
Scribe notes Oct 14, 2014

Exam info:

• 90+: 1

• 80+: 8

• 70+: 7

• 60+: 4

• median: 77

• average: 76.5

Announcements:

• Assignment 3 now due 10/26 (takes a lot of time to run, start now!)

• Assignment 4 will be the last assignment, to spend more time on project.

• Critiques now due at 8AM.

• References in papers we write need to include page numbers.

NOTES:
finishing Conte paper. . .

• Def 2.5 – Directed Reference Graphs (DRG)

– Control flow between instructions

– Vertices are addresses

– Edges are DRG, flow between

– Reference Graph edges weighted, nodes also weighted.

– Used for detecting phases in program.

• Def 2.7 – Can break graph into subgraphs for phases

– Fine-grained phases

∗ From a node, any other node in phase can be reached. In new phase, items guaran-
teed not to be previously referenced.

• Def 2.8 – Probability that phase is encountered.

– Can reason about phase behavior from this.

• Weighted basic block graph - collapsing of the bigger graphs.

• Def 2.9, 2.10 – Branch prediction probability statically assessed (i.e., weights of branching
edges in graph)

– Mulitiply weighted edges by weight of node to get probability of occurrance for the
branch.

– Compilers can optimize by changing branch opcode to hint to the dynamic branch pre-
dictor about what to expect.

1 of 3



Scribe notes Oct 14, 2014

• Table 1:

– Q: Why are the locality and phase behavior functions included in “flow control” table?

– A:

∗ Temporal locality: These behaviors can be correlated to control behavior.

∗ Spacial locality: Indicator of control flow.

∗ Phase behavior: density important for flow control.

• Data flow GRIPs:

– Can analyze lifetime of variables → locality/reuse of variables.

– Minimize number of registers needed.

∗ But then register renaming in hardware has to reverse this action.

∗ Might be good if compilers did less of this.

∗ However, still need compilers to do this to some degree for ease use/analyzing.

∗ Use graph coloring to determine number of registers needed.

∗ Number of registers estimated by life density function.

• Def 2.11 – Variable life density function

– Number of registers used.

– Number of spill/fill code.

• Table 2 – Data flow GRIPs

• Def 2.12 – Data dependence behavior (Data flow graph)

– This is related to lab 3.

– Tight dependencies vs. loose dependencies.

– Indication of amount of dynamical scheduling possible.

SYMPO paper

• Auto-create max-power benchmarks.

– To test chips.

– Discover ways to exceed specified TDP.

– Don’t want to over-design thermal for processors, so need to find a way to reach a
realistic max power level.

– Companies usually have knowledgable designer hand-write a benchmark in assembly for
worst-case.

• Takes aways need for human judgement of worst-case scenario – use genetic algorithm.

• Find practically-attainable maximum.

2 of 3



Scribe notes Oct 14, 2014

• Need it for the whold system: core and uncore.

• Only reference tests for x86 were publicly available.

• Tests on actual hardware (AMD-designed board).

– Objective to beat k7 previous worst-case.

• start with a random sequence of instructions → read power → genetic algorithm → another
case generated to test → read power, etc.

3 of 3


