
1

EE382M – 15: Assignment 0

Professor: Lizy K. John
TA: Jee Ho Ryoo

Department of Electrical and Computer Engineering
University of Texas, Austin

Due: 11:59PM September 1, 2014

1. Introduction and Goals
The goal of this assignment is to set up your account for this class, to sign up for required
newsflash/scribing, and to self-assess your programming skills required for EE382M-15.

This assignment has three sections. Everyone will be required to do the first two
sections while the last programming part of the assignment is for those who would like to
assess their own programing skills required for this class. If you can complete the
programming part in less than a week, you are likely to enjoy the programming
assignments in this class. If it takes more than a week to complete this assignment, please
consult the instructor.

1.1 Graded Items
The following items need to be completed by the deadline

1. Create an account on Piazza
2. Sign up for Newsflash
3. Sign up for Scribing

1.2 Sample Assignment
This is for self-assessment and nothing needs to be turned in.

1. Develop a single-core cache simulator in C

2. Required Assignment
2.1 Piazza Account
Piazza is a main communication method we will be using in class. Any general question
from course logistics to assignments must be posted on Piazza. This is employed in order
to reduce the amount of time spent on answering duplicate questions by the teaching staff
as well as a single knowledge base for students to look for answers. The teaching staff
will check the Piazza regularly to answer questions. When you ask a question, please
specify which category your question belongs to. At this point, there is only one category
logistics where you can ask any general question regarding this course. We will create
separate categories such as assignment1 as the semester goes on to post your question
under a specific category.

In order to sign up, please login to Canvas course management system
(https://courses.utexas.edu/). Under Courses tab, click 15-COMP PERF
EVAL/BENCHMARKING. Now, you should be able to see the menu on the left side.

2

Please click on Piazza. If you do not have an account, you will be asked to create an
account. Once you log in, you should be able to see the first welcome post. This
completes this part of the assignment.

2.2 Newsflash Sign Up
In the beginning of each class, a student will be presenting any news related to computer
architecture (1-2 slides, 3 minutes). Each student has to sign up for one specific date.
Please go to this link on Canvas, and select Newsflash. Click Sign Up on your preferred
date, type your name and click Sign Up. It will be first come, first served. Therefore, if
another student has already selected a date and submitted, then this date will not be able
to be selected by others (the sign up link will be gone). To be fair, the link will be public
on Canvas at 4:00PM CST on Aug 29, 2014.

2.2 Scribing Sign Up
In every class, one student will be scribing the lecture notes. Although the lecture note
will be uploaded on the class website, it is beneficial for students to prepare for the exam
as some concepts may not be explained on slides in detail. Each student has to sign up for
one specific date. Please go to this link provided on Canvas, and select Scribing. Click
Sign Up on your preferred date, type your name and click Sign Up. It will be first come,
first served. Therefore, if another student has already selected a date and submitted, then
this date will not be able to be selected by others (the sign up link will be gone). To be
fair, the link will be public on Canvas at 4:00PM CST on Aug 29, 2014.

3. Sample Assignment
This part of the assignment is for those who would like to assess their own programing
skills required for this class. If you can complete this programming part in less than a
week, you are likely to enjoy the programming assignments in this class. If it takes more
than a week to complete this assignment, the class assignments may be too challenging
for you.

3.1 Single core cache simulator
For this part of the assignment, you are asked to create a simple, trace-driven cache
simulator. The simulator should be capable of modeling a direct-mapped, set-associative
or fully associative cache, with arbitrary cache sizes, block sizes, associativity and
latency parameters. The simulator should be able to take command-line parameters and
an address trace file name as input. It should produce a hit ratio and average memory
access time (AMAT).

Your simulator must be able to take the following cache parameters as command-line
inputs:

• Cache size in bytes (powers of 2) (up to 16MB)
• Block size in bytes (powers of 2)
• Set associativity (powers of 2)
• Cache hit latency in clock cycles
• Cache miss latency in clock cycles
• Address trace file-name

3

The cache should implement the least recently used (LRU) cache replacement policy for
multi-way caches. Assume that the tag check latency occurs in parallel with the cache hit
latency.

Your simulator should take the above parameters in that exact order. Do not vary the
input format in any way. The final input parameter will be the trace file name. Here is an
example of how your simulator should run:

% cachesim 32768 32 1 2 50 tracefile.txt

This run will simulate a direct-mapped 32KB cache with a 32-byte block size, 2 cycle hit
latency, and 50 cycle miss latency. The trace file will contain hexadecimal addresses up
to 64 bits and will be in the following format:

FF2000
102004
A02008
200C
2010
20FAB14

Your program will output a hit ratio and AMAT based on the input trace file. The output
should be presented in the following format:

% cachesim 32768 32 1 2 50 tracefile.txt
32768 32 1 2 50
HIT RATIO: 0.953
AMAT: 4.256
%

Print the two lines of output and an initial line showing the configuration to the screen
(stdout). Make sure to use all capital letters, put a space after the colon, and only print to
three decimal places.

Make the output to be appended to a file called RESULTS. So if you run the cache
simulator with 10 configurations, it will print the 10 configurations and the 10 sets of
results to the same file. You can try a variety of address sequences to make sure that
different block sizes and different associativies are working fine.

3.2 Assignment template
A sample input trace is provided with the assignment template. It is written in
hexadecimal, so it is your job to convert it to the format you prefer. You are responsible
for implementing the cachesim in a file named cachesim.c file in the assignment template.
Your code will be compiled on gcc version 4.6.3. The assignment template is provided
with a simple Makefile. Do not modify this file. You are responsible for modifying

4

cachesim.c file. You can have any number of files (although one file should do) as long
as they use the following C extensions: .h, .c. Comment your code.

3.3 Submission instructions
This part of the assignment is just a sample assignment and you do not have to submit
anything.

