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The Old Mobile Phone The Modern Mobile Phone 
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Video Recording 

Video Editing 

Higher Data Rates 

Photos From -  http://www.engadget.com/2009/06/10/iphone-3g-s-supports-opengl-es-2-0-but-3g-only-supports-1-1/ 
 http://www.apple.com/iphone 

3D Rendering 

Advanced Image Processing 

•   Future phones are becoming more complex 
•   Richer applications require much more   
requirements 

•  How do phones handle this now?  
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Inside Today’s Smart Phones 
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Inside the OMAP3430 Application Processor 

Inside the X-Gold 608 (Representation of QCOM) 
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Power/Performance Requirements for Multiple Systems 
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Different applications have different power/performance 
characteristics! 

 
We need to design keeping each application in mind! 

(Not GPP but Domain Specific Processor) 
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The Applications 

Is there anything we can learn from the 
applications themselves? 
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H.264 Basics 
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T.-A. Liu, T.-M. Lin, S. -Z. Wang, et al. “A low-power dual-mode video decoder for mobile applications,”  
IEEE Communications Magazine, volume 44,  issue 8,  pp.119-126, Aug. 2006. 
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4G Wireless Basics 

§  Three kernels make up the majority of the 
work 
§  FFT – Extract Data from Signals 
§  STBC –  Combine Data into More Reliable Stream 
§  LDPC – Error Correction on Data Stream 
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Mobile Signal Processing Algorithm Characteristics 
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§  Algorithms have different SIMD widths 
§  From very large to very small 

§  Though SIMD width varies all algorithms can exploit it 
§  Large percentage of work can be SIMDized 

§  Larger SIMD width tend to have less TLP 

Algorithm	
   SIMD	
   Scalar	
   Overhead	
   SIMD	
  Width	
   Amount	
  
Workload	
  (%)	
   Workload	
  (%)	
   Workload	
  (%)	
   (Elements)	
   of	
  TLP	
  

4G
	
   FFT	
   75	
   5	
   20	
   1024	
   Low	
  

STBC	
   81	
   5	
   14	
   4	
   High	
  
LDPC	
   49	
   18	
   33	
   96	
   Low	
  

H.
26

4	
   Deblocking	
  Filter	
   72	
   13	
   15	
   8	
   Medium	
  
Intra-­‐PredicMon	
   85	
   5	
   10	
   16	
   Medium	
  
Inverse	
  Transform	
   80	
   5	
   15	
   8	
   High	
  
MoMon	
  CompensaMon	
   75	
   5	
   10	
   8	
   High	
  

SIMD comes at a cost! 
• Register File Power 

• Data Movement/Alignment Cost 
SIMD architectures have to deal with this! 
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Only the instructions shown in red are MMX 
computations. All other instructions are simply 
supporting these computations. 

Pentium III – SIMD code for Discrete Cosine Transform (DCT) 
 
lea  ebx, DWORD PTR [ebp+128]   load/address overhead 
mov  DWORD PTR [esp+28], ebx    load/address overhead 
$B1$2: 
xor  eax, eax    address overhead 
move  dx, ecx    address overhead 
lea  edi, DWORD PTR [ecx+16]   load/address overhead 
mov  DWORD PTR [esp+24], ecx   load/address overhead 
$B1$3: 
movq  mm1, MMWORD PTR [ebp]   load overhead 
pxor  mm0, mm0    initialization overhead 
pmaddwd  mm1, MMWORD PTR [eax+esi]  True Computation 
movq  mm2, MMWORD PTR [ebp+8]   load overhead 
pmaddwd  mm2, MMWORD PTR [eax+esi+8]  True Computation 
add  eax, 16address    overhead 
paddw  mm1, mm0    True Computation 
paddw  mm2, mm1    True Computation 
movq  mm0, mm2    load related overhead 
psrlq  mm2, 32    SIMD reduction overhead 
povd  ecx, mm0    SIMD load overhead 
movd  ebx, mm2    SIMD load overhead 
add  ecx, ebx    SIMD conversion Overhead 
mov  WORD PTR [edx], cx   store overhead 
add  edx, 2    address overhead 
cmp  edi, edx    branch related overhead 
jg  $B1$3    loop branch overhead 
$B1$4: 
move  cx, DWORD PTR [esp+24]   load/address overhead 
add  ebp, 16    address overhead 
add  ecx, 16    address overhead 
move  ax, DWORD PTR [esp+28]   load/address overhead 
cmp  eax, ebp    branch related overhead 
jg  $B1$2    loop branch overhead 
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Traditional SIMD Power Breakdown 

§  Register File Power consumes a lot of power in traditional    
32-wide SIMD architecture 

SODA WCDMA 
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SCALAR PIPE 
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MEM 
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ALU+MULT 
CONTROL 
INTERCONNECT 
SCALAR PIPE 
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Register File Access 
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§ Many of the register file access do not have to go back to the 
main register file 
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Lots of power wasted on unneeded 

register file access! 
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Instruction Pair Frequency 
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Like the Multiply-Accumulate (MAC) instruction 
there is opportunity to fuse other instructions 

 
A few instruction pairs (3-5) make up the 

majority of all instruction pairs! 
 
 

a )  Intra - prediction and  
Deblocking Filter Combined 

InstrucMon	
  Pair Frequency 
1 mul9ply-­‐add 26.71% 
2 add-­‐add 13.74% 
3 shuffle-­‐add 8.54% 
4 shiB	
  right-­‐add 6.90% 
5 subtract-­‐add 6.94% 
6 add-­‐shiB	
  right 5.76% 
7 mul9ply-­‐subtract 4.00% 
8 shiB	
  right-­‐subtract 3.75% 
9 add-­‐subtract 3.07% 
10 Others 20.45% 

b )  LDPC 

InstrucMon	
  Pair Frequency 
1 shuffle-­‐move 32.07% 
2 abs-­‐subtract 8.54% 
3 move-­‐subtract 8.54% 
4 shuffle-­‐subtract 3.54% 
5 add-­‐shuffle 3.54% 
6 Others 43.77% 

c )  FFT 

InstrucMon	
  Pair Frequency 
1 shuffle-­‐shuffle 16.67% 
2 add-­‐mul9ply 16.67% 
3 mul9ply-­‐subtract 16.67% 
4 mul9ply-­‐add 16.67% 
5 subtract-­‐mult 16.67% 
6 shuffle-­‐add 16.67% 



16 16 

16 

University of Michigan - ACAL 

Data Alignment Problem! 

§  H.264 Intra-prediction has 9 different prediction modes 
§  Each prediction mode requires a specific permutation 
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Summary 
§  Conclusion about 4G and H.264 

§  Lots of different sized parallelism 
§ From 4 wide to 96 wide to 1024 wide SIMD 

§ Which means many different SIMD widths need to be supported 
§  Very short lived values 
§  Lots of potential for instruction fusings 
§  Limited set of shuffle patterns required for each kernel 
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AnySP Design 
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Traditional SIMD Architectures 
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Multi-Width Support 
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AnySP FFU Datapath  
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Flexible Functional Unit allows us to 
 

1.  Exploit Pipeline-parallelism by joining two lanes together 
2.  Handle register bypass and the temporary buffer 
3.  Join multiple pipelines to process deeper subgraphs 
4.  Fuse Instruction Pairs 
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AnySP Results 

23 



24 24 

24 

University of Michigan - ACAL 

Simulation Environment 
§  Traditional SIMD architecture comparison 

§  SODA at 90nm technology 

§  AnySP 
§  Synthesized at 90nm TSMC 
§  Power, timing, area numbers were extracted 

§  Performance and Power for each kernel was generated using 
synthesized data on in-house simulator 

§  4G – based on a NTT DoCoMo 4G test setup 
§  H.264 – 4CIF@30fps 

24 
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AnySP Speedup vs SIMD-based Architecture 

§  For all benchmarks we perform more than 2x better 
than a SIMD-based architecture 
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AnySP Energy-Delay vs SIMD-based Architecture 

§ More importantly energy efficiency is much better! 
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PE 

System 

Total 

Components Units 
SIMD Data Mem  ( 32 KB ) 

SIMD Register File  ( 16 x 1024 bit ) 
SIMD ALUs ,  Multipliers ,  and SSN 

SIMD Pipeline + Clock + Routing 

Intra - processor Interconnect 
Scalar / AGU Pipeline  &  Misc . 

ARM  ( Cortex - M 3 ) 
Global Scratchpad Memory  ( 128 KB ) 

Inter - processor Bus with DMA 
90 nm  ( 1 V  @ 300 MHz ) 

4 
4 
4 
4 

4 
4 
1 
1 
1 

Area 
Area 
mm 2 

Area 
% 

9 . 76 38 . 78 % 
3 . 17 12 . 59 % 
4 . 50 17 . 88 % 
1 . 18 4 . 69 % 

0 . 94 3 . 73 % 
1 . 22 4 . 85 % 

0 . 6 2 . 38 % 
1 . 8 7 . 15 % 
1 . 0 3 . 97 % 

25 . 17 100 % 
Est . 65 nm  ( 0 . 9 V  @  300 MHz ) 13 . 14 

45 nm  ( 0 . 8 V  @  300 MHz ) 6 . 86 

4 G  +  H . 264  Decoder 
Power 

mW 
Power 

% 
102 . 88 7 . 24 % 
299 . 00 21 . 05 % 
448 . 51 31 . 58 % 
233 . 60 16 . 45 % 

93 . 44 6 . 58 % 
134 . 32 9 . 46 % 

2 . 5 < 1 % 
10 < 1 % 

1 . 5 < 1 % 
1347 . 03 100 % 
1091 . 09 
862 . 09 

SIMD Buffer  ( 128 B ) 
SIMD Adder Tree 

4 
4 

0 . 82 3 . 25 % 
0 . 18 < 1 % 

84 . 09 5 . 92 % 
10 . 43 < 1 % 

AnySP Power Breakdown 

§ We estimate that both H.264 and 4G wireless can be done 
in under 1 Watt at 45nm 
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Conclusion & Future Work 
§ Conclusion 

§ We have presented an example architecture that could 
possibly meet the requirements of 100Mbps 4G and HD 
video on the same platform 
§ Under the power budget and meeting the performance at 45nm 

§ Future and Ongoing Work 
§ Application-specific language 
§ Larger class of algorithms for AnySP 
§ Better utilization of resources for non-parallel kernels 

§ Speedup sequential parts 
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