9/11 Performance Evaluation Class Note

Calibration of Microprocessor Performance Models:
Author: Bryan Black, John Shen
Sources of Error:
Modeling Error - designers understand task correctly, but implement it

wrong
Specification Error - designers is misinformed about the correct
functionality
Abstraction Error - Some features are abstracted to keep modesl

simple/fast. But the abstraction is wrong.

Background of paper: IBM asked CMU to develop performance simulators. CMU
received specification from industries and tried to simulate more realistic. They
validated their modeling by comparing their modeling result and result of running
on real hardware. They found a lot of modeling error.

Specification Errors: FF multiply-add record instructions need a latency of six
cycles and reserve all pipeline stages. (Documented as three cycles)
Complex instructions that modify the overflow bit

Modeling Errors: Mtfsb0 and mtfsb1 dispatching need to dispatch to the ff unit
and not the complex integer unit
Instruction finish adds an extra cycle to latency and should be
part of the last cycle of execution
Load instructions execute in a single cycle, but it should be
two
Complex integer unit is not fully pipelined

We have to always assume there are errors in our modeling and work

Abstraction Error: Branch misprediction paths are not simulated
Data-dependent execution is not simulated
The memory hierarchy assumes L2 are always hit, never be
modeled.

Validation by inspection: single step through small code sequences
Okay with trace-driven
Difficult with execution driven
Incremental observation with incremental inputs, like
we can do 100 iterations first then 200 iterations



Sanity checks with an array of instrumentation
counters

Simple code sequences to exercise boundary conditions
of all resources in the model

Validation Phases: Alpha test - exercise instruction latency by executing each

instruction one at a time

Beta test — more complicated test than alpha

Random test sequences — up to 100 instructions exercise
interactions among instructions and the different components of the
microarchitectures

ATPG - automatic test pattern generators as in digital circuit
design and testing

Handwritten patterns - to test microarchitectural features
for which tests are difficult to generate automatically

Shen’s alpha, beta, gamma tests are generated by ATPG. ATPG extracts ISA
information.

Infant model validation: Gamma has 29890 instruction counts, all fails in the
test

Child model validation: if they allow one cycle error, alpha passed all. And
Gamma passed more than 80%. Random sequence still showed huge amount of
errors

In early models, misprediction path are just cycle penalties.

Shen also used his infant model and child model to compare with the hardware
reference models in order to validate his modeling. They used cjpeg, grep, gperf, and
other benchmarks.

In some cases, two errors may cancel each other, but actually there are two big
errors existing in the model.

TPC benchmarks:
C (OLTP), H (DSS), E (OLTP), W is the one like amazon, DS(DSS), VMS (a
combination of pervious benchmarks running on virtualized machines)
TPC-Queries:
Read and update Queries in OLTP
Read-only are more frequent in DSS
Written in SQL



TPC-C:
Modeling a business worldwide case, OLTP.
1992
metric: business throughput, number of orders processed per min,
transactions
TPC-E:
For stock market
Metrics: tpse, $/tpse
Has 33 tables, more than common ones

SPECjbb benchmarks:
This is the benchmark written to shrink down the requirement of the
database from TPC.
SPECweb benchmarks:
It does not exist now.
VolanoMark:
Try to model the chat room.

Embedded Benchmarks:
EEMBC Benchmarks - Motorola used it for automobiles embedded
processor

BDTI Benchmarks - they are evaluating and scoring your processor

MediaBench : has JPEG, MPEG, and etc.

MiBench - originally is a copy of EEMBC

MorphMark - for embedded java

MIDP Mark - also for java

Andriod - current one for java application and system

Coremark - generic benchmark from EEMBC, targets on processor core,
ignores memory and i/o systems



