Newsflash: ARM mbed

- IoT Device Platform
- Mbed OS
 - o Free on ARM architecture
 - Designed w/ power efficiency in mind
- RESTful Architecture
 - o Client-server separation
 - o Stateless
 - o Cacheable
 - o Layered system
 - o Code on demand
 - o Uniform interface
- Common OS and Connectivity Across Markets
 - Smart Cities
 - Smart Homes
- Expected release date: End of 2015

A Statistically Rigorous Approach for Improving Simulation Methodology

- Common questions about the paper:
 - ANOVA
 - Before-and-After Comparison
 - Used to determine the confidence interval
 - t = Student's t distribution
 - O A table, assuming the normal distribution, what is the coefficient (a) which should be used to guarantee a certain level of confidence
 - ANOVA Example
 - Overall effect compared to individual effect to determine which had the largest impact
 - Minne SPEC
 - University of Michigan
 - Inputs are miniaturized in such a way that the benchmarks still behave in a way similar to if they were given the full, standard input.
 - Reasons for disuse:
 - Sampling
 - Simpoint
 - \circ RAS
 - Return Address Stack
 - Stores the return addresses of function calls
 - Allows return targets to be quickly retrieved
 - Sum of Ranks
 - Why didn't they just take the average?
 - Could have been useful for removing outliers
 - Authors did say that the ranks are arbitrary
 - Usefully for distinguishing between different parameters. Rather than assigning some score to each parameter, one could simply say which is more important than the other.
 - There's some evil in every approach
 - Foldover PB
 - Add X additional rows to PB matrix
 - Signs of additional rows are opposite of original rows
 - Provides some additional insight
- Plackett and Burman Designs
 - https://onlinecourses.science.psu.edu/stat503/node/52
 - Requires significantly less simulation than other methods
 - o Parameters are set to reasonable values and not randomly generated
 - o Similarity study performed using bottleneck similarity instead of program characteristic study
 - Study is architecture-dependent

- Design of Experiments Terminology
 - o Response Variable
 - Measured output value
 - E.g. total execution time
 - o Factors
 - Input variables that can be changed
 - E.g cache size, clock rate
 - o Level
 - Specific values of factors (inputs)
 - Continuous (~bytes) or discrete (type of system)
 - \circ # of Experiments = L^F
- Full Factorial Design w/ Replication
 - Measure system response with all possible input combinations
 - \circ Replicate each measurement n time to determine effect of measurement error
 - m factors, v levels, n replications
 - n * v^m experiments
- Fractional Factorial Designs: $n2^m$ experiments
 - o Resrict each factor to two possible values
 - High, low
 - On, off