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Desirable features for 

modeling/evaluation techniques

• Accurate

• Not expensive

• Non-invasive

• User-friendly

• Fast

• Easy to change or extend

• Must not need application source

• Measure all activity (OS, DLL..)

• Provide control over aspects mesured (selective 
measurement)



Tradeoffs in modeling/evaluation 

techniques

• Analytical Models

• +

• -

• Tools with GUI

• +

• -



Simulation

• Defacto performance modeling method in industry 
and academia 

– (currently and for more than 1.5 decades)

• Cycle accurate simulators

• Accuracy better than analytic models

• Simulators written in C, C++, or Java – run on an 
existing machine called the host 

• The machine being modeled is called the target

• Functional simulators

• Timing simulators



Example – Cache Simulator

• Functional simulator

• Timing/Performance simulators

• Cache – data array and tag array

• A C program that simulates the caching operation

• Eg: Takes a program or address sequences used by the 
program

• Simulates putting the instructions/data according to the 
specified mapping strategy, replacement strategy, write 
policy etc.

• One needs to consider all of the design parameters



Cache Design Parameters



MIPS example code

for i=1,100, i++ ; repeat 100 times

y(i) = x(i) + y(i) ; add ith element of the arrays

Assume that the x and y arrays start at locations 4000 and 8000 (decimal).

Assume code located at 2000

Answer:

andi $3, $3, 0 ; initialize index register

andi $2, $2, 0 ; clear register for loop bound

addi $2, $2, 400 ; counter for loop bound

$label: lw $15, 4000($3) ;load x(i) to R15

lw $14, 8000($3) ;load y(i) to R14

add $24, $15, $14 ;x(i) + y(i)

sw $24, 8000($3) ;save new y(i)

addu $3, $3, 4 ;update address register, address= address + 4

bne $3, $2, label

Refer to the MIPS Handout on Blackboard to learn MIPS ISA details



Cache address sequence

• I-cache

– 2000, 2004, 2008, (2012, ..2032, 2012)…

• D-cache

– 4000, 8000, 8000, 4004, 8004, 8004, 

– …………….….4396, 8396, 8396



Cache Performance Simulator
• Estimate number of hits, misses, total memory 

access time

• How to make the simulator accurate?

• One needs to have good assumptions on timings 
for various events 

• Ideally the cache simulator must be linked to a 
CPU simulator that gives total execution time

• When caching strategy changes, you can tell the 
impact on processor’s overall execution time



Trace Driven Simulation – Pros 

and Cons
+ Simple (Easy to understand)

+ Easy to debug

+ Experiments repeatable easily (traces can be 

distributed to others to validate/debunk)

- Traces often prohibitively long (proportional 

to dynamic instrn size)

- Mispredicted path missing in speculative 

microarchitectures



Solving Cons of Trace Driven 

Simulation
For trace size

-Trace Sampling (Crowley & Baer paper)

-Trace Reduction/Trace Compression (eg: 

QPT’s trace regeneration)

For speculative path

-Reconstruct the mispredicted path from a 

pass through the trace (construct memory 

image)



Functional simulator

• RTL Model (Verilog or VHDL)

• Is the design correctly caching as you 
expect?

• Performance Model

• What kind of performance benefits can you 
expect from this cache?

• Which block size, mapping strategy or 
replacement strategy should you adopt?



Pipelined Execution Simulation

Number of Stages

Simulate each stage 

Delays associated with pipeline stalls

Even cache hits can take multiple cycles

Branch Prediction

Input executable or trace to the simulator 

Input configuration parameters

Cycle by cycle execution of the instructions



Pipelined Execution – Stalls
• Stalls or bubbles in pipelines (eqvt to nop)

sub $t3,$t0,$t2

and $t5,$t0,$t4

or   $t7,$t0,$t6 I$

A
L
UReg D$

lw $t0, 0($t1) A
L
UI$ Reg D$ Reg

bub

ble

bub

ble

bub

ble

bub

ble

bub

ble
A
L
UI$ Reg D$ Reg

A
L
UI$ Reg D$ Reg

nop



Pipelined Execution Example

Assume 1 instr/clock, perfect branch prediction, 5 stage 
pipeline, data forwarding, 2 cycle cache hits, (103

iterations, assume pipeline full)
Loop: lw $t0, 0($s1)

addu $t0, $t0, $s2
sw $t0, 0($s1)
addiu  $s1, $s1, -4
bne $s1, $zero, Loop
nop

•How many pipeline stages (clock cycles) per loop 
iteration to execute this code ?

•How many pipeline stages (clock cycles) per loop 
iteration to execute this code if no data forwarding ?
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Amdahl’s Law for Pipelined 

Execution



On-chip Performance Monitoring 

Counters
• 2 to 18 counters on all modern processors

• Monitor hundreds of metrics

• Cycle count, I-counts at fetch, decode, retire

• Cache misses at each level of cache

• Branch mispredictions

• I- and D-TLB misses

• Eg: Bhandarkar paper 



Analytical Modeling example: 

A simple analytical model for 

pipelined processors
Evaluating Pipelining using laws 

of Parallel Processing

Amdahl’s Law

Vectorizability



In parallel processing, serial part limits total
performance

T= original execution time

S= fraction of time in serial code, eg: 0.2

P= fraction of time in parallel code = 1-S

N= number of parallel units

Speedup = 1/ (S +P/N)

Max speedup = 1/S

Amdahl’s Law



Amdahl’s Law



Realistic Pipelining



Various Forms of Amdahl’s Law

Eq 1  - Speedup, S = 1/{(1-f)+(f/N)}

Eq 2 – Speedup S = 1 / {(1-g)+(g/N)}

Eq 3 – S= 1 / {g1/1 + g2/2 + g3/3 +…gN/N}



Amdahl’s Law

Assume I-mix (load = 25%, branch = 20%, 

taken branches = 66.6% of branches, hardware uses NT as policy,

Branch penalty is 4 cycles, load penalty is 1 cycle

Speedup of a 6-stage pipeline under these circumstances

Eq 1.6 – S= 1 / {g1/1 + g2/2 + g3/3 +…gN/N}

S = 1 / {0.13/2  + 0.25/5  + 0.62/6  } = 4.5

Ideal S = 6

Difference between peak and actual pipelining improvement



Classification of Techniques

• Performance Modeling

– Simulation

• Trace-Driven Simulation

• Execution Driven 
Simulation

• Complete System 
Simulation

• Event-Driven Simulation

• Statistical Simulation

– Analytical Modeling

• Probabilistic Models

• Queuing Models

• Markov Models

• PetriNet Models

• Performance Measurement

– On-Chip Hardware Monitoring

– Off-Chip Hardware Monitoring

– Software Monitoring

– Microcoded Instrumentation


