McPAT: An Integrated Power, Area, and Timing Modeling Framework for Multicore and Manycore Architectures Sheng Li, Junh Ho Ahn, Richard Strong, Jay B.

Brockman, Dean M Tullsen, Norman Jouppi

MICRO 2009

- How do u estimate access time ?
- How do u estimate power?
- How do you estimate area?
- CACTI started in 1994 from the following papers. Only area and time initially. Power added later.

- J. M. Mulder, N. T. Quach, and M. J. Flynn, "An area model for on-chip memories and its application," *IEEE Journal of Solid-State Circuits, Vol. 26, No. 2*, pp. 98–106, Feb. 1991.
- [2] T. Wada, S. Rajan, and S. A. Przybylski, "An analytical access time model for on-chip cache memories," *IEEE Journal of Solid-State Circuits, Vol. 27, No. 8*, pp. 1147–1156, Aug. 1992.

How do u estimate access time ?

$$T_{access_dm} = \max(T_{dataside} + T_{outdrive_data}, T_{tagside_dm} + T_{outdrive_valid})$$

 $T_{cache} = T_{access} + T_{wordline\ delay} + 4 * (inverter\ delay)$

$$T_{step} = [R_2C_2 + (R_1 + R_2)C_1] \ln\left(\frac{v_{start}}{v_{end}}\right)$$

$$R_p = \frac{-\text{desired rise time}}{C_{eq} * \ln(0.5)}$$

$$delay = t_f * \sqrt{\left[\log\left(1 - \frac{v_{th1}}{V_{dd}}\right)\right]^2 + \frac{2t_{rise} * b * v_{th1}}{t_f * V_{dd}}} + t_f \left[\log\left(1 - \frac{v_{th1}}{V_{dd}}\right) - \log\left(1 - \frac{v_{th2}}{V_{dd}}\right)\right]$$

- What type of models are these?
- Are they accurate?
- How could you estimate more accurately?
- SPICE

- J. M. Mulder, N. T. Quach, and M. J. Flynn, "An area model for on-chip memories and its application," *IEEE Journal of Solid-State Circuits, Vol. 26, No. 2*, pp. 98–106, Feb. 1991.
- [2] T. Wada, S. Rajan, and S. A. Przybylski, "An analytical access time model for on-chip cache memories," *IEEE Journal of Solid-State Circuits, Vol. 27, No. 8*, pp. 1147–1156, Aug. 1992.

Power Estimation

- Circuit Level Power Estimation using SPICE
- Gate level power estimation
- The first such tool integrated with Synopsis around 1995 (Power Mill)
- Low Power libraries provided along with high speed libraries for use in synthesis
- Synopsis, Cadence, Magma all have builtin power estimation now
- Power management primitives are being incorporated into HDL level design

Motivation

• "Tools both limit and drive research directions"

- New demands
 - Multicore/manycore
 - Evaluate power, timing and area
 - Different source of power dissipation
 - Deep-submicron

Related Work

- Wattch:
 - Enabling a tremendous surge in power-related research
- Orion:
 - Combined Wattch's core power model with a router power model
- CACTI:
 - First tool in rapid power, area, and timing estimation

How did Wattch work?

.

Wattch methodology

- Array Structures: Data and instruction caches, cache tag arrays, all register files, register alias table, branch predictors, and large portions of the instruction window and load/store queue.
- Fully Associative Content-Addressable Memories: Instruction window/reorder buffer wakeup logic, load/store order checks, and TLBs, for example.
- Combinational Logic and Wires: Functional Units, instruction window selection logic, dependency check logic, and result buses.
- Clocking: Clock buffers, clock wires, and capacitive loads.

Node	Capacitance Equation
Regfile Wordline	$C_{diff}(WordLineDriver)$
Capacitance =	+ $C_{gate}(CellAccess) * NumBitlines$
	+ $C_{metal} * WordLineLength$
Regfile Bitline	$C_{diff}(PreCharge)$
Capacitance =	+ $C_{diff}(CellAccess) * NumWdlines$
	+ $C_{metal} * BLLength$
CAM Tagline	$C_{gate}(CompareEn) * NumberTags$
Capacitance =	+ $C_{diff}(CompareDriver)$
	+ $C_{metal} * TLLength$
CAM Matchline	$2 * C_{diff}(CompareEn) * TagSize$
Capacitance =	+ $C_{diff}(MatchPreCharge)$
	+ $C_{diff}(MatchOR)$
	+ $C_{metal} * MLLength$
ResultBus	$.5 * C_{metal} * NumALU * ALUHeight)$
Capacitance =	+ $C_{metal} * (RegfileHeight)$

Table 1: Equations for Capacitance of critical nodes.

Hardware Structure	Model Type
Instruction Cache	Cache Array (2x bitlines)
Wakeup Logic	CAM
Issue Selection Logic	Complex combinational
Instruction window	Array/CAM
Branch Predictor	Cache Array (2x bitlines)
Register File	Array (1x bitlines)
Translation Lookaside Buffer	Array/CAM
Load/Store Queue	Array/CAM
Data Cache	Cache Array (2x bitlines)
Integer Functional Units	Complex combinational
FP Functional Units	Complex combinational
Global Clock	$\mathrm{Cloc}ar{\mathbf{k}}$

Table 2: Common CPU hardware structures and the model type used by Wattch.

What's wrong with previous work?

- Wattch
 - No timing and area models
 - Only models dynamic power consumption
 - Use simple linear scaling model
 - RUU model from Simplescalar
- Orion2
 - No short circuit power or timing
 - "Incomplete"
- CACTI

_ ???

Contributions

- First integrated power, area, and timing modeling framework
- Model all three types of power dissipation
- Complete, integrated solution for multithreaded and multicore processor power
- Deep-submicron tech. that no longer linear

Overview

Figure 1: Block diagram of the McPAT framework.

Integrated Approach

Power	Dynamic:Similar to WattchShort Circuit:IEEE TCAD'00Leakage:MASTAR & Intel
Timing	CACTI with extension
Area	CACTI Empirical modeling for complex logic

Hierarchical Approach

Figure 2: Modeling methodology of McPAT.

Architecture Level

Core	Divided into several main units: e.g. IFU, EXU, LSU, OOO issue/dispatch unit
NoC	Signal links and routers
On-Chip Caches	Coherent cache
Memory Controller	3 main hardware structure Empirical model for physical interface (PHY)
Clocking	PLL and clock distribution network Empirical model for PLL power

Circuit Level

Wires	Short wires as one-section Pi-RC model Long wires as a buffered wire model					
Arrays	Based on CACTI with extensions					
Logic	Highly regular: CACTI Less regular: Model from Intel, AMD and Sun Highly customized: Empirical, from Intel and Sun					
Clock Distribution Network	Separate circuit model Global, Domain, and Local					

Validation

15.01

27%

12.3

22%

6.90

7%

9.80 10%

McPAT Modeled Data

MemController

10.97

11%

13.02

13%

4.07

4%

3%

3.7

7%

Cores Crossbar Leakage L2Cache Global Clock Interconnect //Os

Caches

FPU

32.50

27%

22.90

19%

@ 1.2GHz/1.5V

(a) Validation against Niagara processor

25.80

27%

19.35

20%

OoO Issue logic

4.76

4%

5.97

5%

5.97

5%

8.90

7%

9.17 8%

Published Alpha 21364 Data

10.67

9%

19.02

16%

□Cores □Crossbar □Leakage □L2 Cache □Global Clock □Interconnect □I/Os

(b) Validation against Niagara2 processor

Core Dyn Core Lkg L3 Dyn L3 Lkg Control Dyn Control Lkg

(c) Validation against Alpha 21364 processor

Validation

Processor	Published total Power and Area	McPAT Results	$\%~{\rm McPAT}$ error
Niagara	$63~{ m W}~/~378~{ m mm}^2$	$\begin{array}{c} 56.17~{\rm W}~/~295~{\rm mm}^2 \\ 69.70~{\rm W}~/~248~{\rm mm}^2 \end{array}$	-10.84 / -21.8
Niagara2	$84~{ m W}~/~342~{ m mm}^2$		-17.02 / -27.3
Alpha 21364	$\begin{array}{c} 125 \ \mathrm{W} \ / \ 396 \ \mathrm{mm}^2 \\ 150 \ \mathrm{W} \ / \ 435 \ \mathrm{mm}^2 \end{array}$	97.9 W / 324 mm ²	-21.68 / -18.2
Xeon Tulsa		116.08 W / 362 mm ²	-22.61 / -16.7

Table 1: Validation results of McPAT with regard to total power and area of target processors.

	Average error	1 st Contributor Error / % in total pwr
Niagara	1.47W / 23%	74% / 1%
Niagara2	1.87W / 26%	47% / 5%
Alpha 21364	3.4W / 26%	45% / 3%
Xeon Tulsa	4.2W / 17%	29% / 3%

Scaling & Clustering

Figure 4: Manycore system architecture. MCs refer to memory controllers.

New generation: Double # of cores Keep the same micro-architecture

Parameters and Benchmarks

Parameters	$90 \mathrm{nm}$	$65 \mathrm{nm}$	$45 \mathrm{nm}$	32nm	22nm
Clock rate (GHz)	2.0	2.3	2.7	3.0	3.5
The number of cores	4	8	16	32	64
The number of memory controllers	2	3	4	6	8
Memory capacity per channel (GB)	2	4	4	8	8
Main memory type	DDR2-667	DDR3-800	DDR3-1066	DDR3-1333	DDR3-1600

Table 2: Parameters of the manycore architecture across technology generations. Each memory controller has one memory channel.

SPLASH-2				SPEC CPU2006		
Application	Dataset	Application	Dataset	Set	Applications	
Barnes FFT FMM LU	16K particles 1024K points 16K particles 512×512 matrix 258×258 gride	Cholesky Radiosity Raytrace Volrend	tk17.O room car head	CINT high med low	429.mcf, 462.libquantum, 471.omnetpp, 473.astar 403.gcc, 445.gobmk, 464.h264ref, 483.xalancbmk 400.perlbench, 401.bzip2, 456.hmmer, 458.sjeng	
Radix Water-Sp	8M integers 4K molecules			high med low	433.milc, 450.soplex, 459.GemsFDTD, 470.lbm 410.bwaves, 434.zeusmp, 437.leslie3d, 481.wrf 436.cactusADM, 447.dealII, 454.calculix, 482.sphinx3	

Table 3: SPLASH-2 datasets and SPEC 2006 application mixes for high, med, and low memory bandwidth.

Incu	und	
	NoC size	Die size (mm^2)
1 core per cluster	8×8	239.1
$2 { m cores} { m per} { m cluster}$	4×8	246.3
4 cores per cluster	4×4	250.6
8 cores per cluster	2×4	278.6

Area and Power

Table 5: NoC sizes and die areas of the manycore architecture at 22nm. The NoC bisection bandwidth is kept constant across configurations.

	$90 \mathrm{nm}$	$65 \mathrm{nm}$	$45 \mathrm{nm}$	32nm	22 nm
Core area (mm^2)	81.9	96.4	113.4	133.5	157.1
${\rm Uncore\ area\ (mm^2)}$	104.3	111.3	102.7	101.6	93.5
Die area (mm^2)	186.3	207.7	216.2	235.1	250.6
Max core dynamic power (W)	24.1	30.7	41.7	48.3	56.4
Max uncore dynamic power (W)	20.6	36.1	45.9	54.5	61.8
Total subthreshold leakage (W)	6.5	11.2	17.6	21.5	25.8
Total gate leakage (W)	2.6	6.7	0.7	1.6	2.5
Chip max power (W)	53.8	84.8	106.0	125.9	146.7

Table 4: Area and maximum power of configurations with 4 cores per cluster across technology generations.

Figure 7: Averaged power-density, EDP, EDAP, and EDA^2P of both in-order and OOO manycore architectures at the 22nm technology node running PARSEC benchmarks. Total numbers of cores/threads are 64/256 and 16/16 for in-order and OOO processors, respectively. The number of cores per cluster is changed from 1 to 8 for both in-order and OOO processors.

Figure of Merit Metrics

- 1. EDA^2
- 2. EDA
- 3. ED
- 4. ED^2
- 5. AT
- 6. AT^2

Power and Energy

- Power is drawn from a voltage source attached to the V_{DD} pin(s) of a chip.
- Instantaneous Power:

$$P(t) = i_{DD}(t)V_{DD}$$

• Energy: $E = \int P(t)dt = \int i_{DD}$

$$E = \int_{0}^{T} P(t)dt = \int_{0}^{T} i_{DD}(t)V_{DD}dt$$

$$P_{\text{avg}} = \frac{E}{T} = \frac{1}{T} \int_{0}^{T} i_{DD}(t) V_{DD} dt$$

• Average Power:

Power Dissipation in CMOS ICs

There are 4 sources of power dissipation in digital ICs

- Pavg = Pswitching + Pshortcircuit + Pleakage + Pstatic

- Pavg = Time Averaged Power
- P_{switching} = Switching Component of Power
- P_{shortcircuit} = Short Circuit Component of Power
- Pleakage = Leakage Component of Power
- P_{static} = Static Component of Power

Dynamic Power Dissipation

- Caused by the switching of the circuits (Pswitching + Pshortcircuit)
- Higher operating frequency -> more frequent switching activities and results in increased power dissipation

Switching Power Dissipation

Power = Energy/transition $*f = C_L * V_{dd}^2 * f * \alpha$

Switching power is required to charge and discharge load capacitances when transistors switch.

- **CL = Load Capacitance**
- f = Clock Frequency
- α = Activity Factor

Short Circuit Current

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once
- Leads to a blip of "short circuit" current.
- < 10% of dynamic power if rise/fall times are comparable for input and output

Short Circuit Current

Power Dissipation in CMOS ICs

Pavg = Pswitching + Pshortcircuit + Pleakage + Pstatic

= α CL V VDD f + ISC VDD + Ileakage VDD + Istatic VDD

- CL = Load Capacitance
- V = Voltage Swing (most cases V = VDD)
- f = Clock Frequency
- ISC = Short circuit current
- Ileakage = Leakage Current
- Istatic = Static Current
- α = Activity Factor

Leakage Power

• The power that is dissipated from the devices, when they are in idle state.

Adds to average power, not peak power
More expensive than dynamic power

 \bigcirc Independent of transistor utilization

CMOS Leakage Current

(a) NMOS-transistor (b) Ideal switch (c) leaking device

Any guesses on what percent of chip power is leakage power nowadays?

Leakage Power Trends

Source: ITRS

Leakage Power Trends in Nanoscale

Source: Intel

Transistor Leakage Current Mechanisms

- There are 6 different leakage current mechanisms in CMOS devices:
 - Subthreshold leakage current (I_{sub})
 - Weak inversion conduction current
 - Gate Oxide Tunneling Current (I_{gate})
 - Tunneling of electrons from substrate to gate
 - Reverse Biased PN Junction Leakage Current (I_{rev})
 - Current flows into the well from the drain and source
 - Gate Induced Drain Leakage Current (I_{gidl})
 - Due to high field effect in the drain junction
 - Hot Carrier Gate Leakage Current (I_{hot})
 - Due to high electric field near the $Si-SiO_2$
 - Punch Through Leakage Current (I_{PT})
 - Proximity of the drain and source
- Subthreshold leakage current and Gate Oxide Tunneling Current are the most significant ones

Subthreshold Leakage Current

Even though the transistor is logically turned OFF, there is a non-zero leakage current through the channel.

This current is known as the subthreshold leakage current because it occurs when the gate voltage is below its threshold voltage

What Affects Leakage Power?

Static Current

- Static CMOS circuits are not supposed to consume constant static power from constant static current flow
- Sometimes designers deviate from CMOS design style \rightarrow Pseudo NMOS circuits
- This is an example where power is traded for area efficiency. The pseudo NMOS circuit does not require a P-transistor network and saves half the transistors required for logic computation, as compared to CMOS logic
- If an output signal is known to have a very high probability of logic '1' (say 0.99), it may make sense to implement the computation in pseudo NMOS logic

Static Current (contd..)

- The circuit has a special property: The static current flows only when the output is at logic '0'
- Make use of this property in low power design
- In general, the pseudo NMOS circuit is not used on random logic
- For special circuits such as PLAs or register files it is useful due to its efficient area usage
- In such as circuit there is a constant current flow from Vdd to Vss

Power Dissipation in CMOS ICs

Pavg = Pswitching + Pshortcircuit + Pleakage + Pstatic

= α CL V VDD f + ISC VDD + Ileakage VDD + Istatic VDD

- CL = Load Capacitance
- V = Voltage Swing (most cases V = VDD)
- f = Clock Frequency
- ISC = Short circuit current
- Ileakage = Leakage Current
- Istatic = Static Current
- α = Activity Factor

Basic Principles of Low Power Design

- Power reduction can be achieved at most design abstraction levels:
 - Material
 - Process technology
 - Physical Design (Floor Plan, placement & routing)
 - Circuit design techniques
 - Transistor sizing
 - Logic restructuring
 - Architecture transformation
 - Alternative computation algorithm

Basic Principles of Low Power Design

- Reduce Voltage
- Reduce Frequency
- Reduce Capacitance
- Reduce activity factor
 - Use of different number representation, counting sequence etc.
 - Alternate logic implementation
- Reduce Static components of power
 - Transistor Sizing
 - Layout Techniques
 - Careful circuit design

Popular Techniques in Power Aware Design

- DVFS (Dynamic Voltage and Frequency Scaling)
- Low Power Modes
- Power Gating
- Clock Gating
- Logic Restructuring
- Compiler Control of Power
- Operating System Management of Power

Power Estimation

- Circuit Level Power Estimation using SPICE
- Gate level power estimation
- The first such tool integrated with Synopsis around 1995 (Power Mill)
- Low Power libraries provided along with high speed libraries for use in synthesis
- Synopsis, Cadence, Magma all have builtin power estimation now
- Power management primitives are being incorporated into HDL level design