
EE382N-4 Embedded Systems Architecture

10/29/2009

Software Library Development

Steven P. Smith
Mark McDermott

Fall 2009

EE382N-4 Embedded Systems Architecture

10/29/2009

Agenda

Why have Software Libraries?

Introduction to Object Files

Static & Dynamic Libraries

Standard libraries in embedded Linux

Publically available libraries

Development of specialized library functions

2

EE382N-4 Embedded Systems Architecture

10/29/2009

What is a Software Library?

A collection of software subroutines and functions

Building blocks for development of software applications

Elements within a library are usually related in some manner
(e.g., math functions, string processing, I/O, etc.)

May be operating system independent (e.g., standard I/O in C)

May be platform independent or highly platform‐specific

3

EE382N-4 Embedded Systems Architecture

10/29/2009

Why have Software Libraries?

Standardization of commonly used functionality

Greater modularity, improved software design

Promotion of code reuse

Improved programmer productivity

Enhanced system maintainability

Simplified software porting

4

EE382N-4 Embedded Systems Architecture

10/29/2009

Refresher: Components of the Linux System

This lecture will focus largely on System Libraries used in
Embedded Linux Systems.

Other aspects of Software Libraries in embedded systems in
general will also be addressed.

5

System
Management
Programs

User Processes
User

Utility Programs
Compilers

System Libraries

Linux Kernel

Loadable Kernel Modules

EE382N-4 Embedded Systems Architecture

10/29/2009

Introduction to Object Files

A compiler or assembler translates program source files into
object files.

– Narrowly defined, an object file is the result of the compilation or assembly
of a single program source file into a form more efficiently processed by
tools and machines. In C/C++, these are termed translation units.

– More broadly, an object file may represent a translation unit, a library, or an
executable. This is the definition we will use today.

These object, library and executable files have specific formats.

Some common file formats are:
– a.out: assembler and linker output format

– COFF: Common Object File Format

– ECOFF: Extended Common Object File Format

– ELF: Executable and Linking Format

6

EE382N-4 Embedded Systems Architecture

10/29/2009

Object File Formats

a.out: assembler and linker output format
– A fairly primitive format, lacking some key features to enable easy shared libraries,
etc.

– On Linux, a.out is the default output format of the system assembler and the linker.
The linker makes a.out executable files. A file in a.out format consists of: a header,
the program text, program data, text and data relocation information, a symbol
table, and a string table (in that order).

Common Object File Format (COFF) binary files
– COFF is a portable format for binary applications on UNIX System V
– COFF was adapted in part to form the Windows Portable Executable COFF (PE/COFF)
used for all object, library, and executable files in Windows since NT.

Extended Common Object File Format (ECOFF) binary files
– Developed for MIPS platform, used for a time by Digital Equipment, MIPS, IBM

ELF: Executable and Linking Format
– ELF and COFF formats are very similar but ELF has greater power and flexibility
– Has become the standard format for Linux and a handful of others (OpenVMS, BeOS)
– ELF representation is platform independent

7

EE382N-4 Embedded Systems Architecture

10/29/2009

ELF Object Files

Three main types of ELF files.

– relocatable file
• describes how it should be linked with other object files to create an executable
file or shared object library

• Individual C/C++ files (translation units) are compiled into these

– shared object file
• contains information needed in both static and dynamic linking

– executable file
• supplies information (a program header table) necessary for the operating system
to create a process image

A fourth type of ELF file is the core file, used for debugging
program execution errors.

8

EE382N-4 Embedded Systems Architecture

10/29/2009

ELF Object File Format (cont)

9

EE382N-4 Embedded Systems Architecture

10/29/2009

ELF Object File Format (cont)

The ELF Header
– ELF Header is always the first section of the file. (Remaining sections can be
in any order.)

– What does the ELF Header describe?
• The type of the ELF file
• Target architecture
• The location (offset) of the Program Header table, Section Header table, and
String table

• Number and size of entries for each table in the ELF
• The location of the first executable instruction (entry point)

The Program Header Table
– Only present in executable and shared object files
– It is an array of entries where each entry is a structure describing a segment
in the object file.

– The OS copies the segment into memory according to the location and size
information.

10

EE382N-4 Embedded Systems Architecture

10/29/2009

ELF Object File Format (cont)

The Section Header Table
– Has pointers to all sections in object files

– Similar to the program header

– Each entry correlates to a section in the file.

– Each entry provides the name, type, memory image starting address, file
offset, the section’s size, alignment, and how the information in the section
should be interpreted.

The ELF Sections
– Hold code, data, dynamic linking information, debugging data, symbol
tables, relocation information, comments, string tables, and notes.

– Sections are treated in one of several different ways:
• They may be loaded into the process image.

• They may provide information needed in the building of a process image.

• They may be used only in linking object files.

• They may contain other platform or environment‐specific information.

11

EE382N-4 Embedded Systems Architecture

10/29/2009

ELF Object File Format (cont)

The ELF Segments

– Group related sections
• Text segment groups executable code sections.

• Data segments group initialized or uninitialized program data and storage.

• Dynamic segment groups information relevant to dynamic loading.

– Each segment consists of one or more sections.

– A process image is created by loading and interpreting segments.

– The OS logically copies a file’s segment to a virtual memory segment
according to the information provided in the program header table.

12

EE382N-4 Embedded Systems Architecture

10/29/2009

Libraries

13

EE382N-4 Embedded Systems Architecture

10/29/2009

System Libraries
System libraries define a standard set of functions through which
applications interact with the kernel, implementing much of the
OS functionality that doesn’t need to run in kernel mode.

Distinct from loadable kernel modules, which may be thought of
as kernel mode shared libraries.

A program whose library functions are embedded directly in the
program’s executable ELF file is statically linked from its libraries.
– The main disadvantage of static linkage is that every program generated
must contain copies of exactly the same common system library functions.

– Still, static files are immune to changes in system libraries that can break
programs. (Windows, anyone?)

Dynamic linking is more efficient in terms of both physical
memory and disk‐space usage because it loads the system
libraries into memory only once.

14

EE382N-4 Embedded Systems Architecture

10/29/2009

Static Libraries

Use to package commonly used functions
– How to package functions commonly used by programmers?
• Math, I/O, memory management, string manipulation, etc.

– Awkward, given the linker framework:
• Option 1: Put all functions in a single source file
– Programmers link big object file into their programs
– Space and time inefficient

• Option 2: Put each function in a separate source file
– Programmers explicitly link appropriate binaries into their programs
– More efficient, but burdensome on the programmer

– One Solution: Static Libraries (.a archive files)
• Concatenate related relocatable object files into a single file with an index (called
an archive).

• Enhance the linker so that it tries to resolve unresolved external references by
looking for the symbols in one or more archives.

• If an archive member file resolves reference, link into executable.

15

Kim, CS230

EE382N-4 Embedded Systems Architecture

10/29/2009

Static Libraries (cont)
Mechanism
– Further improves modularity and efficiency by packaging commonly used
functions.
• e.g. C standard library (libc), math library (libm), etc.

– Linker selectively uses only the .o files in the archive that are actually
needed by the program.

16

EE382N-4 Embedded Systems Architecture

10/29/2009

Static Libraries (cont)
Creating Static Libraries
– Archive tool (ar) allows incremental updates:
• Recompile function that changes and replace .o file in archive.

– Since 'ar' is just a simple archiver, any type of file can be inserted into an
archive. This is not recommended because some linkers could have a
unpredictable behavior as a result.

17

EE382N-4 Embedded Systems Architecture

10/29/2009

Static Libraries (cont)

Commonly Used Libraries
– libc.a (C standard library)
• 1.5MB archive of over 1300 object files
• I/O, memory allocation, signal handling, string handling, data and time, random
numbers, integer math, etc.

– libm.a (C math library)
• 1MB archive of 226 object files
• Floating point math (sin, cos, tan, log, exp, sqrt, etc.)

18

% ar ‐t /usr/lib/libc.a | sort
…
fork.o
fprintf.o
fputc.o
freopen.o
fscanf.o
fseek.o
…..

% ar ‐t /usr/lib/libm.a | sort
…
e_acos.o
e_acosf.o
e_acosh.o
e_acoshf.o
e_acoshl.o
e_acosl.o
…..

EE382N-4 Embedded Systems Architecture

10/29/2009

Static Libraries (cont)
Using Static Libraries
– Linker’s algorithm for resolving external references:
• Scan .o files and .a files in the command line order.
• During the scan, keep a list of the current unresolved references.
• As each new .o or .a file is encountered, try to resolve each unresolved reference in
the list against the symbols in the object file.

• If any entries remain in the unresolved list at end of scan, then signal error.

Problem:
– Command line order matters!

– Suggestion: Put libraries at the end of the command line, with custom and
local libraries placed before system libraries.

19

EE382N-4 Embedded Systems Architecture

10/29/2009

Static Libraries (cont)

Static libraries have the following disadvantages:

– Potential for duplicating lots of common code in the executable files on a file
system.

• E.g., Every non‐trivial C program uses the standard C library

– Potential for duplicating lots of code in the virtual memory space of many
processes, adversely impacting system memory management and paging
performance.

– Minor bug fixes of system libraries require each application to explicitly re‐
link.

Static libraries have one often critical benefit:
– Statically linked executables are immune from the introduction of bugs in
new versions of shared system libraries.

– Can reduce software support cost and complexity.

20

EE382N-4 Embedded Systems Architecture

10/29/2009

Shared Libraries

Solution to static library disadvantages: Shared Libraries
– Dynamically linked libraries (DLLs) or shared object (.so) libraries.

Members are dynamically loaded into memory and linked into an
application at run‐time, typically as the process image is created.

Dynamic linking can occur…
– when executable is first loaded and run
• Common case for Linux, handled automatically by ld‐linux.so

– also after program has begun
• In Linux, this is done explicitly by user with dlopen()
• Basis for high‐performance web servers

Once resident in memory, shared library routines can be shared
by multiple processes.

21

EE382N-4 Embedded Systems Architecture

10/29/2009

Shared Libraries (cont)

22

EE382N-4 Embedded Systems Architecture

10/29/2009

Shared Libraries (cont)

How does it work?

– When the loader loads and runs the executable p’, it loads the partially
linked executable p’.

– It notices that p’ contains a .interp section, which contains the path name of
the dynamic linker.

• ld‐linux.so on Linux

– Before passing control to the application, the loader loads and runs the
dynamic linker.

– The dynamic linker then finishes the linking task:

• Relocate the text and data of libc.so into some memory segment (0x40000000 in
IA32/Linux)

– Relocate any references in p’ to symbols defined by libc.so

23

EE382N-4 Embedded Systems Architecture

10/29/2009

Shared Libraries (cont)

Position‐Independent Code (PIC)
– To use shared libraries, we need to compile library code so that it can be
loaded and executed at any address without being modified by the linker.
• gcc –shared –fPIC –o libvector.so addvec.c multvec.c

On IA32 systems,
– Calls to procedures in the same object module require no special treatment,
since the references are PC‐relative.

– Calls to externally‐defined procedures and references to global variables are
not normally PIC.

Uses a global offset table (GOT) (in data segment) and procedure
linkage table (PLT) (in text segment).

Clearly, PIC code has performance disadvantages.

24

EE382N-4 Embedded Systems Architecture

10/29/2009

Complete Picture

25

EE382N-4 Embedded Systems Architecture

10/29/2009

Publicly Available Standard C Libraries

There are a large number of available standard C libraries which
can be used to build an embedded Linux system. A sampling:

– GNU C library

– uClibc

– Newlib

– Klibc

26

EE382N-4 Embedded Systems Architecture

10/29/2009

Tool chain support for Embedded Linux Libraries
Associated with each one of these libraries are a number of tool
chains and tool chain builders which support a particular library.
– Code Sourcery http://www.codesourcery.com/gnu_toolchains/arm
• Supports glibc only.

– Free Electrons uClibc http://free‐electrons.com/community/tools/uclibc
• Only runs on i386 GNU/Linux
• Supported platforms: arm, i386, m68k, ppc, mips, mipsel, sh

– ScratchBox http://www.scratchbox.org/
• Supports ARM and x86 targets (PowerPC, MIPS and CRIS targets are experimental)
• Especially Debian is supported, but Scratchbox has also been used to cross‐compile
eg. Slackware for ARM.

• Provides glibc and uClibc as C‐library choices
– Buildroot http://buildroot.uclibc.org/
• Dedicated Makefile to build uClibc based toolchains
and even entire root filesystems. Also compatible with minimalist Busybox shell
BASH‐like command collection.

– Crosstool http://www.kegel.com/crosstool/
• Dedicated script to build glibc based toolchains
• Doesn’t support uClibc yet.

27

http://www.codesourcery.com/gnu_toolchains/arm/
http://free-electrons.com/community/tools/uclibc
http://www.scratchbox.org/
http://www.debian.org/
http://www.armedslack.org/
http://www.uclibc.org/

EE382N-4 Embedded Systems Architecture

10/29/2009

GNU C library

http://www.gnu.org/software/libc/

License: LGPL

C library from the GNU project

Designed for performance, standards compliance and portability

Found on all GNU / Linux host systems

Quite big for small embedded systems: about 1.5 MB on the ARM
Linux (libc: 1.5 MB, libm: 500 KB)

28

http://www.gnu.org/software/libc/
http://en.wikipedia.org/wiki/Image:Heckert_GNU_white.svg

EE382N-4 Embedded Systems Architecture

10/29/2009

uClibc

http://www.uclibc.org/ for CodePoet Consulting

License: LGPL

Lightweight C library for small embedded systems, with most
features though.

The whole Debian Woody was ported to it...
You can assume it satisfied most needs!

Size (ARM): Only 25% the size of glibc!
uClibc: approx. 400 KB (libuClibc: 300 KB, libm: 55KB)
glibc: approx 1700 KB (libc: 1.5 MB, libm: 500 KB)

Now supported by MontaVista and TimeSys

29

http://www.uclibc.org/

EE382N-4 Embedded Systems Architecture

10/29/2009

newlib

http://sources.redhat.com/newlib/

Minimal C library for very small embedded systems

Lets you remove floating point support wherever you don't need
it. Also provides an integer only iprintf() function. Much smaller!

Provides single precision math library functions. Much faster than
the standard IEEE compliant ones.

30

http://sources.redhat.com/newlib/

EE382N-4 Embedded Systems Architecture

10/29/2009

Diet libc

http://www.fefe.de/dietlibc/

C library primarily optimized for size

Intended for small, statically linked programs.

Compiled dietlibc size is 70 KB

31

http://www.fefe.de/dietlibc/

EE382N-4 Embedded Systems Architecture

10/29/2009

klibc

http://www.kernel.org/pub/linux/libs/klibc/
“Kernel C library”

Tiny and minimalistic C library designed for use in an initramfs at
boot time (newer, vastly superior alternative to initrds).

Fine for the creation of simple shell scripts.

Not elaborate enough to support BusyBox applications.

32

http://www.kernel.org/pub/linux/libs/klibc/

EE382N-4 Embedded Systems Architecture

10/29/2009

Sample code sizes for some standard libraries

33

C Program Compiled with Shared
Libraries

Compiled with Static
Libraries

glibc uClibc glibc uClibc

“hello world” 4.6 KB 4.4 KB 475 KB 25 KB

Busybox 245 KB 231 KB 843 KB 311 KB

EE382N-4 Embedded Systems Architecture

10/29/2009

Summary of C library options

Gnu C library – glibc

– Full featured, standards compliant library

– Best for desktops, notebooks, and servers with ample resources

uClibc

– Very high compatibility, but not quite as complete as glibc

– Excellent for resource‐constrained embedded systems

Others: newlib, kilbc, diet libc

– Best suited for extremely resource‐constrained systems using initramfs
(or initrds)

34

EE382N-4 Embedded Systems Architecture

10/29/2009

Building specialized libraries

35

EE382N-4 Embedded Systems Architecture

10/29/2009

Processor tuned standard libraries

Processor tuned libraries maximize performance using processor
specific code generation and still maintain binary portability
across different processors.

Library source code is compiled with ‐mcpu=CPU
– Compile library source code multiple times with different ‐mcpu values
– Compile for each processor to be supported
– One default build environment which will run anywhere

Install compiled libraries to:
– Default library lives in .../lib/
• This is the library you link your application against

Processor tuned libraries live in .../lib/cpu_type/
– Example: /lib/arm926/, /lib/arm920/, /lib/arm11/, etc.

Searches processor‐specific library directories first.

36

EE382N-4 Embedded Systems Architecture

10/29/2009

Processor tuned libraries (cont)

At boot time, the Linux kernel determines the system's
processor(s).
– The kernel exports the processor name to a user space vector.
– Runtime linker/loader uses the vector value during library load time:
• Scans through each directory ($DIR) in the library search path.
• Searches for libs within $DIR/<AT_PLATFORM>/
• Then searches within $DIR
• Only works for shared libraries

The vector contains system information such as:
– Processor type
– Hardware capabilities
– Cache sizes
– Page size
– Etc.

37

EE382N-4 Embedded Systems Architecture

10/29/2009

Developing custom libraries for embedded systems

Properly viewed, library development should be thought of as a
key element of a good modular design methodology.

– Group functions that interact directly with platform‐specific hardware into a
separate library.

– Use library functions to abstract sensor and actuator interfaces.

– Abstract communications functions into a separate library to cleave abstract
behaviors (e.g., send message) from physical media (e.g., Ethernet, RS‐232).

– Group product domain‐specific algorithms (automatic meter reading,
package tracking, etc.).

38

EE382N-4 Embedded Systems Architecture

10/29/2009

Developing custom libraries for embedded systems

Goal: Make application level source code readily portable across
platforms and architectures without modification.
– Software that changes should be isolated in custom libraries.

– Reduces porting costs, lengthens software life cycle, fosters compatibility

Custom libraries may differ from platform to platform in all
respects except the function specification.
– Different source code

– Different underlying algorithm

– Different interaction with system resources

39

EE382N-4 Embedded Systems Architecture

10/29/2009

Developing custom libraries for embedded systems

Highly resource constrained systems deeply influence
requirements and parameters for library selection and
configuration.
– In the extreme, individual library functions may be culled as source code to
link with application software. Library “concepts” should still be preserved.

– Shared libraries may entail too much overhead on systems with a very small
number of processes

– Functionality may be removed, if necessary, as has been done with some
variants of the standard C library.

Real‐time requirements may make off‐the‐shelf standard system
libraries unworkable

Non‐uniform, heterogeneous memory architectures can pose
challenges to structuring library software (e.g., flash vs. DRAM)

40

EE382N-4 Embedded Systems Architecture

10/29/2009

Conclusions
Software libraries are a fundamental element of modern
software development methodologies.
– Code reuse, modularity, portability, maintainability, etc.

Standard system libraries in embedded Linux systems come in
many forms, each optimized for different platforms and
applications.
– Trade‐offs between functionality and size

– Variations based on system resources and capabilities (e.g., FPU vs. no FPU)

Statically linked libraries are generally less efficient to use in
systems with multiple applications executing or in those with
limited file system storage.
– They do offer protection against the introduction of new bugs in library
revisions.

Dynamically linked libraries generally offer many advantages.

41

	Software Library Development
	Agenda
	What is a Software Library?
	Why have Software Libraries?
	Refresher: Components of the Linux System
	Introduction to Object Files
	Object File Formats
	ELF Object Files
	ELF Object File Format (cont)
	ELF Object File Format (cont)
	ELF Object File Format (cont)
	ELF Object File Format (cont)
	Libraries
	System Libraries
	Static Libraries
	Static Libraries (cont)
	Static Libraries (cont)
	Static Libraries (cont)
	Static Libraries (cont)
	Static Libraries (cont)
	Shared Libraries
	Shared Libraries (cont)
	Shared Libraries (cont)
	Shared Libraries (cont)
	Complete Picture
	Publicly Available Standard C Libraries
	Tool chain support for Embedded Linux Libraries
	GNU C library
	uClibc
	newlib
	Diet libc
	klibc
	Sample code sizes for some standard libraries
	Summary of C library options
	Building specialized libraries
	Processor tuned standard libraries
	Processor tuned libraries (cont)
	Developing custom libraries for embedded systems
	Developing custom libraries for embedded systems
	Developing custom libraries for embedded systems
	Conclusions

