
0018-9162/98/$10.00 © 1998 IEEE May 1998 59

Calibration of
Microprocessor
Performance Models

T
he microprocessor industry can capably pre-
dict the clock frequency and functionality of
first silicon—the first small set of chips made
for a new design. However, predicting first sil-
icon’s performance on real programs remains

a challenge.
Designers use performance models during the devel-

opment of microprocessors to predict the average
number of executed instructions per cycle (IPC). IPC
measures instruction throughput and is a key factor in
the overall performance of a microprocessor. Perfor-
mance models, which are usually implemented in a
high-level language such as C or C++, measure instruc-
tion throughput. They do so by capturing the timing
essence of instruction execution; that is, by modeling
the latency of instructions, the dependencies between
instructions, and the allocation of limited resources in
the microprocessor implementation.

Microprocessor designers use performance models
to assist in design decisions.1 These models allow the
designer to evaluate new ideas, without the cost of fully
implementing them in hardware or in a hardware
description language, such as Verilog or VHDL (very
high speed IC hardware description language). Often
the validation of such performance models is not an
algorithmic process and relies largely on “validation by
inspection.”

SOURCES OF ERROR
As in all design efforts, performance modeling is sus-

ceptible to many sources of error, including but not
limited to modeling, specification, and abstraction
errors. Modeling errors occur when the developer
understands the modeling task but incorrectly codes
the desired functionality. Specification errors occur
when the developer, misinformed about the correct
functionality, models the wrong behavior. To keep per-
formance models simple and fast, the details of some
features are abstracted. An abstraction error occurs

when the developer implements a feature at a higher
level of abstraction without maintaining equivalent
instruction timing. Abstraction errors also result from
features that are not implemented but end up having
significant impact on instruction execution timing.

VALIDATION BY INSPECTION
Much like functional validation of hardware in the

past, validating performance models today relies
mostly on inspection. The programmer-intensive
inspection/validation process involves analyzing the
simulation process and performing sanity checks on
the simulation results.

Inspection may require single stepping through the
execution cycles of small code sequences and observ-
ing the performance model’s internal state. The devel-
oper bears responsibility for sighting incorrect
behavior as the code sequences execute. Sanity check-
ing uses an array of instrumentation counters that are
built into the performance model. These counters
gather statistics, such as the IPC, cache miss rate,
instruction dispatch rate, and the average and peak
resource usage. They also provide summary statistics
about the behavior of a code sequence.

Developers devise simple code sequences to exercise
the boundary conditions of all resources in the per-
formance model. Simulating these code sequences and
analyzing the resulting counter statistics provide clues
to finding incorrect behavior.

Longer code sequences and benchmarks are also
used for sanity checks. Designers run simulations of
large benchmarks, using different microarchitecture
configurations for each run. They then analyze the
counter statistics. If they find the expected behavior,
they gain increased confidence in the performance
model. If the counter statistics do not match intuitive
expectations, and designers cannot determine an
explanation, they search the performance model for
possible errors.

Microprocessor designers use performance models to predict performance
and guide their design decisions. Experimental results in this article
highlight the significant effort required to achieve a truly cycle-accurate
performance model and the necessity for systematic validation of
performance models to ensure their accuracy and usefulness.

Bryan Black
John Paul Shen
Carnegie Mellon
University

Co
ve

r F
ea

tu
re

.

60 Computer

Although these inspection techniques effec-
tively debug a model, without a systematic val-
idation method, it is difficult to place a high
level of confidence on the results produced by
these performance models. Our calibration of
a performance model against actual hardware
demonstrates the risks of relying solely on
inspection-based validation. We propose a sys-
tematic method for calibrating a performance
model against a register transfer level (RTL)
implementation of the microprocessor—a gate-
level model of the hardware. Our results sug-
gest the potential effectiveness of the proposed
calibration method.

PERFORMANCE MODEL DEVELOPMENT
We chose a performance model for the IBM/Moto-

rola PowerPC 604 as an experimental vehicle. The
model was implemented in the Microarchitecture
Workbench (MW),2-4 a performance-modeling envi-
ronment developed at Carnegie Mellon University.
MW provides a framework that minimizes the
amount of work required to develop a performance
model and the number of changes necessary to eval-
uate new microarchitecture features. MW has been
used to model several microprocessors, including the
Digital Alpha 21064 and 21164 and the PowerPC 601,
604, and 620. Carnegie Mellon has distributed MW to
several other universities and commercial companies.

The PowerPC 6045-7 is a superscalar microproces-
sor capable of out-of-order execution. It is a four-wide
processor, which means it can fetch, dispatch, and
complete up to four instructions per cycle. Because the
604 has six execution units, it can issue (that is, initi-
ate execution) and finish the execution of up to six
instructions per cycle.

Our performance model can capably model all the
key microarchitecture features of the PowerPC 604,
including branch prediction, instruction fetch and dis-
patch, register renaming, out-of-order instruction issue
and execution, execution result forwarding, the non-
blocking cache hierarchy, load/store alias detection,
instruction refetching, and in-order completion.

Because the model is trace-driven, it does not actu-
ally simulate mispredicted branches. It does accurately
model the penalty cycles due to a misprediction
because the 604 performs a pipeline flush (it empties
instructions from the pipeline and starts over) on a
branch mispredict. However, our performance model
does not account for potential instruction cache pol-
lution caused by loading the cache with instructions
on the mispredicted path.

PERFORMANCE MODEL VALIDATION
Validation involves generating test cases, stimulat-

ing the model under test, and comparing execution

results to a known reference. Functional validation in
microprocessor development validates the hardware
structural model (RTL model) against a known behav-
ioral model. A behavioral model simulates the instruc-
tion set execution of a microprocessor. Because such
validation is limited by the test cases executed, design-
ers expend great effort to generate a wide variety of
test suites. Test suites in functional validation range
from explicitly and randomly generated instruction
sequences to those that are handwritten. We adopted
existing functional validation techniques and associ-
ated test suites to validate our performance models.
By design, functional-validation test suites exercise the
functionality of an RTL model, although they neglect
instruction timing. However, these same test suites
have instruction execution timing results that func-
tional validation simply does not verify. We used these
same test suites to validate the timing of instruction
execution in a performance model.

Performance model validation reference
All validation methods require a reference to deter-

mine if a test sequence passes or fails. We focused on
validating the correctness of the PowerPC 604 per-
formance model implemented on the MW. The ideal
reference is the RTL model developed during the
implementation of a new microprocessor. Unfor-
tunately, we do not have access to the RTL model of
the PowerPC 604. Instead of the RTL model, we used
the actual hardware as the reference machine. More
specifically, we chose an IBM Power Series 850 AIX
4.1.3 system as the reference machine. We can use an
actual machine because the PowerPC 604 chip pro-
vides a set of hardware-embedded counters. These
counters provide adequate observability into the exe-
cution of code—to extract cycle counts, instruction
count, completion rate, and other statistics.

PowerPC 604 hardware counters. The set of hard-
ware-embedded counters is called the performance
monitor,7 which in the PowerPC 604 includes two 32-
bit counters and a 32-bit control register. The two
counters count events during execution, and the con-
trol register determines which event each counter will
monitor. The PowerPC 604’s performance monitor
can count many events, such as misses in the cache
and translation look-aside buffer (TLB), instruction
dispatches, instruction finishes, instruction comple-
tions, and load/store miss latencies. Different event-
counting modes allow the user to count only
supervisor code, user code, or specially marked
processes.

Hardware counter interface. The hardware counters
are implemented as special registers accessible only in
supervisory mode. Special supervisor instructions pro-
vide read/write access to the counter and control reg-
isters. Because these registers are accessible only in

Performance model
validation involves

generating test
cases, stimulating
the model under

test, and comparing
execution results to
a known reference.

.

supervisory mode, we developed a set of AIX
(Advanced Interactive Executive, IBM’s Unix) dynam-
ically loadable pseudodevices to interface user code to
the supervisor instructions. The header of the pseudo-
device initializes register state, flushes the machine
pipeline, and then configures and starts the perfor-
mance monitor counters. Execution of the test
sequence begins, and a trailer stops the counters and
returns the count results to the calling function. This
device provides a clean interface to the performance
monitor at the cost of a small, fixed overhead.

Performance model validation test patterns
We defined five different test suites to target specific

portions of the PowerPC 604 performance model.
Alpha tests exercise instruction latency by executing
each instruction one at a time. Beta tests check pipeline
dependencies within an instruction type—for exam-
ple, data forwarding and register renaming—by exe-
cuting each instruction two to 100 times back to back.
Gamma tests execute each instruction next to every
other instruction, testing pipeline dependencies
between instruction types and data forwarding across
functional units. Random test sequences of up to 100
instructions exercise the interactions among instruc-
tions and the different components of the microar-
chitecture. Finally, handwritten patterns test micro-
architecture features for which tests are difficult to
generate automatically or those not sufficiently cov-
ered by random sequences.

These five test suites are only a small portion of the
functional validation process used by IBM and
Motorola for PowerPC microprocessors. A complete
validating process involves dozens of automatically
generated and specially directed test suites and years of
random test sequence execution. Although we use only
the five test suites to illustrate the need for performance
model validation, the calibration method suggested by
our work advocates the use of all functional validation
test suites for performance model validation.

Automatic test suite generation. The alpha, beta,
and gamma test suites are generated by an automatic
test pattern generator (ATPG) that is built into the
MW framework. The ATPG tool extracts informa-
tion about the instruction set architecture from the
performance model and generates executable code
sequences that fall into the alpha, beta, and gamma
categories of test sequences.

The ATPG also generates executable random code
sequences. All source and destination operands are
randomly selected with the exception of branch
instructions and load/store instructions. Branches are
not allowed to leave the program space and loop for
a random amount of time less than a preprogrammed
maximum. Load/store instructions access random
data locations from an allocated data space.

Handwritten test suite. Handwritten tests are usu-
ally designed to exercise boundary conditions as well
as obscure functional states that a random test gen-
erator may not exercise. These tests improve test cov-
erage by stimulating certain signals in the hardware
implementation. As with hardware models, perfor-
mance models have boundary conditions and behav-
iors involving obscure states. Proper validation of a
performance model must include handwritten tests.

The validation of the PowerPC 604 performance
model includes several such test sequences. These test
sequences are mostly branch and load/store tests
designed to exercise the branch paradigm and mem-
ory hierarchy. These tests are inserted into the per-
formance monitor device drivers. Hardware counter
statistics pinpoint the hardware’s behavior.

Putting it all together
Figure 1 illustrates the experimental framework

used to validate the PowerPC 604 performance model.
The ATPG tool directly accesses the MW instruction
set architecture specification files and generates exe-
cutable code sequences for use in validation. These
code sequences are pushed through a trace generator
and the resulting trace is executed on the MW per-
formance model, which yields an execution cycle
count. Concurrently, we add the same code sequences

May 1998 61

ATPG
tool

Instruction set
architecture specification

Trace
generator

AIX
device

Code
sequence

Microarchitecture
workbench

(PowerPC 604 model)

PowerSeries 850
(PowerPC-604-based

machine with
embedded counters)

Are the cycle counts
of the model and

reference machine equal?

Test sequence
passes

Test
sequence

fails

No

Yes

Figure 1. Performance
model validation
process.

.

62 Computer

to the AIX pseudo-device described earlier. This AIX
device brackets each code sequence with embedded
performance counter control. A read of the device exe-
cutes the code sequence on an actual PowerPC 604
system. The AIX device returns the number of execu-
tion cycles on the actual hardware. If both cycle counts
are equal, the test sequence passes. This framework
produces large numbers of automatically generated
sequences, which can be strictly random or directed

toward certain microarchitectural features. We then
measured the accuracy of the PowerPC 604 perfor-
mance model by the passing percentage of test
sequences.

INFANT MODEL VALIDATION
The initial MW-based performance model we

developed is called the infant model. To illustrate the
need for systematic performance model validation, we
validated the infant model by inspection only. Using
inspection over a long debugging period, we found
and repaired many bugs. During this time, we ran sin-
gle-stepping studies of the simulation process and san-
ity checks on the simulation results.

It was thought that the resultant infant model
would accurately model the PowerPC 604, and con-
tinuing the debugging process should find the few
remaining bugs. After this validation by inspection,
we applied our proposed systematic performance
model method, which uses the five test suites. Table 1
shows the results of applying these test suites to the
infant model. A failure is any test for which there is a
difference between the cycle counts of the performance
model and the hardware reference machine.

The infant model failed badly on most of the test
suites. It correctly modeled the latency (alpha tests) of
only 51.0 percent of all the instructions. Even worse,
it correctly modeled instruction pipelining (beta tests)
for only 30.6 percent of all the instructions. The
gamma tests, handwritten tests, and random
sequences had a 100 percent failure rate. Given such
poor results, there can be little confidence in the results
produced by this infant model.

CHILD MODEL VALIDATION
We used the test suite results to debug the infant

model. After this debugging process, we called the
infant model a child to reflect its status as a more
mature performance model. Bugs infected every aspect
of the microarchitecture and ranged from incorrect
instruction latencies to instructions dispatching to the
wrong functional units. Table 2 lists some of the more
interesting errors found during validation. Table 2
clearly shows that errors of all types play a role in the
accuracy of performance models. Such a wide range of
failures indicates the need for a systematic validation
method. The significant number of modeling errors
further demonstrates that inspection methods will not
fully debug a performance model. Table 3 shows the
number of tests or test sequences in each test suite,
with the current number of passing and failing
sequences.

Accurate modeling of instruction latency (alpha
tests) increased from 51.0 to 95.9 percent. Pipeline
modeling (beta tests) improved from 30.6 to 75.4 per-
cent. When we relaxed our criteria and allowed a sin-

Table 1. Infant model validation results.

Pattern Instruction No. of failing Passing tests
type count tests* (percentage)
Alpha 245 120 51.0
Beta 2,940 2,040 30.6
Gamma 29,890 29,890 0.0
Handwritten 500 (approximately) 500 (approximately) 0.0
Random sequences** N/A N/A 0.0

* Pass/fail based on a zero-cycle difference.
** Random sequence numbers were never recorded due to 100-percent failure.

Table 2. Samples of errors found by applying the proposed method to the
infant model.

Error type Description
Specification Floating-point multiply-add record instructions need a latency

of six cycles and reserve all pipeline stages (documented as
three cycles).
Complex instructions that modify the overflow bit need to take
one extra cycle (not specified).
The Isync instruction should wait for both the completion buffer
and the write-back buffer to empty before execution.
The Isync instruction needs a latency of five cycles
(documented as one cycle).

Modeling Mtfsb0 and mtfsb1 dispatching need to dispatch to the floating-
point unit and not the complex integer unit.
Instruction finish adds an extra cycle to latency and should be
part of the last cycle of execution.
Load instructions execute in a single cycle; it should be two
cycles.
The complex integer unit is not fully pipelined.
An incorrect number of branches exposed to prediction during
decode and dispatch.
Branch execution corrects later branch mispredictions.
Reservation stations issuing out-of-order did not have age
influence.
Load with update should forward update results after address
generation.
The data cache reloads the cache line immediately after a miss
should stall for memory latency.

Abstraction Branch misprediction paths are not simulated.
Data-dependent execution is not simulated.
The memory hierarchy assumes a perfect level-two cache.
The PowerPC 604 bus unit is modeled as a delay and not as a
complex state machine.

.

gle-cycle difference to be a passing test, 100 percent of
the alpha test and 84.7 percent of the beta tests passed.
The gamma tests showed a pass rate of 79.8 percent
for a zero-cycle difference and 81.8 percent for a sin-
gle-cycle difference. Random sequences began pass-
ing on the child model, with a passing rate of 32.0
percent for a zero-cycle difference and 71.5 percent
for a single-cycle difference. The results of this vali-
dation process clearly reveal that achieving a reliable
and accurate performance model requires significant
effort. Even our much-improved child model requires
further validation to ensure that it can accurately pre-
dict performance.

ANALYSIS OF VALIDATION RESULTS
Our results demonstrate the effectiveness of the pro-

posed validation method at finding bugs in perfor-
mance models. However, to verify its effectiveness at
improving model accuracy, we had to test the perfor-
mance model with longer code sequences. We there-
fore selected a small set of real benchmarks to run on
the reference machine as well as on the infant and child
performance models. Obviously, the smaller the dif-
ference between cycle counts of the reference machine
and the performance model, the more accurate the per-
formance model. We executed real code on the hard-
ware, extracted traces of the code execution, and ran
the traces on both the infant and child performance
models. The primary source of error in this experiment
lay in trace gathering. Does the tracing tool accurately
trace the benchmarks’ runtime execution?

Benchmark instruction count correlation
Dynamic instruction count is a microarchitecture-

independent metric common to both the hardware exe-

cution and the trace simulation. We assumed that if the
two had the same instruction count, the trace accurately
captured the runtime execution of the benchmark.
Table 4 lists the benchmarks used to verify this valida-
tion process along with their input data sets. The table
includes the instruction counts for both the hardware
execution and the trace-driven performance simula-
tion. These numbers demonstrate a strong correlation
between the two instruction counts. Two sources of
error can account for the small discrepancies:

• Tool overhead. The hardware counters and the
tracing tool have fixed overheads of 621 and 557
instructions. The overhead results from extra
function calls and code to set up the hardware
counters and trace gathering. However, these
constant fixed overheads are comparable and
resulted in the net addition of 64 instructions to
the hardware instruction counts.

• Trace gathering. The tracing tool we used is
designed to trace library calls, however, it is
unclear how far the trace extends into each
library call. The hardware counters count a user
process up to the point it switches into supervi-
sor mode. Some additional instructions in the
hardware count result from this discrepancy.

The fact that the hardware counter’s instruction
counts are consistently higher than those of the sim-
ulation traces supports these assertions. With the
exception of the eqntott benchmark, a strong corre-
lation exists between the two instruction counts.
Therefore, we would expect the performance models
to yield reliable cycle count results for cjpeg, grep,
gperf, mpeg, and quick.

May 1998 63

Table 3. Child model validation results.

Zero-cycle difference One-cycle difference
Pattern Instruction No. of failing Passing tests No. of failing Passing tests
type count tests (percentage) tests (percentage)
Alpha 194 8 95.9 0 100.0
Beta 20,358 5,017 75.4 3,105 84.7
Gamma 60,552 12,244 79.8 11,005 81.8
Handwritten about 500 0 100.0 Not applicable Not applicable
Random sequences 93,779 63,782 32.0 26,688 71.5

Table 4. Benchmark instruction counts.

Length (no. of instructions) Difference
Benchmarks Input Hardware Trace (percentage)
cjpeg 128 × 128-pixel black-and-white image 2,771,141 2,771,012 −0.02
eqntott SPEC92 modified reference input 18,866,003 17,903,424 −5.10
gperf -a -k 1-13 -D -o scrabble 200-word dictionary 2,315,408 2,315,201 −0.01
grep -c “st*mo” 1/2 SPEC92 compress input 7,819,185 7,817,130 −0.03
mpeg Four frames with dithering 9,039,253 9,039,010 0.00
quick Sort of 5,000 random elements 739,022 738,895 −0.02

.

64 Computer

Benchmark cycle count correlation
Table 5 summarizes the cycle counts from the

benchmark executions and performance model sim-
ulations. As expected, the simulation cycle counts for
five of the benchmarks (all except eqntott) correlate
well—within 5.32 percent for the infant model and
7.02 percent for the child model. Eqntott shows a sig-
nificant error for the infant model. It contains a sig-
nificant load/store bug which we discovered early in
the validation process for the child model. This
accounts for eqntott’s extremely poor results on the
infant model and the improved results on the child
model.

Final analysis
Debugging the infant model using the proposed val-

idation method improved the child model’s accuracy,
reducing the cycle-count difference on these bench-
marks from an average of 7.49 to 4.25 percent. So
applying our validation method improves both the
accuracy of and our confidence in the performance
model. However, Table 5 shows that for individual
benchmarks the percentage of error changed drasti-
cally from the infant to the child performance model.
For cjpeg, grep, and quick, the error even changed
sign. For grep, the magnitude of the error actually
increased.

These interesting data points conflict with what we
typically expect of the performance model validation
process. We initially viewed the performance valida-
tion process as always monotonically improving
toward a small asymptotic error rate. The graph on
the left in Figure 2 illustrates this naive notion. We
assumed that as debugging time increases and as we
add details to a performance model, its results would
become more and more accurate.

After analysis of our results, we observed that the
performance model results changed sporadically with
each bug fix or addition of detail. We discovered that
bugs can arbitrarily increase or decrease the perfor-
mance model’s predicted cycle counts. Careful analy-
sis of this validation process leads us to believe that
performance model results bounce significantly as
debugging and validation progresses. Only systematic
validation with large numbers of generated patterns
can mature a performance model from infant to adult
status. As the validation process advances, the test
suites become more advanced, further improving the

performance model. Only when the error range is con-
sistently less than the desired level—for example, less
than 2 percent—for all benchmarks, that is, attaining
adulthood, can we place confidence in a performance
model. The graph on the right of Figure 2 illustrates
the maturing of a performance model from infancy,
through the childhood and teenage periods and finally
to adulthood.

M icroprocessor designers use performance mod-
els to assist in design decisions by adding new
features and comparing the execution results

to a baseline model. Such A-B testing, a normal prac-
tice in industry to determine the relative merits of two
design options, implicitly makes the naive assump-
tion that performance models asymptotically and
rapidly approach correctness. If, as we have observed,
the actual behavior is sporadic, designers cannot
make quality design decisions without an adult
model. The problem lies in understanding the true
performance effect of a new feature. In an unstable
performance model, model changes may inadver-
tently remove existing bugs, introduce new bugs, or
reduce the performance impact of an existing bug.
This effect can mislead designers into implementing
features that do not actually improve performance or
not implementing features that would.

This article presents experimental results on cali-
brating a performance model against actual hardware,
and based on these results suggests a systematic method
for validating performance models. This method
involves calibrating the performance model against the
hardware RTL model throughout the design cycle. The
procedure and automatic test sequences used for func-
tional validation are applied to performance model val-
idation. This will speed up the maturation of the
performance model. It is noted that at the beginning of
the design cycle an RTL model is not available. During
this early period of the design, inspection techniques
are necessary. Once the development of the RTL model
begins, the calibration of the performance model can
begin. By tracking the performance model with the
hardware RTL model, the performance model can pro-
vide accurate performance projections throughout the
remainder of the design cycle.

Our results highlight the difficulty in developing an
accurate performance model. As microarchitecture
complexity continues to increase, especially with the

Table 5. Benchmark cycle count results.

Benchmarks Hardware Infant Child Infant discrepancy Child discrepancy
reference model model model (percentage) (percentage)

cjpeg 2,686,552 2,758,667 2,629,786 2.68 −2.11
eqntott 17,660,335 12,837,171 15,985,200 −27.30 −9.49
grep 2,774,036 2,768,619 2,968,911 −0.20 7.02
gperf 6,452,720 6,796,622 6,554,997 5.32 1.56
mpeg 8,182,928 7,797,112 8,000,382 −4.71 −2.23
quick 775,600 738,895 799,504 −4.73 3.08

.

incorporation of aggressive speculation techniques,8-10

accurate performance modeling and the validation of
performance models will continue to be a great chal-
lenge. ❖

Acknowledgments
This research has been supported by the National

Science Foundation (CCR 9423272) and the Office of
Naval Research (N00014-95-1-1112 and N00014-96-
1-0347). We have also benefited from the generous
donation of numerous Pentium Pro systems from Intel.
We especially thank Marvin Denman at Motorola for
sharing his knowledge of the PowerPC 604 microar-
chitecture and Prithvi Rao of CMU for building the
AIX pseudo-device-driver interface. Finally, the review-
ers’ comments were extremely helpful.

References
1. A. Poursepanj, “The PowerPC Performance Modeling

Methodology,” Comm. ACM, June 1994, pp. 47-55.
2. A. Huang and T. Diep, MW Developer’s Guide, Tech.

Report CMuART-95-1, Carnegie Mellon Univ., Pitts-
burgh, Aug. 1995.

3. T. Diep and J.P. Shen, “VMW: A Visualization-Based
Microarchitecture Workbench,” Computer, Dec. 1995,
pp. 57-64.

4. B. Black et al., “Can Trace-Driven Simulation Accurately
Predict Superscalar Performance?” Proc. IEEE Int’l
Conf. Computer Design, IEEE Computer Soc. Press, Los
Alamitos, Calif., pp. 478-485.

5. K. Diefendorff and E. Silha, “The PowerPC User Instruc-
tion Set Architecture,” IEEE Micro, Oct. 1994, pp. 30-41.

6. S.P. Song, M. Denman, and J. Chang, “The PowerPC
604 RISC Microprocessor,” IEEE Micro, Oct. 1994, pp.
8-17.

7. PowerPC 604 RISC Microprocessor User’s Manual,
IBM Microelectronics Division, 1994.

8. M. Lipasti, C. Wilkerson, and J.P. Shen, “Value Local-
ity and Data Speculation,” Proc. 7th Int’l Conf. Archi-
tectural Support for Programming Languages and
Operating Systems, Computer Soc. Press, Los Alamitos,
Calif., pp. 138-147.

9. S. McFarling, Combining Branch Predictors, Tech. Note
TN-36, Western Research Lab, Digital Equipment
Corp., June 1993.

10. E. Rotenberg, S. Bennett, and J. Smith, “Trace Cache: A
Low Latency Approach to High Bandwidth Instruction
Fetching,” Proc. 29th Int’l Symp. Microarchitecture,
Dec. 1996, pp. 24-34.

Bryan Black is a PhD candidate in Carnegie Mellon
University’s Electrical and Computer Engineering
Department. His research interests span computing
systems and tropical fruits. He spent four years at
Motorola as a design engineer and was a member of
the PowerPC 604 design team before returning to
CMU for his PhD. Black received a BS and an MS
from CMU in electrical and computer engineering.

John Paul Shen is a professor in Carnegie Mellon Uni-
versity’s Electrical and Computer Engineering Depart-
ment and heads the Carnegie Mellon Micro-
architecture Research Team (CMuART). Shen
received a BS from the University of Michigan and an
MS and a PhD from the University of Southern Cal-
ifornia, all in electrical engineering. He is an IEEE fel-
low.

Contact Shen at the CMuART, Dept. of Electrical and
Computer Engineering, Carnegie Mellon University,
Pittsburgh, PA 15213; shen@ece.cmu.edu

May 1998 65

Time,
no. of bugs fixed, and

increasing detail of model

Er
ro

r
in

 IP
C

 (
p

er
ce

n
ta

g
e)

100

0
5% Er

ro
r

in
 IP

C
 (

p
er

ce
n

ta
g

e)

0
Time

Desired
error

Infant
model

Child
model

Teenage
model

Adult
model

(a) (b)

Inspection

Generated
patterns

Random
patterns

Figure 2. Conflicting
views of the matura-
tion of a performance
model: (a) simplistic
view in which inaccu-
racies decrease
monotonically and (b)
realistic view in which
results oscillate and
then slowly converge.

.

