Benchmark Characterization for Experimental System Evaluation

Thomas M. Conte Wen-mei W. Hwu

Center for Reliable and High-Performance Computing
University of Illinois
conte@csg.uiuc. edu

Workload Characterization: Motivation, Goals and Methodology

Lizy Kurian John, Purnima Vasudevan and Iyotsna Sabarinathan
Electrical and Computer Engineering Department
The University of Texas at Austin
{1john,purnima sabarina} @ece utexas edu

S 01k e

Why Workload/Benchmark
Characterization?

Interpret simulation results effectively
Design machines to match workload features
Validate representativeness of sampled traces
Benchmark Subsetting

Synthetic Benchmark Validation

Abstract program behavior model which in
conjunction with a system model can be used for
quick performance evaluation of systems.

Model for Input
Application
<afpy...0>

v

Computer System Model

<AB.C. ...Z>

v

Outputs

Figure 1. System Model

+++++4++
++++++4
++4+44+4+4
+++++++
+++4+++ 4+
++++ 4+ 4
+++++++

Figure 3. Potential application span

Figure 2 Potential span of existing benchmark
suites in the potential workload space

If we need to find good coverage of the workload space,
we need to understand the performance domain

A trace

Is a time sequence w(t) = ri,

Where ri an element of set R

Eg: R {2000,2004,2008,2012}

w(t) = 2000,2004,2008,2012,2004,2008,2012

R1’s can be addresses of instructions or data

DEFINITION 2.1: Define next(w(t)) = k, if k£ 1s
the smallest integer such that w(t) = w(t + k).
i

2000,2004,2008,2012,2000,2004,2008,2012,

next(2000) = 4

DEFINITION 2.2: The number of unique references
between w({) and next(w(f)), 1s defined as,

u(w(t)) = |[{w(t+ k) | 1 < k < next{w(t))}|.
|

1(2000)=3

DEFINITION 2.3: Define f7(z), the interreference

temporal density function, f(z),, to be the proba-
bility of there being x unique references between suc-

cessive references to the same 1tem,

ff(z) = ZF[u{w{t}] = .-r]

2000,2004,2008,2012,(2004,2008,201219), m
ft(inf)=1/31; ft(1)=0 ft(2)=30/31

2000,2000,2000,2000,2000
ft(0)=1

DEFINITION 2.3: Define f7(z), the interreference
temporal density function, f(z),, to be the proba-
bility of there being x unique references between suc-
cessive references to the same 1tem,

ffz) = ZF[u{w{t}] = .-r]

3000,3002,3004,3000,3004,3000,3002
u(3000-1)=2

u(3002)=2

u(3004)=1

u(3000-2)=1

ft(0)=0; ft(1)=0.5; ft(2)=0.5

Why temporal density function?

1. Hit rate of LRU managed buffers
2. Mattson’s stack distance

3. Abstract cache model

The performance of buffers managed under stack-
ing replacement policies (e.g., LRU) depends directly
on this measure of temporal locality. The hit ratio
for a fully associative buffer of size N 1s A(N) =

5, < FT(y) (see [17).

DEFINITION 2.4: The interreference spafial densily
function, f7(z), is defined as,

nextiw(t))

z Z P[lw{”—w{frl-k”:ﬂ:]_

(2004,2008,2012)"10
fs(4)=0.5
fs(8) =0.5

2000,2000,2000,2000,2000
fs(0)=1

DEFINITION 2.4: The interreference spafial densily
function, f7(z), is defined as,

nextiw(t))

z Z P[lw{”—w{frl-k”:ﬂ:]_

3000,3004,3008,300C,3004,3000

3000-3000 ->4,8,12,4
3004-3004 -> 4,8

fs(4)=3/6=0.5; fs(8) = 2/6 = 0.3333
fs(12)=1/6 = 0.167

Calc_locmeasures(r;):
begin
if not first time r; encouniered then
begin
d — depth{rl)
remove r; from the stack
for allr; with depth(r;) < d
begin
dist — |a(r;) — alr;)]
f2(dist) — f5(dist) + 1
end ﬁ
f7(d) — f7(d) +1
end
push(r;)
end

Figure 1: The algorithm for calculating the
locality distributions.

Conte paper

Mattson’s stack distance [1970
paper from IBM]

For LRU stack, C, Is The posiTion of X, in the
stack 5, ;. so that x, = 5,4(C,)

« This position is called stack disfance A: A= C
Tme 1 2 3 4 5 6 7 8 8 10

Trace a b b ¢ b a d c a a
,_‘;,, o o0 | Z 3 m 4 3 1 R .
allb||b||c||b]||lal|ld||c||a]|la
LRU allal||bl||le||b||lal|d]|]|c]|]|c 12 (3|4
stack allallec||b||al|d]|]|d 2|11]|2]|1
c||b||b]||b

[3] Mattson, R.L.; Gecsel, J.; Slutz, D.R.; Traiger, IL., "Evaluation technigues
for storage hierarchies,” IBM Systems Journal , vol.9, no.2, pp.78,117, 1970

Stack Distance iIs also called Data
Reuse distance

Chen Ding and Yutao Zhong. 2003. Predicting
whole-program locality through reuse distance
analysis. In Proceedings of the ACM SIGPLAN
2003 conference on Programming language
design and implementation (PLDI '03).

Complexity varies depending on
how you keep data

Reuse Distance Measurement

g For ¢ troce of N acceszes to M data clements

o

Noive counting O(NY) time
O(N) spoce

Troce as o stack ou..u,
nme, O(M) space

Trace as ¢ vector-besed

intcrval tree- O{NlogN) time,

O(N) spoce
Troce as a scarch tree:
O(NiogM) rome. OXM) spoce

List-based aggrogation
O(NS) time, O{M) spoce

Stack method
takes O(NM)
time.

Storing data
as a tree
reducees
complexity
from O(NM)
to O(NlogM)

I

0.9 —

grep-gcc

[TTTIT7T rnuuT‘l"l‘I'r'%'n—r'l‘rri‘rrrrrrm‘rrﬁﬁ'ﬂ;n‘r

10 20 40 40 ol

Number of unique references

‘”lll“””“IIIIIIHHHTTHITI_HIIIIHIH!IIIIIHFIIHHHIIHHIII

] 10 20 30 40 50 60 T0

Address distance

1= -

0.5 —

0.4 —

0.3 — grep-words

0.2 — T _

D-l) ‘[‘{

0 Tl i -[TT T T 17T T‘
FETEETT e e e e e v e e e i rrrrrni
0 10 20 30 40 50 il

0.5 — Number of unique references
0.4 —
0.3 —
0.2
0.1 —

ﬂ-%ﬁﬁwﬁﬁw#ﬁﬁﬁw

0 10 20 30 40 all G0 70

Address distance

1=

T

I7

0.5

0.4 —

03— |

0.2 —

0.1 -

|

yacc

0

0.5 =

(4 —

0.3

0.2 —

0.1

1L _.TT
| | I I | I | | | [I
10 20 S0 40 ol 60 70 B0 91 100 110 120

Number of unique references

rrrrrrreeyvbrrrrrerrerrtrrertrrr i i r e e
100 200 J00 400

Address distance

DerFINITION 2.5: The (directed) reference graph,
G = (V, E), of a reference stream 1s defined as V' = R

and,

E={(rir;) |w(t)=riandw(i +1) =r; }.

2000,(2004,2008,2012)*10 2004 ﬁ‘)

V={2000,2004,2008,2012}
E={(2000,2004), (2004,2008), (2008,2012),
(2012,2004)}

DEFINITION 2.6: Let n;(r;) be the number of oc-
currences w(t) = ry, for 0 < & < T. TIurther-

more, let n;;(r;,r;) be the number of occurrences of
w(t + 1) = rj, if w(t) = r;. Then, the weighted ref-
erence graph, G' = (V, E'), is defined such that each
node, r; € V', is weighted with P[r;] = n; /7', and each
edge, (r;,7;) € E is weighted with P[rj|ri] = n;;/n;.

Weighted Reference Graph 0.1
@

10% probability to be in Bi \’{

Once you are in Bi, 70% probability
To go to Bk.

Based on graph definitions, groups of items
referenced together in graph can be defined

The strongly connected components of the graph are
called phases.

DEFINITION 2.7: The set of phases for a reference
stream is defined as ® = {¢1,¢2,...¢;...¢p}, where

i=1{r | {(?‘:'1 ?'i+1).(?‘:'+h?‘i+2}:
o (Pr—1,7%), (re,)} C E},

and, o1 Ng2N---Nepp, = 0.

(ii) (iii) (iv)
(b) Some of the subgraphs of G,

©

Strongly connected components of G;.

In a phase, any node can be reached from any
other node through a sequence of edge
traversals.

During execution, the items in a newly
encountered phase are guaranteed to not have
been referenced before.

Intrinisic cold start buffer behavior can be
predicted using phase transitions

Interphase density function, a new metric can
be defined for capturing phase behavior

DEFINITION 2.8: The interphase density function,
f?(z), is the probability that a phase of size z is en-
countered 1n the reference stream,

fexy= Y Y Pln], forall¢e?.

l¢ll==zri€e

CONTROL FLOW BEHAVIOR

Basic blocks

Basic Block Weighted Reference Graph

Gbb = (Vbb,Ebb)

When the program is mapped into linear
memory space of a computer, the graph nature

of the program is preserved using branch
Instructions.

CONTROL FLOW BEHAVIOR

Basic blocks

Basic Block Weighted Reference Graph

Gbb = (Vbb,Ebb)

When the program is mapped into linear
memory space of a computer, the graph nature

of the program is preserved using branch
Instructions.

DEFINITION 2.9: The prediction probability of B;,
P,(B;) is defined as,

P,(B;) = max{ P[B;|B;] | (Bi, Bj) € Epsp }.
a

DEFINITION 2.10: The branch prediction accuracy,
A, 1s defined as,

N
A= Z} P(B;) Py (B;).

P(BI) is the prob of occurrrence of the branch Bi

" Table 1: Control flow GRIPs

|| GRIP [Benchmark charm:t.enstn: measured [}

A Predictability of branches
Feop | Fraction of conditional branches

f7(z) | Instruction stream spatial locality
ff(z) | Instruction stream phase behavior

ff (z) | Instruction stream temporal locality

DATA FLOW GRIPs
Important features of data items/variables
Lifetime of variables
Locality of Variables

Data dependence between variables

Life Cycle of Variables - Variables go through
a life cycle in which they are created, used,
and then discarded.

Register allocation is performed using the
technigue of graph coloring

A register Is assigned to two different
variables if the two variables are not live
(active) at the same time.

No of variables estimated by variable life
density function

DEFINITION 2.11: Dehne the variable life density
function, f¥& (ny), as the probability that ny vari-
ables are live at any time during execution of the

benchmark program.

Table 2: Data flow GRIPs

GRIP | Benchmark characteristic measured

‘Live variables/register use
f}é{m) Data stream temporal locality
p{z) | Data stream spatial locality

ff, (z) Data stream phase behavior
bD Data dependence schedulability

Data Dependence Behavior

DEFINITION 2.12: If R(%;) is the set of variables read
by instruction w(t,) = ¢;, and W(ix) is the set of vari-

ables written by instruction w(ts) = ik, for i;, 4 € I,
and £; < t3, then, the instruction dependence graph
is a graph, Gyp = (V1, Erp), such that V; = I and

Erp = { (tk,1;) | W(2;) N R(2x) # 0 }
t1 >t2

Dynamic Scheduling (OOO) by Tomasulo Alg
IS dictated by the data dependence graph

