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Abstract

Transmission capacity (TC) is a performance metric for wireless net-
works that measures the spatial intensity of successful transmissions
per unit area, subject to a constraint on the permissible outage prob-
ability (where outage occurs when the SINR at a receiver is below a
threshold). This volume gives a unified treatment of the TC framework
that has been developed by the authors and their collaborators over the
past decade. The mathematical framework underlying the analysis (re-
viewed in Ch. 2) is stochastic geometry: Poisson point processes model
the locations of interferers, and (stable) shot noise processes represent
the aggregate interference seen at a receiver. Ch. 3 presents TC results
(exact, asymptotic, and bounds) on a simple model in order to illustrate
a key strength of the framework: analytical tractability yields explicit
performance dependence upon key model parameters. Ch. 4 presents
enhancements to this basic model — channel fading, variable link dis-
tances, and multi-hop. Ch. 5 presents four network design case studies
well-suited to TC: i) spectrum management, ii) interference cancella-
tion, iii) signal threshold transmission scheduling, and iv) power con-
trol. Ch. 6 studies the TC when nodes have multiple antennas, which
provides a contrast vs. classical results that ignore interference.
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1

Introduction and preliminaries

Wireless networks are becoming ever more pervasive, and the cor-
respondingly denser deployments make interference management and
spatial reuse of spectrum defining aspects of wireless network design.
Understanding the fundamentals of the performance and behavior of
such networks is an important theoretical endeavor, but one with
only limited success to date. Information theoretic approaches, well-
summarized by [24], have been most successfull when applied to small
isolated networks, where background interference and spatial reuse are
not considered. Large network approaches, typified by transport capac-
ity scaling laws [82], have given considerable insight into scaling laws,
but are generally unable to quantify the relative merits of candidate
design choices or provide a tractable approach to analysis for spatial
reuse or the SINR statistics. Our hope for the transmission capacity
framework has been to develop a tractable approach to large network
throughput analysis, that while falling short of information theory’s
ideals of inviolate upper bounds, nevertheless provides a rigorous and
flexible approach to the same sort of questions, and ultimately pro-
vides the types of broad design insights that information theory has
been able to achieve for small networks.
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2 Introduction and preliminaries

1.1 Motivation and assumptions

This monograph presents a framework for computing the outage prob-
ability (OP) and transmission capacity (TC) [80, 79] in a wireless net-
work. The OP is defined as the probability that a “typical” transmis-
sion attempt fails (is in outage) at the intended receiver, where outage
occurs when the signal to interference plus noise ratio (SINR) at the
receiver is below a threshold. Basing outage on the SINR, it is assumed
that interference is treated as noise. The TC is defined as the maxi-
mum average number of concurrent successful transmissions per unit
area taking place in the network, subject to a constraint on OP. The
OP constraint may be thought of as a reliability and/or quality of ser-
vice (QoS) parameter — strict requirements on the fraction of failed
transmissions result in low spatial reuse, low area spectral efficiency
(ASE, measured in bps/Hz per unit area), and thus lower TC, while
relaxing the outage requirement improves, up to a point, the ASE and
thus TC. Viewing the OP as a (strictly increasing) function of the in-
tensity of attempted transmissions, the TC is computed by inverting
this function for the transmission intensity at the target OP.

Note we use the word capacity in a distinctly different manner from
its information–theoretic sense, i.e., Shannon capacity: the TC frame-
work typically treats interference as noise1 while Shannon theory does
not, and TC measures capacity in a spatial sense, while Shannon the-
ory does not. The capacity in TC is also distinct from the transport
capacity of [34], defined as the maximum weighted sum rate of commu-
nication over all pairs of nodes, where each pair’s communication rate
is weighted by the distance separating them. The transport capacity
optimizes over all scheduling and routing algorithms and the focus is
on the asymptotic rate of growth of the sum rate in the number of
nodes n, either keeping the network area fixed or letting the network
area grow linearly with n. TC, on the other hand, is a medium access
control (MAC) layer metric that neither precludes nor addresses rout-
ing2. Although transport capacity is more general in that it optimizes

1 see §5.2 and the results of Chapter 6 as an exception: even here though the background

(uncancelled) interference is then treated as noise.
2 see §4.3 for an exception, where a simple multihop model is added.
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scheduling and routing, the cost of this generality is that typically the
transport capacity results are less specific than those obtainable under
the TC framework. The results are less specific in the sense that re-
sults on the asymptotic rate of growth of the transport capacity as a
function of n often do not specify the pre-constant.

The advantages of using TC as a metric for wireless network per-
formance are: i) it can be exactly derived in some important cases, and
tightly bounded in many others, ii) performance dependencies upon
fundamental network parameters are thereby illuminated, and iii) de-
sign insights are obtainable from these performance expressions. More
fundamentally, the TC captures in a natural way essential performance
indicators like network efficiency (ASE), reliability (OP), and through-
put (TP). In fact, TC is precisely maximization of TP under an OP
constraint, as discussed in §3.4, and is proportional to ASE, as discussed
in §5.1.

One limitation of the TC framework, at least as in this monograph,
is the implicit assumption that the network employs the simplistic and
sub-optimal slotted Aloha protocol at the MAC layer. The TC can
also be extended to model other contention based MAC protocols at
the cost of some tractability [26, 25], but we elect to stick to the sim-
ple slotted Aloha protocol, where each transmitter (Tx) independently
elects whether or not to transmit to its receiver (Rx) in each time slot
by flipping an independent biased coin [1]. If the point process describ-
ing the locations of contending transmitters at a snapshot in time form
a Poisson point process (PPP), which we assume is the case, then un-
der the Aloha protocol the locations of the active transmitters at some
point in time also form a PPP, obtained by independent sampling of
the node location PPP. The PPP model is necessary for preserving
the highest level of analytical tractability of the TC framework, but of
course it means that the computed TC is sub-optimal. The difficulty
in relaxing the Aloha assumption lies in the fact that any realistic and
useful randomized MAC protocol involves coordination among com-
peting transmitters, which necessarily spoils the crucial independence
property of the PPP. One’s valuation of the TC framework typically
rests on weighing the advantage of having an explicit expression for an
insightful network performance indicator with the disadvantage of that
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performance corresponding to a suboptimal control law. Throughout
this monograph, we generally adopt the following assumptions in order
for the OP and TC to be computable. See Fig. 1.1.

Assumption 1.1. The following assumptions are made:

(1) The network is viewed at a single snapshot in time for the
purpose of characterizing its spatial statistics.

(2) Every potential Tx is matched with a prearranged intended
Rx at a fixed distance u (meters) away3: these Tx–Rx pairs
are in one to one correspondence.

(3) When mapping our results to a specific bit rate, we assume
each Rx treats (uncancelled) interference as noise, and the
rate from a particular Tx to its Rx at location o is given by
the Shannon capacity c(o) ≡ 1

2 log2(1 + sinr(o)).
(4) The potential transmitters form a homogeneous PPP on the

network arena, taken to be Rd, for d ∈ {1, 2, 3}. This implies
i) the number of nodes in the network is countably infinite,
and ii) the number of potential transmitters in two disjoint
bounded sets of the plane are independent Poisson random
variables (RV). See Fig. 1.1.

(5) Every potential Tx decides independently whether or not to
transmit with a common probability ptx. It follows that the
set of actual transmitters is also a (thinned) PPP.

A few remarks are in order:

(1) The TC computes the maximum spatial reuse which is com-
putable by looking at the network at a single snapshot in
time. This perspective neither addresses nor precludes multi-
hop or routing considerations.

(2) Ass. (3) can be easily softened to account for any modulation
and coding type that is characterized by a SINR “gap” from
capacity. Typically, we directly utilize SINR for computing

3 The extension to random distances is straightforward and given in §4.2.
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outage probability and TC and do not include the per-link
rate in the results.

(3) Ass. (4) makes clear our focus is on networks whose arena
is the entire plane R2, and which have a countably infinite
number of nodes. This along with Ass. (5) removes any con-
cern about boundary effects and makes each node “typical”
in a sense described below.

Rd⇧d,� = {x1, x2, . . .}

x0

u

x1

x2

x3

x4

Ref Tx

Ref Rx

Tx
Rx
Signal
Interference

Fig. 1.1 A reference (typical) Rx located at the origin o ∈ Rd is paired with a reference Tx

at distance u, and is subject to interference (dashed lines) from a PPP Πd,λ of interfering

Tx’s (each of which has a unique associated Rx).

1.2 Key definitions: PPP, OP, and TC

Ass. (1)–(3) allow us to formally define the OP.

Definition 1.1. Outage probability (OP). Define the constant R
to be the spectral efficiency (in bits per channel use per Hz) of the
channel code employed by each Tx–Rx pair in the network. Define
the SINR threshold τ ≡ 22R − 1 so that R = 1

2 log2(1 + τ). For an
arbitrary Tx–Rx pair with the Rx positioned at the origin o ∈ Rd, let
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c(o) ≡ 1
2 log2(1 + sinr(o)) be the random Shannon spectral efficiency of

the channel connecting them when interference is treated as noise. The
OP is the probability the random spectral efficiency of the channel falls
below the spectral efficiency of the code, or equivalently, the probability
that the random SINR at the Rx is below the threshold τ :

q(o) ≡ P(c(o) < R)

= P
(

1
2

log2(1 + sinr(o)) <
1
2

log2(1 + τ)
)

= P(sinr(o) < τ). (1.1)

It is worth emphasizing that the RV in P(c(o) < R) is the capacity c(o)
of the channel connecting the Tx–Rx pair, computed at the snapshot
in time at which we observe the network, and not the rate R, which is
assumed fixed. In particular, c(o) is a function of the RV sinr(o), which
is quite sensitive to the distances between the Rx at o and the random
set of interfering transmitters at the observation instant. The OP is the
cumulative distribution function (CDF) of the RVs c(o) and sinr(o).

By the assumption that the transmitters (and receivers) form a
PPP, it follows that all Tx–Rx pairs are typical, hence q(o) = q. More
formally, we can condition on the presence of a test Tx–Rx pair where,
without loss of generality, we assume the test Rx to be located at
the origin o. The distribution of the PPP of potential transmitters is
unaffected by the addition of this test pair:4

q(o) ≡ P(c(o) < R| Rx at o) = P(c(o) < R). (1.2)

Ass. (4)–(6) and the definition of OP allow us to formally define the TC.
We first define a homogeneous PPP on Rd. Fig. 1.2 shows a portion of
a sample PPP on R2 and illustrates the fact that the number of points
in each compact set is a Poisson RV.

Definition 1.2. Homogeneous Poisson point process (PPP). A
PPP with intensity λ > 0 in d-dimensions is a random countable col-
lection of points Πd,λ = {x1, x2, . . .} ⊂ Rd such that

4 This result is due to Slivnyak [67]. See, e.g., [8] Thm. 1.13 (p.30), [36] Thm. A.5 (p.113),
[70] p.41 and Example 4.3 (p.121).
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• For two disjoint subsets A,B ⊂ Rd the number of points
from Π in these sets are independent RVs: Π(A) ⊥ Π(B),
where Π(A) ≡ |Π ∩A| is the number of points in Π in A.

• The number of points in any compact set A ⊂ Rd is a Poisson
RV with parameter λ|A|, for |A| the volume of A. That is:

Π(A) ∼ Po(λ|A|), (1.3)

or equivalently,

P(Π(A) = k) =
1
k!

e−λ|A|(λ|A|)k, k ∈ Z+. (1.4)

Suppose Πpot ≡ Πd,λpot is the PPP of potential transmitters with
spatial intensity λpot discussed in Ass. 1.1 (4) and (5). Let ptx ∈ (0, 1)
be the common transmission probability employed by each node in Ass.
1.1 (5). It follows that the PPP of actual transmitters at the observation
instant (denoted Πd,λ) is a thinned version of Πpot with corresponding
thinned intensity λ ≡ λpotptx.

It is intuitive that the OP is increasing in λ: a higher spatial in-
tensity of transmission attempts yields larger interference at each Rx,
which decreases the SINR. We emphasize this dependence by writing
the OP as q(λ) and thereby view q : R+ → [0, 1] as a map from the
spatial intensity of transmission attempts to the corresponding OP.5

Fact 1.1. The OP q(λ) is continuous, strictly increasing, and onto
[q(0), 1), where q(0) is the OP in the absence of interference.

Because of this fact, the inverse q−1 : [q(0), 1) → R+ is well-defined.
For an outage constraint q∗ ∈ [q(0), 1), the inverse OP q−1(q∗) is the
(unique) intensity of transmission attempts associated with an outage
probability of q∗. Each such transmission succeeds with probability
1− q∗, and as such q−1(q∗)(1− q∗) is the spatial intensity of successful
transmissions. This is what we call TC.

5 This redefines the OP q(λ) as a function of the intensity λ ∈ R+ of the PPP — in (1.1)

and (1.2) q(x) denoted the OP at location x ∈ Rd.
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Fig. 1.2 Top: a realization of a homogeneous Poisson point process (PPP) of intensity
λ = 1 on R2. Bottom: the histogram of the number of points in each of the 10 × 10 unit

area squares and the corresponding Poisson PMF for λ = 1.
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Definition 1.3. Transmission capacity (TC). Fix a maximum per-
missible OP q∗ ∈ [q(0), 1). The TC is the maximum spatial intensity of
successful transmissions subject to an OP of q∗:

λ(q∗) ≡ q−1(q∗)(1− q∗). (1.5)

The intensity of failed transmissions is q−1(q∗)q∗, and the summed
intensity of successful and failed transmissions is naturally q−1(q∗). The
TC (and all spatial intensities) are measured in units of (meters−d), i.e.,
an “average” number of nodes per unit area.

Remark 1.1. TC and slotted Aloha. The TC λ(q∗) has operational
sigificance for a wireless network of potential transmitters positioned
according to a PPP of intensity λpot and employing the slotted Aloha
MAC protocol with transmission probability ptx. Namely, if (q∗, λpot)
are such that λ(q∗) < λpot × (1− q∗) then select

ptx =
λ(q∗)

λpot × (1− q∗) . (1.6)

The resulting intensity of attempted transmissions ptxλpot = q−1(q∗)
will be such that the OP is 1− q∗. If λ(q∗) ≥ λpot × (1− q∗) then the
network does not need an Aloha MAC throttling transmission attempts
to achieve an OP of q∗: setting ptx = 1 will result in an OP q(λpot) < q∗.

1.3 Overview of the results

The results presented in this volume are listed in Tables A.1 (Ch. 1)
through A.6 (Ch. 6). We briefly discuss each chapter.

Ch. 1 (Table A.1). The key concepts are in §1.2, specifically,
Def. 1.1 of the outage probability (OP), Def. 1.2 of the (homogeneous)
Poisson point process (PPP), and Def. 1.3 of the transmission capacity
(TC).

Ch. 2 (Table A.2). We first define the ball and annulus in Rd.
(Def. 2.1) and gives their volumes (Prop. 2.1). All results are given for
arbitrary dimension d, where {1, 2, 3} are the three relevant values.
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Throughout the volume we denote RVs in sans-serif font (Rem. 2.1
in §2.1), e.g., x. Note the acronyms and notation for standard proba-
bilistic concepts in Def. 2.3. §2.2 gives a short but essential coverage of
the void probability (Prop. 2.6), the mapping theorem (Thm. 2.1) and
a derivative result on mapping distances (Prop. 2.7). The void proba-
bility underlies most performance bounds derived in this volume, and
the mapping result allow translation from a PPP on Rd of intensity
λ ∈ R+ (Πd,λ) to an “equivalent” unit intensity PPP on R1 (Π1,1).

We cover (spatial) shot noise (SN) processes in §2.3 (Def. 2.4), which
are used to model the aggregate interference experienced by a reference
Rx at the origin. We focus on power law SN (Def. 2.5) by assuming
the impulse response function in the SN definition is taken to be the
standard pathloss attenuation |x|−α where α is the pathloss exponent.
We also introduce here the characteristic exponent δ = d/α, where to
avoid trivialities we assume δ ∈ (0, 1) (i.e., α > d) throughout. The sum
SN process (Σ) adds the interference contributions while the max SN
(M) takes the largest contribution. The simple inequality M < Σ forms
the basis of most of the bounds in this volume in that the distribution
of M (Cor. 2.1) is Frechét (Def. 2.6), and also can be derived directly
from the void probability in Prop. 2.6. The Campbell-Mecke result
(Thm. 2.3) allows computation of moments (Prop. 2.9) of SN RVs. More
important for us will be the series expansions of the SN distribution
(Prop. 2.10) as these directly yield the asymptotic (tail) distributions
(Cor. 2.2), which yield all the asymptotic performance results in this
volume.

A critical observation is that the SN is a stable RV, this is the focus
of §2.4. We define this class (Def. 2.7 and 2.8), and introduce the Lévy
distribution (Def. 2.9) which is the only stable distribution of relevance
to us with a closed form CDF, and corresponding to δ = 1

2 . This allows
the exact performance results in Ch. 3. We introduce the probability
generating functional (PGFL) (Def. 2.10), and identify its connection
with the Laplace transform, the moment generating function, and the
characteristic function of the SN RV.

The results in this chapter are tied together in §2.5 where we de-
mostrate the key property that the the simple bound M < Σ is tight in
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the sense that the ratio of the CCDFs for these RVs approaches unity in
the limit (Prop. 2.13). We derive a similar result using subexponential
distributions (Def. 2.11) for a binomial point process (BPP).

Ch. 3 (Table A.3). This chapter presents the main results on
OP and TC in their barest, simplest form, so as to achieve maximum
clarity. Exact OP and TC results are in §3.1. SINR is defined (Def. 3.1)
and it is observed that the OP is the CCDF of the SN evaluated at a
certain value. An explicit expression for the OP and TC (for δ = 1

2) is
given (Cor. 3.1 and 3.2).

Asymptotic OP and TC results are in §3.2. The asymptotic CCDF
of the SN (Cor. 2.2) yields the asymptotic OP (as λ → 0) and TC
(as q∗ → 0) in Prop. 3.3. The asymptotic TC is interpreted as sphere
packing in Rd, where the sphere radius depends upon the key model
parameters δ, u, τ, d (Rem. 3.1).

The M < Σ SN inequality forms the basis for the OP lower bound
(LB) and TC upper bound (UB) in §3.3. We adopt the language of
dominant interferers (Def. 3.3) to describe interferers capable by them-
selves of reducing the SINR seen at the origin below its threshold τ ,
but observe this concept is equivalent to taking the maximum interferer
(Rem. 3.2). The main result is the bound on OP and TC in Prop. 3.4.

In §3.4 we turn our attention to a third performance metric, the
MAC layer throughput (TP), Λ(λ), defined (Def. 3.4) as the spatial
intensity of succesful transmissions. A TP UB is obtained from the
OP LB (Prop. 3.6). We make the key observation that “blind” maxi-
mization of TP leads to an associated OP of 67%. The natural design
objective of maximizing TP subject to an OP constraint is shown to be
precisely the TC, giving a more natural justification for this quantity as
a meaningful performance measure (Prop. 3.7). In fact the TP and TC
have the same unconstrained maximum and we relate their maximizers
(Prop. 3.8).

Finally, §3.5 gives an UB on OP and a LB on TC. A useful expres-
sion for the OP in terms of its LB is derived (Prop. 3.9), which the OP
LB and the three basic inequalities in §2.1 (Markov, Chebychev, and
Chernoff) are combined to give three OP UBs. These are observed to
vary both in terms of their tightness and their simplicity.

Ch. 4 (Table A.4) extends the basic model in three ways: fading
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(§4.1), variable link distances (§4.2), and multi-hop (§4.3).
The bulk of this chapter is on fading (§4.1); the SINR under fading

is defined (Def. 4.1). §4.1 is split into three subsections: exact results
(§4.1.1), asymptotic results (§4.1.2), and bounds (§4.1.3). The main
result in §4.1.1 is Prop. 4.2 which gives the exact OP and TC under
the assumption that the signal fading is Rayleigh (exponential). Note
this exact result holds for all δ, while the only exact result available
under the basic model in Ch. 3 is for δ = 1

2 (Cor. 3.1 and 3.2). For the
asymptotic results in §4.1.2 we introduce the formalism of the marked
PPP (MPPP) and exploit the important marking theorem (Thm. 4.1)
which allows us to extend the distance and interference mapping re-
sults for PPPs from §2.2 to the MPPP case. The series expansions of
the interference under fading (Prop. 4.5) is used to derive the asymp-
totic OP and TC (Prop. 4.6). An important observation is that fading
in general degrades performance relative to the non-fading case (Cor.
4.3). In §4.1.3 the concept of dominant interferers used in Def. 3.3 is ex-
tended to incorporate fading (Def. 4.2), but under fading the strongest
interferer need not be the nearest interferer to the origin. The main
result is the OP LB (Prop. 4.7), where we observe the LB is in fact the
MGF of a certain function of the signal fading RV.
§4.2 addresses variable link distances, i.e., the Tx–Rx distance is a

RV. The SINR and OP for this model are defined in Def. 4.3 and 4.4,
respectively, and we present asymptotic results (Prop. 4.8) and exact
results (Cor. 4.4).
§4.3 extends the TC framework to a multihop scenario where sources

send packets to destinations M hops away over a total distance R. Mul-
tihop TC is defined in Def. 4.5. Although some fairly strong assump-
tions must be made to preserve tractability, plausible insights can be
drawn about the optimum hop count (given in Prop. 4.13) and end-to-
end TC in terms of all the network parameters.

Ch. 5 (Table A.5). The chapter on design techniques studies four
natural approaches to improve the performance of a wireless network:
§5.1 studies the performance when the spectrum is split into a number
of channels, §5.2 considers performance when receivers are equipped
with interference cancellation capabilities, §5.3 evaluates the perfor-
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mance when nodes only transmit when their signal fade is above a
specified threshold, and §5.4 considers power control.

In §5.1 the design objective is to optimize the number of bands
to form from the available spectrum, where each Tx selects a band
uniformly at random. The intuitive tradeoff is that more bands gives
fewer interferers but this also means the bandwidth per band is smaller,
and thus a higher SINR threshold is required to achieve a given data
rate. We define the model in Def. 5.1 and 5.2. The spectral efficiency
optimization problem is formalized in Prop. 5.1, and we characterize
the solution in Prop. 5.3, and then specialize the result to both the
high (Cor. 5.2) and low (Prop. 5.4) SNR regimes.

In §5.2 the usual limitations of interference cancellation (IC) are
captured through the (κ,K, Pmin) Rx model (Def. 5.4) where κ is can-
cellation effectiveness, K is the maximum number of cancellable nodes,
and Pmin is the minimum received power. The SINR is defined in Def.
5.5, and the main result is the OP LB (Prop. 5.5).

In §5.3 the fading coefficient threshold (Def. 5.6) used to throt-
tle transmission attempts naturally trades off between the quality and
quantity of transmission attempts, and the TP metric Λ (Def. 5.7) il-
lustrates this tradeoff. Asymptotic results are given in Prop. 5.7 and a
LB on OP is given in Prop. 5.9.

In §5.4 the notion of fractional power control (FPC) is introduced,
where the power control exponent sweeps between fixed power and
channel inversion (Def. 5.8). The asymptotic results (Prop. 5.10) yield
the optimal exponent is 1/2 (Prop. 5.11). The notion of dominant in-
terferers is used once again (Def. 5.9) to compute the OP LB (Prop.
5.12).

Ch. 6 (Table A.6). The final chapter introduces multiple antennas
at both the Tx and Rx, resulting in some of the first analytical work
on MIMO that properly accounts for background interference. The re-
sults are broken into two main categories, which are defined along with
basics of the models in §6.2. §6.3 considers the case where despite the
multiple antennas, only a single data stream is sent, with the balance of
the antennas being used for diversity and/or interference cancellation.
§6.4 considers the more general multistream case, where transmitters
send more than one simultaneous stream to either a single receiver
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(spatial multiplexing) or to multiple users (space division multiple ac-
cess). Finally, the practical implications and limitations of the results
are discussed in §6.5.

In §6.3, the results are further categorized into diversity (§6.3.1) and
interference cancellation (§6.3.2). For receive diversity, the OP of MRC
is given in Prop. 6.1 and the corresponding TC in 6.2. The result is
equivalent for MRT (transmit MRC) and the generalization to nT×nR

diversity beamforming is discussed in Rem. 6.4. In §6.3.2, a TC lower
bound is given on a suboptimal technique called partial ZF in Prop.
6.6 and a TC upper bound for MMSE in Prop. 6.7. These respectively
bound the TC of MMSE and we see linear scaling can be achieved with
the number of antennas.

In §6.4, we first consider a class of results for spatial multiplexing
in §6.4.1, where multiple streams are transmitted from a single Tx to a
single Rx. Prop. 6.8 and 6.9 give the optimal number of streams K∗ and
TC scaling in terms of nT ≤ nR for MRC and ZF receivers, respectively.
This is extended to a BLAST receiver in Prop. 6.12. Then in §6.4.2, we
turn our attention to streams being sent to multiple Rx’s at the same
time. The main result for MRC receivers is given in Prop. 6.13, with
the appropriate scaling results given in Prop. 6.14.
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Mathematical preliminaries

In this chapter we present some necesssary mathematical preliminar-
ies, mostly related to probabilistic analysis of functionals of PPPs. The
most important example of such a functional is the aggregate interfer-
ence experienced by a typical Rx in a wireless network when the loca-
tions of interfering nodes form a PPP and the channel is distance depen-
dent. Many of the results in this chapter are also found in the excellent
monographs by Haenggi and Ganti [36] and Baccelli and B laszczyszyn
[8, 9]. Our treatment of this large field is quite selective: we present
only those results directly relevant to computing the OP and TC. We
recommend both these monographs for a more in depth treatment of
application of the mathematical field of stochastic geometry to the per-
formance analysis of wireless networks. To the extent possible we have
used notation consistent with that used in [36, 8, 9]. Moreover, when-
ever possible we give references in [36, 8, 9] to corresponding results
presented in this chapter.

Denote the reals by R, the natural numbers by N = {1, 2, 3, . . .},
the integers by Z, and the complex numbers by C (and

√
−1 by i).

We use ≡ for equality that holds by definition. We work in Rd where
d is the spatial dimension of the wireless network. Our analysis holds

15
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for general d ∈ N, but d ∈ {1, 2, 3} are the relevant cases. A point in
Rd is denoted by x = (x1, . . . , xd). The Euclidean (L2) norm ‖x‖2 ≡√∑d

i=1 x
2
i is denoted by |x|, and the origin (0, . . . , 0) by o. We denote

the natural log as log x. For a natural number N ∈ N, we write [N ] for
the set {1, . . . , N}. We use the shorthand a∧ b ≡ min{a, b} and a∨ b ≡
max{a, b}. We use standard asymptotic order notation O(·),Ω(·),Θ(·).

We begin with the d-dim. ball and annulus and their volumes.

Definition 2.1. Ball and annulus. The d-dim. ball (d ∈ N) centered
at c ∈ Rd with radius r ∈ R+ is:

bd(c, r) ≡ {x ∈ Rd : |x− c| ≤ r}. (2.1)

The d-dim. annulus centered at c ∈ Rd with radii 0 < r1 < r2 is:

ad(c, r1, r2) ≡ {x ∈ Rd : r1 ≤ |x− c| ≤ r2}. (2.2)

Volume of a set S ⊂ Rd is denoted |S|. The ball and annulus volumes
are given below ([35] (3)).

Proposition 2.1. Ball and annulus volume. The d-dim. ball
bd(c, r) and annulus ad(c, r1, r2) have volume

|bd(c, r)| = cdr
d, |ad(c, r1, r2)| = cd(rd2 − rd1), (2.3)

where

cd ≡

 π
d
2

(d/2)! , d even
1
d!π

d−1
2 2d

(
d−1

2

)
!, d odd,

(2.4)

The relevant values of cd are:

c1 = 2, c2 = π, c3 =
4
3
π. (2.5)

We will also have frequent use for the gamma function.
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Definition 2.2. Gamma function. The gamma and incomplete
gamma function are, respectively,

Γ(z) ≡
∫ ∞

0
tz−1e−tdt, Γ(z, tl, th) ≡

∫ th

tl

tz−1e−tdt (2.6)

for z ∈ C and 0 ≤ tl ≤ th ≤ ∞.

Note Γ(z, 0,∞) = Γ(z) and that Γ(z) = (z − 1)! for z ∈ N. We will
have use for the identity:

Γ(1− δ)Γ(1 + δ) =
πδ

sin(πδ)
. (2.7)

and the fact that Γ(−1/2) = −2
√
π. See Fig. 4.2 for (2.7).

2.1 Probability: notations, definitions, key inequalities

The material in this section is quite standard and is available in most
textbooks on probability. The following is a key notational convention.

Remark 2.1. RV notation. We indicate random variables (RVs)
with a sans-serif non-italic font, e.g., x, h, u, c, and their realizations
(as well as other non-random quantities) with an italicized serif font,
e.g., x, h, u, c. A notable exception is the use of Π (Def. 1.2) to indicate
a random point process.

Standard probabilistic quantities are denoted as follows.

Definition 2.3. Standard probability definitions. Let x denote a
continuous real-valued RV, and let t ∈ R, θ ∈ R+, and s ∈ C.

(1) The cumulative distribution function (CDF) is Fx(t) ≡ P(x ≤
t) for t ∈ R. Denote the CDF for random x by x ∼ Fx.

(2) The complementary CDF (CCDF) is F̄x(t) ≡ 1 − Fx(t) =
P(X > t).

(3) The inverse CDF and inverse CCDF are F−1
x (p) and F̄−1

x (p)
for p ∈ [0, 1].
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(4) The probability density function (PDF) is fx(t) ≡ d
dtFx(t).

(5) Expectation is denoted by E[x], variance is denoted Var(x).
(6) The Laplace transform (LT) is L[x](s) ≡ E[e−sx], note s ∈ C.
(7) The characteristic function (CF) is φ[x](t) ≡ E[eitx], note

t ∈ R.
(8) The moment generating function (MGF) isM[x](θ) ≡ E[eθx],

note θ ∈ R+.
(9) The hazard rate function (HRF) isH[x](x) ≡ d

dx−log F̄x(x) =
fx(x)
F̄x(x)

.
(10) A normal RV with E[x] = µ and Var(x) = σ2 is denoted

x ∼ N(µ, σ). A standard normal is denoted z ∼ N(0, 1) with
CDF Fz(t) and CCDF F̄z(t).

(11) Equality in distribution between RVs x, y is denoted x
d= y.

The LT with argument s ∈ C is more general than both the CF
and the MGF, but the LT and MGF need not exist, while the CF
is guaranteed to exist. When all three exist, the CF and MGF are
obtainable from the LT:

φ[x](t) = L[x](−it), M[x](θ) = L[x](−θ). (2.8)

We will have use for Jensen’s inequality (e.g., Cor. 4.3).

Proposition 2.2. Jensen’s inequality. For a RV x, if f is a convex
function then E[f(x)] ≥ f(E[x]), with equality holding for f affine.

The three inequalities of Markov, Chebychev, and Chernoff are each
UBs on tail probabilities. The three inequalities build upon one an-
other. In general it is fair to say that Markov is simpler to apply than
Chebychev, and in turn Chebychev is simpler to apply than Chernoff.
This is on account of the fact that Markov relies only upon the mean
E[x], while Chebychev depends upon the variance Var(x), and Chernoff
is a function of the moment generating function M[x](s) = E[esx]. In
general (but not always) it is further the case that the Chernoff bound
is tighter than the Chebychev bound, and the Chebychev bound is
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tighter than the Markov bound. The tightness of the Chernoff bound
also comes about through the flexibility to tune the free parameter s.
These inequalities will be applied in §3.5 to derive an UB on the OP.
We begin with Markov’s inequality.

Proposition 2.3. Markov’s inequality. For a nonnegative RV x and
t ∈ R+:

P(x > t) ≤ E[x]
t
. (2.9)

Proof. Define the Bernoulli indicator RV 1x>t and observe x ≥ t1x>t

for all t ∈ R+. Taking expectations yields

E[x] ≥ tE[1x>t] = tP(x > t). (2.10)

Chebychev’s inequality is obtained by applying Markov’s inequality to
the nonnegative RV |x− E[x]|.

Proposition 2.4. Chebychev’s inequality. For a RV x and t ∈ R+:

P(|x− E[x]| > t) ≤ Var(x)
t2

. (2.11)

Proof. Apply Markov’s inequality with |x− E[x]|:

P(|x− E[x]| > t) = P((x− E[x])2 > t2) ≤ E[(x− E[x])2]
t2

. (2.12)

Finally, Chernoff’s inequality is obtained by applying Markov’s inequal-
ity to the nonnegative RV eθx.
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Proposition 2.5. Chernoff’s inequality. For a nonnegative RV x

and t ∈ R+:
P(x > t) ≤ inf

θ>0
E[eθx]e−θt (2.13)

Proof. Observe the equality of the events {x > t} and {eθx > eθt} for
all θ > 0 and apply Markov’s inequality to the nonnegative RV eθx

P(x > t) = P
(

eθx > eθt
)
≤ E[eθx]e−θt. (2.14)

The above inequality holds for all θ > 0 and hence in particular for
that θ that minimizes the UB.

2.2 PPP void probabilities and distance mappings

Recall Πd,λ = {xi} denotes a PPP with points {xi} ⊂ Rd of intensity λ.
The two most important examples for us are Π2,λ and Π1,1. We often
will write Π1,1 = {ti} in accordance with the usual interpretation of
the points in a one dimensional point process as times.

Assumption 2.1. Labeling convention for PPP. All point pro-
cesses are assumed to number points in order of increasing distance
from o: Πd,λ = {xi} with |x1| < |x2| < · · · .

We present two key facts about distances for PPPs in this section.
First, the void probability P(|x1| > r) is the probability that there are
no points from Πd,λ in the ball bd(o, r), i.e., that the nearest neighbor
to o in Πd,λ is at least at distance r.

Proposition 2.6. Void probability. The RV |x1| has distribution

P(Πd,λ(bd(o, r)) = 0) = P(|x1| > r) = e−λcdr
d
, r ∈ R+ (2.15)

where cd is defined in Prop. 2.1.

Proof. In words, |x1| > r is the event that the nearest point in PPP
Πd,λ to o is at least a distance r away. This is the same as there being
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no points in the PPP lying in the ball bd(o, r). Thus, |x1| > r ⇔
Πd,λ(bd(o, r)) = 0. Recall from Def. 1.2 that the RV Πd,λ(bd(o, r)) is
Poisson with intensity λ|bd(o, r)| = λcdr

d, and thus:

P(|x1| > r) = P(Πd,λ(bd(o, r)) = 0) = e−λcdr
d
. (2.16)

For d = 1 we recover the elementary fact that |x1| ∼ Exp(2λ), i.e.,
P(|x1| > r) = e−λ2r and for d = 2 we have P(|x1| > r) = e−λπr

2
. Prop.

2.6 will i) form the basis for the max SN distribution (Cor. 2.1) which
in turn will yield the LB on the OP in §3.3, and will be generalized
to ii) a non-homogeneous marked PPP (MPPP) in Prop. 4.3, and iii)
distances to the kth nearest neighbor in Thm. 5.1.

The second result in this section is a special case of a more general
mapping theorem given below ([36], Thm. A.1, p. 107 and [49] §2.3):

Theorem 2.1. Mapping theorem ([36] Thm. A.1). Let Φ be an in-
homogeneous PPP on Rd with intensity function Λ, and let f : Rd → Rs

be measurable and Λ(f−1{y}) = 0 for all y ∈ Rs. Assume further that
µ(B) = Λ(f−1(B)) satisfies µ(B) < ∞ for all bounded B. Then f(Φ)
is a non-homogeneous PPP on Rs with intensity measure µ.

We refer the interested reader to [36] for the formal definition of inho-
mogeneous PPP, intensity function, and measurability. The following
proposition is a special case of Thm. 2.1.

Proposition 2.7. Distance mapping. Let Πd,λ = {xi} be a PPP in
Rd of intensity λ, and Π1,1 = {ti} a PPP in R of intensity 1. Then:

λcd|xi|d d= 2|ti|, i ∈ N. (2.17)

Proof. Consider Thm. 2.1 for s = 1, Φ = Πd,λ homogeneous with
intensity Λ(A) = λ|A| for all compact A ⊆ Rd for some λ ∈ R+, and
f(x) = λcd

2 |x|dsign(x(1)), where x(1) is the first component in vector
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x = (x(1), . . . , x(n)) and sign(a) = 1a≥0 − 1a≤0 is the sign of a ∈ R.
Consider bounded symmetric intervals B of the form [−t, t] for t ∈ R+.

Λ(f−1([−t, t])) = λ|f−1([−t, t])| = λ
∣∣∣{x ∈ Rd : f(x) ∈ [−t, t]

}∣∣∣
= λ

∣∣∣∣{x ∈ Rd :
λcd
2
|x|dsign(t) ∈ [−t, t]

}∣∣∣∣
= λ

∣∣∣∣∣
{
x ∈ Rd : |x| ≤

(
2t
λcd

) 1
d

}∣∣∣∣∣
= λ

∣∣∣∣∣bd
(
o,

(
2t
λcd

) 1
d

)∣∣∣∣∣ = 2t (2.18)

By the mapping theorem µ([−t, t]) = 2t, which is to say that f(Πd,λ)
is a homogeneous PPP of unit intensity, i.e., Π1,1.

In particular, for d = 2 this result states πλ|xi|2 ∼ 2|ti|. Prop. 2.6 and
2.7 are easily seen to be consistent for i = 1 in that they both give:

P
(
λcd
2
|x1|d > r

)
= P

(
|x1| >

(
2r
λcd

) 1
d

)
= e−2r = P(|t1| > r).

(2.19)
Prop. 2.7 is somewhat analogous to the standardization of normal
N(µ, σ) RVs to N(0, 1), i.e., for x ∼ N(µ, σ) and z ∼ N(0, 1) the
standardization of x is (x − µ)/σ, which is equal in distribution to z.
Prop. 2.7 is used below in Prop. 2.8 for mapping probabilities associ-
ated with functionals of distances in Πd,λ to probabilities associated
with functionals of distances in Π1,1.

2.3 Shot noise (SN) processes

Consider a system given injections of energy or noise at a sequence of
random times (shock times), where each energy injection attenuates in
time according to an impulse response function, so that the random
cumulative energy seen at any given time t is the superposition of
attenuated shocks from all shock instances prior to t. Such a process
is termed a (temporal) shot noise (SN) process, and was first used
by Schottky in 1918 [65] to explain how transfers of charge at random
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Fig. 2.1 Top: a temporal SN process for d = 1 is the superposition of appropriately at-

tenuated discrete time injections of energy / noise into a system. Bottom: a spatial SN
process for d = 2 in the context of a wireless network is the superposition of interferences,

where each interferer is appropriate attenuated through the corresponding channel.

discrete units in time in vaccuum tubes give rise to current fluctuations.
Fig. 2.1 shows a sample SN process. See e.g., [8, 9, 33, 63],[49] (Ch. 3),
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[21] (Vol. 1, Ex. 6.1(d)) for more information. The following is a general
definition of a SN process for arbitrary dimension d.

Definition 2.4. SN process. A (sum) SN process is a real-valued
random process {Σ(x)}, indexed by the continuous parameter x ∈ Rd,
that is a functional of an underlying (stationary) point process Π =
{xi} ⊂ Rd, where

Σl
Π(x) ≡

∑
i∈Π

hil(|xi − x|), x ∈ Rd. (2.20)

Here l : R+ → R+ is a linear time-invariant impulse response function
and {hi} is a collection of i.i.d. nonnegative RVs. A max SN process
{M(x)} formed from Π, l is

Ml
Π(x) ≡ max

i∈Π
hil(|xi − x|), x ∈ Rd. (2.21)

Note Ml
Π(x) < Σl

Π(x) a.s. for each x ∈ Rd.

Remark 2.2. SN index convention. Throughout this volume we
write functionals of PPPs by summing over their indices rather than
their points, e.g.,

∑
i∈Π f(xi) instead of

∑
xi∈Π f(xi). Although the lat-

ter is maybe clearer in this case, it becomes awkward for marked point
processes, say Φ = {(xi,mi), i ∈ N}, with points {xi} and marks {mi}.
In this case, writing

∑
i∈Φ f(xi,mi) is more clear and compact than∑

(xi,mi)∈Π f(xi,mi).

The case d = 1 is most common in the stochastic process literature, but
the case d = 2 is most relevant for spatial models of wireless networks.
The interpretation of l(|xi − x|) for d = 1 is the energy injected at
time xi attenuated over the time interval [xi, x], and thus Σl

Π(x) is
the superposition of all time-attenuated energy injections seen at time
x. The interpretation of l(|xi − x|) in the context of a d-dimensional
wireless network is the interference generated by the node at position
xi attenuates in space over the distance |xi − x| at position x, and
thus Σl

Π(x) is the superposition of all distance-attenuated interferences
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seen at position x. The simple LB M(x) < Σ(x) will be shown to
be asymptotically tight in Prop. 2.13, and will form the basis for the
various LBs on OP and the UBs on TC.

Remark 2.3. Radial symmetry. We have restricted Def. 2.4 to ra-
dially symmetric functions l(r) for r = |x|, based on the assumption
that the impact on x of a shock at xi depends only on the distance
|x−xi|. This assumption allows all integrals of l over Rd to be replaced
by integrals over R+ (see Thm. 2.2).

For our purposes it suffices to consider a rather specific case.

Assumption 2.2. Power law impulse response. Assume the fol-
lowing for the SN process {Σl

Π(x)} in Def. 2.4:

(1) The impulse response function is a power-law truncated
around o

lα,ε(r) ≡ r−α1r≥ε, r ∈ R+, (2.22)

for α > 0, ε ≥ 0;
(2) The stationary point process Π is a PPP Πd,λ;
(3) The amplitude RVs {hi} are all unity;
(4) We restrict our attention to the origin Σl

Π(o).

The assumption on the amplitudes {hi} will be relaxed in §4.1. We
will employ a special notation for Σl

Π(x) under Ass. 2.2.

Definition 2.5. Power law SN and characteristic exponent.
The SN RVs at o under Ass. 2.2 are denoted

Σl
Π(o) = Σ

lα,ε
Πd,λ

(o) ≡ Σα,ε
d,λ(o)

Ml
Π(o) = M

lα,ε
Πd,λ

(o) ≡ Mα,ε
d,λ(o) (2.23)

The characteristic exponent of Σα,ε
d,λ(o) is defined as

δ ≡ d

α
. (2.24)
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Remark 2.4. Pathloss attenuation and the singularity at the
origin. The impulse response function lα,0(r) = r−α is a common
choice to model the attenuation due to pathloss in wireless commu-
nication but suffers the drawback of modeling amplification |x|−α > 1
rather than attenuation of received energy at distances |x| < 1, and in
fact this amplification grows without bound as |x| → 0; this is further
discussed in Prop. 2.9 below, in [36] (p. 24), and in [43]. Generaliz-
ing lα,0 by truncating around the origin lα,ε removes this singularity.
Note lα,ε is used in [36] (§3.7.1) to model carrier sense multiple access
(CSMA).

The max SN RV Mα,0
d,λ(o) will be shown to obey the Frechét distribution,

defined below.

Definition 2.6. The Frechét distribution with parameters γ > 0,
σ > 0, and µ ∈ R has CDF

Fx(x) ≡ exp

{
−
(
x− µ
σ

)−γ}
, x ≥ µ, (2.25)

and for µ = 0 has moments up to order γ:

E[xp] =
{
σpΓ(1− p/γ), p < γ

∞, else
, µ = 0. (2.26)

The Frechét is one of three extreme value distributions [50].

The max SN RV Mα,ε
d,λ(o) CDF is immediate from Prop. 2.6.

Corollary 2.1. The max SN RV CDF is

P
(

Mα,ε
d,λ(o) ≤ y

)
=
{

exp
{
−λcd

(
y−δ − εd

)}
, 0 ≤ y ≤ ε−α

1, else
(2.27)

For ε = 0 the max SN RV has the Frechét distribution in Def. 2.6 with
γ = δ, σ = (λcd)

1
γ and µ = 0.
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Having characterized Mα,ε
d,λ(o), we now focus on characterizing the RV

Σα,ε
d,λ(o), as it represents the aggregate interference seen at a typical loca-

tion when interferers are positioned according to Πd,λ and the pathloss
attenuation function lα,ε is assumed. Cases of particular interest are

Σα,0
2,λ(o),Σα,ε

1,1(o),Σα,0
1,1 (o),Σ2,0

1,1(o). (2.28)

Many results will hold provided the characteristic exponent δ < 1. For
the important case d = 2 this translates to α > 2. Prop. 2.7 is used
below to show that it suffices to consider Σα,ε

1,1(o).

Proposition 2.8. Interference mapping. The following RVs are
equal in distribution

Σα,ε
d,λ(o) d=

(
λcd
2

)α
d

Σ
α
d
,λcdε

d/2

1,1 (o), and Σα,0
d,λ(o) d=

(
λcd
2

)α
d

Σ
α
d
,0

1,1 (o).

(2.29)

Proof. Using Prop. 2.7 gives:

Σα,0
d,λ(o) =

(
λcd
2

)α
d ∑
i∈Πd,λ

(
λcd
2
|xi|d

)−α
d

=
(
λcd
2

)α
d ∑
i∈Π1,1

|ti|−
α
d .

(2.30)
For Σα,ε

d,λ(o) simply observe {|xi| > ε} = {|ti| > λcdε
d/2}.

Prop. 2.8 is important because it expresses the SN RV formed from
Πd,λ with exponent α as a scaling of a SN RV formed from Π1,1 with
exponent α/d. In this sense d and λ are inessential parameters.

The next result is called the Campbell-Mecke Theorem; the version
below is a special case of a much more general theory on moments of
functionals of PPPs (see e.g., Thm. A.2 and Lem. A.3 in [36]). Our
specialization is to homogeneous PPPs with measure Λ(dx) = λdx,
and to radially symmetric functions l(|x|). As mentioned in Rem. 2.3
and 2.4, this assumption is natural for wireless networks, and has the
advantage of allowing the d-dimensional integrals to be replaced with
single dimensional integrals using the following theorem (from [10]).
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Theorem 2.2. Integration of radially symmetric functions
([10]). Let l : R+ → R be Riemann integrable on R+, and let
l̃(x) = l(|x|) for x ∈ Rd. Then l̃ is Riemann integrable on Rd and∫

Rd
l̃(x)dx = dcd

∫ ∞
0

l(r)rd−1dr. (2.31)

The above theorem is used to simplify the integrals in the Campbell-
Mecke Theorem below and in several other places throughout this
monograph.

Theorem 2.3. Campbell-Mecke ([36] Thm. A.2, [8] Thm. 1.11, [49]
§3.2). The mean and variance of the RV Σl

Π(y) in (2.20) for PPP Πd,λ

and measurable l : R+ → R+ are:

E[Σl
Πd,λ

(o)] = λE[h]
∫

Rd
l(|x|)dx = λdcdE[h]

∫ ∞
0

l(r)rd−1dr

Var(Σl
Πd,λ

(o)) = λE[h2]
∫

Rd
l(|x|)2dx = λdcdE[h2]

∫ ∞
0

l(r)2rd−1dr

(2.32)

The proof of Thm. 2.3 is essentially an exchange of the order of integra-
tion and summation and is omitted. In particular, for lα,0(x) = |x|−α
we change variables from |x| for x ∈ Rd to r ∈ R+ to exploit the radial
symmetry of the function l:

E[Σα,0
d,λ(o)] = λ

∫
Rd
|x|−αdx = λdcd

∫ ∞
0

r−αrd−1dr =
λdcd
d− αr

d−α
∣∣∣∣∞
0

.

(2.33)
As discussed in [36] ((3.4) p.24) this integral diverges for α < d due to
the upper limit of integration, and for α > d it diverges due to the lower
limit of integration, which in turn is attributable to the singularity at
the origin of the function r−α. As stated in Ass. 2.2, we use lα,ε(r) =
r−α1r≥ε for r ∈ R+, which can be interpreted as assuming a Rx has
perfect interference cancellation within a ball of radius ε. The following
proposition summarizes this discussion.
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Proposition 2.9. SN mean and variance. The means and vari-
ances of the SN RVs (2.23) are:

E[Σα,ε
d,λ(o)] =

{
∞, α < d or ε = 0
λdcd
α−d ε

d−α, else

Var(Σα,ε
d,λ(o)) =

{
∞, α < d/2 or ε = 0
λdcd
2α−dε

d−2α, else
(2.34)

The proof is a straightforward modification of (2.33). Prop. 2.9 will be
used along with the Markov and Chebychev inequalities in §2.1 to form
the LBs on TC (UBs on OP) in §3.5.

The last SN specific result we will have use for is the series expansion
of the PDF and CDF of a SN RV for d = 1. The following result is
adapted1 from [57] (Eq. (29)).

Proposition 2.10. SN series expansion ([57]). The series expan-
sions of the PDF and CCDF of the RV Σα,0

1,λ for δ = 1
α < 1 are:

fΣα,01,λ
(y) =

1
πy

∞∑
n=1

(−1)n+1

n!
Γ(1 + nδ) sin(πnδ)(2λΓ(1− δ)y−δ)n

F̄Σα,01,λ
(y) =

1
πδ

∞∑
n=1

(−1)n+1

nn!
Γ(1 + nδ) sin(πnδ)(2λΓ(1− δ)y−δ)n

(2.35)

The asymptotic PDF and CCDF as y →∞ is immediate upon taking
the dominant n = 1 term from the above expansions.

Corollary 2.2. The Asymptotic PDF and CCDF of the SN RV
Σα,0

1,λ as y →∞ for δ = 1
α < 1 are:

fΣα,01,λ
(y) = 2λδy−1−δ +O(y−1−2δ), y →∞

F̄Σα,01,λ
(y) = 2λy−δ +O(y−2δ), y →∞ (2.36)

1 Eq. (2.35) have a factor of 2 in front of λ not present in [57] (29) due to the fact that their
impulse response function (4) does not count contributions from t < 0.
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Employ (2.7) to simplify the n = 1 term. Cor. 2.2 gives the asymptotic
approximations of OP (as λ→ 0) and TC (as q∗ → 0) in Prop. 3.3.

2.4 Stable distributions, Laplace transforms, and PGFL

A RV is said to be stable if iid sums of that RV are equal to an affine
function of the original RV (closure under summation). Equivalently, a
distribution is stable if convolutions of the distribution yield a transla-
tion and/or scaling of the distribution (closure under convolution).

Definition 2.7. Stable RV and distribution. Let x ∼ F and
(x1, . . . , xn) be iid from F . Say x is a stable RV (F is a stable dis-
tribution) if for each n ∈ N there exists numbers (an, bn) such that

anx + bn
d= x1 + · · ·+ xn. (2.37)

Moreover, if it exists, an = n1/δ for a characteristic exponent δ ∈ [0, 2].
If bn = 0 for all n then x (F ) is a strictly stable RV (distribution).

See e.g., [59] Def. 1.5. Perhaps the most familiar example of a stable
distribution is the normal: let (x, x1, . . . , xn) ∼ N(µ, σ) be independent
normal RVs with mean µ and standard deviation σ. Then x1 + · · · +
xn ∼ N(nµ,

√
nσ) and ax + b ∼ N(aµ + b, aσ). Choose an =

√
n and

bn = (n−√n)µ to satisfy the requirement in Def. 2.7.
Aside from a few special cases (the normal, Cauchy, and Lévy dis-

tributions), a stable RV x does not admit a closed form CDF. It does,
however, have a special form for its CF φ[x](t) = E[eitx] for t ∈ R.
We are interested in a specific sub-class of stable RVs appropriate for
modeling SN RVs, and consequently the definitions in the remainder
of this section are specialized to that class.

Definition 2.8. Stable CF. The RV x is stable with characteristic
exponent δ ∈ (0, 1), dispersion coefficient γ > 0 if it has CF

φ[x](t) ≡ exp
{
−γδ|t|δ(1− i tan(πδ/2)sign(t))

}
, t ∈ R. (2.38)
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The above definition is adopted from Def. 1.8 from [59]. It is special-
ized in that we have fixed the location parameter at 0 and the skewness
parameter at its maximum value of 1 (“totally skewed to the right” in
[59] p.12). The support of this RV is R+ ([59] Lem. 1.10). As discussed
in [59] §1.3, there is a wide variety of parameterizations for stable dis-
tributions found in the technical literature, and their differences may
easily lead to confusion.

The case δ = 1
2 corresponds to the Lévy distribution ([59] §1.1).

Definition 2.9. The Lévy distribution with parameter γ ≥ 0 and
support R+ has PDF, CDF, and CF

fx(x) ≡
√

γ

2π
e−

γ
2x

x
3
2

, x ∈ R+

Fx(x) ≡ 2F̄Z

(√
γ

x

)
, x ∈ R+

φ[x](t) ≡ e−
√
−2iγt, t ∈ R (2.39)

where F̄z is the normal N(0, 1) CCDF.

Observe from (2.39) and Def. 2.8 that a Lévy RV is stable with charac-
teristic exponent δ = 1

2 and dispersion coefficient γ. To see the equiva-
lence between (2.38) with δ = 1/2 and (2.39) note:

tan(π/4) = 1, φ[x](t) =

{
e−
√
−γt(1+i), t < 0

e−
√
γt(1−i), t > 0

, 1± i =
√
±2i.

(2.40)
Fig. 2.2 shows the Lévy PDF and CCDF. Note the heavy tail in the
right plot compared with the light tailed normal distribution. The char-
acteristic exponent δ fixes which moments of a stable RV are finite.

Proposition 2.11. Stable moments. For x stable with characteris-
tic exponent δ and p ∈ R+:

E[|x|p]
{
<∞, p < δ < 2
=∞, else

. (2.41)
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Fig. 2.2 The PDF (left) and CCDF (right) for the Lévy distribution with parameter γ ∈
{0.5, 1, 2}. The CCDF is on log-log scale; the normal |N(0, 1)| CCDF is shown as well.

For example, a Lévy RV x has E[xp] =∞ for p ≥ δ = 1
2 .

The notation for the characteristic exponent δ in Def. 2.8 has been
deliberately chosen to coincide with the notation for the characteristic
exponent δ of Σα,ε

d,λ(o) in Def. 2.5. Our objective in this section is to
characterize conditions under which Σα,ε

d,λ(o) in (2.23) is stable. Cor. 2.6
will show Σα,0

d,λ(o) is stable with characteristic exponent δ = d/α < 1.
To get to this result, we must find the CF of Σα,ε

d,λ(o) and compare
with Def. 2.8. We will show that the LT of a SN RV Σl

Π(o) in (2.20) is
expressible in terms of the probability generating functional (PGFL)
of the underlying point process Π, and that this PGFL admits a closed
form for PPP Πd,λ and the truncated power law function lα,ε (2.22).
We start by defining the PGFL ([36] Def. A.5). Our methodology in the
development that follows is to present results in a somewhat general
form and then specialize as needed. Thus we distinguish between i)
a stationary point process Π and a PPP Πd,λ, ii) generic measurable
functions l, ν and the specific function lα,ε (2.22), and SN RVs Σl

Π(o)
(2.20), Σl

Πd,λ
(o), and Σα,ε

d,λ(o) (2.23). We aim to clarify the impact of
the assumptions of a PPP Πd,λ and a particular pathloss function lα,ε.

Definition 2.10. Point process PGFL. The probability generating
functional (PGFL) of a point process Π and a measurable function
ν : Rd → R+ is defined as

G[Π, ν] ≡ E

[∏
i∈Π

ν(xi)

]
. (2.42)
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If the point process Π is a PPP Πd,λ the PGFL simplifies ([36] (A.3)).

Proposition 2.12. PPP PGFL. For a PPP Πd,λ the PGFL is

G[Πd,λ, ν] = exp
{
−λ
∫

Rd
(1− ν(x))dx

}
. (2.43)

The PGFL yields the LT of a SN RV.

Corollary 2.3. Point process SN LT. The SN RV Σl
Π(o) in (2.20)

for a stationary point process Π with each hi = 1 has a LT expressible
in terms of its PGFL:

L[Σl
Π(o)](s) = G[Π, e−sl(|·|)], s ∈ C. (2.44)

Proof.

E
[
e−sΣlΠ(o)

]
= E

[
exp

{
−s
∑
i∈Π

l(|xi|)
}]

= E

[∏
i∈Π

e−sl(|xi|)
]
. (2.45)

When the point process Π is a PPP Πd,λ we can combine Prop. 2.12
and Cor. 2.3 to get the LT of I lΠd,λ .

Corollary 2.4. PPP SN LT. The SN RV Σl
Πd,λ

(o) in (2.20) for a
PPP Πd,λ with each hi = 1 has a LT

L[Σl
Πd,λ

(o)](s) = exp
{
−λdcd

∫ ∞
0

(
1− e−sl(r)

)
rd−1dr

}
, (2.46)

for all s ∈ C for which the integral exists.

Proof. Prop. 2.12 and Cor. 2.3 yield:

L[Σl
Πd,λ

(o)](s) = exp
{
−λ
∫

Rd

(
1− e−sl(|x|)

)
dx
}
. (2.47)

Now change variables from |x| to r using Thm. 2.2.

We next fix l to be lα,ε (2.22) and obtain the MGF of Σα,ε
d,λ(o). Recall

that we can obtain the MGF from the LP (2.8).
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Corollary 2.5. Pathloss SN MGF. For δ < 1 and ε > 0 the MGF
of Σα,ε

d,λ(o) in Def. 2.5 is (for θ ∈ R+):

M[Σα,ε
d,λ(o)](θ) = exp

{
λdcd
α

∫ ε−α

0

(
eθy − 1

)
y−δ−1dy

}
. (2.48)

Proof. Substituting lα,ε (2.22) into (2.46) gives

L[Σα,ε
d,λ(o)](s) = exp

{
−λdcd

∫ ∞
ε

(
1− e−sr

−α
)
rd−1dr

}
. (2.49)

The change in variable:

y = r−α, r = y−
1
α , rd−1 = y−

d−1
α ,dr = − 1

α
y−

1
α
−1dy, (2.50)

yields

L[Σα,ε
d,λ(o)](s) = exp

{
−λdcd

α

∫ ε−α

0

(
1− e−sy

)
y−δ−1dy

}
. (2.51)

Specializing to the assumed s = −θ for θ ∈ R+ yields the proposition.
For δ > 1 or ε = 0 this quantity diverges.

Finally, we fix l to be lα,0 (2.22) and obtain the CF of Σα,0
d,λ(o) (2.23).

Recall that we can obtain the CF from the LP (2.8).

Corollary 2.6. Pathloss SN CF. For δ < 1 the CF of Σα,0
d,λ(o) in

Def. 2.5 is (for t ∈ R):

φ[Σα,0
d,λ(o)](t) = exp

{
λδcdΓ(−δ) cos(πδ/2)|t|δ (1− i tan(πδ/2)sign(t))

}
.

(2.52)
In particular, Σα,0

d,λ(o) is stable as in Def. 2.8 with stability coefficient
δ < 1 and dispersion coefficient

γδ = −λδcdΓ(−δ) cos(πδ/2). (2.53)
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Proof. Fix ε = 0 and s = −it for t ∈ R in (2.51), and assume δ < 1:

φ[Σα,0
d,λ(o)](t) = exp

{
−λδcd|t|δ−1Γ(−δ) (−|t| cos(πδ/2) + it sin(πδ/2))

}
.

(2.54)
Straightforward manipulations give (2.52).

For the special case of δ = 1
2 we can apply Def. 2.9.

Corollary 2.7. Pathloss SN for δ = 1
2 . For δ = 1

2 , (2.53) gives γ =
π
2 (λcd)2 and the RV Σα,0

d,λ(o) is Lévy with parameter γ. In particular,
γ = 2π for Σ2,0

1,1(o).

2.5 Maximums and sums of RVs

To finish this chapter, we combine several previous results to illustrate
the asymptotic tightness of the LB Mα,0

d,λ(o) < Σα,0
d,λ(o).

Proposition 2.13. Sum and max SN CCDF ratio. For ε = 0 and
δ < 1 the CCDFs of the RVs Mα,0

d,λ(o) and Σα,0
d,λ(o) have a ratio that

converges to unity:

lim
y→∞

P(Σα,0
d,λ(o) > y)

P(Mα,0
d,λ(o) > y)

= 1. (2.55)

Proof. First apply Prop. 2.8 and then apply Cor. 2.2 to Σα,0
d,λ(o):

P
(

Σα,0
d,λ(o) > y

)
= P

((
λcd
2

) 1
δ

Σα,0
1,1 (o) > y

)

= P

(
Σα,0

1,1 (o) >
(
λcd
2

)− 1
δ

y

)
= λcdy

−δ +O(y−2δ) (2.56)

Using Cor. 2.1, the first order series expansion of the CDF of Mα,0
d,λ(o)

is:

P
(

Mα,0
d,λ(o) > y

)
= 1− e−λcdy

−δ
= λcdy

−δ +O(y−2δ). (2.57)
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The limit of the ratio of the CCDFs (2.56) and (2.57) as y →∞ is one.

Fig. 2.3 shows the (exact) CCDF for Σ (for δ = 1/2) from Cor. 2.6,
the asymptotic CCDF for Σα,0

d,λ(o) from Cor. 2.2, and the CCDF for
Mα,0
d,λ(o) from Cor. 2.1. Observe the ratio of the CCDFs appears to

converge to one as y → ∞. This convergence will be used to establish
the asymptotic tightness of the OP LBs and TC UBs in what follows.

0.2 0.4 0.6 0.8 1.0
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CCDF
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S Levy
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Fig. 2.3 The exact and asymptotic CCDFs for the RV Σα,0d,λ(o) and the CCDF for the RV

Mα,0
d,λ(o). The parameter values are ε = 0, λ = 1/10, d = 2, and α = 4 (δ = 1/2). The

Mα,0
d,λ(o) CCDF is asymptotically equal to the Σα,0d,λ(o) CCDF as y →∞.

The relationship between the max and sum of a sequence of RVs
has a long history in the literature on probability. Lévy (1935) [54],
Darling (1952) [22], Chistyakov (1964) [17], and Chow and Teugels
(1978) [19] are important early works. Somewhat more recently, Goldie
and Klüppelberg (1997) [29] characterize the class of “subexponential
distributions” (first introduced in [17]).

Definition 2.11. Subexponential distribution ([29], Def. 1.1). Let
{xi} for i ∈ N be iid positive RVs with CDF F such that F (x) < 1 for
all x > 0. F is a subexponential CDF if one of the following equivalent
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conditions holds:

lim
x→∞

P(x1 + · · ·+ xN > x)
F̄ (x)

= n, ∀n ≥ 2 (2.58)

lim
x→∞

P(x1 + · · ·+ xN > x)
P(max{x1, . . . , xN} > x)

= 1, ∀n ≥ 2. (2.59)

Note in particular (2.59) states subexponential distributions have the
ratio of the CCDF of the sum over the CCDF of the max approaching
one asymptotically, which is precisely result in Prop. 2.13. For our
purposes we require only one of their results, a sufficient condition
for a distribution to be subexponential, which we condense and adapt
below. Recall the hazard rate function H(x) in Def. 2.3.

Proposition 2.14. Sufficient subexponential condition ([29],
Prop. 3.8).

lim sup
y→∞

yH(y) <∞⇒ F is subexponential . (2.60)

A simple and natural way to apply Prop. 2.14 to our case is to condition
on the number of nodes N from Πd,λ within a bounded domain, say
B ⊂ Rd . More formally, suppose Πd,λ(B) = N . In this case the N

points are independent and uniformly distributed on B, and form a
so-called binomial point process (BPP) [36] (§A.1.1).

Definition 2.12. Fix N ∈ N and bounded B ⊂ Rd. The binomial
point process (BPP) ΠB,N = {x1, . . . , xN} consists of N points in-
dependently and distributed uniformly at random in B.

We fix B = bd(o,R) for R ∈ R+, and derive the CDF and HRF for the
interference contributions from each of the nodes in a BPP seen at o.

Lemma 2.1. BPP distances and interference. Let ΠR,N =
{x1, . . . , xN} be the BPP on bd(o,R). The CDF for the RV |xi| is

P(|xi| ≤ r) =

{
|bd(o,r)|
|bd(o,R)| =

(
r
R

)d
, 0 ≤ r ≤ R

1, r > R
. (2.61)
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Assuming ε = 0, the interference contribution RV Ii = P |xi|−α from
each node i has support Ii ∈ [ymin,∞) for ymin = PR−α and CCDF:

P(Ii > y) = P

(
|xi| ≤

(
P

y

) 1
α

)
=

{
P δ

Rd
y−δ, y ≥ ymin

1, y < ymin
(2.62)

The hazard rate function of I is

H[I](y) =
f(y)
F̄ (y)

=

{
δ
y , y > ymin

0, else
. (2.63)

The fractional order moments are

E[Ip] =

{
(ymin)pδ
δ−p , p < δ

∞, else
(2.64)

Applying Prop. 2.14 to the HRF (2.63) gives that I is subexponential.

Corollary 2.8. Subexponential BPP interferences. The RV I is
subexponential as the HRF (2.63) for I in Lem. 2.1 satisfies Prop. 2.14:

lim
y→∞

yH[I](y) = δ <∞. (2.65)

Prop. 2.13 (for the PPP) and Cor. 2.8 (for the BPP) both demonstrate
that the sum and max RVs of the interference contributions under
the pathloss model l(|x|) = |x|−α for δ ∈ (0, 1) have CCDFs that are
asymptotically equal. More succinctly, the probability of the sum be-
ing large is roughly the same as the probability of the max being large.
Large sums occur due to a small number of large individual contri-
butions; they do not occur due to a large number of small individual
contributions. This intuition helps explain why the LB on the OP and
UB on the TC, which are ultimately derived from the simple bound on
the interference RVs M < Σ (Def. 2.5), are asymptotically tight.
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Basic model

In this chapter we consider the most basic model for computing the
OP and TC. The wireless channel between any two nodes consists of
pathloss attenuation with no fading. As indicated in Def. 1.1 and 1.3,
the key quantity is the SINR, defined below.

Definition 3.1. Basic model SINR. Under the basic model, the
SINR seen by a reference Rx located at o when all nodes use constant
power P , the interferers form a PPP Πd,λ, the noise power is N , the
channel model is lα,ε(r) as in Ass. 2.2, and each Tx is positioned at a
fixed distance u > ε from its Rx is

sinr(o) ≡ S

Σ(o) +N
, (3.1)

where the received signal and interference powers are

S ≡ Plα,ε(u) = Pu−α and Σ(o) ≡
∑
i∈Πd,λ

Plα,ε(|xi|). (3.2)

We emphasize the only random quantity in sinr(o) in (3.1) is Σ(o),
and the only random quantity in Σ(o) in (3.2) is the PPP Πd,λ. The
following quantity will be used frequently throughout this chapter.

39
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Definition 3.2. Rx SNR. Define ξ ≡
(
u−α

τ − N
P

)− 1
α . Define the Rx

SNR snr ≡ Pu−α

N .

Considering the N = 0 case (ξ = uτ
1
α ) makes plain that ξ has units of

meters. To simplify the analysis that follows it is convenient to make
the following assumptions.

Assumption 3.1. SNR LB. The Rx SNR obeys snr > τ . Moreover,
assume ε < ξ.

The first assumption states that the received SNR exceeds the SINR
threshold, i.e., in the absence of interference a transmission attempt is
successful. As will be clear below, the second assumption states that
dominant interferers are possible. We compute the exact OP and TC
in §3.1, asymptotic exact OP and TC for λ → 0 and q∗ → 0 in §3.2,
UBs on TC (LBs on OP) in §3.3, and LBs on TC (UBs on OP) in §3.5.
Several extensions on this basic model are presented in Ch. 4.

3.1 Exact OP and TC

The next result gives the OP in terms of the CCDF of the SN RV
representing the aggregate interference seen at o under the PPP Π1,1.

Proposition 3.1. OP is SN CCDF. The OP for the SINR in Def.
3.1 is expressible as the tail probability of a SN RV Σ

1/δ,ε′

1,1 (o) on Π1,1

evaluated at y = (λcd/2)−
α
d ξ−α:

q(λ) = P
(

Σ
1/δ,ε′

1,1 (o) > y
)
, δ−1 =

α

d
, ε′ = λcdε

d/2. (3.3)

Proof. By manipulation of the outage event {sinr(o) < τ} and employ-
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ing Def. 2.5, and Prop. 2.8:

{sinr(o) < τ} =
{

S

Σ(o) +N
< τ

}
=

{
Σ(o) >

S

τ
−N

}

=

 ∑
i∈Πd,λ

lα,ε(|xi|) >
u−α

τ
− N

P


=

{
Σα,ε
d,λ(o) > ξ−α

}
=

{
(λcd/2)1/δΣ

1/δ,λcdε
d/2

1,1 (o) > ξ−α
}
. (3.4)

For no receiver guard zone (ε = 0) and a path loss exponent of α = 4
(δ = 1

2) we use Cor. 2.7 to express the OP in a more simple and explicit
form.

Corollary 3.1. Explicit OP for δ = 1
2 . For ε = 0 and δ = 1

2 the OP
in Prop. 3.1 is

q(λ) = 2Fz

(√
π/2

u−2d

τ − N
P

cdλ

)
− 1. (3.5)

where Fz is the standard normal N(0, 1) CDF.

Proof. Write Σ = Σ2,0
1,1(o) for this proof. For the assumed δ = 1/2 we

have from Cor. 2.7 that Σ is a Levy RV (Def. 2.9) with γ = 2π and

CCDF F̄Σ(x) = 1 − 2F̄z

(√
2π
x

)
= 2Fz

(√
2π
x

)
− 1. Using Prop. 3.1

gives

q(λ) = F̄Σ

(
(λcd/2)−2ξ−2d

)
= 2Fz

(√
2π

(λcd/2)−2ξ−2d

)
− 1. (3.6)

For ε = 0 we use Prop. 3.1 and Def. 1.3 to express the TC in terms of
the inverse of the CCDF of the RV Σ

α
d
,0

1,1 (o).
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Proposition 3.2. TC (ε = 0). For ε = 0 the TC equals

λ(q∗) =
2
(
u−α

τ − N
P

)δ
(1− q∗)

cd(F̄−1
Σ (q∗))δ

, (3.7)

where F̄−1
Σ is the inverse CCDF of the RV Σ

1/δ,0
1,1 (o).

Proof. Write Σ = Σ
1/δ,0
1,1 (o) for this proof. Let F̄Σ(y) be its CCDF and

F̄−1
Σ (q) the inverse CCDF. Equate the OP q(λ) with the target OP q∗:

q∗ = F̄Σ

(
(λcd/2)−1/δξ−α

)
⇔ F̄−1

Σ (q∗) = (λcd/2)−1/δξ−α. (3.8)

Now solve for λ:
λ =

2
cdξd(F̄−1

Σ (q∗))δ
. (3.9)

Finally, multiply by 1− q∗ as in Def. 1.3.

The condition ε = 0 is necessary in order to decouple the RV Σ
1/δ,0
1,1 (o)

from the parameter λ, thereby enabling solving for λ. An analogous
result for the OP may be derived for ε > 0 in terms of the inverse
CCDF of the RV Σα,ε

d,λ(o), but this expression cannot be solved for λ,
and therefore there is no explicit expression for the TC. For ε = 0 and
δ = 1

2 we can use Cor. 3.1 to get a more explicit expression for the TC.

Corollary 3.2. TC (ε = 0 and δ = 1
2). For ε = 0 and δ = 1

2 the TC
in Prop. 3.2 is

λ(q∗) =
1
cd

√
u−2d

τ − N
P

π/2
F−1

z

(
1 + q∗

2

)
(1− q∗), (3.10)

where F−1
z is the inverse of the normal N(0, 1) CDF Fz.

The corollary is immediate from Cor. 3.1 and Prop. 3.2. The expressions
for exact TC and OP for δ = 1

2 (d = 2 and α = 4) in Cor. 3.1 and 3.2
are shown in Fig. 3.1 for varying SINR thresholds τ , with u = 1, N =
0, P = 1. Additional exact OP and TC expressions will be given for
the case of Rayleigh fading in §4.1.
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Fig. 3.1 The OP q(λ) vs. λ (left) and the TC λ(q∗) vs. q∗ (right) for δ = 1
2

(d = 2 and
α = 4) and SINR threshold τ ∈ {1, 5, 10}.

3.2 Asymptotic OP and TC

In this section we obtain the asymptotic OP in the limit as λ→ 0 and
the asymptotic TC in the limit as q∗ → 0 by applying Cor. 2.2 to Prop.
3.1 and Prop. 3.2, both valid for the special case of ε = 0.

Proposition 3.3. Asymptotic OP and TC. For ε = 0 the asymp-
totic OP as λ→ 0 is:

q(λ) =
cdλ(

u−α

τ − N
P

)δ +O(λ2), λ→ 0. (3.11)

For ε = 0 the asymptotic TC as q∗ → 0 is:

λ(q∗) =
1
cd

(
u−α

τ
− N

P

)δ
q∗ +O(q∗)2, q∗ → 0. (3.12)

Thus the OP is linear in λ for small λ and the TC is linear in q∗

for small q∗. These asymptotic approximations will be used in §4.2
on variable link distances. The following remark gives the asymptotic
approximations for OP and TC for the special case δ = 1/2 (andN = 0)
in Cor. 3.2.

Remark 3.1. TC as sphere packing. The first order Taylor series
expansion of (1− q∗)F−1

z ((1 + q∗)/2) in (3.10) around q∗ = 0 is

(1− q∗)F−1
z

(
1 + q∗

2

)
=
√
π

2
q∗ +O(q∗)2. (3.13)
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Using this in Cor. 3.2 for no thermal noise (N = 0) and rearranging
gives a low OP approximation for the TC for δ = 1/2:

λ(q∗) =
1

cdũ(q∗)d
+O(q∗)2, q∗ → 0, ũ(q∗) = u

(
τ δ

q∗

) 1
d

. (3.14)

In particular, (3.14) may be interpreted as the number of d-dim. spheres
per unit area, each with radius ũ(q∗). Observe that ũ(q∗)/u is the guard
zone factor by which each Tx-Rx distance u must be expanded to ac-
count for the required SINR threshold τ , the required outage proba-
bility q∗, and the stability exponent δ. Also note the asymptotically
tight UB on TC in Prop. 3.4 has the same expansion (for ε = 0
and N = 0) as Prop. 3.3. In this case the series expansion being
(1 − q∗) log(1 − q∗) = q∗ + O(q∗)2 as q∗ → 0. These expansions are
seen to be accurate over a reasonable range of q∗ in Fig. 3.2.
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Fig. 3.2 The first order Taylor series expansion (
p
π/2q∗) of (1 − q∗)F−1

Z ((1 + q∗)/2) for
FZ the standard normal CDF used in the exact TC for δ = 1/2 in Cor. 3.2 (left), and the
expansion (q∗) of −(1 − q∗) log(1 − q∗) used in the TC UB (for δ ∈ (0, 1)) in Prop. 3.4

(right).

3.3 Upper bound on TC and lower bound on OP

In this section we obtain an UB on TC (LB on OP). The bound is
based on considering only “dominant” interferers and interference.

Definition 3.3. Dominant interferers and interference. An in-
terferer i ∈ Πd,λ is dominant at o under threshold τ if its interference
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contribution is sufficiently strong to cause an outage for the reference
Rx at o:

lα,ε(|xi|) > ξ−α ⇔ ε ≤ |xi| ≤ ξ. (3.15)

Else i is non-dominant. The set of dominant and non-dominant inter-
ferers at o under τ is

Π̂d,λ(o) ≡ {i ∈ Πd,λ : ε ≤ |xi| ≤ ξ} , Π̃d,λ(o) ≡ Πd,λ \ Π̂d,λ(o). (3.16)

The dominant and non-dominant interference at o under τ

Σ̂α,ε
d,λ(o) ≡

∑
i∈Π̂d,λ(o)

lα,ε(|xi|), Σ̃α,ε
d,λ(o) ≡

∑
i∈Π̃d,λ(o)

lα,ε(|xi|) (3.17)

are the interference generated by the dominant and non-dominant
nodes. Note Σα,ε

d,λ(o) = Σ̂α,ε
d,λ(o) + Σ̃α,ε

d,λ(o).

The LB on OP is obtained by observing the aggregate interference
exceeds the dominant interference, and thus the probability of the ag-
gregate interference exceeding some value exceeds the probability of
the dominant interference exceeding that value.

Proposition 3.4. OP LB and TC UB. The OP has a LB

qlb(λ) = 1− e−λcd(ξd−εd). (3.18)

The TC has an UB

λub(q∗) =
−(1− q∗) log(1− q∗)

cd(ξd − εd)
. (3.19)

When ε = 0, the bounds are tight for λ→ 0 and q∗ → 0, respectively.

Proof. The key observation is the equivalence of the events {Σ̂α,ε
d,λ(o) >

ξα} and {Π̂d,λ(o) 6= ∅}, where we observe nodes in the annulus ad(o, ε, ξ)
are dominant interferers. From here we compute the corresponding void
probability for Πd,λ using Prop. 2.6.

qlb(λ) = P
(

Σ̂α,ε
d,λ(o) > ξ−α

)
= P

(
Π̂d,λ(o) 6= ∅

)
= 1− P

(
Π̂d,λ(o) = ∅

)
= 1− P (Πd,λ (ad(o, ε, ξ)) = 0)

= 1− e−λcd(ξd−εd). (3.20)
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Set this last equation equal to q∗, solve for λ, and multiply by 1 − q∗
as in Def. 1.3 to get the TC UB.

Finally, the tightness of the bounds can be verified by comparison
with Prop. 3.3 with Taylor series expansions of e−λcd(ξd−εd) and log(1−
q∗) around λ and q∗.

Remark 3.2. Dominant and maximum interferers. The LB on
OP obtained via dominant interferers is exactly equivalent to the LB
on OP obtained by retaining only the largest interferer:

Π̂d,λ(o) = ∅ ⇔ Πd,λ(ad(o, ε, ξ)) = 0

⇔ min
i∈Πd,λ:|xi|>ε

|xi| > ξ−
1
α

⇔ max
i∈Πd,λ

|xi|−α1|xi|>ε < ξ

⇔ Mα,ε
d,λ(o) < ξ, (3.21)

for Mα,ε
d,λ(o) in (2.21) and Def. 2.5. In our extensions of the OP LB

(c.f. Def. 4.2, Prop. 4.7, Lem. 5.2, Prop. 5.9, Def. 5.9, and Prop. 5.12)
we won’t make this correspondence with the largest interferer explicit,
although adapting the above derivation to establish this relationship
in those cases is straightforward.

Specializing Prop. 3.4 to the case ε = 0, N = 0 and δ = 1
2 and compar-

ing with Cor. 3.1 and 3.2 (with N = 0) gives the following corollary.

Corollary 3.3. OP and TC bounds (ε = 0, N = 0, δ = 1
2). The

LB on the OP and the exact OP are:

qlb(λ) = 1− e−λcdu
d√τ ≤ q(λ) = 2Fz

(√
π/2λcdud

√
τ
)
− 1. (3.22)

The UB on the TC and the exact TC are:

λub(q∗) =
−(1− q∗) log(1− q∗)

cdud
√
τ

≥ λ(q∗) =
(1− q∗)F−1

z

(
1+q∗

2

)
√
π/2cdud

√
τ

.

(3.23)
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These expressions are plotted in Fig. 3.3 for d = 2 and α = 4 (with
u = 1 and τ = 5). Note the OP LB appears to be asymptotically
exact as λ→ 0, and the TC UB appears to be asymptotically exact as
q∗ → 0. The expressions in (3.22) may be simplified to

Fz(z) ≥ F lb
z (z) = 1− 1

2
e−

q
2
π
z
, z ≥ 0, (3.24)

by defining z = λcdu
d√τ . This inequality is shown in Fig. 3.4; again

note the bound appears to be asymptotically exact as z → 0.
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Fig. 3.3 The OP q(λ) and its LB qlb(λ) vs. λ (left) and the TC λ(q∗) and its UB λub(q∗)
vs. q∗ (right) for δ = 1

2
(d = 2 and α = 4).
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Fig. 3.4 The LB on the standard normal CDF Fz(z) in (3.24) that underlies the OP LB.

3.4 Throughput (TP) and TC

One justification for claiming that TC is a natural performance metric
is obtained by comparison with MAC layer TP, as discussed below.
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Definition 3.4. The MAC layer TP of a wireless network employing
the slotted Aloha MAC protocol, where the active transmitters form a
PPP Πd,λ, is

Λ(λ) ≡ λ(1− q(λ)), (3.25)

where q(λ) is the OP in Def. 1.1.

The TP has units of successful transmissions per unit area, and (3.25)
may be read as saying the TP is the intensity of attempted transmis-
sions per unit area (λ) thinned by the success probability (1− q(λ)) of
each transmission. In light of Rem. 1.1, the design question for the TP
is: given λpot how to select ptx so as to maximize Λ(ptxλpot). Before
considering this question, we first recall the following basic facts about
(saturated) slotted Aloha in a wireless uplink setting under the collision
channel model with a single collision domain (no spatial reuse).

Proposition 3.5. Slotted Aloha TP and OP. For slotted Aloha
in a single collision domain under the collision channel model with N

saturated (backlogged) users transmitting to a common base station,
employing a common transmission probability p, the TP and OP are

Λ(N, p) ≡ Np(1− p)N−1, q(N, p) ≡ 1− (1− p)N−1. (3.26)

The TP optimal p is p∗(N) = 1/N with associated TP and OP

Λ(N, p∗(N)) =
(

1− 1
N

)N−1

, q(N, p∗(N)) = 1−
(

1− 1
N

)N−1

.

(3.27)
For large N and p = λ

N the asymptotic TP and OP are

Λ(λ) = lim
N→∞

Λ(N,λ/N) = λe−λ

q(λ) = lim
N→∞

q(N,λ/N) = 1− e−λ. (3.28)

The asymptotic TP optimal choice for λ is λ∗ = 1 with associated
asymptotic TP and OP

Λ(λ∗) = 1e−1 ≈ 0.367879, q(λ∗) = 1− e−1 ≈ 0.632121. (3.29)
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The statements in Prop. 3.5 are simple to prove. Note that achieving
the maximum asyptotic TP of 37% requires an incurred OP of 63%.
These relationships are illustrated in Fig. 3.5. We now return to the
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Fig. 3.5 The TP (left) and OP (right) of slotted Aloha in a single collision domain (no

spatial reuse) for N backlogged users employing transmission probability p = λ/N , for

N ∈ {5, 10} Also shown is the TP and OP as N → ∞. Achieving a high TP requires
incurring a high OP.

context of wireless networks with spatial reuse. The LB on the OP in
Prop. 3.4 leads directly to an UB on the TP in Def. 3.4. This UB is
equivalent to the TP in the non-spatial context of Prop. 3.5.

Proposition 3.6. MAC layer TP UB. The TP in Def. 3.4 has UB

Λ(λ) ≤ Λub(λ) = λ(1− qlb(λ)) = λe−λcd(ξd−εd). (3.30)

The TP bound optimal λ is

λ∗ =
1

cd(ξd − εd)
, (3.31)

and the associated TP UB and OP LB are

Λub(λ∗) =
1

ecd(ξd − εd)
, qlb(λ∗) = 1− e−1 ≈ 0.632121. (3.32)

The main point of Prop. 3.6 is that achieving the optimal TP requires
incurring an OP of 63%. Given that wireless devices are energy con-
strained and that failed attempted transmissions are wasted energy, it
is natural to question if unconstrained TP maximization is the right
design objective. TC is in fact the TP of a wireless network under Aloha
subject to an OP constraint, as shown below.
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Proposition 3.7. TC is constrained TP maximization. The op-
timization problem of maximizing TP subject to a constraint on the
outage probability q∗ ∈ (0, 1)

max
λ
{Λ(λ) : q(λ) ≤ q∗} (3.33)

has solution λ∗ = q−1(q∗) and TP equal to the TC in Def. 1.3:

Λ(λ∗) = λ∗(1− q(λ∗)) = q−1(q∗)(1− q∗) = λ∗(q∗). (3.34)

To clarify, λ∗ = q−1(q∗) is the solution of (3.33), and λ∗(q∗) is the TC as
defined in Def. 1.3. In summary, TC is TP under an OP constraint. Note
that maximization of TP Λ(λ) over λ ∈ R is equivalent to maximization
of the TC λ∗(q∗) over the target OP q∗ ∈ [0, 1], as made precise below.

Proposition 3.8. Maximum TP equals maximum TC. The TP
optimization problem

max
λ∈R+

Λ(λ) (3.35)

has a unique maximizer λopt and an associated maximum value Λopt =
Λ(λopt). The TC optimization problem

max
q∗∈[0,1]

λ∗(q∗) (3.36)

has a unique maximizer q∗opt and an associated maximum value λ∗opt =
λ∗(q∗opt). Furthermore, the maximum values are equal and the maxi-
mizers are related through the OP function q(λ):

Λopt = λ∗opt and q(λopt) = q∗opt. (3.37)

Proof. We first prove q(λopt) = q∗opt. The monotonicity of q(λ) guaran-
tees that Λ(λ) has a unique stationary point on (0,∞) and that this is
the unique maximizer λopt > 0. Taking the derivative

Λ′(λ) = 1− q(λ)− λq′(λ) (3.38)
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and equating with zero at the stationary point gives

Λ′(λopt) = 1− q(λopt)− λoptq
′(λopt) = 0, (3.39)

or equivalently, after rearranging,

q′(λopt) =
1− q(λopt)

λopt
. (3.40)

It is likewise straightforward to show λ∗(q∗) is concave on [0, 1] and
therefore the unique optimizer is the unique stationary point on (0, 1).
Taking the derivative and applying the inverse function theorem gives:

λ∗
′
(q∗) = (1− q∗)q−1′(q∗)− q−1(q∗) =

1− q∗
q′(q−1(q∗))

− q−1(q∗). (3.41)

Equating with zero at the stationary point gives

λ∗
′
(q∗opt) =

1− q∗opt

q′(q−1(q∗opt))
− q−1(q∗opt) = 0, (3.42)

or equivalently, after rearranging,

q′(q−1(q∗)) =
1− q∗opt

q−1(q∗opt)
. (3.43)

There is a unique solution λopt for (3.40), and likewise there is a unique
solution q∗opt for (3.43). The two optimizers are related by q(λopt) = q∗opt

(equivalently, λopt = q−1(q∗opt)) since under this relationship these two
equations are the same (in that λopt solves (3.40) iff q∗opt solves (3.43)).
We next prove Λmax = λ∗max. Rearranging (3.40) and (3.43) gives

Λmax = λ2
optq

′(λopt), λ∗max =
(1− q∗opt)

2

q′(q−1(q∗opt))
. (3.44)

The square root of their ratio is√
Λmax

λ∗max

=
λopt

1− q(λopt)
q′(λopt) = 1, (3.45)

and thus Λmax = λ∗max.

The corollary below shows that Prop. 3.8 holds for the TP UB in Prop.
3.6 and the TC UB in Prop. 3.4.
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Corollary 3.4. Maximizing TP and TC UBs. Denote cd(ξd − εd)
found in Prop. 3.4 by a. The TP UB optimization problem

max
λ∈R+

Λub(λ) (3.46)

for Λub(λ) in (3.30) has a unique maximizer λopt = 1/a and an associ-
ated maximum value Λub

max = 1
ea . The TC UB optimization problem

max
q∗∈[0,1]

λub(q∗) (3.47)

for λub(q∗) in (3.19) has a unique maximizer q∗opt = 1− 1
e and an asso-

ciated maximum value λub
max = 1

ea . Like Prop. 3.8, the maximum values
are equal and the optimizers obey q∗opt = qlb(λopt) for qlb in (3.18).

The corollary is obtained by simple calculus on the functions Λub(λ)
and λub(q∗). Fig. 3.6 illustrates the quantities in Cor. 3.4.
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Fig. 3.6 The spatial TP UB Λub(λ) (3.30) vs. the spatial intensity of attempted trans-
missions λ (left), and the TC UB λub(q∗) vs. the target OP q∗ (right). For α = 4, d =

2, u = 1, τ = 5, N = 0 we have a = cdξ
d =
√

5π ≈ 7.02 and optimal λ∗ = 1/a ≈ 0.14 and
maximum TP Λmax = 1/(ea) ≈ 0.052, q∗opt = 1− 1/e ≈ 0.63, and q∗opt = qlb(λopt).

3.5 Lower bounds on TC and upper bounds on OP

In this section we obtain three LBs on TC (UBs on OP). The bounds
are obtained by using the bound from §3.3 along with three UBs on
the tail probability for the non-dominant interference. The tail UBs are
given in §2.1 and these in turn employ the moments from the Campbell-
Mecke theorem given in Thm. 2.3. We express the OP in terms of the
distributions of the dominant and non-dominant interference.
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Proposition 3.9. Exact OP in terms of OP LB. Define the
CCDFs of the independent RVs Σ̂α,ε

d,λ(o), Σ̃α,ε
d,λ(o) from Def. 3.3 as:

F̄Σ̂(y) ≡ P(Σ̂α,ε
d,λ(o) > y), F̄Σ̃(y) ≡ P(Σ̃α,ε

d,λ(o) > y). (3.48)

The OP equals:

q(λ) = F̄Σ̂(ξ−α) + FΣ̂(ξ−α)F̄Σ̃(ξ−α). (3.49)

Moreover, the OP equals:

q(λ) = qlb(λ) + (1− qlb(λ))F̄Σ̃(ξ−α) (3.50)

for qlb(λ) given in Prop. 3.4.

Proof. Write Σ = Σα,ε
d,λ(o), Σ̂ = Σ̂α,ε

d,λ(o), Σ̃ = Σ̃α,ε
d,λ(o) for this proof.

Recall Σ = Σ̂ + Σ̃. Express the outage event for Σ in terms of (Σ̂, Σ̃)
and decompose it into three (overlapping) regions:

{Σ > ξ−α} = {(Σ̂, Σ̃) : Σ̂ + Σ̃ > ξ−α} (3.51)

= {Σ̂ > ξ−α} ∪ {Σ̃ > ξ−α} ∪ {Σ̂ ≤ ξ−α, Σ̃ ≤ ξ−α,Σ > ξ−α}.

Recall the equivalence of the events {Σ̂ < ξ−α} and {Σ̂ = 0}, and
observe this implies the third event becomes null: {Σ̃ ≤ ξα ∩ Σ̃ >

ξ−α} = ∅. The OP is therefore

q(λ) = P(Σ̂ > ξ−α) + P(Σ̃ > ξ−α)− P(Σ̂ > ξ−α ∩ Σ̃ > ξ−α). (3.52)

Apply the independence of (Σ̂, Σ̃) to the third term and group terms
to get (3.49). Finally, recognize qlb(λ) = F̄Σ̂(ξ−α) to get (3.50).

In (3.50) it is clear that we can UB q(λ) by an UB on the CCDF of
the non-dominant interference F̄Σ̃(ξ−α). We now apply the Markov,
Chebychev, and Chernoff bounds to the RV Σ̃α,ε

d,λ(o).

Proposition 3.10. Markov inequality OP UB for α > d is

qub,Mar(λ) = qlb(λ) + (1− qlb(λ))
λdcd
α− dξ

d. (3.53)
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Proof. Markov inequality (Prop. 2.3) for Σ̃α,ε
d,λ(o) in Def. 3.3 gives

P(Σ̃α,ε
d,λ(o) > ξ−α) ≤ ξαE[Σ̃α,ε

d,λ(o)]. (3.54)

Now apply Campbell’s Theorem (Thm. 2.3) to compute E[Σ̃α,ε
d,λ(o)]:

E

 ∑
i∈Πd,λ

|xi|−α1|xi|>ξ

 = λdcd

∫ ∞
ξ

r−αrd−1dr =
λdcd
α− dξ

−α+d. (3.55)

The integral is finite for α > d. Substitution yields the proposition.

Second, apply the Chebychev inequality.

Proposition 3.11. Chebychev inequality OP UB for α > d is

qub,Cheb(λ) = qlb(λ) + (1− qlb(λ))
λdcd

2α− d
ξd(

1− λdcd
α−d ξ

d
)2 . (3.56)

The bound is trivial for
λ >

α− d
dcdξd

. (3.57)

Proof. Denote Σ̃ = Σ̃α,ε
d,λ(o) for this proof. The Chebychev inequality

(Prop. 2.4) applied to the RV Σ̃ in Def. 3.3 gives

P(Σ̃ > ξ−α) = P(Σ̃− E[Σ̃] > ξ−α − E[Σ̃])

≤ P(|Σ̃− E[Σ̃]| > ξ−α − E[Σ̃])

≤ Var(Σ̃)
(ξ−α − E[Σ̃])2

. (3.58)

Now apply Campbell’s Theorem (Thm. 2.3) to compute Var(Σ̃):

Var

 ∑
i∈Πd,λ

|xi|−α1|xi|>ξ

 = λdcd

∫ ∞
ξ

r−2αrd−1dr =
λdcd

2α− dξ
−2α+d.

(3.59)
Evaluating the integral for α > d/2, substituting E[Σ̃] = λdcd

α−d ξ
−α+d,

and cancelling the common term ξ−2α yields the proposition. The first
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inequality used above yields a trivial bound for ξ−α < E[Σ̃], which may
be expressed as bound on λ:

ξ−α < E[Σ̃]⇔ ξ−α <
λdcd
α− dξ

−α+d. (3.60)

The threshold (3.57) is sufficient but not necessary for the bound to be
trivial. Third, apply the Chernoff inequality.

Proposition 3.12. Chernoff inequality OP UB for α > d is

qub,Cher(λ) = qlb(λ) + (1− qlb(λ))e−c(λ), (3.61)

where

c(λ) = sup
θ≥0

(
θξ−α − λdcd

α

∫ ξ−α

0

(
eθy − 1

)
y−δ−1dy

)
. (3.62)

Proof. Denote Σ̃ = Σ̃α,ε
d,λ(o) for this proof. The Chernoff inequality

(Prop. 2.5) applied to the RV Σ̃ in Def. 3.3 gives

P(Σ̃ > ξ−α) ≤ inf
θ>0

E[eθΣ̃]e−θξ
−α
. (3.63)

The MGF of Σ̃ is obtained by selecting ε = ξ in Cor. 2.5 yielding:

M[Σ̃](θ) = exp

{
λdcd
α

∫ ξ−α

0

(
eθy − 1

)
y−δ−1dy

}
. (3.64)

Simple manipulations yield the proposition.

Finding the optimal θ∗ in (3.62) must in general be done numerically,
although certain simplifications hold for δ = 1/2.

The Markov, Chebychev, and Chernoff bounds on the OP and TC
are shown in Fig. 3.7. The top two plots are OP vs. λ and the bottom
two plots are TC vs. q∗. The right plots are an inset of the left plots.
Consider the OP plots. The OP LB is seen to be tighter than each
of the three OP UBs. For λ small (corresponding to small q(λ)) the
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Chernoff and Chebychev bounds are nearly equivalent and are better
than the Markov bound. For moderate to large λ (corresponding to
moderate to large q(λ)) the Markov and Chernoff are nearly equivalent
and better than the (trivial) Chebychev bound. All three bounds thus
have their value: i) Markov is bad for small λ but good for larger λ and
is simple, ii) Chebychev is good for small λ but bad for larger λ and
is intermediate in simplicity between Markov and Chernoff, and iii)
Chernoff is as good as Markov and Chebychev for all λ, but is much
more complicated than the other two. Similar trends naturally follow
for the three TC plots as for the OP plots.
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Fig. 3.7 Top: the OP q(λ), the LB, and the three UBs (Markov, Chebychev, Chernoff) vs.
λ ∈ [0, 0.1] (left) and λ ∈ [0, 0.01] (right). Bottom: the TC λ(q∗), the UB, and the three

LBs (Markov, Chebychev, Chernoff) vs. q∗ ∈ [0, 1] (left) and q∗ ∈ [0, 0.1] (right).



4

Extensions to the basic model

In this chapter we study three extensions of the basic model in Ch. 3:

(1) Channel fading: allow for iid channel fading on top of the
pathloss attenuation, with Rayleigh fading a special focus.

(2) Variable link distances: allow each Tx–Rx pair to be sepa-
rated by a random distance u, iid across pairs.

(3) Multi-hop networks: measure performance for a multi-hop
extension of the model using suitably modified OP and TC
metrics.

These three extensions are chosen because they are among the most
obvious steps towards a more realistic decentralized network model. We
shall see that fading can be added to the model without any major dif-
ficulties, and in fact when all fading is Rayleigh, exact results are easier
to compute than without fading. Variable link distances are straight-
forward to include, and result only in a multiplicative constant, which
justifies the use of the less realistic but simpler fixed distance model
adopted in the rest of the monograph (and most of the literature). Mul-
tihop is a nontrivial extension and requires end-to-end definitions of OP
and TC, but under a simple model we are able to preserve tractability

57
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and determine quantities like the optimum number of hops.

4.1 Channel fading

In this section we modify the basic model of Ch. 3 to include channel
fading. Recall in Ch. 2 and 3 we operated under Ass. 2.2 where in
particular the amplitudes {hi} in Def. 2.4 were assumed to be unity.
We now relax that assumption.

Definition 4.1. SINR under fading. Fix ε = 0 in this section. Let
h0 be the fading coefficient on the signal channel between the reference
Tx and the reference Rx at o, and let {hi} = h1, h2, . . . be iid RVs rep-
resenting the fading coefficients on the channels between each interferer
and the reference Rx at o (as in Def. 2.4). Let S(o),Σ(o) denote the
random signal and interference powers seen at o each normalized by
the transmission power P :

S(o) ≡ h0u
−α, and Σ(o) ≡ Σα,h

d,λ(o) ≡
∑
i∈Πd,λ

hi|xi|−α. (4.1)

The SINR at o is as in the basic model in Def. 3.1 with S(o) and Σ(o)
updated as above:

sinr(o) ≡ S(o)
Σ(o) +N/P

. (4.2)

Note we have normalized the noise by P since we defined S,Σ to be
normalized by P as well.

Remark 4.1. Signal and interference fading coefficients. Under
Ass. 4.1 both the received signal S(o) and interference power Σ(o) are
random, where randomness in S(o) is due to h0, and randomness in Σ(o)
is due to both the random positions in Πd,λ and the fading coefficients
{hi}. Note the convention that {hi} = h1, h2, . . ., and in particular the
signal channel fade h0 is not in the collection of interference channel
fades {hi}. To be clear, h denotes a generic interferer fading coefficient,
hi denotes the fading coefficient for interferer i, and h0 denotes the
signal fading coefficient. Throughout this section it is important to
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observe the distinct impacts of h vs. h0 on performance, and the distinct
requirements for analytic tractability.

This section is divided into three subsection: exact OP and TC (§4.1.1),
asymptotic OP (as λ → 0) and TC (as q∗ → 0) (§4.1.2), and a lower
(upper) bound on OP (TC) (§4.1.3).

4.1.1 Exact OP and TC with fading

The Laplace transfom of the interference Σα,h
d,λ(o) is given in the follow-

ing proposition ([36] (3.20)).

Proposition 4.1. LT of the interference. The Laplace transform
of the interference Σα,h

d,λ(o) under Def. 4.1 and for δ < 1 is

L[Σα,h
d,λ(o)](s) = exp

{
−λcdE[hδ]Γ(1− δ)sδ

}
, s ∈ C. (4.3)

The RV Σα,h
d,λ(o) is stable: the characteristic function φ[Σα,h

d,λ(o)](t) is
given by Def. 2.8 where the characteristic exponent is δ < 1 and the
dispersion coefficient is

γ =
(
λcdE[hδ]Γ(1− δ) cos(πδ/2)

) 1
δ
. (4.4)

For the special case δ = 1/2 the RV Σα,h
d,λ(o) is Lévy as defined in Def.

2.9 with parameter

γ =
π

2

(
λcdE[

√
h]
)2
. (4.5)

Proof. The proof of (4.3) is given in [36] (3.20). Write Σ = Σα,h
d,λ(o) for

this proof. We find the CF for Σ from (4.3). Using the expression for
γ in (4.4) we write the Laplace transform as

L[Σ](s) = exp
{
− γδ

cos(πδ/2)
sδ
}
. (4.6)

In general we can obtain the CF from the LT via (2.8).

φ[Σ](t) = exp
{
− γδ

cos(πδ/2)
(−it)δ

}
. (4.7)
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To put this in the form of Def. 2.8 we must establish:

− γδ

cos(πδ/2)
(−it)δ = −γδ|t|δ(1− i tan(πδ/2)sign(t)). (4.8)

We consider the case t > 0, the case t < 0 is similar:

−i = e−iπ/2

(−i)δ = e−iπδ/2

(−i)δ = cos(πδ/2)− i sin(πδ/2)
(−i)δ

cos(πδ/2)
= 1− i tan(πδ/2). (4.9)

We obtain an explicit expression for the OP and TC when the signal
fade h0 is assumed to be exponentially distributed (usually interpreted
as modeling Rayleigh fading). The following result is found in [6] and
is discussed in [36] §3.3.

Proposition 4.2. OP and TC under Rayleigh signal fading,
general interference fading ([6]). The OP and TC under Def. 4.1
for signal fading coefficient h0 ∼ Exp(1) (Rayleigh signal fading) are:

q(λ) = 1− exp
{
−λcdE[hδ]Γ(1− δ)τ δud − τ

snr

}
λ(q∗) =

(
− log(1− q∗)− τ

snr

)
(1− q∗)

cdE[hδ]Γ(1− δ)τ δud (4.10)

Proof. Write Σ = Σα,h
d,λ(o) for this proof. Solve the outage event for h0,

condition on Σ, and apply the exponential CCDF:

1− q(λ) = P(sinr(o) > τ)

= P (h0 > τuα(Σ +N/P ))

= E [P (h0 > τuα(Σ +N/P )|Σ)]

= E [exp {−τuα(Σ +N/P )}]
= e−τu

αN/PE
[
e−τu

αΣ
]
. (4.11)
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Now recognize the Laplace transform L[Σ](s) at s = τuα, use the defi-
nition of Rx SNR in Ass. 3.1, and apply Prop. 4.1:

1− q(λ) = e−
τ

snrL[Σ](s)
∣∣∣
s=τuα

= e−
τ

snr exp
{
−λcdE[hδ]Γ(1− δ)sδ

}∣∣∣
s=τuα

. (4.12)

Simplification gives the proposition.

The following corollary gives the OP and TC for the special case when
the interference coefficients are also unit exponentials (i.e., Rayleigh
fading for both signal and interference channels). The key step to obtain
the corollary is the following expression for the fractional order moment
of the exponential distribution.

Lemma 4.1. Moments of exponential RV. For a unit rate expo-
nential RV h ∼ Exp(1) and δ ∈ (0, 1):

E[hδ] = Γ(1 + δ), E[h−δ] = Γ(1− δ). (4.13)

Lem. 4.1 and the identity (2.7) yield the following corollary, which is
one of the most widely used results appearing in this monograph, and
due to [6].

Corollary 4.1. The OP and TC under Rayleigh fading
(h0, h1, h2, . . . ∼ Exp(1)) are:

q(λ) = 1− exp
{
−λ πδcd

sin(πδ)
τ δud − τ

snr

}
λ(q∗) =

sin(πδ)
(
− log(1− q∗)− τ

snr

)
(1− q∗)

πδcdτ δud
(4.14)

Notice that this is an exact closed-form result for OP and TC that does
not require bounds, asymptotics, or approximations. We can specialize
it even further by fixing δ = 1/2 and N = 0 (snr = ∞) in the above
corollary.
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Corollary 4.2. The OP and TC under Rayleigh fading (δ = 1
2 ,

N = 0) are

q(λ) = 1− exp
{
−λπ

2
cd
√
τud
}

λ(q∗) =
−2 log(1− q∗)(1− q∗)

πcd
√
τud

(4.15)

We compare the impact of fading on the OP and TC in Fig. 4.1 by
plotting the OP and TC with Rayleigh fading for δ = 1/2 (from Cor.
4.2) with the non-fading case for δ = 1/2 (from Cor. 3.1 and 3.2). The
plots illustrate that fading degrades performance in the low outage
probability regime. This may be roughly understood by arguing that
fading is a source of variability (and hence diversity) but our slotted
Aloha MAC protocol does not exploit that diversity, and therefore per-
formance suffers under the variability. This degradation is quantified
in the asymptotic (λ→ 0 and q∗ → 0) regime in Cor. 4.3 and Fig. 4.2.
We will see how this diversity may be exploited via scheduling (§5.3)
and power control (§5.4) leading to OP and TC that outperform the
non-fading counterpart.
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ΛHq*L

Rayleigh

no fading

Fig. 4.1 The OP (left) and TC (right) for both no fading and Rayleigh fading at δ = 1/2

and N = 0. The other parameters are u = 1, τ = 5, and d = 2 (α = 4).

4.1.2 Asymptotic OP and TC with fading

The asymptotic OP and TC in the basic model of Ch. 3 were given
in §3.2 (Prop. 3.3). These results were obtained by i) mapping Σα,0

d,λ(o)
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to Σ
1/δ,0
1,1 (o) using Prop. 2.8, ii) applying the series expansions of the

CCDF of Σα,0
1,λ in Prop. 2.10, and iii) using this in Prop. 3.1 which gives

the OP in terms of the CCDF of Σ
1/δ,0
1,1 (o) evaluated at a certain y. We

now extend this same procedure to the fading model in Def. 4.1.

Remark 4.2. Marked PPP (MPPP). The appropriate formalism
to incorporate channel fading under Def. 4.1 is that of the marked Pois-
son point process (MPPP), denoted by Φd,λ ≡ {(xi, hi)} where the RV
hi ∈ R+ is the “mark” associated with point xi ∈ Rd. In general the dis-
tribution of the mark is allowed to depend upon the point, but marks
must otherwise be independent of other marks and other points. Let
hi ∈ R+ be the fading coefficient for the channel between the interferer
at xi and the reference Rx at o, and assume that hi is independent of
xi and the other points and marks. The key result is that the MPPP
Φd,λ with pairs (xi, hi) taking values in Rd×R+ is in fact a (in general
non-homogeneous) PPP with “points” (xi, hi) taking values in Rd×R+.
Thus the addition of marks does not spoil the tractability of the un-
marked PPP framework. See [49] Ch. 5, and in particular the marking
theorem in §5.2, given below.

Theorem 4.1. PPP marking theorem ([49]). The MPPP Φd,λ ≡
{(xi, hi)}, where {xi} is a (in general, non-homogeneous) PPP on Rd

of intensity λ(x) and the marks admit a conditional PDF fh|x(h|x) for
each x ∈ Rd, is a (non-homogeneous) PPP on Rd × R+ with intensity
measure

µ(C) =
∫

(x,h)∈C
λ(x)fh|x(h|x)dxdh, (4.16)

for all Borel sets C ⊆ Rd × R+.

Prop. 2.6 gives the void probability for a homogeneous PPP; this is
generalized for non-homogeneous MPPPs below.

Proposition 4.3. The void probability of the non-homogeneous
MPPP Φd,λ with intensity measure µ(C) in Thm. 4.1 is

P(Φd,λ(C) = 0) = e−µ(C), (4.17)
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for all Borel sets C ⊆ Rd × R+.

Thm. 4.1 allows for marked versions of Prop. 2.7 and 2.8.

Proposition 4.4. MPPP distance and interference mapping.
Let Φd,λ = {(xi, hi)} be a MPPP where {xi} is a homogeneous PPP
on Rd of intensity λ and the marks {hi} are independent of the points,
and let Φ1,1 = {(ti, hi)} be a MPPP where {ti} is a homogeneous PPP
in R of intensity 1. Then:

(λcd|xi|d, hi) d= (2|ti|, hi), i ∈ N. (4.18)

Further, the following RVs are equal in distribution:

Σα,h
d,λ(o) d=

(
λcd
2

)α
d

Σ
α
d
,h

1,1 (o). (4.19)

Thus, as with the non-fading case, the interference may be treated as
a scaled version of that generated by a unit rate PPP on R. Mapping
from Rd to R is important because it allows us to apply a series repre-
sentation of the CCDF (as in Prop. 2.10) and take the dominant term
to get the asymptotic CCDF as y → ∞ (as in Corr. 2.2). Prop. 2.10
(taken from [57] (29)) ignored the marks since in that section we as-
sumed hi = 1 (Ass. 2.2), but in fact [57] gives the series expansion for
Σα,h

1,λ , given below. Recall the footnote under Prop. 2.10.

Proposition 4.5. SN series expansion ([57]). The series expansions
of the PDF and CCDF of the SN RV Σα,h

1,λ for δ = 1
α < 1 are:

f
Σα,h1,λ

(y) =
1
πy

∞∑
n=1

(−1)n+1

n!
Γ(1 + nδ) sin(πnδ)(2λΓ(1− δ)E[hδ]y−δ)n

F̄
Σα,h1,λ

(y) =
1
πδ

∞∑
n=1

(−1)n+1

nn!
Γ(1 + nδ) sin(πnδ)(2λΓ(1− δ)E[hδ]y−δ)n

(4.20)



4.1. Channel fading 65

The asymptotic PDF and CCDF as y →∞ are:

f
Σα,h1,λ

(y) = 2λδE[hδ]y−1−δ +O(y−1−2δ), y →∞

F̄
Σα,h1,λ

(y) = 2λE[hδ]y−δ +O(y−2δ), y →∞ (4.21)

The following theorem establishes the stability (in the sense of Def.
2.8) of Σ

1/δ,h
1,1 (o) (adapted from [64] Thm. 1.4.5 and [42] Thm. 3).

Theorem 4.2. Interference with fading is stable ([64]). For δ < 1,
Σ

1/δ,h
1,1 (o) is stable (with CF in Def. 2.8), with characteristic exponent

δ and dispersion coefficient

γ =
(

1
1− δΓ(2− δ) cos(πδ/2)E[hδ]

) 1
δ

. (4.22)

Remark 4.3. Interference and fading moments. In both Prop.
4.5 and Thm. 4.2 the impact of the random marks (fading coefficients)
is restricted to the fractional order moment E[hδ]. See [36] (p.33) for
an extended discussion of this fact.

The asymptotic CCDF of Σα,h
1,λ in Prop. 4.5 leads directly to the asymp-

totic OP (as λ→ 0) and TC (as q∗ → 0) under fading, just as Cor. 2.2
led directly to Prop. 3.3. A key difference is that random signal fading
invalidates Ass. 3.1.

Remark 4.4. Fading and outage with no interference. With ran-
dom signal fading h0 there is the possibility of a bad fade causing outage
even in the absence of interference. This outage event

E0 ≡
{
Pu−αh0

N
< τ

}
=
{

h0 <
τ

snr

}
=
{

h0

τuα
− N

P
< 0
}
, (4.23)

for snr defined in Ass. 3.1 has probability

q(0) ≡ P (E0) = Fh0

( τ

snr

)
. (4.24)
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Note q(0) is the OP evaluated at λ = 0. Denote the complement of E0

by Ē0, and its probability by

q̄(0) ≡ 1− q(0) = P(Ē0) = F̄h0

( τ

snr

)
. (4.25)

All analysis of OP (and hence TC) must therefore condition on h0

being above or below τ/snr to distinguish between the case of outage
being possible vs. outage being guaranteed. The range of the OP q(λ)
is [q(0), 1], and the domain of q∗ in the TC λ(q∗) is [q(0), 1].

Proposition 4.6. The asymptotic OP under fading as λ→ 0 is:

q(λ) = 1−
(

1− cdE[hδ]E

[(
h0

τuα
− N

P

)−δ∣∣∣∣∣ Ē0

]
λ

)
q̄(0) +O(λ2)

(4.26)
The asymptotic TC under fading as q∗ → q(0) is

λ(q∗) =

(
q∗−q(0)
1−q(0)

)
cdE[hδ]E

[(
h0
τuα − N

P

)−δ∣∣∣∣ Ē0

] +O(q∗ − q(0))2. (4.27)

In the no noise case (N = 0, q(0) = 0) these expressions become

q(λ) = cdτ
δudE[hδ]E[h−δ0 ]λ+O(λ2)

λ(q∗) =
1

cdτ δudE[hδ]E[h−δ0 ]
q∗ +O(q∗)2 (4.28)

In the no noise and Rayleigh fading case (h0 and {hi} exponential RVs):

q(λ) =
πcdδτ

δud

sin(πδ)
λ+O(λ2)

λ(q∗) =
sin(πδ)
πcdδτ δud

q∗ +O(q∗)2 (4.29)

Proof. The proof is analogous to that of Prop. 3.1, with a key difference
being the requirement to condition on possible vs. guaranteed outage,
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c.f. Rem. 4.4. Applying Def. 4.1 to Def. 1.1, and conditioning on h0

leaves Σα,h
d,λ as the sole source of randomness in sinr(o):

q(λ) = P (sinr(o) < τ)

= P
(
sinr(o) < τ |Ē0

)
q̄(0) + 1(1− q̄(0))

= 1−
(
1− P

(
sinr(o) < τ |Ē0

))
q̄(0)

= 1−
(
1− E

[
P (sinr(o) < τ | h0)| Ē0

])
q̄(0)

= 1−

1− E
[

P
(

Σα,h
d,λ(o) >

h0

τuα
− N

P

∣∣∣∣ h0

)∣∣∣∣ Ē0

]
︸ ︷︷ ︸

E[·]

 q̄(0)(4.30)

Note the probability is a RV that is a function of the RV h0, and the
expectation is with respect to the conditional PDF for h0:

fh0

(
h| Ē0

)
=

{
fh0

(h)

F̄h0( τ
snr)

, h > τ
snr

0, else
(4.31)

Now apply Prop. 4.4 and 4.5 to the interference probability noting that
h0 and Σ are independent.

E[·] = E

P

Σ
1/δ,h
1,1 (o) >

(
λcd
2

)− 1
δ
(

h0

τuα
− N

P

)
︸ ︷︷ ︸

y

∣∣∣∣∣∣∣∣∣ h0


∣∣∣∣∣∣∣∣∣ Ē0


= E

[
P
(

Σ
1/δ,h
1,1 (o) > y

∣∣∣ y
)∣∣∣ y > 0

]
= E

[
E[hδ]y−δ +O(y−2δ)

∣∣∣ y > 0
]

(4.32)

Note Ē0 =
{

h0 >
τ

snr

}
is equivalent to {y > 0}. Simplification yields

(4.26). Solving q(λ) = q∗ for λ yields (4.27). Expressions (4.28) are im-
mediate upon substituting N = 0, and expressions(4.29) are immediate
upon applying Lem. 4.1 and (2.7).

Remark 4.5. OP and fading moments. In Rem. 4.3 we noted
the distribution of the interference depended upon the fading coeffi-
cients only through E[hδ]. In the no noise case of Prop. 4.6 we see the
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asymptotic OP and TC depend upon the signal fading coefficient h0

and the interference fading coefficients {hi} only through the product
E[hδ]E[h−δ0 ].

Comparing the no-noise asymptotic OP and TC with fading in (4.28)
in Prop. 4.6 with the analogous results without fading in Prop. 3.3
yields the following corollary.

Corollary 4.3. Fading degrades performance. Let q(λ), λ(q∗) de-
note the OP and TC without fading, and q̃(λ), λ̃(q∗) denote the OP and
TC with fading. Let the signal and interference fading distributions be
equal (h

d= h0). Under no noise (N = 0) the asymptotic OP (as λ→ 0)
and TC (as q∗ → 0) with and without fading have ratio

q̃(λ)
q(λ)

=
λ(q∗)
λ̃(q∗)

= E[hδ]E[h−δ0 ] > 1. (4.33)

For Rayleigh fading this ratio is given by Lem. 4.1 and (2.7):

E[hδ]E[h−δ0 ] = Γ(1 + δ)Γ(1− δ) =
πδ

sin(πδ)
> 1. (4.34)

Fading degrades asymptotic performance relative to non-fading.

Proof. Jensen’s inequality (Prop. 2.2) asserts E[f(x)] ≥ f(E[x]) for con-
vex f(·) and RV x. Use convex function f(x) = 1/x and RV hδ.

Fig. 4.2 shows (4.34) vs. δ. For δ = 1/2 (e.g., d = 2 and α = 4) this
quantity is π/2 ≈ 1.57, i.e., the asymptotic OP / TC is 57% worse in
the presence of Rayleigh fading than without fading.

4.1.3 LB on OP (UB on TC) with fading

The OP LB (and TC UB) was established for the basic model through
the use of dominant interferers, defined in Def. 3.3 as those nodes whose
interference strength (under pathloss without fading) was sufficient to
individually cause outage at the reference Rx. The following definition
extends the concept to allow for fading.
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Fig. 4.2 The quantity πδ/ sin(πδ) in (4.34) and (2.7) vs. δ. Also shown is 1 and π/2 ≈ 1.57.

Definition 4.2. Dominant interferers and interference. An in-
terferer i in the MPPP Φd,λ defined in Prop. 4.4 is dominant at o
under threshold τ and signal fade h0 if its interference contribution is
sufficiently strong to cause an outage for the reference Rx at o:

h0u
−α

hi|xi|−α +N/P
< τ ⇔ hi|xi|−α >

h0

τuα
− N

P
. (4.35)

Else i is non-dominant. The set of dominant and non-dominant inter-
ferers at o under (τ, h0) is

Φ̂d,λ(o) ≡
{
i ∈ Φd,λ : hi|xi|−α >

h0

τuα
− N

P

}
, Φ̃d,λ(o) ≡ Φd,λ \ Φ̂d,λ(o).

(4.36)
The dominant and non-dominant interference at o under (τ, h0)

Σ̂α,h
d,λ(o) ≡

∑
i∈Φ̂d,λ(o)

hi|xi|−α, Σ̃α,h
d,λ(o) ≡

∑
i∈Φ̃d,λ(o)

hi|xi|−α (4.37)

are the interference generated by the dominant and non-dominant
nodes. Note Σα,h

d,λ(o) = Σ̂α,h
d,λ(o) + Σ̃α,h

d,λ(o).

This definition leads directly to a LB on the OP and an (in general,
numerically computed) UB on the TC.
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Proposition 4.7. OP LB. Under Def. 4.1 the OP has a LB

qlb(λ) = 1− E

[
exp

{
−λcdE[hδ]

(
h0

τuα
− N

P

)−δ}∣∣∣∣∣ Ē0

]
q̄(0) (4.38)

where the outer expectation is w.r.t. the random signal fade h0. In the
case of no noise (N = 0, q(0) = 0) the LB is:

qlb(λ) = 1− E
[
exp

{
−λcdτ δudE[hδ]h−δ0

}]
, (4.39)

In particular, with no noise the LB is expressible in terms of the MGF
of the RV −h−δ0 at a certain θ:

qlb(λ) = 1− M[−h−δ0 ](θ)
∣∣∣
θ=λcdτδudE[hδ]

. (4.40)

Proof. Repeat the proof of Prop. 4.6 up to (4.30), LB in terms of
Σ̂α,h
d,λ(o), and then express the LB outage event in terms of Φ̂d,λ(o):

q(λ) = P(sinr(o) < τ)

= 1−
(

1− E
[

P
(

Σα,h
d,λ(o) >

h0

τuα
− N

P

∣∣∣∣ h0

)∣∣∣∣ Ē0

])
q̄(0)

> 1−
(

1− E
[

P
(

Σ̂α,h
d,λ(o) >

h0

τuα
− N

P

∣∣∣∣ h0

)∣∣∣∣ Ē0

])
q̄(0)

= 1−
(

1− E
[
P
(

Φ̂d,λ(o) 6= ∅
∣∣∣ h0

)∣∣∣ Ē0

])
q̄(0)

= 1− E
[
P
(

Φ̂d,λ(o) = ∅
∣∣∣ h0

)∣∣∣ Ē0

]
q̄(0) (4.41)

The PPP Φd,λ is a homogeneous PPP with intensity measure given by
Thm. 4.1 with λ(x) = λ and fh|x(h|x) = fh(h). The key observation
is that the probability that Φ̂d,λ(o) = ∅ equals the void probability for
Φd,λ on the set C0 = {(x, h) : h|x|−α > w0} for w0 = h0

τuα − N
P . Note h0

is random and hence so is C0 and w0. Using Prop. 4.3 and simplifying
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gives:

P
(

Φ̂d,λ(o) = ∅
∣∣∣ h0

)
= P (Φd,λ(C0) = 0| h0)

= exp

{
−λ
∫

(x,h)∈C0

fh(h)dxdh

}

= exp
{
−λ
∫

Rd

∫
R+

1h|x|−α>w0
fh(h)dxdh

}
= exp

{
−λ
∫

Rd
E[1h|x|−α>w0

∣∣w0]dx
}

= exp
{
−λ
∫

Rd
P(h|x|−α > w0

∣∣w0)dx
}

(4.42)

Express the CCDF for h in terms of |x| and apply Thm. 2.2 to reduce
the integral over Rd to an integral over R:

P
(

Φ̂d,λ(o) = ∅
∣∣∣ h0

)
= exp

{
−λ
∫

Rd
P

((
h

w0

) 1
α

> |x|
∣∣∣∣∣w0

)
dx

}
(4.43)

= exp

{
−λdcd

∫
R+

P

((
h

w0

) 1
α

> r

∣∣∣∣∣w0

)
rd−1dr

}
Exchange the order of integration as follows:

P
(

Φ̂d,λ(o) = ∅
∣∣∣ h0

)
= exp

{
−λdcd

∫
R+

P(h > w0r
α|w0)rd−1dr

}
= exp

{
−λdcd

∫
R+

(∫ ∞
w0rα

fh(h)dh
)
rd−1dr

}
= exp

{
−λdcd

∫
R+

(∫ (h/w0)1/α

0
rd−1dr

)
fh(h)dh

}
Evaluate the inner integral and rearrange:

P
(

Φ̂d,λ(o) = ∅
∣∣∣ h0

)
= exp

{
−λdcd

∫
R+

1
d

(
h

w0

)δ
fh(h)dh

}

= exp
{
−λcdw−δ0

∫
R+

hδfh(h)dh
}

= exp
{
−λcdw−δ0 E[hδ]

}
(4.44)
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Substituting this last expression into (4.41) yields (4.38).

Note the MGFM[−h−δ0 ](θ) is not in general expressible in closed form,
and consequently the OP LB in Prop. 4.7 must be numerically com-
puted, see Fig. 4.3. Further, the MGF is not in general analytically
invertible, and thus the corresponding TC UB must be numerically
computed. Fig. 4.4 shows several OP and TC expressions from §4.1 for
the specific case of Rayleigh fading (for both signal and interference
channels), d = 2 and α = 4 (δ = 1/2), and no noise (N = 0). The other
parameters include τ = 5 and u = 1. The plots include exact results
from §4.1.1 (Cor. 4.2), asymptotic results from §4.1.2 (Prop. 4.6), and
bound results from §4.1.2 (Prop. 4.7).
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Fig. 4.3 The MGF for the RV −h−δ in Prop. 4.7 (M[−h−δ](θ)) vs. θ, for h ∼ Exp(1) and

d = 2 and α ∈ {2, 4, 6} (δ ∈ {1, 1/2, 1/3}).

4.2 Variable link distances (VLD)

In this section we make perhaps the simplest enhancement to the basic
model: the distance separating each Tx–Rx pair is allowed to be a RV
u ∼ Fu iid across pairs, which we call variable link distances (VLD), as
opposed to fixed link distances (FLD). For simplicity of exposition we
fix ε = 0 throughout this section. We retain the assumption of constant
power P for each node. There are now two sources of randomness: the
PPP Πd,λ yielding a random interference Σ, and the Tx-Rx separation
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Fig. 4.4 The OP (left) and TC (right) for Rayleigh fading (signal and interference), d = 2,

α = 4 (δ = 1/2) τ = 5, u = 1, and N = 0. Shown are the exact, asymptotic, and bound

results from §4.1.

distance u, yielding a random signal power S = Pu−α, requiring an
updated definition of SINR.

Definition 4.3. SINR for VLD. Under VLD u ∼ Fu and ε = 0, the
SINR in Def. 3.1 holds but with signal power a RV S ≡ Pu−α.

The total law of probability gives an updated definition for the OP.

Definition 4.4. The OP for VLD with u ∼ Fu is

q(λ) ≡ E[P(sinr(o) < τ |u)]. (4.45)

The impact of VLD on the OP and TC is most easily seen by applying
the asymptotic OP and TC from Prop. 3.3 for the case of no noise
(N = 0). Denote the OP and TC with VLD q̃(λ), λ̃(q∗) and denote the
OP and TC with FLD as q(λ), λ(q∗).

Proposition 4.8. Asymptotic OP (ε = 0, N = 0). For ε = 0 and
N = 0 the asymptotic OP with FLD u = E[u] and VLD u ∼ Fu are

q(λ) = cdτ
δE[u]dλ+O(λ2), λ→ 0

q̃(λ) = cdτ
δE[ud]λ+O(λ2), λ→ 0 (4.46)
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For ε = 0 and N = 0 the asymptotic TC with FLD u = E[u] and VLD
u ∼ Fu are

λ(q∗) =
1

cdτ δE[u]d
q∗ +O(q∗)2, q∗ → q(0)

λ̃(q∗) =
1

cdτ δE[ud]
q∗ +O(q∗)2, q∗ → q(0) (4.47)

Note for small λ, q∗ the ratio of OP and TC under VLD vs. FLD is:

q̃(λ)
q(λ)

=
λ(q∗)
λ̃(q∗)

=
E[ud]
E[u]d

≥ 1. (4.48)

The inequality is shown by applying Jensen’s inequality to the convex
function ud. We conclude that VLD degrades performance for d > 1 in
the regime of small λ, q∗ relative to FLD with the same mean.

We next apply the OP LB in Prop. 3.4 to Def. 4.4 to express the
OP LB for VLD in terms of the MGF of −ud.

Proposition 4.9. OP LB as an MGF. For ε = 0 and N = 0 the
OP LB for VLD is the MGF of the RV −ud evaluated at θ = λcdτ

δ:

q̃lb(λ) = 1− E
[
e−λcdτ

δud
]

= 1− M[−ud](θ)
∣∣∣
θ=λcdτδ

. (4.49)

We specialize this example to a particular choice of Fu for which we
can explicitly compute the MGF M[−ud]. Fix u to be the contact
distribution for a PPP, i.e., the random distance from any point x ∈ Rd

to the nearest point in Πd,µ. As motivation, suppose the PPP Πd,µ

represents locations of base stations, these locations induce a Voronoi
tesselation of Rd, and a Tx in the PPP Πd,λ is assigned to the base
station for the transmitter’s cell. The CCDF is immediate from the
void probability in Prop. 2.6.

Proposition 4.10. Nearest neighbor RV characteristics. The
nearest neighbor contact RV u for a PPP Πd,µ has CCDF:

F̄u(u) = P(u > u) = P(Πd,µ(bd(o, u)) = 0) = e−µcdu
d
. (4.50)
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The RVs u and ud have means and ratio

E[u] =
1
dΓ
(

1
d

)
(cdµ)

1
d

, E[ud] =
1
cdµ

,
E[ud]
E[u]d

=
(

d

Γ(1/d)

)d
, (4.51)

which evaluates to 1 (d = 1), ≈ 1.273 (d = 2), and ≈ 1.404 (d = 3).
The RV −ud has MGF:

M[−ud](θ) =
cdµ

θ + cdµ
. (4.52)

The OP LB in Prop. 4.9 for this choice of U is

q̃(λ) ≥ q̃lb(λ) = 1− cdµ

cdλτ δ + cdµ
=

λτ δ

λτ δ + µ
. (4.53)

We may further specialize this example to the case of δ = 1/2 and
employ the exact OP in Cor. 3.1 in Def. 4.4.

Corollary 4.4. Exact OP (ε = 0, N = 0, δ = 1
2). For u in Prop.

4.10, the OP is

q̃(λ) = 2E
[
Fz

(√
π

2
ud
√
τcdλ

)]
− 1. (4.54)

Fig. 4.5 shows six curves of OP vs. λ for the case of τ = 1, µ =
1/100, d = 2, α = 4 (δ = 1/2). The six curves are the exact, LB, and
asymptotic OP for both VLD using the nearest neighbor distance u in
Prop. 4.10, and the FLD OP (from Ch. 3) with u = E[u] = 5. Observe
the LBs lie below the exact OP as expected and are asymptotically
tight as λ → 0, and that the asymptotic approximations as λ → 0
are valid. Observe the VLD OP is slightly higher than the FLD OP
for λ → 0, as expected by (4.48). Note however, that the ordering for
λ→ 0 does not hold for larger λ, as we in fact observe FLD OP exceeds
VLD OP in this regime. Although the example illustrates there may
be some significant dependence of the OP (and hence the TC) on the
link distance variability for λ (and hence the OP) large, we also observe
the impact of this variability to be minimal in the small λ (and hence
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small OP) regime, which is typically of more practical interest. In short,
this section shows that a variable Tx-Rx link distance can be included
in the OP and TC results without any major modifications; the link
distance is simply conditioned on and averaged which, for a given link
distribution, causes a fixed reduction in TC.
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Fig. 4.5 The OP (exact, LB, and asymptotic approximation for λ→ 0) vs. λ for both FLD

and VLD. The top left plot shows all six curves, various subsets of these are shown in the

remaining five plots.

4.3 Multihop TC

Since an ad hoc network – or any wireless network – may wish to use
intermediate relays to transfer packets from source to destination, an



4.3. Multihop TC 77

extension of the TC metric to multiple hops is very desirable. This is
particularly the case in “power-limited” networks; i.e., those where the
source-destination distance U (say) is sufficiently large that it cannot be
bridged with a single transmission, but instead must be broken into M
shorter hops using other nodes in the network as relays. This is a chal-
lenging extension, and in this section we overview one recent approach
that retains fairly good tractability. Building on the TC framework so
far, in this section we assume:

(1) All links experience unit mean Rayleigh fading.
(2) All hops are equidistant of length u = U/M , and on a straight

line between the source and destination. This can easily be
shown to be “best case” in terms of success probability.

(3) A packet is repeatedly transmitted on each hop until it is
successfully received by the next hop, or until a timeout cor-
responding to a maximum total number of end-to-end (e2e)
attempts A occurs.

(4) Each transmission attempt experiences iid fading and inter-
ference, and hence has the same OP which is independent of
all other attempts.

(5) A packet must reach the final destination before a new one
is injected by the source; i.e., there is no intra-route spatial
reuse. The spatial intensity of attemped transmissions at a
point in time is λ (nodes per square meter); this is also the
spatial intensity of source nodes.

This model can be conceptualized by Fig. 4.6. Based on these assump-
tions, we introduce multihop TC, originally defined in [5]1. We acknowl-
edge prior work [69] that proposed a similar model but focused more
on conditions for queue stability over the multihop routes.

Definition 4.5. Multihop TC. Define λmh(λ,U,M,A) as the spatial
intensity of successfully delivered packets (packets per square meter)
when the intensity of source nodes is λ, each source destination pair is
separated by U meters, each such pair employs M−1 relays positioned

1 This paper introduces a slightly different metric called random access transport capacity.
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Fig. 4.6 The multihop TC model with M = 3.

equidistant on the straight line connecting them, and each packet is
permitted at most A transmission attempts (end to end) before time-
out. Let TM ∼ Pascal(M, q(λ))2 be the RV denoting the total number
of independent transmission attempts required to achieve M successes
when each trial fails according to the OP q(λ). Then

λmh(λ,U,M,A) =
P(TM ≤ A)
E[TM ∧A]

λ, (4.55)

where we thin by the probability of successful end to end delivery
P(TM ≤ A) and divide by the average number of transmissions re-
quired for end to end delivery, E[TM ∧A]. The multihop TC is defined
as the maximum of (4.55) over the number of hops M :

λmh = λ max
M∈[A]

P(TM ≤ A)
E[TM ∧A]

. (4.56)

It has units of packets per unit area.

Recall [A] ≡ {1, . . . , A}. Neither the numerator P(TM ≤ A) nor the
denominator E[TM ∧ A] in (4.55) can be computed directly, however,
a useful inequality is given in the following proposition.

Proposition 4.11. Multihop TC inequality. For all A ∈ N and all
M ∈ {1, . . . , A}:

P(TM ≤ A)
E[TM ∧A]

≤ 1
E[TM ]

. (4.57)

2 A special case of the negative binomial distribution. Sometimes these distributions are
defined as the number of failures (instead of trials) until M successes are achieved.
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The proof is given in [5]. The main idea is that as A increases the
numerator P(TM ≤ A)→ 1 and the denominator E[TM ∧A]→ E[TM ]
both increase, but the numerator does so slightly more quickly, resulting
in an upper bound.

With Ass. (2) above (equally spaced hops), the per-hop per-attempt
OP is simply the standard Rayleigh fading OP (Cor. 4.1) with per-hop
distance u = U/M and snr = P (U/M)−α/N :

q(λ,M) = 1− exp

{
−λ πδcd

sin(πδ)
τ δ
(
U

M

)d
− τ N

P

(
U

M

)α}
. (4.58)

Since each transmission attempt is iid, the RV TM is in fact the sum
of M independent geometric RVs, TM = T

(1)
M + · · ·T(M)

M , where T
(i)
M is

the number of independent trials required until success is achieved on
hop i, and each trial fails with OP q(λ,M), i.e.,

P(T
(i)
M = t) = q(λ,M)t−1(1− q(λ,M)), t ∈ N. (4.59)

Therefore, the average number of attempts per hop is E[T(i)
M ] =

1/(1−q(λ,M)) and the expected number of total transmissions required
to move a packet from source to destination is E[TM ] = ME[T(i)

M ] =
M/(1−q(λ,M)). Combining all these observations yields the following
UB on the multihop TC.

Proposition 4.12. Multihop TC UB. An UB on the multihop TC
from (4.56) is

λmh ≤ λub
mh ≡ λ max

M∈[A]

1− q(λ,M)
M

, (4.60)

for q(λ,M) in (4.58).

The upper bound is somewhat loose for small A and is fairly tight for
large A, as can be seen in Fig. 4.7. The natural next step is to find
the optimal hopcount M∗(A), i.e., the value of M that maximizes the
multihop TC.
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Fig. 4.7 The multihop TC λmh from (4.56) and its upper bound λub
mh from (4.60) versus

the allowed number of transmission attempts A.

Definition 4.6. Optimal number of hops. The (bound-) optimal
number of hops using the multihop TC UB in Prop. 4.12 is

M∗ ≡ arg max
M∈[A]

1− q(λ,M)
M

. (4.61)

The following proposition characterizes M∗ for the special case d = 2.

Proposition 4.13. Optimal number of hops. The optimal number
of hops M∗ in Def. 4.6 for d = 2 is the solution to the equation

Mα − 2λτ2/αKαU
2Mα−2 − τNUα

P
α = 0. (4.62)

This results in closed-form expressions for M only when α ∈ {3, 4, 6, 8},
in which case M∗ is the largest positive root of (4.62). The constant
Kα = π2δ csc(πδ) with δ = 2

α .

Proof. The objective is

1− q(λ,M)
M

=
1
M

exp(−k1M
−α − k2M

−2) (4.63)

where k1 = τ
snr and k2 = λπ2δ csc(πδ)τ δU2, which follows from (4.58).

Setting the derivative equal to zero gives

exp(k1M
−α + k2M

−2)
(
1− k1αM

−α − 2k2M
−2
)

= 0 (4.64)
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which results in
Mα − 2k2M

α−2 − k1α = 0. (4.65)

By the Abel-Ruffini theorem, a formula solution to a polynomial equa-
tion only exists when the degree of the polynomial is 4 or less, therefore
M can be found in closed-form only for α ∈ {2, 3, 4, 6}, although it can
also be found in principle for α ∈ {1, 8}. The solutions for α = 6 and
α = 8 follow similarly to the α = 3 and α = 4 solutions due to the
sparsity of the polynomial.

As noted previously, the expected interference in a 2D PPP is infinite
for α = 2 (recall d = 2 in Prop. 4.13). Hence we give the results
for α ∈ {3, 4} in the following two corollaries. Proofs follow standard
algebraic arguments (although perhaps unfamiliar ones for α = 3) and
are given in [5].

Corollary 4.5. Optimal number of hops for α = 3. Solving (4.65)
with α = 3 yields two possible solutions, depending on the polarity of
the equation’s discriminant D = 9k2

1
4 −

8k3
2

27 . When D ≥ 0,

M∗(3) = τ
1
3U

[
3

√
3N
2P

+ f + 3

√
3N
2P
− f

]
, (4.66)

where

f =

√(
3N
2P

)2

− 8K3
3

27
λ3, (4.67)

and K3 = 4
9

√
3π2 ≈ 7.6 is the π2δ csc(πδ) term evaluated at α = 3.

When D < 0

M∗(3) = 2

√
2λK3

3
τ

1
3U cos

(
1
3

arc cos

[
3
√

3N

4
√

2P (λK3)
3
2

])
. (4.68)

Although the expressions (4.66) and (4.68) at first appear to be quite
different, in fact they have a quite similar dependence in terms of the
main parameters of interest.
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hops M for each M = 1, . . . , A when A = 6 (left) and A = 12 (right). Note the maximizing

M∗ for the exact solution and the UB are close to one another in both cases.

Corollary 4.6. Optimal number of hops for α = 4. Solving (4.65)
with α = 4 yields a unique maximum positive real solution for M∗:

M∗(4) = τ
1
4U

√
λ
π2

2
+

√
λ2
π4

4
+

4N
P
. (4.69)

The tightness of the bound is shown in Fig. 4.8, where it is seen that
the quality of the bound improves as A increases.

We conclude by commenting on the five enumerated assumptions
that were made at the beginning of this section in order to get to this
result. The first assumption, of Rayleigh fading, is fairly innocuous and
used just because it allows a precise equality for per-hop outage prob-
ability. Any of the other channel models discussed in this monograph
could of course be used, resulting in appropriately modified bounds.
The second assumption of equi-distant relays on a straight line is per-
haps the most physically questionable assumption, especially since the
network interference is drawn from a PPP. This model is best case,
so it preserves the upper bound, but it can be legitimately asked how
loose the bound might be compared to a network with relays that
must be chosen from a random distribution of nodes. This question
has been explored in [16], but deserves further study. The third as-
sumption, of transmission until success or repeated failure (timout) is
reasonable and does not require modification. The fourth assumption,
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of each slot being iid, could be approximated in a frequency hopping
or other diversity-harvesting system; in which each slot could truly
see iid interference and fading, and thus have nearly independent suc-
cess probability. This can be relaxed, see e.g., [73] which builds upon
[5]. And finally, the fifth assumption regarding no intra-route reuse is
pessimistic for a given source-destination pair, especially for large M .
However, in a network-wide sense sparse reuse of a given route allows
other source-destination pairs to transmit and so there is no net change
to the multihop TC, since this is a spatially averaged metric. Formally,
the loss in multihop TC from M in the denominator (which assumes no
intra-route reuse) can be exactly balanced by a corresponding increase
in λ in the numerator, resulting in the same interference intensity.



5

Design techniques for wireless networks

In this chapter we consider four design techniques/issues for a decen-
tralized wireless network based on the models of Ch. 3 and 4:

(1) Spectrum management: the network bandwidth W (Hz) is
to be broken up into B bands each of size W/B (Hz). This
allows the density of interferers (per band) to be controlled,
since the density will then be λ/B.

(2) Interference cancellation: allow a Rx to cancel a fraction κ

of the interference generated by the K strongest interferers.
(3) Threshold scheduling: exploit fading by scheduling transmis-

sions for Tx–Rx pairs with a strong channel.
(4) Power control: select the transmission power to partially

compensate for the channel to the Rx.

Although this list of enhancements and design issues is by no means
exhaustive, these four topics are major issues that any systems engi-
neer designing a centralized network protocol would be faced with. We
will see that the TC framework is able to provide insight and quantita-
tive network-level performance analysis regarding these issues, whereas
other approaches typically have been unable to achieve this, and must

84
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either use simulations or greatly simplified analytical models. Chap-
ter 6 continues this direction, focusing exclusively on multi-antenna
transmission and reception.

5.1 Spectrum management

In this section we study the impact of multiple frequency bands on OP
and TC [45]. We consider a bandwidth of W (Hz) that is divided into
B uniform bands, each with bandwidth W/B (Hz). The objective is to
select B to maximize the TC. The solution of this optimization is non-
trivial on account of the following two dependencies: as B increases
there is simultaneously less interference on each band and a higher
SINR required to achieve a fixed rate R. The lower interference is on
account of there being more bands from which to choose, while the
higher SINR requirement is due to Shannon’s formula c = W log2(1 +
sinr); the nature of this dependence will be made clear in what follows.

Assumption 5.1. Random band selection. Throughout this sec-
tion fix ε = 0 and set each hi = 1 (no fading) in Ass. 2.2. Further,
assume each Tx will independently and uniformly at random select a
single band in [B] ≡ {1, . . . , B} on which to operate. Let b0 be the
random band selected by the reference Tx, and {bi} be the random
bands selected by each interferer i ∈ Πd,λ.

Remark 5.1. Thinned interference seen by reference Rx. Hav-
ing b0 and {bi} be uniform and independent implies that the SINRs
on each band are iid, and hence, without loss of generality, we may
assume the reference Tx selects b0 = 1 (say). It follows that only in-
terferers that select band 1 are of relevance to the reference Rx at o.
More formally, the MPPP Φd,λ = {(xi, bi)} induces B iid PPPs, each
of intensity λ/B, and the PPP of interferers on band 1 is

Πd,λ/B = {xi : (xi, 1) ∈ Φd,λ}. (5.1)
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It furthermore follows that the (normalized) interference SN RV seen
at o on band 1 is

Σ(o) = Σα,0
d,λ/B(o) =

∑
i∈Πd,λ/B

|xi|−α. (5.2)

The random channel capacity and channel spectral efficiency are de-
fined below, along with equivalent definitions of outage event (1.1).

Definition 5.1. Noise, SINR, SNR, capacity, spectral effi-
ciency.

(1) The noise power spectral density is uniform at η (W/Hz).
The noise power over a band is N(B) = ηWB (W) and the
noise power over the full spectrum is N = ηW (W).

(2) The SINR seen at o on band 1 is

sinr(o) ≡ Pu−α

PΣ(o) + ηWB
=

1
Σ(o) + 1

snrB

, (5.3)

where the full-spectrum Rx SNR is

snr ≡ Pu−α

ηW
. (5.4)

(3) The Shannon channel capacity at o on a channel of W/B
(Hz), treating interference as noise (Ass. 1.1), is the RV

c(o) ≡ W

B
log2(1 + sinr(o)), (bps). (5.5)

(4) The corresponding Shannon spectral efficiency is the RV

c(o)
W/B

= log2(1 + sinr(o)), (b/s/Hz). (5.6)

(5) The rate and spectral efficiency requirements are defined as

R ≡ W

B
log2(1+τ) (bps), ν ≡ R

W
B = log2(1+τ) (b/s/Hz).

(5.7)
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(6) The outage event (1.1) may be expressed in terms of both
the rate and spectral efficiency:

sinr(o) < τ ⇔ c(o) < R⇔ c(o)
W/B

< ν. (5.8)

The above definitions and discussion motivate the following modi-
fications to the definitions of OP and TC.

Definition 5.2. The OP and TC under multiple bands are de-
fined as follows:

(1) The OP at o is a function of the per-band spatial intensity
of interferers λ/B:

q(λ/B,B) ≡ P(sinr(o) < τ). (5.9)

(2) The TC under outage constraint q∗ ∈ (0, 1) is defined as

λ(q∗, B∗) ≡ max
B∈N

Bq−1(q∗, B)(1− q∗), (5.10)

where the maximization is over all possible number of bands
B ∈ N. Here q−1(·, B) is the inverse of the monotone increas-
ing OP q(·, B) in (5.9). The multiplication by B is on account
of the fact that q−1(q∗, B)(1 − q∗) is the average number of
successful transmissions per unit area on band 1.

The above definitions make clear that the TC in Def. 5.1 is the
following modification of the TC (Prop. 3.2) in Ch. 3.

Proposition 5.1. Using Def. 5.1 the TC under multiple bands is:

λ(q∗, B∗) = κ(q∗)ω(B∗) (5.11)

where

κ(q∗) =
2(1− q∗)

cdud(F̄−1
Σ (q∗))δ

(5.12)
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and F̄−1
Σ is the inverse CCDF of the RV Σ

1/δ,0
1,1 (o). Moreover,

ω(B) = B

(
1

2
R
W
B − 1

− 1
snrB

)δ
, (5.13)

with
B∗ ∈ arg max

B∈[bBmaxc]
ω(B), (5.14)

for Bmax satisfying

Bmax =
W

R
log2(1 + snrBmax). (5.15)

Proof. Multiplying the TC in Prop. 3.2 by B as in (5.10) gives:

λ(q∗) =
2B
(
u−α

τ(B) −
N(B)
P

)δ
(1− q∗)

cd(F̄−1
Σ (q∗))δ

, (5.16)

where we write τ(B), N(B) to emphasize their dependence upon B.
Substitution of (5.4) and (5.7) and algebra yields the proposition.

Remark 5.2. Optimal number of bands independent of target
OP. The form (5.11) highlights the fact that the optimal number of
bands B∗ is independent of the target OP q∗. In fact κ(q∗) captures
the spatial components of the network through its dependence upon
u, d, δ, q∗, while ω(B) captures the spectral components of the network
through its dependence upon R,W, snr, δ.

It is natural to change the design variable from the number of bands B
to the spectral efficiency ν = R

WB. The following definition is central
to what follows.

Definition 5.3. Energy per bit and receiver SNR. The energy
per bit is

εb
η
≡ Pu−α

ηR
(J/bit), (5.17)
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and relates to the Rx SNR as

R
εb
η

= W snr =
Pu−α

η
. (5.18)

Remark 5.3. Relaxation of integrality constraint. Although B

is naturally restricted to be integral, taking values in [bBmaxc] for Bmax

in (5.14), by continuity of the objective ω(B) we can safely relax the
domain to the continuous interval [0, Bmax] and then take the near-
est integer. It follows that the corresponding domain for ν is [0, νmax]
defined below.

Simple algebra gives the following corollary of Prop. 5.1.

Corollary 5.1. Using Def. 5.1 the TC under multiple bands is:

λ(q∗, ν∗) =
W

R
κ(q∗)ω̃(ν∗) (5.19)

where F̄−1
Σ and κ(q∗) are as in Prop. 5.1,

ω̃(ν) = ν

(
1

2ν − 1
− 1

εb
η ν

)δ
, (5.20)

with

ν∗ ∈ arg max
ν∈[0,νmax]

ω̃(ν), (5.21)

and νmax determined by εb
η and satisfying the equation

νmax = log2

(
1 +

εb
η
νmax

)
(5.22)

Note (5.22) does not have a solution for all εb
η .
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Proposition 5.2. Minimum energy per bit required for solu-
tion. Equation (5.22) has a solution precisely for

εb
η
> log 2 ≈ 0.693 ≈ −1.59 (dB). (5.23)

Proof. Application of x > log(1 + x) for x ∈ R+ to (5.22) yields:

(log 2)νmax = log
(

1 +
εb
η
νmax

)
>
εb
η
νmax. (5.24)

Remark 5.4. Low SNR regime. The minimum energy per bit
threshold of −1.59 (dB) is a fundamental quantity in the wideband
regime. The interested reader is referred to [75] for a general discussion
and to [45] (footnote 4) for an elaboration in this context.

Fig. 5.1 shows ω(B) vs. B (5.13), ω̃(ν) vs. ν (5.20), and two plots
illustrating νmax( εbη ) (5.22) using parameters:

d = 2 u = 1(m) α ∈ {3, 4} P ∈ {3, 6} (dBW)
R = 1 (Mbps) W = 10 (MHz) η = 10−6 (W/Hz)

(5.25)
These are the default parameters throughout this section except when
indicated otherwise. Observe that each of the four (α, P ) pairs in Fig.
5.1 has a distinct optimal B∗ (resp. ν∗) that maximizes ω(B) (resp.
ω̃(ν)). The B∗ maximizing ω(B) in (5.14) is seen to depend upon three
parameters (R/W , snr, δ) while the ν∗ maximizing ω̃(ν) in (5.21) is
seen to only depend upon two parameters ( εbη and δ). For this reason
we restrict our attention in what follows to optimization over ν instead
of over B, with the understanding that B∗ = W

R ν
∗ (recall Rem. 5.3).

The following result characterizes ν∗ ([45] Thm. 1).
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Fig. 5.1 Top: the spectral component ω(B) (left) and ω̃(ν) (right) vs. the number of bands

B (left) and the spectral efficiency ν (right) under Prop. 5.1 (left) and Cor. 5.1 (right) using
parameters (5.25). Bottom: the value νmax obeys νmax = log2(1 + εb

η
νmax) and thus is

the intersection of the ν line with the log2(1 + εb
η
ν) curve (left). Equivalently, νmax( εb

η
) vs.

εb
η

(in dB) is shown on the right. No solution νmax exists for εb
η
< log 2 (≈ −1.59 dB).

Proposition 5.3. The optimal spectral efficiency ν∗ in (5.21) is
the unique positive solution of:

εb
η
ν(2ν − 1)− (1− δ)(2ν − 1)2 − δ(log 2)

εb
η
ν22ν = 0. (5.26)

Furthermore, ν∗ is increasing in εb
η and decreasing in δ.

The proof is in [45] and requires only simple calculus. Fig. 5.2 shows
ν∗ vs. εb

η for various δ as well as the TC λ(q∗, ν∗) vs. εb
η for various q∗.

Observe that ν∗ is increasing in εb
η and decreasing in δ as asserted in

Prop. 5.3. Observe that the TC is increasing in both εb
η and q∗.

We next study the asymptotic behavior of ν∗ in the high SNR ( εbη →
∞) and low SNR ( εbη → log 2) regimes.
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Fig. 5.2 Left: the optimal ν∗ satisfying (5.26) vs. εb
η

for δ ∈ {2/3, 2/4, 2/5}. Right: the

TC λ(q∗, ν∗) vs. εb
η

for δ = 1/2 and q∗ ∈ {0.01, 0.05, 0.10}.

Corollary 5.2. The asymptotic optimal spectral efficiency ν∗ in
the high SNR regime ( εbη →∞) is the unique positive solution of:

1− 2−ν = (log 2)δν. (5.27)

The corollary is immediate upon observing the second term in (5.26)
is negligibly small as εb

η →∞. This function ν∗(δ) is shown in Fig. 5.3.
Observe the convergence of ν∗ to that predicted by Cor. 5.2 is slower
for small δ (equivalently, for high α).
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Fig. 5.3 Left: the optimal high SNR spectral efficiency ν∗(δ) in Cor. 5.2. Right: the optimal
spectral efficiency ν∗ vs. εb

η
(in dB) from Fig. 5.2 (left) along with the high SNR asymptotes.

Proposition 5.4. The maximum possible spectral efficiency
νmax (obeying (5.22)) in the low SNR regime ( εbη → log 2) to first
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order in ( εbη − log 2) and second order in ν is

νmax =
2( εbη − log 2)

(log 2)(2 εbη − log 2)
+O(ν2) +O

(
εb
η
− log 2

)2

. (5.28)

The optimal spectral efficiency (obeying (5.26)) in the low SNR regime
( εbη → log 2) to first order in ( εbη − log 2) and second order in ν is

ν∗ =
2(1− δ)( εbη − log 2)

(log 2)((log 2)− (1− 2δ)( εbη − log 2))
+O(ν2)+O

(
εb
η
− log 2

)2

.

(5.29)

Proof. The series expansion of log(1 + εb
η ν) − ν (viewed as a function

of ( εbη , ν)) around the point (log 2, 0) to first order in ( εbη − log 2) and
to second order in ν is:

log
(

1 +
εb
η
ν

)
− ν =

(− log 2
2

ν2 +O(ν3)
)

+
(

ν

log 2
− ν2 +O(ν3)

)(
εb
η
− log 2

)
+O

(
εb
η
− log 2

)2

. (5.30)

Cancelling the common factor of ν from the first two terms, equating
with zero, and solving for ν gives (5.28). Note the second order expan-
sion for ν is required to be able to solve for ν — a first order expansion
in ν is inadequate in this regard. The series expansion of (5.26) to first
order in εb

η and third order in ν around ( εbη , ν) = (log 2, 0) is

(5.26) =
(
−1

2
(log 2)3ν3 +O(ν4)

)
+
(

(log 2)(1− δ)ν2 +
1
2

(log 2)2(1− 2δ)ν3 +O(ν4)
)
×(

εb
η
− log 2

)
+O

(
εb
η
− log 2

)2

. (5.31)

Cancelling the common factor of ν2 form the first two terms, equat-
ing with zero, and solving for ν gives (5.29). Again, the third order
expansion for ν is required to be able to solve for ν.
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Fig. 5.4 (left) shows the exact value of νmax (obeying (5.22)) and the
low SNR approximation from (5.28) vs. εb

η (in dB). Similarly, Fig. 5.4
(right) shows the exact value of ν∗ (obeying (5.26)) and the low SNR
approximation from (5.29) for δ ∈ {2/3, 2/4, 2/5}. Note the validity
of both the max and optimal approximations quickly degrades as εb

η

increases, and that the optimal approximation is more accurate for
high δ than for small δ.
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Fig. 5.4 Exact and approximate values for νmax (left) and ν∗ (right) vs. εb
η

(in dB) using

the low SNR approximations in Prop. 5.4. The ν∗ plot shows exact (thick) and approximate

(thin) values for δ of 2/3 (solid), 2/4 (dashed), 2/5 (dotted).

5.2 Interference cancellation (IC)

In this section we study the impact of interference cancellation (IC) on
the OP and TC [77]. There are (at least) three major constraints in
designing a Rx capable of cancellation.

Definition 5.4. The (κ,K, Pmin) IC model is defined as follows.

(1) Cancellation is inevitably imperfect, due to imperfect chan-
nel estimation and signal reconstruction. To model this, we
multiply interference from cancellable nodes by κ ∈ [0, 1].
Note κ = 0 is perfect cancellation and κ = 1 is no cancella-
tion.

(2) Processing delays and computational complexity constraints
limit the number of cancellable interferers. Therefore, we can-
cel at most the nearest K ∈ N interferers.

(3) Received power limits the decodability of an interferer, i.e.,
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it is difficult to accurately estimate and subtract low SNR
interferers, due for example to finite resolution receivers.
Thus, we only cancel interferers with a received power above
Pmin ∈ R+.

These constraints may be interdependent, e.g., there may be natural
design tradeoff in (κ,K) in that high quality cancellation (small κ) may
require larger delays and thereby UB feasible K. We make the following
assumptions throughout this section. Recall Ass. 2.1 in §2.2. We retain
Ass. 2.2 in §2.3 and in particular assume ε = 0. We next define the
SINR seen at o under the (κ,K, Pmin) IC model.

Definition 5.5. The SINR at a (κ,K, Pmin) IC capable reference
Rx located at o is as in Def. 3.1, except interference is split into par-
tially cancelled and uncancelled components:

sinr(o) ≡ Pu−α

κPΣpc(o) + PΣuc(o) +N
, (5.32)

where the partially cancelled / uncancelled interference components are

Σpc(o) ≡
∑

i∈Πpc
d,λ(o)

|xi|−α, Σuc(o) ≡
∑

i∈Πuc
d,λ(o)

|xi|−α. (5.33)

Here, the set of interferers Πd,λ = {xi} is partitioned into the sets of
partially cancelled and uncancelled interferers based on (K,Pmin):

Πpc
d,λ(o) ≡

{
i ∈ Πd,λ : i ∈ [K] and P |xi|−α > Pmin

}
Πuc
d,λ(o) ≡ Πd,λ \Πpc

d,λ(o). (5.34)

Note the i ∈ [K] requirement and recall the labeling convention in
Ass. 2.1. The following lemma translates the received power constraint
(Pmin) and cancellation quantity constraint (K) for interferers in Πd,λ

(from Def. 5.4) to a maximum distance from o under Π1,1, and the dom-
inant vs. non-dominant criterion in Πd,λ (from Def. 3.3) to a maximum
distance from o under Π1,1.
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Lemma 5.1. Constraint mapping. Satisfying both the received
power constraint P |xi|−α > Pmin and the cancellation quantity con-
straint i ∈ [K] for i ∈ Πd,λ is equivalent to |ti| < tpc for i ∈ Π1,1

where

tpc ≡ |tK | ∧
λcd
2

(
P

Pmin

)δ
. (5.35)

The requirement for a partially cancellable interferer i ∈ Πpc
d,λ(o) to be

dominant as in Def. 3.3 is equivalent to |ti| < tpc
dom for i ∈ Π1,1 where

tpc
dom ≡

λcd
2
κδξd, (5.36)

for ξ in Def. 3.2. The requirement for an uncancellable interferer i ∈
Πuc
d,λ(o) to be dominant is equivalent to |ti| < tuc

dom for i ∈ Π1,1 where

tuc
dom ≡

λcd
2
ξd. (5.37)

Proof. All three quantities follow from Prop. 2.7. First, (5.35):

P |xi|−α > Pmin ⇔ |xi|d <
(

P

Pmin

)δ
⇔ |ti| <

λcd
2

(
P

Pmin

)δ
. (5.38)

Take the minimum with |tK | to also ensure i ∈ [K]. Next, (5.36):

Pu−α

κP |xi|−α +N
> τ ⇔ |xi|d < κδξd ⇔ |ti| <

λcd
2
κδξd. (5.39)

The constraint in (5.37) is obtained by an identical development but
without the κ on the interference term.

Note tpc is a function of the RV |tK | and is therefore a RV. The
next lemma applies Lem. 5.1 to define the sets of dominant and non-
dominant nodes (again in the sense of Def. 3.3) among the sets of
cancellable and uncancellable nodes using thresholds tpc, tpc

dom, t
uc
dom.
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Lemma 5.2. The set of partially cancellable / uncancellable
nodes in Π1,1 is:

Πpc
1,1(o) = {i ∈ Π1,1 : |ti| < tpc}, Πuc

1,1(o) = Π1,1 \Πpc
1,1(o), (5.40)

for tpc
max in Lem. 5.1. The set of dominant and non-dominant partially

cancellable and uncancellable nodes is:

Π̂pc
1,1(o) =

{
i ∈ Π1,1 : |ti| < min

{
tpc, tpc

dom

}}
Π̃pc

1,1(o) =
{
i ∈ Π1,1 : tpc

dom < |ti| < tpc
}

Π̂uc
1,1(o) = {i ∈ Π1,1 : tpc < |ti| < tuc

dom}
Π̃uc

1,1(o) = {i ∈ Π1,1 : max {tpc, tuc
dom} < |ti|} (5.41)

for tpc,dom
max , tuc,dom

max in Lem. 5.1. The aggregate dominant and non-
dominant partially cancellable and uncancellable interference is:

Σ̂
pc,1/δ,0
1,1 (o) =

∑
i∈Π̂pc

1,1(o)

|ti|−
1
δ

Σ̃
pc,1/δ,0
1,1 (o) =

∑
i∈Π̃pc

1,1(o)

|ti|−
1
δ

Σ̂
uc,1/δ,0
1,1 (o) =

∑
i∈Π̂uc

1,1(o)

|ti|−
1
δ

Σ̃
uc,1/δ,0
1,1 (o) =

∑
i∈Π̃uc

1,1(o)

|ti|−
1
δ (5.42)

Proof. The sets in (5.40) and (5.41) are immediate from Lem. 5.1. The
aggregate interferences are simply the summed interference contribu-
tions under the corresponding interferer sets, using the SN RV mapping
in Prop. 2.8.

These sets are illustrated in Fig. 5.5. We see that the RV tpc is a function
of |tK |, the distance of the Kth nearest Rx from o in Π1,1. The next two
results characterize this RV. The following theorem (from [35], Thm.
1) extends Prop. 2.6.
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0
t

tpc
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Partially cancellableUncancellable Uncancellable
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non
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non
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PC 
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Fig. 5.5 The thresholds tpc partitions R into the region of partially cancellable (PC) nodes

and uncancellable (UC) nodes. The thresholds tpc
dom, t

uc
dom further divide each of these regions

into dominant and non-dominant regions.

Theorem 5.1. Ordered distances marginal distributions ([35]).
The successive (ordered) random distances from o of points in Πd,λ =
{xk} with |x1| < |x2| < · · · have marginal (generalized Gamma) PDFs:

f|xk|(t) =
d(λcdtd)k

t(k − 1)!
e−λcdt

d
, t ∈ R+, k ∈ N. (5.43)

By the mapping theorem we will have need only for d = 1 and λ = 1.

Corollary 5.3. Ordered distances in Π1,1 marginal distribu-
tions. The successive (ordered) random distances from o of points in
Π1,1 = {tk} with |t1| < |t2| < · · · have marginal (Gamma) PDFs:

f|tk|(t) =
(2t)k

t(k − 1)!
e−2t, t ∈ R+, k ∈ N. (5.44)

Moreover,

E[|tk|p] =

{
Γ(k+p)

2p(k−1)! , p > −k
∞, else

(5.45)

In particular E[|tk|] = k
2 .

The PDF is immediate from Thm. 5.1. The moments are obtained by
calculus. The PDFs for k ∈ {1, . . . , 5} are shown in Fig. 5.6. The main
result of this section is the following LB on the OP.
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Fig. 5.6 The PDFs f|tk|(t) for k ∈ {1, . . . , 5} from Cor. 5.3. Note E[|tk|] = k
2

.

Proposition 5.5. The OP LB under (κ,K, Pmin) IC Rx model is:

qlb(λ) = 1− E
[
exp

{
−2 min

{
tpc, tpc

dom

}}
exp

{
−2(tuc

dom − tpc)+
}]

(5.46)
where x+ ≡ max{x, 0}, and tpc, tpc

dom, t
uc
dom are given in Lem. 5.1, tpc

is a RV that is a function of the RV |tK | (from Prop. 5.3), and the
expectation is with respect to |tK |.

Proof. We first apply the SINR definition from Def. 5.5 and solve for
the interference:

q(λ) = P(sinr(o) < τ)

= P
(

Pu−α

PΣ(o) +N
< τ

)
= P

(
Σ(o) >

1
τuα
− N

P

)
= P

(
κΣpc,α,0

d,λ (o) + Σuc,α,0
d,λ (o) > ξ−α

)
(5.47)

for ξ in Def. 3.2. We apply the law of total probability by conditioning
on |tK | which effectively partitions R into the regions in Fig. 5.5. With
those regions fixed for each possible value of |tK | we achieve a LB by
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only considering the dominant interferers (both partially cancellable
and uncancellable).

q(λ) = E
[
P
(
κΣpc,α,0

d,λ (o) + Σuc,α,0
d,λ (o) > ξ−α

∣∣∣ |tK |)]
> E

[
P
(
κΣ̂pc,α,0

d,λ (o) + Σ̂uc,α,0
d,λ (o) > ξ−α

∣∣∣ |tK |)] (5.48)

We then take the complement of the outage event, yielding the event
that the sum dominant partially cancellable and dominant uncan-
cellable interference is less than ξ−α. By construction this event holds
iff there are no dominant interferers of any type.

qlb(λ) = 1− E
[
P
(
κΣ̂pc,α,0

d,λ (o) + Σ̂uc,α,0
d,λ (o) ≤ ξ−α

∣∣∣ |tK |)]
= 1− E

[
P
(

Π̂pc
1,1(o) = ∅ ∩ Π̂uc

1,1(o) = ∅
∣∣∣ |tK |)] (5.49)

Because the dominant partially cancellable interferers and dominant
uncancellable interferers are defined on disjoint regions of R, it fol-
lows by independence property of the PPP that their occupancies are
independent RVs.

qlb(λ) = 1− E
[
P
(

Π̂pc
1,1(o) = ∅

∣∣∣ |tK |)P
(

Π̂uc
1,1(o) = ∅

∣∣∣ |tK |)] (5.50)

Prop. 2.6 with d = λ = 1 applied to the two dominant regions gives
(5.46).

Fig. 5.7 and 5.8 plot the OP LB qlb(λ) from Prop. 5.5 for various choices
of the (κ,K, Pmin) SIC Rx model. The default parameters are

τ ∈ {1, 5} u = 1 α = 4 d = 2 P = 1 N = 0
λ = 0.025 κ = 0.05 K = 3 Pmin = 1 = 0(dBW)

(5.51)

Several points merit comment. First, note that in all cases Fig. 5.7
shows the corresponding performance without SIC using the OP LB
qlb(λ) from Prop. 3.4 (with ε = 0). Recall that this bound was shown
to be tight. Second, in most (but not in all) cases the plots show greater
sensitivity of the OP LB to the IC parameters for τ = 1 (right) than for
τ = 5 (left). Third, the plots illustrate the benefit in reducing the OP
from improved IC is quite parameter dependent; we now give several
examples of this. In the top plots of Fig. 5.7 we see that for K = 3
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Fig. 5.7 The OP LB qlb(λ) from Prop. 5.5 for the (κ,K, Pmin) IC Rx model for τ = 5

(left) and τ = 1 (right). The OP is shown vs. λ for varying κ (top), K (middle), and Pmin

(bottom). Default parameters are in (5.51). In all cases we also show the OP LB qlb(λ)

from Prop. 3.4 for no IC for the same parameters.

and Pmin = 1 (0 dBW) the performance of IC with κ = 0.25 or more is
indistinguishable from no IC for τ = 5, but this is not true for τ = 5.
In the middle plots of Fig. 5.7 we see the OP is insensitive to K for
K ≥ 1 when τ = 5, and this also holds for τ = 1 and λ small, but not
for λ larger. In the bottom plots of Fig. 5.7 we see the OP for Pmin = 6
or greater is the same as no SIC for τ = 5, but that the OP under
Pmin = −6 is the same as for Pmin = 0 for τ = 1 (all powers in dBW).
In the top plots of Fig. 5.8 we observe that improving the cancellation
quality κ by an order of magnitude reduces the OP by only a few
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Fig. 5.8 The OP LB qlb(λ) from Prop. 5.5 for the (κ,K, Pmin) IC Rx model for τ = 5

(left) and τ = 1 (right). The OP is shown vs. κ for varying K (top), vs. κ for varying Pmin

(middle), and vs. Pmin for varying K (bottom). Default parameters are in (5.51). In all

cases we also show the OP LB qlb(λ) from Prop. 3.4 for no IC for the same parameters.

percentage points in the given parameter regime. In the bottom plots
of Fig. 5.8 we observe again limited dependence of OP upon K ≥ 1,
while the right plot (τ = 1) shows insensitivity to Pmin below 0 dBW.

Remark 5.5. Other bounds on OP and TC under IC are found
in the literature. We specifically discuss [58] centered upon the OP LB
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for perfect (κ = 0) IC:

P

 ∑
i∈Πd,λ\[K]

|xi|−α > y

 ≥ P
(
|xK+1|−α > y

)
= P

(
|xK+1| ≤ y−

1
α

)
,

(5.52)
where Ass. 2.1 dictates the labeling of the points. The CDF from Thm.
5.1 for k = K+1 may be used to give an explicit OP LB. Note that this
bound holds also for imperfect IC (κ ∈ (0, 1)), but is not as insightful as
the bound depends upon K but not on κ. Perfect cancellation naturally
leads also to an UB on OP using the Markov inequality, as done in [46]
(Thm. 1 and Lem. 2), where the essential step is below:

P

 ∑
i∈Πd,λ\[K]

|xi|−α > y

 ≤ 1
y

E

[ ∞∑
i=K+1

|xi|−α
]

=
1
y

∞∑
i=K+1

E
[
|xi|−α

]
.

(5.53)
The moment E[xi|−α] may be computed using the PDF in Thm. 5.1,
and this in turn be UBed using Kershaw’s inequality on the Gamma
function.

5.3 Fading threshold scheduling (FTS)

In §4.1 we extended the basic model of Ch. 3 to incorporate fading,
and Cor. 4.3 showed that the asymptotic OP and TC (as λ → 0 and
q∗ → 0, respectively) under fading were worse than without fading
[78]. The assumed slotted Aloha MAC protocol does not exploit fading
as a source of diversity, and this (partially) explains why OP and TC
degrade under fading. In this section we seek to exploit fading through
the use of scheduling; in §5.4 we will exploit fading by selecting the
transmission power. Only certain forms of scheduling will retain the
critical features of the basic model that allow for analytical tractability,
namely, the PPP independence property that the number of points in
disjoint regions of Rd are independent RVs. Scheduling in its usual
usage refers to inducing a negative spatial and or temporal correlation
for activity among adjacent nodes so as to minimize the occurence of
collisions, and in this sense the set of active nodes under scheduling will
not form a PPP. Instead, our usage is restricted to “fading threshold
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scheduling” (FTS): a MAC protocol where potential transmitting nodes
decide to transmit when the fading coefficient of the channel to their
intended Rx exceeds a threshold. As we assume independent channels,
it follows that the transmission decisions of two nodes are independent.
The following definition formalizes the model for this section.

Definition 5.6. Fading coefficients, signal interference, and
SINR. Extend Def. 4.1 throughout this section as follows. Let
{(hi,i, hi,0)} for i ∈ {0, 1, 2, . . . , } be iid RVs indicating the fading coef-
ficient for the channels between each Tx i and its Rx and between each
Tx i and the reference Rx at o:

(1) h0,0: fading coefficient from reference Tx to the reference Rx.
(2) hi,0, i ∈ N: fading coefficient from interferer i to reference Rx.
(3) hi,i: fading coefficient from interferer i to its own Rx.

Let Πd,λpot denote the set of potential transmitters (c.f. Rem. 1.1), and
assume each Tx elects to transmit precisely when its fading coefficient
to its intended Rx exceeds a threshold ĥ ∈ R+. The FTS threshold
ĥ must lie in the support of the RV h, and moreover we assume the
threshold to be such that the success is guaranteed in the absence of
interference, i.e., (c.f. Rem. 4.4)

ĥ

τuα
− N

P
> 0⇔ ĥ >

τ

snr
. (5.54)

More formally, the MPPP Φd,λpot = {(xi, hi,0, hi,i)} induces a MPPP of
actual interferers

Φ̂d,λ̂ ≡ {(xi, hi,0) ∈ Φd,λpot : hi,i > ĥ} (5.55)

of homogeneous intensity λ̂ ≡ λpotP(h > ĥ). Assume the reference Tx
attempts transmission (since otherwise there is no chance of outage at
the reference Rx), so that the channel coefficient between the reference
Tx and Rx ĥ0,0 has a CCDF

F̄ĥ(h) = P(h > h|h > ĥ) =

{
F̄h(h)

F̄h(ĥ)
, h ≥ ĥ

1, else
(5.56)
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The signal, interference, and SINR seen at the reference Rx at o are
given by

sinr(o) ≡ S(o)
Σ(o) +N/P

, S(o) ≡ ĥ0,0u
−α, Σ(o) ≡

∑
i∈Φ̂d,λ̂

hi,0|xi|−α,

(5.57)
where {hi,0} are iid with distribution Fh, ĥ0,0 is independent of {hi,0}
and has distribution (5.56), and Φ̂d,λ̂ is as in (5.55).

In this section we modify the OP (Def. 1.1) and TP (Def. 3.4)
definitions as follows.

Definition 5.7. OP and TP. The OP is the probability of success at
o conditioned on having a channel fade above the threshold. Because
the threshold parameter ĥ directly controls the intensity of attempted
transmissions (λ̂ = λpotF̄h(ĥ)) as well as the distribution on the signal
strength ĥ0,0, it is more natural to define the OP as a function of ĥ
instead of λpot or λ̂.

q(ĥ) ≡ P(sinr(o) < τ |h0,0 > ĥ), (5.58)

where interference is from a PPP Φ̂d,λ̂ of intensity λ̂. Likewise, the
MAC TP is the spatial intensity of successful transmissions

Λ(ĥ) ≡ λ̂(1− q(ĥ)). (5.59)

Remark 5.6. Quantity vs. quality of transmissions through
FTS. The design objective in this section is to maximize the TP Λ(ĥ)
over ĥ. Increasing ĥ has two effects: the signal power increases on av-
erage, and the intensity of attempted transmissions decreases. In other
words, increasing ĥ increases the quality but decreases the quantity of
attempted transmissions. Viewing λ̂ as the quantity and 1 − q(ĥ) as
the quality of transmissions, we see the TP is the product of quantity
times quality, and thereby yields a natural optimization over ĥ. There
are also fairness and delay costs under ĥ: nodes that happen to have a
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fading coefficient above the threshold are effectively given priority over
those with a fading coefficient below. The fairness and delay issues is of
particular concern for channels with long coherence time where waiting
for a “good fade” may be prohibitively costly.

Recall §4.1 addressed OP and TC under fading from three perspectives:
exact (§4.1.1), asymptotic (§4.1.2), and bound (§4.1.3) results. This
section follows the same outline, but focuses on OP and TP.

We first explain why FTS spoils the analytical tractability of §4.1.1.
Recall the derivation of the explicit expression for the OP and TC when
the signal fading is Rayleigh (h0 ∼ Exp(1)) in Prop. 4.2 was obtained
by conditioning on the interference, applying the exponential CCDF,
and recognizing the resulting expression as the LT of the interference,
given in Prop. 4.1. If h0 ∼ Exp(1) then

F̄ĥ0,0
(h) =

{
e−(h−ĥ), h > ĥ

0, else
. (5.60)

The analogous development to Prop. 4.2 gives (writing Σ = Σα,h

d,λ̂
):

q(λ̂) = P(sinr(o) < τ)

= P(ĥ0,0 > τuα(Σ +N/P ))

= E[P( ĥ0,0 > τuα(Σ +N/P )
∣∣∣Σ)]

= E
[
exp

{
−
(
τuα(Σ +N/P )− ĥ

)}
1Σ>ŷ

]
= e−(τ/snr−ĥ)E

[
eτu

αΣ1Σ>ŷ

]
(5.61)

for ŷ = ĥ
τuα −N/P . The key difficulty is the indicator function within

the expectation that precludes using the LT of Σ in Prop. 4.1.
We next turn to establishing the asymptotic OP (as λ̂ → 0) under

FTS. The following result is the FTS analogue of Prop. 4.6.

Proposition 5.6. Asymptotic OP under FTS (ĥ→∞, λ̂→ 0):

q(ĥ) = cdE[hδ]E

( ĥ0,0

τuα
− N

P

)−δλpotF̄h(ĥ) +O(λ̂2). (5.62)
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In the no noise case (N = 0) this expression becomes

q(ĥ) = cdτ
δudE[hδ]E[ĥ−δ0,0]λpotF̄h(ĥ) +O(λ̂2). (5.63)

In the no noise and Rayleigh fading case (h0 and {hi} exponential RVs):

q(ĥ) = cdτ
δudΓ(1 + δ)Γ(1− δ, ĥ,∞)λpot +O(λ̂2), (5.64)

for Γ(z, tl, th) the incomplete Gamma function defined in Def. 2.2.

Proof. The proof is analogous to that of Prop. 4.6 with the notable ex-
ception that the assumption on ĥ in (5.54) ensures outage is impossible
without interference; this leads to a simplified development below.

q(ĥ) = P
(

sinr(o) < τ |h0,0 > ĥ
)

= E
[
P
(

sinr(o) < τ |ĥ0,0

)]
= E

[
P

(
Σα,h

d,λ̂
>

ĥ0,0

τuα
− N

P

∣∣∣∣∣ ĥ0,0

)]
(5.65)

Now apply Prop. 4.4 and 4.5 noting that ĥ0,0 and Σ are independent.

q(ĥ) = E

P

Σ
1/δ,h
1,1 >

(
λ̂cd
2

)− 1
δ
(

ĥ0,0

τuα
− N

P

)∣∣∣∣∣∣ ĥ0,0


= E

[
P
(

Σ
1/δ,h
1,1 > ŷ

∣∣∣ ĥ0,0

)]
, ŷ =

(
λ̂cd
2

)− 1
δ
(

ĥ0,0

τuα
− N

P

)
= E

[
E[hδ]ŷ−δ +O(y−2δ)

]
(5.66)

Simplification yields (5.62). (5.63) is immediate upon substituting N =
0. Assuming Rayleigh fading we obtain (5.64) by observing

E[ĥ−δ0,0]F̄h(ĥ) = Γ(1− δ, ĥ,∞). (5.67)

This result is applied below to obtain the asymptotic TP under FTS
and its optimization over thresholds ĥ. For simplicity we restrict our
attention to the no noise case in what follows.
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Proposition 5.7. The asymptotic TP under FTS and no noise
(N = 0) as ĥ→∞ (λ̂→ 0) is:

Λ(ĥ) = λpotF̄h(ĥ)
(

1− bλpotE[ĥ−δ0,0]F̄h(ĥ)
)

+O(λ̂3) (5.68)

for b = cdτ
δudE[hδ]. The asymptotic TP optimal ĥ satisfies

E[h−δ1h>ĥ] + E[ĥ−δ1h>ĥ] =
1

bλpot
. (5.69)

Proof. Expression (5.68) follows upon substitution of (5.63) into (5.59).
The derivative of the TP with respect to ĥ is

1
λpot

Λ′(ĥ) = −fh(ĥ)
(

1− bλpotE[ĥ−δ0,0]F̄h(ĥ)
)

−bλpotF̄h(ĥ)
d

dĥ

{
E[ĥ−δ0,0]F̄h(ĥ)

}
. (5.70)

Observe that (5.56) gives:

E[ĥ−δ0,0]F̄h(ĥ) =
∫ ∞
ĥ

h−δfh(h)dh = E[h−δ1h>ĥ]

d

dĥ

{
E[ĥ−δ0,0]F̄h(ĥ)

}
= −ĥ−δfh(ĥ) (5.71)

Substitution, equating with zero, and rearranging gives (5.69).

Fig. 5.9 presents some numerical results for Prop. 5.7: the left plot
shows the asymptotic TP (5.68) vs. the fading threshold ĥ, and the
right plot shows the optimal threshold ĥopt solving (5.69). The optimal
ĥ trades off quantity with quality of attempted transmissions — as
expected both the optimal threshold and the associated optimum TP
increase with λpot as the MAC can afford to be more selective on link
quality without sacrificing the quantity of transmission attempts. We
next show that the asymptotic expressions for TP without fading, with
fading but without scheduling, and with fading under FTS are ordered
when the signal and interference fading distribution are equal. This
result extends Cor. 4.3.
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Fig. 5.9 Left: the asymptotic TP Λ(ĥ) (5.68) vs. the fading threshold ĥ for λopt ∈
{1/10, 1/5, 1/2}. Right: the TP asymptotic optimal threshold ĥopt that maximizes (5.68)
as a function of bλopt. All fading is Rayleigh; other parameter values are d = 2, α = 4

(δ = 1/2), τ = 5, u = 1 (b ≈ 3.11).

Proposition 5.8. FTS exploits fading to improve performance.
Assume the signal and interference fading coefficients are equal in dis-
tribution: h0,0

d= h. Assume no noise (N = 0) and define a = 1
2cdτ

δud.
Then the asymptotic TPs (as λ̂→ 0 and ĥ→∞) without fading (NF,
Prop. 3.3), with fading but without scheduling (FNS, Prop. 4.6), and
with FTS (Prop. 5.7) are:

ΛNF(λ̂) = λ̂(1− aλ̂+O(λ2))

ΛFNS(λ̂) = λ̂(1− aE[hδ]E[h−δ0,0]λ̂+O(λ2))

ΛFTS(λ̂) = λ̂(1− aE[hδ]E[ĥ−δ0,0]λ̂+O(λ2)), (5.72)

where λ̂ in ΛFTS implies selecting ĥ so that λpotF̄h(ĥ) = λ̂, i.e., ĥ =

F̄−1
h

(
λ̂/λpot

)
. Large ĥ (ĥ > E[hδ]

1
δ is sufficient) ensures

E[hδ]E[ĥ−δ0,0] ≤ 1 ≤ E[hδ]E[h−δ0,0], (5.73)

which in turn ensures

ΛFNS(λ̂) ≤ ΛNF(λ̂) ≤ ΛFTS(λ̂). (5.74)

Proof. The asymptotic TP expressions for ΛNF(λ̂) and ΛFNS(λ̂) are
immediate from the TP definition Λ(λ̂) = λ̂(1 − q(λ̂)), and the ex-
pression for ΛFTS(λ̂) is immediate from Prop. 5.7 using the assumed
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λpotF̄h(ĥ) = λ̂. The second inequalities in (5.73) and (5.74) are not
asymptotic, they hold for all λ̂. To prove the first inequalities, note the
assumption ĥδ > E[hδ] ensures the second inequality below:

E[hδ]E[ĥ−δ0,0] = E[hδ]
E[h−δ0,01h0,0>ĥ

]

F̄h0,0(ĥ)
≤ E[hδ]

ĥ−δE[1h0,0>ĥ
]

F̄h0,0(ĥ)
≤ 1. (5.75)

Fig. 5.10 illustrates the asymptotic TP under no fading, fading with-
out scheduling, and fading with threshold scheduling. The figure makes
clear that threshold scheduling transforms fading from an overall per-
formance penalty (fading without scheduling being inferior to no fad-
ing) to a performance enhancement (fading with threshold scheduling
being superior to no fading). Threshold scheduling successfully exploits
the available fading diversity. Note as α→ 2 (δ → 1) that fading with
threshold scheduling is equivalent (in terms of asymptotic TP) to no
fading; one can also show that as α → ∞ (δ → 0) fading without
scheduling is equivalent to no fading.
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Fig. 5.10 The asymptotic (λ̂ → 0) spatial TP Λ(λ̂) vs. the spatial intensity of attempted
transmissions λ̂ under i) no fading, ii) fading without scheduling, and iii) fading with

threshold scheduling for α = 4 (left) and α = 2.5 (right). Other parameters are d = 2,

u = 1, τ = 5, λpot = 1.

Finally, we establish a LB on the OP and an UB on TP under fading
threshold scheduling. These bounds follow immediately by the natural
extension of Def. 4.2 and its subsequent Prop. 4.7 in §4.1.3, replacing
h0 with ĥ0,0, yielding the following result.
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Proposition 5.9. OP LB and TP UB. Extend the concepts defined
in Def. 4.2 to apply to threshold scheduling by replacing h0 with ĥ0,0.
Then Prop. 4.7 yields the OP LB

qlb(ĥ) = 1− E

exp

−λpotF̄h(ĥ)cdE[hδ]

(
ĥ0,0

τuα
− N

P

)−δ
 (5.76)

where the outer expectation is w.r.t. the random signal fade ĥ0,0. In
the case of no noise (N = 0) the OP LB is:

qlb(ĥ) = 1− E
[
exp

{
−λpotF̄h(ĥ)cdτ δudE[hδ]ĥ0,0

}]
, (5.77)

In particular, with no noise the OP LB is expressible in terms of the
MGF of the RV −ĥ−δ0,0 at a certain θ:

qlb(ĥ) = 1− M[−ĥ−δ0,0](θ)
∣∣∣
θ=λpotF̄h(ĥ)cdτδudE[hδ]

. (5.78)

In all cases the TP UB is

Λub(ĥ) = λpotF̄h(ĥ)
(

1− qlb(ĥ)
)
. (5.79)

Fig. 5.11 compares the TP UB from Prop. 5.9 with the asymptotic TP
from Prop. 5.7. In closing, we refer the interested reader to recent work
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Fig. 5.11 The TP UB and the asymptotic (λ̂→ 0) spatial TP Λ(λ̂) vs. the spatial intensity
of attempted transmissions λ̂ for α = 4 (left) and α = 2.5 (right). Other parameters are

d = 2, u = 1, τ = 5, λpot = 1.

on threshold scheduling by Kim, Baccelli, and de Veciana [48], and Cho
and Andrews [18].
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5.4 Fractional power control (FPC)

In §5.3 we found that exploiting fading through threshold scheduling
improved performance (measured as spatial TP) compared with no fad-
ing; in this section we exploit fading through a specific form of power
control (PC). In general, PC in decentralized wireless networks refers
to an algorithm where each node i at each slot t updates its power Pi,t
based on feedback so that the nodes jointly converge in a distributed
manner to a globally (or at least locally) optimal power allocation vec-
tor. As with scheduling in §5.3, analytical tractability requires we adopt
a rather restricted definition of PC. Again, the key property we seek
to maintain is that the set of interferers at some point in time form a
PPP, and this requires each interferer act independently of the other
interferers. Consequently, power control in this section refers to each in-
terferer i ∈ Πd,λ selecting a (random) power Pi that is a function of the
fading coefficient to its intended Rx hi,i [47]. The following definition
of fractional power control (FPC) makes these concepts precise.

Definition 5.8. Transmission powers and SINR. Consider the
fading model and MPPP used in Def. 5.6 in §5.3:

Φd,λ ≡ {(xi, hi,i, hi,0)} , (5.80)

and the same reference pair fading coefficient h0,0. As in Def. 5.6, all
fading coefficients are independent. Assume {hi,i} are iid with CDF
Fh1,1 , {hi,0} are iid with CDF Fh1,0 , and h0,0 has CDF Fh0,0 . Let f ∈ R
be the FPC exponent and let P be the average transmission power.
The reference Tx (0) and each interferer i ∈ Πd,λ select a random
transmission power according to

P0 ≡
P

E[h−f0,0 ]
h−f0,0 , Pi ≡

P

E[h−f1,1 ]
h−fi,i . (5.81)

The SINR at o is
sinr(o) ≡ S(o)

Σ(o) +N
, (5.82)

where the received signal and interference powers at (o) are

S(o) ≡ P

E[h−f0,0 ]
h1−f

0,0 u−α, Σ(o) ≡ P

E[h−f1,1 ]

∑
i∈Πd,λ

h−fi,i hi,0|xi|−α. (5.83)
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To clarify, S(o) is proportional to h1−f
0,0 due to FPC (h−f0,0) and fading

itself (h0,0). Interference from i seen at (o) is proportional to h−fi,i due
to FPC and to hi,0 and due to fading. Observe the transmission powers
are selected so that E[P0] = E[Pi] = P for all i ∈ Πd,λ. Two special
cases for f merit mention: (i) f = 0 is no PC, i.e., P0 = Pi = P , and
we revert to the results up until now; (ii) f = 1 is channel inversion,
i.e., the transmitted signal power inverts the fading coefficient so that
the received signal power is not dependent upon the fading coefficient.
Therefore, FPC can be viewed as a fairly general and flexible form of
power control. The following lemma gives the moments and variance
of P under Rayleigh fading.

Lemma 5.3. Transmitted power RV moments under FPC. For
Rayleigh fading (h0,0, hi,i ∼ Exp(1)) the moments and variance of P0,Pi
under FPC in (5.81) are

E[Pp] =

{ (
P

Γ(1−f)

)p
Γ(1− pf), pf < 1

∞, else
, (5.84)

Var(P) =

{
P 2
(

Γ(1−2f)
Γ(1−f)2 − 1

)
, f < 1/2

∞, else
(5.85)

The variance Var(P) is plotted in Fig. 5.12 vs. the FPC exponent f .
The design objective in this section is the selection of the FPC

exponent f ∈ R. The outline of this section mirrors that of §5.3: we
first discuss asymptotic OP (as λ→ 0) and TC (as q∗ → 0), and then
discuss a LB on OP (UB on TC). Although in §5.3 we assumed ĥ to be
sufficiently large to preclude the possibility of a bad fade guaranteeing
outage even in the absence of interference (c.f. Rem. 4.4), under FPC
there is again this possibility. We update Rem. 4.4 for FPC below.

Remark 5.7. Fading and outage with no interference. With ran-
dom signal fading under FPC there is the possibility of a bad fade
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Fig. 5.12 The variance of the transmitted power Var(P) vs. the FPC exponent f for P = 1.

Note Var(P) =∞ for f ≥ 1/2.

causing outage even in the absence of interference. This outage event
E0,f has the three equivalent forms:

P0u
−αh0,0

N
< τ ⇔ h0,0 <

( τ

snr
E[h−f0,0 ]

) 1
1−f ⇔

h1−f
0,0

E[h−f0,0 ]τuα
− N

P
< 0,

(5.86)
for snr defined in Ass. 3.1, and has probability

qf (0) ≡ P (E0,f ) = Fh0,0

(( τ

snr
E[h−f0,0 ]

) 1
1−f
)
. (5.87)

Note qf (0) is the OP evaluated at λ = 0. Denote the complement of
E0,f by Ē0,f , and its probability by

q̄f (0) ≡ 1− qf (0) = P(Ē0,f ) = F̄h0,0

(( τ

snr
E[h−f0,0 ]

) 1
1−f
)
. (5.88)

All analysis of OP (and hence TC) must therefore condition on h0,0

being above or below
(
τ

snrE[h−f0,0 ]
) 1

1−f to distinguish between the case
of outage being possible vs. outage being guaranteed. The range of the
OP q(λ) is [qf (0), 1], and the domain of q∗ in the TC λ(q∗) is [qf (0), 1].

The following result gives the asymptotic OP and TC under FPC.
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Proposition 5.10. The asymptotic OP under FPC as λ→ 0 is:

q(λ) = 1− (1− aλ)q̄f (0) +O(λ2)

for

a = cdE
[
h−fδ1,1

]
E
[
hδ1,0

]
E
[
h−f1,1

]−δ
E

( h1−f
0,0

E[h−f0,0 ]τuα
− N

P

)−δ∣∣∣∣∣∣ Ē0,f

 .
(5.89)

The asymptotic TC under fading as q∗ → qf (0) is

λ(q∗) =
1
a

(
q∗ − qf (0)
1− qf (0)

)
+O(q∗ − qf (0))2. (5.90)

In the no noise case (N = 0, qf (0) = 0) these expressions become

q(λ) = λcdτ
δudE

[
h−fδ1,1

]
E
[
hδ1,0

]
E
[
h−f1,1

]−δ
E
[
h−f0,0

]δ
E
[
h
−(1−f)δ
0,0

]
+O(λ2)

λ(q∗) =
q∗

cdτ δudE
[
h−fδ1,1

]
E
[
hδ1,0

]
E
[
h−f1,1

]−δ
E
[
h−f0,0

]δ
E
[
h
−(1−f)δ
0,0

]
+O(q∗)2 (5.91)

For no noise and Rayleigh fading (h0,0, hi,0, hi,i exponential RVs):

q(λ) = λcdτ
δudΓ(1 + δ)Γ(1− fδ)Γ(1− (1− f)δ) +O(λ2)

λ(q∗) =
q∗

cdτ δudΓ(1 + δ)Γ(1− fδ)Γ(1− (1− f)δ)
+O(q∗)2(5.92)

provided δ, fδ, (1− f)δ are all in (0, 1).

Proof. The proof is analogous to that of Prop. 4.6. We condition on
h0,0 and isolate the random normalized interference.

q(λ) = P (sinr(o) < τ)

= P
(
sinr(o) < τ |Ē0,f

)
q̄f (0) + 1(1− q̄f (0))

= 1−
(
1− P

(
sinr(o) < τ |Ē0,f

))
q̄f (0)

= 1−

1− E
[
P (sinr(o) < τ | h0,0)| Ē0,f

]︸ ︷︷ ︸
E[·]

 q̄f (0) (5.93)
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E[·] = E

P


Ph1−f

0,0

E[h−f0,0 ]
u−α

P

E[h−f1,1 ]

∑
i∈Πd,λ

h−fi,i hi,0|xi|−α +N
< τ

∣∣∣∣∣∣∣∣ h0,0


∣∣∣∣∣∣∣∣ Ē0,f


= E

[
P

(
Σα,h
d,λ > E[h−f1,1 ]

(
h1−f

0,0

E[h−f0,0 ]τuα
− N

P

)∣∣∣∣∣ h0,0

)∣∣∣∣∣ Ē0,f

]
(5.94)

for
Σα,h
d,λ =

∑
i∈Πd,λ

h−fi,i hi,0|xi|−α. (5.95)

Define the RV

y ≡
(
λcd
2

)− 1
δ

E[h−f1,1 ]

(
h1−f

0,0

E[h−f0,0 ]τuα
− N

P

)
, (5.96)

as a function of the RV h0,0 and apply Prop. 4.4 to obtain

E[·] = E

P

 ∑
i∈Π1,1

h−fi,i hi,0|ti|−
1
δ > y

∣∣∣∣∣∣ h0,0

∣∣∣∣∣∣ Ē0,f

 . (5.97)

Now apply Prop. 4.5 to obtain the asymptotic CCDF

E[·] = E
[

E
[(

h−f1,1h1,0

)δ]
y−δ +O(y−2δ)

∣∣∣∣ y > 0
]
. (5.98)

Note the equivalence of the events Ē0,f and y > 0. Substitution of (5.96)
into (5.98) yields (5.89). Solving for λ gives (5.90). Expressions (5.91)
are immediate after substitution of N = 0. Expressions (5.92) follow
after application of Lem. 4.1.

The next result gives the asymptotic optimal choice for f in the special
case of no noise and when the signal fading coefficient h0,0 is equal in
distribution to the interference fading coefficients h1,1.

Proposition 5.11. Asymptotic optimality of f = 1/2. Setting
f = 1/2 minimizes the asymptotic OP and maximizes the asymptotic
TC under no noise (N = 0) and h0,0

d= h1,1.
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Proof. It is clear that the optimal f for minimizing the asymptotic
OP equals the optimal f for maximizing the asymptotic TC, hence we
restrict our attention to minimizing the asymptotic OP. The asymptotic
OP under the assumption of no noise and h0,0

d= h1,1 (which we denote
in this proof by h) gives the optimization problem

min
f∈R

E
[
h−fδ

]
E
[
h−(1−f)δ

]
. (5.99)

We will show the following more general result: for any RV x the func-
tion g(f) = E[x−f ]E[x−f̄ ] for f ∈ R (and f̄ = 1 − f) is convex in f

and has a unique global minimizer at f = 1/2. The proposition then
follows by using this result for the RV x = hδ. Recall that a function is
said to be log-convex if it satisfies

g(cf1 + c̄f2) ≤ g(f1)cg(f2)c̄, ∀c ∈ [0, 1], f1, f2 ∈ R, (5.100)

where c̄ = 1 − c. Establishing log-convexity of g is sufficient to estab-
lish convexity of g as log-convex functions are convex. Recall Hölder’s
inequality asserts

E[x1x2] ≤ E [xp1]
1
p E [xq1]

1
q , ∀(p, q) :

1
p

+
1
q

= 1. (5.101)

We apply Hölder’s inequality twice with p1 = p2 = 1
c and q1 = q2 = 1

c̄ :

g(cf1 + c̄f2) = E[x−(cf1+c̄f2)]E[x−(1−(cf1+c̄f2))]

= E[x−cf1x−c̄f2 ]E[x−cf̄1x−c̄f̄2 ]

≤ E
[
x−cf1p1

] 1
p1 E

[
x−c̄f2q1

] 1
q1 E

[
x−cf̄1p2

] 1
p2 E

[
x−c̄f̄2q2

] 1
q2

= E
[
x−f1

]c
E
[
x−f2

]c̄
E
[
x−f̄1

]c
E
[
x−f̄2

]c̄
= g(f1)cg(f2)c̄. (5.102)

As g is convex, its global minimum (if it exists) is found by equating
the derivative of g(f) with zero and solving for f . The derivative is:

g′(f) =
d

df

{
E
[
x−f
]

E
[
x−f̄
]}

(5.103)

= E
[
x−f
]

E
[

d
df

x−f̄
]

+ E
[
x−f̄
]

E
[

d
df

x−f
]

= E
[
x−f
]

E
[
(log x)x−f̄

]
+ E

[
x−f̄
]

E
[
−(log x)x−f

]
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It is clear that g′(f) = 0 for f = 1/2, establishing the result.

Remark 5.8. Optimal FPC may incur large power variance.
Prop. 5.11 establishes f = 1/2 is the FPC exponent that optimizes the
asymptotic OP and TC (under the assumptions N = 0 and h0,0

d= h1,1),
while Lem. 5.3 establishes Var(P) is only finite under Rayleigh fading
provided f < 1/2. Thus at f = 1/2 we optimize the asymptotic OP
and TC but the variability of power required is large, and in practice
the radio power constraint would limit the ability of nodes with poor
fades to achieve (5.81). Note that the asymptotic OP and TC under
the above assumptions are symmetric in f around 1/2, i.e., the OP at
f equals the OP at 1−f (c.f. (5.99)), and in particular the asymptotic
OP and TC under f = 0 equal that under f = 1. Although no PC
(f = 0) has the same asymptotic performance to channel inversion
(f = 1), the former is greatly preferred to the latter on the basis of
power variance (Lem. 5.3).

Interestingly, recent work modeling and analyzing Qualcomm’s
FlashLINQ peer-to-peer protocol [7], which has a CSMA-type MAC,
found a similar result. Namely, with a different interference and trans-
mission model (namely, SIR-based scheduling), but also using stochas-
tic geometric tools, they found that inverse square root power control
is optimal for the FlashLINQ protocol, which they verified with ex-
tensive simulations. This shows that this earlier result on FPC in a
simpler Aloha-type MAC was fairly robust to the proposed model, and
provides some degree of confidence that the other design-type results
given in this chapter will be as well.

Our next result gives an OP LB and TC UB under FPC. We modify
the definition of dominant interferer and interference (Def. 4.2) for
FPC.

Definition 5.9. Dominant and maximum interferers. An inter-
ferer i in the MPPP Φd,λ in Def. 5.8 is dominant at o under threshold
τ , signal fade h0,0, and FPC exponent f if its interference contribution
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is sufficiently strong to cause an outage for the reference Rx at o:

P0h0,0u
−α

Pihi,0|xi|−α +N
< τ ⇔ h−fi,i hi,0|xi|−α > E[h−f1,1 ]

(
h1−f

0,0

E[h−f0,0 ]τuα
− N

P

)
.

(5.104)
Else i is non-dominant. The set of dominant and non-dominant inter-
ferers at o under (τ, h0) is

Φ̂d,λ ≡
{
i ∈ Φd,λ : h−fi,i hi,0|xi|−α > E[h−f1,1 ]

(
h1−f

0,0

E[h−f0,0 ]τuα
− N

P

)}
,

(5.105)
and Φ̃d,λ ≡ Φd,λ \ Φ̂d,λ. The dominant and non-dominant interference
at o under (τ, h0)

Σ̂α,h
d,λ(o) ≡

∑
i∈Φ̂d,λ

h−fi,i hi,0|xi|−α, Σ̃α,h
d,λ(o) ≡

∑
i∈Φ̃d,λ

h−fi,i hi,0|xi|−α (5.106)

are the interference generated by the dominant and non-dominant
nodes. Note Σα,h

d,λ(o) = Σ̂α,h
d,λ(o) + Σ̃α,h

d,λ(o).

Proposition 5.12. The OP LB under FPC is

qlb(λ) = 1− E

exp

−a
(

h1−f
0,0

E[h−f0,0 ]τuα
− N

P

)−δ
λ


∣∣∣∣∣∣ Ē0,f

 q̄f (0),

(5.107)
where Ē0,f and q̄f (0) are defined in Rem. 5.7 and

a = cdE[hδ1,0]E[h−fδ1,1 ]E[h−f1,1 ]−δ. (5.108)

In the case of no noise (N = 0, qf (0) = 0) the LB is:

qlb(λ) = 1− E
[
exp

{
−bλh

−(1−f)δ
0,0

}]
, (5.109)

where
b = cdτ

δudE[hδ1,0]E[h−fδ1,1 ]E[h−f1,1 ]−δE[h−f0,0 ]δ. (5.110)
In particular, with no noise the LB is expressible in terms of the MGF
of the RV −h

−(1−f)δ
0,0 at a certain θ:

qlb(λ) = 1− M[−h
−(1−f)δ
0,0 ](θ)

∣∣∣
θ=bλ

. (5.111)
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Proof. The proof requires only minor adaptation of that of Prop. 4.7.

q(λ) = P(sinr(o) < τ)

= P
(
sinr(o) < τ |Ē0,f

)
q̄f (0) + 1(1− q̄f (0))

= 1−

1− P
(
sinr(o) < τ |Ē0,f

)︸ ︷︷ ︸
P(·)

 q̄f (0) (5.112)

where

P(·) = E

[
P

(
Σα,h
d,λ(o) > E[h−f1,1 ]

(
h1−f

0,0

E[h−f0,0 ]τuα
− N

P

)∣∣∣∣∣ h0,0

)∣∣∣∣∣ Ē0,f

]
(5.113)

and Σα,h
d,λ(o) in (5.95). Lower bound in terms of Σ̂α,h

d,λ(o) in (5.106), and
then express the LB outage event in terms of Φ̂d,λ in (5.105):

P(·) > E

[
P

(
Σ̂α,h
d,λ(o) > E[h−f1,1 ]

(
h1−f

0,0

E[h−f0,0 ]τuα
− N

P

)∣∣∣∣∣ h0,0

)∣∣∣∣∣ Ē0,f

]
= E

[
P
(

Φ̂d,λ 6= ∅
∣∣∣ h0,0

)∣∣∣ Ē0,f

]
= 1− E

[
P
(

Φ̂d,λ = ∅
∣∣∣ h0,0

)∣∣∣ Ē0,f

]
q̄f (0) (5.114)

In what follows we denote ĥ = h1,1 and h̃ = h1,0. The PPP Φd,λ is
a homogeneous PPP with intensity measure given by Thm. 4.1 with
λ(x) = λ and a joint PDF on mark pairs (ĥ, h̃) independent of x:

fĥ,h̃|x(ĥ, h̃|x) = fĥ(ĥ)fh̃(h̃). (5.115)

The key observation is this: given h0,0, the probability that Φ̂d,λ is
empty equals the void probability for Φd,λ on the set

C0 = {(x, ĥ, h̃) : ĥ−f h̃|x|−α > w0}

w0 = E[ĥ−f ]

(
h1−f

0,0

E[h−f0,0 ]τuα
− N

P

)
(5.116)

Note in what follows that h0,0 is random and hence so is C0 and w0.
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Using Prop. 4.3 and simplifying gives:

P
(

Φ̂d,λ = ∅
∣∣∣ h0,0

)
= P (Φd,λ(C0) = 0| h0,0) (5.117)

= exp

{
−λ
∫

(x,ĥ,h̃)∈C0

fĥ(ĥ)fh̃(h̃)dxdĥdh̃

}

= exp
{
−λ
∫

Rd
P
(

h̄|x|−α > w0

∣∣w0

)
dx
}

where we have defined the RV h̄ = h̃/ĥf . Now echo the development in
the proof of Prop. 4.7 starting at (4.43), replacing h with h̄, yielding:

P
(

Φ̂d,λ = ∅
∣∣∣ h0,0

)
= exp

{
−λcdw−δ0 E[h̄δ]

}
= exp

{
−λcdw−δ0 E[hδ1,0]E[h−fδ1,1 ]

}
(5.118)

where in the last step we have exploited the assumed independence of
h̃ and ĥ. Substituting this last expression into (5.114) yields (5.107).

Fig. 5.13 shows the asymptotic and LB OP vs. the PCE f (all for
no noise (N = 0) and Rayleigh fading on all coefficients). We also
show the no fading asymptotic and LB OP, and observe the OP under
FPC is always larger than the OP without fading. Although threshold
scheduling was able to exploit fading and improve the OP/TC to lie
above that of no fading, this is seen to not be possible under FPC. All
plots use d = 2, α = 4, (δ = 1/2), u = 1, τ = 5. Further, the asymptotic
and LB OP are seen to predict the same optimal PCE f∗ = 1/2 for
small λ, while for larger λ the LB optimal FPC is seen to be f∗ = 0. Fig.
5.14 shows the OP LB vs. λ, the TC UB vs. q∗, as well as the asymptotic
OP and TC using the same parameters as Fig. 5.13. Similar comments
apply: FPC cannot exploit fading to improve performance relative to
that of no fading, and the (bound) optimal PCE is f = 1/2 for small
λ and f = 0 for large λ.
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Fig. 5.13 The OP q(λ) vs. the FPC exponent f for λ = 0.01 (left) and λ = 0.05 (right).

The top plots are the OP LB, the bottom plots are the asymptotic OP (as q∗ → 0). The
OP is shown for no fading, fading without PC (f = 0), fading with PC at f = 1/2, and

fading vs. PCE f . For small λ the asymptotic and LB OP agree that the optimal PCE is

f = 1/2, while for larger λ the LB optimal PCE is f = 0.
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Fig. 5.14 The OP q(λ) vs. λ, and the TC λ(q∗) vs. q∗. The LB OP and UB TC are on the
left, while the asymptotic OP and TC are on the right. Curves are shown for no fading,
and for fading with PCE f = 0 and f = 1/2. The performance without fading is superior
to performance with fading, for both f = 0 and f = 1/2. The bound on OP and TC is seen

to be better under f = 1/2 (f = 0) for small (large) λ.
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Multiple antennas

6.1 MIMO with interference

In this chapter we consider the use of multiple antennas at the transmit-
ter (Tx) and/or receiver (Rx). Multiple antenna transmission and re-
ception, often broadly referred to as “MIMO” (multiple-input multiple-
output), has been one of the most extensively studied topics in physical
layer communications over the past fifteen years. It is now a successful
commercial technology, having strong support in modern cellular stan-
dards, e.g., LTE and WiMAX, and more recent instantiations of WiFi,
namely 802.11n and its successors. Nevertheless, when considering the
realities of both WiFi and cellular, not to mention ad hoc networks,
one notices that nearly all theoretical work on MIMO ignores the role
of interference.

Understandably, the heralded early results on point-to-point MIMO
neglected the role of interference or multiple concurrent users. From
those results we learned that MIMO offered the possibility of not only
increased reliability through diversity and combining gains, but also
held out the promise of linear capacity scaling (at high SNR) with the
number of antennas, assuming they were equally balanced at the Tx

123
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and Rx [23, 71]. This led naturally to considering multiple simultane-
ous users, for example the downlink of a cellular system where the base
station has nT (Tx) antennas, and each user has nR < nT (Rx) anten-
nas. This situation is typically referred to as space division multiple
access (SDMA) or multiuser MIMO. Here as well, the linear capacity
(now summed over the users) scaling can still be maintained by using
a pre-cancellation technique at the Tx (in the downlink), or Rx SIC
(uplink) [13, 76, 84, 81].

Notably, however, these well-known results all ignore the spurious
interference that occurs from “uncontrolled” interferers in the network.
Only a very small body of work has considered the effect of interference
on MIMO transmission, despite fairly clear warnings that the classic
results may not hold for moderate to high levels of interference, and in
fact contradictory results may hold instead [14, 12, 11, 4]. This is prob-
ably because it appears to be quite difficult to analyze MIMO systems
(which already have significant randomness to deal with from the ran-
dom matrix channel) when considering non-Gaussian interference as
well. The aforementioned cautionary works primarily used simulations,
as did contemporaneous work on ad hoc networks [62, 61, 15, 83]. Even
today, the most promising theoretical MIMO techniques, namely spa-
tial multiplexing (SM) and SDMA, have proved largely disappointing
in the field, in large part due to the effect of interference.

One of the most popular uses of the TC framework has been to
attempt to better understand MIMO systems that are subject to in-
terference. The results we present in this chapter are again for the de-
centralized one-hop ad hoc networks with an Aloha-type MAC, but ex-
tensions to other examples of interference-limited networks along these
lines seem well within reach, and are discussed more in §6.5.

6.2 Categorizing MIMO in decentralized networks

There are two main differences that emerge when considering MIMO
in a large wireless network, versus an isolated point-to-point or down-
link/uplink scenario. As we just emphasized, there is the random (non-
Gaussian) interference aspect, which causes the tradeoffs that emerged
from traditional MIMO analysis to no longer necessarily hold. Second,
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there is the spatial reuse aspect to consider, since in a decentralized net-
work the key metric is throughput per unit area. A scheme that gets
high throughput for a typical Tx-Rx pair at the expense of poor spatial
reuse may result in a poor TC, or any related network-wide through-
put metric. Therefore, in this section we distinguish between “single
stream” and “multi-stream” TC, dividing multiple antenna techniques
accordingly. Of course, multi-stream techniques reduce to single stream
as a special case, but for ease of exposition we consider them separately.

Rx

Tx

2X1

X1

Rx

X1 X2

Y1 Y2

Tx

X1 X2

Rx Diversity
Spatial 

Multiplexing
SDMA

Tx

X1 X2

Rx1

X1

Rx2

X2

Fig. 6.1 Simple configurations of 1 × 2 receive diversity, 1 × 2 spatial multiplexing (SM),
and K = 2 user space division multiple access (SDMA).

6.2.1 Single stream techniques

We now provide a general model for a MIMO ad hoc network when
only a single data stream is transmitted by any given node. Our focus
is on linear transmitters and receivers but the approach here could be
generalized to nonlinear systems without any major conceptual differ-
ences. Among single stream techniques, there are two major competing
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approaches for how to use the antenna arrays. The first we refer to
broadly as diversity, where the spatial degrees of freedom (DoF) are
used to strengthen the desired portion of the received signal. The other
is interference cancellation (IC), whereby the DoF are used to suppress
interference. To the best of our knowledge, the first paper on this topic
was [39] (extended in [40]), with [31] shortly thereafter. It has since
been extended by numerous other works to many scenarios.

The model used in this section starts with the SINR given in §4.1,
since these multi-antenna techniques are only relevant when the chan-
nels have temporal and/or spatial selectivity. In this chapter, we as-
sume that all channels experience iid Rayleigh fading, i.e., the channels
are iid complex Gaussian with zero mean and unit variance. Further,
we assume the dimension d = 2 throughout this chapter, and that there
is no guard zone, i.e., ε = 0. The relevant SINR is still

sinr(o) =
S(o)

Σ(o) +N/P
, (6.1)

and the diversity techniques attempt to increase S(o) (and reduce its
variance) while IC reduces Σ(o) by removing a portion of one or more
interfering nodes.

Definition 6.1. MIMO single stream SINR. For both diversity
and IC approaches, when linear Tx/Rx filters are used and the number
of Tx and Rx antennas used per node are nT and nR, respectively; a
common model can be adopted for SINR, which is:

sinr(o) =
u−α|w∗0H0v0|2∑

i∈Π2,λ
|xi|−α|w∗iHivi|2 +N/P

, (6.2)

where channel fading is captured by nR × nT random matrices H0 for
the reference Tx-Rx pair, Hi for the channel from interferer i to the
reference Rx, and filtering is modeled by nT × 1 Tx filters {v0, v1, . . .}
and nR×1 Rx filters {w0,w1, . . .}. These filters are random in that they
are in general chosen as functions of the random channels.

The relevant design question is how to pick the various v and w to
maximize SINR. For single stream MIMO approaches, the definitions
of OP and TC developed in the preceding chapters still apply without
modification.
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Diversity

Diversity techniques pick v and w to maximize the numerator of (6.2),
while ignoring the interference. Although some feedback may be nec-
essary for the design of the Tx filter v, this class of techniques has the
merit that interference does not need to be estimated, learned, or oth-
erwise acquired; such acquisition can be expensive in terms of overhead
and computation, and in many cases (e.g., mobility) not very robust.

An important point is that in this model, the “diversity” affects the
SINR in two ways. First, by sending a single stream over multiple ef-
fectively uncorrelated channels, variations in the SINR are significantly
reduced and the formerly random SINR hardens to a constant value as
the antenna arrays grow large. However, the effect of hardening on TC
is small, since the TC already considers a spatial throughput average.
Second, the average SINR increases because of array gain, which aligns
the transmitted energy towards the dominant eigenvalue of the matrix
channel. This latter effect has a more significant effect on the TC.

Interference cancellation (IC)

IC is considered in this chapter for single stream techniques, i.e., we
design w to be roughly orthogonal to a subset of nearby interferers, e.g.,
the nR−1 strongest interferers. Additional single stream IC gain can in
theory be achieved if each Tx is able to learn the channels to its nT−1
closest active “victim” receivers, in which case v can be designed to be
approximately orthogonal to those channels. However, this introduces
significant overhead and is unlikely to be very robust or practical — it
also complicates the exposition considerably. For the purposes of this
chapter, we limit ourselves to Rx IC when considering single stream
transmission.

Three different linear Rx IC approaches are considered in the next
section. Two of them also achieve a diversity gain. The three techniques
are:

(1) Zero-forcing (ZF), where w is chosen to be precisely orthogo-
nal to the channels of the strongest nR− 1 interferers. There
is no diversity gain.
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(2) Partial zero-forcing (PZF), where w is chosen to be orthogo-
nal to the z ≤ nR−1 strongest interferers, and the remaining
nR − z dimensions are used for Maximal Ratio Combining
(MRC).

(3) Minimum Mean Square Error (MMSE), achieves both IC and
diversity and maximizes the SINR (and hence TC), but the
tradeoff between them is not as easy to observe as in PZF.

Although it is impossible to eliminate all interference with a finite num-
ber of antennas, for nR sufficiently large and for low to moderate SINR
thresholds τ , all appreciable interference can in theory be removed
(since sufficiently weak interferers will not cause outages even in aggre-
gate).

6.2.2 Multi-stream models: spatial multiplexing and SDMA

We would also like to allow the communication of multiple simultane-
ous information-bearing streams that originate and/or terminate at a
single user in the network. Although with single stream transmissions,
multiple Tx-Rx pairs communicate one stream simultaneously, we refer
here to the case where a single node transmits (or receives) multiple
streams. Three cases are of interest.

(1) Spatial Multiplexing (SM): Tx 0 sends K streams to Rx 0.
All other active transmitters follow suit to their respective
receivers.

(2) Tx SDMA: Tx 0 sends K streams total, one each to Rx’s
0, 1, ...,K − 1. For simplicity and maximum contrast to SM,
we limit our attention to this case, but it is straightforward
conceptually to extend this to Ki streams sent to Rx i, where∑
Ki ≤ nT.

(3) Rx SDMA: Similarly, the simplest scenario is where Tx’s
0, 1, ...,K − 1 send one stream each to Rx 0.

For such a setup, it is necessary to modify the definitions of OP and TC,
given in Ch. 1. Since multiple streams are sent over a matrix channel,
different SINR statistics will be seen on different streams, motivating
a per-stream outage constraint q∗k ∈ (0, 1).
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Definition 6.2. Multi-stream OP and OCD. Fix a common max-
imum permissible per-stream OP for each stream q∗k = q∗ ∈ (0, 1). The
maximum spatial intensity subject to an OP of q∗ is the same as in
the single stream case, but must hold for all K streams: q−1(q∗). For
the multi-stream case, we call q−1(q∗) the optimal contention density
(OCD).

For such a definition, one stream will become the limiting factor in the
OCD, and hence the TC. Because there are now potentially multiple
streams per transmission, the OCD and TC are no longer interchange-
able, leading to the following generalized definition for TC.

Definition 6.3. Multi-stream TC. The TC with K ≤ nT data
streams per transmission is the optimal spatial density of concurrent
multi-stream transmissions q−1(q∗) per unit area allowed subject to an
OP constraint q∗, i.e.,

C(q∗) = Kq−1(q∗)(1− q∗). (6.3)

This definition generalizes our previous TC definition in Def. 1.3, which
was simply for K = 1.

6.3 Single stream MIMO TC results

We now summarize a subset of instructive results on single stream TC
with multiple antennas. For the balance of the chapter we neglect noise
when it makes the exposition more complicated, and include it when
the exposition is not made significantly more difficult. It is generally
reasonable to neglect noise since in attempting to maximize TC, we
are by definition packing transmissions as tightly as possible, render-
ing thermal noise quite inconsequential compared to the background
interference level, even after strong interferers are cancelled.

6.3.1 Diversity

We first consider diversity techniques, which attempt only to improve
the desired signal, while ignoring interference.
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Definition 6.4. Single stream MIMO optimal linear diversity
filters. In a single stream nT × nR MIMO channel H0, the optimum
linear diversity Tx filter v0 and Rx filter w0 are the left and right
singular vectors corresponding to the maximum eigenvalue of H0, which
is denoted as φ0.

Because these filters ignore interference, they do not maximize SINR
or TC. They do however maximize the strength of the desired received
signal since the optimum eigenmode φ0 is used for transmission. Any
other Tx filter(s) would not concentrate the entire energy on φ0, and
hence have a strictly inferior value of S, the SIR numerator. The main
challenge to deriving OP and TC for the diversity case, relative to the
single antenna results of Ch. 4, is that now multiple iid channels (both
desired and interference) are combined at the Rx by the Rx filter. We
begin with the simpler special case of 1×nR MRC, where only the filter
w0 is required, before preceding to general nT × nR eigenbeamforming.
We adapt our channel notation to the assumed 1×nR case in the natural
way — the channel matrices H0,Hi are denoted by the nR-vectors h0, hi.

Theorem 6.1. The Maximal Ratio Combiner (MRC) for a vec-
tor channel h0 which maximizes the desired received energy is w0 =
h∗0/||h0||. For the nR-branch MRC with only Gaussian noise, the post-
combining SNR is the sum of the per-branch SNRs.

This well-known result (e.g., [30]) means that one simply weights each
branch in proportion to the gain on that branch. Since the interference
is not Gaussian, the branch SIRs cannot simply be summed. The post-
combining SIR in our network model is

sir(o) =
u−α|h∗0h0|2∑

i∈Π2,λ
|xi|−α|h∗0hi|2

=
u−α‖h0‖2∑

i∈Π2,λ
|xi|−α

∣∣∣ h∗0
‖h0‖hi

∣∣∣2 . (6.4)

Remark 6.1. Interference distribution is unchanged. Since h0

and hi are iid and h∗0
‖h0‖ is unit norm, h∗0

‖h0‖hi is simply a linear combina-
tion of complex Gaussian RVs. As proven in [66], a linear combination
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of Gaussian RVs is again Gaussian, and due to the normalization of
h0 the mean and variance are maintained as 0 and 1, respectively.
Therefore, | h∗0

‖h0‖hi|2 is exponentially distributed, and the interference is
unchanged from the single antenna case in Cor. 4.1.

As a consequence, the SIR can simply be expressed as

sir(o) =
u−α‖h0‖2

Σα,0
2,λ

, (6.5)

where Σα,0
2,λ is the standard aggregate single antenna interference.

Remark 6.2. Signal distribution. Since u is deterministic and S0 =
‖h0‖2 is a χ2 RV with 2nR DoF, the numerator is χ2 distributed as well.
Clearly for nR = 1 antenna this reduces to an exponential distribution
and the result in Cor. 4.1 holds. For nR ≥ 1 the CCDF of S0 is F̄S0(x) =
e−x

∑nR−1
k=0

xk

k! and the associated PDF is fS0(x) = e−x xnR−1

(nR−1)! .

We now generalize §4.1 to 1 × nR with MRC to give the asymptotic
(λ→ 0) OP.

Proposition 6.1. OP with MRC [40]. The OP for 1× nR MRC is

q(λ) = λτ δu2Cα

(
1 +

nR−1∑
k=1

1
k!

k−1∏
l=0

(l − δ)
)

+ Θ(κ2), λ→ 0, (6.6)

where κ = λτ δu2Cα and Cα = π2δ csc(πδ).

Proof. The proof requires significant algebra and is given in [40]. A
brief version with key steps is as follows. We begin as in the proof of
Prop. 4.2. Denote Σα,0

2,λ by Σ for this proof with PDF fΣ(t). Then

1− q(λ) = P(S0 ≥ τuαΣ) =
∫ ∞

0
F̄S0(st)fΣ(t)dt

=
∫ ∞

0

(
e−st

∑
k

1
k!

(st)k
)
fΣ(t)dt =

∑
k

1
k!

(−s)k dk

dsk
L[Σ](s)

(6.7)
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where the second equality in (6.7) uses the LT property tnf(t) ←→
(−1)n dn

dsnL[f(t)](s) and s = τuα. For Rayleigh fading, as in §4.1.1,
L[Σ](s) = exp(−λCαsδ). Forming the first order Taylor expansion for
the jth derivative around κ = λsδCα = 0, note that any term with κk

for k > 1 is o(κ) and can be discarded. Eventually it can be shown that

1
k!

(−s)k dk

dsk
L[Σ](s) = − 1

k!
λsδCα

k−1∏
l=0

(l − δ) + Θ(κ2) (6.8)

as λ → 0, which after straightforward manipulation, yields the result.

Note that Prop. 6.1 is equivalent to Cor. 4.1 for nR = 1, no noise, and
given a Taylor series expansion around κ.

Proposition 6.2. TC with MRC [40]. When each Tx transmits on
a single antenna and each Rx performs MRC with nR antennas; or
equivalently each Tx performs MRT with nT = nR antennas and each
Rx uses a single antenna; the asymptotic (as q∗ → 0) TC under iid
Rayleigh fading for all links, with no noise, is

λ(q∗) =
q∗

Cατ δu2
(

1 +
∑nR−1

k=1
1
k!

∏k−1
l=0 (l − δ)

) + Θ(q∗)2, q∗ → 0. (6.9)

Further, λ(q∗) is Θ(nR
δ) (as nR → ∞) and ignoring Θ(q∗)2 terms can

be bounded as

1 ≤ Cατ
δu2

nR
δq∗

λ(q∗) ≤ Γ(1− δ). (6.10)

The “exact” result (6.9) follows immediately by solving the result of
Prop. 6.1 for λ. The bounds are more involved to show, but it can be
shown that

(
1 +

∑nR−1
k=1

1
k!

∏k−1
l=0 (l − δ)

)
can be bounded by nR

δΓ(1−δ)
(lower) and nR

δ (upper) [40]. The analysis for nR Tx antennas and 1 Rx
antenna follows precisely the same development. However, we do not
account for the cost of acquiring (non-causally) the necessary channel
state information h0 at the Tx.
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Remark 6.3. Sublinear gain of MRC in nR. The nR antennas
utilized in MRC provides a gain of nR

δ = nR

2
α which is sublinear since

α > 2. The same scaling holds if noise is included [40]. Interestingly, the
gain is larger for small path loss exponents which may seem counter-
intuitive since it would seem that diversity is increasingly desirable
when the signal propagation is poor.

The results on MRC can be extended to the nT×nR eigenbeamforming,
where the Tx uses what is sometimes called Maximal Ratio Transmis-
sion (MRT), and the Rx uses MRC. The Tx and Rx filters simply put
all energy onto the dominant eigenvalue of the channel matrix h0, i.e.,
v0 and w0 are set equal to the input and output singular vectors of h0

corresponding to the maximum singular value of h0.

Proposition 6.3. OCD of nT × nR eigenbeamforming [40]. The
asymptotic (as q∗ → 0) OCD can be bounded (neglecting Θ(q∗)2 terms)
as

(max{nT, nR})δq∗
Cαu2τ δ

≤ q−1(q∗) ≤ Γ(1− δ)(nTnR)δq∗

Cαu2τ δ
. (6.11)

Remark 6.4. TC scaling with nT × nR eigenbeamforming. The
scaling of max{nT, nR} observed in the LB follows immediately from
Prop. 6.2, since simply using MRT at the Tx with nR = 1 gives nT

δ

scaling, and similarly using MRC at the Rx with nT = 1 gives nR
δ. Thus

the scaling with nT×nR must be at least the larger of those two, since
the smaller array must be at least as good as using a single antenna.
The UB indicates the possibility of superlinear TC scaling for nR = nT

and α < 4. Although a tighter UB is not available, we conjecture based
on other results in random matrix theory and simulations that the LB
is more accurate and the scaling is max{nT, nR}.

6.3.2 Interference cancellation (IC)

One can instead design the Rx beamforming filter to suppress inter-
ference from a subset of the nearby interfering nodes, rather than for
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enhancing the desired signal strength. As in the last section, we as-
sume nT = 1. To illuminate the tradeoff between these two opposing
beamforming design philosophies, we adopt a general but suboptimal
structure for the Rx beamformer w0 which we term partial zero-forcing
(PZF). We briefly visit the optimum but less illustrative MMSE Rx
towards the end of this section.

Definition 6.5. Partial zero forcing (PZF) Rx. The PZF-z Rx
uses a beamforming vector w0 that is orthogonal to the channel vectors
of the z strongest interferers, where z ≤ nR − 1. That is, hi ⊥ w0 i =
1, 2, . . . z. Furthermore, ‖w0‖2 = 1 and the nR − z remaining DoF are
used to maximize the desired received power. Formally, if the columns of
the nR×(nR−z) matrix Q form an orthonormal basis for the nullspace of
(h1, . . . , hz), which can be found by performing a full QR decomposition
of matrix [h1 · · · hz], then the Rx filter is chosen as:

w0 =
Q∗h0

‖Q∗h0‖
. (6.12)

Note that if z = 0, Q = I and w0 is the MRC beamformer of Thm.
6.1. If z = nR− 1 then we have conventional (“full”) zero forcing (ZF);
note that “full” ZF is only on the closest z interferers and the rest of
the interferers are treated as background noise.

Proposition 6.4. PZF SINR. The SINR for PZF-z is

sinrpzf−z(o) =
S0

uα
∑∞

i=z+1 |xi|−αHi + snr−1
(6.13)

where S0 is χ2
2(nR−z), the Hi ≡ |w∗0hi|2 terms are iid unit-mean exponen-

tial RVs and also independent of S0, the quantities |xz+1|2, |xz+2|2, . . .
are the z+1, z+2, . . . ordered points of a 1-dim. PPP (i.e., the closest)
with intensity πλ, and the ordered points are independent of the signal
and interference terms. Finally, snr ≡ Pu−α/N as in Def. 3.2.

We note that H1, . . . ,Hz terms are not in the expression because those
interfering nodes have been (perfectly) cancelled. Unlike in the MRC
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case, we will need to concern ourselves with the interference distribu-
tion, and so define the aggregate interference power for PZF-z as:

Σz ≡ uα
∞∑

i=z+1

|xi|−αHi. (6.14)

To understand how PZF-z (and the choice of z) affects the TC, it is
sufficient to consider upper and lower bounds, since we shall see that
the scaling in nR is the same for both bounds, and also for the MMSE
Rx.

Proposition 6.5. OP for PZF-z [46]. The OP with PZF-z has UB:

qpzf−z(λ) ≤
τ
((
πu2λ

)α
2
(
α
2 − 1

)−1 (
z −

⌈
α
2

⌉)1−α
2 + 1

snr

)
nR − z − 1

(6.15)

for
⌈
α
2

⌉
< z < nR − 1.

Proof. First, rewrite the OP as the tail probability of the RV 1/sinr

and then apply Markov’s inequality as follows:

qpzf−z(λ) = P
(

1
sinrpzf−z ≥

1
τ

)
(a)

≤ τ · E
[

1
sinrpzf−z

]
(b)
= τ · E

[
Σz +

1
snr

]
E
[

1
S0

]
, (6.16)

where (a) is due to Markov’s inequality, (b) is from (6.13) and the
independence of S0 and Hi. We note that the first expectation term
E
[
Σz + 1

snr

]
= E[Σz] + 1

snr and corresponds to the effect of IC, whereas

E
[

1
S0

]
= 1

nR−z−1 since S0 is χ2
2(nR−z), and this term corresponds to the

signal power boost from the remaining DoF. The remaining task is to
find E[Σz], and an upper bound on it (suppressing the leading uα term)
can be found as

E

[ ∞∑
i=z+1

|xi|−αHi

]
=

∞∑
i=z+1

E
[
|xi|−αHi

]
=

∞∑
i=z+1

E
[
|xi|−α

]
, (6.17)

from the independence of |xi| and Hi and unit mean fading. Because
|x1|2, |x2|2, . . . are a 1-dim. PPP with intensity πλ, RV πλ|xi|2 is χ2

2i
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and thus has PDF fx(x) = e−xxi−1

(i−1)! (see Rem. 6.2). Therefore,

E
[(
|xi|2

)−α/2] = (πλ)
α
2

Γ
(
i− α

2

)
Γ(i)

. (6.18)

This quantity is finite only for i > α
2 , and thus the expected power

from the nearest uncancelled interferer is finite only if z+ 1 > α
2 . As in

[37], using Kershaw’s inequality,

Γ
(
i− α

2

)
Γ(i)

<
(
i−
⌈α

2

⌉)−α
2 (6.19)

where d·e is the ceiling function and i >
⌈
α
2

⌉
. Therefore

∞∑
i=z+1

Γ
(
i− α

2

)
Γ(i)

<
∞∑

i=z+1

(
i−
⌈α

2

⌉)−α
2

≤
∫ ∞
z

(
x−

⌈α
2

⌉)−α
2 dx

=
(α

2
− 1
)−1 (

z −
⌈α

2

⌉)1−α
2
, (6.20)

where the inequality in the second line holds because x−
α
2 is a decreas-

ing function. Inserting this expression for E[Σz] along with E
[

1
S0

]
into

(6.16) gives the desired result.

This result for OP is easy to invert for λ which yields our next propo-
sition, and a useful interpretation of it.

Proposition 6.6. TC for PZF LB. The TC of PZF is lower bounded
by:

λ(q∗)pzf−z ≥
(
q∗

τ

) 2
α
(
α
2 − 1

) 2
α

πu2

(
nR − z − 1− τ

q∗ snr

) 2
α (

z −
⌈α

2

⌉)1− 2
α

(6.21)
for any z satisfying

⌈
α
2

⌉
< z < nR− 1− τ

q∗ snr . Furthermore, if z = θnR

for 0 < θ < 1, then λ(q∗)pzf−z = O(nR) (as nR →∞), and the optimum
value of θ is θ∗ = 1− 2

α .
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The linear scaling of PZF can be observed by simply plugging in z =
θnR and allowing nR to grow large. Similarly, the optimum value of θ
can be found taking the derivative of (6.21) w.r.t. θ after plugging in
z = θnR, setting equal to zero, and solving for θ.

Remark 6.5. PZF linear scaling in nR. The linear scaling can be
interpreted as adaptively combining the MRC portion of the array (to
get nR

2
α ) with the IC portion (to get nR

1− 2
α ), for a total scaling of nR.

In particular, the amount used for each must grow with nR, any fixed
value of z does not achieve linear scaling in nR.

To be certain that PZF cannot achieve superlinear TC scaling in nR,
we turn our attention to appropriate upper bounds. One can consider
two different approaches. The first and most direct is simply to lower
bound the PZF OP and invert it to observe a TC UB. The second is
to consider the MMSE Rx, which is by definition strictly better than
PZF, and hence upper bounds its TC. For completeness, and because
the proof techniques are very similar for each, we provide both upper
bounds. First, however, we must define the MMSE Rx beamformer.

Definition 6.6. The MMSE Rx filter is given as

w0 =
Λ−1h0

‖Λ−1h0‖
. (6.22)

where Λ is the random spatial covariance of the interference plus noise
and can be expressed as

Λ ≡ 1
snr

I + uα
∑
i∈Π2,λ

|xi|−αhih
∗
i , (6.23)

and I is the nR × nR identity matrix.

Remark 6.6. MMSE Rx filter. The MMSE filter maximizes SINR,
which is sinr = h∗0Λ−1h0, but is not easy to express in a way amenable
to analysis. Furthermore, it should be noted that although it appears
superficially from (6.23) that a great deal of information (namely the
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distances and fading values of every single interferer) is needed to com-
pute Λ, in fact this covariance matrix can be estimated over time and
is generally more robust to imperfections than the ZF matrix compu-
tation, which requires the BF vector w0 to be precisely orthogonal to
each of the z interfering channels.

With this background on the MMSE filter (see [31, 46, 56, 2] for more
detailed discussion), we can now state the two TC upper bounds in the
following proposition.

Proposition 6.7. TC UB for PZF and MMSE [46]. The TC for
an MMSE Rx with nR antennas at high SNR is upper bounded by

λmmse(q∗) ≤ 2nR + 1 + α
2

πu2τ
2
α (1− q∗) 2

α

, (6.24)

while for PZF the corresponding bound with l uncancelled interferers
is

λpzf−z(q∗) ≤ z + l + α
2

πu2τ
2
α (1− q∗) 2

α

(
nR − z
l − 1

) 2
α

. (6.25)

The PZF upper bound holds for any 0 ≤ z ≤ nR − 1 and any integer
l ≥ 2. These bounds both scale as O(nR) (as nR →∞).

Proof. The complete proof of the MMSE TC result is given in [46].
The first step is showing that an UB on success probability (neglecting
noise) can be written as

1− qmmse(λ) ≤ P

(
u−α‖h0‖2∑∞
i=nR

|xi|−αHi
≥ τ

)
, (6.26)

which follows from an OP lower bound for MMSE receivers developed
in [27]. Using Markov’s inequality and a similar approach to the proof
of Prop. 6.6 – namely using Kershaw’s inequality, dropping various
terms (while preserving the bound), and exploiting the independence
of various terms – the desired result can be achieved. The proof of
the PZF UB follows the same method, starting with the PZF SINR
expression. Both results scale linearly with nR which can be observed
by inspection.
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This proposition, paired with Prop. 6.6, establishes that by appropri-
ately combining diversity (array) gains with IC, the TC of a wireless
network can in fact be increased linearly with just the Rx antenna ar-
ray size. In contrast, this is not possible without the combination. This
can also be observed from the above upper bound on PZF TC, which
reduces to MRC for z = 0 and to full ZF for z = nR−1. Plugging those
values in yields the following Corollary.

Corollary 6.1. TC UB for MRC. An upper bound on the TC with
MRC is given by z = 0 and is

λ(q∗)mrc ≤ 2 + α
2

πu2τ
2
α (1− q∗) 2

α

nR

2
α , (6.27)

while for full ZF the TC is giving with z = nR − 1 and

λ(q∗)zf(nR − 1) ≤ 2 + α/(2nR)

πu2τ
2
α (1− q∗) 2

α

nR
1− 2

α . (6.28)

Both of these expressions use l = 2 in Prop. 6.7.

These expressions make plain the nR

2
α scaling for MRC and nR

1− 2
α

scaling for full ZF, respectively. These same scalings were observed
above for MRC in Prop. 6.2 and for full ZF in [37], respectively. Notably,
in [37], it was found that using multiple Tx antennas did not change
the scaling if the Tx beamforming vector is not adapted to the channel
or interference.

6.4 Main results on multiple stream TC

We now consider the case where nodes communicate K ≥ 1 streams
simultaneously. In the case of spatial multiplexing, these K streams all
originate and terminate between a single Tx-Rx pair. For (Tx) SDMA,
the streams all originate at a single Tx but terminate at K different
receivers.

6.4.1 Spatial multiplexing

The fundamental tradeoff in a spatial multiplexing (SM) system is one
of rate versus reliability. Famously formalized in [85], the basic idea is
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Fig. 6.2 The OCD vs. nR for PZF, MMSE, ZF, and MRC, for α = 4. The superior scaling
of MMSE and PZF is readily observed.

that transmitting multiple streams, e.g., K = nT, tends to maximize
the data rate whileK = 1 tends to maximize reliability. We will see that
a related tradeoff also occurs in decentralized wireless networks follow-
ing the TC model. In our case the tradeoff is typically more complex to
quantify because the TC of each Tx-Rx pair is affected by all the other
Tx-Rx pairs in the network, who also are adjusting their number of Tx
streams. However, as a metric the TC already inherently includes both
throughput and reliability, so maximizing the TC inherently trades off
between rate (higher SINR or λ) and reliability (outage).
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As noted previously, the TC framework operates on a specific sys-
tem model, which renders a SINR expression specific to that model.
In the case of SM there is a fairly large library of possible Tx and Rx
structures, each of which yield a different SINR, and hence possibly a
different tradeoff. For example, a SM Tx could use multimode beam-
forming, a singular value decomposition (SVD) pre-filter, or it could
simply transmit each of the K streams on K ≤ nT different antennas
— either in a fixed pattern or rotating over the antennas (as is done
in BLAST). At the Rx, the number of options is even larger, including
the Maximum Likelihood (ML) detector or approximations to it like
the sphere decoder; various forms of linear interference cancellation
(including ZF, PZF, and MMSE); nonlinear interference cancellation
(BLAST or SIC); or other approaches like MRC or SVD post-filtering.
Explaining the details of all these different well-known Rx structures is
outside the scope of this chapter, and readers lacking this background
are referred to any of [60, 72, 30, 28] for details. We will focus on an
instructive subset of these approaches (mainly limited to Tx and Rx
very similar to those considered in §6.3), and see that several broad
trends, as well as a few interesting differences, hold across the different
approaches.

Simple K-stream transmission

First, we consider a class of results where the Tx has the simplest
possible structure: it simply transmits a single unique data stream from
each of one or more of the nT Tx antennas. So, for K = 1 these results
reduce to the results of §6.3. For 2 ≤ K ≤ min(nT, nR), the results will
generalize our prior results. For this simple transmit structure, we will
consider four possible different receivers, all of which are linear:

(1) The MRC Rx [56].
(2) The ZF Rx, where only self-interference from the interfering

K − 1 streams is cancelled [68, 56].
(3) The PZF Rx, where in general both self-interference and in-

terference from other users is cancelled [74].
(4) The MMSE Rx [55].
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We now catalogue and discuss the main results of interest for these
cases. The proofs are not given but can be found in the referenced
papers. To express the results simply, we assume in all cases that nT ≤
nR and that the number of transmitted streams K ≤ nT, and so of
course K∗ ≤ nT also. Due to the transmit structure assumed in this
section, the other nT −K Tx antennas are simply not used.

Proposition 6.8. SM with MRC [56]. With a MRC Rx and large
nT, nR, the optimal number of streams to transmit is

K∗ = nR

1− 2
α

τ(1 + snr−1)
, (6.29)

and when K = K∗ the resulting TC is Θ(nR) (as nR →∞).

Proposition 6.9. SM with ZF Rx [68, 56]. With a ZF Rx applied to
the K − 1 interfering streams, other-user interference treated as noise,
and large nT, nR, the optimal number of streams to transmit is

K∗ = nR

1− 2
α

1 + τsnr−1
, (6.30)

and when K = K∗ the resulting TC is Θ(nR) (as nR → ∞). Further-
more, if K = nT = nR the scaling falls to Θ(nR

1− 2
α ) (as nR →∞).

Several interesting observations can be made already from these two
results. At high SNR, the optimum number of streams is quite different
for MRC and ZF, namely ZF uses τ more streams than MRC. They
both prefer more streams at high path loss exponents: in this case the
other-user interference is attenuated more rapidly. And we see that with
ZF, there is a significant penalty attached to sending streams from the
full antenna array.

Proposition 6.10. SM with PZF at high SNR [74]. When a PZF
Rx is applied to cancel the K − 1 interfering streams from the same
user, and the K streams from each of z closest interfering users, the
optimal number of streams is K∗ = 1, the optimal number of users to
cancel is z∗ = nR(1− 2

α), and the TC is Θ(nR) (as nR →∞).
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This proposition indicates that the optimal PZF setup is the single
stream Tx of [46] that was already extensively discussed in §6.3.2. In
short, there is in principle no gain to doing SM if one is able to cancel
interference instead. An important caveat here is that one must be able
to increase the contention density arbitrarily to get the linear scaling
gains (e.g., by allowing a higher contention probability in the Aloha-like
random access protocol). SM may therefore still be desirable since it
does not require an increased network density to achieve its TC gains.

Corollary 6.2. PZF Rx without cancellation [74]. If the PZF Rx
operates only on the streams of the desired user, i.e., z = 0, then
K∗ = nR(1− 2

α) and the TC is still Θ(nR) (as nR →∞).

This corollary follows from Prop. 6.9 and from [74], because the PZF Rx
is in this case exactly the ZF Rx. The TC scaling is the same whether
the Rx cancels interference from the other streams of the same Tx;
or cancels interference from a number of nearby single stream trans-
mitters [56]. Furthermore, the optimum number of streams/users to
cancel turns out to be the same, which is not obvious since the statis-
tical properties of the interference are quite different in each case.

Corollary 6.3. PZF Rx cancelling strongest interferer [74]. If
the PZF Rx instead cancels the strongest interferers, then K∗ = 1,
z∗ = nR−1, and the TC is still Θ(nR) (as nR →∞) but can be further

characterized as Θ(nR(q∗)
1
nR ) (as nR →∞).

This tells us that there is an additional gain in terms of the outage
constraint from measuring and cancelling the strongest users, which
would typically also be more practical since the Rx would not know
where the interferers are located, but would be able to measure the
receive signal strengths.

Remark 6.7. SM with the MMSE Rx. Exact results for the TC
in this case are given in [55] but are quite complex, and not amenable
to a simple conclusion on the orderwise scaling or optimum number
of streams K. In view of the previous results it is safe to conjecture
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that the scaling will be at least linear in nR if the optimum number of
streams are used. In fact from Prop. 6.7 we know that the scaling is
linear even if K = 1.

Spatial multiplexing enhancements: multimode BF and
DBLAST

The prior section used the simplest possible Tx structure, and four
different linear receivers. In this section we consider two other repre-
sentative setups that introduce logical enhancements at both the Tx
and Rx. These are:

(1) Multimode (eigen)-beamforming transmission [74].
(2) DBLAST, which includes a diversity Tx and non-linear in-

terference cancelling Rx [68].

The multimode beamformer transmits K streams on all nT antennas,
where the K streams are placed on the K dominant eigenmodes of
the Tx-Rx channel. For simplicity we now let nT = nR and so for
the balance of the section nT and nR can be used interchangeably.
Obviously, the Tx must acquire the Tx-Rx channel to implement such
a precoder, which typically requires the singular value decomposition
(SVD) of the matrix channel. Such an approach achieves the capacity
(with appropriate power allocation across the eigenmodes) for a point-
to-point MIMO channel with an optimal Rx [71]. This approach was
the first considered approach in the TC framework for ad hoc networks
as well [38] and is difficult to analyze; Vaze and Heath made progress
by instead using a PZF Rx. Their main result can be summarized by
the following proposition.

Proposition 6.11. SM with multimode beamforming and PZF
receivers [74]. For a multimode beamformer with a PZF Rx, the opti-
mum number of Tx streams is K∗ = 1, the optimal number of cancelled
interferers is z = nR − 1, and the TC scales as Θ(nR) (as nR →∞).

In short, applying an optimum Tx pre-filter does not change the PZF
results we have previously seen; however it does increase the optimum
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number of cancelled interferers since the additional Rx DoF are no
longer needed for diversity and array gain, since that is accomplished
at the Tx. There is a fixed (independent of nT, nR) gain of about a
factor of 4 with multimode beamforming. With an optimum single-
user Rx (computed on the SVD of the Tx-Rx channel), but no IC, it
was observed numerically in [38] that the optimal number of streams
reverts to be compatible with the recurring nT(1− 2

α) expression.
Turning to nonlinear Rx structures, Stamatiou et al. considered

both Vertical and Diagonal BLAST architectures in [68]. BLAST re-
ceivers successively decode and cancel the K transmitted streams. V-
BLAST is more bandwidth efficient but does not achieve as much di-
versity as D-BLAST, which rotates the symbols across the antennas.

Proposition 6.12. SM with the BLAST architecture [68]. For
a D-BLAST architecture the optimum number of streams is K∗ =
2(nT + 1)(1− 2

α) and for both D-BLAST and V-BLAST the TC is still
Θ(nT) (as nT →∞). Furthermore, the TC of V-BLAST is higher than
D-BLAST by a factor of 21−δ for α ≤ 4 and by a factor 2−δδ−δ(1−δ)δ−1

for α > 4, recalling δ = 2
α .

It is notable that BLAST appears to make SM more robust, which
results in more streams being used especially for high path loss (lower
interference). For example, if α ≥ 4, K∗ = nT.

6.4.2 Space division multiple access (SDMA)

The main distinction between SDMA, also often called multiuser
MIMO, and spatial multiplexing is that in SDMA, the multiple si-
multaneous streams originate or terminate at different users. We will
focus on the Tx SDMA case, and to maximally distinguish between
SDMA and SM, we will assume that each SDMA stream is sent to a
different Rx. We will now formalize key aspects of the model, before
providing key TC results on SDMA, and discussing their implications,
and how they differ and/or agree with cellular SDMA results.
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Details of the SDMA model

Each Tx has nT antennas and communicates simultaneously with |K| =
K ≤ nT receivers, which are each equipped with nR Rx antennas. Each
of the K streams contains a separate message destined to a different
Rx, and each Tx and its set of intended receivers Ki form a broadcast
cluster. The closest Rx in the cluster is a distance umin from the Tx,
and the farthest is umax, with the rest of the receivers proportionally
located in a random direction in between umin and umax. Although umin

and umax show up in the TC bounds, they can take on any arbitrary
value and do not affect the scaling results we will present.

Dirty paper coding (DPC) transmission

It is well-known that the optimum Tx SDMA strategy in a Gaus-
sian broadcast channel (i.e., a downlink channel with only Gaussian
noise/interference) is dirty paper coding (DPC) [20], which can be
viewed as a form of successive interference pre-cancellation, and pro-
vides an effectively interference free channel for each stream [13, 76, 81].
Therefore, the SDMA sum capacity (achieved using DPC) with single
antenna receivers at high SNR is O(nT log snr), and adding nR Rx an-
tennas to each node does not increase the scaling by more than a fairly
inconsequential log log nR term, which can be achieved with antenna
selection (which increases the snr by a log nR factor asymptotically,
and hence the capacity by log log nR). However, until recently, almost
nothing was known about SDMA’s performance in the presence of un-
controlled (spurious) interference.

The next several results, due to Kountouris [52, 51], provide math-
ematical expressions that show SDMA’s effect on throughput in a de-
centralized network. The proofs can be found in the sources referenced
when not provided here.

Proposition 6.13. Bounds on multistream DPC TC with
MRC [52]. The multi-stream TC of DPC transmission with MRC
receivers at high SNR subject to small OP constraint q∗ is bounded
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as

Kq∗ (1− q∗)Fd
JKτ

2
αu2

max

≤ Cmrc
DPC ≤

K[4nT(nR −K + 1)]
2
α (1− q∗) log

(
1

1−q∗
)

JKτ2/αu2
min

(6.31)
where for diversity order d = nT(nR −K + 1) we have

Fd =

 d∑
j=0

(
d

j

)
(−1)j+1j

2
α

−1

, (6.32)

and the constant JK is

JK =
2πΓ

(
2
α

)
αΓ(K)

K−1∑
m=0

(
K

m

)
Γ(m+ 1)Γ

(
K −m− 2

α

)
, (6.33)

which depends only on the number of streams K and α.

Proof. A sketch of the proof is provided, which follows the standard
TC framework. First, derive an upper and lower bound on the OP,
which results in bounds that are given by

1− L[Σ](
τuαmin

4d
) ≤ P(sinr ≤ τ) ≤

d∑
j=0

(
d

j

)
(−1)jL[Σ](jτuαmax), (6.34)

where L[Σ](s) is the LT of the aggregate interference term with multi-
stream transmission (given interference power marks that are dis-
tributed as chi-squared with 2K DoF), and can be given by [38]

L[Σ](ζ) = exp
(
−λζ 2

αJK
)
. (6.35)

The closest Rx in the cluster gives the lowest OP (almost surely in
probability), and the farthest similarly gives the highest. These expres-
sions are then set equal to q∗ and inverted for λ to find corresponding
lower and upper bounds on the contention density λ(q∗), which mul-
tiplied by the the number of transmitted streams K and the success
probability 1− q∗ gives the result.

These somewhat involved expressions are amenable to the following
scaling laws, which clearly show the dependence on the number of
streams and antennas.
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Proposition 6.14. SDMA scaling laws with a DPC Tx and
MRC Rx [52].

Cmrc
DPC = Ω(K1− 2

α [(nT −K + 1)(nR −K + 1)]
2
α ) (6.36)

Cmrc
DPC = O(K1− 2

α [nT(nR −K + 1)]
2
α ) (6.37)

where both asymptotic order expressions hold as nT, nR →∞.

Proof. Given Prop. 6.13, for asymptotically large number of antennas
nT, nR, and streams K, as in the proof Prop. 6.2, that

lim
K→∞

JK
K

2
α

= πΓ(1− 2/α) (6.38)

and for asymptotically large d we have Fd = Θ(d
2
α ) [80]. Thus, the

lower bound divided by K1− 2
α [(nT−K+ 1)(nR−K+ 1)]

2
α converges to

a constant as nT, nR → ∞, and similarly for the upper bound divided
by K1− 2

α (nT(nR −K + 1))
2
α .

Corollary 6.4. TC scaling and K∗ for SDMA with DPC Tx
and MRC Rx [52]. Letting nT = nR and the number of streams
K = θnT, for 0 < θ < 1 in Prop. 6.14, then

Cmrc
DPC = Ω(nT), Cmrc

DPC = O(nT
1+ 2

α ), nT →∞ (6.39)

and it can be shown that

K∗lb =
α− 2
α+ 2

nT = 1− 2
α(1

2 + 1
α)
nT, K∗ub = 1− 2

α
(nT + 1). (6.40)

Considering just the UB, we observe that the optimum number of
streams K∗ub again follows the same theme as the PZF and SM re-
sults, with a similar but slightly different trend for K∗lb. But unique
thus far to SDMA, we see the possibility of superlinear scaling in the
number of antennas.

If we consider a trivial Rx that has a single Rx antenna, the following
scaling law can be determined for such a multi-input single output
(MISO) scenario.
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Proposition 6.15. TC with DPC Tx and single antenna Rx
[52]. At low q∗ and high SNR, The TC with a DPC precoder and single
antenna receivers scales as

Cmiso
DPC = Ω(K1− 2

α (nT −K + 1)
2
α ) and Cmiso

DPC = O(K1− 2
αnT

2
α ),
(6.41)

(as nT → ∞), and if K = θnT for any θ ∈ (0, 1), then Cmiso
DPC = Θ(nT).

Finally, the asymptotically optimum number of streams is K∗ = (1 −
2
α)nT.

Prop. 6.15 — where K streams are transmitted to K different single
antenna receivers in space — forms an agreeable symmetry with Prop.
6.6 where z streams are transmitted by z different single antenna trans-
mitters to z different nR-antenna receivers in space. In both cases the
scaling laws are linear in nT and nR, respectively, and optimum number
of streams is the fraction 1− 2

α . Furthermore in both cases, fixing the
number of streams to some constant that does not depend on nT of nR

loses the linear scaling.

6.5 Practical issues and further research

In this chapter, we have considered numerous ways to use multiple
antennas at the Tx, Rx, or both. The results provided here follow a
few broad themes, which we now briefly summarize.

6.5.1 Summary of main design insights

Diversity techniques typically provide linear SINR gains coming from
the array gain of the antenna array. This then results in a TC gain of
L

2
α in most cases, where L is the amount of diversity, e.g., L = nTnR.

For example, for a pathloss exponent of 4, the TC scales as
√
L. This

is considerably better than in a hypothetical centralized system where
interference does not exist, in which case the throughput scales about
as log(L) for diversity.
Linear capacity increases. We observe that there are in effect three
ways to increase the number of streams per unit area. The first is to
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increase the density of independent transmissions and tolerate higher
interference, e.g., using Rx IC. The second is through SM between a
given Tx and Rx. And the third is via SDMA. Interestingly, we see
that all three of these can linearly increase the TC with the number of
antennas. Rx IC and SDMA require only the Rx or Tx, respectively, to
have multiple antennas, whereas SM requires both the Tx and Rx to
have multiple antennas. However, it may not be possible to simply in-
crease the density (Rx interference cancellation) and the SDMA result
requires perfect CSIT and the feedback for this has not been accounted
for.
Balancing diversity and multiplexing. An interesting recurring
theme in many of the results is that the number of streams sent should
not be sent to the maximum, but rather a fraction 1 − 2

α , with the
remaining DoF going to diversity. For example, with α = 4, equal
antenna resources should be devoted to diversity and spatial pack-
ing/multistream transmission. No such corresponding result exists, to
the best of our knowledge, in classical MIMO theory (without spurious
interference).

6.5.2 Caveats and practical issues

There were numerous simplifications made in this chapter that will be
easily recognized by those familiar with MIMO systems and/or ad hoc
network design. We comment on a few of the significant ones.
Random access MAC. Throughout this chapter, indeed for any re-
sults using the PPP as a spatial interference model, the implicit MAC is
an uncoordinated slotted Aloha-type MAC. Such a MAC is pessimistic
versus CSMA (which is quite practical) or a centralized MAC (which is
likely not practical for an ad hoc or self-forming network). Moving away
from an Aloha MAC (which gives worst-case interference) may change
some of the relative benefits and make SDMA/SM more desirable ver-
sus interference suppression [86]. Some initial progress on extending
the MIMO results to a CSMA setup are given in [41].
Scaling results are focused on in this chapter, to see how the TC slope
scales for large nT, nR. In most practical scenarios, regime of small nT

and nR is the most important one, and in such a regime, the use of the
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antennas to decrease OP may be more important from a TC point of
view. For example, [37] indicates that for small nR all DoF should be
used for IC, in which case the OP falls as λnR+1, or equivalently the
TC can tolerate a stricter outage constraint at the same λ. Then, as
the array size grows, some DoF can be converted to use for MRC or
sending multiple streams.
Cellular systems do not directly follow from the results given here,
which are for decentralized networks. The main modeling difference
in a (downlink) cellular system is that interferers should not be
closer/stronger than the desired signal, or else one would simply hand-
off to this stronger signal. A tractable framework for cellular analysis
which uses tools similar to those in this monograph was recently pro-
posed in [3], where the base stations are drawn from a PPP, and hence
the interference has a shot noise format and many of the results in this
monograph can be modified and applied. We conjecture that many of
the key results and scalings shown here may hold in a MIMO-enhanced
cellular network, but this is an interesting topic for future work.
Feedback and overhead. We have neglected the cost of obtaining
the channel state information at the Rx (e.g., using pilot symbols) or
more importantly for SDMA and possibly SM, at the Tx. SDMA in
particularly requires frequent feedback. However, [32, 53] have consid-
ered exactly this problem, and [32, 53] has shown that the feedback re-
quirement for preserving the SDMA linear capacity scaling is nT log(τ),
which follows the well-known broadcast channel result in [44], but inter-
estingly includes the effect of interference and thus uses quite different
analytical techniques.
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Table 1 Notation

Chapter 1

c(o) (random) channel capacity for Rx at o Ass. 1.1

R codebook rate Def. 1.1

τ SINR threshold required to support rate R Def. 1.1
q(λ) outage probability (OP) Def. 1.1

d dimension of the wireless network ({1, 2, 3}) Def. 1.2

λ intensity of attempted transmissions per unit area Def. 1.2
Πd,λ (random, homogeneous) PPP on Rd of intensity λ Def. 1.2

q∗ target OP Def. 1.3
λ(q∗) transmission capacity with target OP q∗ Def. 1.3

λpot spatial intensity of potential interferers Rem. 1.1

ptx Aloha transmission probability Rem. 1.1

Chapter 2

bd(c, r) ball in Rd centered at c with radius r Def. 2.1
ad(c, r1, r2) annulus in Rd centered at c with radius r1, r2 Def. 2.1

cd coeffiicent on volume of a ball: |bd(o, r)| = cdr
d Prop. 2.1

Γ(z),Γ(z, t1, t2) Gamma and incomplete Gamma functions Def. 2.2

Fx, F̄x, fx CDF, CCDF, PDF for RV x Def. 2.3

x ∼ N(µ, σ) a normal RV with mean µ and standard dev. σ Def. 2.3
z ∼ N(0, 1) = Fz standard normal RV Def. 2.3

F−1
x , F̄−1

x inverse CDF and CCDF for RV x Def. 2.3
L[x](s) Laplace transform (LT) for x with s ∈ C Def. 2.3

φ[x](t) characteristic function (CF) for x with t ∈ R Def. 2.3

M[x](θ) moment generating function (MGF) for x with θ ∈ R+ Def. 2.3
H[x](x) hazard rate function (HRF) for x with x ∈ R Def. 2.3

l(r) a generic impulse response function Def. 2.4

ΣlΠ(x) (random, cumulative) shot noise (SN) RV Def. 2.4
Ml

Π(x) (random) max shot noise (SN) RV Def. 2.4

α pathloss exponent Rem. 2.4

ε nulling radius around Rx Rem. 2.4
lα,ε(r) pathloss attenuation function over distance r ∈ R+ Rem. 2.4
Σα,εd,λ(o) (random) SN at o under PPP Πd,λ and lα,ε Def. 2.5

δ = d
α

characteristic exponent Def. 2.5

γ dispersion coefficient of a stable RV/CDF Def. 2.8
G[Π, ν] point processs probability generating functional Def. 2.10

Chapter 3

sinr(o) (random) SINR at o Def. 3.1

P transmission power Def. 3.1
N noise power Def. 3.1

S Rx signal power Def. 3.1
u Tx-Rx pair separation distance Def. 3.1
ξ a constant Def. 3.2

snr Rx SNR Def. 3.2

Π̂d,λ, Σ̂
α,ε
d,λ(o) (random) dominant interferers and interference Def. 3.3

Π̃d,λ, Σ̃
α,ε
d,λ(o) (random) non-dominant interferers and interference Def. 3.3

Λ(λ) spatial throughput (TP) Def. 3.4
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Table 2 Notation (continued)

Chapter 4

Σα,hd,λ(o) (random, cumulative) interference at o under fading (h) Def. 4.1

hi (random) channel fading coef. from i ∈ Πd,λ to Rx at o Rem. 4.1

h0 (random) channel fading from ref. Tx to ref. Rx at o Rem. 4.1

Φd,λ (random) marked PPP Rem. 4.2
E0, q(0), q̄(0) event/probability of outage w/o interference Rem. 4.4

Φ̂d,λ, Σ̂
α,h
d,λ(o) (random) dominant interferers and interference Def. 4.2

Φ̃d,λ, Σ̃
α,h
d,λ(o) (random) non-dominant interferers and interference Def. 4.2

u ∼ Fu (random) link distance under VLD Def. 4.3
q(λ), λ(q∗) OP and TC under FLD Prop. 4.8

q̃(λ), λ̃(q∗) OP and TC under VLD Prop. 4.8
U end-to-end (source-destination) distance §4.3

M number of hops §4.3
A maximum allowable end-to-end transmission attempts Def. 4.5

T (random) total number of transmission attempts Def. 4.5

λmh multihop transmission capacity Def. 4.5
λub

mh upper bound on λmh Prop. 4.12

Kα π2δ csc(πδ) Prop. 4.13

Chapter 5

W total bandwidth (Hz) available to network Ass. 5.1
B number of bands employed, each of BW W/B (Hz) Ass. 5.1

η noise power spectral density (W/Hz) Def. 5.1

N(B), N noise power over a band, full spectrum Def. 5.1
ν spectral efficiency requirement Def. 5.1

q(λ/B,B) OP for intensity λ and B bands Def. 5.2

λ(q∗, B∗) TC for target OP q∗ using optimal bands B Def. 5.2
κ(q∗), ω(B∗) spatial component and spectral component of the TC Rem. 5.2
εb
η

energy per bit Def. 5.3

κ interference cancellation effectiveness Def. 5.4
K maximum number of cancellable interferers Def. 5.4

Pmin minimum receive power required for cancellation Def. 5.4

Σpc(o),Πpc
d,λ(o) (random) partially cancellable (pc) int./interferers at o Def. 5.5

Σuc(o),Πuc
d,λ(o) (random) uncancellable (uc) int./interferers at o Def. 5.5

tpc, tpc
dom, t

uc
dom mapped constraint thresholds Lem. 5.1

h0,0 (random) fading channel coef. from reference Tx to o Def. 5.6

hi,i (random) fading channel coef. from interferer i to its Rx Def. 5.6
hi,0 (random) fading channel coef. from interferer i to o Def. 5.6

ĥ fading threshold for transmission Def. 5.6

λ̂ intensity of attempted transmissions under threshold ĥ Def. 5.6

Φ̂d,λ̂ (random) MPPP of attempted Tx’s under threshold ĥ Def. 5.6

q(ĥ),Λ(ĥ) OP and TP under threshold ĥ Def. 5.6

f FPC exponent Def. 5.8

P0,Pi (random) Tx power by reference Tx and interferer i Def. 5.8
E0,f , qf (0), q̄f (0) event/probability of outage w/o interference Rem. 5.7

Φ̂d,λ, Σ̂
α,h
d,λ(o) (random) dominant interferers and interference Def. 5.9

Φ̃d,λ, Σ̃
α,h
d,λ(o) (random) non-dominant interferers and interference Def. 5.9
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Table 3 Notation (continued)

Chapter 6

vi (random) Tx beamforming vector for Tx i Def. 6.1

wi (random) Rx beamforming vector for Rx i Def. 6.1
nT number of Tx antennas Def. 6.1

nR number of receive antennas Def. 6.1

H, h (random) matrix, vector channel coefficients §6.3.1
S0 (random) signal power, S0 = ||h0||2 Rem. 6.2

K number of independent streams of data Def. 6.2

z number of interferers cancelled in PZF Rx, z < nR. Def. 6.5
θ ∈ [0, 1] fraction of antenna array used for a given purpose Prop. 6.6

umin, umax min. and max. distances to a desired Rx in a SDMA cluster §6.4.2



156 Notations and Acronyms

Table 4 Acronyms

ASE Area spectral efficiency

BF Beamforming
BLAST Bell Labs space time (a MIMO Rx)

BPP Binomial point process

iid Independent and identically distributed
CCDF Complementary cumulative distribution function

CDF Cumulative distribution function

CF Characteristic function
CSMA Carrier sense multiple access

DoF Degrees of freedom

DPC Dirty paper coding
FLD Fixed link distances

FPC Fractional power control
FTS Fading threshold scheduling

HRF Hazard rate function

IC Interference cancellation
LB Lower bound

LT Laplace transfrom

MAC Medium access control
MGF Moment generating function

MIMO Multiple-input multiple-output (multiple antennas)

MISO Multiple-input single-output
MMSE Minimum mean square error

MPPP Marked Poisson point process

MRC Maximal ratio combining
MRT Maximal ratio transmission

OCD Optimal contention density
OP Outage probability

PC Power control

PDF Probability density function
PGFL Probability generating functional
PZF Partial zero forcing

PPP Poisson point process
RV Random variable

Rx Receiver

SDMA Space division multiple access
SINR Signal to interference plus noise ratio

SIR Signal to interference ratio
SM Spatial multiplexing
SN Shot noise

SNR Signal to noise ratio

TC Transmission capacity
TP Throughput

Tx Transmitter
UB Upper bound

VLD Variable link distances

ZF Zero forcing
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List of results by chapter

Table A.1 Results in Ch. 1: Introduction and preliminaries.

§ 1.1 Motivation and assumptions
Ass. 1.1 Key assumptions
Fig. 1.1 Reference Rx and Tx and PPP of interferers

§ 1.2 Key definitions: PPP, OP, and TC

Def. 1.1 Outage probability
Def. 1.2 Homogeneous Poisson point process (PPP)
Fig. 1.2 Instance of a PPP

Fact 1.1 OP q(λ) is continuous, strictly increasing, onto (0, 1)
Def. 1.3 Transmission capacity (TC)

Rem. 1.1 Potential vs. actual transmitters and Aloha

§ 1.3 Overview of the results
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Table A.2 Results in Ch. 2: Mathematical preliminaries.

Def. 2.1 Ball and annulus
Prop. 2.1 Ball and annulus volume

Def. 2.2 Gamma function

§ 2.1 Probability: notations, definitions, key inequalities

Rem. 2.1 RV notation
Def. 2.3 Standard probability definitions

Prop. 2.2 Jensen’s inequality

Prop. 2.3 Markov’s inequality
Prop. 2.4 Chebychev’s inequality

Prop. 2.5 Chernoff’s inequality

§ 2.2 PPP void probabilities and distance mappings
Ass. 2.1 Labeling convention for PPP

Prop. 2.6 Void probability

Thm. 2.1 Mapping theorem
Prop. 2.7 Distance mapping

§ 2.3 Shot noise (SN) processes

Fig. 2.1 SN process
Def. 2.4 SN process
Rem. 2.2 SN index convention

Rem. 2.3 Radial symmetry
Ass. 2.2 Power law impulse response
Def. 2.5 Power law SN and characteristic exponent

Rem. 2.4 Pathloss attenuation and the singularity at the origin
Def. 2.6 Frechét distribution
Cor. 2.1 Max SN RV CDF

Prop. 2.8 Interference mapping
Thm. 2.2 Integration of radially symmetric functions
Thm. 2.3 Campbell-Mecke
Prop. 2.9 Shot noise mean and variance

Prop. 2.10 Shot noise series expansion
Cor. 2.2 Asymptotic PDF and CCDF of the SN RV

§ 2.4 Stable distributions, Laplace transforms, and PGFL
Def. 2.7 Stable RV and distribution

Def. 2.8 Stable CF
Def. 2.9 Lévy distribution

Prop. 2.11 Stable moments
Fig. 2.2 Lévy PDFs and CDFs

Def. 2.10 Point process PGFL
Prop. 2.12 PPP PGFL

Cor. 2.3 Point process SN LT
Cor. 2.4 PPP SN LT

Cor. 2.5 Pathloss SN MGF
Cor. 2.6 Pathloss SN CF

Cor. 2.7 Pathloss SN for δ = 1
2

§ 2.5 Maximums and sums of RVs
Prop. 2.13 Sum and max SN CCDF ratio
Fig. 2.3 CCDFs for sum and max SN

Def. 2.11 Subexponential distribution
Prop. 2.14 Sufficient subexponential condition)

Def. 2.12 binomial point process (BPP)
Lem. 2.1 BPP distances and interference
Cor. 2.8 Subexponential BPP interferences
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Table A.3 Results in Ch. 3: Basic model.

Def. 3.1 Basic model SINR

Def. 3.2 Rx SNR
Ass. 3.1 SNR LB

§ 3.1 Exact OP and TC
Prop. 3.1 OP is SN CCDF

Cor. 3.1 Explicit OP for δ = 1
2

Prop. 3.2 TC (ε = 0)

Cor. 3.2 TC (ε = 0 and δ = 1
2

)

Fig. 3.1 Exact OP and TC

§ 3.2 Asymptotic OP and TC
Prop. 3.3 Asymptotic OP and TC

Rem. 3.1 TC as sphere packing

Fig. 3.2 Taylor series expansions used in asymptotic TC

§ 3.3 Upper bound on TC and lower bound on OP

Def. 3.3 Dominant interferers and interference
Prop. 3.4 OP LB and TC UB
Rem. 3.2 Dominant and maximum interferers

Cor. 3.3 OP and TC bounds (ε = 0, N = 0, δ = 1
2

)

Fig. 3.3 OP and TC exact results vs. bounds

Fig. 3.4 Lower bound on normal CDF

§ 3.4 Throughput (TP) and TC
Def. 3.4 MAC layer TP

Prop. 3.5 Slotted Aloha TP and OP
Fig. 3.5 Slotted Aloha TP and OP

Prop. 3.6 MAC layer TP UB

Prop. 3.7 TC is constrained TP maximization
Prop. 3.8 Maximum TP equals maximum TC
Cor. 3.4 Maximizing TP and TC UBs

Fig. 3.6 Throughput and TC UBs

§ 3.5 Lower bounds on TC and upper bounds on OP
Prop. 3.9 Exact OP in terms of OP LB

Prop. 3.10 Markov inequality OP UB

Prop. 3.11 Chebychev inequality OP UB
Prop. 3.12 Chernoff inequality OP UB

Fig. 3.7 The three OP upper and TC LBs
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Table A.4 Results in Ch. 4: Extensions of the basic model

§ 4.1 Channel fading

Def. 4.1 SINR under fading
Rem. 4.1 Signal and interference fading coefficients

§§ 4.1.1 Exact OP and TC with fading

Prop. 4.1 LT of the interference
Prop. 4.2 OP and TC under Rayleigh signal fading

Lem. 4.1 Moments of exponential RV

Cor. 4.1 OP and TC under Rayleigh fading

Cor. 4.2 OP and TC under Rayleigh fading (δ = 1
2

, N = 0)

Fig. 4.1 OP and TC under Rayleigh fading

§§ 4.1.2 Asymptotic OP and TC with fading
Rem. 4.2 Marked PPP (MPPP)

Thm. 4.1 PPP marking theorem
Prop. 4.3 Void probability of the non-homogeneous MPPP
Prop. 4.4 MPPP distance and interference mapping

Prop. 4.5 Shot noise series expansion
Thm. 4.2 Interference with fading is stable
Rem. 4.3 Interference and fading moments

Rem. 4.4 Fading and outage with no interference
Prop. 4.6 Asymptotic OP and TC under fading
Rem. 4.5 OP and fading moments

Cor. 4.3 Fading degrades performance
Fig. 4.2 Fading degrades performance

§§ 4.1.3 Lower (upper) bound on OP (TC) with fading

Def. 4.2 Dominant interferers and interference
Prop. 4.7 OP LB
Fig. 4.3 MGF for the RV −h−δ

Fig. 4.4 Exact, asymptotic, bound OP and TC under fading

§ 4.2 Variable link distances (VLD)
Def. 4.3 SINR for VLD

Def. 4.4 OP for VLD
Prop. 4.8 Asymptotic OP and TC (ε = 0, N = 0)

Prop. 4.9 OP LB as an MGF

Prop. 4.10 Nearest neighbor RV characteristics

Cor. 4.4 Exact OP (ε = 0, N = 0, δ = 1
2

)

Fig. 4.5 Exact, LB, and asymptotic OP

§ 4.3 Multihop TC

Fig. 4.6 The multihop TC model with M = 3

Def. 4.5 Multihop TC

Prop. 4.11 Multihop TC inequality
Prop. 4.12 Multihop TC UB

Fig. 4.7 Multihop TC and its UB vs. allowed number of Tx attempts A

Def. 4.6 Optimal number of hops
Prop. 4.13 Optimal number of hops

Cor. 4.5 Optimal number of hops for α = 3

Cor. 4.6 Optimal number of hops for α = 4
Fig. 4.8 λmh(λ, U,M,A) vs. M for A ∈ {6, 12}
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Table A.5 Results in Ch. 5: Design techniques for wireless networks

§ 5.1 Spectrum management
Ass. 5.1 Random band selection

Rem. 5.1 Thinned interference seen by reference Rx

Def. 5.1 Noise, SINR, SNR, capacity, spectral efficiency
Def. 5.2 OP and TC under multiple bands

Prop. 5.1 TC under multiple bands

Rem. 5.2 Optimal number of bands independent of target OP
Def. 5.3 Energy per bit anad receive SNR

Rem. 5.3 Relaxation of integrality constraint

Cor. 5.1 TC under multiple bands
Prop. 5.2 Minimum energy per bit required for solution

Rem. 5.4 Low SNR regime
Fig. 5.1 Spectral component of performance

Prop. 5.3 Optimal spectral efficiency

Fig. 5.2 Optimal spectral efficiency
Cor. 5.2 Asymptotic optimal spectral efficiency (high SNR)
Fig. 5.3 Optimal high SNR spectral efficiency

Prop. 5.4 Maximum possible spectral efficiency (low SNR)
Fig. 5.4 Optimal spectral efficiency

§ 5.2 Interference cancellation (IC)

Def. 5.4 The (κ,K, Pmin) IC model
Def. 5.5 SINR at a (κ,K, Pmin) IC capable reference Rx
Lem. 5.1 Constraint mapping

Lem. 5.2 Partially cancellable / uncancellable nodes
Fig. 5.5 Illustration of the thresholds

Thm. 5.1 Ordered distances marginal distributions

Cor. 5.3 Ordered distances in Π1,1 marginal distributions
Fig. 5.6 PDFs for the ordered distances in Π1,1

Prop. 5.5 OP LB under (κ,K, Pmin) IC Rx model

Fig. 5.7 OP vs. λ
Fig. 5.8 OP vs. κ and Pmin

Rem. 5.5 Other bounds on OP and TC under IC

§ 5.3 Fading threshold scheduling (FTS)
Def. 5.6 Fading coefficients, signal interference, and SINR

Def. 5.7 OP and TP

Rem. 5.6 Quantity vs. quality of transmissions through FTS
Prop. 5.6 Asymptotic OP under FTS

Prop. 5.7 Asymptotic TP under FTS

Fig. 5.9 Asymptotic TP and optimal FTS threshold
Prop. 5.8 FTS exploits fading to improve performance

Fig. 5.10 Throughput under FTS

Prop. 5.9 OP LB and TP UB
Fig. 5.11 Asymptotic TP and UB

§ 5.4 Fractional power control (FPC)
Def. 5.8 Transmission powers and SINR
Lem. 5.3 Transmitted power RV moments under FPC
Fig. 5.12 Variance of the transmitted power under FPC

Rem. 5.7 Fading and outage with no interference
Prop. 5.10 Asymptotic OP and TC under FPC

Prop. 5.11 Asymptotic optimality of f = 1/2
Rem. 5.8 Optimal FPC may incur large power variance
Def. 5.9 Dominant and maximum interferers

Prop. 5.12 The OP LB under FPC
Fig. 5.13 OP vs. FPC exponent f

Fig. 5.14 OP vs. intensity of attempted transmissions λ
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Table A.6 Results in Ch. 6: Multiple antennas

§ 6.1 MIMO with interference

§ 6.2 Categorizing MIMO in decentralized networks

Fig. 6.1 Receive diversity, SM, and SDMA

§§ 6.2.1 Single stream techniques
Def. 6.1 MIMO single stream SINR

§§ 6.2.2 Multi-stream models: spatial multiplexing and SDMA
Def. 6.2 Multi-stream OP and OCD

Def. 6.3 Multi-stream TC

§ 6.3 Single stream MIMO TC results

§§ 6.3.1 Diversity
Def. 6.4 Single stream MIMO optimal linear diversity filters

Thm. 6.1 Maximal Ratio Combiner (MRC)

Rem. 6.1 Interference distribution is unchanged
Rem. 6.2 Signal distribution

Prop. 6.1 OP with MRC

Prop. 6.2 TC with MRC
Rem. 6.3 Sublinear gain of MRC in nR

Prop. 6.3 OCD of nT × nR eigenbeamforming
Rem. 6.4 TC scaling with nT × nR eigenbeamforming
§§ 6.3.2 Interference cancellation (IC)

Def. 6.5 Partial zero forcing (PZF) Rx
Prop. 6.4 PZF SINR
Prop. 6.5 OP for PZF-z

Prop. 6.6 TC for PZF LB
Rem. 6.5 PZF linear scaling in nR

Def. 6.6 MMSE Rx filter

Rem. 6.6 MMSE Rx filter
Prop. 6.7 TC UB for PZF and MMSE
Cor. 6.1 TC UB for MRC
Fig. 6.2 OCD vs. nR for PZF, MMSE, ZF, and MRC, for α = 4

§ 6.4 Main results on multiple stream TC
§§ 6.4.1 Spatial multiplexing

Prop. 6.8 SM with MRC
Prop. 6.9 SM with ZF Rx

Prop. 6.10 SM with PZF at high SNR

Cor. 6.2 PZF Rx without cancellation
Cor. 6.3 PZF Rx cancelling strongest interferer

Rem. 6.7 SM with the MMSE Rx

Prop. 6.11 SM with multimode beamforming and PZF receivers
Prop. 6.12 SM with the BLAST architecture

§§ 6.4.2 Space division multiple access (SDMA)
Prop. 6.13 Bounds on multistream DPC TC with MRC
Prop. 6.14 SDMA scaling laws with a DPC Tx and MRC Rx

Cor. 6.4 TC scaling and K∗ for SDMA with DPC Tx and MRC Rx
Prop. 6.15 TC with DPC Tx and single antenna Rx

§ 6.5 Practical issues and further research
§§ 6.5.1 Summary of main design insight

§§ 6.5.2 Caveats and practical issue
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