

Debunking the GPU CPU Myth

Lee et al

What are CPUs tailored for/not talored for?

- Many types of applications
- Complex cores for general purpose
- Fast response time
- Fast synchronization primitives
- Shuffle/swizzle SIMD instructions

- High area
- High power
- Not good for thread switching

What are GPUs tailored for/not tailored for?

- Single application graphics
- Simple cores, but many of them
- Latency tolerant
- Easy thread-switching (hardware support)
- Gather/scatter

- Small caches
- Too many challenges if irregular
- Challenging if working set don't fit

Is the paper biased towards Intel? Are the results not believable?

- Num PE 4:30, so no more than 8 to be expected
- Freqy 3.2:1.3 so speedup of 8 gets lowed by 2X
- Peak Scalar flops 25:116 i.e. approx 4.5X only
- Peak Single precision SIMD flops only 3X or 9X if FMA
- Peak Double precision SIMD flops only 1.5X
- Peak BW 32:141 only 4.7X
- Bytes per flop is only 1.6X considering FMA
- CPU has large caches
- CPU has fast synch

Perf Analysis

- Mem BW ratio is 4.7X GPU
- Memory Bandwidth limited SAXPY and LBM 5X
- SpMV i7 cache fits vector; so only 1.9X
- GPU BW requirement for SpMV is 2.5X i7's requirement

- COMPUTE FLOPS ratio is 3-6
- SGEMM, MC, Conv, FFT, Bilat get 2.8-4X

PERF ANALYSIS CONTD

- CACHES bigger in i7
- SORT working set fits in cache; SORT is faster in CPU
- SpMV working set fits in cache. SpMV gives only 1.9X
- Instead of the 5X possible speedup

- GATHER-SCATTER
- GJK and RC need gather support; poor perf on i7
- I7 needs 20 instructions for compiler-generated gather
- I7 needs 13 instructions for assembly optimized gather

PERF ANALYSIS CONTD

- Reduction and Synchronization
- Hist makes atomic updates
- Solv needs barrier synchronization
- I7's cache coherency helps

- FIXED FUNCTION
- Bilat and MC transcendental operations
- GJK benefits from texture lookup on GPU

HARDWARE RECOMMENDATIONS

- High Compute flops needed more PEs or higher SIMD width
- High Mem BW needed pin and power issues -3D stacking
- Large caches match working set and on-die storage
- Gather-scatter would be nice to gather all elements into SIMD
- register in the same amount of time to load one cache line.
- Need large # cache ports or multi-banking
- Shuffle logic
- Synchronization and Cache coherence atomic operations, rec
- Fixed function units transcendental, CRC, encryption/decryptic

Intel Gather-Instruction

Inputs	Outputs
BASE_ADDR: Base Address	ZMM: Float32 output vector
VINDEX: Doubleword Index Vector	K: Write Mask
SCALE: Scaling factor	
K: Write Mask	

Intel Gather-Instruction

```
#zmm0 - Index register
  01
 02
  03
         #r8 - Base Address
 04
         #k1 - Mask register
  05
06
         #zmm6 - Output register
  07
 98
               - Scale
  09
         #4
 10
  11
          ..L10:
12
 13
                 vgatherdps (%r8,%zmm0,4), %zmm6{%k1}
14
                 jkzd ..L9, %k1
 15
16
                 vgatherdps (%r8,%zmm0,4), %zmm6{%k1}
  17
18
                 jknzd ..L10, %k1
  19
 20
  21
          ..L9:
```


Intel Scatter-Instruction

```
01
     #zmm0 - Index register
 02
         #r12 - Base Address
 03
 04
 05
         #k3 - Mask register
 06
         #zmm6 - Input register
 07
 98
 09
               - Scale
         #4
 10
 11
         ..L14:
12
                 vscatterdps %zmm7, (%r12,%zmm6,4){%k3}
 13
 14
 15
                 jkzd ..L13, %k3
 16
 17
                 vscatterdps %zmm7, (%r12,%zmm6,4){%k3}
 18
                 jknzd ..L14, %k3
 19
 20
 21
         ..L13:
```


GATHER-SCATTER

- Useful for Sparse Matrices and Arrays
- Gather is eqvt to Load Vector Indexed
- Scatter is eqvt to Store Vector Indexed
- Gather loads data items from sparse arrays
- Scatter writes data items to sparse arrays
- Use masks
- Gather scatter can be implemented using linked lists

SHUFFLE

View of Original and Result Words with Shuffle Function Macro

 $m3 = _mm_shuffle_ps(m1, m2, _MM_SHUFFLE(1,0,3,2))$

Swizzle/SPLAT

11/5/14

REDUCTION

Parallel Reduction

Tree-based approach used within each thread block

Parallel Reduction: Interleaved Addressing

What is VOXEL?

- PIXEL is Picture Element
- VOXEL is VOlume ELement

Atomic Operations

- Compare and Swap
- Fetch and add
- Lock and Increment
- Test and Set
- compare-and-swap (CAS) used in multithreading to achieve synchronization. It compares the contents of a memory location to a given value and, only if they are the same, modifies the contents of that memory location to a given new value

11/5/14