Automatically Characterizing
Large Scale Program Behavior

Timothy Sherwood Erez Perelman Greg Hamerly Brad Calder

Department of Computer Science and Engineering
University of California, San Diego

{sherwood eperelma,ghamerly,calder } @cs. ucsd.edu



Phases in Programs

1. Architecture

2. Dynamic Optimizations
3. Compiler Optimizations
4. Power Management




Phases in Programs

1. Fine-grain (1-10 instructions)
2. Coarse grain (1000-10000 instructions)
3. Large Scale (eg: 100 M chunks)




BBV

. Basic Block Vector
. What is a Basic Block?

. A continuous sequence of code with one entry
point and one exit point

How many basic blocks in the following code

L1: 11
L2: 12
L3: 13
14
If cond true go to L3
L6: [§

L7: Loop L1



Basic Blocks

1. How many basic blocks in the following code

L1: 11
L2: 12
L3: 13

14

If cond true go to L3
L6: 16
L7: Loop L1

Answer: 3 basic blocks

B1={l1, 12} ; I3 Is an entry so cannot be in this BB
B2 = {I3, 14,15}

B3 ={l6, I7}



Assume each node is an instruction.
Each arc shows flow of program control.
Find basic blocks in this program graph



Static Basic Blocks vs Dynamic

. Can static and dynamic basic blocks be different?
. What we did on previous page was static

. Many profiling tools just identify dynamic basic
blocks

. How can dynamic basic blocks be different in the
following example?

L1: 11
L2: 12
L3: 13
14
If cond true go to L3
L6: [§

L7: Loop L1



Figure 1: Basic block similarity matrix for the programs gzip-graphic (shown left) and bzip-graphic (shown
right). The diagonal of the matrix represents the program’s execution to completion with units in billions of
instructions. The darker the points, the more similar the intervals are (the Manhattan distance is closer to
0), and the lighter the points the more different they are (the Manhattan distance is closer to 2).



< 100% —
EBGGQLW%NWWVWWW«WMNNWW
B 60% - i | o .
g 40% - L - L E

& 0% . . . | . | .

Cluster ID

0B 208 408 608 808 100B

Instructions Executed (in Billions)

Figure 2: (top graph) Time varying graph for gzip-graphic. The average IPC (drawn with solid line) and
L1 data cache miss rate (drawn with dotted line) are plotted for every interval (100 million instructions of
execution) showing how these metrics vary over the program’s execution. The x-axis represents the execution
of the program over time, and the y-axis the percent of max value the metric had during execution. The
results are non-accumulative.

Figure 3: (bottom graph) Cluster graph for gzip-graphic. The full run of the execution is partitioned into a
set of 6 clusters. The x-axis is in instructions executed, and the graph shows for each interval of execution
(every 100 million instructions), which cluster the interval was placed into.



Figure 4: The original basic block similarity matrix for the program gcc (shown left), and the similarity matrix
for gcc-166 drawn from projected data (on right). The figure on the left use the original basic block vectors
(each of which has over 100,000 dimensions) and uses the Manhattan distance as a method of difference

taking. The figure on the right uses projected data (down to 15 dimensions) and uses the Euclidean distance
for difference taking.



100% —
80%
60% -
40% -
20%

0% -

Percent of Max

Cluster ID
M

Instructions Executed (in Billions)

Figure 5: (top graph) Time varying graph for gcc-166. The average IPC (drawn with solid line) and L1 data
cache miss rate (drawn with dotted line) are plotted for every interval (100 million instructions of execution)
showing how these metrics vary over the program’s execution. The x-axis represents the execution of the
program over time, and the y-axis the percent of max value the metric had during execution. The results are

non-accumulative.

Figure 6: (bottom graph) Cluster graph for gcc-166. The full run of the execution is partitioned into a set of
4 clusters. The x-axis is in instructions executed, and the graph shows for each interval of execution (every

100 million instructions), which cluster the interval was placed into.



Phase Finding Algorithm

. Profile the basic blocks executed in each program to
generate the basic block vectors for every 100 million
instructions of execution.

. Reduce the dimension of the BBV data to 15 dimen-

sions using random linear projection.

. Iry the kE-means clustering algorithm on the
low-dimensional data for k values 1 to 10. Each run of

k-means produces a clustering, which is a partition of
the data into k different clusters.

. For each clustering (E = 1...10), score the fit of the

clustering using the BIC. Choose the clustering with
the smallest k, such that it's score is at least 90% as

good as the best score.



100%

80% —

60% —

Percent of Max K

20% —

0%

Number of Dimensions



Bayesian Information Criterion —
A penalized likelihood

BIC(D, k) = I(D|k) F;’ log(R)

where [(D|k) is the likelihood, R is the number of points in

the data. and p; 1s the number of parameters to estimate,
ke
F; R;d R; —1
DY = —— log(2n |
(D]k) E 5 log(2m) — Eﬂgi} 5

+R; log(R:/R)

where R; is the number of points in the ith cluster, and &2
is the average variance of the Euclidean distance from each
point to its cluster center.




25—
—e— average
] .""I,x --#-- max
20- -
' =
. n
§1_5- Meew
@ ]
- J
O 10-
E ]
0.5
0.0

- ; I ; | ; | ; I ; |
0% 20% 40% B60% 80% 100%
Percent BIC

Figure 8: Plot of average IPC variance and max IPC
variance versus the BIC. These results indicate that
for our data, a clustering found to have a BIC score
greater than 80% will have, on average, and IPC vari-
ance of less than 0.2.



— None wmm FF-Billion —= SimPoint = Full

: & & 3 3 ¥ & g & 2 3 g L @ g3
4
34
8 2-
I
"% 3 88988 % 9 8 % 3 383 B F 4 3
P - A A A A S A A S
5 5 & 2 8 3 8B & 2 8§ 5 8 8 3 8 g F ¢

Figure 9: Simulation results starting simulation at the start of the program (none), blindly fast forwarding 1
billion instructions, using a single simulation point, and the IPC of the full execution of the program.



NAme Len | Imit | SP PC Proc Name Multiple SimPoints
ammp 3265 | 24 | 109 | 026834 | mm_fv_update. 1774(31) | 595(15.3) | 1068(1.3) | 2128(74)
2437(4.9) | J112(11.5) | 2480(2.2)
applu 2238 | 3 | 2180 | 018520 | buts 1625(22.5) | 1956(18.8) | 2234(6.6) | 1380(15.5)
apsi M70 | 3| 3409 | 0380ac | detdxf. 2363(14} 1007(70.7) | 896(7.7) 1618(2)
art-110 4171 75| 341 | 00fbb0 | match 412 | 50(15.8)
art-470 450 | 83 | 366 | 00fd0 | match 41’3 14.7) | 236(49.1)
bzip2-graphic | 1435 | 4 | 719 | 012a5c | specpute ll]ﬂ T) | 430(7.5) | 762(16.2) | 106(15.3)
72(8.2) | 195(5.6) 148(2) | 1435(18.2)
bzip2-program | 1249 | 4 | 450 | 00ddd0 | sortlt 46&(12 3) 78(6.2) 000(16) | 445(74)
04(6.9) 606(14) | 850(14.6) | 34147
bziplsource | 1088 | 4 | 978 | 00d774 | gSortd ull( 3) | 64(20.1) | 488(7.3) | G530(8.6)
crafty 1918 | 462 | 775 | 021730 | SwapXray 510(19.7) | 664(22.7) | 1123(32.5)
eon-rushmeier | 578 | 140 | 404 | (delbd | viewingHit 238(23.7) | 337(209) | 435(35.6) | 216(13.1)
equake 1315 | 35 | 813 | 012410 | phi0 1202(36.7) | 463(12.2) | 336(24.1) 3(3.2)
facerec 2682 | 356 | 376 | 02d1f4 | graphroutines lo. 1528(2.5) | 1935(3.0) | 1398(20.2) | 348(4.3)
fmadd 2683 | 102 | 2542 | 0ed140 | scatter_element. 20000.6) | B42(G8.4) | 1600(11) 47(0.1)
malgel 4003 | 3 | 2492 | 02db00 | syshtn_ 2081(11) | 3466(11.2) | 516(31.6) | 2141{2.7)
2161(3.3) | 1017(5.5)




NAINE Len Init SP PC Proc Name
AP 3265 24 1049 026834 | mm_fv_update.
applu 2238 3 | 2180 018520 | buts_

Apsl 3470 3 | 3409 0380ac | detdxf_
art-110 417 ThH 241 DUitbbl | match
art-470 450 53 J66 D0f5d0 | match
bzip2-graphic 1435 4 719 012a5c | spec_putc
bzip2-program | 1249 4 450 | 00ddd0 | sortlt
bzip2-source 1088 4 978 | 004774 | gSort3
crafty 1918 | 462 TTH 021730 | SwapXray
eon-rushmeier BTs 1410 404 Od4elbd | viewingHit
equake 1315 35 =513 012410 | phi




Multiple SimPoints

3026(13.8) | 1774(31) | 505(15.3) | 10GB(L.3) | 2128(7.4)
1607(12.6) | 2437(4.9) | 3112(11.5) | 2480(2.2)
624(22.1) | 1625(22.5) | 1056(18.8) | 2234(6.6) | 1380(15.5)
1507(14.5)
7107(5.6) | 28G3(14) | 1007(70.7) ROG(7.7) 1618(2)
RI(A7.0) | 255(41.2) B0(15.8)
300(36.2) 16(14.7) | 236(49.1)
168(11.7) | 1042(3.7) 130(7.5) | 762(16.2) | 106(15.3)
519(11.6) 872(8.2) 195(5.6) 148(2) | 1435(18.2)
140(11) | 468(12.3) 78(6.2) 000(16) A5(7.4)
1005(7) 04(6.9) G06(14) | 850(14.6) 341(4.7)
305(16) 511(4.3) 64(29.1) AR8(7.3) 530(5.6)
177(34.7)
123(25) | 510(19.7) | 664(22.7) | 1123(32.5)
260(6.6) | 238(23.7) | 337(20.9) | 435(35.6) | 216(13.1)
874(12.2) | 1202(36.7) | 463(12.2) | 2336(24.1) 3(3.2)
62(11.6)
1076(60.1) | 1528(2.5) | 1935(3.0) | 1308(20.2) 348(4.3)




— SimPoint == LongSP == Multiple wem Fyll

g ¢ ;
i .

®
-

jau-eb

Ok L-ue
OLt-He
jau-nba

jas-on|

jes-ew

jad-uuue
j21-dde
Jat-dnm

ei6-1z6
oud-izb
Jal-jouwl I
jau-red
yew-iad
|ds-i1ad

Figure 10; Multiple simulation point results. Simulation results are shown for using a single simulation point
simulating for 100 million instructions, LongSP chooses a single simulation point simulating for the same

length of execution as the multiple point simulation, simulation using multiple simulation points, and the full
execution of the program.




— None == FF-Billion 3 SimPoint ==LlongSP == Multiple

_100% 1.4x 2.9x 3 8x 1.2x 1.1x 1.7x 3.4x 1.4x%1 4

0
= 20% 1
I'ﬁ 01}! ] _|_ _L _L_

IPC Branch Data Cache Instr Cache |2 Cache

1000 2.5x1.3x 1.1x 1.5x 3.5x 3.5x 12 4x

Error (Int)

= EENgN A=H ]

IPC Branch Data Cache Instr Cache |2 Cache

= - -
I

Figure 11: Average error results for the SPEC 2000 floating point (top) and integer (bottom) benchmarks
for IPC, branch misprediction, instruction, data and unified L2 cache miss rates.



[18] T. Sherwood and B. Calder. Time varying behavior of
programs. Technical Report UCSD-C599-630, UC San
Diego, August 1999,

[19] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and
simulation points in applications. In Infernational
Conference on FParallel Architectures and Compilation
Technigues, September 2001.

[20] T. Sherwood, S. Sair, and B. Calder. Phase tracking and
prediction. Technical Report C52002-0710, UC San Diego.
June 2002,



Other Work from Same authors

[18] T. Sherwood and B. Calder. Time varying behavior of
programs. Technical Report UCSD-C599-630, UC San
Diego, August 1999,

[19] T. Sherwood, E. Perelman, and B. Calder. Basic block
distribution analysis to find periodic behavior and
simulation points in applications. In Imifernational
Conference on Farallel Architectures and Compilation
Technigues, September 2001.

[20] T. Sherwood, S. Sair, and B. Calder. Phase tracking and
prediction. Technical Report C52002-0710, UC San Diego,
June 2002.



Speed of Simulators

SimpleScalar [3], one of the faster cycle-level simulators,
can simulate around 400 million nstructions per hour. Un-
fortunately many of the new SPEC 2000 programs execute
for 300 billion mstructions or more. At 400 mllion nstruc-
tions per hour this will take approximately 1 month of CPU
time.

CPU 2006 programs range from 300 billion to 5
trillion instructions



Avallable Simulation Points

. CPU 2000 — Alpha binaries from UCSD

. CPU 2006 — PINPOINTS tool from Intel

. CPU 2006 — Pin Points from UT LCA (ICCD
2006 paper, Nair and John) (x86 binaries)

. CPU 2006 — 22 Alpha binaries — K. Ganesan
(SPEC workshop 2009)

. PARSEC - ROI (Region of Interest)

. CPU 2006 — for SIMICS - based on Ultra

SPARC binaries — being generated in LCA now



Avallable simpoint tools

. PINPOINTS tool from Intel (PIN based)
. Valgrind BBV generation tool (Open source)
. Qemu BBV generation (Open source)

. PinPlay — to fast forward upto the simulation
point



Simulation Points for SPEC CPU 2006

Arun A. Nair, Lizy K. John
Dept. of Electrical and Computer Engineering

University of Texas at Austin
Austin, TX 78712 USA
{nair, ljohn}@ece.utexas.edu

ICCD (International Conference on Computer
Design)

1998



TABLE 1
NUMBER OF SIMULATION POINTS, NUMBER OF SIMULATION

POINTS AMOUNTING TO 90% OF TOTAL EXECUTION AND
INSTRUCTION COUNT FOR SPEC CPU 2006

Benchmark Simulation 90 percentile  Instructions
Points Points (billions)
400.perlbench-splitmail 21 12 7156.9
401.bzip2-combined 17 13 371.92
403.gcc-scilab 17 9 68.57
420 mcf 14 9 464.08
445 gobmk-trevord.tst 18 13 359.52
456.hmmer-retro. hmm 17 15 2472.91
458.sjeng 16 12 2654.13
459. gemsFDTD 20 12 308.88
462.libquantum 22 15 4534.27
464 h264ref-sss_encoder_main 20 14 3289.98
471.omnetpp 9 6 187.08

47 3.astar-rivers.cfg 8 6 061.44



410.bwaves 22 10 2780.95
416.games-triazolium 15 11 37177
433 . milc 23 18 1649.57
434 zeusmp 26 19 2273.56
435.gromacs 20 19 2267

436.cactusADM 21 3 3115.92
437 leshe3d 22 20 4745.74
444 namd 26 18 3293.89
447 dealll 21 14 280995
450.soplex-ref.mps 21 17 414.17
454 calculix 10 7 8499.78
453.povray 20 15 1287.36
465 tonto 20 15 3002.2
470.1bm 21 12 1567.55
482.sphinx 20 16 3135.75
‘Average 18.75 13.07 2249.75




TABLE 11

NUMBER OF SIMULATION POINTS, NUMBER OF SIMULATION
POINTS AMOUNTING TO 90% OF TOTAL EXECUTION AND

INSTRUCTION COUNT FOR SPEC CPU 2000

Benchmark Simulation 90 percentile Instructions
Points Points (billions)
176.gce-scilab 18 11 38.51
176.gcc-166 23 14 21.29
164. gzip-graphic 27 21 T1.47
164.gzip-source 14 10 5417
175 . vpr-place 15 11 111.86
175.vpr-route 23 15 85.63
300.twolf 20 14 290.93
186.crafty 16 13 216.96
181.mcf 12 8 48.80
253.perlbmk 16 10 04.87
256.bzip-source 20 15 87.08
256.bzip-graphic 23 20 117.28
197 .parser 13 10 281.77
254 . gap 18 12 54.17
179.art-1 15 12 113.55

179.art-2 12 10 117.29



179.art-2 12 10 117.29
173.applu 25 18 528.82
188.ammp 24 13 386.60
200.s1xtrack 9 3 036.54
183.equake 30 23 149.67
301.apsi 20 11 602.69
171.swim 22 20 249.89
172.mgnd 22 17 523.77
168. wupwise 23 9 490.19
177.mesa 18 13 317.34
Average 19.12 13.4 239.65




ElActual CPl  ~*%Ermor

Bl Predicted CPI

12

(a) CPI measurements for SPEC CPU 2006.



ClActual L1 MPEI  —e=%Emor

B Predicted L1 MPKI

120

IMdW Ko



=+=Ermor (%)

ENlPredicted L2 MPKI BElActual L2 MPEI

(e) L2 MPKI measurements for SPEC CPU 2006



