
1

EE382M – 15: Assignment 3

Professor: Lizy K. John
TA: Jee Ho Ryoo

Department of Electrical and Computer Engineering
University of Texas, Austin

Due: 11:59PM October 21, 2014

1. Introduction
The goal of this assignment is to familiarize yourself with a popular profiling tool.
Profiling is one of the fundamental steps used to understand the characteristics of a
program. This assignment will give you some exposure to write C/C++ based program
analysis tool that interfaces with other public domain tools used by computer architecture
research community. In this assignment you will develop a program profiling tool using a
binary instrumentation system called PIN. PIN provides rich Application Program
Interface (API) that allows program analysis routines to instrumentation calls at arbitrary
locations in the executable.

1.1 Setup and Requirements

- You will need access to a Linux machine with the Pin tool installed. You should
be able to install any kit for gcc version 3.4 or above.

- Pin tool requires approximately 100MB, so make sure you clean up your directory

choose to use the LRC machines. If you are running out of space, consider using
the /scratch directory.

1.2 Deliverables
The following deliverables must be completed for this assignment

- Pin analyzer code
- Assignment report

2. Pin Tool
2.1 Overview
Pin is a dynamic binary instrumentation tool for x86 ISA that profiles the code on the fly.
Since it profiles the runtime binary, there is no need to recompile the source code. This
tool provides a rich API that allows context information to be injected to the user’s
profiling code as parameters. Please download the Pin tool at the following website:
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

This tool comes with a few example codes, so if you are not familiar with this tool, please
take a look at these codes before you start this assignment. You will need to access the
Pin API as well, so please carefully read the following document as well:
https://software.intel.com/sites/landingpage/pintool/docs/67254/Pin/html/

2

2.2 Profiling Lawrence Livermore Loop
Along with this Lab, you are given one of the Lawrence Livermore Loop (LLL)
programs (lll3.c). Compile the code with –O2 optimization and –S flag to see the
assembly.

% gcc –O2 –S lll3.c

Please look at the raw assembly code (of the LLL inner loop) and tell how many
assembly instructions are used. In your report, guess what the dynamic number of
instructions would be based on the assembly code you see (you can look in the source to
see the loop bound). Now, run your Pin tool to report the actual dynamic number of
instructions. Show the following numbers in the report

Instruction count (expected) based on Assembly code = your educated guess
Instruction count reported by PIN = PIN results

Do the numbers match?

If they don’t match, repeat the experiment with loop bound of 200,000. Use the
difference from the first experiment to the second experiment to compute the instruction
count for 100,000 iterations. Now, show the following numbers based on this new
experiment.

Instruction count (expected) based on Assembly code = your educated guess
Instruction count reported by PIN = PIN results

Do the numbers match better? Explain your results.

2.3 Profiling Lawrence Livermore Loop with multiple optimization levels
Compile the given LLL code (lll11.c) with –O0 and –O2 optimization. Report the total
dynamic number of instructions using PIN tool for both compilation levels. Assuming
IPC of 1, what is the speedup of compiler optimization level –O2 over –O0?

2.4 Evaluate Your Assignment 1 Cache Simulator
Determine how many dynamic instructions does it take for your cache simulator to
simulate a cache when you feed in the sample config and trace files provided with this
assignment. Essentially, you will use PIN to profile your own cache simulator that you
designed in assignment 1. Profile your own (i) single core single-level, and (ii) single-
core two-level cache simulators Profile the cache simulator binaries obtained with –O0
and –O3 compiler optimizations. Report the instruction counts at the 2 optimization
levels. What is the number of instructions needed to simulate one trace file entry in each
case?

2.5 Writing Your Profiling Code and Running your analyzer
In this part, you will run your PIN analyzer with (i) LLL3 (ii) LLL11 (iii) SAXPY (iv)
DAXPY (v) gcc and (vi) bzip2 benchmarks. You will write your own PIN-based

3

profiling tool that does the data collections described below in one run. Name your code
as program_analyzer.cpp. For each benchmark, please include the following in
the report.

1. Instruction mix must be collected with the total number of dynamic instructions,
integer, floating point, load, store, branch, and other instructions.

2. Collect details on the percentage of total branches that are taken and the

percentage of total forward branches that are taken.

3. Calculate the average basic block size. Pin uses a different definition of the basic
block than the classical textbook definitions. For this assignment, you can assume
basic block size to be the number of instructions between two consecutive
branches/calls in the dynamic instruction stream.

4. Also collect Read-After-Write (RAW), Write-After-Write (WAW) and Write-

After-Read (WAR) distribution in the dynamic instruction stream. RAW
dependency distance is defined as the total number of instructions in the dynamic
instruction stream between the production (write) and consumption (Read) of a
register instance. For example, if instruction X writes to Register R, and
subsequently register R is read by instruction Y, the dependency distance is Y-X
instructions. If two consecutive instructions are dependent, the distance is 1. An
instruction may have multiple operands and each operand may have a different
dependency distance to its producer. Find dependency distance for each operand.
Similarly, you can calculate the WAW and RAW register dependency distances.
You will present your results as the total number of RAW, WAW, and WAR
register dependencies that have a distance up to 2, 8, 32 and greater than 32
instructions.

5. Measure and report inter-reference temporal density function, which is an

intrinsic measure of temporal locality. You will report the density function for the
granularity of byte, cacheline and page granularity. Use 32B cacheline size and
4KB page size. See details at the end of this document.

3. Output Format
You analyzer in Section 2.5 must be able to print the stats in the following format:

<DynInsCount>
<IntCount>
<FPCount>
<LdCount>
<StCount>
<BrCount>
<PBrTaken>
<BrForwardTaken>

4

<AvgBBSize>
<RAWdep 0-2>
<RAWdep 3-8>
<RAWdep 9-32>
<RawDep greater than 32>
<wAWdep 0-2>
<wAWdep 3-8>
<wAWdep 9-32>
<wAWdep greater than 32>
<wArdep 0-2>
<wArdep 3-8>
<wArdep 9-32>
<wArdep greater than 32>
<temporal density_byte 0-2>
<temporal density_byte 3-8>
<temporal density_byte 9-16>
<temporal density_byte 17-32>
<temporal density_byte greater than 32>
<temporal density_cacheline 0-2>
<temporal density_cacheline 3-8>
<temporal density_cacheline 9-16>
<temporal density_cacheline 17-32>
<temporal density_cacheline greater than 32>
<temporal density_page 0-2>
<temporal density_page 3-8>
<temporal density_page 9-16>
<temporal density_page 17-32>
<temporal density_page greater than 32>

The above should be the only thing printed. Make sure there are exactly 36 rows in
this output. If any additional/fewer characters or debug information are printed, the
grading script will consider them as incorrect.

4. Submission Instructions
4.1 Submission instructions
Your assignment must be compressed in tar.gz format. Please use the following
command to tar your submission:

% tar –zcvf <your last name>-a3.tar.gz <your working directory>

Make sure that the name of your working directory is named <your last name>-a3.

An automated script will be used to grade this assignment. Thus, if the script fails to
grade your code due to not following instructions, you will lose substantial part of
your grade.

5

There will be a submission link available on the course website, so please submit your
tarball by deadline. Check the following before you tar your directory.

1. Please remove all your temporary files.
2. You are required to submit your code and report.
3. The report must be in the pdf format.
4. All graphs and figures must be included in the report. Figures not included in the

report will not be looked, and thus, will not be grade.
5. Your code must only print information in the exactly the same format as what is

presented in Section 3.

5. Helpful Tips
Lectures gave you information on the locality metrics. The following papers give more
details:

[1] Conte, T.M.; Hwu, W.-M.W., "Benchmark characterization for experimental system
evaluation," System Sciences, 1990., Proceedings of the Twenty-Third Annual Hawaii
International Conference on , vol.i, no., pp.6,18 vol.1, 2-5 Jan 1990
[2] John, L.K.; Vasudevan, P.; Sabarinathan, J., "Workload characterization: motivation,
goals and methodology," Workload Characterization: Methodology and Case Studies,
1999 , vol., no., pp.3,14, 1999
[3] Mattson, R.L.; Gecsei, J.; Slutz, D.R.; Traiger, IL., "Evaluation techniques for storage
hierarchies," IBM Systems Journal , vol.9, no.2, pp.78,117, 1970
[4] Chen Ding and Yutao Zhong. 2003. Predicting whole-program locality through reuse
distance analysis. In Proceedings of the ACM SIGPLAN 2003 conference on
Programming language design and implementation (PLDI '03).

6. Important Paragraphs from the References
Temporal locality is often defined as if an item is referenced, it will tend to be referenced
again soon. The inter-reference temporal density function, fT(x), is defined as the
probability of there being x unique references between successive references to the same
item. Consider the following sequence of instruction addresses:

3000, 3002, 3004, 3000, 3004, 3000, 3002

The number of unique address references x between the first reference to address 3000
and the next reference to it is 2. The number of unique address references between the
first reference to address 3002 and the next reference to it is also 2 (there are 4 references
but only 2 unique references). Similarly, there is only one unique reference between the
two consecutive references to address 3004 and between the second and third reference to
address 3000. Thus if we consider the instruction reference stream as a whole, there are
two instances where x has value 1 and two instances where x has value 2. We normalize
these counts over all possible values of x to get the inter-reference temporal density
function fT(x) as fT(0) = 0, fT(1) = 0.5 fT(2) = 0.5. The formal definition of inter-
reference temporal density function is defined in Definition 2.3 below. [1][2]

6

DEFINITION2. 3: Define fT(z), the inter-reference temporal density function, fT(z),,to be
the probability of there being z unique references between successive references to the
same item,

The interreference temporal density function is a measure of temporal locality of a
reference stream. The performance of buffers managed under stacking replacement
policies (e.g., LRU) depends directly on this measure of temporal locality. The hit ratio
for a fully associative buffer of size N is h(N) = Σty≤NfT(y).

Figure 1: The algorithm for calculating the locality distributions [3]

Figure 1 shows the algorithm to find the locality distribution while Figure 2 shows the
histogram of the number of unique references. Figure 3 and Figure 4 are provided an
example and to help you to write more efficient algorithm.

Figure 2: Number of unique references [4]

7

Figure 3: Stack Distance calculation

Figure 3: Complexity analysis

