CPU 2006 Working Set Size

Darryl Gove, Sun Microsystems (now Oracle)

ACM SIGARCH Computer Architecture News
Vol. 35, No. 1, March 2007

Metrics of Memory Usage —
Vsz and RSS

. Vsz
2. Virtual Size

. The amount of address space that the operating
system has reserved for the application.

. RSS

. Resident set size

6. A measure of how much physical memory i1s

actually being used by the application.
. RSS may be often same as vsz or it may be less.

Metrics of Memory Usage —
Vsz and RSS

Vsz
Virtual Size

The amount of address space that the operating
system has reserved for the application.

RSS
Resident set size

A measure of how much physical memory 1s
actually being used by the application.

RSS may be often same as vsz or it may be less.

Metrics of Memory Usage —
Vsz and RSS

Application has an 1nitial footprint of 100M
VSZ?
100M
RSS?
100M
WSS?

Application calls Unix mmap to allocate space for
reading a 1GB file

VSZ?
1.1GB

Metrics of Memory Usage —
Vsz and RSS

Application reads first one tenth of the file and 1s
working on 1t

VSZ?

1.1GB

RSS?

200M

WSS?

Depends on what all are accessed — Max = 200M

Application iterates over the 1/10%™ of the file
multiple times but accesses nothing else

VSZ =1.1GB; RSS =200M: WSS = 100M

Differences in malloc

Normal malloc and free

Solaris optimized library’s malloc and free
Optimized version takes larger amount of memory
But optimized for performance

Normal version reserves less memory

Working Set

WSS or working set size

WSS 1s an estimate of the size of memory 1n use
during application execution. It 1s usually estimated
over a small interval.

First Reference to WSS
Denning 1968
How 1s WSS estimated in Gove 2007?

At the level of 64-byte blocks

An array 1s used to record particular blocks touched.
After 1 billion mem operations, array traversed

The Working Set Model for Program Behavior

Peter J. Denning

Massachusetts Institute of Technology, Cambridge, Massachusetts

Probably the most basic reason behind the absence of a general
treatment of resource allocation in modern computer systems is
an adequate model for program behavior. In this paper a new
model, the “working set model,” is developed. The working set
of pages associated with a process, defined to be the collec-
tion of its most recently used pages, provides knowledge vital
to the dynamic management of paged memories. “Process”
and “working set” are shown to be manifestations of the same
ongoing computational activity; then “processor demand”
and “memory demand” are defined; and resource allocation
is formulated as the problem of balancing demands against
available equipment.

KEY WORDS AND PHRASES: general operating system concepts, multiprocess~

ing, multiprogramming, operating systems, program behavior, program
models, resource allocation, scheduling, storage allocation

LIl b P PN 4 e 4 e

Presented at an ACM Symposium on Operating System Prineiples,
Gatlinburg, Tenn., October 1-4, 1967; revised November, 1967.
Work reported herein was supported in part by Project MAC,
an M.L.T. research project sponsored by the Advanced Projects
Research Agency, Department of Defense, under Office of Naval
Research Contract Number Nonr-4102(01).

Volume 11 / Number 5 / May, 1968

develop a new model, the working set model, which em-
bodies certain important behavioral properties of com-
putations operating in multiprogrammed environs, en-
abling us to decide which information is in use by a running
program and which is not. We do not intend that the pro-
posed model be considered “final”; rather, we hope to
stimulate a new kind of thinking that may be of consider-
able help in solving many operating system design prob-
lems.

The working set, is intended to model the behavior of
programs in the general purpose computer system, or
computer utility. For this reason we assume that the
operating system must determine on its own the behavior
of programs it runs; it cannot count on outside help. Two
commonly proposed sources of externally supplied allo-

UIUIL ApU UL ULIIEE 11IUGUICD 1H1a Y U ullavallapic b cullipua-

tion time. Because of data dependence there may be no

t There have been attempts to do this. Ramamoorthy (2], for
example, has put forth a proposal for automatic segmentation of
programs during compilation.

Communiecations of the ACM 323

T
VI TATTIITI ST 9 TITIIIIYY, |
~ process fime

{pages referenced in this
interval constitute W(f,'r)}

Fi1g. 2. Definition of W({, 7)

Denning’s Definition of Working
Set

UIBIILELIIIIIII IS LIS :
SREIIIITIIELI IO AT AI0T), -» pDrocess fime

{pages referenced in this
interval constitute W(f,'r)}

Fi1g. 2. Definition of W({, 7)

Working Set

Different ways to estimate WSS
Granularity

Interval

Block size/page size

What 1s the significance of 1 billion mem operations
used by Gove?

Core Working Set Size (CWSS)
Blocks touched this interval and last interval

Why should one measure CWSS 1n addition to
WSS?

Percentage of workloads 80% of the intewer
that exceoed e workloads in CPU2006
100% z“a’ql!il'(at least 32MB

of memory

Integer workloads

80%

\

60% \

80% of the l'.'llt’g("l'

\\'UI'/.'./'U(A/\' in SPL.‘T'/)(.'() Cbo ’P\S\\S\

require at least >
40%7 smB of memory %

0
i)
20%
0% T | r T I . . . |
4 8 16 32 64 128 256 512 1024 2048

Memory size (MB)
Figure 1: VSZ and RSS for the Integer workloads

Percentage of workloads

that exceed memory size Floating point workloads

100%7 90% of the FP workloads
in CPU2006 have an RSS
greater than 32MB
80%" _
C'o(/e ‘\‘ Solaris reserves
000"? Y more than 1GB of
SS > memory for a small
60% S P percentage of the
e . workloads
o>
(N
40%] | . Q Vosz-.
60% of the FP workloads % Sg™
in CPU2000 have an RSS %
Bl greater than 32MB pa
20% >
Y
OOA) [| I T I \ | vln _____
- 8 16 32 64 128 256 512 1024 2048

Memory size (MB)
Figure 2: VSZ and RSS for the Floating Point Workloads

Percentage of workloads
that exceed memory size

100%

/ CPU2006 WSS Integer workloads
CPU2000 WSS

80%71 -
., 70% of the Integer workloads
* \ in both CPU2000 and
- % CPU2006 have a WSS
60% g greater than 16MB
Yo . 3% of the Integer
" workloads in CPU2006
40% 2 . have a WSS and CWSS
) greater than 256MB
CPU2000 CWSS —
*
20%7 CPU2006 CWSS ——+
0% | | i i | i R i |
4 8 16 32 64 128 256 512 1024 2048

Memory size (MB)

Figure 3: WSS for the Integer workloads

Percentage of workloads
that exceed memory size

Floating point workloads

25% of the FP workloads
sin CPU2006 have a WSS
greater than 256 MB

100%7
, 60% of the FP workloads
80% in CPU2000 and CPU2006
have a WSS of greater
. than 16MB
60%- / E
CPU2006 CWSS = Oxgm==
40% CO(J
900
“u,
o
20% Uy S
OOC
7%
38
0% 1 | 1 l |
4 8 16 32 64 128
Memory size (MB)

Figure 4: WSS for the Floating Point workloads

| |
1024 2048

512

256

1 I I 1
0 50 100 150 200 250
Memory Operations (Billions)

Figure 5: WSS over time of 453.povray

300

1
350

Voo (IVID)
o
o

e ——r

160 260 3[;0 460 560 6(']0 760
1 R —
70 Memory Operations (Billions)

Figure 7: WSS over time for 447.namd

-d
n o
(e I —

'l

5011.\'&k",ﬁ’4;‘,\ ‘l Jlf, r I UL JL- jlw J-,' J ‘m !

L

- f\l jL e qu'.ll |
I |

J Li | le Ak

!

I
0 100

I 1
200 300 400 500 800 700
Memory operations (billions)

Figure 6: WSS over time for 447.dealll

|
800

Tools Used

Spot

SHADE
SHADE-based profilers

[7] Simple Performance Optimisation Tool.
http://cooltools.sunsource.net/spot/

410.bwaves 917 900 4743 1314 4295 333

416.gamess 684 36 0.6 0.4 0.5 03
684 37 04 0.3 0.3 0.1

684 39 1.3 1.0 1.1 0.7

433.milc 693 691 230.8 589 2125 285
434.zeusmp 1167 533 270.1 559 1829 355
435.gromacs 41 26 8.6 0.2 86 0.0
436.cactusADM 1044 761 307.1 79 2065 6.3
437 leshe3d 147 133 752 1.8 75.2 0.0
444 namd 55 54 10.2 3.4 55 1.1
447 dealll 579 577 147 683 25.0 473
450.soplex 141 126 27.2 7.9 243 5.1

641 442 2015 30.6 196.6 33.6
453.povray 10 9 04 0.1 04 0.1
454 calculix 239 225 239 239 8.2 10.0
459.GemsFDTD 868 854 800.0 15.0 800.0 15.0
465.tonto 63 46 6.2 7.4 48 58
470.1bm 427 427 402.0 13.6 4003 29.0
481.wrf 737 715 163.5 479 120.6 34.2
482.sphinx3 50 50 10.6 1.3 98 1.1

Table 2: - Memory footprint for CPU2006 Floating Point workloads

168.wupwise 196 182 1623 177 1619 17.8
171.swim 215 201 683 199 574 173
172.megrid 72 59 550 02 546 0.0
173.applu 210 67 633 0.1 633 00
177.mesa 24 11 80 05 80 0.5
178.galgel 172 64 157 61 121 57
179.art 5 4 34 03 22 00

5 4 24 03 22 00
183.equake 30 28 206 12 204 04
187.facerec 70 35 163 17 159 08
188.ammp 16 15 132 02 132 03
189.lucas 161 148 1422 0.1 1422 00
191.fma3d 124 109 987 130 98.0 16.0
200.sixtrack 77 30 15 20 12 0.0
301.apsi 211 198 1369 152 1045 205

Table 4: - Memory footprint for CPU2000 Floating Point workloads

400.perlbench 6.4 5.7 5.3 3.0
333 330 21.1 304 1.7 8.3

594 591 513 257 25.1 138

401.bzip2 877 871 244 450 5.3 2.5
111 105 14.0 0.8 6.1 2.1

111 108 10.6 8.2 5.9 2.0

877 873 21.5 404 4.9 2.3

877 873 164 39.7 4.5 3.5

631 628 244 450 5.3 3.5

403.gcc 247 244 659 474 304 193
210 207 69.2 29.7 50.8 26.1

443 439 571 714 23.2 288

321 316 509 65.6 212 289

439 436 73.0 106.0 293 426

505 592 674 953 263 403

849 846 70.7 1193 25.0 457

960 955 37.6 169 33.6 15.1

91 89 37.6 169 33.6 15.1

429.mef 865 865 680.8 2419 616.8 307.6
445.gobmk 30 29 165 1.9 15.7 2.5
30 29 158 3.2 14.2 4.0

30 29 162 24 15.7 2.9

30 29 168 1.6 16.2 2.1

30 29 146 4.5 12.1 5.4

456.hmmer 13 13 82 46 61 25

62 62 20 02 1.9 0.1
458.sjeng 185 185 577 174 291 92
462 libquantum 108 107 327 49 323 35
464.h264ref 34 33 84 07 50 05

260 25 55 06 41 07
71 70 62 29 21 05

471.omnetpp 125 124 241 53 210 3.0
473 .astar 321 314 260 187 220 114
137 136 35 38 31 23

483 xalancbmk 351 345 278 178 201 113

Table 1: - Memory footprint for the CPU2006 Integer workloads

164.gzip

175.vpr

176.gcc

181.mef

186.crafty
197 .parser

252.eon

253.perlbmk

186
186
186
186
186

151

120

96

186
186
186
186
186

41
150
97
51
72
93
98

24

71
10

119
63
65
95

56.7
62.9
96.7
105.0
40.5
1.2
29.8
62.5
224
35.6
56.8
214
74.0
1.4
13.6
0.1
0.1
0.1
124
8.2
0.1
23.3
19.5
20.6
21.0

25.5
13.5
20.7
18.5
32.6
0.3
2.7
47.5
14.0
14.3
10.5
16.7
26.9
0.1
3.3
0.2
0.2
0.2
14.4
N/A
0.1
17.4
12.0
12.8
13.5

38.0
554
78.3
01.8
19.0

1.2
27.2
28.6
13.5
24.2
47.2
11.0
41.3

1.3
11.6

0.1

0.2

0.1

1.0
N/A

0.1
10.2
10.4
11.6
10.4

29.8
17.1
18.0
15.7
24.7
0.0
1.9
25.6
6.6
N/A
N/A
8.2
25.2
0.0
2.6
0.0
0.0
0.0
1.2
N/A
0.0
8.2
9.1
9.5
8.5

- o a . - -~ o

254.gap 200
255.vortex 87
68

96

256.bzip2 191
191

191

300.twolf 5

199
86
67
05

190

190

190

4

174.3
44.5
31.3
46.5
264
25.6
25.2

1.2

s -

279
11.4
10.4
14.3
20.9
18.8
18.8

0.3

168.2
33.6
19.3

32.6
10.0

7.0
7.5
1.2

34.3
04
4.1
8.8
8.2

3.4
4.0
0.0

Table 3: - Memory footprint for the CPU2000 Integer workloads

