Lecture 3 Notes – Topic: Benchmarks

- What do you want in a benchmark?
 - benchmarks must be representative of actual workloads
 - first few computers were benchmarked based on how fast they could add/multiply
 - Main use of computers originally
- In the 70's, first time people though of actual programs
 - o matrix multiply early first program benchmark
 - Sorting
 - Stone Age synthetic benchmarks
 - Whetstone (fp)
 - Dhrystone (int)
 - 25 years ago papers begging coming out about how bad they were
 - · not representative of actual workloads
 - Synthetic artificial constructs, Fortran, Ada, Pascal
 - Dhrystone has a lot of C. character data type
 - Linpack
 - Linear Algebra Package
 - not synthetic
 - actual package scientist use to solve linear algebra problems
 - Lawrence Livermore Loops (LLLs)
 - LL Labs.
 - Pulled out 14 different loops from their programs
 - Then added 8 more
- Paper An Overview of Common Benchmarks (IEEE Computer magazine, Broader readership, not journal)
 - Called old benchmarks "Stone Age Benchmarks"
 - Wet and Dry because rubbing knife by rubbing against stone
 - Program checked for quality
 - Sieve of Ratosthenes
 - Prime Number algorithm
 - Benchmark used for many years
 - Great as a power benchmark
 - the only natural program that takes the most power was prime number generation
 - EDN Benchmarks
 - Electronic Design Use (magazine) 80's
 - Magazine came up with their own benchmark, from the point of view of journalism
 - One of the first
 - o 1989, SPEC released first suit
 - This paper shows what was done before SPEC

- o Table A. Statement Distribution in percentages
 - Dhrystone just tries to have a certain percentage of each operation
- Table B. operator distribution in percentages
 - Linpack is almost always 1 add/1 multi
 - C features in Dhrystone only
- Table C. Operand data-type distribution in percentages.
 - Distribution of structures that are used by benchmarks
- o Table 1. Procedure profile for Whetstone.
 - optimized math library were and still good way to increase performance.
- Table 2. Procedure profile for Linpack
 - SAXPY (single precision) A * X + Y
 - DAXPY (double precision) ""
 - one loop y[i] = y[i] + a*x[i]
 - 77.1 percent of operations
 - Real program
- Stone Age Benchmarks
 - People use to use global variables a lot
 - Principles now use local variables
 - No I-Cache because of such little code
 - o People run around rules by using compiler that would eliminate code.
 - Tried to add rules and print statements so people didn't
 - some compilers didn't compile if operand not used
 - 1988 People complaining about competitors cheating
 - So SPEC and TPC founded in summer of 1988
 - How to stop cheating
 - SPEC desktops use this for benchmarking
 - TPC transaction processing council, for large data centers/servers
- Benchmarks
 - CPU benchmarks
 - Centered on pc's microprocessor
 - (SPEC)
 - SPLASH from Stanford, parallel intensive
 - STREAMS popular for streaming workloads, 90's. Worked at UT TACK
 John McCalpin
 - Transactions Processing Benchmarks
 - Useful for big company (bank)
 - Transaction like bank transactions, ordering, etc.
 - Computer could handle more or less "transactions" = more money
 - Embedded and media Benchmarks
 - For small devices with computers, cell phones
 - Majority of processing these days, consumer market
 - o HPC (Supercomputing) Benchmarks
 - Scientific computing
 - Cloud/Big Data Benchmarks

- New
- Can fall under TPB
- "Big Data"
- Need to analyze large data sets
- State of benchmarking not as mature, just coming out
- Web Server Benchmarks
 - SPEC web benchmark
 - But recently retired
 - These benchmarks popular because big thing you do
- Browser Benchmark
 - client side web benchmark
 - javascript
 - load times
 - processing
- PC Benchmarks
 - make for drawing lines, small operation
 - Office related tasks
 - Photoshop
 - Common things
- Parallel Processing Benchmarks (NPB)
 - SPLASH
 - Nas Parallel Benchmark (NPB)
 - has a lot of communication between threads
 - very parallel benchmarks
 - Developed by NASA
 - NP (embarrassing parallel)
 - purely vectorized program, no dependency, fully parallelizable
 - Character: Vectorizable
- Java Benchmarks (SPECjvm98, SPECJjvm2008)
 - newer, popular
 - huge part of computing world
 - phones, cloud
- o GPU Benchmarks
 - Application vs. processing
- HINT Benchmark
 - Will be reading soon
 - Scientific computing domain
 - very different then above benchmarks
- SPEC CPU Benchmarks
 - Most papers in last 25 years about SPEc
 - SPEC CPU 1989 (10programs, 4c INT, 6Fortran FP)
 - equintot (equation to truth table) workstations first coming out
 - · for first automated tools which came out

- place & route
- design automation
- SPEC CPU 1992 (20, 6C int, 14 fp (2c, 12f))
 - most architecture papers talk about integer side
 - integer program are more random with jumps and loops
 - floating point more predictable program flow usually because of application
 - math more interesting
- o 1995 (18, 8C int, 10 F FP)
- o 2000 (26, 12 int (11c, 1C++), 14 fP (10F, 4C))
- All code in spec is real program, submitted outside of SPEC and analyzed
 - code must compile on most compilers
- o 2006 (29, 12int, 17 fp (c, c++, F)
- o next iteration: 14/15
- TPC Benchmarks
 - Database and Transactions Benchmarks
 - 8 different companies came together to form TPC
 - sun, mips, hp, etc.
 - for transactional workloads
 - o cloud workloads, for big players
 - not as wide as SPEC
 - Dr. Jim Gray guru of database systems
- Jim Gray
 - o 1988 at Tandem Computer promoted by paper in '85
 - what happens when you are buying in credit cards
 - made benchmark for these loads
 - Wrote TPC-A
 - TPC is synthetic (cannot have real world input)
 - Business side, tried to understand stores, prices, stocking shelves, timing, etc.
 - Started Microsoft Research group
 - o went sailing after mothers death, never found
- Transaction Categories
 - OLTP (OnLine Transaction Processing) looking on amazon, checking bank
 - lots of transactions from multiple sources
 - each transaction small
 - DSS (decision support system) looking at a lot of data, analysis to make strategic decisionss
 - data from OLTP side periodically filtered to DSS side
 - runs for a long time trying to figure out one thing
 - "data-mining"
 - OLAP (On Line Analytics Processing) combination of both OLTP and DSS
 - book suggestions
 - google search personalized

- TPC Benchmarks
 - o TPC-C (OLTP)
 - o TPC-H (DSS)
 - TPC-E (OLTP)
 - o TPC-DS (DSS)
 - o TPC-W (OLAP) release 2003, retired 2004, inadequacies
 - o TPC-VMS run rules for how to run other benchmarks on a virtual machine
 - o TPC-Big Data
 - in the works