Scribing - September 25th

SPEC CPU2006 Sensitivity to Memory Page Sizes

Wendy Korn (IBM), Moon S. Chang (IBM)

- Good thing about this paper: It is possible to build the system based on the info given in the paper and reproduce the results.
- Two of SPEC's criteria
 - It should spend over 95% of the execution time in the submitted code.
 - ♦ System calls & libraries if used heavily, not picked. Benchmarks will be sensitive to those libraries.
 - It use less than 900MB of memory in 32-bit mode.
- IBM Power 5+ processors
 - It was the latest processor then.
 - Interesting point: Instruction cache > data cache
 - ♦ Data cache won't fit any way.
 - SMT processor doesn't mean much for SPEC2006
 - IBM POWER5 MMU
 - ♦ Three types of address translation
 - ♦ TLB (translation look-aside buffer)
 - ♦ SLB (segment look-aside buffer)
 - ♦ ERAT (effective to real address table)
- POWER5 PMU (Performance Monitor Unit)

- Reference paper: Maron, B., Chen, T., Vianney, D., Olszewski, B., Kunkel S., Mericas, A. Workload Characterization for the Design of Future Servers. Proceedings of IEEE International Workloads Characterization Symposium (IISWC), 2005.
- 2 dedicated registers that count
 - instruction completed
- The way to measure performance
- 4 programmable counters, can count 300+ events from CPU
- The meaning of the numbers after L, such as L2, L25, L35, L275...
 - ♦ Whether the cache is near/far by/from processor
 - ♦ Clarifies the Non-uniform cache access latency in this way
 - ♦ Depends on the physical location and the distance
- AIX Support for Multiple Page Sizes
 - 4 different page sizes supported
 - Boot-time: determines the number of 4KB and 64KB pages
 - 3 regions of address space: text, data, stack
 - Kernel uses 64KB pages for shared library
 - 16MB only available for text and data
 - Vmo instruction: enables large pages
- Multiple page size support
 - 3-ways to bind a page size to a particular executable
 - ♦ Linker options
 - ♦ Linker tool
 - ♦ Environment variables
 - Three different page sizes

- ♦ Small pages (4KB)
- ♦ Medium pages (64KB)
- ♦ Large pages (16MB)
- Data collection
 - Used OS commands like symon, perf-counters
 - Speed-run: running one instance of the benchmark on a single core
 - As opposed to rate-run (spec-rate):
 - ♦ SPEC introduced this concept when multicore came out.
 - ♦ 4 cores 4 copies then, execution time divided by 4
 - ♦ You can't run different benchmarks because of conflicts in shared caches.
 - Snapshot of text, data, and library regions
- Average and maximum memory usage with various page sizes
 - In appendix A, small different no huge difference
 - gcc: weird drop in avg with 16MB page size, difficult to explain
 - cactusADM: huge difference
- About Figure 1
 - CPI stack: translation miss dominates
 - Not overlapped in time domain
 - 471.omnetpp: good special locality
 - No different between 64KB and 16MB
- About Figure 2
 - No branch misses, i-cache misses
- GM is consistent but consistently wrong.
- What makes good mean?
 - Time-based mean: should be directly proportional to total weighted time

- Rate-based mean: If time doubles, mean value should reduce by half.
- What means satisfy these criteria?
 - AM: proportional to sum of inverse of times, but not appropriate for summarizeing rate
 - ♦ HM: not directly proportional to sum of time, but good for summarizing rate
 - ♦ GM: maintains consistent relationship when comparing normalized values, but wrong
 - Not good for time nor for rate
- One example that GM works: $2,3,6 \rightarrow 3,4,7$
 - \blacksquare GM(3/2, 4/3, 7/6) = 1.326
- Any situation in which GM is correct?
 - Read the paper: War of the benchmark means: time for a truce (John R. Mashey)
 - Validity of GM in certain situations