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Performance Analysis
and Its Impact [ 4
on Design %

Architects use models of a proposed processor and its workloads to guide
the design process. But how do you develop and validate such modeils

before actually fabricating and testing a real chip? This is the question
performance analysis seeks to answer.
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Performance Evaluation

“Architects should not write checks that
designers cannot cash.”

Do architects know their bank balance?

What all do architects need to know to
estimate their bank balance?

Technology parameters and constraints

Performance, power and area of conceived
designs

When do designers need to know this?



Typical Design Process

Application Analysis Teams

Lead architects consider bounds of
potential designs

Performance team creates performance
model

Performance architects create test cases
Performance architects test the model

Architects choose a microarchitecture
based on the perf model results

Design team implements the
microarchitecture



Bose-Conte paper

Read the paper and Sidebars

New terminology

Path length = Instrn Count
Separable Components (Phil Emma)
CPI = Infinite-Cache-CPI + FCE

FCE = Finite Cache Effect = miss penalty
X miss rate = cycles per miss X misses
per instruction

Infinite Cache CPI = E_busy + E_idle

E_busy = useful work: E_idle - due to
pipeline stalls
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Performance Validation

Generating Performance Test Cases

Early test cases can be randomly
generated

After failing tests are below a certain
threshold, use focused test cases

Handwritten tests to exercise particular
parts of microarchitecture model

Latency tests and block cost estimation
Cycle counts of individual instructions

Multi-level cache hit and miss latencies
for load/store instructions

Pipeline latencies for back-to-back
dependent instructions



Performance Validation

= Cost estimation for large basic
blocks based on program dependence
graphs

= Best and Worst case timings for a

block of instructions can be used as
test cases

= Bandwidth tests
= Test upper bounds
= Test Resource limits



Performance Signature Dictionary

Apart from specs for cycle count, and
Steady state loop performance, we may

Derive more elaborate performance
sighatures

Signatures are plots of various quantities
that follow a characteristic pattern for a
given test case

Eg: Periodic pattern of pipeline state
transitions for a loop test case, or

Pattern or cycle-by-cycle machine state
changes



Machine State Signature

Hash the full pipeline flow state (which
describes all instructions in flight) into a
compact encoding - Fig 2 - pg 48

Signature dictionary?

A collection of performance test cases
along with their corresponding signatures

Dictionary can include cycle counts and
CPI metrics

Any mismatch automatically flags problems
Performance test benches???
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Inacuracies in Traces-Trace Distortion

Another important concept discussed in
Bose-Conte paper

Instrumentation can cause distortion

Example: mtrace is a software tracing
tool used within IBM for performance
validation

This tool is 60 times slower than PPC601

Tool collects I- and D- address (user and
kernel)

In AIX, a clock interrupt occurs 100
times per second to wake scheduler



Trace Distortion Contd

= In AIX, a clock interrupt occurs 100
times per second to wake scheduler

= In an m-trace instrumented run, the clock
interrupt would occur 6000 times per
simulated second

= The AIX decrementer has to be slowed
down by a factor of 60 to get bona-fide
traces



Assignment 1 B —
Due Thursday 25 midnight

1. Read Black and Shen paper. Summarize potential
modeling errors, abstraction errors and
specification errors in Lab 1. You can answer the
modeling errors in a mirrored fashion to next
question.

2. Read the concept of alpha, beta, gamma tests in
Black and Shen and the concept of “Performance
Signatures Dictionary” as in Bose-Conte paper
and create a performance signatures dictionary
for detecting the modeling errors in the cache
design in Lab 1.



Performance Signature

Dictionary Example

This is just an example — not particularly good.

| am looking forward to seeing your creativity.
Be creative

Test Objective Expected Output

Block Size (L1)
Associativity (L1)
LRU (L1)

Cache Size (L1)
Block Size (L2)



Analysis of Redundancy and
Application Balance In the SPEC
CPU 2006 Benchmark Suite

ISCA 2007
Phansalkar, Joshi and John



Fast Subsetting to form CPU2006 sulte

Computer
Architecture @

A Publication of the

N ew s Association for Computing Machinery
Special Interest Group on Computer Architecture

(2) After several development versions of the new suite were
built, various voting members of the SPEC CPU subcommit-
tee released data to a trusted third party: non-voting partici-
pants from the Laboratory for Computer Architecture at the
University of Texas. The University researchers prepared
normalized summaries of the data, performed clustering
analysis, and presented benchmark similarity dendograms
such as the ones shown at [3].

If normalized data from a member showed that a
benchmark used few resources, or if analysis from the uni-
versity researchers showed that two benchmark candidates
behaved similarly, this alone was not sufficient to exclude a
candidate. But it was a factor that was considered, along
with other factors such as application area, coding style, and
size of user base.
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Performance Counters and Development of SPEC CPU2006

John L. Henning

Sun Microsystems

Contact: john dot henning (at)

acm dot org



Motivation

Many benchmarks are similar

Running more benchmarks that are similar will not provide more
information but necessitates more effort

One could construct a good benchmark suite by choosing
representative programs from similar clusters

Advantages:

- Reduces experimentation effort




Benchmark Reduction

Measure properties of programs (say K properties)

- Microarchitecture independent properties
- Microarchitecture dependent properties

Display benchmarks in a K-dimensional space
Workload space consists of clusters of benchmarks

Choose one benchmark per cluster




Example Workload/Benchmark space Distributions

+++++++
F++++++
F++ 4+ ++
F++4+++ 4+
+++++++
++4+++++

++++++ 4+




Benchmark Reduction

Measure properties of programs (say K properties)

- Microarchitecture independent properties
- Microarchitecture dependent properties

Derive principal components that capture most of
the variability between the programs

Workload space consists of clusters of benchmarks
in the principal component space

Choose one benchmark per cluster




Principal Components Analysis

Remove correlation
between program
characteristics

Principal Components (PC)
are linear combination of
original characteristics

Var(PC1) > Var(PC2) > ...
Reduce No. of variables

PC2 is less important to
explain variation.

Throw away PCs with
negligible variance
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PC2 =a.Xi+ anX:+ asXs+.....
PC3 = asX:+ QX2 + AssXs +.....

Source:moss.csc.ncsu.edu/pact02/slides/eeckhout_135.ppt



Clustering

Clustering algorithms
K-means clustering
Hierarchical clustering




K-means Clustering

1. Select K, e.g.: K=3 4. Move cluster centers
2. Randomly select K cluster ‘:
centers L Py
® % % ®
0 e o 9
®s o ®
o o °

5. Repeat steps 3 and 4 until

3. Assign benchmarks convergence

to cluster centers



Hierarchical Clustering

Iteratively join clusters

1. Initialize with 1 benchmark/cluster Joining clusters

Cg) — Complete linkage
® @
o® & @’@

2. Join two “closest” clusters

Closeness determined by linkage — Other linkage
strategy strategies exist with
qualitatively the same
(® @@ results
@® ©

3. Repeat step 2 until one cluster
remains WWC-7 25



Distance between clusters

Euclidian Distance
- the way the crow flies; sqg root of (a2 +b"2);
Manhattan Distance
— The way cars go in manhattan; a+b
Centroid of clusters

Distance from centroid of one cluster to another
centroid

Longest distance from any element of one cluster to
another



Dendrogram for illustrating Similarity

k=6 k=4
400.perlbench

445.gobmk Slngle Linkage distan

456 hmmer

464 .h264ref

471.omnetpp I
429 mcf _"

462 libquantum

401.bzip2

458 .sjeng

473 astar

403.gcc

483 .xalanchmk

1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0

Linkage Distance

k=4 | 400.perlbench, 462.libquantum,473.astar,483.xalancbhmk

400.perlbench, 471.omnetpp, 429.mcf, 462.libquantum, 473.astar,

k=6 483.xalancbmk
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Software Packages to do Similarity
Analysis

STATISTICA
R
MATLAB

PCA
K-means clustering
Dendrogram generation
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Figure 9.1 Amount of variance explained as a function of the number of principal
components.
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Are features of equal weight?
N@@dlfoxatmarmallzmg Data

benchl 0.01 Variance 1 > Mean 1
bench?2 0.1 40

bench3 0.05 50 Variance 2 << Mean 2
bench4 0.001 60

bench5 0.03 25

bench6 0.002 30 Feature 1 numeric values
bench7 0.015 70 << Feature 2 numeric val
bench8 0.5 60

Compute distance from

0.0885 "  44.375 0 to bench 4, and 0 to bench 8

0.169483 ¥ 18.40759

Feature 1 has low effect on distance



Unit normal distribution

1sigma=68.27%
2 sigma=95.45%
3 sigma=99.73%



Normalizing Data (Transforming to
Unit-NormaQOre

The converted data 1s also called standard s

How do you convert to a distribution with mean = 0 and std dev = 1?

The standard score of a raw score x ' is

T — [
-

o
where:

L is the mean of the population;
o is the standard deviation of the population.



benchl
bench?2
bench3
bench4
bench5
bench6
bench7
bench8

With normalized data, bench8 is far from bench 4

Or'ma

!\Lture 1

0.01
0.1
0.05
0.001
0.03
0.002
0.015
0.5

0.0885

]lzm Data
eature
-0.46317
40 0.067853
50 -0.22716
60 -0.51628
25 -0.34517
30 -0.51037
70 -0.43367
60 2.427969
44.375 0
1

0.169483 18.40759
Convert to a distribution with mean = 0 and std dev = 1

norm feat 1 norm feat 2

-1.32418
-0.23767
0.305581
0.848835
-1.05256
-0.78093
1.392089
0.848835

— O



Mahalanobis distance

 Mahalanobis distance

— How many standard deviations away a point P
IS from the mean of a distribution

— If all axes are scaled to have unit variance,
Mahalanobis distance = Euclidian distance



Inst. Count
MName — Language (Billion) Branches Loads Stores
CINT 2006

400. perbench —C 2378 20 86% 27 090% 16.45%
401.bzip2 — C 2472 15.87% 36 83% 12 88%
403.gec — C 1.064 21.86% 26 .52% 16.01%
428 mof —C 327 21.17% AT.09% 10.55%
445 gobmk —C 1,802 18.51% 29 72% 15.25%
456 hmmer -C 3,363 T.08% 47 36% 17 .68%
458.sjeng —C 2,383 21.38% 27 .60% 14.61%
462 libquantum-C 3,555 14.80% 33.57% 10.72%
464 hZ84ref- C 3,731 T-24% 41.76% 132.14%
47 1.omnetpp- C++ g8y 20.33% 4.7 1% 20.18%
47 3. astar- C++ 1,200 15.57% 40.24% 13.75%
433 zalancbmk- C++ 1.184 25.84% 33.06% 10.31%




CFP 2006

410 bwaves — Fortran 1.178 0.688% H6.14% B.08%
416.gamess — Fortran 5,188 T45% 45.87% 12.98%
433 . milc — C e 1.51% 40.15% 11.75%
434 zeusmp—C Fortran 1,566 4 05% 36 22% 11.88%
435.gromacs-C, Fortran 1.858 3.14% A7 35% 17.31%
436 cactusADM-C, Fortran 1,376 0.22% 52.62% 13.48%
437 leshie3d — Fortran 1,213 3.0G% 52.30% 9. 83%
444 namd — C++ 2483 4 28% 35.43%, 8.83%
447 dealll — C++ 2,323 15.00% 42 57% 13.41%
450 soplex — C++ 703 16.07% 39 .05% T.74%
453. povray — C++ 240 13.23% 35.44% 18.11%
454 calculix —C, Fortran 3,041 411% 40.14% 8.095%
450 GemsFDTD — Fortran 1.420 2. 40% 54 16% 8.67%
485 tonto — Fortran 2832 4 78% 44 7% 12.84%
470 lbm — C 1.500 0.78% 38.16% 11.53%
481.wrf - C, Foriran 1.684 5.18% 48.70% 8.42%
482 sphinx3 — C 2472 B_05% 35.07% 5.58%




Percentage of Dynam ik Instrucions (Cumulakive)

15 2 25 3 15 4 45 5
Ctafic nstrucion Count (Cumuiatie) o

(b) CFP2006 Benchmarks

Figure 1. Instruction locality based on code reuse in the top 20 hot
subroutines for SPEC CPU2006 benchmarks.
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Table 2: Range of imporiant performance characienstics of SPEC
CPU2006 benchmarks

Medtric Min Max
l-cache miss ratio ~ 0 1.7%

L1 D-cache miss ratio 6.3% 33%

L2 cache misses per ~0 (0.01%) 2.4% (49%)
instruction (per L2 access)

DTLB miss ratio 0.2% 8.4%




Table 3. Program Characterisiics used for measuring similanty
between Integer and Floating-Point programs.

Integer benchmarks Floating-Point benchmarks
Integer operations per Floating pomnt operations per
instruction instmction

L1 instroction cache misses per Memory references per instruction

instruction

Number of branches per L2 data cache misses per
instruction instruction

Number of nuspredicted L2 data cache musses per L2
branches per mstruction ACCESSes

L2 data cache nusses per Data TI.B misses per instruction
instruction

Instruction TLB misses per L1 data cache misses per

instmction imnstrmction




Dendrogram for illustrating Similarity

k=6 k=4
400.perlbench

445.gobmk Slngle Linkage distan

456 hmmer

464 .h264ref

471.omnetpp I
429 mcf _"

462 libquantum

401.bzip2

458 .sjeng

473 astar

403.gcc

483 .xalanchmk

1.0 1.5 2.0 25 3.0 3.5 4.0 4.5 5.0

Linkage Distance

k=4 | 400.perlbench, 462.libquantum,473.astar,483.xalancbhmk

400.perlbench, 471.omnetpp, 429.mcf, 462.libquantum, 473.astar,

k=6 483.xalancbmk
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Figure 3. Dendrogram showing smmlanty between CEFP2006
Programs.




Table 5. Representative subset of SPEC CEFP2006 programs.

Subset of 437.1eslie3dd, 454.calculix,

SIx 43c.cactusaDM, 447 .dealII, 470.l1lbm,
Programs 453 .povray
Sybset of 437. ]_IEE lie3d, -’:{5_*‘-1 .calculix,

Eight 459.6&1‘&5{'5@]],431:-.-:a::tus.m:ll-{, ]
Promrams 447 .dealll, 450.soplex, 470.lbm,

= 453 .povray
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Table 6. List of representative mput sets for SPEC CPU2006

programs.

CINT2006 benchmarks

464 h2bdavc - input set 2

400_peribench - input set 1 473astar - input set 2
401 _bzip2 - input set 4

403.gcc - input set 1 CFP2006 benchmarks
445 gobmk - input set 5 416.gamess - input set 3

456 hmmer - input set 2

450 soplex - input set 1
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Table 7. Classification of programs based on application areas.

Application area Benchmarks

458. =sjeng,

Artificial Intelligence 445 . gobmk, 473.astar

_ 436c.cactusADM,
Equation solver 458, GemsFDTD

410.bwaves, 424 . zeusmp,

Fluid Dynamics 437.1eslie3D, 470.1bm
Molecular Dynamics 435.gromacs, 444 .namd
Quantum Chemistry 465.tonto, 416.gamess
Engineering and | 454.calculix, 447.dealII,

Operational Research 450.scplex, 453.povray




Table 8. Sensitivity of Programs to Branch Misprediction Rate
and L1 D-cache Miss-rate across five different platforms.

Branch Prediction

High 4568_hmmer-1, 456_hmmer, 458 hmmer-2

47 1. omnetpp, 4208 mcf, 473 astar-1, 473 astar,
484 h2684ref-1, 473 astar-2, 400 perlbench-1,

Medi

MM 401 bzip2-4,  462libquantum,.  401.bzip2-3,  401.bzip2-2,

400.perbench, 401 bzip2, 445 gobmk-3, 401 bzip2-1, 484 h264ref,
401.bzip2-5,, 403 goc-8, 458 sjeng 401 bzip2-6, 403 .goc-4

464 h2G4ref-3, 445 gobmk, 445 gobmhk-1, 445 gobmk-.

Low 445 gobmk-2, 445 gobmk-5, 400 peribench-2, 464 h264ref-2,

403.gce-7, 403 goe-6, 400, peribench-3, 483 xalancbmk, 403.gce-2,
403 gcoe-5, 403 .gec-1, 403 gee, 403.gec-8, 403.goe-32




Table §. Sensitivity of Programs to Branch Misprediction Rate
and L1 D-cache Miss-rate across five different platforms.

L1 D-cache

462 libgquantum, 464 h284ref-2, 404 h204ref-3, 404 h264ref,

High 456 hmmer-1
Medium 458 hmmer, 458 hmmer-2, 400.perdbench-2, 400 perbench-3,
445 gobmk-3, 403.gcc-7
400.perbench, 403 .goc-B, 483 xalanchbmk, 473 astar-2, 403 gocc,
400.perbench-1, 473.astar, 464 h264ref-1, 445 gobmk, 473 astar-
1, 445 gobmk-4, 471.omnetpp, 4208.mcf, 403.gcc-8, 403.gec-3,
Lo 445 gobmk-2, 401 bzip2-3, 401 bzip2-5, 445 gobmk-1, 403.gcec-8,

403.gce-5,. 401 bzip2-2, 401.bzip2-8, 403.gcc-2,  403.geoc-1,
401 bzip2-1, 401 bzip2, 403.gcc4, 401 bzip24, 445 gobmk-5,
458 sjeng

[23] H. Vandierendonck. K. Bosschere, "Many Benchmarks
Stress the Same Bottlenecks™, Proc. of the Workshop on
Computer Architecture Evaluation using Commerical

Workloads (CAECW-7), pp. 57-71, 2004




3. In order to measure the sensitivity of a program to branch
predictor and L1 D-cache configuration, for every machine we
ranked programs based on these charactenistics. The difference 1n
ranks of a program across all machines 1s then computed. The
resulting number 15 indicative of sensitivity of that program for a
given charactenistic.

We will discuss this after Plackett and Burman method — Yi et al — in a few weeks



