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Locally Connected VLSI Architectures for the
Viterbi Algorithm
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Abstract—The Viterbi algorithm is a well-established technique for
channel and source decoding in high performance digital communica-
tion systems. Implementations of the Viterbi algorithm on three types
of locally connected processor arrays are described. This restriction is
motivated by the fact that both the cost and performance metrics of
VLSI favor architectures in which on-chip interprocessor communi-
cation is localized. Each of the structures presented can accommodate
arbitrary alphabet sizes and algorithm memory lengths. The relative
performance tradeoffs available to the designer are discussed in the
context of previous work.

1. INTRODUCTION

T is generally agreed that the vastly increased gate den-

sity (10°-10° transistors per chip) promised by VLSI
technology will rarely be utilized effectively if simulta-
neous efforts are not undertaken to devise algorithms that
can be properly matched to VLSI structures. In this paper,
we present several types of processor arrays that will al-
low us to apply the technological capabilities of VLSI to
a specific problem that is of considerable interest in high-
speed reliable digital communications. In particular, we
pursue the development of high performance VLSI cir-
cuits for implementing Viterbi decoders under the as-
sumption of a strictly local interconnection strategy among
numerous, simple, identical processors that operate in
parallel. This restriction is motivated by the fact that both
the cost and performance metrics of VLSI favor architec-
tures [1] in which on-chip interprocessor communication
(i.e., wiring) is localized.

A. Historical Perspective

Although the Viterbi algorithm (VA) was discovered
independently and first applied to the decoding of con-
volutional codes by Viterbi in 1967, it was at that time a
well-known technique in operations research [2]. Omura
was the first to observe this [3], by pointing out that the
VA was in fact a special case of forward dynamic pro-
gramming. Although not reviewed here, further details on
the theory behind the VA are widely available in the lit-
erature [4]. In 1973, Forney published [5] a comprehen-
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sive survey of the Viterbi algorithm that, ‘‘reviewed more
or less exhaustively all work inspired or related to the al-
gorithm.”” In this review, Forney observes that for a fi-
nite-state discrete-time Markov process that can be mod-
eled as a shift register process the trellis diagram normally
associated with the Viterbi algorithm is identical, except
for length, to the computational flow diagram of the fast
Fourier transform (FFT).

At about the same time as [5], in quite a different body
of literature, Stone [6] demonstrated that a concept known
as a ‘‘perfect shuffle’’ serves as an important paradigm
for connecting processors in parallel processing ma-
chines. In particular, he describes how many popular al-
gorithms such as recursive doubling, sorting, polynomial
multiplication, convolution, matrix transposition, and the
FFT could be efficiently solved on parallel processing net-
works capable of perfect shuffle and exchange operations.
(Conspicuously absent from consideration were shortest
path problems.) Although Stone was one of the first to
demonstrate that the concept of the perfect shuffle has a
wide variety of application to various problems in com-
puter science, the first descriptions of the perfect shuffie
appear as early as 1776 in books [7] that describe methods
for cheating at card games.'

Since the early 1970’s, very little research [8] has been
done to investigate or exploit the implications of these
observations. The work described in [9] explicitly dem-
onstrates that when the state sequence of a shift register
process, whose state diagram is defined by a de Bruijn
graph,? is to be estimated using the Viterbi algorithm it
can be done simply on a parallel processor whose inter-
connection network is defined by a shuffle-exchange
graph. (This will be the case for any rate-1/n feedforward
convolutional code.) This result is not unexpected when
presented in the context of the independent work of For-
ney and Stone, but linking the Viterbi algorithm directly
to the research results on shuffle-exchange graphs does
not appear to have been described previously in the lit-
erature. The main result is that we can solve shortest path
problems of interest in digital communications on a par-
allel processing network that has been primarily investi-
gated in the discipline of computer science from the point
of view of algorithmic structure and computational com-

'The perfect shuffle is known as the Faro shuffle in magic circles.
2This Euler digraph is also referred to as a Good’s diagram after the
Teleprinter’s problem (circa 1940).
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plexity. For those interested in the implementation of Vi-
terbi decoders, this appears to be a more powerful vantage
point that gives one access to a much broader body of
relevant literature.

As a consequence of this perspective, three primary
benefits accrue. First, with the advent of VLSI, the ques-
tion of how to best lay out the shuffie-exchange graph on
a grid using as little area as possible has been extensively
investigated; especially notable are the results of Thomp-
son [10] and Leighton [11]. Hence, as first noted in [9],
the upper and lower bounds on the layout area for the
shuffle-exchange graph previously developed in the liter-
ature are of great interest in defining area bounds on a
VLSI implementation of the Viterbi algorithm. Second,
VLSI grid model based area-time complexity results for
the FFT and sorting are of great interest despite the fact
that these algorithms deal with finite length data se-
quences, whereas in the Viterbi algorithm, semi-infinite
data sequences must be accommodated. The implications
are that for various cost functions, we investigate perfor-
mance tradeoffs of architectures from the point of view of
pipeline period or clock period rather than latency. Third,
we capitalize on the fact that the algorithm executed by a
computational array is uniquely defined by both the pro-
cessor interconnections and the arithmetic kernel of each
processor. There is a pleasant harmony (and much insight
to be gained) in the realization that, in certain instances,
the Viterbi algorithm is related to so many other types of
algorithms.

Orthogonal to this, we observe that there have been per-
sistent efforts in the literature directed towards developing
VLSI computational arrays for solving various shortest
path problems having a dynamic programming solution
[12]-[15]. This is noteworthy in that many channel and
source decoding tasks in digital communications, includ-
ing the coded modulation concepts of Ungerboeck [16],
can be solved by a dynamic programming approach to
finding the shortest path through a directed weighted graph
using the algorithm developed by Viterbi. It is the dy-
namic programming character of the VA that provides the
underlying basis for the algorithmically specialized pro-
cessor networks presented in this paper. Hence, armed
with these insights, it is natural to ask what types of con-
current VLSI architectures are appropriate for realizing
Viterbi decoders and what are their relative performance
tradeoffs?

B. Outline of the Paper

The Viterbi algorithm is computationally demanding not
because its algorithm is complex in a conceptual sense.
In fact, the essence of the algorithm is a relatively simple
procedure of identical add, compare, select (ACS), and
traceback operations. Rather, the computational burden
arises because a relatively simple set of operations must
be applied to a large number of basic ‘‘nodes’’ or ‘‘states’’
at each discrete-time step. Unfortunately, the number of
states N is given by ¢" where g is the alphabet size and »
is the algorithm memory length. With the limitations of

present fabrication technology there is great incentive to
devise algorithms that assign more than one state per pro-
cessor and/or constrain interprocessor communication
such that the area necessary to wire the processors does
not dominate the area required by the processors them-
selves. Locally connected processor arrays are of interest
in this context since they satisfy this later constraint.

The most straightforward implementation of the Viterbi
algorithm is a completely sequential one where every state
is evaluated, in sequence, in a single arithmetic logic unit
driven by a programmed control unit (i.e., microproces-
sor). A contemporary example of the sophistication pos-
sible in this approach is given in [17]. However, the se-
quential approach is a degenerate case of a concurrent
realization of this algorithm; much better performance is
possible, using a given technology, by exploiting the con-
currency of the algorithm. The uniprocessor implemen-
tation suffers from being processor poor and from being
I1/0 bound. The uniprocessor, though requiring only
O(1) area® (i.e., constant area), must coordinate O(q")
“‘random’’ accesses to the processor’s I /O memory and
perform O(g’*") arithmetic operations each symbol in-
terval T. Consequently, the hardware logic speed must be
Q(g"*'/T) operations per symbol interval. Since the
processor/memory ratio is so low (the design is almost all
memory), the throughput of such a system is disappoint-
ing relative to other approaches even though this is the
‘‘smallest’’ area solution imaginable.

The other extreme is a fully parallel implementation of
the Viterbi algorithm where one state is assigned per pro-
cessor and the interprocessor connection network is a shuf-
fle-exchange graph [9] or in some cases a cube-connected
cycles graph. Though O(g% /»*) area is required in a
planar embedding [9], the hardware logic speed is only
Q(1/T) operations per symbol interval. In the context of
a VLSI realization, this type of fully parallel layout,
though dominated by large interprocessor wire area, is the
architectural organization with the greatest possible
throughput for a given fabrication technology.

In contrast to these two extremes, this paper considers
three alternative types of architectures. Each have multi-
ple processing elements that cooperatively exploit the in-
herent parallelism in the Viterbi algorithm to varying de-
grees and yet each have VLSI layouts that require
relatively small interprocessor wire area, as only near
neighbor interprocessor wiring is allowed. The distin-
guishing feature of the designs is in how operands are
scheduled and transferred between processors. The
throughput and layout area requirements are intermediate
to those of the completely sequential and fully parallel
approaches thus giving the designer a broad spectrum of
alternatives from which to choose.

The presentation of this paper is organized into six sec-

3A function f(n) is O(g(n)) if there exist positive constants k and n,
such that f(n) < kg(n) forn > n,. A function f(n) is @(g(n)) if there
exist positive constants k and n, such that f(n) = kg(n) forn > n,. A
function f(n) is ©(g(n)) if there exist positive constants k and n, such
that f(n) = kg(n) forn > n,.
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tions. Initially, we review previous implementations that
utilize near neighbor interprocessor wiring. One section
is then devoted to each of the three design strategies we
propose. The design details of a pipelined cascade of pro-
cessors are presented in Section III. Sections IV and V
present the linear array and mesh architectures for the Vi-
terbi algorithm, respectively. We summarize the through-
put and layout area tradeoffs available to the designer in
the discussion.

II. PrREVIOUS PROCESSOR ARRAY IMPLEMENTATIONS

Chang and Yao [18] have recently proposed an inter-
esting method that applies systolic array techniques to the
implementation of the Viterbi algorithm. The approach
provides pipelining, parallelism, and simple adjacent
neighbor interprocessor wiring that is suitable for VLSI
implementation.

To illustrate the basic concept [18], consider a convo-
lutional code in GF(¢) and total encoder memory length
v. The total number of states Nis ¢°. Let Pbeal X N
row vector whose ith element, denoted by P;, represents
the accumulated path metric to state i. Let the state tran-
sition matrix B be the N X N adjacency matrix whose ijth
element, denoted by b;, represents the branch metric from
state i to state j between two adjacent stages in the trellis
diagram. Then the Viterbi algorithm can be formulated as
repetitions of the following matrix-vector multiplication
problem

plk+ll — plkl 4 g

where the superscript on P indicates the value of the dis-
crete-time index. The operation * is not ordinary multi-
plication in the conventional sense, but rather,

PEHY = (PR + by) ® (PY + by)
® -+ @ (PYL, + by_y))

where the + operator denotes conventional addition and
the &® operator denotes the operation of taking maximum.
In other words, the above expression means

P¥*1 = max {P¥ +b,}.

0<i<N-1
It is well known [19] that systolic arrays can be used ef-
ficiently for matrix-vector computations. By interpreting
the algebraic kernel of the processing elements in the
proper way the VA can be implemented on such systolic
arrays where one processing element is provided for each
state to be evaluated.

Note that due to the structure of the state transition dia-
gram, there are only g nonzero entries in each row of the
state transition matrix and hence only g /¢’ of the proces-
sors are doing meaningful work at any given time instant.
This low efficiency in the utilization of the processor array
is due to the sparseness of the state transition table. By
combining several stages of the trellis diagram, the den-
sity of the state transition table can be increased and hence
processor utilization can be improved [18]. In Section IV,

we present alternatives to the systolic array concept pre-
sented above and in addition propose an entirely new
strategy, based on the perfect shuffie paradigm, for per-
forming the Viterbi algorithm on a linear array of proces-
SOrS.

One other approach for implementing the VA that has
been reported in the literature is that of a unidirectional
ring architecture [20] which contains N processing ele-
ments (PE), one for each state to be evaluated. In a uni-
directional ring interconnection network, a PE can only
receive operands from one adjacent neighbor and transmit
operands to its opposite adjacent neighbor such that data
flow in either a clockwise or counterclockwise fashion
around the ring. Thus, if the routing time to an adjacent
processor takes a single clock cycle, the worst case com-
munication time around the ring is N — 1 clock cycles.

The ring architecture is appropriate in the sense that it
allows one to perform all possible N> comparisons among
the N-element finite state space. However, this organiza-
tion suffers from inefficient processor utilization for much
the same reason as the systolic linear array since only ¢ /¢q”
of the processors are doing meaningful work at any given
time instant. The next section presents an alternate archi-
tecture called a pipelined cascade, that has a ring-like to-
pology but requires only log, N processing elements along
with interprocessor pipelines and routing switches that
improve processor utilization dramatically.

III. CascaDeE LAYouTs

In a manner similar to that used for bitonic sorting [21],
{22], the Viterbi algorithm can be adapted to run on log,
N processors each associated with local memory of geo-
metrically varying memory size. A representative imple-
mentation is illustrated in Fig. 1 forg = 2, v = 3 hence
N = 8. If the feedback or recirculation path from pro-
cessing clement PEj, v to PE; were removed, Fig. 1
would be identical to the ‘‘cascade’’ design for the pipe-
lined FFT computation [23]. The feature to note is that
the topology is small, regular, and compact with minimal
interprocessor wire area. The regular structure provides
for extensibility such that the architecture can accommo-
date arbitrary problem size instances in a controlled way.
The structure also allows one to partition the circuit into
processor/FIFO pairs for incorporation onto separate chips
(or printed circuit boards) as available technology dic-
tates.

In the case of binary alphabets, each processor contains
two sets of ACS circuits arranged pairwise in a butterfly
configuration. Associated with each processor PE;, 1 < j
< » — 1, are two auxiliary 2° ™/ word FIFO queues and
a programmable switch §;, as illustrated in Fig. 1. Var-
ious minor rearrangements of memory and switches are
possible with equivalent functionality. The total FIFO
memory of the system is proportional to the number of
states N. Each word in the FIFO is responsible for storing
a state metric and an associated survivor sequence or
pointer. The switches coordinate unidirectional (counter-
clockwise) information transfers between processors and
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Fig. 1. Pipelined cascade layout. Architecture for binary alphabet and
memory three. PE,, PE,, and PE; are ACS butterfly processors. Refer

to Fig. 3 for detailed timing.

FIFO’s. They have two modes of operation: mode one
where operands are allowed to pass straight through (up-
per input to upper output, lower input to lower output) or
mode two where operands are crisscrossed (upper input
to lower output, lower input to upper output). Associated
with PE, is the switch §, which is distinguished in func-
tion from every other §; in that it consists of two compo-
nents, a programmable switch and memory for the ‘‘stag-
ing’” of switch outputs. Its function will be discussed
shortly.

Each symbol interval, the circuit accepts a channel out-
put symbol y, as input into a dual ported memory or FIFO
queue of » words. Switch Sy, in Fig. 1, routes operands
from this queue to the appropriate branch metric genera-
tor. Each branch metric generator serves a unique pro-
cessing element and is responsible for providing a set of
four-branch metrics each valid processing cycle (i.e., the
clock cycle during which the ACS processor is active) of
which there are ¢ ~ ' in » symbol intervals. If the first path
metric generated in a group of 2°~ ! processing cycles is
subtracted from all others, path metrics can be conve-
niently normalized to control register overflow. Fixed de-
lay maximum-likelihood estimates d, of the transmitted
data sequence g, are available from the truncated survivor
sequence of any state at each stage of the trellis. A con-
venient method to tap into these survivors is to extract or
traceback the last » items in the survivor list once every
q" processing cycles which are available from processing
element PE,. The implicit assumption, of course, is that
the survivor sequence list is long enough to guarantee with
high probability that the oldest items in the list have
merged indicating that all states agree on a common an-
cestry. An output queue of length » allows the system to
present one output estimate each symbol interval 7.

A processing element is responsible for processing
states associated with one stage of the trellis. Fig. 2 il-
lustrates the three-stage, eight-state trellis diagram asso-
ciated with Fig. 1. For the purposes of explaining the op-
eration of the architecture, assume that all states
associated with stage k of the trellis are evaluated in PE,;.
PE, first evaluates in sequence path metrics associated

STATE

-

N o oo s ow N
N o oo a0 own

Fig. 2. Three-stage trellis diagram associated with Fig. 1.

with states O and 1, then states 2 and 3, then 4 and 5, and
finally, states 6 and 7. When PE; completes the evalua-
tion of path metrics associated with states 4 and 5 in stage
k, PE, can proceed to evaluate path metrics associated
with states O and 1 in stage & + 1. Likewise, PE; can
proceed with calculating the path metrics associated with
states 0 and 1 in stage k + 2 only after states 4 and 5 in
stage k + 1 have been evaluated. The data dependency
for this last case is highlighted in Fig. 2 by the dashed
branches in the trellis. The outputs of PE; are staged in
switch S; and recirculated to PE, which then proceeds to
evaluate the next stage of the trellis. Pipelining is possible
in this recirculation network because newly generated state
information produced by processor PE; can be passed to
the immediate neighbor PE;(,,)+ S0 that states associ-
ated with the next stage of the trellis can be processed
even before all states associated with PE; have been eval-
uated.

A detailed illustration of the flow of data through the
pipeline of Fig. 1 is illustrated in Fig. 3. Each instance
of time is associated with a channel output symbol. The
system clock, operating at ¢” /v times the symbol rate,
controls the input queue which in our example, for in-
stance, takes the channel output symbol(s) associated with
time instance ‘‘1°° and delivers it on clock tick number
‘3" to the branch metric generator associated with PE,.
The control algorithms for each switch that define the
mode of the switch are a function of the current clock tick.
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Fig. 3. Schedule for the movement of state information as a function of
the system clock for the architecture illustrated in Fig. 1.

The mode of each switch as a function of the clock is
illustrated diagrammatically with a *‘straight-through’’ or
““crisscross’’ icon. Switch S3 is unique, however, in that
for every clock tick, the contents of each of the two shift
registers, which comprise the memory internal to the
switch, are shifted one unit to the right after which the
two outputs of PE; are written in parallel into two register
locations as predetermined by the switch algorithm. (As
illustrated in Fig. 3, an X’ in §; signifies a ‘‘DON'T
CARE’’ state.) A final remark on Fig. 3 is that one clock
tick was allotted for the ACS operation of a PE. If the
computation time of a PE is greater than this it does not
disturb the structure other than inserting extra delays
within the system.

Pipelining allows » symbols to be processed each ¢”
processing cycles. Consequently, hardware logic speed
must be Q(¢” /vT), a respectable linear speedup improve-
ment over the one processor implementation. Even with
complete pipelining each processor PE; is idle for one-
half of the processing cycles. Given additional memory
and control, the processing elements could be used to de-
code two data streams simultaneously. Although the lay-
out has been directed toward realizations for binary al-
phabets, versions of this processor for arbitrary alphabet
sizes should be apparent [23].

The cascade, like the uniprocessor, is mainly domi-
nated by storage. The difference being, of course, that in
the cascade design the number of processors grows lin-
early with the algorithm memory length while the number
of memory elements grows exponentially with algorithm
memory length. As an alternative, the next section pre-
sents a layout strategy that contains as many ACS proces-
sors as storage elements, to within a constant factor.

IV. LINEARLY CONNECTED LAyouTts

In this section, we describe four approaches to imple-
menting the Viterbi algorithm on a linear array of proces-
sors. The first two methods are based on the fold-over
scheme [24] borrowed from techniques in computational
geometry. One other is adapted from the parallel odd-
even transposition sorting algorithm [21]. The first three
approaches are especially appropriate when the trellis dia-
gram is complete. The last method presented in this sec-
tion is unique in that it relies on the perfect shuffle para-
digm [6] and does not rely on state transition graphs that
are complete symmetric digraphs.

As referred to throughout this section, a linearly con-
nected network of processors appropriate for implement-
ing the Viterbi algorithm is illustrated in Fig. 4. It con-
sists of three rows of processing cells where each element
of a row is fitted with word-parallel interconnections to
its near neighbor. Each row of this architecture is homo-
geneous in function. This allows us to define a column of
three processing cells as a standard building block. Lin-
early connecting N of these building blocks together al-
lows the assignment of one state to each processor.

The backbone of this architecture is formed by the mid-
dle or center row of processing cells, while the top and
bottom rows can be viewed as support hardware. The top
row takes a clock signal as input and produces as output
a set of sequence control signals, one for each processor
in the middle row. The bottom row accepts the input sig-
nal y, and generates appropriate branch metrics for each
processing element in the middle row. In some imple-
mentations, this row may be comprised exclusively of
ROM hardware. Each processing cell in the middle row
contains routing logic circuitry, a path metric register,
survivor sequence register, and add-compare-select cir-
cuitry. Each processor is capable of routing the contents
of its registers to a neighboring processor in an operation
known as a unit-distance route. Operands that must be
moved beyond a near neighbor require multiple unit dis-
tance routing steps. The unit distance routing operations
are performed by the routing logic CerUItfy that ex-
changes path metrics and survivor sequcnces with a near
neighbor as dictated by the sequence control signals gen-
erated by the top row of processors.

Branch metrics supplied by the bottom row are used to
update the path metric registers each symbol interval. As
output, the middle row provides fixed delay estimates of
the transmitted data sequence. These can be extracted
from the truncated survivor sequence resident in the right-
most processing element.

Each of the four different methods proposed here rely
on this same basic structure. However, in order to
uniquely distinguish the details of their operation, the se-
quence of events during one symbol interval in the center
row of processing cells is illustrated in the subsections
that follow.

“or alternatively, pointers in a traceback approach.
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Fig. 4. Linearly connected processor layout. (a) Functional block dia-
gram. (b) Linear array of regular building blocks.

A. Systolic Approaches

A complete trellis diagram (or state diagram) is one
where every state has a unique state transition to all other
states. A state diagram with this property can be exploited
to gain full processor utilization every clock cycle in a
linear systolic array implementation of the Viterbi algo-
rithm. In considering a systolic, matrix-vector formula-
tion of the VA involving a complete trellis, an analogy
with systolic implementations of the DFT [19, p. 290]
can be exploited. However, the architectures described in
this section rely on the observation that the routing of path
metrics and survivor sequences in a complete trellis dia-
gram is analogous to that required in solving the pairwise
examination problem [25]. That is, given a set of N ele-

ments labeled (0, 1,2, - - - , N — 1), examine the pairs
(0,1),(0,2), -+ ,(0,N—1),(1,2),(1,3), - -,
(LN-1),(2,3), - ,(N=-2,N—-1).

As defined in Section II, if we let Pbe a 1 X N row
vector whose ith element denoted by P; represents the ac-
cumulated path metric to state / then by performing the
pairwise examination problem on the vector (P, P,, P,
e, PN—Z’ PN—]) and the vector (PN~I’ PNgg, PN737
-+ +, Py, Py) simultaneously, we are in effect mimicking
the data routing operations required in a single stage of a
complete trellis diagram. Two queries remain to be an-
swered. What type of transformation on the state diagram
allows us to generate (if it exists) the complete equiva-
lent? How should the transfer of operands be scheduled
on a linear systolic array in order to perform the data rout-
ing operations indicated by a complete trellis diagram?

Let us respond to the first query. Chang and Yao [18]
in their work demonstrate that for simple shift register se-
quences where the state diagram is a de Bruijn graph, the
original trellis diagram can always be transformed to be
complete by considering no more than log, N stages of
the trellis. Fig. 5 illustrates the concept for a simple four-
state, two-stage trellis diagram. In the two-stage trellis
diagram, if each two-branch metric pair is combined to
be a single ‘‘composite’’ branch metric, the trellis dia-
gram will become complete. The transformation required
can be developed very naturally from a consideration of
the state diagram rather than the trellis diagram. If state

00 00 00 00
01 01 01 01
10 10 10 10

11 » ¥ 11 11 11
(a) (b)

Fig. 5. The strongly connected trellis diagram. (a) Two-stage trellis dia-
gram. (b) Strongly connected trellis equivalent.

diagram is strongly connected then the transitive closure
of the state diagram is a complete digraph.

Given that the strongly connected trellis exists, several
of the ‘‘examine all pairs’’ systolic algorithms can be
adapted to perform the VA on a linear array. For exam-
ple, consider the simple fold-over scheme presented in
Fig. 6. Our intent is to illustrate the movement of state
metrics and survivor sequences during one symbol inter-
val. Each processing element illustrated in the first row
of Fig. 6 contains two integers in the range 0-N — 1 in-
clusive. An integer, let us call it j, indicates the presence
of the path metric and survivor sequence associated with
state P;. Hence, at the beginning of the symbol interval,
each processor has two copies (denoted upper and lower)
of a particular path metric and survivor sequence assigned
to it. The basic idea behind the fold-over operation is to
regard the upper elements in the systolic array as a strip
of paper. The idea is to pick up the strip at the left and
fold it over, pulling the leftmost element over from left to
right. In a hardware implementation, this operation is ef-
fectively accomplished with local near neighbor data tran-
fers. At the same time, the strip at the right is picked up
and the lower elements are folded under pulling the right-
most element from right to left. If each near neighbor data
transfer takes one clock cycle the total number of clock
cycles required is 2N — 1, which defines the minimum
symbol interval.

Selected processing elements receive branch metrics at
the end of each clock cycle. Branch metrics are provided
to all processing elements that have had new data values
folded into it. Initially, the branch metric associated with
the state transition by o is supplied to the first element of
the array. At the end of step 1, the branch metrics asso-
ciated with the state transition b, | is provided to the sec-
ond cell and by_, y_, is provided to the second last cell.
At the end of step 2, the branch metrics associated with
the state transition b, | and by , are supplied to the second
and third cell, respectively, while by_ | y.3 is supplied
to the third last cell and so on. In general, path metrics
are supplied in a manner that corresponds to partitioning
the state transition matrix B into a lower and upper tri-
angular matrix. The branch metrics associated with the
upper triangular portion of B are used by the upper fold-
over scheme. The branch metrics associated with the
lower triangular portion of B are used by the lower fold-
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Fig. 6. The fold-over operation for routing state metrics.

over scheme. As a branch metric is supplied to a process-
ing element, it is added to the newly arrived path metric
and compared to and possibly substituted to reflect the
current maximum path metric resident in that processing
cell.

The number of clock cycles required for the fold-over
operation can be reduced by making an additional local
copy of the state information in each PE. The middle ele-
ment i stays in cell i during the whole operation while the
upper elements move to the left and the lower elements
move to the right. As new path metrics are transferred into
a processing element the corresponding branch metrics are
provided by the support hardware. Fig. 7 indicates the
movement of operands for each clock tick. The total num-
ber of clock cycles required is N, thus defining the mini-
mum symbol interval.

To conclude this section, we will show a systolic Vi-
terbi algorithm for a strongly connected trellis diagram
can be derived from the odd-even transposition sort [21].
It should be noted that not all of the parallel sorting al-
gorithms examine every pair of data in the worst case;
however, this approach does, which is a requirement for
our application. For simplicity, Fig. 8 illustrates the case
for N even. At odd numbered time steps path metrics and
survivor sequences in cells 0, 2, * + - , N — 2 are swapped
with path metrics and survivor sequences in cells, 1, 3,

-, N — 1, respectively. At even numbered time steps,
datadin cells 1, 3, - - - , N — 3 are swapped with path
metrics in cells 2, 4, - -+ , N — 2, respectively. As in
the previous design, when new path metrics are trans-
ferred into a processing element, the corresponding branch
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Fig. 7. An improved fold-over scheme.
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Fig. 8. Odd-even transposition for routing state metrics.

metrics are provided by the support hardware. Only N
clock cycles are required for the routing of operands just
as in the case for the improved fold-over scheme.
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B. The Perfect Shuffle Approach

This section is concerned with the special case of trellis
diagrams that can be modeled as being generated by a
simple shift-register process. The state diagram, for this
case, is a de Bruijn graph, that has an equivalent repre-
sentation [9] in the form of a shuffle-exchange graph. By
exploiting this observation, a linear array can be used to
implement the Viterbi algorithm in a very simple way.

To exploit a perfect shuffle approach, the partitioning
of the hardware that defines a processing element is de-
fined in a slightly different manner than the previous sec-
tion. The array consists of connecting ¢"*' processing
cells together as illustrated in Fig. 9(b). Each processing
cell in the middie row contains routing logic circuitry, a
path metric register, survivor sequence register, and one
adder. Odd-even processor pairs share a single compare
and select hardware element. The routing logic circuitry
exchanges path metrics and survivor sequences with a near
neighbor as dictated by the sequence of control signals
generated by the top row of processors.

The sequence of events during one symbol interval in
the center row of processing cells is illustrated in Fig.
9(b). The initial configuration of the array consists of N
sets of g identical path metrics (and survivor sequences).
In a series of near neighbor transpositions, path metrics
are moved (in only N — 1 clock ticks) to appropriate po-
sitions in the one-dimensional array in anticipation of the
branch metrics b; generated by y,. The specific b; re-
quired by a processing element in Fig. 9(b) is defined by
the branch metric labels in Fig. 9(a). This sequence of
steps can be viewed as unpacking, without altering their
original relative ordering, the items initially in the left
half into the even positions in the array, and those in the
right half into the odd positions of the array. In fact, the
data are rearranged or permuted in a manner identical to
that defined by the perfect shuffle operation, under the
constraint of near neighbor transpositions only. When il-
lustrated as a function of discrete time, the triangular
structure of the series of transpositions is characteristic of
the control algorithm required for any size problem in-
stance in GF(2).

After the requisite transpositions and after the branch
metrics have been added to the path metrics, the bottom
of the transposition ‘‘triangle’’ consists of having each
even numbered processor compare its path metric to that
of its odd numbered adjacent neighbor. The smallest path
metric of this pair is chosen, normalized to prevent
overflow and then duplicated in its odd—even processor
pair. At the same time the survivor sequence registers are
updated and an estimate of a transmitted symbol in the
past history is ejected from the last processing cell in the
array. The events described in the last few paragraphs are
then repeated during the next symbol interval.

A processor as defined here, is allocated for each branch
in the trellis diagram, hence, always guaranteeing com-
plete utilization of the processor array during the add,
compare, and select operations. Presumably, transposi-
tions can proceed quicker than arithmetic operations.
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Fig. 9. Linearly connected processor layout of the VA. (a) Trellis diagram
with branch metrics labeled. (b) A schematic presentation of the se-
quence of events in a linearly connected processor layout for the trellis
in (a); < denotes transposition.

Overflow control is achieved by selecting one path met-
ric and subtracting it from all others. For an efficient im-
plementation, one of the processors in the center of the
array should distribute its path metric into a special reg-
ister during the transportation operations. At the bottom
of the transposition ‘‘triangle,’” each processor will have
a copy of this one path metric to be subtracted from all
the newly generated path metrics.

The 1-D structure of the array allows for the develop-
ment of strategies [26] to circumvent the effects of low
yield (faulty processors) in a wafer-scale implementation.
Although this architecture has an unpleasant aspect ratio
for algorithm memory lengths of interest, say » > 4,
Leiserson [27, p. 94] can be used to establish the com-
forting fact that a topologically equivalent layout can be
enclosed in a square whose area is, at most, three times
the area of the original rectangular layout. One final com-
ment with regard to implementation. Note that the se-
quence of transposition steps is symmetrical about an axis
that cuts the array into two equal halves. Folding this ar-
ray about this axis of symmetry provides the insight on
how one would collapse the design [28] onto half as many
processors with a sequence of transpositions that sweep
across the array from one end to the other.

Since operands must be transported across the N-ele-
ment array, hardware logic speed must be 2(q"/T) in
this algorithmically specialized VLSI network. The sim-
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pler control algorithm this structure enjoys is paid for by
the increased processor area and reduced throughput rel-
ative to the cascade design. The performance of this com-
putational array can be improved by utilizing an array with
more interprocessor wiring, a two-dimensional array, as
demonstrated in the next section.

V. MEsH Layours

In this section, we demonstrate that the Viterbi algo-
rithm can be implemented on a compact mesh-type recir-
culation network. The two-dimensional mesh layout has
a higher throughput than the linearly connected layouts
studied in the previous section because operands do not
always have to migrate as far through the network of pro-
cessors given that most of the processing elements in the
array are connected to more than two neighbors. How-
ever, the connectivity is inferior and, hence, routing time
charges are greater than the large wire area layouts such
as the shuffle-exchange layout in that operands in a mesh
must sometimes circulate beyond immediate cell neigh-
bors before they reach the correct cell.

The rectangular mesh interconnection pattern consists
of N = ¢’ identical processors (one for each state), ar-
ranged in a two-dimensional array of size ¢!*/? by
q""/?!. Each processor is connected to adjacent neigh-
bors, as shown in Fig. 10(a). Processors at the perimeter
have two or three rather than four neighbors; there are no
end-around connections. The feature to note is that this
structure is a small and compact design that requires es-
sentially little interprocessor wire area.

Each cell is a message driven processing element with
the ability to generate forward and receive messages.
Each element in this array contains an add-compare-se-
lect circuit, a path metric generator (or table lookup),
transceiver and multiplexers, and a state machine that
serves as a control processor. Two bidirectional commu-
nication paths would be provided to each neighbor for path
survivors and for state metrics. Each processor is given a
numeric label in the range 0 to N — 1, in one to one cor-
respondence with each of the possible path metrics P;.
Though path metrics roam throughout the array as deter-
mined by the routing algorithm, the processor labels are
fixed and correspond to the ‘‘home’’ location of the cor-
responding path metric (i.e., are meant to indicate the lo-
cation of the corresponding path metric at t = Q). The
order in which the processors are labeled or indexed de-
termines the routing algorithm used to move data between
processors. The objective is to use index schemes which
minimize the time spent in routing. A row-major index
scheme, as illustrated in Fig. 10(a), yields a simple rout-
ing algorithm for each cell. The routing algorithm is ul-
timately determined by the trellis diagram which has been
rearranged in Fig. 10(b) in a form analogous to that re-
quired for a bitonic sort on a mesh. During a route oper-
ation, all data move in the same direction; that is, up,
down, left, or right. The movement of operands between
processors takes the form of either row merging or col-
umn merging operations at each clock tick.

E-E BT

(©) (d)
L & 6= 62 &[5
@ & [© 4 olialalia
D668 bBonm

() (f)

Fig. 10. The VA ina4 X 4 square mesh. (a) The 4 X 4 mesh of processors
labeled in row major order. (b) The rearranged trellis diagram. (c)-(f).
Routing steps and migration of state metrics of a 16-state binary VA
receiver implemented on a 4 X 4 square mesh. The numerals correspond
to path metric labels. The execution sequence is: (c) (d) (e) (f) (c) (d)
@ @)y - .

To illustrate the basic concept, consider for binary al-
phabets, a 16-state Viterbi decoder implemented on a 4
by 4 square mesh. The routing steps and the correspond-
ing migration of state metrics is illustrated in Fig. 10(c)-
(f). One stage of an N-state trellis (the trellis diagram for
one symbol interval) is implemented by means of unit dis-
tance routing steps. The sequence of routing steps, de-
fined by the discrete time index k, repeats every » symbol
intervals since the state metrics are back ‘‘home,”’ in their
original starting location. Note that some routing steps
require multiple unit distance routes, to move information
from where it was produced to where it is needed next.
The throughput of the VA, executed on a square mesh, is
limited by the worst case number of unit distance routes
required in a symbol interval and the delay of the ACS
processing cells. It can take as much as 0(q'"/*1) time
to rearrange the data among the processors in preparation
for the next ACS step. Fortunately, only a few of the ACS
+ route operations take this amount of time. The average
time fora ACS + route for 2” states is only 0(2*/21 /»).
Thus, the required log’ic speed (operations /s) of the struc-
ture must be Q(2 /21 /).

Three implementation details of the mesh implementa-
tion are particularly important. First, in order to spread
the routing step time penalty equally among each symbol
interval, a FIFO queue of depth » should be used on the
detector input data stream. The output of the FIFO queue
is globally broadcast to all processing cells. This is the
only global wiring required in the design (besides power
and timing signals). Second, the detector output is avail-
able at each symbol interval from the truncated survivor
sequence of any processing cell. Third, overflow control
of the state metric registers is not straightforward, if we
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are determined to use only the local near neighbor com-
munication paths. One possible strategy involves normal-
izing state metrics once every log N processing steps (i.e.,
once every » steps into the trellis). This provides for the
opportunity of selecting one state metric, say state zero,
and separating this value from the main computational
data path. During the first [ v /27 processing cycles, this
value can be broadcast to all processing cells, in the same
row, using only nearest neighbor broadcasts (on a dedi-
cated connection). At this point in time, each column has
at least one processing cell with this value stored in a reg-
ister. During the next | »/2 | processing cycles, this
value can be broadcast to all processing cells in each col-
umn. Now, all state metrics can be normalized using this
value. This normalization routine is then repeated in the
next » processing cycles. The penalty paid in this type of
scheme is that state metric registers would have to be sev-
eral bits wider than if state metrics were normalized each
processing cycle.

We conclude this section by pointing out that routing
algorithms exist where the number of processors (states)
is not necessarily a perfect square and where the alphabet
size g is not necessarily binary.

VI. DiscussioN AND CONCLUDING REMARKS

In this paper, we have presented three architectures;
namely, the cascade, the linear array, and the orthogonal
mesh, for implementing a dynamic programming algo-
rithm called the Viterbi algorithm. Our objective was to
enumerate locally connected processor arrays that exploit
the parallelism of the Viterbi algorithm to varying de-
grees. A summary of the performance of these architec-
tures relative to those already identified as being appro-
priate for a concurrent implementation of the Viterbi
algorithm is presented in Table I. These results are graph-
ically illustrated in Fig. 11. When ordered in terms of
increasing interprocessor wire area, an inverse relation
with throughput is evident. The conclusion to be drawn is
that, for a given fabrication technology, architectures ca-
pable of supporting high data rates necessarily require
more VLSI implementation area.

One useful figure of merit is the product (Area) * (Pe-
riod ) denoted by AP where the symbol period P is defined
as the average number of unit times between the appear-
ance of the first input bit of a symbol to the Viterbi de-
coder and the appearance of the first input bit of the next
symbol when operated at the highest possible symbol rate.
Ilustrated in Fig. 11 are contours of equal AP product
where P is noted to be proportional to the logic speed.
The energy consumption during each symbol interval
(power) is defined by the AP measure of complexity [10]
using the VLSI grid model. This measure can also be in-
terpreted as the reciprocal of throughput per unit area.’ A

*The United States Military development program for very high speed
integrated circuits (VHSIC) uses a processing throughput per unit area (TP)
figure of merit defined by: TP = (gate density) * (clock rate) = gate—
Hz /mm?. Contemporary microprocessors, such as the Intel 80386, achieve
a TP of approximately 10'° gate-Hz / mm?,

TABLE 1
PERFORMANCE SUMMARY
Layout Type Logic Speed for Layout
Symbol Interval T Area
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Fig. 11. Area-time performance summary. This figure is not drawn to
scale. Only relative relationships are illustrated.

completely pipelined circuit optimal with respect to this
criterion can be claimed to make best use of this area. Of
those considered, the best design, with respect to this cri-
terion, is seen to be the cascade design.

In this paper, we have assumed that the complexity of
the branch extension computations to be low relative to
the ACS operation. The reverse may be true for many
trellises where the use of ROM’s is not feasible. Since we
have only dealt with orders of complexity, detailed area-
speed comparisons need to be performed before the rela-
tive merit of some of the alternatives is completely clear
in certain circumstances.

The most straightforward implementation of the Viterbi
algorithm is a completely sequential realization. The other
extreme is a fully parallel implementation which com-
pletely exploits the parallelism of the algorithm to achieve
the greatest possible throughput. In contrast to these two
extremes, this paper considered three alternative types of
architectures. As a guide, we have exploited results from
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various types of algorithms the most notable being Fou-
rier transform and sorting algorithms. Each of the designs
has multiple processing elements that cooperatively ex-
ploit the inherent parallelism in the Viterbi algorithm to
varying degrees and yet each has VLSI layouts that re-
quire relatively small interprocessor wire area, as only
near neighbor interprocessor wiring is allowed. The dis-
tinguishing feature of the designs is in how operands are
scheduled and transferred between processors. The
throughput and layout area requirements are intermediate
to those of the completely sequential and fully parallel
approaches thus giving the designer a broad spectrum of
alternatives from which to choose.
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