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Communication in ad hoc networks traditionally relies on network ad-

dresses known a priori. This work addresses the need for application-aware

adaptive communication that creates network routes based on applications’

dynamic resource requests. We motivate this need by examining the state of

the art in mobile ad hoc network communication, the requirements of appli-

cations, and the impact of existing protocols on flexibility and efficiency. We

introduce an intuitive generalization to source routing which facilitates dis-

covery of a resource in an ad hoc network and the creation and maintenance

of a route from the requesting host to the discovered destination. We thus

eliminate the requirement that existing routing protocols be coupled with a

name or resource resolution protocol, instead favoring an entirely reactive ap-

proach to accommodate significant degrees of mobility and uncertainty. We

present an initial implementation, a performance evaluation, and a comparison

to existing alternatives.
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Chapter 1

Introduction

Mobile ad hoc networks are created when mobile devices communicate

directly without using an infrastructure. Applications for such networks are

common when an infrastructure is unavailable (e.g., in disaster recovery situa-

tions when the infrastructure has been destroyed) or unusable (e.g., in military

applications where the infrastructure belongs to the enemy). Mobile ad hoc

networks form opportunistically and change rapidly in response to the move-

ment of the connected devices, or mobile hosts. Such an environment presents

a network topology that is both dynamic and unpredictable, as nodes may join

and leave the network at any time. In traditional multi-hop networks that are

infrastructure driven, packets from a source to a destination are transported

through designated nodes called “routers”. This is made possible in such net-

works due to the relatively fixed network topology. However, this model of

communication is ineffective in mobile ad hoc networks because of their dy-

namic nature. Hence, all nodes need to have the capability to route packets,

as it is unknown a priori which nodes may need to serve as routers. In addi-

tion, because hosts may be constantly moving, their interactions are inherently

transient.

While mobile devices are often connected to the Internet via wireless

access points, at times they are completely disconnected from any wired in-

frastructure. In addition, it may be beneficial to some applications if they
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elected to use only local interactions even when a connection to the Internet is

available. Such scenarios abound in a wide variety of application domains. In

military scenarios, troops and their vehicles are becoming increasingly capable

of both sophisticated data collection and dynamic wireless communication. In

the field, a soldier may wish to locate mapping information, mine locations,

or other data collected by his fellow soldiers. First responder applications re-

quire people with differing tasks, e.g., emergency medical technicians (EMTs),

firemen, policemen, search and rescue officers, etc., to converge on a confined

area and perform concurrent tasks. They collect information about the site

(e.g., hot spots, smoke density, location of survivors, etc.) and benefit from

accessing data collected by others’ devices. Construction sites are becoming

increasingly intelligent as they contain a variety of sensors that provide infor-

mation about the state of equipment, supplies, workers, etc. A super on the

site may access information based on the site’s quadrants or his immediate

task. Cars that communicate sophisticated information to drivers have been

made possible due to advances in user interfaces, paving the way for applica-

tions that coordinate automobiles to share weather, traffic, or mapping data,

or even to exchange generic files on the roadway.

We characterize these applications and their needs according to the

following generalization:

• Dynamic network topology - In mobile ad hoc networks link breakages

are common. These breakages may be due to node failure, node motion

or channel effects like multipath fading.

• Data rich environment - Nodes in certain networks are capable of sensing

their environments. A large amount of user data is generated in other
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networks. Such networks generate large amounts of dynamic and vary-

ing data. For example, sensors on a highway may be able to monitor

atmospheric temperature and pressure (i.e., generate weather data); as

well as measure traffic load.

• Dynamic data generation - The information available at any host is dy-

namic and unpredictable, i.e., hosts create and delete data according to

their own processing, regardless of other devices.

• Varying application needs - Different devices and users require different

data according to their instantaneous tasks and environments. In the

highway example above, while one node may be interested in learning

weather information in the vicinity, another node may want to know

traffic conditions further along the highway in order to alter its route if

necessary.

1.1 Communication in Mobile Ad Hoc Networks

Much work on supporting applications in mobile ad hoc networks builds

on routing protocols that maintain communication between senders and re-

ceivers. As the topology of the network changes, these protocols adjust routes

to maintain end-to-end connectivity. This style of interaction requires signifi-

cant a priori knowledge to be shared among the mobile hosts. That is, a host

must know in advance the unique addresses and resource capabilities of the

other hosts in the network with which it desires to communicate. This assumes

the existence of well-known and available servers that cache resource availabil-

ity. A host wishing to communicate with another host must first contact the

server to resolve the host’s name, following which the node must additionally

3



employ a routing algorithm to discover and maintain a communication path

to the desired destination. Figure 1.1 illustrates this two phase approach. In

this figure (and the following figures), the hatched node (labeled A) is the

source node (or requester). The node with the heavy border (labeled B) is

the destination that can provide the requested data or service. The gray node

(labeled L) provides the lookup service. Solid black arrows indicate requests,

dashed arrows represent replies, and double-lined arrows indicate service reg-

istrations. The table beside node L indicates the resource information cached

in the server’s registry.

A
B

L

Z
Phase 2: Route 

discovery

A
B

L

Z

Phase 1: Resource 
registration
and lookup

+

B

B

Z

B

Dest

342.3S

1000R

TimeoutResource

Figure 1.1: The two phase approach for communication in mobile ad hoc
networks.

These two phase protocols are motivated by the desire to support the

end-to-end model of communication common in Internet applications instead

of emerging mobile applications like those characterized earlier. Such an ap-
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proach, though appropriate in the wired Internet; has several drawbacks in

mobile ad hoc networks, such as:

• Electing and maintaining a stable server set in an ad hoc network incurs

a significant overhead in the highly dynamic scenarios targeted in this

work [33]. The overhead incurred is primarily due to the reconfigurable

nature of mobile ad hoc networks. In wired networks, such elections are

less frequent, as these networks have a relatively static topology.

• The cost of advertisement in data rich environments becomes prohibitive

as the number and variance of data sources increases.

• When the resources (or data) are highly dynamic, maintaining an accu-

rate and consistent registry of resources requires significant volumes of

control messages [18].

• In a purely ad hoc network, the servers may themselves be mobile and

dynamic. In such a scenario, a node entering the network would require

an initial discovery protocol targeted at finding the resolvers.

1.2 Motivation for Combined Discovery and Routing

In our evaluation of existing communication mechanisms and our exam-

ination of the needs of applications in mobile ad hoc networks, we identified a

mismatch between the provisions of existing protocols and the needs of emerg-

ing applications. Specifically, to successfully utilize mobile ad hoc routing, a

mechanism is required that resolves names, intentions, or service descriptions

on behalf of the application.
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Applications in mobile networks do not desire to contact each other

based on unique addresses or even based on simple names. Instead, applica-

tions have intentions and goals, and they desire to find coordinating partners

that satisfy them. For example, in a first responders application, triage work-

ers may tag the injured with tiny vital sign sensors [19] capable of emitting

signals regarding the patient’s condition. An EMT’s portable device (e.g.,

PDA or tablet PC) could search the network for vital sign data with certain

properties indicating the criticality of the injury or the change in a patient’s

condition. Examining such query scenarios for a variety of application domains

highlights the need for a communication protocol that adapts to varying query

types, possibly even expressed in different resource description languages.

A
B

L

ZR

1000R

TimeoutResource

342.3S

TimeoutResource

Figure 1.2: Resource discovery using a single phase approach.

In mobile ad hoc networks, network packet overhead and message de-

livery latency are of the utmost concern because interactions are opportunis-

tic and hosts must take advantage of communication partners while they are
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connected. This is the principal motivation for avoiding an approach which re-

quires several phases of communication over the network. A single phase com-

munication paradigm is proposed in this thesis, as shown in Figure1.2. The

figure illustrates the network traffic generated by a combined discovery and

routing protocol. Nodes now query the network with an “intention”, instead

of destination addresses, as is the case with conventional routing protocols.

Each node maintains an internal registry of the resources it can provide. In

the discovery phase, a source node queries for a particular resource directly.

For example, A broadcasts a query for resource R, and because it can provide

R, node B replies to the query as it can provide R, eliminating the second

phase of communication.

A
B

L

Z

Phase 2: Route 
discovery
(first attempt)

A
B

L

Z

Phase 1: Resource 
registration
and lookup

+

C

C

C,B

C

1200CR

Z

B

Dest

342.3S

1000R

TimeoutResource

Figure 1.3: Impacts of stale registrations.

Service discovery approaches, though promising from an abstract per-
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spective, require a lookup phase followed by a communication phase. In highly

dynamic networks, these multi-phased interactions are more likely to cause

failures as the services discovered may not actually be available when com-

munication commences, e.g., as shown in Figure 1.3. The figure shows just

one example of the negative impact of stale registrations. During the resource

lookup phase, the lookup server L returns both nodes C and B as potential

providers (listing C as preferred for some notion of “better”). Node A cannot

tell the difference between the two, so during the route discovery phase, it

attempts to contact C, but C may have disappeared from the network. Node

A must wait for the route discovery attempt to time out before attempting

to contact B. Some delay sensitive applications may have a low tolerance for

such behaviour.

A
B

L

Z
Phase 2: Route 

discovery
(long route)

A
B

L

Z

Phase 1: Resource 
registration
and lookup

+

C

C,B

C

C

1200CR

Z

B

Dest

342.3S

1000R

TimeoutResource

Figure 1.4: Illustrating route length effects of using the two phase approach.
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Furthermore, in dynamic networks, the two phase approach cannot

guarantee that the destination selected by the lookup service will be closest

to the source for some application defined measure of “distance”. Figure 1.4

illustrates this scenario. As in Figure 1.3, say the lookup service L returns

both nodes C and B as providers of the service (listing C as the preferred

resource). A attempts to contact C, but C may be further away from A

as compared to B. Longer routes result in larger message delivery latencies

and an increased probability of route breakage. In order for the protocol

to provide more relevant information, the lookup server needs to maintain

additional network topology information about resources that it has cached.

The single phase cross layer approach on the other hand does not require such

additional caching in its lookup server. By virtue of its design, this approach

eliminates the need for a lookup server in the network. However, with the

single phase approach, nodes need to cache information about resources they

can themselves provide. The effects of the differences in protocol design will

be discussed further in Chapter 4.

The approach taken in this work concerns itself with the performance

implications of our design decisions. Chapter 3 provides the details of a proto-

col that combines resource resolution and routing into a single step. This pro-

tocol employs a route discovery mechanism that functions without the source

host having to know the unique address of the destination. Instead, route

discovery is based solely on properties of the destination. To achieve this be-

haviour, we introduce a level of indirection into a source routing protocol (e.g.,

Dynamic Source Routing (DSR) [30]). Source routing was selected as a foun-

dation because performance comparisons of DSR (a source routing protocol)

and AODV (a distance vector routing protocol) have shown that, although
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the distance vector protocol achieves better performance on application level

metrics like delay and throughput, the source routing protocol achieves a lower

overhead in highly dynamic situations like those that pervade our target ap-

plications [6, 12]. In addition to its description, a formal behavioural charac-

terization using I/O Automata [35] is included to provide a clear description

of the protocol.

1.3 Thesis contribution

This thesis introduces a reactive communication protocol that removes

the drawbacks of name resolution, as applied to mobile ad hoc networks. The

principal goal of this work is not to provide a highly-tuned protocol but to

evaluate the feasibility and desirability of incorporating application-level in-

formation directly into a routing protocol. In Chapter 4, this baseline protocol

is evaluated with respect to several routing metrics and compared with exist-

ing alternatives. It is our position that an application-centered approach is

essential to supporting real-world applications and therefore the cost of such

an approach must be made acceptable. While others have proposed similar

mechanisms, their protocols make assumptions that limit the solutions’ flexi-

bility and expressiveness [18, 23]. The novel contributions of this work are as

follows.

• Identification of a set of assumptions made by existing mobile ad hoc

network communication mechanisms that are limiting to the protocols’

applicability to real-world applications.

• Development of a protocol for communication that overcomes these as-

sumptions.

10



• A formal model of the protocol’s behaviour (using I/O Automata).

• Performance evaluation of the new protocol that serves to not only com-

pare our protocol to alternatives but to demonstrate the feasibility, ad-

vantages, and disadvantages of incorporating non-fixed length addressing

into a reactive mobile ad hoc routing protocol.

1.4 Outline of the thesis

This thesis is organized as follows. Chapter 2 evaluates existing com-

munication solutions in mobile ad hoc networks. A wide range of protocols

have been explored and contrasted in relation to our work in this chapter. In

Chapter 3, the combined discovery and routing protocol is described in detail.

This chapter also provides a formal description of the protocol, validating the

protocol design. Chapter 4 analyzes protocol performance through simula-

tion and compares it to existing alternatives. Chapter 5 takes a critical look

at the expressiveness and flexibility of our protocol and discusses potential

enhancements. Finally, Chapter 6 provides a brief conclusion of this work.

11



Chapter 2

Related Work

Chapter 1 gave a brief overview of applications in mobile ad hoc net-

works, and the motivation for the work done in this thesis. In this chapter,

we take a brief glimpse at the presently existing approaches to making com-

munication possible in mobile ad hoc networks.

2.1 Routing in Mobile Ad Hoc Networks

Routing protocols for mobile ad hoc networks can generally be divided

into two categories: proactive and reactive. Proactive protocols [8, 9, 27, 29,

37, 39] maintain routes between each pair of hosts in the network. Reactive,

or on-demand protocols [28, 30, 38, 40], create routes only when requested by

a particular source and maintain them only until they are no longer used.

Performance studies across these two broad categories have been widely per-

formed [4, 6, 12]. In general, while proactive protocols have a lower latency

for the initial use of a route, the extensive overhead incurred in maintaining

routing information that is never used makes reactive protocols a better choice

in most dynamic scenarios. The Zone Routing Protocol [22] is a hybrid that

leverages proactive behaviour within a local “zone” surrounding a node and

switches to reactive behaviour outside of that zone. A protocol that adaptively

modifies the degree of proactiveness is discussed in [41].
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These routing protocols require the application to provide the unique

address of the destination in order to create a route. This is analogous to rout-

ing in traditional wired networks, where applications take advantage of the

static nature of the network topology to gather these unique addresses. Ap-

plications contact Domain Name System (DNS) servers to resolve the unique

IP address of a host, given a higher-level description (the host name). This

independence is feasible because the set of hosts a user wants to contact is

relatively static, and the information needed to resolve names can be cached

for long periods of time.

2.2 Service Discovery Mechanisms

While the protocols mentioned in Section 2.1 address the need for find-

ing a path to the destination once the unique address is discovered, this section

deals with protocols that operate on top of the routing protocols. The proto-

cols mentioned here identify nodes that potentially satisfy the resource/service

requirements of a source.

Recent work has focused on building DNS equivalents for mobile ad

hoc networks [14, 15] that use reactive routing and multicast to create a name

resolution phase that occurs before the routing phase. Service discovery ap-

proaches [2, 3, 11, 13, 16, 20, 21, 33], add a level of indirection by allowing ap-

plications to query resolvers based on descriptions instead of names. Publish-

subscribe systems disseminate information in systems with multiple receivers

desiring the same messages. Senders publish messages with topic labels. Each

message is then sent to all receivers that have subscribed to receive messages

matching the content or topic. Publish-subscribe systems provide a service

similar to our goals, and the concept has been applied successfully in infras-
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tructure mobile networks [7] and even in mobile ad hoc networks [45]. The

philosophical bases of name resolution, service discovery, and publish-subscribe

approaches assume that multiple subscribers will be simultaneously interested

in the same publication. As a result, the architectures use varying degrees of

proactive behaviour for resources or data to announce or advertise their pres-

ence. In highly dynamic networks, this generates significant overhead that is

often not necessary given the expected behaviour of applications.

Our work is not the first to propose application-level or content-directed

communication. Content Based Multicast (CBM) [46] pushes messages to re-

ceivers based on the message’s content. This approach is complementary to

ours in that they support applications which require strictly push interactions.

Network Abstractions [42] uses a multicast to collect and maintain a set of

the identities of hosts that satisfy an application level property. Messages are

subsequently sent only to the collected set of nodes. Application-oriented rout-

ing [36] extends TORA [38] to create a service provision architecture. This

approach maintains a combination of proactive and reactive behaviour, re-

quiring hosts to perform topologically limited advertisements for services they

wish to offer to other hosts. Such an approach is targeted towards scenarios in

which applications share common interests and are therefore often looking for

similar things. Finally, Person-Level Routing [43] maintains person-to-person

connections in the face of mobility. It is not designed specifically for ad hoc

networks and therefore relies on a centralized infrastructure. In addition it

supports applications that need to contact specific people and not necessarily

generically specified resources.

Work more closely aligned with our goals also integrates resource dis-

covery and route construction in mobile ad hoc networks [18], providing an
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implementation of the architecture requirements first elucidated in [32]. This

work enhances AODV [40] to simultaneously discover services and routes to

them, but the approach assumes a predefined and well-known mapping of

service descriptions to fixed length integers. This significantly limits the flex-

ibility, dynamics, and expressiveness attainable. Directed diffusion [26] is an

attribute based routing scheme targeted directly for sensor networks. The com-

munication occurs in two “phases;” the exploratory phase creates a network of

gradients (and floods responses back to the requester). The “best” gradients

are subsequently selected through reinforcement. This protocol operates in

environments where sensor nodes commonly coordinate to perform a specific

sensing task and can take advantage of this cooperation to aggregate messages

destined for a sink node. In addition, the directed diffusion implementation

makes strong assumptions regarding an agreed-upon naming representation.

The target communication environment for this thesis are networks where the

traffic flows are neither predictable, persistent, nor deterministic; and many

nodes serve as “sinks.” A key contribution to the already existing body of work

is an evaluation of the impact of routing with non-fixed length addressing on

the overhead of communication in highly mobile environments.
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Chapter 3

A Cross-Layer Protocol

This chapter describes in detail a protocol that performs resource dis-

covery in ad hoc networks across many layers. The novelty of our approach

lies in the fact that we achieve support for realistic applications, while having

an acceptable impact on system performance, especially when compared with

viable alternatives.

3.1 Request Specification Language

Our protocol’s routing packets carry an application level specification

of the destination host instead of its fixed length network address. This is

the most important aspect both in terms of providing increased expressiveness

and flexibility and in terms of negative impacts on performance.

A host may provide a number of capabilities, store different types of

data, or satisfy varying requirements (e.g., it may be connected to a printer or

display, it may function as an FTP server or a database server, or it may collect

local traffic or weather information). In the first responders application, a vital

sign monitoring device provides information about an injured individual. In

the case of traffic monitoring on highways, both automobiles and kiosks on the

sides of the road may monitor traffic density. In general, a host that wishes to

communicate in a mobile ad hoc network does not know a priori which other
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host(s) will satisfy its needs.

Due to the popularity of service provision systems, many possible so-

lutions for providing descriptions and specifications exist [5, 10, 13, 21, 44]. In

general, successful, decentralized approaches use semi-structured data [1] where

attributes are related hierarchically. The matching capabilities can be de-

scribed as selections of descriptions according to restrictions on the semi-

structured data. We assume that not only are the capabilities (i.e., resource,

services, etc.) a host provides described in such a manner, but that applica-

tion data is also structured so that it can be matched by similarly structured

queries. The determination of such structures, especially in the case of data

items, is likely to be application dependent and this is one of the major mo-

tivations for a cross-layer design, i.e., a design that performs actions not only

at the network layer but also at the application layer. The specifics of the

description scheme used are not important, and a particular application or

network deployment may choose to swap out one specification language for

another (we use a simple example scheme in Chapter 4. As such, our protocol

must function independently of how matching decisions are made. Therefore,

for now, we forego any use of optimizations at the matching level; we assume

the only knowledge shared between the hosts a priori is that of the structure

of the specification scheme.

A cross-layer design increases the overhead of our protocol in two ways.

First, routing decisions are made at the application level, which requires pass-

ing the routing packets up the network stack, thus increasing processing over-

head. Second, the packets are no longer of a fixed length, which has the

potential to impact the end-to-end latency of the protocol. Optimizations

targeted to mitigating these negative effects are examined in Chapter 5.
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3.2 CDR Protocol Fundamentals

Our protocol, Cross-layer Discovery and Routing (CDR) enables route

discovery between two hosts in a mobile ad hoc network based solely on at-

tributes of the destination host, its resources, or its data, as desired by a

particular source. As part of discovery, a source route is generated that con-

tains a list of the hosts connecting the source to each potential service provider.

Throughout our description of the protocol, we provide an abstract model of

the behavior in addition to the standard textual description. This eases under-

standing of the protocol, makes explicit the state maintenance needs at each

host, and guides the careful design of our implementation.

3.2.1 Packet Types

CDR in its basic form, uses the following packet types to interact with

peer protocol entities residing on other nodes in the network. Figure 3.1 shows

in detail the information contained in each of these packets. Details of how

CDR uses these packets and the information in each packet is given in Section

3.3.

1. Resource Discovery - A Resource Discovery (rd) is sent when a source

host requires a service or data that it does not itself have, thereby neces-

sitating the discovery of another host. An rd carries with it the host’s

desire to create a route to a destination as specified by a restriction on

semi-structured data.

2. Route Reply - A Route Reply (rr) is generated in response to an rd

reaching a node that satisfies the request (according to the matching

algorithm in use).
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3. Application Packet - An Application Packet (p) contains the application

payload handed down to CDR from the application(s) above it in the

protocol stack.

4. Route Error - A Route Error (re) is generated in response to an applica-

tion packet encountering an error (i.e., a broken link) within its specified

source route.

Resource Discovery (rd): 〈seq num, source id , spec, route record〉
contains a sequence number (used to distinguish
different discoveries from the same host), the
source’s id, the resource specification, and the
route record built so far.

Route Reply (rr): 〈seq num, source id , route record〉
contains the same sequence number and source id,
but contains the complete path.

Route Error (re): 〈link end1, link end2, reverse route〉
contains the two hosts between which the error
occurred and the reverse of the original route
(to deliver the error back to the source).

Application Packet (p): 〈packet num, source id , spec, route record ,
application data〉
contains the data, a unique packet number, the
source’s unique id, the semi-structured
specification of the destination, and the
route record.

Table 3.1: CDR Packet Types
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3.2.2 State Variables

To participate in CDR, each host stores several pieces of state infor-

mation, relating to its previous and pending requests, existing routes, and a

minimal amount of information stored about requests made by other sources.

Some of the key state variables are described below.

• RouteCache(spec) - A set of source routes that originate from this host

for a resource described by spec. This cache enables a node to select

an alternate route in the event of a link failure on the route currently

being used. An important advantage of using abstract attributes (spec)

to identify a destination (rather than using an “address”), is that many

nodes can possibly provide the service/resource requested for. Hence, in

applications where stateless transactions are acceptable, CDR reduces

the network packet overhead by using a destination that it has in its

RouteCache(spec), as opposed to sending a new rd when it detects that

all routes to a given destination have failed.

• SentPackets(packet num) - A buffer containing packets that have been

sent recently by this node. Like other routing protocols, CDR provides

a limited guarantee against packet loss due to link failures. Hence, when

a node sees a link failure on the route currently being used, CDR tries to

recover from the link failure by retransmitting the packet that created

the re packet on an alternate route selected from RouteCache(spec)

• ResourceTable - A table of resources/services this node can provide.

When this node sees an rd, it searches this table to find out if it can

service the request. If it can, it sends out an rr to the source of the rd.
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A summary of all state variables is shown in Figure 3.2. The figure

shows the state held by a single host; every host has its own set of these

variables.

3.3 Protocol Actions

This section describes the behaviour of CDR in response to events gen-

erated by other protocol entities — applications on top of CDR, and peer CDR

protocol entities residing on other hosts in the network.

We use I/O Automaton notation [35] to describe the protocol’s behav-

ior. We show the behaviors of an individual host A, indicated by the subscript

A on every action. Each action (e.g., SendApplicationPacketA) has an

effect guarded by a (possibly empty) precondition. Actions without listed pre-

conditions are input actions triggered by another host. In the model, each

action is executed in a single atomic step.

To abbreviate the formal description of the protocol, we make two as-

sumptions. We assume each host only attempts to send one application packet

at a time and waits until a send succeeds before any subsequent attempts. We

also assume that a satisfactory destination exists and will be discovered. Both

of these assumptions are particular to our abstract description and are removed

in the actual implementation. In the latter case, we use a time-to-live (TTL)

flag to indicate that we should stop propagating a resource discovery. We

abuse standard I/O Automata notation slightly by using, for example “send

ResourceDiscovery(rd) to Neighbors” to indicate a sequence of actions that

ultimately triggers ResourceDiscoveryReceived (Figure 3.3) on each

neighbor.
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Neighbours the set of neighbouring hosts (i.e., hosts to which
this host is directly connected); used in our
abstract description to demonstrate the reactive
behavior of the hosts. In the implementation, we
use broadcast and therefore do not require this
table.

KnownRequests a record of the Resource Discovery (rd) packets
this host has seen. This ensures that flooding is
marginally controlled.

RouteCache(spec) the routes that satisfy spec. The routes are sorted
in order from lowest to highest latency.

PendingPacket the packet waiting for a route discovery

seq num the sequence number for this host’s resource
discoveries; it is incremented for every new
discovery to ensure that the discovery is
forwarded only once by each host.

packet num application packet sequence number sent by this
host; may be used in resending packets that
experience errors.

SentPackets(packet num) application packets sent by this host.

ResourceTable the semi-structured descriptions of this source’s
resources

Resends application packets queued to be resent due to
transmission failures.

Table 3.2: CDR State Information

3.3.1 Application Interaction

To use the protocol, an application sends packets to destinations des-

ignated by restrictions on semi-structured data. Figure 3.1 shows the send

22



action triggered by the application. As the figure shows, an application trig-

gers SendApplicationPacket when it has data to send. The data and the

resource description are encapsulated in p. If no satisfactory route exists in

the route cache, the action initiates resource discovery by creating a Resource

Discovery (rd) and sending it to each neighbour (or, in the implementation,

simply broadcasting). When the discovery process completes, the RouteCache

will contain at least one route to a satisfactory destination. This enables the

second action in Figure 3.1.

SendApplicationPacketA(p)
Precondition:

PendingPacket = null
Effect:

PendingPacket := p
if RouteCache(p.spec) = ∅ then
rd := 〈 seq num++, A, p.spec, {A} 〉
send ResourceDiscovery(rd)

to Neighbours
end

TransmitApplicationPacketA(P)
Precondition:

PendingPacket = p
RouteCache(p.spec) 6= ∅

Effect:
route := RouteCache(PendingPacket.spec).head
p.route record := route
p.packet num := ++packet num
send ApplicationPacket(p)

to p.route record.successor(A)
SentPackets(packet num) := p
PendingPacket := null

Figure 3.1: Sending an Application Packet
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To send the application packet, the host selects the first available route

for the specification ((RouteCache(p.spec)).head). The selected route serves as

the packet’s route record. The route building process and ordering of routes in

the route cache are discussed later in this section. Each packet has a unique

number (packet num) which we use when errors occur. The simplified notation

“send ApplicationPacket(p) to p.route record.successor(A)” is used to indicate

that ApplicationPacketReceived(p) is triggered on the host whose id is

the same as the second host in the route record (i.e., route record.successor(A)).

In the implementation, this is equivalent to unicasting the packet. After prop-

agating the packet, the host stores a copy of it in SentPackets, which is used

in the event of a transmission failure.

ApplicationPacketReceivedA(p)
Effect:
if p.route record.tail = A then

deliver application packet
else
if p.route record.successor(A) ∈ eighbours then

send ApplicationPacket(p)
to p.route record.successor(A)

else
reverse route := reverse(p.route record)
re :=
〈 A, p.route record.successor(A),
p.packet num, reverse route 〉

send RouteError(re)
to re.route record.successor(A)

end
end

Figure 3.2: Propagating an Application Packet

Figure 3.2 shows the action ApplicationPacketReceived. First
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the host checks to see if it is the intended destination (by comparing its own

id to p.route record.tail). If the host is the intended destination, the packet is

delivered to the application. Since much communication (even in mobile ad

hoc networks) is bidirectional, this reception will likely generate an application

level response to the source that sent the application packet. This creates

another packet and uses the reverse of the packet’s route. In the event that

the routes are not bidirectional, an additional route discovery may be necessary

for this return message where the destination specification simply contains the

unique id of the original source.

If this host is not the intended recipient, the packet is propagated fur-

ther by the following mechanism. The host first selects the next host in the

route record (i.e., route record.successor(A)), and then triggers the Applica-

tionPacketReceived(p) action on the selected host.

Finally, if the next link referred to in p’s route record no longer exists,

an error message is generated. This error message serves as a single attempt

to notify the original source that the delivery failed. It uses the reverse of

p’s route record to target the source host. We discuss the propagation and

processing of route error messages later in this section.

3.3.2 Resource Discovery

When an application above CDR attempts to send a packet, and a

route for the specified description is not present in the node’s RouteCache,

the source performs the action “send ResourceDiscovery(rd) to Neighbours”.

This action triggers ResourceDiscoveryReceived, shown in Figure 3.3,

on each of the source’s neighbours (as was explained earlier). A receiver of

an rd first checks the route record to ensure there are no routing loops. The

25



ResourceDiscoveryReceivedA(rd)
Effect:
if A /∈ rd.route record then
if ResourceTable satisfies rd.spec then
rr := rd
rr.route record := rd.route record + A
send RouteReply(rr)

to rr.route record.predecessor(A)
else if 〈 rd.source, rd.seq num 〉 /∈

KnownRequests then
KnownRequests :=

KnownRequests ∪ {〈 rd.source, rd.seq num 〉}
rd′ := rd
rd′.route record := rd.route record + A
send RouteRequest(rd′)

to Neighbours
end

else
drop the packet to avoid routing loops

end

Figure 3.3: Propagating a Resource Discovery Packet

receiver then determines whether or not it can act as a destination for the

discovery. While the simple one-line “if ResourceTable satisfies rd.spec” per-

forms this check in our model, the check uses application specified informa-

tion from the source, application provided information on this host, and an

application-defined mechanism for determining matches between the two. This

necessitates the protocol’s cross-layer design, as application-level information

must be accounted for in the resource discovery process. If this host does

not satisfy the specification, it ensures that it has not previously processed

the same request by checking KnownRequests. If the packet has not previ-

ously been processed, the receiver adds it to KnownRequests and continues to
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propagate the resource discovery by appending its id to the route record and

triggering the ResourceDiscoveryReceived on each of its neighbouring

hosts.

In the case in which this host can serve as a destination, the host

generates a Route Reply (rr) that it returns to the original source. The

rr propagates back to the original source using the reverse of the discovered

route. It starts this process by triggering RouteReplyReceived, shown in

Figure 3.4 on its predecessor in the route record. Unless the host is the source,

RouteReplyReceivedA(rr)
Effect:
if rr.source = A then

RouteCache(rr.spec) :=
RouteCache(rr.spec) + rr.route record

else
send RouteReply(rr)

to rr.route record.predecessor(A)
end

Figure 3.4: Propagating a Route Reply Packet

RouteReplyReceived simply triggers the same action on its predecessor in

the route record. If this host is the source, the route carried by the reply is

stored in the RouteCache and associated with the appropriate application-level

specification (rr.spec). For an initial route discovery, this insertion into the

RouteCache triggers TransmitApplicationPacket shown in Figure 3.1.

This description assumes that the network has symmetric links and

that it is therefore possible for the packet to traverse the reverse route. If

this is not the case, the destination must perform a reverse resource discovery
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to the source using the source’s unique network address as the specification

requirement. The rr can be piggy-backed on the reverse rd.

A single destination may reply to the resource discovery message more

than once to indicate multiple routes to it from the source. The source main-

tains these multiple routes in the RouteCache in case the preferred path fails.

In CDR, unlike existing mobile ad hoc routing protocols, it is also possible

that multiple destinations will satisfy a resource request.

In our initial protocol, a source simply selects the first host from which

it receives a route reply (subsequent replies are simply added to the end of

the RouteCache list for the specification). The discussion in Chapter 5 ad-

dresses this design decision and using context properties and context-sensitive

requirements of the application to select the best path according to different

metrics (our current metric being “resource discovery latency”). This includes

readjusting the destination when the source discovers a new destination that

is “better” by an application specified metric.

3.3.3 Route Error Propagation

When a link breaks, data transmissions encounter errors. The host

detecting the broken link sends a Route Error (re) to the original source. On

receiving an re, if the host’s route cache contains no additional routes for the

desired specification, the source reinitiates route discovery.

In Figure 3.2 we see how the re is generated by the host that detects

the broken link. This host initiates the propagation by triggering RouteEr-

rorReceived on the previous host in the source route. Figure 3.5 shows how

this packet is propagated back to the source node. The propagation of an re

does not guarantee that it reaches the original source; it may encounter link
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failures itself, and we do not attempt to recover from these. In such cases, the

original source may not learn that its packet was not properly delivered. Ap-

plications should maintain internal timers in order to detect such anomalous

situations. A host receiving an re deletes any routes in its RouteCache that

RouteErrorReceivedA(re)
Effect:
for each route ∈ RouteCache do
if re.link end1 ∈ route and
re.link end2 = route.successor(link end1) then

RouteCache := RouteCache - route
end

end
if re.route record.tail = A then

Resends := Resends ∪ SentPackets(re.packet num)
else

send RouteError(re)
to re.route record.successor(A)

end

Figure 3.5: Propagating a Route Error Packet

also use the broken link. When the packet reaches the source, it pulls a copy

of the packet that experienced the transmission error from SentPackets and

queues it for retransmission on an alternate route.

To complete our protocol’s specification, we must also ensure that these

packets are retransmitted. To this purpose, we add the action shown in Fig-

ure 3.6, which is the same as SendApplicationPacket in Figure 3.1 except

that the packet comes from Resends instead of directly from the application.

This new action does not guarantee fairness between application sends and re-

sends due to route errors; if the application continues to send packets, packets

that need to be resent may never get the chance.
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RetransmitPacketA(p)
Precondition:

PendingPacket = null
p ∈ Resends

Effect:
PendingPacket := p
Resends := Resends - {p}
if RouteCache(p.spec) = ∅ then
rd := 〈 seq num++, A, p.spec, {A} 〉
send ResourceDiscovery(rd)

to Neighbours
end

Figure 3.6: Retransmitting a Failed Packet

The protocol can also benefit from optimization that enables quicker

recovery from link failures. If a link fails upon delivery of an application

packet, the host detecting the failure can attempt a local recovery. This is

best accomplished if an application running on the host that detects the link

breakage has requested a route for the same specification (or for a specification

that subsumes the requested one) as that in the packet that detected the link

failure. This, however, requires storing each applications’ specification at every

host, an overhead we are not willing to accept at this time due to the large

numbers of differing application requests. We have not yet evaluated our

protocol under this optimization. However, the host detecting a link failure

can perform a simpler optimization, by checking its personal route cache for

a route to the same destination (determined by the unique address within the

source route). If such a route exists, the host attempts to use the alternate

route.
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Chapter 4

Performance Evaluation

This chapter provides a first step in demonstrating the feasibility of in-

corporating resource directed routing into highly dynamic mobile applications.

This performance demonstration characterizes the impact such a modification

will have on performance metrics such as the latency of discovery, the packet

delivery ratio, the message delivery delay, and the control overhead of the

protocol. We used the ns-2 [17] network simulator to generate these results.

4.1 Simulation Settings

The following parameters were used to configure ns-2 for all the simu-

lations.

• MAC Protocol - The IEEE 802.11 MAC Distributed Coordination Func-

tion (DCF) [25] was used, which uses a RTS/CTS exchange to initiate

unicast messages and CSMA/CA for broadcast packets. The former

allows a sender to receive an acknowledgement when packets are suc-

cessfully sent. If the protocol doesn’t receive an ACK back from the

destination within a certain timeout period, it assumes that collision has

occurred. It then listens to the medium after a random backoff period,

and does the RTS/CTS exchange again. During broadcast however, this

mechanism is not used. Hence, using the IEEE 802.11 protocol ensures
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that routes carrying unicast packets use bidirectional links. Some of

the stringent assumptions made in the formal descriptions are thereby

removed.

• Traffic pattern - We used network scenarios similar to those found in [4,

6, 12]. Specifically, we utilized node mobility patterns based on random

waypoint mobility [6] and distributed 51 nodes in a rectangular field of

size 1500m × 300m. The speed of the nodes was uniformly distributed

between 0.01 and 20m/s, with the exception of one node, which is sta-

tionary in the center of the field. The purpose of the stationary node

will be explained further in the chapter. Throughout the experiments,

we vary the nodes’ pause times from 0 seconds (for high mobility) to 900

seconds (for relatively static networks). Each simulation is run for 900

simulation seconds, and unless otherwise specified, the traffic between

sources and destinations for all protocols was generated at the rate of 20

packets per second. All data packets were of size 512 bytes.

• Statistics collection - Each plotted point indicates an average over 200

samples, a “sample” being defined as a simulation run over a particu-

lar scenario of node movement and positioning, and possess the same

statistical characteristics described above. 95% confidence intervals are

shown for all graphs, showing how reliable the simulation runs are, and

how they relate to each other statistically.

4.2 Performance Metrics

The most significant aspect of our protocol that will impact perfor-

mance is the inclusion of a non-fixed length description of the destination
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in the discovery packets. For this reason, we have selected metrics that will

highlight the impact of this design decision on overall performance. In the

discussion below, a “destination” is defined as any node that can provide the

resource/service as specified in the Resource Discovery packet it receives.

• Route discovery latency - This is the amount of time a source takes on

average to learn the first satisfactory route to a destination.

• Data delivery latency - This metric determines on average how long it

takes to deliver a data packet from an application on the source to an

application on the destination.

• Packet delivery ratio - A measure of the fraction of the packets sent by

the routing agent that are actually delivered at the destination.

• Application Packet delivery ratio - This is a measure of the fraction of

the packets that are intended to be sent by the application above the

routing protocol that are actually delivered at the destination. The need

for this metric is discussed later in the chapter.

• Normalized packet overhead - The number of control packets sent in the

network for each data packet delivered, per node in the network. This

measures the average amount of control traffic generated by a node over

an extended period of time. In addition to packets generated by the

source and the destination, this metric counts packets that were for-

warded by nodes in the middle of the network. Such a distinction is

necessary owing to the fact that in mobile ad hoc networks, commu-

nication consumes a large fraction of the total power of a node in the

network, and hence every transmission — application packet generation

or forwarding, contributes to this total power consumed.
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• Normalized byte overhead - This metric measures the number of bytes

of control messages sent for each data packet delivered, per node —

showing the effects of carrying non fixed-length addresses in the control

packets. Again, this metric is power related since the length of the packet

determines the power expended in transmitting it.

• Average route length - In application scenarios where it is meaningful,

this metric shows the average length a data packet had to travel in order

to reach the desired destination.

4.3 Protocols

To gauge CDR‘s improvement over the current state of the art, we

compare it to a protocol we call DWD (DSR with Discovery). Such a protocol

is representative of current approaches that utilize a lookup service to resolve

the name or type of a service before subsequently contacting the node based

on its id.

4.3.1 CDR

The CDR protocol functions as described in Chapter 3 with the follow-

ing modifications from theoretical behaviour:

• Multiple data packets can be queued at the source. As is common in the

implementation of routing protocols, a CDR protocol agent contains a

send buffer, which buffers packets upto a certain maximum buffer size.

This maximum limit is configurable. For simulation purposes, this is an

infinite buffer — a CDR agent will not block the application or overwrite

old packets due to lack of space.
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• A time-to-live field is used in CDR packets to prevent route requests from

propagating forever. This TTL is decremented at each hop. In order to

be comparable to DSR, this parameter was set to the same maximum as

DSR.

• A node does not contain the Neighbours field (see Figure 3.2), as the

IEEE 802.11 MAC protocol handles one hop communication between

the nodes.

4.3.2 DSR with Discovery

The protocol we used for comparison was DSR with discovery (DWD).

This protocol is illustrative of the two-phase approach described in Chapter 1.

The discovery server resides on a stationary node at the center of the sim-

ulation area. This node is assumed to possess omniscient knowledge of the

services offered by any node in the network. Before creating a route to a desti-

nation, a source in DWD must contact the lookup server with the description

of its desired resource. The lookup server responds with the address of the

node (or nodes) in the network that provide that service. This is similar to

communication in the wired Internet, where a source host wishing to communi-

cate with a destination first contacts a DNS server to resolve the destination’s

name and then employs a routing protocol to find a path to the destination.

In ns-2, the lookup server was implemented as a new protocol agent running

on top of the routing agent. All source and sink nodes in the network imple-

ment the “client” portion of this discovery agent. While source nodes use the

DWD agent to discover a resource provider, the sinks need the agent during

registration with the server. In the present implementation overhead due to

registration has been ignored, and the server is assumed to know a priori the
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addresses of the resource providers. Details of the protocol are elucidated in

the sections below.

4.3.2.1 DWD State Variables

Figure 4.1 shows the minimal state required in the DWD agent in order

to exhibit the behaviour described above. ResourceLookupTable is the table

maintained at the DWD server, which contains the mapping for all possible

resource requests to all possible destinations that can provide it. Destinations

wishing to provide a resource must register here in order for their resources

to be used. ResourceProviderList is the state held by all source nodes (or the

“clients”) in the network. This table is populated after the node contacts the

lookup server with a resource description, and obtains a list of destinations

that can provide the resource.

ResourceLookupTable maps destination addresses to the resources they can
provide. Any other additional information can also
be added here, such as when a resource on particular
destination node would time out, etc.

ResourceProviderList maps resources that this node needs to destination
addresses.

Table 4.1: DWD State Variables

4.3.2.2 DWD Protocol Methods

The protocol has two packet types - Resource Request (RREQ), which

is sent by a client node when it wants to learn the destinations that can satisfy

the application’s intention as specified by semi-structured data in the RREQ.
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In response to an RREQ, the DWD agent at the lookup server sends a Re-

source Reply (RREP) to the node that requested the information. This packet

contains a list of destinations that can satisfy the RREQ. DWD performs the

following actions in its interactions with applications above it and peer DWD

agents.

• Send Application Packet - An application wishing to send data hands the

packet down to the DWD agent on the node. The agent first searches this

list to find a matching destination. If a suitable destination is found, the

agent populates the data packet with the destination address, and hands

it down to the routing agent, which is DSR in our case. If a suitable

destination is not found, the node sends a Resource Request packet to

the lookup server.

• Send Resource Request - The DWD agent sends this packet to the lookup

server when there are no known routes for a resource as specified by

the application above it. The routing agent below the DWD agent is

responsible for finding a route from the source to the lookup server.

• Send Resource Reply - The lookup server sends this packet in response to

a Resource Request from a source node. It contains a list of destinations

that can provide the resource specified in the Resource Request packet

and other information that the source can use to determine which route

to pick.

All route maintenance actions are being delegated to the routing agent.

The DWD agent thus acts as an intermediate layer between the application

and the routing agent. The performance implications of adding another layer

are discussed further in this chapter.
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4.3.2.3 DWD Simulation Assumptions

In order to obtain a first order comparison between the two protocols,

any extraneous communication that may add to the overhead was removed,

and the following simplfying assumptions were made about the behaviour of

DWD:

• The lookup node has complete knowledge of the service providers in the

system over the duration of the simulation. We do not require service

providers to register with the lookup service, so our measurements do

not include the overhead associated with these registrations and their

renewals.

• A source node looking for a particular service already knows the id of the

lookup server and does not need to discover it. In pure mobile ad hoc

networks, this communication would result in additional control traffic.

• Route creation and maintenance between sources and the lookup server,

and between sources and destinations is performed by DSR.

• In comparing CDR and DWD, to ensure a degree of fairness to CDR,

we have turned off optimizations from DSR as implemented in ns-2, per-

taining to maintaining flow state in nodes in the middle of the network.

4.4 Resource Descriptions

For both CDR and DWD, the length of the resource request may have

a significant impact on the performance of the protocol and the overhead it

incurs. While packets are of higher length for all control packet communication
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in CDR, DWD carries large packets only during the Resource Request RREQ

and RREP phases. To determine how increasingly complex resource or data

requests affect performance, we measure each of our metrics (described in

Section 4.2) using increasingly complex resource requests.

Description Size (bytes) Label

(service=printer) 18 size-1
(service=printer(location=ACES(floor=fifth))) 46 size-2
(service=printer(location=ACES(floor=fifth(type=

laserjet(resolution=720dpi(print on both sides=yes)))) 106 size-3

Table 4.2: Resource descriptions used

Figure 4.2 shows the requests that we used and the sizes (in bytes) of

those requests. The example application we chose to use is one where a source

node requests traffic information with increasing specificity. By also measuring

the length of the requests in bytes, we can generalize these measurements to

other applications. The resource descriptions are written in a generic semi-

structured data format (as shown in Figure 4.2), but in the implementation,

any other description representation can be easily swapped in for this simple

language.

4.5 Basic Performance Evaluation

In this section, we compare CDR and DWD in a basic sense. A sin-

gle node tries to discover a node that can service its request. In this set of

experiments, we placed only a single node in the network that could satisfy

the source’s request. In effect, there is a “single flow” in the entire network,

allowing us to determine the lower bound on the performance of CDR. For
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the CDR and DWD results in this set of experiments, we show the results

for description size-1 (see Figure 4.2). In addition, nodes selected as service

providers offer the service for the lifetime of the simulation.

4.5.1 Discovery and Delivery Latencies

Figure 4.2 shows the resource discovery latency for the two protocols.

This metric measures the time between the instant an application requested a

resource, and the instant at which the application could send the first packet

to the discovered resource provider. As can be seen from the figure, the time

required for a node to discover a route to a satisfactory service provider is much

lower for CDR than for DWD. The reason for this will become apparent when

we consider how DWD discovers a route to the final destination. Consider the

DWD route discovery mechanism for DWD, which is reproduced here from

Chapter 1, in Figure 4.1.

When an application running on top of DWD wishes to communicate

with a resource provider, the node must find out which nodes can possibly

service its request. In order to do this, the node must contact the discovery

server. Though the node knows the id of the discovery server, due to mobility,

it may not always have a route to it. In this case, it must first find a route to

the server. The node then queries the server for the id(s) of nodes that can

provide the desired resource. The time taken for this transaction is labeled t1

in Figure 4.1. The source node (node A in Figure 4.1) then performs a route

discovery to find the resource provider. Let us say that the time taken for this

is t2. The total resource discovery time then becomes

ttotal = t1 + t2 (4.1)
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Figure 4.1: The two phase approach showing the different discovery times

In mobile ad hoc networks, due to link failures and in some cases network

partitioning, it is difficult to estimate an average value for ttotal, as

1. the discovery server may be many hops away from the source node or

even unreachable. This increases t1, or

2. the chosen resource provider may be far away (see Figure 1.4) or un-

reachable (see Figure 1.3), increasing t2. The implication is that DWD

does not the “best” destination, as opposed to CDR.

Both cases adversely affect the discovery time for DWD. CDR, however, has

lower resource discovery times because of single phase communication em-

ployed. In CDR, the resource discovery latency is highly correlated with the

proximity (in hops) of the service provider to the source. Theoretically, the

41



0 100 200 300 400 500 600 700 800 900
0

1

2

3

4

5

6

7

8

9
Route Discovery Latency

Pause Time, in seconds

T
im

e 
T

ak
en

, i
n 

se
co

nd
s

 

 

CDR
DWD

Figure 4.2: Route discovery latency for single traffic flow

upper bound on CDR’s performance is DSR, since DSR employs the same

mechanism for route discovery as CDR. DWD, in its basic form cannot utilize

proximity information without employing an additional algorithm that keeps

track of the absolute locations of different nodes in the network, which is re-

inforced by the wide confidence intervals for DWD in Figure 4.2. In mobile

ad hoc networks, where it is likely that the server itself is mobile, keeping

such information current incurs a lot of communication overhead, and hence

infeasible.

The data delivery latency as shown in Figure 4.3 measures the time

elapsed between an application on the source node sending a packet and a sat-

isfactory destination receiving the packet. It can be seen from Figure 4.3 that

data delivery latency monotonically decreases for both protocols as mobility

decreases. As the pause times increase, the mobility of the nodes decreases
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Figure 4.3: Data delivery latency for single traffic flow

resulting in fewer link breakages. It is also observed that data delivery latency

for CDR is lower compared to DWD. This trend is related to the route dis-

covery latency, since during the discovery phase, some packets are queued in

the send buffer, waiting for a route to be discovered. In DWD such packets

need to wait for an interval equal to the resource discovery latency, ttotal (see

Equation 4.1) to elapse before they can be sent. Once sent, these packets

experience the average latency that a packet experiences when DSR is used

for routing packets. Let us call this latency tDSR. Hence, the variance of data

delivery times is high in DWD, with the lowest average latency being tDSR

and the highest average data delivery latency being ttotal + tDSR.

The effect of resource discovery latency over data delivery times is amor-

tized over time, as a resource discovery is not performed for every data packet

that is sent. Due to amortization, the occasional resource discoveries manifest
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themselves as a constant offset added to tDSR in the data delivery latency.

The delivery times for CDR exhibit a smaller variance, due to the single phase

nature of resource discovery. On average, this latency is much lower than ttotal.

In cases where CDR does not have to perform a discovery, the data delivery

time for CDR should theoretically be equal to tDSR.

4.5.2 Delivery Ratios

Packet delivery ratio is considered in the following paragraphs. Figure

4.4 compares the packet delivery ratio for the two protocols. In our experi-

ments, packet delivery ratio is defined as the ratio of the packets received at a

resource provider to those that were actually sent by the routing agent. While
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Figure 4.4: Packet delivery ratio for single traffic flow

looking for a route to the destination — either when the application is look-

ing for a resource provider for the first time or due to link failures, packets
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are buffered in the send buffer of the routing agent. Some of these packets

time out before a satisfactory route is sent back to the source that initiated

the discovery. In packet delivery ratio, these lost packets are not taken into

consideration, as they were never attempted to be transmitted. Application

packet delivery ratio takes into account these buffered packets as packets that

were buffered. Buffered packets are representative of the application packets

that could “potentially” be sent, but were not; and is defined as the ratio of

the number of packets received to the number of packets that were attempted

to be sent by the application. By definition, this ratio is equal to or lower than

the packet delivery ratio. Application packet delivery ratio is the delivery ratio

as “perceived” at the application level. At the application level, this metric

is a measure of how reliably the routing protocol below it would deliver the

packets to the desired destination.
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Figure 4.5: Application Packet delivery ratio for single traffic flow
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In the simulations, the send buffer timeout for DSR, CDR, and the

resource discovery agent were all set to 30 seconds. The timeout for the dis-

covery agent is to ensure that if a source does not hear back from the lookup

server within the specified timeout period, it will send another RREQ packet.

Figure 4.4 shows that CDR has a higher packet delivery ratio than

DWD in the base case. As mobility increases, the packet delivery ratio de-

creases, but only marginally. With optimizations turned off for DSR in ns-2,

route error recovery mechanisms (RERR propagation and packet retransmis-

sion) for both protocols are comparable to each other. The poorer performance

of DWD can be attributed to the two phase communication mechanism. In cer-

tain scenarios, the source may be able to reach the potential service provider,

but unable to reach the discovery server. If the source sent an RREQ in this

situation, it would never reach the server. Eventually, some packets in the send

buffer would timeout and be discarded, hence lowering the packet delivery ra-

tio. This phenomenon doesn’t affect the performance of CDR, as it removes

the lookup phase altogether and contacts the resource provider directly. The

issue is more evident in Figure 4.5, which shows that though the application

packet delivery ratio for both protocols is worse than the packet delivery ratio

(shown in Figure 4.4), DWD’s application packet delivery ratio is affected to

a greater extent than CDR.

4.5.3 Communication Overheads

In this section, we compare the protocols’ network overhead. Over-

head is measured in terms of normalized packet overhead and normalized byte

overhead, as defined in Section 4.2. Figure 4.6 shows that the average packet

overhead per node is comparable for both protocols. In a single traffic flow sce-
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nario, where there is only one destination that can satisfy a source’s resource

requirements, CDR degenerates to DSR, provided the resource specification

length is the same as the “address” field length in DSR‘s request packet. In

this case, CDR’s packet overhead should theoretically be the same as that of

DSR’s. As mobility decreases, the packet overhead reduces, as fewer packets

are needed to discover and maintain routes, which constitute a major portion

of the overhead.
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Figure 4.6: Normalized Packet Overhead for single traffic flow

On the other hand, DWD’s packet overhead includes overhead incurred

while discovering the lookup server (for phase 1) in addition to DSR’s overhead

(for phase 2). In the worst case scenario, a source may have to discover the

server for every data packet sent, and the overhead for phase 1 would be

the same as that for phase 2, pinning DWD’s overhead at approximately twice

that of CDR’s, which requires a single phase to communicate with the resource
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Figure 4.7: Normalized Byte Overhead for single traffic flow

provider. As can be seen from Figure 4.6, in the average case, DWD performs

approximately the same as CDR in terms of packet overhead.

As for byte overheads, for small resource description lengths, the byte

overhead for CDR is marginally lower than that of DWD’s as seen in Figure

4.7. Again, this is attributed to the different approaches these protocols use

in order to discover a resource provider, and a then discovering a route to the

potential resource provider. DWD requests carry the description length during

phase 1, and the fixed-length address during phase 2, while CDR behaves

similar to DWD in phase 1 and does not have a second phase at all. The

overlapping confidence intervals for byte overhead graphs suggest that the

two graphs are statistically indistinguishable from each other. However, as

description lengths increase, CDR’s byte overhead increases, as DWD uses

these large descriptions only in phase 1, while CDR request packets are larger
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in throughout. We demonstrate this variable length effect in the next section.

4.6 Impact of Variable Length Addresses

We devote this section to studying some of the interesting effects of

variable length control packets on the performance of CDR, compared and

contrasted to DWD. Experiments were designed along the same lines as Sec-

tion 4.5 above, and a single flow of traffic was simulated. Graphs in this

section include all results from above, in addition to graphs for more complex

description lengths from Table 4.2. The graphs labeled ‘len-2’ and ‘len-3’ show

the performance of CDR and DWD with descriptions size-2 and size-3 respec-

tively, where an application is looking for a printer with increasingly complex

specifications.
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Figure 4.8: Resource discovery latency for a single flow with multiple request
lengths
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Figure 4.9: Resource discovery latency for CDR only, for a single flow with
multiple request lengths

Figure 4.8 shows the resource discovery latencies for descriptions of

different length. As discussed in Section 4.5.1, route discovery latency for

DWD is much higher compared to CDR and shows a large variance. Figure

4.9 shows only the CDR portion of Figure 4.8. Although the discovery latency

for requests of different lengths is much lower than that of DWD, there is a

definite increase in resource discovery times as the description length increases.

This is due to the fact that discovery packets may be very large, and are hence

fragmented as they are handed to the protocol layers below. The different

packet segments may take different amounts of time to reach the destination.

The receiver has to then reassemble the different parts of the packet, thus

increasing the overall packet latency.

Another significant consequence of varying resource description lengths

is the effect on communication overheads. Figure 4.10 and Figure 4.11 show
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Figure 4.10: Normalized packet overhead for a single flow with multiple request
lengths
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Figure 4.11: Normalized byte overhead for a single flow with multiple request
lengths
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Figure 4.12: Data delivery latency for a single flow with multiple request
lengths
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Figure 4.13: Packet delivery ratio for a single traffic flow with multiple request
lengths
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Figure 4.14: Application packet delivery ratio for a single flow with multiple
request lengths

the normalized packet and byte overheads, respectively. Figure 4.10 shows that

increase in the size of packets does not greatly affect the packet overhead in the

network. However, observing the relative offsets between the byte overhead

graphs for CDR and comparing them to the relative difference in the resource

description lengths in Table 4.2, we can conclude that byte overhead increases

approximately linearly with description length (see Figure 4.11). This em-

phasizes the need for expressive resource description languages, which result

in shorter resource discovery packets, and yet completely specify the resource

requirements of the source.

Figures 4.12, 4.13, and 4.14 show the metrics that are statistically not

affected by the change in resource description lengths. Considering Figure 4.12,

when a suitable resource provider has been discovered by a source, application

data packets carry the unique id of the destination, instead of the resource
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descriptions. Hence, data delivery latency is affected in the same manner as

described in Section 4.5.1 above. Similarly, packet delivery ratios (shown in

Figure 4.13 and Figure 4.14) do not change significantly as description lengths

vary.

4.7 Effect of Resource Multiplicity

This section elucidates the performance of CDR and DWD in a net-

work where multiple destinations satisfy the resource requirements of a source

node. These scenarios are more likely to be representative of emerging mobile

applications where multiple nodes can provide the same or similar functional-

ity. In order to observe the effects of increasing the number of providers, we

performed experiments with 2, 4, 8, 16 and 32 potential resource providers.

We provide the results for a network with high mobility (pause time = 0 sec-

onds); and a relatively static network (pause time = 500 seconds). There is

still only one flow in the network, as in Section 4.5. The difference between

the two scenarios is that in the single provider scenario, in the event of link

breakages, the source node is forced to look for the same destination, while

in the multiple provider scenario, the source may pick a route to an alternate

provider from its route cache; provided the semantics of the application allows

this. If the application requires a persistent connection to the service provider,

a switch from one provider to another in the middle of a transaction may cause

the application to behave in an undefined manner. We assume the existence

of a stateless application which, upon detecting that all routes to a particular

destination are broken, immediately picks another destination based on its

requirements; and tries to send application packets to it.

We now look at the performance metrics for CDR and DWD in the

54



0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8
Route Discovery Latency

Number of providers

T
im

e 
T

ak
en

, i
n 

se
co

nd
s

 

 

CDR, pause 0
CDR, pause 500
DWD, pause 0
DWD, pause 500

Figure 4.15: Discovery latency for a single requester, multiple providers sce-
nario under different mobility conditions
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Figure 4.16: Data delivery latency for a single requester, multiple providers
scenario under different mobility conditions
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Figure 4.17: Average route length for a single requester, multiple providers
scenario under different mobility conditions

multiple provider scenario. Figures 4.15 and 4.16 show the resource discovery

latency and route discovery latency, respectively. In addition to reasons men-

tioned in Section 4.5 above, CDR outperforms DWD with respect to latencies,

since an increase in the number of providers increases the probability that a

provider may be closer to the source. Discovering a physically nearer resource

provider is quicker for CDR, as it employs a single phase discovery approach,

and hence the discovery times for CDR are much lower than for DWD.

The above mentioned theory is corroborated by the graphs for average

route length, shown in Figure 4.17. Average route length is defined as the

number of hops a data packet has to travel on average to reach the destination.

Mathematically, it is the average route length per data packet received at the

resource provider. The graphs show that as the number of providers increases,

a simple flooding mechanism, on average, selects a provider that is closer to the

56



0 5 10 15 20 25 30 35
0.992

0.993

0.994

0.995

0.996

0.997

0.998

0.999

1

1.001
Packet Delivery Ratio

Number of providers

# 
P

kt
s 

R
ec

ei
ve

d 
/ #

 P
kt

s 
S

en
t

 

 

CDR, pause 0
CDR, pause 500
DWD, pause 0
DWD, pause 500

Figure 4.18: Packet delivery ratio for a single requester, multiple providers
scenario under different mobility conditions
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Figure 4.19: Application packet delivery ratio for a single requester, multiple
providers scenario under different mobility conditions
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Figure 4.20: Normalized packet overhead for a single requester, multiple
providers scenario under different mobility conditions
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Figure 4.21: Normalized byte overhead for a single requester and multiple
providers scenario under different mobility conditions
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source. As the number of providers increases, the route length asymptotically

reaches unity for CDR, i.e., in the limiting case the resource provider is a

one-hop neighbour of the source node.

Figures 4.18 and 4.19 show how the packet delivery ratios for the two

protocols compare in the multiple provider scenario. While CDR’s packet

delivery ratio is much lower than DWD’s (see Figure 4.18) under high mobil-

ity, CDR again outperforms DWD as far as application packet delivery ratio

is concerned (see Figure 4.19). CDR attempts to deliver more packets than

DWD, and succeeds more often. The increase in success for CDR in com-

parison to DWD reflects the fact that CDR’s single phase of communication

quickly targets locally available resources. As we can see from Figures 4.20

and 4.21, network packet overheads for CDR and DWD are comparable when

mobility is low. Under high mobility conditions, CDR generates a larger net-

work overhead, due to frequent discoveries. However, the large variance in

CDR’s overhead and the dip in the packet delivery ratio need more thorough

investigation, before further conclusions can be drawn.

In summary, CDR protocol promotes network locality of resource con-

nections. That is, based on our näıve selection process that chooses the first

responding service to connect to, we connect clients to resources that are

“nearby” in a network sense (i.e., latency). This makes sense with respect to

the applications discussed in Chapter 1; in general these applications implicitly

favor a “local” matching resource over a more distant one. The definition of

locality and its use within our protocol is discussed in more detail in the next

chapter. It is difficult to achieve a similar behaviour in DWD without includ-

ing additional information within registrations, thereby incurring additional

overhead. Examples as shown in Figure 1.3 abound, where the lookup server
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cannot tell from its registration list exactly which of the matching resources it

should return to a requester.

4.8 Supporting Multiple Traffic Flows

The above sections dealt with how CDR performs when there is a single

flow in the network. This section looks at the performance of CDR and DWD

under high traffic conditions. More specifically, we investigate the scalability

of CDR to simultaneously support multiple independent flows of traffic.

In the experiments conducted to study the scalability of CDR, two in-

dependent traffic flows were simulated. Two requesters were placed at random

locations in the network. One resource provider existed for each service, each

placed at a random location. The sources generated packets at the rate of 20

packets per second. This effectively doubles the traffic in the network, from

the single flow scenario. The fallout of this construction was that nodes in the

middle of the network (the nodes that forward packets) often ran out of space

in their interface queues between the link layer and the MAC layer. The con-

sequences of this phenomenon is evident in the performance of both protocols

in high traffic conditions.

Figure 4.22 shows the discovery latency for the two protocols under

different traffic conditions. CDR’s route discovery latency is much lower than

DWD’s. In going from one flow to two flows, DWD’s route discovery latency

has increased five fold. The reason for this is that some route discovery packets

get lost due to queue buildup at intermediate nodes in the network. The source

cannot detect this until the discovery timer expires at the source node.

Data delivery latency of DWD on the other hand is much lower than
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Figure 4.22: Discovery latency for the two requesters, two resource providers
scenario
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Figure 4.23: Data delivery latency for the two requesters and two resource
providers scenario
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that of CDR’s, as shown in Figure 4.23. The data delivery latency has in-

creased roughly five fold for CDR in going from one flow to two flows. This

can be attributed to the loss of packets in the middle of the network.
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Figure 4.24: Packet delivery ratio for the two requesters and two resource
providers scenario

The packet delivery ratio for CDR is much lower than that of DWD un-

der high traffic conditions (see Figure 4.24) for the same reasons as mentioned

above. Under these circumstances, in order to ensure some kind of guarantee

that the data packets have indeed reached the destination, some connection-

oriented semantics need to be employed at the application level. While the

application packet delivery ratio (see Figure 4.25) for CDR has still reduced

in going from one flow to two flows, it is comparable to DWD’s application

packet delivery ratio.

Finally, Figures 4.26 and 4.27 show that CDR’s performance is affected
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Figure 4.25: Application packet delivery ratio for the two requesters, two
resource providers scenario
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Figure 4.26: Normalized packet overhead for the two requesters, two resource
providers scenario

63



0 100 200 300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Normalized Byte Overhead

Pause Time, in seconds

# 
O

ve
rh

ea
d 

B
yt

es
 / 

# 
D

at
a 

P
kt

s 
R

cv
d

 

 

CDR
CDR 2 senders
DWD
DWD 2 senders

Figure 4.27: Normalized byte overhead for the two requesters, two resource
providers scenario

to a greater extent by the loss of packets at the link layer. The delivery laten-

cies and communication overhead are indicative of CDR’s inability to perform

well under high traffic conditions. This leaves us with the conclusion that

CDR needs to employ some optimizations that will detect when the interfaces

below it are full, and stop sending packets under such conditions. CDR’s cur-

rent performance leaves room for more evaluation under different data traffic

patterns, to determine which traffic patterns CDR is best suited for.

4.9 Analysis

The results described above show that integrating the resource dis-

covery process directly with the route discovery process has the potential to

change the way applications use communication in mobile networks. The CDR
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protocol shows performance comparable to DWD, which is representative of

the two-phase approach. In this section, we examine aspects of the protocols,

that, when viewed in conjunction with the above performance characteriza-

tion, point to CDR as a valuable contribution to the body of communication

protocols for mobile ad hoc networks.

4.9.1 Idealized Lookup Server

Our simulation results use an idealized lookup server that demonstrates

better performance for DWD than would actually be perceived in a real im-

plementation.

We assumed that the lookup server knew in advance what services

would be offered at all nodes in the network. In a mobile ad hoc network, it

is infeasible for any centralized authority to have all of this information due

to the inherently unpredictable nature of the environment. Instead, service

providers must register services they offer and deregister services when they

are no longer offered. A common solution (e.g., as used in Jini [13]) is leasing,

where, when services are registered, they are assigned a lease time, and, to

remain available in the network, registrations must be renewed when the lease

time expires. The issue of registration becomes even more important when we

consider the applications discussed in Chapter 1. Many of these applications

search for specific data items based on meta-data. Registering all of the data

available in the system with a lookup server becomes prohibitively costly. This

problem can be addressed using indirection; a node that provides a particular

kind of data offers some generic service which can be registered. The problem

then becomes one of description—how much information should be provided

about a particular data provider in its registration? For example, in the case
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of a traffic monitoring application, location should clearly be provided, but at

what granularity? The tradeoffs associated with minimizing the overhead of

registration and maximizing the quality of matches makes deploying efficient

and general lookup services very difficult. In any of these cases, the registration

process incurs periodic additional overhead, which, as the number of available

services increases will have a dramatic impact on DWD’s performance.

In our experiments, the DWD lookup server was well-known. In reality,

it is likely that, either every node will have a list of potential lookup servers that

it must attempt to contact in succession (as in many peer-to-peer systems), or

the network will have to employ a distributed protocol to elect and maintain

a set of such servers [2, 33]. This process incurs an additional cost that we

are not yet measuring in our evaluation. In addition, we placed the lookup

server in the center of our simulation environment and left it immobile. This

greatly increases the availability of this service, and in the real world, the

responsibility of the lookup service will most likely be delegated to a node

that is itself mobile. Again, this can impact the availability of the lookup

service and the overhead incurred in contacting it.

4.9.2 Matching Language Independence

Another significant benefit of the CDR protocol is its independence

from the particular matching language used. Any matching language can be

used; the only requirement is that clients and servers that are paired must

speak the same language to be matched. This allows the communication pro-

tocol we have presented to be placed underneath existing applications, and,

given a proper interface for communication constructs, the protocol can carry

resource requests and replies for existing service provision systems.
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Chapter 5

Discussion

In the previous chapters, we presented a novel model of communica-

tion that holds promise in supporting future mobile applications, particularly

those that satisfy the characteristics we highlighted in Chapter 1. This section

examines the subsequent steps that must be taken to build on these results

to create a deployable, usable, and expressive approach to resource-directed

discovery and routing.

5.1 Resource Descriptions and Requests

Our protocol currently utilizes a simple description language based on

semi-structured data [1]. This approach is common among well-accepted de-

scription languages [5, 10, 13, 20, 21, 44]. In general, semi-structured data ap-

proaches relate attributes hierarchically (e.g., locations have addresses which

have zip codes). At this stage, we choose not to restrict ourselves to a partic-

ular language and have therefore intentionally designed a flexible mechanism

that leaves the specification and matching capabilities outside of the proto-

col mechanics. As we continue with evaluations of our protocol, we expect it

to encounter performance degradations due to the fact that service descrip-

tions are of variable lengths, and, in general, are longer than the fixed length

addresses traditionally used by routing protocols. In addition, our protocol

incurs increased processing time at each intermediate host due to the fact that
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we run a more sophisticated matching algorithm than standard routing pro-

tocols. Addressing optimality of representation and optimality of matching

are essential next steps in ensuring the protocol used is as efficient as possi-

ble. Efficient solutions may require the assumption of a particular description

language, and the inflexibility of this modification will have to be met with

significant performance improvements to justify its inclusion.

Our protocol generates routes only for exact matches between a spec-

ification and a resource. A potential optimization might allow a resource

discovery process to complete early if a “close enough” match is discovered.

Approaches relating to this concern have recently taken advantage of the struc-

tural properties of the data specifications. For example, INS [2] explicitly

formats descriptions and specifications in name trees. An extension to the

model [3] breaks the trees into strands, or unique subsequences of paths in

the attribute trees. A client’s request, originally also formed as a tree, is also

broken into strands. The matching algorithm compares the two sets of strands

and returns to the client the resource with the highest number of subsequence

matches. This style of approach is a first step, but operates under the condi-

tion of complete information (i.e., the matching algorithm can return what it

knows for sure to be the best match). Incorporating such an approach into a

distributed algorithm such as ours requires significant reconceptualization be-

cause the protocol must be able to (in a distributed fashion) determine when

a resource is a close enough match to create a route without global knowledge

of available resources.
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5.2 Reactive versus Proactive Approaches

Chapter 1 outlined our rationale for an entirely reactive protocol with-

out advertisement. Briefly, our decision is motivated by the fact that our tar-

get applications operate in highly dynamic and data rich environments where

advertising all of the available data proves too costly in terms of communica-

tion overhead. This is in stark contrast to service provision, which operates

under the assumption that a widely-used set of services will be desired by

multiple applications which therefore benefit from distributed advertisement

of the services. Given the potential for success of our resource-directed proto-

col described in this paper, further extensions may include a limited proactive

behaviour based not on the nature of the data or resource but on the nature

of the requests for it. That is, once the frequency of requests or number of

requesters reaches a certain (adaptive) threshold, it may make sense to proac-

tively distribute data in a limited local region (depending on the extensiveness

of the dynamics of the environment). Future work can possibly investigate the

feasibility of such modifications with respect to metrics for measuring when to

adapt and the degree to which proactive behaviour should be used. This type

of adaptive protocol differs from the Zone Routing Protocol (ZRP)’s [22] use

of hybrid proactive/reactive behaviour in that their scheme uses only network

topology information to adapt, while we promote using network and applica-

tion context.

5.3 Multiple Route Caching and Updating

By nature of source routing, a source request can generate multiple

routes to the same destination. In addition, because we do not use a unique

identifier to specify the destination, multiple distinct destinations may satisfy
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the request. For now, we simply choose the one with the lowest latency.

Additional metrics can be easily incorporated, e.g., relative location or load.

In addition, when one route to a destination breaks, our protocol immediately

picks up another different route to that destination if it has one cached.

In the same way, if a destination becomes unreachable, but the source

heard from two possible destinations, it can automatically switch to the other

resource. Due to the nature of source routing, this is simple to accommodate

within our protocol. New issues arise, however, because we are possibly deal-

ing with multiple different destinations. Some interactions between a source

and a destination, once initiated, may have some long-lived state that impacts

future interactions. This state may have to be maintained as the connection

switches from one destination to another. For the moment, this concern is ig-

nored in our protocol, and there are many cases when this is acceptable or even

desirable. For example, if the data resource is local temperature information,

it is desirable, that, as the device moves, a more local resource is selected in

preference to an old connection to a more distant resource. On the other hand,

if the interaction is a bidding negotiation between a buyer and a seller, au-

tomatically switching to a new seller would disrupt any ongoing transactions.

Additional protocols can be integrated with CDR for transparently migrating

existing state information from one resource to another when acceptable or, in

the worst case, ensuring clean and announced disconnection from disappearing

resources [24].
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Chapter 6

Conclusion

This thesis has presented a novel communication protocol, Cross-layer

Discovery and Routing (CDR) that alleviates the need for applications in a

mobile ad hoc network to contact a well-known name resolver or repository

to create dynamic routes among mobile hosts. We first compared existing

communication provisions with the clearly stated needs and assumptions of a

generic class of dynamic applications, demonstrating a significant mismatch

between the two (Chapter 2). As we set out to bridge this gap, we started

with the motivation that the combination of a reactive protocol with the source

routing paradigm holds the most promise for an adaptive yet responsive and

flexible mechanism (Chapter 1). We then presented CDR, providing a formal

abstract characterization of the protocol in addition to the common textual

description (Chapter 3). To examine the feasibility of incorporating non-fixed

length data and resource descriptions into a reactive routing protocol, we per-

formed a simulation analysis of our protocol and compared it with other al-

ternatives (Chapter 4). Finally, we examined the implications of the most

fundamentally unique aspects of our protocol and identified areas for enhance-

ments (Chapter 5). The work presented in this thesis provides a necessary and

significant first step in supporting real-world dynamic and adaptive applica-

tions for emerging mobile ad hoc network scenarios.
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