
Computer Performance

Evaluation and Benchmarking

EE 382M

Dr. Lizy Kurian John

Desirable features for

modeling/evaluation techniques

• Accurate

• Not expensive

• Non-invasive

• User-friendly

• Fast

• Easy to change or extend

• Must not need application source

• Measure all activity (OS, DLL..)

• Provide control over aspects mesured (selective
measurement)

Tradeoffs in modeling/evaluation

techniques

• Analytical Models

• +

• -

• Tools with GUI

• +

• -

Simulation

• Defacto performance modeling method in industry
and academia

– (currently and for more than 1.5 decades)

• Cycle accurate simulators

• Accuracy better than analytic models

• Simulators written in C, C++, or Java – run on an
existing machine called the host

• The machine being modeled is called the target

• Functional simulators

• Timing simulators

Example – Cache Simulator

• Functional simulator

• Timing/Performance simulators

• Cache – data array and tag array

• A C program that simulates the caching operation

• Eg: Takes a program or address sequences used by the
program

• Simulates putting the instructions/data according to the
specified mapping strategy, replacement strategy, write
policy etc.

• One needs to consider all of the design parameters

Cache Design Parameters

MIPS example code

for i=1,100, i++ ; repeat 100 times

y(i) = x(i) + y(i) ; add ith element of the arrays

Assume that the x and y arrays start at locations 4000 and 8000 (decimal).

Assume code located at 2000

Answer:

andi $3, $3, 0 ; initialize index register

andi $2, $2, 0 ; clear register for loop bound

addi $2, $2, 400 ; counter for loop bound

$label: lw $15, 4000($3) ;load x(i) to R15

lw $14, 8000($3) ;load y(i) to R14

add $24, $15, $14 ;x(i) + y(i)

sw $24, 8000($3) ;save new y(i)

addu $3, $3, 4 ;update address register, address= address + 4

bne $3, $2, label

Refer to the MIPS Handout on Blackboard to learn MIPS ISA details

Cache address sequence

• I-cache

– 2000, 2004, 2008, (2012, ..2032, 2012)…

• D-cache

– 4000, 8000, 8000, 4004, 8004, 8004,

– …………….….4396, 8396, 8396

Cache Performance Simulator
• Estimate number of hits, misses, total memory

access time

• How to make the simulator accurate?

• One needs to have good assumptions on timings
for various events

• Ideally the cache simulator must be linked to a
CPU simulator that gives total execution time

• When caching strategy changes, you can tell the
impact on processor’s overall execution time

Trace Driven Simulation – Pros

and Cons
+ Simple (Easy to understand)

+ Easy to debug

+ Experiments repeatable easily (traces can be

distributed to others to validate/debunk)

- Traces often prohibitively long (proportional

to dynamic instrn size)

- Mispredicted path missing in speculative

microarchitectures

Solving Cons of Trace Driven

Simulation
For trace size

-Trace Sampling (Crowley & Baer paper)

-Trace Reduction/Trace Compression (eg:

QPT’s trace regeneration)

For speculative path

-Reconstruct the mispredicted path from a

pass through the trace (construct memory

image)

Functional simulator

• RTL Model (Verilog or VHDL)

• Is the design correctly caching as you
expect?

• Performance Model

• What kind of performance benefits can you
expect from this cache?

• Which block size, mapping strategy or
replacement strategy should you adopt?

Pipelined Execution Simulation

Number of Stages

Simulate each stage

Delays associated with pipeline stalls

Even cache hits can take multiple cycles

Branch Prediction

Input executable or trace to the simulator

Input configuration parameters

Cycle by cycle execution of the instructions

Pipelined Execution – Stalls
• Stalls or bubbles in pipelines (eqvt to nop)

sub $t3,$t0,$t2

and $t5,$t0,$t4

or $t7,$t0,$t6 I$

A
L
UReg D$

lw $t0, 0($t1) A
L
UI$ Reg D$ Reg

bub

ble

bub

ble

bub

ble

bub

ble

bub

ble
A
L
UI$ Reg D$ Reg

A
L
UI$ Reg D$ Reg

nop

Pipelined Execution Example

Assume 1 instr/clock, perfect branch prediction, 5 stage
pipeline, data forwarding, 2 cycle cache hits, (103

iterations, assume pipeline full)
Loop: lw $t0, 0($s1)

addu $t0, $t0, $s2
sw $t0, 0($s1)
addiu $s1, $s1, -4
bne $s1, $zero, Loop
nop

•How many pipeline stages (clock cycles) per loop
iteration to execute this code ?

•How many pipeline stages (clock cycles) per loop
iteration to execute this code if no data forwarding ?

1

2

3

4

5

6

7

8

9

10

Amdahl’s Law for Pipelined

Execution

On-chip Performance Monitoring

Counters
• 2 to 18 counters on all modern processors

• Monitor hundreds of metrics

• Cycle count, I-counts at fetch, decode, retire

• Cache misses at each level of cache

• Branch mispredictions

• I- and D-TLB misses

• Eg: Bhandarkar paper

Analytical Modeling example:

A simple analytical model for

pipelined processors
Evaluating Pipelining using laws

of Parallel Processing

Amdahl’s Law

Vectorizability

In parallel processing, serial part limits total
performance

T= original execution time

S= fraction of time in serial code, eg: 0.2

P= fraction of time in parallel code = 1-S

N= number of parallel units

Speedup = 1/ (S +P/N)

Max speedup = 1/S

Amdahl’s Law

Amdahl’s Law

Realistic Pipelining

Various Forms of Amdahl’s Law

Eq 1 - Speedup, S = 1/{(1-f)+(f/N)}

Eq 2 – Speedup S = 1 / {(1-g)+(g/N)}

Eq 3 – S= 1 / {g1/1 + g2/2 + g3/3 +…gN/N}

Amdahl’s Law

Assume I-mix (load = 25%, branch = 20%,

taken branches = 66.6% of branches, hardware uses NT as policy,

Branch penalty is 4 cycles, load penalty is 1 cycle

Speedup of a 6-stage pipeline under these circumstances

Eq 1.6 – S= 1 / {g1/1 + g2/2 + g3/3 +…gN/N}

S = 1 / {0.13/2 + 0.25/5 + 0.62/6 } = 4.5

Ideal S = 6

Difference between peak and actual pipelining improvement

Classification of Techniques

• Performance Modeling

– Simulation

• Trace-Driven Simulation

• Execution Driven
Simulation

• Complete System
Simulation

• Event-Driven Simulation

• Statistical Simulation

– Analytical Modeling

• Probabilistic Models

• Queuing Models

• Markov Models

• PetriNet Models

• Performance Measurement

– On-Chip Hardware Monitoring

– Off-Chip Hardware Monitoring

– Software Monitoring

– Microcoded Instrumentation

