and, therefore,
Ppt=c,P(E

Y =y).

The normalization factor ¢, is needed to ensure that the extrinsic probabilities

sum up to 1, ie., 3o, Pgt(Y = y) = 1.

Furthermore, for the sake of the computational simplicity, we will find it useful to
use a log-likelihood ratio as a way of probabilistic description of the random variable.
For instance, for a binary random variable Y (i.e., the variable which can only take

values y € {0, 1}), the log-likelihood ratio is defined as

PY =1)
LLR(y) =log ——=.
With this, the relation between a priori, extrinsic, and a posteriori information can

be expressed as an additive, rather than the multiplicative one:
LLRE™(y) = LLRy (y) + LLRy (y) (4.1)

Aside from the computational, the log-likelihood ratio representation has an advan-
tage when it comes to developing an intuition about the relations between the dif-
ferent types of the information. In particular, from the relation (4.1) it is clear that
the a posteriori information for Y is obtained by incrementally adjusting the previ-
ously existing knowledge — that is, it is obtained by adding the newly found extrinsic
information to the a priori knowledge. This incremental correction of the existing
knowledge is a calculation that is (in some form) performed by the decoder at each

step of the soft iterative algorithm.
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4.1.1 Turbo codes

Turbo codes are the class of codes that employ some form of a code concatenation.
Figure 4.1 shows the turbo encoder where the constituent convolutional codes are
concatenated in parallel. Serially concatenated structures, as well as the combinations
of the two, may be used as well. For the simplicity, we shall focus on the basic parallel

encoder structure of Figure 4.1.

Information vector b

Encoder B

Bit
Interl T
nlerieaver Puncturer

bl
Encoder Ey
Figure 4.1: Turbo Encoder
The information bit vector that we want to transmit, b = [y by ... @], is

shown in Figure 4.1 being encoded twice. The first time it is encoded directly, with the
convolutional encoder E;. At the same time, the vector b’, obtained upon interleaving
the vector b, is encoded with the convolutional encoder 5. The interleaver performs
the periodical reordering of the blocks of the information vector bits. The purpose
of the interleaving is to protect against the error bursts that are due to, for instance,
strong impulsive noise and are localized in time. The de-interleaver in the decoder
then disperses the bits in error over time. Another benefit of the interleaving is in

achieving pseudo-randomness of the obtained vector. This is exploited by the soft
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decoder and shall be addressed later in this chapter.

The encoders £, and F5 need not to be but we assume that they are employing
the same convolutional code. In general, the generator matrix for an arbitrary rate

1/2 convolutional code is given by
G'(D) =[(D) (D)),

where g¢1(D) is a feedforward, while go(D) is a feedback generating polynomial. Fur-
thermore, any non-catastrophic convolutional code with a generator matrix G'(D)
can be employved as a recursive systematic convolutional encoder with a generator

matrix given by

w0,

Figure 4.2 shows a typical rate 1/2 recursive systematic convolutional (RSC) encoder.

G(D) = l1

The feature of the “systematic” encoders is that, as illustrated in Figure 4.2, one of
the two output bits of the RSC encoder, denoted by ¢; in the figure, is equal to the
input bit. It is commonly referred to as the systematic (or the information) bit. The
remaining output bit, ¢y, is obtained as a combination of the bits from the information

bit sequence and is referred to as the parity-check bit.

&1
(D <
%
b
b D D
P~
C2

Figure 4.2: Convolutional code
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The RSC encoder in Figure 4.2 is comprised of generating polynomials g;(D) =
1+ D? (feedforward) and go(D) = 1+ D+ D? (feedback). The memory elements D in
Figure 4.2 can be implemented by means of the simple shift registers which can store
either a logical value 0 or 1. A state & of the convolutional encoder is characterized by
the content of its memory registers. In particular, for the RSC encoder in Figure 4.2,
¢ is a 2-dimensional vector (because there are two memory elements D) comprised of

0’s and 1’s. We shall denote the set of all possible encoder states by =.

We should note that if all of the coded bits produced by the two RSC encoders
in Figure 4.2 are actually used, then the rate of the resulting turbo code would be
1/3 — for every time index, there are 3 bits at the output of the turbo encoder:
the systematic bit and two parity-check bits. However, one can obtain the higher-
rate codes by either using the higher-rates constituent convolutional codes or by
performing puncturing. Essentially, puncturing is a periodic deletion of the parity-
check bits. For instance, to obtain the rate 1/2 code, it is sufficient to multiplex
parity-check bits obtained by the encoders £ and E,. In particular, at one instance
use only the parity-check bit produced by the encoder £ while at the next instance
use the parity-check bit produced by the encoder F,. Therefore, the even-indexed
entries in the coded vector ¢ = [¢; ¢ ... ¢] at the output of the rate 1/2
punctured turbo encoder in Figure 4.2 are equal to the information bits, while the
odd-indexed entries in the coded vector ¢ are the alternated parity-check bits of the

two convolutional encoders F; and Ej.

Figure 4.3 illustrates the general structure of the turbo decoder for the soft it-
erative decoding of the parallel concatenated turbo codes. The a priori information
for the coded bit vector, A(c), which is obtained from the channel detector, is used
by the soft-input soft-output (SISO} decoder D; to produce the soft information for
the information bit sequence b, A;(b). The extrinsic part of this information, A$*(b)
is first interleaved and then passed on to the soft decoder Dy. The decoder Dy uses
this information, along with the channel detector information A(c}, to obtain its own

vector of the soft information for the (interleaved) information bit vector, Az(b’).
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Figure 4.3: Turbo Decoder

The extrinsic part of Ay(b'), Ag(b'}), is then de-interleaved and used (in combina-
tion with A(c)) by the decoder D; to run the soft decision algorithm yet again. The
two decoders iterate until some chosen stopping criterion is satisfied, upon which the
hard decisions are made by combining the soft information from both decoders, and

rounding them.

There are various soft decision algorithms that may be employed as the soft-input
soft-output decoding modules in Figure 4.3. A standard algorithm that may be used
for that purpose is the MAP (or BCJR) algorithm [57] which performs the symbol-
by-symbol maximum a posteriori (MAP) decoding and finds the log-likelihood ratio

for each bit b in the information bit vector b as

(4.2)

)\(bk) —In (2663 bp=1 p(fk—l = fglda =&, c)/p(c)) '

Yees: =0 P(&r—1 = €94, &, = €, ¢} /p(c)

The summation in the numerator of (4.2} is over all encoder state transitions &, -
ék+1 that are caused by an input &y = 1, whereas the summation in the denominator

is over all encoder state transitions &, —+ &1 that are caused by an input b, = 0.
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The joint probability p(¢',&, ¢} can be found as

p(€,¢&c) = p(&, crp-1)p(&, k& )p(Chtru,)
= o1 (&) m(€,€)8:(E),

where ¢, = [¢, ...¢,]. Furthermore, using Bayes’ rules, the quantities a(-), 5 (-),
and (-, -) can be found through certain recursions. In particular, (-} can be found

through the so-called forward recursion of the form

(l'k(é) fk,Clk Z Fg— 1 ﬁ.?/lc 5 5)

gex

The backward recursion for 3 (-) can be expressed as

Br-1(&") = p(Cry1a,) = Z (€, €)Br(£)-

€=

We assume that the encoder both starts and terminates in the state 0, i.e., the initial

conditions for the forward and backward recursions are set to

and
felc‘i‘l(o) = 1’ felc‘i‘l(l) = 0

Finally, the quantity ~(-,-) in (4.2) can be found as
(&', &) = p(cxlbr)p(be),
for each pair of the states (&',&) and bits (b, cx)-
This version of the MAP algorithm is referred to as multiplicative, due to the form

of the recursions for ay(-), Sk(-), and (-, -}). As a computationally more attractive

alternative to the multiplicative MAP algorithm, one can use the additive version
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thereof. For instance, to calculate ay(-), one can use
In(ay(€)) = ln(ezgleg ak—l(f’)'ﬂc(&’:&))‘ (4.3)

The logarithms in (4.3) can be efficiently computed using the standard Maz-Log-MAP

approximation (see, e.g., [59]) of the form

61 61 ~
In(e” +...+e%) =~ 521?%‘15’“ (4.4)

The approximation (4.4} is both simple and computationally easy but it may not
provide desired accuracy. To fix this, one can use an additional correction term to
obtain the log-MAP solution,

hl(e‘sl + 652) — max(él’ 52) + ln(l + €—|(52—51‘)

(4.5)
= max(d, ) + fo(|62 — &1]),

where f.(-) is a correction function found by a table look-up. Relation (4.5) may be

used recursively to calculate (4.3). To show this, denote

k
S =In(>"e”) and Ay = €k,

i=1
Then we can write

In(CHle%) = In(Ay + e¥+1)
= max(In Ag,dk1) + fe(|In Ay — S11]) (4.6)
= max(dx, Set1) + fe(|Sk — dpr1])

We should mention that another algorithm often used to obtain the soft infor-
mation is the soft-output Viterbi algorithm (SOVA) proposed in [58]. SOVA is com-
putationally less complex than the Log-MAP but is generally outperformed by the
Log-MAP algorithm [59].
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4.1.2 Low-density parity check codes

The low-density parity check (LDPC) codes do not share the concatenated code
structure with the previously described turbo codes. Instead, the LDPC codes are
the block error-correcting codes and, as such, are commonly defined via its parity-
check matrix P. The codewords of the block code with the p % ¢ parity-check matrix
P comprise the set of all g-dimensional vectors ¢ that belong to the null space of P,

i.e., the allowed code vectors c are those that satisfy
Pc’ =0.

The length of the codeword of the block code with the p x ¢ parity check matrix is
¢, while p denotes the number of the parity check bits. Hence, the rate of the code is
R.=(q—p)/p.

An LDPC code is the block code whose parity-check matrix is sparse. For instance,
the binary LDPC code has the parity-check matrix with 0’s for most of its entries
and only a few 1’s. Imposing the sparseness, as we will discuss in this section, allows
for an efficient soft iterative decoding of the LDPC codes. The positions of 1’s in the
parity-check matrix may be chosen randomly or, alternatively, they could be placed to
impose some structure to the matrix. The randomness guarantees good performance
in the probabilistic sense — the block error rate of the long random block code decreases
with the code length [47]. The LDPC codes may be regular or irregular. The regular
binary LDPC codes have a fixed number number of 1’s in each column and row. The
(k,1) LDPC code is the common notation for the code whose parity-check matrix has
k non-zero elements in each column and [ non-zero elements in each row. On the
other hand, the irregular LDPC codes have the parity-check matrix whose columns
have a small, but not necessarily equal, number of non-zero elements.

The parity-check matrix defines the set of the allowed codewords but one needs
to form a generator matrix & in order to encode the information vector b as ¢ = Gb.
Using the binary Gaussian elimination, we can write the parity-check matrix in the

systematic form, Py, = [/ P]. Then we use the relation between the parity-check
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and the generator matrix, GTP = 0 to find the generator matrix as G = [-PT I].
A block code can be conveniently represented by a graph which consists of nodes

and edges ([62], [63]). The nodes are connected by the edges and the geometric

structure of the graph captures the structure of the parity-check matrix. There are

two types of the nodes:

e the bit nodes (or the equality nodes}), which correspond to the columns of the

parity-check matrix, and

e the check nodes (or the parity-check nodes), which correspond to the rows of

the parity check matrix.

Each node of the graph may be connected to one or more edges. An edge may be

connected to either one or two nodes. Depending on its connectivity, an edge may be
e the internal edge, connecting a bit node with a check node, and
e the external edge, connected to a bit node.

Let Nz-(c), 1 = 1,...,p denote the check nodes, and N](b), i =1,...,¢ denote the bit
nodes. The check node NZ-(C) and the bit node _?\:"J(b) are connected by an edge if and
only if the (i, 7) entry in the parity-check matrix P is non-zero. Therefore, the graph
for the LDPC codes has low density of the branches in the graph.

We associate a variable with each edge. An external edge variable corresponds
to the soft information for the single bit in the coded bit vector — it is essentially
the a priori information for that coded bit (in the log-likelihood ratio form) and was
obtained from the detector. The variables on the internal edges are referred to as the
state variables of the graph. We will find it useful to denote the internal edge variable
on the edge e; ; (the edge which connects the check node N9 with the bit node .a"\e"}b))
by A; ;. The external edge variable on the edge e; (the edge which is connected only
to the bit node .:’VJ@)) is denoted by A;.

To illustrate the graph representation of a block code, consider the simple example
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of the code with the parity check matrix

100101
P=1010110
001011

The graph corresponding to the P above is given in Figure 4.4.

Figure 4.4: Graph representation of the block code

Decoding of the LDPC codes is based on the message passing on the graph, i.e.,
on the iterative updating of the edge variables. There are two essential steps in the

message passing algorithm:

e Step 1: Bit-to-Check Message. This step is performed in the bit nodes of the
graph. All the variables at the edges connected to the particular bit node are
supposed to be equal (because the bit nodes carry information about 1’s in the
columns of the parity-check matrix). Hence, for each internal edge connected to
the bit node under consideration, we calculate the bit-to-check message based
on the values of the variables on all other edges connected to the same node.
The expression for the bit-to-check message can be found by employing the

Bayes’ rule on the set of variables under the equality constraint (see, e.g., [60]),

Az(::j_b) = Z )‘k,j + ’\j’
P(k,j)=1,k#1
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where A; ;, is the current value of the variable on the internal edge e; and A; is
the value of the variable on the external edge e;. Once the bit-to-check message

calculation is done for all the edges, we update the values of the internal edge
(c=b)

. c
variables, A; " = A; ;.

Figure 4.5 shows the relevant edge variables needed for the calculation of the

bit-to-check messages in the bit node Nﬁb) of the code graph in Figure 4.4.

N N

Figure 4.5: Bit-to-check message in node Nib)

Step 2: Check-to-Bit Message. This step is performed in the check nodes of
the graph. The check nodes specify the parity check constraints imposed by
the parity-check matrix P. For any edge variable connected to the check node
under consideration, we find a check-to-bit message employing the Bayes’ rule

on the set of variables under the parity-check constraint ([60]),

)\gf’jC):@l( II @(Ai,k)),
P(i,k

J=L k]

where ®(z) = tanh(—xz/2), and A, ; is, as before, the current value of the variable

on the edge e; ;. After completing the check-to-bit calculation for all the edge

(b=c)

variables, their value is updated, A; ; =~ — A; ;.

Figure 4.6 shows the relevant edge variables needed for the calculation of the

check-to-bit messages in the bit node Nl(c) of the code graph in Figure 4.4.



4.1. SOFT ITERATIVE DECODING 99

Figure 4.6: Parity check node

The sum-product algorithm evaluates the steps above until the certain stopping
criteria (e.g., the number of the iterations) is satisfied. The decoder output is then
calculated as

A = 3TN

P(i,j)=1

The resulting values of the variables on the external edges, ,\§~°“t), are then used to
make hard decisions for the information vector bits. Note that for the initialization
of the sum-product algorithm, we require the a priori information for the bits in the
coded vector (i.e., the a priori information A; for the external edges). This need to

be provided by the soft detector.

The sum-product algorithm essentially breaks a potentially rather complex prob-
lem into a set of simple calculations which are executed iteratively. The algorithm
gives an exact MAP decision when the graph contains no loops. If the graph in fact
does contain a loop, the approximation is shown empirically to be good. The decod-
ing complexity of the sum-product algorithm is linear in the length of the codeword,
ie., it is O(g).

We should note that the sparseness condition on the parity-check matrix will, in
general, result in the non-sparse generator matrix &, placing a burden on the encoder.
To this end, some efficient encoding structures have been proposed in [61]. Another
way to ensure the efficient encoding is to require that the parity-check matrix is both

systematic and sparse, which yvields generator matrix of the low density. However,
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placing such constraint deteriorates the performance of the LDPC code [60].

The soft decoding of both the turbo and the LDPC codes may be considered in the
same framework using, for instance, the belief propagation networks [64]. However,
in this review we focused on the originally proposed and currently most commonly

used iterative decoder structures for the two families of the codes.

4.2 System Model

We shall consider the multiple antenna communication system which employs an
error-correcting code to protect the transmitted data against the channel distur-
bances. We assume that the number of the transmit antennas, 3, is not greater than
the number of the receive antennas, N, i.e., that 44 < N. This assumption is due
to the fact that the detection problem translates into solving a system of equations
and this condition (M < N) ensures that there are at least as many equations as
unknowns. When M > N a space-time code such as an LD code [30] can be used
to get the appropriate number of equations and unknowns (more on the space-time
codes will be said in the following chapters).

Furthermore, we assume a discrete-time block-fading multiple antenna channel
model, where the channel is known to the receiver. This is a reasonable assumption
for communication systems where the signaling rate is much faster than the pace at
which the propagation environment changes, so that the channel may be learned, e.g.,
via transmitting known training sequences. We do not assume that the knowledge of
the channel is available at the transmitter.

During any channel use, the transmitted signal s € Z**! and the received signal
x € C¥*1 are related by

| ;
X = ﬁ'ﬁrHS—i—V, (4.7}

where H € C¥** is the known channel matrix, and v € C¥*! is the additive noise
vector, comprised of the independent, identically distributed complex-Gaussian en-

tries C(0,1). If we constrain the entries in s and H to have, on the average, unit
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Figure 4.7: System model

variance, then p is the expected received signal-to-noise ratio.

101

x=Hs+v

The system model is shown in Figure 4.7. The vector of information bits b is

encoded with the error-correcting code to obtain the vector of coded bits ¢’, which

is then interleaved to result in the coded vector ¢. The vector ¢ is modulated onto

a QAM-constellation to form the sequence of symbols which need to be transmitted

across the channel. The rate of the transmission is determined by the number of

the transmit antennas and the number of points in the constellation. If we assume a

J-QAM modulation scheme, the number of the bits transmitted across the channel

per each channel use is given by

R = MlogQ.

(4.8)
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To see this, assume that each constellation symbol may represent p,, coded bits. For
instance, in the -QAM constellation, the number of the coded bits modulated onto

the single constellation symbol is

Pm = log, §.

Thus the modulation is performed by taking the blocks of vector c, each one of
the length p,, M, and mapping these blocks into the A7-dimensional complex-valued
symbol vectors. We will assume that the bits are mapped according to the simple
gray mapping discussed in Chapter 1. The resulting symbol vectors are transmitted
across the channel as described by the model (4.7). Therefore, a block of R = p,,, M
coded bits (corresponding to a single symbol vector) is sent across the channel per

each channel use.

Clearly, the size of the coded vector ¢ may be quite long and can not, in general,
be represented by a single symbol vector s in (4.7). Therefore, to send the entire
vector ¢ across the channel, the channel has to be used multiple times. Let us denote
the previously described blocks of coded bits as ¢!, ¢?, . .. clPel, each one of the length
pmM . Furthermore, we assume for simplicity that the total length of the vector c is

le = pepmM. Then the entire vector ¢ can be blocked as

1

c=[cl] e ... ], (4.9)

and therefore transmitted in p. channel uses.

Consider the k™ channel use, that is, consider the time index k& when the block
c*! has been modulated onto the symbol vector s and sent across the channel. The
receiver observes the noise corrupted and multi-antenna channel altered signal x in
(4.7). Assume that the a priori probabilities for the components of the transmitted
symbol vector s, {p(s1), p(s2), - --,p(sas)}, are known to the receiver. The multi-input
multi-output detector in Figure 4.7 processes the received vector x and the available

a priori probabilities to obtain the soft information for the coded bits in the current



4.2. SYSTEM MODEL 103

block cl¥l. [Note that for the first iteration of the detector, the a priori information for
the symbols is generally not available; if that is the case, we assume that all symbols
are equally likely.]

Let us denote the bits in the block c*! by ¢;, i =1,2,...,p,, M. We consider the

log-likelihood ratio form of the soft information for the bits in the block c!*!, given by

Plc; = +1]x]

Pl =1 (4.10)

Ly(ci[x) = log
Let us denote the reliability information for the block cl¥! by
L =[Li(ea]x) Li(eax) .. Li(epnalx)],
and let £, denotes a vector of concatenated blocks of the reliabilities,
L= B L,

collected over all p. uses of the channel. Then £, is a vector of LLEs corresponding
to all the bits in the coded vector c.

As illustrated in Figure 4.7, the vector £, is de-interleaved to obtain vector L,
which is then passed to the channel decoder. The channel decoder forms the esti-
mate of the information bit vector, f), and provides £}, the new posteriori reliability
information for the coded bits vector ¢’. Posteriori reliability information for the
vector c is obtained by de-interleaving £ into £o. Let us denote the posteriori re-
liability information for the block cl¥! by L[Qk]. Furthermore, assume that the bits
¢, i =1,2,...,pmM, in the block c*¥ are mutually independent. [This is a valid
approximation for a long vector ¢ and an efficient interleaver which makes its output
pseudo-random.| Then the a posteriori probabilities for the components of the symbol
vector s (which is the symbol vector corresponding to the block c!*!) can easily be
found from )C[Qk} using the modulator mapping function and the independence assump-
tion for the bits in the vector c¥! — the a posteriori probability for the component s; of

the symbol vector s is simply an appropriate product of the a posteriori probabilities
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of those bits of cl¥! which are represented by the constellation point s;.

The probabilities {p(s1}, p(s2), - - ., p(ss)} can now be used to run the multi-input
multi-output detector algorithm (i.e., evaluate (4.10}) once again. All the previously
described operations now can be repeated as we use the described scheme for the
iterative joint detection and decoding in the multi-antenna communication system.

The structure of the channel decoder in Figure 4.7 clearly depends upon the
choice of the error-correcting code. If we employ a simple convolutional code, then
the channel decoder is a simple soft-in soft-out decoder, such as the MAP, the Max-
Log-MAP, or the log-MAP algorithm described earlier in this chapter. When the
channel code is a powerful turbo or LDPC code, then the channel decoder has an
iterative structure itself, as we discussed in the previous section of this chapter.

The computational complexity of traditional algorithms for evaluating (4.10) can
be prohibitive for the practical implementation in the systems employing the multiple
antennas due to the sheer size of the symbol space. On the other hand, as we have
shown in Chapter 2, the sphere decoding algorithm of Fincke and Pohst can supply us
with the (otherwise computationally rather demanding) maximum-likelihood estimate
of s with reasonable complexity. Therefore, one may speculate whether a modification
can be devised to vield the required soft information with low complexity. In the
next section, we show that this is indeed possible to do. Moreover, we show that the
expected complexity of the algorithm remains low — in particular, bounded above by
the expected complexity of the Fincke-Pohst algorithm — indicating that it may as

well be employed in the practical systems.

4.3 Modified FP Algorithm for MAP Detection

The transmitted symbols s in (4.7} are chosen from a QAM constellation and, there-
fore, are complex-valued. However, since we wish to state the MAP detection problem
in a form that has an integer least-square problem in its core, we need to first find the
real-valued equivalent of the equation (4.7). This can be done following the procedure

described in Chapter 2, where we found that the real-valued equivalent of (4.7) may
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be given by
r=Hs+u.

Recall that s = [s; sy ... S;]is comprised of the entries that belong to an L-PAM
constellation Dy. Therefore, the unknown vector s is a point in the m-dimensional

integer lattice D7".

The MAP detector maximizes the posterior probability p,,(s|z), i.e., it solves the
optimization problem

max Psja(s]a). (4.11)

Using the Bayes’ rule, we can write

pw|s(m‘s)ps(5)

arg max S| = arg max —————— = arg max T8 S
gSE’Dans‘z( | ) gsE’DZn pl-(T) gSE,DTpm‘S( ‘ )ps( )
Furthermore, by assuming that the entries s, so, ..., s, of the symbol vector s are

mutually independent, we can write

m
ps(s) = H p(sk) = e2om1 108 P(5%)
k=1
Then, for a known channel in AWGN, the maximization problem (4.11) is equivalent

to the optimization problem

m
sré%% |z — Hs||*> - kgllogp(sk) : (4.12)
Therefore, by solving (4.12), we can obtain the solution to the MAP detection problem
(4.11). However, for an iterative detection and decoding scheme, we also require the
soft information, i.e., the probability that each bit in the transmitted vector is decoded
correctly. To this end, consider the log-likelihood ratio defined in (4.10) and, as in the
previous section, consider the &' channel use and assume that the current symbol
vector s is obtained by modulating coded block clkl = [t ¢ ... ¢Cp,a] ONto an

L-PAM constellation. Then the log-likelihood ratio for each bit ¢; in the block cl¥!
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can be expressed as

;= 41|z z,0=+1
Li(efe) = log B = F1A _ pog Pt = 1),
plei = —1[z] plz,¢; = —1]
where i = 1,2,...,pn,M. By considering the set of all possible blocks c*!, we note
that the LLE can be found as
T plw,c] ]
c[k] c; =+1
L1(01|T) = log - -
Y pla,cH]
cl] c; =—1

and, using the Bayes’ rule again, as

Y plalctp[cH]

clkl c; = +1

Li(ci|z) = log — - (4.13)
> plalcFp[cH]
clkl o, = -1
Assuming mutual independence of the bits ¢, ¢a, . . ., ¢p,, a1, the expression (4.13) can

be written as the sum of two terms,

~ plelcdF] T ple]

. = 1 C[k]10i=+1 j,J # i
plei = —1] Y plele™] I pley)
Lilnt(ci) olFl o = —1 IREY
Lext(c;)

where L™ (c;) and L$(¢;) denote the intrinsic (a priori) and extrinsic part of the total
soft, information, respectively. In an iterative detection and decoding scheme, only
the extrinsic part of the soft information, L$*(¢;), is passed to the other decoding

block(s) in the scheme.
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Since the block cl® is uniquely mapped into the symbol vector s, it follows that
the terms in the numerator and the denominator of (4.13) may be summed over the

symbol space, i.e., (4.13) can be written as

2 plals) T plsy] |
Ly (cilz) = log < i : —. (4.14)
X plzls] 11 pls]

For the known channel in additive white (Gaussian noise, the log-likelihood ratio of

(4.14) can be written as

v g e HslP 2 loapls;] ]

s:c; =41
1(cilz) = log 5 o~ llz=Hs|*+32 logpls;] (4.15)

sic; =—1

The summations in the numerator and the denominator in (4.15) are over the entire
symbol space D7, which is often of prohibitive complexity. Therefore, instead of
calculating (4.15) exactly, we constrain ourselves to include only those s € D7 for
which the argument of the optimization problem (4.12) is small. The reasoning for
this decision is that the symbol vectors which yield small argument in (4.12) are the
symbol vectors whose contribution to the numerator and the denominator in (4.15)
are significant. This implies that the chosen set of symbol vectors will provide a good
approximation of the exact log-likelihood ratio while, at the same time, requiring
much lower number of computations as compared to the exhaustive summation over

the entire symbol space.

We note that the optimization problem (4.12) is reminiscent of the standard in-
teger least-squares problem, except that is has an additional non-linear term — the
sum of logarithms of the a priori probabilities of the unknowns. Applying the idea of

the Fincke-Pohst algorithm, we search for the points s that belong to the geometric
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body described by
r* > (s—8)*R*R(s — 5) — > _ log p(si), (4.16)
k=1

where R is the lower triangular matrix following QR factorization of channel matrix
H. Note that this geometric body is no longer a hypersphere. The search parameter
r in (4.16) can be chosen according to the statistical properties of the noise and the

a priori distribution of the symbol vector s.

Expanding the right-hand side of (4.16) gives

r? > (5m — 8m)” + log p(sim)

Tm—1,m

2
+ T ima (Sm—l —Spmo1t+ (Sm — §m)) +1og p(Sm_1) - - -

T'm—1,m—1

Looking at the first term in the above expansion, a necessary condition that s,, has

to satisfy in order for (4.16) to hold readily follows,
2 4 2 2 ,
T (Sm — 8m)” — log p(s,) < 17 (4.17)
Moreover, for every s,, satisfying (4.17), we define
r12nfl =r?— T?nm (Sm - em)Q + logp(sm):

and from the second term in the expansion obtain a stronger necessary condition for

(4.16) to hold,

2

T
2 ~ m—1,m A 2
o1t | Sm—1 = 8m-1+ =" (8m — 8m) | —logp(sm_1) <7pp ;.
T'm—1,m—1
§m—1|m

The procedure continues until all components of the vector s are found. The FP-MAP

algorithm can be summarized as follows:
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Input: R, z, 8, 1, ps(8).
1. Set k=m, r2=1r>—|z|? + || H3|?, Smjms1 = m
2. (Bounds for s;) Set z = T—Tkk’;, UB(sg) = |2+ Skkt1], sk = [—2 + S| — 1.

3. (Increase s;) sy = s + 1. If 72, (s, — §)° > 2 + logp(sy) and s, < UB(s3), go
to 3, else proceed. If s, < UB(sy) go to 5, else to 4.

4. (Increase k) k = k+ 1; if k = m + 1, terminate algorithm, else go to 3.

5. (Decrease k) If k=1 go to 6. Else k =k — 1, $gjp—1 = 8k + 270 pp1 2L (s5 — 85),

Tkk
2 __ 02 2 a 2 v
T = T — Tt e (Sk1 — Sky1kr2)® + log p(se41), and go to 2.

6. Solution found. Save s and go to 3.

The FP-MAP algorithm returns all points s in the symbol space D7* which satisfy
the constraint (4.16). The number of the points found by the algorithm depends on
the search parameter 7 in (4.16). Assume that the algorithm returned [, points and
denote their set by &,

S={sW @ . L)} cpp

The vector s € & which minimizes (4.12) is the solution to the MAP detection problem
(4.11). The soft information for each bit ¢; can be estimated from (4.15), by only
summing those terms in the numerator and the denominator for which the symbol

vector s belongs to &, i.e., we approximate the log-likelihood ratio as

> o llz—Hsl?+27; log plsj] ]

sE€ES:¢c; =41

Li(¢i|z) =~ log —
1(cilz) = log = eIy, Togpls;]

SES:ic; =-1

This is the soft information which is used by the channel decoder in the fashion

described earlier in the chapter.
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Before discussing the expected computational complexity of the FP-MAP algo-
rithm, we should note that the logarithms in (4.15) can be efficiently computed using

the efficient max-Log-MAP or the Log-MAP implementations.

4.4 Computational Complexity of FP-MAP Algo-

rithm

The expected computational complexity of the FP-MAP algorithm could, in principle,
be found by following the outline of the calculation of the expected complexity of the
original Fincke-Pohst algorithm which was given in Chapter 2. Recall that there
we needed two key ingredients in order to calculate the expected number of lattice
points visited by the algorithm (and, consecutively, the expected complexity of the

algorithm); those are:

(1) aprobability that an arbitrary lattice point s, belongs to a k-dimensional sphere

of radius r around the transmitted point s;.

(2) a technique for enumerating points s, in the lattice with respect to the trans-

mitted point s;.

We used the enumeration in (2} to count the number of the points visited by the
algorithm which have the same argument of the probability in (1) and to efficiently
calculate the expected complexity. Therefore, one would suspect that if these two
listed ingredients could be determined for the FP-MAP algorithm as well, it would
be possible to exactly compute its expected complexity.

However, the probability that an arbitrary point s, = [Sg1 Se2 ...  Sam]
belongs to the k-dimensional sphere of radius r around the transmitted point s; is an

incomplete gamma function of & degrees of the freedom,

an + ——L L2 1) Py Nogp(sas) k
Ds, =7 SE
1 =+ (L2 1)||§'t a”2 2

(4.18)
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The argument of the incomplete gamma function in (4.18} is the function of both the
Euclidean distance between the points s; and s,, as well as the a priori probabilities of
the components of s,.! This, in fact, makes the computation of the expected number
of points quite cumbersome. The reason is as follows: since each point s, in a lattice
has a distinct a priori probability affiliated with it, the argument of the probability
function in (4.18) will, in general, be different for each pair of the points (s, s,)-
Hence, there is no efficient way to collect the points in order to ease the calculation of
the expected complexity — in fact, to compute the expected number of points that the
FP-MAP algorithm visits, one needs to consider all possible pairs of points (s, s4)
and the corresponding probabilities (4.18). This, as the size of the problem increases,
quickly becomes a rather cumbersome calculation. Furthermore, due to the iterative
nature of the algorithm, this calculation does not make much sense nor is necessarily
introspective — at each iteration, the a priori probabilities of the points s, change
and unless we knew the time progression of the a priori probabilities of all lattice
points ahead of the iterative process (which we do not}, we can not calculate the
exact expected complexity.

In fact, we may get more insight in the expected complexity of the FP-MAP

algorithm by considering some upper bounds. Note that since
> _logp(s;) <0,
j=1

we have
12p 7
an —+ m j;l logp(sj) < an.

Hence from the expressions (2.12) and (4.18) and the fact that the incomplete gamma
function is monotonically increasing with its argument, it follows that for the same
choice of the search parameter r,

FP—MAP P
Vs, <ps,

'Recall that the corresponding probability for the Fincke-Pohst algorithm in (2.12) was only a
function of the Euclidean distance between s; and s,.
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and we may conclude the following:

Lemma 1 For the same choice of the search parameter r, the expected complexity of
the FP-MAP algorithm is upper bounded by the expected complexity of the original

sphere decoding algorithm.

In Chapter 2, we have shown that the expected complexity of the sphere decoding
algorithm is polynomial over a wide range of SNKEs. This suggests that the expected
complexity of the FP-MAP algorithm is also polynomial in 7z (and often cubic) over a
wide range of rates and SNRs, which implies that it may be employed in the practical
communication systems.

We should point out that every time the FP-MAP algorithm runs, it is initiated
with the different set of the a priori probabilities for the components of the symbol
vector in (4.16). Therefore, from the detector’s point of view, the iterations are
concerned with redefining the search regions. In particular, each new iteration defines
(through the new set of the a priori probabilities and the search parameter r} the shape
and the size of the geometric body that the algorithm searches over for the lattice
point which are “good” in the MAP sense, that is, the points with small metric of
the optimization in (4.12).

Since the expected complexity of the Fincke-Pohst algorithm bounds the expected
complexity of the FP-MAP, the Theorem 1 of Chapter 2 can be used to choose the
search parameter r so that the expected number of points found by the FP-MAP does
not exceed certain predetermined number. However, one should also require that the
FP-MAP algorithm does not end up finding too few points since. Otherwise, the
approximation of the log-likelihood ratio (4.14) may not be very good. In fact, if the
number of points from one iteration to another drops significantly, it is conceivable
that the algorithm may in fact diverge. Therefore, when setting the parameter search
r in (4.16), one should guarantee that a certain minimum number of points is found.

If not, the search parameter r should be increased and the algorithm run again.
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Figure 4.8: Rate 1/2 convolutional code, 4 x 4 system, 16-QAM

The procedure of selecting the set of points which are considered for the decoding
that the FP-MAP algorithm employs, is conceptually similar to the principles of the
traditional list decoding algorithms encountered in the theory and practice of decoding

for block codes.

4.5 Simulation Results

In this section we present the simulation results illustrating the performance and the
complexity of the FP-MAP algorithm employed in the multi-antenna communication
system of Figure 4.7.

Figure 4.8 shows the bit-error rate (BER) performance of the multi-antenna sys-
tem which employs the rate R, = 1/2 convolutional code with generating polynomials
g1(D) = 1 + D? (feedforward polynomial) and go(D) = 1 + D + D? (feedback poly-
nomial} and the code length [, = 9216. The multi-antenna system has M = 4
transmit and N = 4 receive antennas and employs 16-QAM modulation scheme. The

outermost (dashed) curve in Figure 4.8 shows BER performance for the system in
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Figure 4.9: Rate 1/2 turbo code, 4 x 4 system, 16-QAM

Figure 4.7 when the detector provides only the ML optimal hard decisions. These
hard decisions are then passed on to the channel decoder which performs hard de-
coding to retrieve the information vector. The remaining curves in Figure 4.8 are
obtained with the FP-MAP algorithm in place of the detector. We notice that with
more iterations, the performance improves and, furthermore, the improvements start

to saturate after only 2 — 3 iterations. The vertical dashed line denotes the channel

capacity. We note that with the required reliability BER = 107°, the system gets to
6dB away from the channel capacity after only k = 3 iterations.

Figure 4.9 shows the bit-error (BER) performance of the parallel concatenated
turbo coded system with the constituent convolutional codes described above (R, =
1/2, g1(D) = 1+ D? g(D) = 1+ D + D? [. = 9216). The code is punctured to
obtain the overall code rate R, = 1/2. The multi-antenna system has M4 = N =4

transmit and receive antennas and employs 16-QAM modulation scheme. The total
transmission rate of the system is

R = R.2M log L = 8 bits/channel use.
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Figure 4.10: Rate 8/9 LDPC code, 4 x 4 system, 4-QAM

For each run of the detector, the turbo decoder performs & iterations of its own. As
the Figure 4.9 illustrates, when the FP-MAP algorithm is used for the detector, at
BER = 107° the systems gets to only 3.3dB away from the channel capacity. It is
interesting to note that when the FP-MAP runs only once (i.e., there are no iterations
between the detector and the turbo decoder), the performance of the system already
improves by =~ 3dB with respect to the system that employs the hard ML detection
followed by the turbo decoder.

Figure 4.10 shows the BER performance of the same system (N = M = 4),
employing 4-QAM modulation and the rate R, = 8/9 LDPC code of length [, = 1088,
with the column weight 4. When the LDPC decoder receives information from the
detector, it performs 8 iterations before passing what it inferred about the coded
bits back to the detector. The total transmission rate of the system is & = 7.1 bits
per channel use. We see from Figure 4.10 that at BER = 107°, the system gets to
= 4.5dB away from the channel capacity.

It is worthwhile comparing the last two schemes. The parameters of the two

systems are chosen on purpose to result in the similar schemes. In particular, the



116

R=1/2 turbo code length 9216
0
10 " . .
S}
BSa
ho
[
b
0 Lo
o ;
\ |
‘ |
1 '\ |
| |
\ Q !
\ ; | \
0 5 10 15 20
snr (dB)
complexity exponent, M=N=4, 16-QAM
6 : : .
5 L
)
EAr
(@)
o
3 L
2 n n
0 5 10 15 20
snr (dB)

CHAPTER 4. THE FP-MAP ALGORITHM
0 R=8/9 LDPC code length 1088
10 " . .
BN
\
\
x :
L \
[l .
\
\
| \.
| |
1 ‘ L
5 10 15 20
snr (dB)

35

log,_(C)
w

25

complexity exponent, M=N=4, 4-QAM

S

5 10 15
snr (dB)

Figure 4.11: Complexity exponents for rate 1/2 turbo and rate 8/9 LDPC' codes

20



4.5. SIMULATION RESULTS 117

rates of the systems are comparable (8 vs. 7.1 bits per channel use) while the capacity
gap favors the scheme employing the turbo code (3.3dB vs. 4.5dB). Although the
LDPC code is therefore seemingly outperformed by the turbo code, it proves to be an
interesting alternative, especially in light of the complexity exponents log,, C(m, L, p)
shown in Figure 4.11. As indicated here, the expected complexity bound of the
detection in the system employing the (high rate) LDPC code is approximately cubic
in 7, while the complexity in the system with the (1/2 rate) turbo code is significantly
higher.2 This goes to show that, not surprisingly, one needs to carefully consider all

aspects of the system before deciding on the elements of the receiver.

In particular, the FP-MAP algorithm may not be appropriate for the detection
scheme in the systems which employs low-rate error-correcting codes, due to relatively
high expected complexity, as was illustrated in the previous examples. However, the
reason that designers build the multi-antenna systems is their capability to provide the
high-rate data transmissions, while the capacity gap (at least in the current state of
the research) is not quite the highest priority. As the previous examples illustrate, the
multi-antenna systems geared towards delivering high data rates, which also implies
not-too-high error-correcting code rates, are exactly the scenarios in which the FP-

MAP has the expected complexity which is acceptable in practice.

The reason why the expected complexity is higher for the low-rate error-correcting
codes may be inferred from Figure 4.12, where the mutual informations of the system
with M = 4 transmit and N = 4 receive antennas employing 4-QAM and 16-QAM
schemes are shown. The dashed line curve in the same figure represents the capacity
of the channel (i.e., the mutual information optimized over unconstrained symbol
distributions and maximized for the Gaussian). Assume that an error-correcting code
and a soft decoding scheme may be employed. Furthermore, assume that the expected
SNR at the channel is, for instance, SN R = 10dB. From Figure 4.12 is evident that,
to obtain a spectral efficient scheme at this SNR and 4-QAM and 16-QAM schemes,

we have two options:

2The bound is clearly not an exact measure of the complexity in this case but is indicative of the
true complexity.
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Figure 4.12: Capacity for 4 x 4 system, and mutual information for the system of
same size and 4-QAM and 16-QAM modulation schemes.

(a) Employ the 4-QAM scheme and (relatively) high-rate error-correcting code, or
() Employ the 16-QAM scheme and (relatively) low-rate error-correcting code.

The option (b) is (potentially, if the mutual information is achieved) more efficient,
as is implied by the small gap to the channel capacity. However, as we concluded in
Chapter 2, for the given modulation scheme, the expected complexity of the sphere
decoding is polynomial over the range of SNEs which supports an uncoded transmis-
sion at the rate implied by the particular modulation scheme. From Figure 4.12, the
SNR for the mutual information achieving () is quite below the range of the SNRs
where that (low expected complexity) would be the case. The option (a}, although
not as efficient, is much more feasible from the complexity standpoint, because the
SNR belongs to the range where the sphere decoding has low polynomial expected
complexity. Therefore, we conclude that in coded systems, the spectral efficiency
and the low ML/MAP detection complexity via sphere decoding are two competing

requirements.
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4.6 <Conclusion

In this chapter, we developed a modification of the Fincke-Pohst algorithm to perform
maximum a posteriori detection. The Fincke-Pohst maximum a posteriori (FP-MAP)
algorithm performs a search in the region of the symbol space whose side and shape is
determined by both the statistical properties of the noise and a priori probabilities of
the elements of the symbol space. The algorithm finds a set of points used to estimate
the soft information for the transmitted coded bit sequence. This soft information is

then used as an input to the soft decoder for the channel code.

When applied for the soft detection in the multi-antenna systems employing error-
correcting codes, the FP-MAP algorithm provides reliable performances of the sys-
tems which are close to the channel capacity. This was demonstrated on the systems
employing both the turbo and the low-density parity check codes. As we have shown,
for instance, when combined with the standard off-shelf turbo decoder, the proposed
algorithm allows one to get to approximately 3.3dB away from the channel capacity

while achieving the bit-error rate performance on the order of 107°.

We considered the expected complexity of the algorithm and found that, under
some simple conditions, it is bounded above by the expected complexity of the original
sphere decoding algorithm. Hence, over a wide range of rates and SNRs, the FP-MAP
algorithm has the polynomial-time (often cubic) expected complexity in the number
of transmit antennas. Moreover, the examples that we considered clearly indicate the
need for careful examination of all system parameters before selecting the detection
scheme that is (complexity-wise) most appropriate for the particular system at hand.
In particular, the expected complexity of the FP-MAP is an indicative parameter
that can serve as a guide of the appropriateness of employing this algorithm in a
scheme that is being considered. For a given set of system parameters, one should
analyze the expected complexity and, as a result, may or may not find the FP-MAP
appropriate for the practical implementation in the system at hand. However, we
can state this differently from the synthesis point of view: if one decides to make

the FP-MAP algorithm of choice for the soft detection in the communication system
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under design, then the other parameters of the system may (and should) be chosen
to minimize the computational complexity of the FP-MAP algorithm (as well as the
overall system}.

Although the simulations we presented were for the equal number of the transmit
and receive antennas 4 = N once can still use the methodology for 44 > N, provided
one uses, for instance, an LD code [30] to guarantee that the integer least-squares

problem has at least as many equations as unknowns.



Chapter 5
Joint Detection and Decoding

When designing practical communication systems, the signal detection problem is
often considered separately from the data decoding problem. The disjoint approach
to the design of these two receiver’s components is primarily motivated by the de-
sire to alleviate the otherwise heavy computational burden. However, though the
computational complexity of the receiver which employs detection and decoding in
separate stages is potentially lower (with the existing algorithm, at least) than the
complexity of the receiver which does them jointly, there is a performance price to
pay. To overcome the performance losses, soft decoding techniques, such as those
in Chapter 3, use the probabilistic information at the output of the first stage (i.e.,
the soft information about the detected symbols} as the input to the second stage —
the decoder. The subsequent iterative exchange of the soft information between the
receiver’s stages attempts to extract all the information about the original uncoded

message that is contained in the received signal.

In this chapter, we will take a non-iterative approach to the detection/decoding
problem in multi-input multi-output communication systems which employ error-
correcting codes. In particular, we consider the joint maximum-likelihood and max-
imum a posteriori detection and decoding problems in the multi-antenna systems,
where the data is encoded by the linear block error-correcting codes and then trans-

mitted across the channel in AWGN. To this end, we develop an algorithm for solving

121
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the integer least-squares problem where not all the points in the underlying “rect-
angular” lattice are potential solutions; instead, only those of them generated by a
linear block transform of the elements in a finite field are allowed. The algorithm
draws on the Fincke-Pohst idea and performs a search for the lattice points inside a
sphere. However, an important additionally imposed constraint needs to be satisfied:
the admissible lattice points must not only be inside the sphere but also have to be
valid codewords.

The criteria for the choice of the radius of the sphere is statistical and hence the
computational complexity of the algorithm is a random variable. We quantify it by
means of its first moment — the expected complexity — which we find analytically, in a
closed form. The expected complexity of the joint maximum-likelihood detection and
decoding (JDD-ML} algorithm is polynomial in the length of the uncoded information
word over a wide range of SNRs. Simulation results illustrating the performance of
the algorithm and its expected complexity are also presented. Furthermore, for the
case when the a priori information for the information data are known, we consider the
maximum a posteriori joint detection and decoding problem and derive an algorithm

(JDD-MAP) for solving it.

5.1 The JDD-ML Algorithm

We consider the communications over the multi-input multi-output channel in the
AWGN. The information data vector is first encoded by a linear block code. The coded
vectors are modulated onto a QAM-constellation and transmitted across the channel.
As we have shown in Chapter 2, the maximum-likelihood problem is equivalent to
the integer least-squares problem or, geometrically, to the closest point search in
the lattice. Obviously, in the communication setup that we just described, not all
lattice points are allowed — the code selects the subset of the lattice (corresponding
to the codebook of the block code) which may be transmitted. Therefore, we are
hopeful that this “sparseness” of the allowed lattice points imposed by the code may

be exploited to our advantage and lead to the low complexity solution of otherwise
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rather cumbersome problem. We examine that in this section.

Assume a real-valued discrete-time block-fading channel model (or, if the channel
mocdel is originally complex, find its real-valued equivalent as described in the previous
chapters) of the form

z=Hs+uv, (5.1)

where H € R™™ is an equivalent channel matrix with i.i.d. Gaussian entries, and
z € R™! is a noise vector with i.i.d. A’(0,1) entries. Entries in the symbol vector s
are obtained upon modulating the coded word c onto an L-PAM constellation. The
vector c, on the other hand, is obtained by encoding the information vector b by the
linear block code.

The linear block code is defined by the code generator matrix (. The dimensions
of the matrix G determine the rate of the code. For instance, if the size of the
generator matrix is & x m, the rate of the code is R, = k/m. The coded vector

c=lcicy ... cm)"

is constructed from the information vector
b=1[bby...0"

by encoding it as
c=G®Dh. (5.2)

The entries in ¢, b, and G, are assumed to be elements from a Galois field GF(L).
We chose the size of the Galois field to be as same as the size of the PAM constellation
for simplicity. Operation ® in (5.2) denotes a multiplication over Galois field, i.e.,
multiplication modulo L.

The maximume-likelihood decoding problem in the communications system de-

scribed by (5.1},(5.2) can be stated as the following optimization problem,

min ||z — Hs|% (5.3)
beGF(L)P
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The space over which we optimize is the information vector space GF(L)P. One way
of obtaining the solution to the maximum-likelihood decoding problem is by means
of an exhaustive search. However, expanding on the basic idea of the Fincke-Pohst
approach, we propose an efficient alternative to the exhaustive search: the algorithm
that performs the optimization (5.3) by searching only over those points in the lattice
H s that belong to a hypershere around the observed point z. In addition, only those
lattice points inside the hypersphere that are also admissible codewords (i.e., those
points which, when demodulated, satisfy relation (5.2) for some b € GF(L)) are

considered to be the candidates for the solution.

We essentially seek a procedure that would, just like the Fincke-Pohst does for the
ordinary integer least-squares, decouple the problem (5.3) —i.e., turn the maximum-
likelihood search into a set of p (p being the size of the vector b) linear inequality
conditions which, when all satisfied, guarantee that the point s generated by b belongs
to the sphere. These conditions ought to be stated in a convenient "nested” form —
that is, when a bit &, ;11 € GF(L) is determined from the *" inequality condition,
that particular bit is substituted for in the remaining (i — 1) inequalities; then the
same is repeated for b,_; and so on. In the end, each vector b, that satisfies the set
of p conditions should be such that the vector ¢, = G ® b,, when modulated onto an
L-PAM constellation and processed by the lattice generator matrix (i.e., the channel),
results in a lattice point Hs that belongs to the sphere around z. If more than one
vector by is found by the search, then the vector b among them that minimizes (5.3)

is the solution to the ML decoding problem.

For convenience, henceforth we shall denote the modulation operation by [-], i.e.,
the fact that the point s is obtained by modulating the code vector ¢ = G & b onto
an L-PAM constellation will be denoted by

s2[G®bl.

As mentioned earlier, we need to state a set of the one-dimensional conditions that

the components of a vector b need to satisfy so that [G & b] belongs to the searching
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sphere. To do so, we first require some pre-processing of the matrix . In particular,
we transform the code generator matrix G into an approzimately upper-triangular
form, that is, starting from a given matrix G, we find its equivalent generator matrix
G of the form

i
g
G _ i i g}(cv)
gy
v (R
9

|
|
>
|

Figure 5.1: Approzimately upper-triangular form of generator matriz G

The operations that are allowed in the process of transforming G to the approx-
imately upper triangular form of Figure 5.1 are permutations and additions of the
rows. Then the resulting matrix & generates the same code as the starting G, even
though a particular information vector b may, in general, result in a different code-
word upon encoding. As illustrated in Figure 5.1, after the preprocessing is done, the

resulting matrix &G has the following structure:
D1 ,(h) 3
e the columns {>7;77" g; to o2, gZ have no fixed zero entries,
e the columns (EZ 1 gZ ) to Zfﬂl 9 ) have S o gZ ) fixed zero entries,
k=1,...,D -2,

e finally, the columns 1 to gy’) have ZZ-DZQ g§”) fixed zero entries.

Note that

oW D
v
gl =p, > g =m,
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where D is the number of “diagonal steps” in &, i.e., the number of different column
weights (the weight of the column is the average value of its entries). Furthermore,

we shall refer to the set of the ratios,

h v h v
(g7, g g

as a diagonal profile of the matrix G. When g,(ch)/g,(f) =p/m, k=1,...,D, we say
that the diagonal profile is regular. The reason for introducing the notion of the
profile is that by focusing first on the matrices with the regular profiles, we can derive
a simpler version of the JDD-ML algorithm and develop some intuition that we shall

find useful when later considering the general case.

We shall start the description of the algorithm by considering the special case of
a rather simple block code. Assume that the information bit vector b is encoded by
the rate R, = 1/2 binary code, whose generator matrix G has the regular diagonal
profile. Then the entries co;_1 and cy; of the coded vector ¢ can be expressed as a

linear combination of the bits (&;, &1 ... b,) only,

i i

Coi_1 = ZG(z’l— 1,])®b] and Co; = ZG(ZZ,])@b]
7j=1 7j=1

Recall how we earlier assumed that the size of the (Galois field, occupied by the

elements of the uncoded and coded vectors, is as same as the size of the PAM con-

stellation from which the elements of the transmitted symbol vector are chosen. As

a consequence, the symbols s9;_; and so; shall, just like the coded bits cg;_; and cy;,

depend only on the information bits (&;, &1 ... by).

Now, recall that the point s lies in a sphere of radius r around z if and only if it
holds that

r? > e — Hs|” = (s — 3 "H"H(s — 3) + ||«” — | H3|I", (5.4)

where § = H'x is the unconstrained least-squares estimate. As in the sphere decoding
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algorithm, we shall chose the radius of the sphere according to the statistics of the
noise,

r? = ama?,

where the scaling coefficient « is chosen so that there is a high probability that we

find a lattice point inside the sphere.

Introducing the ¢} R decomposition H = ()R, and defining

!

=% —|lz|” + | =3I,

we can write condition (5.4) as

’
r 2

(s —8)"R"R(s — §)

2p 2p Poi1. 2
= 2 Tgi—1,21—1 Soic1 — Soim1 + 3 ———T—(s; — §;)

[V

i=1 j—2i T2i-1,2i—1

—
[
(&3]

~—

2
2p 2 \
2 A isj A
D Toipi | 82— But D, (s — §)
i=1 j=2i+1 1202 }
Expanding the summations on the right-hand side of the inequality (5.5) and consid-
ering only the first term in it, we can state an obvious necessary condition for s to
belong to the sphere,
"2p—-1,2p

(52— 8)| <77 (5.6)

2 A 2 -
T2p,2p(52p — 89p) + Top—1,2p—1 (s9p—1 — Bop—1) + ”
2p—1,2p—1

The terms on the LHS of (5.6) comprise the part of the summation in (5.5) which
depends on the bit &, only. Therefore, condition (5.6) need to be tested for every
b, € GF(L). When, for some b,, the inequality (5.6) is satisfied, that particular b,
value is substituted for in (5.5). Then by considering the second terms (i.e., the terms
for i = 2} in the expanded summations (5.5), one can state a (stronger) condition

that b,_; (assuming the already fixed value of &,) needs to satisfy in order that the
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point s belongs to the sphere,

2p 2
2 Sops— Sap st 3 L e Y S
2p—3,2p—3 { “2p—3 — “2p—3 S
j=2p—2 T2p—3,2p—3

9 2
P Top—92.4 \ n
2 2 P—2,] 2 2
Top-2,2p—2 | S2p-2 = S2p-2 + > Ti(sj — &) < v
j=2p—1 '2p—2,2p—2

n . .
where 7 2 is evaluated for the previously chosen &,

2
"o _ 9 2 ~ 2 A TQP_LQP o
T2 =1 =g, 0 (S0p — Sop) + [TQp—l,Qp—l (Sop—1 — Sop—1) + S (s9p — S2p)| -
P—1,2p—

When such b,_; is found, it is fixed and substituted for in (5.5). If no such b,_; is
found, we need to take one step back, discard the previously chosen higher-indexed
bit (in this case, b,}, chose another one and proceed likewise. By continuing in the
same way to state the conditions on the remaining bits (b, o, ..., 5;), we define the
total of p nested necessary conditions from which all components of the vector b may

consecutively be found.

One can think of the JDD algorithm performing the search on a tree (which, for
the special case that we considered up to this point, would be the binary tree), as
illustrated in Figure 5.2. The maximum depth of the tree is p. The conditions that
might result in the pruning of the tree are tested with respect to the integer lattice,
which is generated by the matrix H. Whenever a point falls outside the sphere, which
is centered at the received point z in the Euclidean space containing the lattice, the

current node in the tree is discarded.

Every node at any level of the tree corresponds to some point in GF(L). Therefore,
the paths on the tree that survive the pruning, correspond to the information vectors.
The lattice points in the Euclidean space are related to the tree via both the block
code G and the (lattice generating) channel matrix H. Not all the points in the
lattice are allowed (as is illustrated by the “empty” points in Figure 5.2). This is

clear since the code maps the space with L? elements (the information vector space)
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Figure 5.2: The tree-pruning interpretation of the JDD-ML algorithm

to the lattice with Z™ points (the symbol space).

The description of the JDD-ML algorithm based on (5.5) assumed a rate R, = 1/2
binary block code with a regular profile of the generator matrix &. The algorithm can
be generalized to accommodate for an arbitrary diagonal profile of the arbitrary rate
code generator matrix . To this end, we will find it useful to express the condition
(5.5) (still specialized for 1/2 rate code with regular diagonal profile} in a “matrix

form”, that is, write it as

A p A
8251 — 8251 Sok—1 — S2k—1
Rjj ( ) + 2 Ry

525 — 825 k=j+1 Sokg — S2k

where
Rjy=R(2j—1:25:2j—1:2§), Rj,=R(2j—1:2:2k—1:2k).

To state the JDD-ML algorithm in a matrix form similar to (5.7) but for the general

structure of &, it will be convenient to denote

=3P, =4, 1<i<D,
Jj=1

=1
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The dgh) and dgh), 1=1,2,...D are illustrated in Figure 5.3.

)
o 7
o e
e BRRRECEREE ‘I"}'E'),"'f'
o A
b )]
A B Lol
G = :dD
R S R v

Figure 5.3: Generator matriz G

Now, the condition (5.7) can be generalized to the case of a code with any rate

and any diagonal profile as

2

D
Rjj(s; —8) + D> Rjk(sk — 8)
kg1

L
2
7=1

where

Ry =R +1:d;d, +1:dY),
and where

T T
S-:[S(h)...s(h)] §-:[§(h)....§(h)]
J ™), d j d dM | o

i=12....D, j<k<D.

For (5.8) to hold, the entry &, in the information vector needs to satisfy

|1 Rpp(sp —$p)|* < r? (5.9)
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For every &, € GF(L) which satisfies condition (5.16), we go back to (5.8) and
substitute in that particular ,. Then a new, more strict necessary condition on b,_;

(and already chosen &,) can be stated as

2

!

<r?

Y

I
Rjj(sj —8;)+ > Rjk(sk — )
k=j+1

D
2
j=1

where

r? =12~ ||Rpp(sa(b,) — $p)|°

is the updated radius.

The procedure is continued until all the components of the information vector b
that satisfy (5.8) are found. If no vectors b that satisfy (5.8) are found, the radius
r is increased and the algorithm is restarted. On the other hand, in general, there
may be more than one information vector b found by the algorithm. The one that

minimizes (5.3) is the solution to the joint ML detection and decoding problem.

The JDD-ML algorithm can be summarized as follows:
1. Input: G, R, x, 8, r.
2. Set k=p, 2 =12~ ||z||> + | H8|>.

ki)

3. Set bk =—1.

1N

Dby =b+1;if by, > L, go to 6.

(1]

. (Increase k) k =k + 1; if k = p+ 1, terminate algorithm, else go to 3.

6. (Decrease k) If £ =1 go to 6. Else k¥ = k& — 1, and calculate

- L-1
5= Y [mod (G (Al + 154, ) @ b 1) - == 1,0
J=k
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where 1; denotes an i-dimensional vector with all entries 1. Also, calculate

2

D
Ry (S/c — §1c) + Z Rkj (Sj — §j)
j=k+1

g 12
Ty =Ty —

I

and go to 2.

7. Solution found. Save b and go to 3.

5.2 The Computational Complexity of JDD-ML

The choice of the radius in (5.5) of the sphere that we search for the ML optimal
information vector b is a function of the SNR. The number of the lattice points
that lie inside the sphere depends on the particular instantiation of both the channel
matrix H and the noise vector #. On the other hand, the complexity of the JDD-ML
algorithm depends on the number of points that the algorithm examines. Since the
number of these points varies from one channel use to another, the complexity is
a random variable. A way to characterize it is by means of its moments. In this
section, we derive the closed form analytical expression for the expected complexity
of the JDD-ML algorithm.

Let s, = [Gby] denotes the lattice point obtained by encoding the information
vector b; and modulating it. Furthermore, let s, denotes a lattice point obtained
by encoding and modulating an arbitrary vector b,. The expected complexity of the
JDD-ML algorithm is proportional to the expected number of the lattice points inside
the sphere. Following the outline of the computation of the expected complexity for
the original sphere decoder in Chapter 2, we shall need two elements in order to

calculate the expected number of the lattice points inside the sphere:
(a) A probabilistic description of the event that both s; and s, belong to the sphere

of radius r around z.

(b) A method for enumerating information vectors space, i.e., a way of counting all

the information vectors for which the probability in (a) takes the same value.
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We start by calculating the probability in (a) above. Suppose that the vector by
was encoded and modulated onto s;, that the lattice point s; was transmitted and
that the vector x = Hs; 4+ v was observed. The probability that another lattice point

$q lies in a hypersphere of radius r around x can be expressed as

"'2 —
~y r ma_ /2(o2+||sa—st||2> AmE e M
2(a? + ||sa — s4]|?) 2 0 I'(m/2) .

This probability is only a function of the Euclidean distance between s; and s,,

||sa—s¢||?>. Therefore, all we need now is to count the number of the points s, which are
both admissible codewords and lie inside a sphere of radius r around Hs;. We count
this number of points by enumerating the information vector space. In particular, we

want to enumerate
150 = sll> = I[G ® o] — [G @ b7, (5.10)

where [-] denotes modulation operation.

We will now demonstrate the enumeration procedure for L = 2, i.e., for the case of
the binary block codes. That is, we consider all the possible values that the Euclidean
distance between s, and s; can take depending on the pairs of the binary information
vectors (b, b, ). We shall also, in the following discussion, assume the regular diagonal
profile of the generator matrix . The generalization will follow directly and will be
stated without discussion. With the previously mentioned assumptions, the following

observations can be made:

e If b, = by, then ||s, — 5:]|> = 0.

e Assume that b, differs from b; in only one entry (that is, they differ in only

one of the p possible spots), and note that
||St - Sa||2 = (Stsl - 'Sd,1)2 + cc e + (Stym - Saam)Q' (5'11)

Then if b, and b, have the i** bit different, there will be 2; non-zero terms in

the sum on the RHS of (5.11), where u; (i = 1,...,p) denotes the weight of



134 CHAPTER 5. JOINT DETECTION AND DECODING

the columns of G, i.e., w; denotes the sum of all entries in the i** column of G.

Since I. = 2, each such non-zero entry is 1. Therefore,
2 1 1 1
Isa — sel|” € {wn,wo, ..., wp}.

Therefore, in this case ||s, — s;||> may take at most p different values — it takes

less when some columns of & have the same weights.

e Assume that b, differs from b; in two positions, say, j and k (for which there
are ( Z ) possible cases). From (5.10}, it is clear that if G(7, j) = G(4, k), then

the i* component of the symbol vector s, and s, will be different. However,
if G(i,7) # G(i, k), the i component will be the same for both s; and s,.
Therefore, to enumerate all the possible values of ||s, — 5|, one needs to
consider exclusive-or sums of any two columns of . Consider the vectors that
result by taking all such exclusive-or sums. Let Y (2} denotes the set of distinct

weights (sum of the entries) of such vectors. Clearly, in this case,

e — sl € T(2).

e We proceed alike for the cases when b, differs from b; in more than two entries.
In general, if b, and b, differ in & entries, we consider set of the vectors obtained

by taking exclusive-or sums of all possible combinations of & columns of G (there
are ( z ) such combinations). Let Y (k) denotes the set of distinct weights of

such vectors. Then
0 = sill2 € Y (k).

The enumeration procedure we just described can obviously become rather involv-
ing as the dimension of the problem (i.e., p) increases. However, rather than counting
for a specific G, we can average over all generator matrices &G of a given diagonal

profile. For a large dimension p (which, in fact, is the computationally difficult case},
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the complexity of the algorithm for a random G (with a given diagonal profile} will
be represented well by the complexity of the algorithm averaged over all G’s with the
same diagonal profile.

Assume the upper triangular form of a generator matrix & as illustrated in Fig-
ure 5.1, and that the entries in a non-zero part of G (that is, the entries in the upper-
triangular part of G) are drawn from a Bernoulli(%) distribution. Let wy,9,...,u,
denote the average weights of the columns of G (averaged over all possible generator
matrices G with entries randomly drawn from Bernoulli (3) and with a given profile),
and note that

wy < oy < ... < W

We have previously described the enumeration of the vector pairs (b, b,) for the
fixed G. We shall now follow the same enumeration procedure but average over
random G’s. Before proceeding any further, we will find useful to recall the fact that
the distribution of exclusive-or sum of any number of Bernoulli(3) variables remains

Bernoulli(3). Thus we can make the following observations:

p—1
e There are
E—1

the weight of the “heaviest” column in the combination is s, (i.e., there are

) combinations of & (k = 1,2,...,p) columns of G where

k-1
Hence there is a total of

)0 (0

possible combinations of columns whose exclusive-or sum results in a vector

-1
( P ) combinations of £ = 1,2,...,p columns which include column p).

with weight .

k—1
the weight of the “heaviest” column in the combination is u;,_; (i.e., there are

-2
e There are ( P ) combinations of k columns (k= 1,2,...,p—1) of G where
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-2
( ;: ) combinations of £ = 1,2,...,p — 1 columns which include column
—1

p — 1 but do not include column p). Thus there is a total of

) ()

combinations of the columns whose exclusive-or sum results in a vector with

weight wp,_1.

e In a similar way we determine number of possible combinations of columns

whose exclusive-or sum results in vectors of weights wy,_o,1p_3,..., 1.

In summary, we identify the following generating polynomial:

Y(z)=1+ i 2P~k gttt
k=1
The generating polynomial ¥(z) should be interpreted as follows: each coefficient 7
in the expansion W(z) = >}_, 42" is the number of pairs of information vectors
(bs, b,) for which [|s; — 54|? = wy.
Remind that, in the previous discussion, we assumed the regular diagonal profile of
G. For the codes with general profile (still assuming the binary codes), the generating

polynomial takes the form

D ggs,h)

U(z) =1+ 3 v kitlgvpis (5.12)
k=1 j=1
The inner summation in (5.12) is due to possible multiple columns with the same
average weights. For instance, assume that there are two “heaviest” columns, i.e., two
columns with the weight . Then (5.12) means that there is a total of 2P~ 4 272
combinations of the columns of &G whose exclusive-or sum results in a vector with
weight wp.

We can summarize the complexity results in the following theorem:
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Theorem 3 [Expected complexity of JDD-ML algorithm for binary codes]
Consider the model
x=Hs+v,

where v € R™! is comprised of i.1.d. N(0,1) entries, H € R™™ is comprised of
i.i.d. N(0, p/m) entries, and s € DT is an m-dimensional vector whose enlries are
obtained by modulating coded vector ¢ onto an L-PAM constellation. Furthermore,

the vector c is obtained by block coding information vector b,
c=G®h,

where G € GF(2)™*P. Then the expected complexity of the JDD-ML algorithm for

the integer least-squares problem

mln ||x — Hs||%,
beGF(L

averaged over H, GG, and v, for a 2-PAM constellation is
i k r? m
C(m, p) g (2k +17) qgo a(g)y (m, 3) (5.13)
where g(q) is the coefficient of z9 in the polynomial

h
n 9

W(z) =1+ D 2P hitlgte e,

k=1j=1

Proof:

The proof follows from the previous discussion in this section.
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5.3 The JDD-MAP Algorithm and its Complexity

The joint ML detection and decoding problem (5.3} assumed no prior knowledge
about the information vector bh. There are scenarios, however, when we may have
the access to the a priori information, that is, when we know the set of the a priori

probabilities
{p(b1), p(b2), - ., p(bp)} -

This a priori information may be exploited in order to obtain the maximum a pos-
teriori estimate of the information vector b. The joint MAP detection and decoding

problem may be stated as

p
i x— Hs|* - ) - 5.14
i, [l 517 = S toga(n) (.14
To solve (5.14), we take the same approach as we did for the joint ML detection and

decoding problem. In particular, we search for vectors b such that

2
P
<7’ + > logp(hi), (5.15)

=1

D
Rjj(sj —8;)+ > Ry (s — $)

k=j+1

D
2
Jj=1

where R;;, are the blocks of the upper triangular matrix R is the ()R decomposition

of the channel matrix H,
Ry = R(d"M +1:d;d, +1:4dY),

and where
T

5; = [sdﬁ)l...sd;h)r 5= [3ym0--5m |
j=1,2,....,D, j < k < D. From (5.15) it is clear that we search for the lattice
points that no longer belong to the sphere but rather lie in some distorted object
in the Euclidean space. This object can be thought of as the sphere stretched or

compressed in various dimensions, depending on the a priori confidence that we have
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about the corresponding components of the vector b.

For (5.15) to hold, the entry &, in the information vector needs to satisfy

|Rpp(sp — $p)||° < 7% +logp(b,), (5.16)

For every &, € GF(L) which satisfies condition (5.16), we go back to (5.8) and
substitute in that particular &,. Then a new, more strict necessary condition on &,_;

(and already chosen b,) can be stated as

2

D
Rjj(s;—8)+ 3. Ry (sk—8u)|| <r%+logp(by-1),

k=j+1

D
2
j=1

where

r? =1’ — |Rop(sa(by) — $p)I|” — log p(b,)

is the updated radius.

The procedure is continued until all the components of the information vector b
that satisfy (5.15) are found. If no vectors b that satisfy (5.15) are found, the radius
r needs to be increased and the algorithm starts again. Of course, in general, there
may be more than one information vector b found by the algorithm. Then the one
among them which minimizes (5.14) is the solution to the joint MAP detection and
decoding problem.

We state the JDD-MAP algorithm as follows:

1. Input: G, R, x, 8, {logp(d1),...,logp(b,)}, 7.
2. Set k=p, rp =1° — ||’ + | H8|I* + log p(by),
3. Set b, = —1.

4. by =b, + 1;if b > L, go to 6.

(Increase k) k =k + 1; if k = p+ 1, terminate algorithm, else go to 3.

[
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6. (Decrease k) If £ =1 go to 6. Else k = k — 1, and calculate

é[mocﬁ( (d +1:d),5) @b, L) - %-193)],

where 1; denotes an i-dimensional vector with all entries 1. Also, calculate

2
D
r =r2y — | Rk (56— 8) + Y Ry (s; —85)| +logp(be),
ekt
and go to 2.

7. Solution found. Save b and go to 3.

The computational complexity of the JDD-MAP relates to the computational
complexity of the JDD-ML in the same way that the complexity of FP-MAP algorithm
from Chapter 3 relates to the complexity of the original Fincke-Pohst algorithm. In
particular, the probability that an arbitrary information vector b, generates a lattice
point s, inside the sphere around Hs;, where s, is the transmitted symbol (generated

by by}, is given by

7,2+ZZ"_ log p(b;)
_ (7’ + 27_1 log p(b;) m) _/ Tt AT
pba =% 2 T _— p € d)\.
2(a? + ||sq — s¢||?)’ 0 ['(m/2)

Since -7, log p(b;) < 0, we have

r2+ 370 logp(b )< r?

2002 + [[$0 — 52|12 — 2(02 + [[5a — s|7)

Since the incomplete gamma function is monotonically increasing with its argument,

it follows that for the same choice of 7,

JDD—AfAP JDD ML
b, < )
a a

and we may conclude the following:
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Lemma 2 For the same choice of the search parameter r, the expected complexity of
the JDD-MAP algorithm is upper bounded by the expected complexity of the JDD-ML

algorithm.

The JD-MAP algorithm is particularly promising for implementation in the com-
munication schemes employing concatenated coding (with a block inner code) and

iterative decoding.

5.4 Performance Simulations

We illustrate the calculation of the expected computational complexity and the per-
formance of the JDD-ML algorithm on a few simple examples. Figure 5.4 shows the
expected complexity exponent for the rate R = 1/2 linear block binary code with
p =5 and m = 10 and with the regular diagonal profile of the generator matrix G.

The complexity exponent is defined as
e =log,, C,

where C' represents the total flop count in (5.13).

The analytically calculated expected complexity, plotted as a dashed line in Fig-
ure 5.4, coincides with the empirically obtained complexity. Moreover, the expected
complexity is roughly cubic over the considered range of SNRs.

Furthermore, we consider the performance of the JDD-ML algorithm on the sys-
tem employing Golay 24 code. In Figure 5.5, we compare the performance of the
JDD-ML algorithm with that of the receiver which employs hard detection followed
by the hard decoding. It is evident that the performance improvement is significant

over a wide range of SNRs.

In Figure 5.6, the expected complexity exponent of the JDD-ML algorithm for
Golay 24 code is shown. In the SNR region where the BER is low, the expected
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Figure 5.4: An illustration of the expected complexity of the JDD-ML algorithm: a
rate 1/2 binary code, m = 10

complexity of the algorithm is e & 4 and it decreases with the SNR. The complexity
exponent is relatively high, which is due to the fact that the Golay 24 code can not be
transformed into a form that allows for low complexity of JDD-ML; loosely speaking,

the diagonal profile of the Golay 24 generator matrix is highly irregular.

5.5 Conclusion

In this chapter, we considered the problem of the joint detection and decoding
in multi-input multi-output systems. The target criteria that we focused on are
maximum-likelihood and maximum a priori. Due to the potentially rather high com-
plexity of the joint solution, the two aforementioned problems — detection and de-
coding — are commonly considered separately in practice. However, the performance
price that then has to be paid justifies studying the algorithms that treat the prob-
lems jointly. To this end, drawing on the ideas encountered in solving the standard

integer least-squares problems (in particular, the sphere decoding idea}, we developed
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Figure 5.5: BER performance of the JDD-ML for Golay 24 code compared to the hard
detection followed by the hard decoding.

algorithms that solve both the joint ML and the joint MAP detection and decoding
problems. In particular, we studied the joint ML and MAP detection and decoding
problems in the systems where the data is encoded by the linear block error-correcting
codes and then transmitted across the matrix channel in AWGN. The algorithm that
we developed solves the integer least-squares problem where the only allowed lattice
points are those generated by a linear block transform of the elements in a finite field.
The algorithm performs a search for the lattice points inside a sphere but added an

important constraint to the search: the admissible lattice must be a valid codeword.

Due to the search strategy, the computational complexity of the algorithm is a
random variable. We quantified it by means of the expected complexity, which we
found analytically, in a closed form. The expected complexity of the joint maximum-
likelihood detection and decoding (JDD-ML) algorithm was shown to be polynomial
in the length of the uncoded information word over a wide range of SNKEs. Further-
more, we considered the maximum a posteriori joint detection and decoding problem

for the case when the a priori information for the information data are provided to the
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Figure 5.6: Comyplexity exponent of the JOD-ML for Golay 24 code.

receiver. We derived the JDD-MAP algorithm for solving it and derived the bound
on the expected computational complexity of the JDD-MAP algorithm.



Chapter 6
Conclusion

We considered integer least-squares and related problems that are traditionally thought
to be computationally intractable. Geometrically, the integer least-square problem is
equivalent to the closest-point search in a lattice and is, indeed, NP-hard. However,
we focused on the case where the given point in a space is not random but is a lattice
point perturbed by the noise whose statistical properties are known. Furthermore, we
limited our study to the so-called sphere decoding algorithm, which finds the closest
point inside a sphere of a radius chosen according to the aforementioned statistics of
the noise. We did not dwell on the worst-case but considered the expected complexity
of the algorithm. A closed-form expression for the expected complexity of the sphere
decoding algorithm is derived in Chapter 2. It was shown that the expected com-
plexity of the algorithm is polynomial over a wide range of signal-to-noise ratios and,
in fact, often cubic or sub-cubic. The maximum-likelihood detection often amounts
to the closest-point in a lattice. Since the ML detection is considered intractable,
heuristic techniques, which typically have cubic complexity, are often emploved. The
results in this thesis imply that the ML detection can be implemented at the ex-
pected complexity comparable to that of the heuristics techniques while significantly

outperforming even the best among them.

Furthermore, for channels with memory, we have derived “hybrid” algorithms

that combine the dynamic programming principles of the Viterbi algorithm with

145



146 CHAPTER 6. CONCLUSION

the sphere-constrained search strategy of the sphere decoding. For instance, the
Viterbi algorithm idea can be exploited to improve the complexity of the sphere
constrained search in a lattice by tracking the costs associated with the channel
memory state. Alternatively, the computational burden of the maximum-likelihood
detection on trellis via the Viterbi algorithm can be alleviated by imposing a sphere
constraint on the trellis paths. Such an algorithm has the worst-case complexity of

the Viterbi algorithm but is significantly faster on the average.

A modification of the Fincke-Pohst algorithm which performs the maximum a
posteriori search was proposed in Chapter 4. This algorithm, the FP-MAP, performs
a search in the vicinity of the received point. However, the search is not constrained
within a sphere but within a region defined by both the statistics of the noise and by
the a priori information about the coordinates of the lattice points. The search, in
general, returns a number of nearby points which are then used to form the soft prob-
abilistic information required for the decoding in soft iterative schemes. It was argued
that the complexity of the FP-MAP algorithm can be bounded by the complexity of
the related sphere decoding algorithm. The performance of the algorithm was illus-
trated in the systems employing both simple convolutional as well as the powerfull
turbo and LDPC error-correcting codes. When combined with the powerful channel

codes, the algorithm results in the near-capacity system performance.

Finally, we considered the problem of the joint detection and decoding in multi-
input multi-output systems. Extending the sphere-constrained idea of the Fincke-
Pohst algorithm, we developed algorithms that solve the joint problem for both the
maximum-likelihood and the maximum a posteriori criteria when a linear block code
is used. The algorithms still perform a search within some constrained volume in the
space. However, an important additional constraint is imposed on the lattice points —
they must be admissable codewords. The expected computational complexity of the
joint detection and decoding algorithms was found analytically for the case of binary
error-correcting block codes. It was demonstrated that this complexity is polynomial

and often of the cubic order.
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6.1 Future Research

The discussion in Chapter 2 rises some fundamental questions about the complexity
of the optimal detection algorithms. We have observed that when the channel is
capable of supporting the data transmission at a particular rate, the corresponding
expected complexity of the sphere decoding algorithm is polynomial. Thus there is
merit in studying the relation of the computational complexity of sphere decoding
(and other algorithms) and the basic system parameters. Finding such a connection
would be rather illuminating and would contribute to the understanding of the limits

of performance at tractable receiver complexities.

With the statistical choice of the search radius, the sphere decoding algorithm
finds the exact solution to the maximum-likelihood detection problem with a cho-
sen probability. We have shown that the expected complexity of the algorithm is
polynomial over a wide range of SNKs and moderate sizes of the transmitted symbol
vectors. It is of interest, however, to develop the sphere-constrained search techniques
capable of solving the maximum-likelihood detection problem for long symbol vectors.
To this end, the requirement that the solution has to be exact may be alleviated in
order to keep the computational complexity of the algorithm tractable. The proba-
bility of error (as a function of the search parameters) would concisely express the

complexity/performance tradeoff of such an algorithm.

In Chapter 5, we presented an algorithm that solves the joint maximum-likelihood
detection and decoding problem for linear block codes and multi-input multi-output
channels. Study of an extension to other error-correcting schemes appears promiss-
ing. So does the study of an extension to the joint detection and decoding over
channels with memory and relating the current algorithm to the material presented
in Chapter 3.

Finally, we should point out that the sphere decoding algorithm is a standard,
well-known technique for solving integer least-squares problems. It is the availability
of the well-defined statistical models of the detection problem in digital data commu-

nications that has made our expected complexity analysis of the algorithm possible.
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Therefore, it would be of great interest to revisit problems in, e.g., graph theory,
operation research, computational biology, etc., that are NP-hard but for which sta-
tistical models exist or can be built. Studying the complexity of the structured exact
algorithms in such problems could lead to analysis and results comparable to those

presented in this thesis.



Appendix A

Probability of Finding a Point
Inside a Sphere

A.1 Full Channel Matrix

Suppose that the lattice point s; was transmitted and that the vector z = Hs, + v
was observed. Then an arbitrary point Hs, belongs to the hypersphere of radius r
around z if

n=r"— &~ Hso|* = 1% — |lv+ H(s; — 50)[I” > 0.

Therefore, probability that the point Hs, belongs to the hypersphere of radius r

around z is

P(n>0) :/ p(n) :/ [—/ O (w)e “"dw| dn, (A.1)
0 0 27 /-
where
(w) = Eevn

is the characteristic function of #. Define a n X mn matrix § as

S =(s11 sl ... suI),
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where [ denotes n X n identity matrix. Furthermore, define a nm x 1 vector / as
h = vec(H),

i.e., h is a vector of the stacked columns of H. Then we can write

where

j\:St—Sa.

The characteristic function can now be written as

_[ I HPplm + jwly, +jwd ] l v ]

P(w) = §/dhdvej“”"2e JwA T2 + JuwA”A h . (A2)
where -
e—]wr
2m(m+l) z2m’

Evaluating (A.2) and taking the inverse Fourier transform gives

77—”‘2

(7 — 2y leT Ty <2

1 0.2m

p(n) =4 @ DI salP+o?)™

0 7 > r?

Substituting p(n) in (A.1) yields (2.12}, i.e.,

2

Ply>0) =1 T k _/_o2+||::—st||2 &e—,\d)\
P T se—sP2) o T(k/2) ’

where «(p, ¢) denotes an incomplete gamma function of argument p and g degrees of

freedom.
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A.2 Toeplitz Channel Matrix

Denote _ -
51 PN S1
ST ... ST—1+1
S =
ST
ST7-1
S
L T 4 T'xl

Following the outline in Appendix A.1, we obtain the characteristic function

[ * h* ] %IT+I*1 + jwlry JwA ] l v ]
i A
D(w)=¢ / dhdvel“ e jwA I+ joncA [ b ]
where
1
6 = 7TT+2l_10'2(T+l—1) )
and

A= St - Sa.
Evaluating the above integral, we obtain (3.7),

ejw'r2

(14 jwo)T Ty [1+ jw(o? + pi)]

O(w) =

where pr, k = 1,...,[ are the eigenvalues of the matrix A*A.
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