Kato: A Program Slicing Tool for Declarative Specifications

Engin Uzuncaova and Sarfraz Khurshid
The University of Texas at Austin
Austin, TX 78712

{uzuncaov, khurshid}eece.utexas.edu

Abstract

This paper presents Kato, a tool that implements a novel
class of optimizations that are inspired by program slicing
for imperative languages but are applicable to analyzable
declarative languages, such as Alloy. Kato implements a
novel algorithm for slicing declarative models written in Al-
loy and leverages its relational engine KodKod for analysis.
Given an Alloy model, Kato identifies a slice representing
the model’s core: a satisfying instance for the core can sys-
tematically be extended into a satisfying instance for the
entire model, while unsatisfiability of the core implies un-
satisfiability of the entire model. The experimental results
show that for a variety of subject models Kato’s slicing al-
gorithm enables an order of magnitude speed-up over Al-
loy’s default translation to SAT.

1 Introduction

As software systems grow in complexity, the need for
efficient automated techniques for design, testing and veri-
fication becomes even more critical. The declarative mod-
eling language Alloy [5] and its fully automatic analyzer [6]
provide an effective tool-set for building designs of systems
and checking their properties.

Alloy is a first-order relational logic with transitive clo-
sure, which allows expressing rich structural properties us-
ing succinct and intuitive path expressions. The Alloy An-
alyzer translates Alloy models into boolean formulas using
a scope—bound on the universe of discourse—provided by
the user, and uses off-the-shelf SAT technology to solve the
resulting boolean formulas.

For practical examples, Alloy’s analysis is often lim-
ited to small scopes (e.g., 10 atoms in a set), which some-
times are impractically small for modeling realistic systems.
The Alloy Analyzer already incorporates a variety of op-
timizations, such as symmetry-breaking, partial functions,
type-based reduction of variables, and guidelines for man-
ual rewriting of Alloy formulas [9] to optimize the solving

time. In past work [7], we presented a suite of optimiza-
tions inspired by traditional compiler optimizations, such
as common subexpression elimination and loop unrolling,
to perform source-to-source translations on Alloy models
to enable the SAT solvers to perform more efficiently.

KodKod [10] is a new relational engine for Alloy mod-
els. It provides a better support for partial solutions and a
clean Java API to work with Alloy models. Combined with
an improved scheme for further sharing opportunities, Kod-
Kod achieves significant performance improvement over to-
tal solving time for Alloy models. Kato uses the partial in-
stance support in KodKod and introduces a new class of op-
timizations that are inspired by program slicing for imper-
ative languages but are applicable to analyzable declarative
languages, in general, and Alloy, in particular.

Program slicing has widely been used in the context of
imperative programming languages. Weiser [13] defines
slicing as a “source code transformation with respect to a
certain behavioral aspect”. The behavior of interest is spec-
ified in a particular form, which is called the slicing crite-
rion. Weiser also points out two desirable properties in a
slice. One, the slice should be obtained from the original
program by statement deletion. Two, behavior of the slice
should be the same as observed through the original pro-
gram.

We have evaluated the potential speed-up in solving time
that Kato can provide using a suite of subject examples that
model structurally complex data. The results show the ex-
istence of opportunities for significant performance gains.
For the binary search tree example, we observe a speed-up
of 19.13X and for the linked-list example, a speed-up of
6.16X.

2 Kato: program slicing for Alloy

Kato [11, 12] performs a static analysis on a given Al-
loy model to identify its core based on a set of heuristics.
The static analysis traverses the abstract syntax tree of the
given Alloy formula, which is a conjunction of several sub-
formulas, and builds a use-set of relations that appear in

IEE l-i

COMPUTER
SOCIETY

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007 IEEE

(a) (b)

Figure 1. The binary search tree instance
generated by the tool. The tree in (a) presents
the complete solution. In (b), derived proper-
ties are indicated by dotted lines. (p: parent,
I: left, r: right

each sub-formula. Kato uses these use-sets to compute the
set of core relations based on various heuristics. We take
the model slice that consists of the core relations and the
constraints that apply to only these relations, and use Kod-
Kod to find a satisfying instance for the model’s core. Since
the model slice typically consists of only a strict subset of
the original model, the slice translates to smaller boolean
formulas with fewer variables, which results in a simpler,
thus shorter, analysis for the underlying SAT solver. Once
a solution is found for the core slice, Kato combines the
derived relations and associated constraints with this partial
instance and finds a solution satisfying the complete model.

In essence, our algorithm prioritizes constraints for effi-
cient solving [14]. While SAT solvers already use constraint
prioritization, the translation from Alloy to SAT reduces the
efficiency of the prioritization techniques. The body of se-
mantic information in Alloy specifications are lost at the
SAT solving level since these techniques use boolean rep-
resentation of the specifications. We have developed our
heuristics based on the semantic properties of Alloy lan-
guage observed in models in general.

2.1 Core and Derived Relations

Kato partitions the set of relations declared in an Alloy
model into two sets: core and derived. We use core relations
to define a slice of the given Alloy model, which is analyzed
first using SAT. Next, we use the constraints on the derived
relations to extend satisfying instances of core relations into
satisfying instances of the complete model.

Definition. Let R be the set of all relations. Let C' and
D partition R. Let fo be the formulas in f that only involve

relations in C'. Let [be the set of all instances of f. Let I
be the set of all valuations to relations in C' and I be the
set of all valuations to relations in D. C'is a core set if and
only if:

Vic € Io | fc(ic) = dip € Ip | f(ZC + JriD)

Definition. A relation r is core if and only if there
exists a core set such that r belongs to that set. Similarly, a
relation r is derived if and only if a core set exists and 7 is
not in the core set.

3 Example: Binary Search Tree

This section presents an example use of Kato to slice a
model of binary search trees [3]. Figure 2 shows the model
that we analyze with Kato. The predicate Acyclic rep-
resents a parameterized formula that can be invoked else-
where, or executed using a run command. Acyclic de-
fines the acyclicity constraints of a binary tree. The fact
Parent represents the constraint on the parent relation;
Size specifies the constraint on the size relation. Search
specifies the ordering property of a general binary search
tree regarding the values in the nodes. The rest of the
model defines acyclicity and connectivity. The run com-
mand checks if the model is satisfiable for a scope of 12.

For the boolean formula corresponding to the complete
model, the KodKod analyzer solver takes 25.44 seconds (on
average) and produces a valid instance for the binary search
tree with 12 nodes. Figure 1(a) illustrates this instance with
five nodes.

As the initial step, Kato constructs the use-sets for each
formula. Each use-set contains the relations referred to by
that formula. Our implementation uses this information to
evaluate the core and derived slices in the model. For exam-
ple, one of the heuristics we experiment is the union of all
the relations referred by the declarations in all the quantified
formulas in the model. We obtain the core relations from
the model with respect to the command being executed. In
order to do this, the first pass of the static analysis builds
the use-sets for each formula. The core relations computed
by Kato for the binary search tree model are left, right
and root.

To intuitively see what we mean by the core of the model,
notice that parent relation can be computed, once the left
and right relations are determined. Similarly size and in
fact even key can also be computed given the values for
the other relations. Unsatisfiable constrainsts over these re-
lations would lead to unsatisfiability of the entire model.
Our main benefit is finding the solution in shorter time.
Figure 1(b) shows a partial instance corresponding to the
core relations using solid lines; the dotted lines depict the
derived relations. The core relations computed by Kato
are left, right and root. The generated core slice re-

IEE l-i

COMPUTER
SOCIETY

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007 IEEE

1 module binarytree

2

3 sig Tree {

4 root: lone Node,

5 size: Int

6}

7

8 sig Node {

9 left : lone Node,

10 right : lone Node,

11 parent: lone Node,

12 key : Int

13 }

14

15 pred Acyclic(t: Tree) {

16 all n: t.root.x(left + right) ({
17 n !in n. (left + right)

18 no n.left & n.right

19 lone n. (left + right)
20 }
21 }
22
23 fact Parent
24 all t: Tree {
25 all n, n’': t.root.*(left+right) |
26 n in n’. (left+right) => n’ = n.parent
27 no t.root.parent
28 }
29 }
30
31 fact Size {
32 all t: Tree |
33 int t.size = #t.root.«*(left + right)
34 }
35
36 fact Search {

37 all n: Tree.root.s (left+right) ({
38 all n’: n.left.x(left+right) |
39 int n’.key < int n.key

40 all n’: n.right.« (left+right) |
41 int n.key < int n’.key

42 }

43 }

44

45 fact Connected {

46 Tree.root.* (left + right) = Node
47 }

48

49 run Acyclic for 12

50 but 1 Tree, 5 int, 13 Int

Figure 2. Alloy model for binary search tree

moves the relations key, size and parent and the con-
straints defined on these relations from the complete model.

Running the tool for the slice computed by Kato takes
only 1.33 seconds (on average) to generate a satisfying in-
stance for the slice, a 19.13X improvement in total solving
time. In addition to improved performance, Kato also en-
ables testing for larger scopes. For example, we are able to
run analyses upto a scope of 30 for the binary tree model.
Without slicing we could test only upto the scope of 14.

4 Tool Overview

We implemented an optimization module, Kato, to per-
form analysis and execution of program slicing for Alloy
models. The tool is currently implemented as an extension
to the publicly available KodKod API.

In order to identify core and derived slices for a given Al-
loy model, Kato takes various heuristics into consideration.
Similar to the notion of ’data-flow analysis’, we perform
a static analysis and collect data about the use of relations
with respect to each formula. The heuristics we use can be
interpreted as the data-flow equations in the traditional com-
pilers domain. We have experimented two main heuristics
with Kato so far,

e union of the relations declared in quantified formulas
approximates to a core set of relations.

e relations used in all of the formulas in a model approx-
imates to a core set of relations.

While these heuristics hold to a great extent, this part of
the tool, where we integrate and improve our heuristics, is
being improved constantly as we observe their effects on
our analysis.

The execution of Kato is sound such that the analysis of
any given model does not produce a conflicting result with
respect to the actual evaluation of the model. A satisfying
solution to the core is used as a constraint for the derived
slice; hence, the later execution of SAT solving finds valua-
tions only for the derived properties.

Kato makes use of use-chains from traditional compiler
optimization domain [1]. For a given Alloy model, Kato
performs a static analysis and identifies the use-set for each
formula. While the current state of the tool uses this ap-
proach for a limited number of heuristics, we are planning
to extend this into a more general framework to support a
wide range of optimizations.

4.1 Discussion

Kato’s idea of slicing declarative models opens a new
avenue for developing a range of novel optimizations for
analyzing Alloy models. To illustrate, consider the Search
constraints for binary search tree (Section 3). There is no
reason why we must use a SAT solver or a Java program
for that matter to computes the values of keys. We could
instead use a dedicated solver, such as the Omega library [8]
or CVC-lite [2], for integer constraints. Thus, Kato enables
the use of a variety of solvers in conjunction, and we plan
to explore this further.

It is worth pointing that the problem of generating
boolean formulas that optimize analysis of underlying SAT
solvers is particularly challenging because the performance

lumCE:?

COMPUTER
SOCIETY

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007 IEEE

of SAT solvers cannot be described in any simple terms.
There are two guiding heuristics in the field: reducing
the number of variables tends to reduce the solving time
and increasing the number of constraints also tends to re-
duce the solving time(presumably because it reduces the
search space that the SAT solver must explore). These
are just heuristics and do not hold always [4]. Thus, even
though our slicing optimizations aims at generating smaller
boolean formulas with fewer variables, there is no guarantee
that the formulas that represent a core slice would generate
a solution faster than a formula that represents the entire
model. In the context of Alloy the problem is even more
interesting because of the optimizations that the Alloy An-
alyzer does internally. We plan to systematically explore
these issues.

The problem of augmenting a partial solution to repre-
sent a complete solution is non-trivial to solve in general;
in the most general case, it is as complex as SAT solving.
However, even if the computation of derived relations is ex-
pensive, our approach still offers potential benefits. For ex-
ample, analysis of just a core slice may reveal that the whole
model is infeasible. In another scenario, it may turn out
that enumerating and augmenting partial instances is actu-
ally faster than directly solving the complete model.

5 Conclusions

We have presented Kato, a novel technique that defines
program slicing for declarative models and enables effi-
cient analyses using existing analyzers. Given a declarative
model, Kato identifies a slice, which represents the model’s
core: a satisfying solution to the slice can be systematically
extended to generate a solution for the entire model, while
unsatisfiability of the core implies unsatisfiability of the en-
tire model. The experimental results show that it is possible
to achieve a significant improvement in the solving time for
Alloy models. We believe analyses based on program slic-
ing hold a lot of promise for efficiently checking declarative
specifications.

Acknowledgements

This work was funded in part by NSF ITR-SoD award
#0438967.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley
Publishing Company, Boston, MA, 1986.

[2] C. Barrett and S. Berezin. CVC Lite: A new im-
plementation of the cooperating validity checker. In

29th International Conference on Software Engineering (ICSE'07)
0-7695-2828-7/07 $20.00 © 2007 IEEE

(5]

(6]

(10]

[11]

[12]

[13]

[14]

Proceedings of the 16th International Conference On
Computer Aided Verification, Boston, MA, July 2004.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-
troduction to Algorithms. The MIT Press, Cambridge,
MA, 1990.

M. K. Ganai, L. Zhang, P. Ashar, A. Gupta, and S. Ma-
lik. Combining strengths of circuit-based and CNF-
based algorithms for a high-performance SAT solver.
In Proceedings of the 39th Conference on Design Au-
tomation (DAC), pages 747-750, June 2002.

D. Jackson. Software Abstractions: Logic, Language
and Analysis. The MIT Press, Cambridge, MA, 2006.

D. Jackson, I. Schechter, and I. Shlyakhter. ALCOA:
The Alloy constraint analyzer. In Proceedings of the
22nd International Conference on Software Engineer-
ing (ICSE), Limerick, Ireland, June 2000.

D. Marinov, S. Khurshid, S. Bugrara, L. Zhang, and
M. Rinard. Optimizations for compiling declarative
models into boolean formulas. In 8th International
Conference on Theory and Applications of Satisfiabil-
ity Testing (SAT 2005), St.Andrews, Scotland, 2005.

W. Pugh. The Omega test: A fast and practical inte-
ger programming algorithm for dependence analysis.
Communications of the ACM, 31(8), August 1992.

1. Shlyakhter. Declarative Symbolic Pure Logic Model
Checking. PhD thesis, MIT, February 2005.

E. Torlak and G. Dennis. Kodkod for alloy users.
In First Alloy Workshop, co-located with the 14th
ACM/SIGSOFT Symposium on Foundations of Soft-
ware Engineering (FSE’06), Portland, OR, November
2006.

E. Uzuncaova and S. Khurshid. Program slicing for
declarative models. (Under submission).

E. Uzuncaova and S. Khurshid. Program slicing for
declarative models. In Proceedings of the 14th ACM
SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), November 2006. (Poster paper).

M. Weiser. Program slicing. In Proceedings of the
Sth International Conference on Software Engineering
(ICSE), pages 439-449, San Diego, California, March
1981. IEEE Computer Society Press.

J. Yuan, C. Pixley, and A. Aziz. Constraint-Based Ver-
ification. Springer-Verlag, 2006.

IEE l-i

COMPUTER
SOCIETY

