

 b_i = before measurement

 a_i = after measurement

$$d_i = a_i - b_i$$

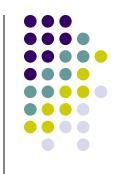
 \overline{d} = mean value of d_i

 s_d = standard deviation of d_i

$$(c_1, c_2) = \overline{d} \mp t_{1-\alpha/2; n-1} \frac{s_d}{\sqrt{n}}$$



Measurement	Before	After	Difference
(1)	(b_i)	(a_i)	$(d_i = b_i - a_i)$
1	85	86	-1
2	83	88	-5
3	94	90	4
4	90	95	-5
5	88	91	-3
6	87	83	4



Mean of differences = $\overline{d} = -1$ Standard deviation = $s_d = 4.15$

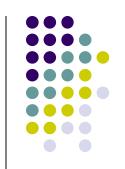
- From mean of differences, appears that change reduced performance.
- However, standard deviation is large.

95% Confidence Interval for Mean of Differences

$$t_{1-\alpha/2;n-1} = t_{0.975;5} = 2.571$$

	а					
n	0.90	0.95	0.975			
	•••	• • •	• • •			
5	1.476	2.015	2.571			
6	1.440	1.943	2.447			
∞	1.282	1.645	1.960			

95% Confidence Interval for Mean of Differences



$$c_{1,2} = \overline{d} \mp t_{1-\alpha/2;n-1} \frac{s_d}{\sqrt{n}}$$

$$t_{1-\alpha/2;n-1} = t_{0.975;5} = 2.571$$

$$c_{1,2} = -1 \mp 2.571 \left(\frac{4.15}{\sqrt{6}} \right)$$

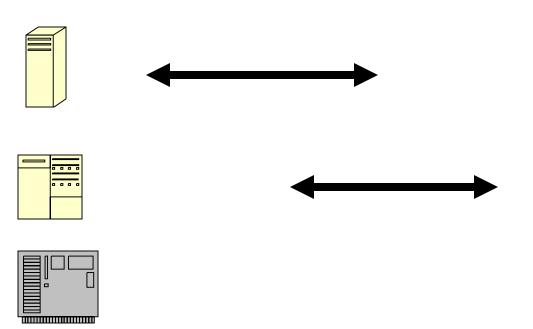
$$c_{1,2} = [-5.36, 3.36]$$

95% Confidence Interval for Mean of Differences

- $c_{1.2}$ = [-5.36, 3.36]
- Interval includes 0
- → With 95% confidence, there is no statistically significant difference between the two systems.

Comparing More Than Two Alternatives

- Naïve approach
 - Compare confidence intervals



One-Factor Analysis of Variance (ANOVA)

- Very general technique
 - Look at total variation in a set of measurements
 - Divide into meaningful components
- Also called
 - One-way classification
 - One-factor experimental design
- Introduce basic concept with one-factor ANOVA
- Generalize later with design of experiments

Design of Experiments - Terminology

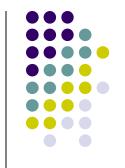
- Response variable
 - Measured output value
 - E.g. total execution time
- Factors
 - Input variables that can be changed
 - E.g. cache size, clock rate, bytes transmitted
- Levels
 - Specific values of factors (inputs)
 - Continuous (~bytes) or discrete (type of system)

One-Factor Analysis of Variance (ANOVA)

- Separates total variation observed in a set of measurements into:
 - Variation within one system
 - Due to random measurement errors
 - Variation between systems
 - Due to real differences + random error
- Is variation(2) statistically > variation(1)?

		Alternatives			
Measurements	1	2	3	Overall mean	
1	0.0972	0.1382	0.7966		
2	0.0971	0.1432	0.5300		
3	0.0969	0.1382	0.5152		
4	0.1954	0.1730	0.6675		
5	0.0974	0.1383	0.5298		
Column mean	0.1168	0.1462	0.6078	0.2903	
Effects	-0.1735	-0.1441	0.3175		

Sum of Squares of Differences

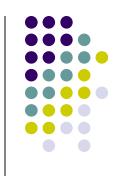


$$SSA = n \sum_{j=1}^{k} \left(\overline{y}_{.j} - \overline{y}_{..} \right)^{2}$$
 Difference of column mean with overall mean

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n} \left(y_{ij} - \overline{y}_{.j} \right)^{2}$$
 Difference of each with column mean

$$SST = \sum_{j=1}^{k} \sum_{i=1}^{n} \left(y_{ij} - \overline{y}_{..} \right)^{2}$$
 Difference of each with Overall mean

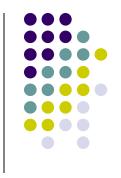
Overall mean



Variation	Alternatives	Error	Total
Sum of squares	SSA = 0.7585	SSE = 0.0685	SST = 0.8270
Deg freedom	k - 1 = 2	k(n-1)=12	kn-1=14
M ean square	$s_a^2 = 0.3793$	$s_e^2 = 0.0057$	
Computed F	0.3793/0.0057 = 66.4		
Tabulated F	$F_{[0.95;2,12]} = 3.89$		

Sa² = SSA/Deg freedom Se² = SSE/Deg freedom

Conclusions from example

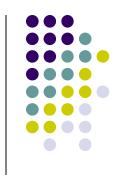


- SSA/SST = 0.7585/0.8270 = 0.917
 - → 91.7% of total variation in measurements is due to differences among alternatives
- SSE/SST = 0.0685/0.8270 = 0.083
 - → 8.3% of total variation in measurements is due to noise in measurements
- Computed F statistic > tabulated F statistic
 - → 95% confidence that differences among alternatives are statistically significant.

Contrasts

- ANOVA tells us that there is a statistically significant difference among alternatives
- But it does not tell us where difference is
- Use method of contrasts to compare subsets of alternatives
 - A vs B
 - {A, B} vs {C}
 - Etc.

Example



90% confidence interval for contrast of [Sys1- Sys2]

$$\alpha_1 = -0.1735$$

$$\alpha_2 = -0.1441$$

$$\alpha_3 = 0.3175$$

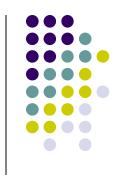
$$c_{[1-2]} = -0.1735 - (-0.1441) = -0.0294$$

$$s_c = s_e \sqrt{\frac{1^2 + (-1)^2 + 0^2}{3(5)}} = 0.0275$$

90%:
$$(c_1, c_2) = (-0.0784, 0.0196)$$

Since this includes 0, no statistical difference

Example



90% confidence interval for contrast of [Sys1- Sys3]

- C[1-3] = -0.4910
- 90% Conf Interval = [-0.540, -0.442]

Since this does not include 0, We cannot say there is no statistical difference

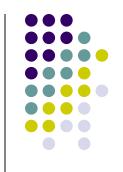
Full set of ANOVA Slides follow

ANOVA

- Make n measurements of k alternatives
- $y_{ii} = i$ th measurment on jth alternative
- Assumes errors are:
 - Independent
 - Gaussian (normal)

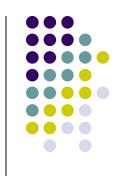
Measurements for All Alternatives

	Alternatives							
Measure ments	1	2		j		k		
1	<i>Y</i> ₁₁	<i>y</i> ₁₂		<i>y</i> _{1j}		<i>y</i> _{k1}		
2	<i>y</i> ₂₁	<i>y</i> ₂₂		y _{2j}		y_{2k}		
	•••			•••				
i	<i>y</i> _{i1}	y _{i2}		\mathcal{Y}_{ij}		y ik		
n	y_{n1}	y_{n2}		y _{nj}		\mathcal{Y}_{nk}		
Col mean	<i>y</i> _{.1}	<i>y</i> _{.2}		y .,j		<i>y</i> _{.k}		
Effect	α_1	α_2		$\alpha_{\rm j}$		α_{k}		



- Column means are average values of all measurements within a single alternative
 - Average performance of one alternative

$$\overline{y}_{.j} = \frac{\sum_{i=1}^{n} y_{ij}}{n}$$



	Alternatives						
Measure ments	1	2		j		k	
1	<i>Y</i> ₁₁	<i>y</i> ₁₂	•••	<i>y</i> _{1j}		<i>y</i> _{k1}	
2	<i>y</i> ₂₁	y ₂₂		y _{2j}		<i>y</i> _{2k}	
	•••						
i	<i>y</i> _{i1}	y _{i2}		\mathcal{Y}_{ij}		y_{ik}	
	•••	•••			•••		
n	<i>y</i> _{n1}	y_{n2}		y nj		$y_{\sf nk}$	
Col mean	<i>y</i> _{.1}	y .2	•••	<i>y</i> .j		<i>y</i> _{.k}	
Effect	α_1	α_2		α_{j}		α_{k}	

$$y_{ij} = \overline{y}_{.j} + e_{ij}$$

 e_{ij} = deviation of y_{ij} from column mean

= error in measurements

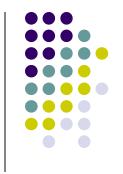
Error = Deviation From Column Mean

	Alternatives						
Measure ments	1	2		j		k	
1	<i>Y</i> ₁₁	<i>y</i> ₁₂		y _i	•••	<i>y</i> _{k1}	
2	<i>y</i> ₂₁	y ₂₂	•••	y_{2j}	•••	y_{2k}	
	•••		•••		•••		
i	<i>y</i> _{i1}	<i>y</i> _{i2}		y _{ij}	•••	y _{ik}	
	•••		•••		•••		
n	y_{n1}	y₀2		Ynj		\mathcal{Y}_{nk}	
Col mean	<i>y</i> _{.1}	<i>y</i> _{.2}	•••	<i>y</i> .,	•••	y _{.k}	
Effect	α_1	α_2		α_{j}		α_{k}	

Average of all measurements made of all alternatives

$$\overline{y}_{..} = \frac{\sum_{j=1}^{k} \sum_{i=1}^{n} y_{ij}}{kn}$$

	Alternatives						
Measure ments	1	2		j		k	
1	<i>y</i> ₁₁	<i>y</i> ₁₂		<i>y</i> _{1j}		<i>y</i> _{k1}	
2	<i>y</i> ₂₁	y ₂₂		<i>y</i> _{2j}		y_{2k}	
i	<i>y</i> _{i1}	y _{i2}		y _{ij}		y_{ik}	
n	<i>y</i> _{n1}	y _{n2}		y _{nj}		$y_{\sf nk}$	
Col mean	<i>y</i> _{.1}	y .2	•••	y .j		<i>y</i> _{.k}	
Effect	α_1	α_2		α_{j}		α_{k}	



$$\overline{y}_{.j} = \overline{y}_{..} + \alpha_{j}$$

 α_i = deviation of column mean from overall mean

= effect of alternative j

Effect = Deviation From Overall Mean

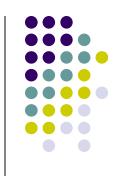
	Alternatives						
Measure ments	1	2		j		k	
1	<i>Y</i> ₁₁	<i>y</i> ₁₂		<i>y</i> _{1j}		<i>y</i> _{k1}	
2	<i>y</i> ₂₁	<i>y</i> ₂₂	•••	<i>y</i> _{2j}		y_{2k}	
				•••			
i	<i>y</i> _{i1}	y _{i2}		\mathcal{Y}_{ij}		y _{ik}	
	•••	•••	•••	•••			
n	y_{n1}	y_{n2}	•••	$y_{\sf nj}$		\mathcal{Y}_{nk}	
Col mean	<i>y</i> _{.1}	y .2	•••	y .j		<i>y</i> _{.k}	
Effect	a _t	α_2	•••	α_{j}		a*	

Effects and Errors

- Effect is distance from overall mean
 - Horizontally across alternatives
- Error is distance from column mean
 - Vertically within one alternative
 - Error across alternatives, too
- Individual measurements are then:

$$y_{ij} = \overline{y}_{..} + \alpha_j + e_{ij}$$

Sum of Squares of Differences: SSE



$$y_{ij} = \overline{y}_{.j} + e_{ij}$$
$$e_{ij} = y_{ij} - \overline{y}_{.j}$$

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n} (e_{ij})^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} (y_{ij} - \overline{y}_{.j})^{2}$$

Sum of Squares of Differences: SSA

$$\bar{y}_{.j} = \bar{y}_{..} + \alpha_{j}$$

$$\alpha_{j} = \bar{y}_{.j} - \bar{y}_{..}$$

$$SSA = n\sum_{j=1}^{k} \left(\alpha_{j}\right)^{2} = n\sum_{j=1}^{k} \left(\overline{y}_{.j} - \overline{y}_{..}\right)^{2}$$

Sum of Squares of Differences: SST

i=1 i=1

$$y_{ij} = y_{..} + \alpha_{j} + e_{ij}$$

$$t_{ij} = \alpha_{j} + e_{ij} = y_{ij} - \overline{y}_{..}$$

$$SST = \sum_{i=1}^{k} \sum_{j=1}^{n} (t_{ij})^{2} = \sum_{j=1}^{k} \sum_{j=1}^{n} (y_{ij} - \overline{y}_{..})^{2}$$

i = 1 i = 1

$$SSA = n \sum_{j=1}^{k} \left(\overline{y}_{.j} - \overline{y}_{..} \right)^{2}$$

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n} (y_{ij} - \overline{y}_{.j})^{2}$$

$$SST = \sum_{j=1}^{k} \sum_{i=1}^{n} (y_{ij} - \overline{y}_{..})^{2}$$

- SST = differences between each measurement and overall mean
- **SSA** = variation due to effects of alternatives
- **SSE** = variation due to errors in measurments

$$SST = SSA + SSE$$

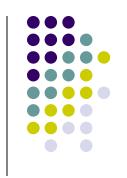
ANOVA – Fundamental Idea

- Separates variation in measured values into:
- 1. Variation due to effects of alternatives
 - SSA variation across columns
- Variation due to errors
 - SSE variation within a single column
- If differences among alternatives are due to real differences,
 - SSA should be statistically > SSE

Comparing SSE and SSA

- Simple approach
 - SSA / SST = fraction of total variation explained by differences among alternatives
 - SSE / SST = fraction of total variation due to experimental error
- But is it statistically significant?

Statistically Comparing SSE and SSA



Variance = mean square value

$$s_x^2 = \frac{SSx}{df}$$

Degrees of Freedom

- df(SSA) = k 1, since k alternatives
- df(SSE) = k(n-1), since k alternatives, each with (n-1) df
- df(SST) = df(SSA) + df(SSE) = kn 1



Degrees of Freedom for Effects

	Alternatives				
Measure ments	1	2		j	 k
1	<i>Y</i> ₁₁	<i>y</i> ₁₂	•••	<i>y</i> _{1j}	 <i>y</i> _{k1}
2	<i>y</i> ₂₁	<i>y</i> ₂₂	•••	<i>y</i> _{2j}	 y_{2k}
	•••		•••	•••	
i	<i>y</i> _{i1}	y _{i2}		y _{ij}	 \mathcal{Y}_{ik}
	•••	•••	•••	•••	 •••
n	y_{n1}	y_{n2}	•••	y _{nj}	 \mathcal{Y}_{nk}
Col mean	<i>y</i> _{.1}	y .2	•••	y .j	 <i>y</i> _{.k}
Effect	a	α_2	•••	α_{j}	α_k

Degrees of Freedom for Errors

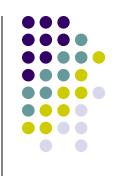
	Alternatives					
Measure ments	1	2		j		k
1	<i>Y</i> ₁₁	<i>y</i> ₁₂		11	•••	<i>y</i> _{k1}
2	<i>y</i> ₂₁	<i>y</i> ₂₂	•••	y_{2j}	•••	y_{2k}
					•••	
i	<i>y</i> _{i1}	<i>y</i> _{i2}		y _{ij}	•••	y _{ik}
				.,,	•••	
n	y_{n1}	y_{n2}		\mathcal{Y}_{nj}		\mathcal{Y}_{nk}
Col mean	<i>y</i> _{.1}	y .2		y .j	•••	<i>y</i> _{.k}
Effect	α_1	α_2		α_{j}		α_{k}

	Alternatives					
Measure ments	1	2		j		k
1	<i>y</i> ₁₁	<i>y</i> ₁₂	•••	11		<i>y</i> _{k1}
2	<i>y</i> ₂₁	<i>y</i> ₂₂	•••	y_{2j}	•••	y_{2k}
	•••		•••		•••	
i	<i>y</i> _{i1}	y _{i2}	•••	y _{ij}	•••	y _{ik}
	•••	•••	•••	.,,	•••	•••
n	y_{n1}	y_{n2}	•••	$y_{\sf nj}$	•••	$y_{\sf nk}$
Col mean	<i>y</i> _{.1}	<i>y</i> _{.2}	•••	<i>y</i> .j	•••	<i>y</i> . _k
Effect	a d	α_2		α_{j}		a_k

Variances from Sum of Squares (Mean Square Value)

$$s_a^2 = \frac{SSA}{k-1}$$

$$s_e^2 = \frac{SSE}{k(n-1)}$$

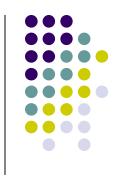


Use F-test to compare ratio of variances

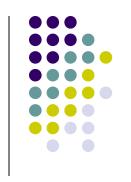
$$F = \frac{S_a^2}{S_e^2}$$

$$F_{[1-\alpha;df(num),df(denom)]}$$
 = tabulated critical values

F-test

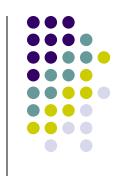


- If $F_{computed} > F_{table}$
 - \rightarrow We have (1α) * 100% confidence that variation due to actual differences in alternatives, SSA, is statistically greater than variation due to errors, SSE.



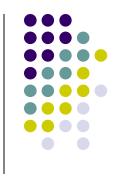
Variation	Alternatives	Error	Total
Sum of squares	SSA	SSE	SST
Deg freedom	k-1	k(n-1)	kn-1
M ean square	$s_a^2 = SSA/(k-1)$	$s_e^2 = SSE/[k(n-1)]$	
Computed F	s_a^2/s_e^2		
Tabulated F	$F_{[1-lpha;(k-1),k(n-1)]}$		

	Alternatives			
Measurements	1	2	3	Overall mean
1	0.0972	0.1382	0.7966	
2	0.0971	0.1432	0.5300	
3	0.0969	0.1382	0.5152	
4	0.1954	0.1730	0.6675	
5	0.0974	0.1383	0.5298	
Column mean	0.1168	0.1462	0.6078	0.2903
Effects	-0.1735	-0.1441	0.3175	



Variation	Alternatives	Error	Total
Sum of squares	SSA = 0.7585	SSE = 0.0685	SST = 0.8270
Deg freedom	k - 1 = 2	k(n-1)=12	kn-1=14
M ean square	$s_a^2 = 0.3793$	$s_e^2 = 0.0057$	
Computed F	0.3793/0.0057 = 66.4		
Tabulated F	$F_{[0.95;2,12]} = 3.89$		

Conclusions from example



- SSA/SST = 0.7585/0.8270 = 0.917
 - → 91.7% of total variation in measurements is due to differences among alternatives
- SSE/SST = 0.0685/0.8270 = 0.083
 - → 8.3% of total variation in measurements is due to noise in measurements
- Computed F statistic > tabulated F statistic
 - → 95% confidence that differences among alternatives are statistically significant.

Contrasts

- ANOVA tells us that there is a statistically significant difference among alternatives
- But it does not tell us where difference is
- Use method of contrasts to compare subsets of alternatives
 - A vs B
 - {A, B} vs {C}
 - Etc.

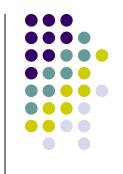
Contrasts

 Contrast = linear combination of effects of alternatives

$$c = \sum_{j=1}^{k} w_j \alpha_j$$

$$\sum_{j=1}^k w_j = 0$$

Contrasts



 E.g. Compare effect of system 1 to effect of system 2

$$w_1 = 1$$

$$w_2 = -1$$

$$w_3 = 0$$

$$c = (1)\alpha_1 + (-1)\alpha_2 + (0)\alpha_3$$

$$= \alpha_1 - \alpha_2$$

Construct confidence interval for contrasts

- Need
 - Estimate of variance
 - Appropriate value from t table
- Compute confidence interval as before
- If interval includes 0
 - Then no statistically significant difference exists between the alternatives included in the contrast

Variance of random variables

 Recall that, for independent random variables X₁ and X₂

$$Var[X_1 + X_2] = Var[X_1] + Var[X_2]$$

$$Var[aX_1] = a^2 Var[X_1]$$

$$Var[c] = Var\left[\sum_{j=1}^{k} (w_j \alpha_j)\right]$$

$$= \sum_{j=1}^{k} Var\left[w_j \alpha_j\right]$$

$$= \sum_{j=1}^{k} w_j^2 Var\left[\alpha_j\right]$$

$$s_c^2 = \sum_{j=1}^{k} v_j^2 Var\left[\alpha_j\right]$$

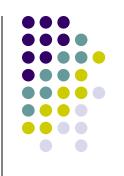
$$s_{c}^{2} = \frac{\sum_{j=1}^{k} (w_{j}^{2} s_{e}^{2})}{kn}$$

$$s_{e}^{2} = \frac{SSE}{k(n-1)}$$

$$df(s_{c}^{2}) = k(n-1)$$

 Assumes variation due to errors is equally distributed among kn total measurements

Confidence interval for contrasts



$$(c_1, c_2) = c \mp t_{1-\alpha/2; k(n-1)} s_c$$

$$S_c = \sqrt{\frac{\sum_{j=1}^k (w_j^2 S_e^2)}{kn}}$$

$$s_e^2 = \frac{SSE}{k(n-1)}$$

Example

90% confidence interval for contrast of [Sys1- Sys2]

$$\alpha_1 = -0.1735$$

$$\alpha_2 = -0.1441$$

$$\alpha_3 = 0.3175$$

$$c_{[1-2]} = -0.1735 - (-0.1441) = -0.0294$$

$$s_c = s_e \sqrt{\frac{1^2 + (-1)^2 + 0^2}{3(5)}} = 0.0275$$

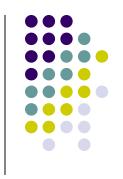
$$90\% : (c_1, c_2) = (-0.0784, 0.0196)$$

Copyright 2004 David J. Lilja

Important Points

- Use one-factor ANOVA to separate total variation into:
 - Variation within one system
 - Due to random errors
 - Variation between systems
 - Due to real differences (+ random error)
- Is the variation due to real differences statistically greater than the variation due to errors?

Important Points



 Use contrasts to compare effects of subsets of alternatives