EE382N-4 Embedded Systems Architecture

Software Library Development

Steven P. Smith
Mark McDermott

Fall 2009

10/29/2009

EE382N-4 Embedded Systems Architecture

Agenda

Why have Software Libraries?
Introduction to Object Files

Static & Dynamic Libraries

Standard libraries in embedded Linux
Publically available libraries

Development of specialized library functions

10/29/2009 2

EE382N-4 Embedded Systems Architecture

What is a Software Library?

A collection of software subroutines and functions
Building blocks for development of software applications

Elements within a library are usually related in some manner
(e.g., math functions, string processing, 1/0, etc.)

May be operating system independent (e.g., standard 1/0 in C)

May be platform independent or highly platform-specific

10/29/2009 3

EE382N-4 Embedded Systems Architecture

Why have Software Libraries?

Standardization of commonly used functionality
Greater modularity, improved software design
Promotion of code reuse

Improved programmer productivity

Enhanced system maintainability

Simplified software porting

10/29/2009 4

EE382N-4 Embedded Systems Architecture

Refresher: Components of the Linux System

System
User .
Management User Processes - Compilers
Utility Programs
Programs

System Libraries

Linux Kernel

Loadable Kernel Modules

This lecture will focus largely on System Libraries used in
Embedded Linux Systems.

Other aspects of Software Libraries in embedded systems in
general will also be addressed.

10/29/2009 5

EE382N-4 Embedded Systems Architecture

Introduction to Object Files

A compiler or assembler translates program source files into
object files.

Narrowly defined, an object file is the result of the compilation or assembly
of a single program source file into a form more efficiently processed by
tools and machines. In C/C++, these are termed translation units.

More broadly, an object file may represent a translation unit, a library, or an
executable. This is the definition we will use today.

These object, library and executable files have specific formats.

Some common file formats are:
a.out: assembler and linker output format
COFF: Common Object File Format
ECOFF: Extended Common Object File Format
ELF: Executable and Linking Format

10/29/2009 6

EE382N-4 Embedded Systems Architecture

Object File Formats

a.out: assembler and linker output format
A fairly primitive format, lacking some key features to enable easy shared libraries,

etc.
On Linux, a.out is the default output format of the system assembler and the linker.

The linker makes a.out executable files. A file in a.out format consists of: a header,
the program text, program data, text and data relocation information, a symbol
table, and a string table (in that order).

Common Object File Format (COFF) binary files
COFF is a portable format for binary applications on UNIX System V
COFF was adapted in part to form the Windows Portable Executable COFF (PE/COFF)
used for all object, library, and executable files in Windows since NT.

Extended Common Object File Format (ECOFF) binary files
Developed for MIPS platform, used for a time by Digital Equipment, MIPS, IBM

ELF: Executable and Linking Format
ELF and COFF formats are very similar but ELF has greater power and flexibility
Has become the standard format for Linux and a handful of others (OpenVMS, BeOS)
ELF representation is platform independent

10/29/2009 7

EE382N-4 Embedded Systems Architecture

ELF Object Files

Three main types of ELF files.

relocatable file
describes how it should be linked with other object files to create an executable
file or shared object library
Individual C/C++ files (translation units) are compiled into these

shared object file
contains information needed in both static and dynamic linking

executable file
supplies information (a program header table) necessary for the operating system
to create a process image

A fourth type of ELF file is the core file, used for debugging
program execution errors.

10/29/2009 8

EE382N-4 Embedded Systems Architecture

ELF Object File Format (cont)

s 0
ELF header _
Process image Virtual addr
Program header table
(required for executables) init and shared lip | °*¢804830
text section segments
.data section
t 0x08048494
.bss section - text segmen
(r/o)
.symtab
.rel.text 0x0804a010
.data segment
.rel.data (initialized r/w)
.debug
0x0804a3b0
Section header table .bss segment
(required for relocatables) (uninitialized r/w)

10/29/2009

EE382N-4 Embedded Systems Architecture

ELF Object File Format (cont)
The ELF Header

ELF Header is always the first section of the file. (Remaining sections can be
in any order.)

What does the ELF Header describe?
The type of the ELF file
Target architecture

The location (offset) of the Program Header table, Section Header table, and
String table

Number and size of entries for each table in the ELF
The location of the first executable instruction (entry point)

The Program Header Table
Only present in executable and shared object files

It is an array of entries where each entry is a structure describing a segment
in the object file.

The OS copies the segment into memory according to the location and size
information.

10/29/2009

EE382N-4 Embedded Systems Architecture

ELF Object File Format (cont)

The Section Header Table
Has pointers to all sections in object files
Similar to the program header
Each entry correlates to a section in the file.

Each entry provides the name, type, memory image starting address, file
offset, the section’s size, alignment, and how the information in the section

should be interpreted.
The ELF Sections

Hold code, data, dynamic linking information, debugging data, symbol
tables, relocation information, comments, string tables, and notes.

Sections are treated in one of several different ways:
They may be loaded into the process image.
They may provide information needed in the building of a process image.
They may be used only in linking object files.
They may contain other platform or environment-specific information.

10/29/2009

EE382N-4 Embedded Systems Architecture

ELF Object File Format (cont)

The ELF Segments

Group related sections
Text segment groups executable code sections.
Data segments group initialized or uninitialized program data and storage.

Dynamic segment groups information relevant to dynamic loading.
Each segment consists of one or more sections.
A process image is created by loading and interpreting segments.

The OS logically copies a file’s segment to a virtual memory segment
according to the information provided in the program header table.

10/29/2009

EE382N-4 Embedded Systems Architecture

#include <stdio.h>

int main ()

{

printf ("Greetings"); |

return O;
[] [] }
Libraries
user
mode -
standard C library
kernel

mode
Qrite ()

write ()
system call

10/29/2009

EE382N-4 Embedded Systems Architecture

System Libraries

System libraries define a standard set of functions through which
applications interact with the kernel, implementing much of the
OS functionality that doesn’t need to run in kernel mode.

Distinct from loadable kernel modules, which may be thought of
as kernel mode shared libraries.

A program whose library functions are embedded directly in the
program’s executable ELF file is statically linked from its libraries.

The main disadvantage of static linkage is that every program generated
must contain copies of exactly the same common system library functions.

Still, static files are immune to changes in system libraries that can break
programs. (Windows, anyone?)
Dynamic linking is more efficient in terms of both physical
memory and disk-space usage because it loads the system
libraries into memory only once.

10/29/2009

EE382N-4 Embedded Systems Architecture

Static Libraries

Use to package commonly used functions

How to package functions commonly used by programmers?
Math, I/0, memory management, string manipulation, etc.

Awkward, given the linker framework:

Option 1: Put all functions in a single source file
Programmers link big object file into their programs
Space and time inefficient

Option 2: Put each function in a separate source file
Programmers explicitly link appropriate binaries into their programs
More efficient, but burdensome on the programmer

One Solution: Static Libraries (.a archive files)

Concatenate related relocatable object files into a single file with an index (called
an archive).

Enhance the linker so that it tries to resolve unresolved external references by
looking for the symbols in one or more archives.

If an archive member file resolves reference, link into executable.

Kim, €5230
10/29/2009 15

EE382N-4 Embedded Systems Architecture

Static Libraries (cont)

Mechanism
Further improves modularity and efficiency by packaging commonly used
functions.

e.g. C standard library (libc), math library (libm), etc.

Linker selectively uses only the .o files in the archive that are actually
needed by the program.

pll. c p2l .C
Translator Translator
¢ ‘ static library (archive) of
pl.o p2.o libc.a relocatable object files
\ l / concatenated into one file.
Linker (Id)

lv executable object file (only contains code
P and data for 1ibc functions that are called
from pl.cand p2.c)

10/29/2009

Static Libraries (cont)
Creating Static Libraries

EE382N-4 Embedded Systems Architecture

Archive tool (ar) allows incremental updates:
Recompile function that changes and replace .o file in archive.

atoi.c printf.c
Translator Translator
atoi.o printf.o

\ l

random.c

|

Translator

v

random. o

/

Archiver (ar)

ar rs libc.a \
atoi.o printf.o .. random.o

|

libc.a

C standard library

Since 'ar' is just a simple archiver, any type of file can be inserted into an
archive. This is not recommended because some linkers could have a
unpredictable behavior as a result.

10/29/2009

EE382N-4 Embedded Systems Architecture

Static Libraries (cont)

Commonly Used Libraries

libc.a (C standard library)
1.5MB archive of over 1300 object files
/0, memory allocation, signal handling, string handling, data and time, random
numbers, integer math, etc.

libm.a (C math library)
1MB archive of 226 object files
Floating point math (sin, cos, tan, log, exp, sqrt, etc.)

% ar -t fusr/lib/libc.a | sort % ar -t fusr/lib/libm.a | sort
fork.o €_acos.o

fprintf.o e_acosf.o

fputc.o e_acosh.o

freopen.o e_acoshf.o

fscanf.o e_acoshl.o

fseek.o e_acosl.o

10/29/2009

EE382N-4 Embedded Systems Architecture

Static Libraries (cont)
Using Static Libraries

Linker’s algorithm for resolving external references:
Scan .o files and .a files in the command line order.
During the scan, keep a list of the current unresolved references.
As each new .o or .a file is encountered, try to resolve each unresolved reference in
the list against the symbols in the object file.
If any entries remain in the unresolved list at end of scan, then signal error.

Problem:
Command line order matters!

Suggestion: Put libraries at the end of the command line, with custom and
local libraries placed before system libraries.

bass> gce -L. libtest.o -1lmine
bass> gcc -L. -lmine libtest.o
libtest.o: In function "main':
libtest.o(.text+0x4): undefined reference to "libfun'’

10/29/2009

EE382N-4 Embedded Systems Architecture

Static Libraries (cont)

Static libraries have the following disadvantages:

Potential for duplicating lots of common code in the executable files on a file
system.

E.g., Every non-trivial C program uses the standard C library

Potential for duplicating lots of code in the virtual memory space of many
processes, adversely impacting system memory management and paging
performance.

Minor bug fixes of system libraries require each application to explicitly re-
link.

Static libraries have one often critical benefit:

Statically linked executables are immune from the introduction of bugs in
new versions of shared system libraries.

Can reduce software support cost and complexity.

10/29/2009

EE382N-4 Embedded Systems Architecture

Shared Libraries

Solution to static library disadvantages: Shared Libraries
Dynamically linked libraries (DLLs) or shared object (.so) libraries.

Members are dynamically loaded into memory and linked into an
application at run-time, typically as the process image is created.

Dynamic linking can occur...

when executable is first loaded and run
Common case for Linux, handled automatically by Id-linux.so

also after program has begun
In Linux, this is done explicitly by user with dlopen()
Basis for high-performance web servers

Once resident in memory, shared library routines can be shared
by multiple processes.

10/29/2009

EE382N-4 Embedded Systems Architecture

Shared Libraries (cont)

m.cC a.c

Translators Translators
(cc1, as) (cc1,as)
m .O\‘ alo
Linker (Id)
Partially linked executable p i libc.so Shared library of dynamically
relocatable object files

(on disk) l /

Loader/Dynamic Linker | ., = __ 7, ctions called by m.c

(Id-linux.so) and a. c are loaded, linked, and
l (potentially) shared among
Fully linked executable processes.
p’ (in memory) P’

10/29/2009

EE382N-4 Embedded Systems Architecture

Shared Libraries (cont)

How does it work?

When the loader loads and runs the executable p’, it loads the partially
linked executable p’.

It notices that p’ contains a .interp section, which contains the path name of
the dynamic linker.

Id-linux.so on Linux

Before passing control to the application, the loader loads and runs the
dynamic linker.

The dynamic linker then finishes the linking task:

Relocate the text and data of libc.so into some memory segment (0x40000000 in
IA32/Linux)

Relocate any references in p’ to symbols defined by libc.so

10/29/2009

EE382N-4 Embedded Systems Architecture

Shared Libraries (cont)

Position-Independent Code (PIC)

To use shared libraries, we need to compile library code so that it can be

loaded and executed at any address without being modified by the linker.
gcc —shared —fPIC —o libvector.so addvec.c multvec.c

On IA32 systems,

Calls to procedures in the same object module require no special treatment,
since the references are PC-relative.

Calls to externally-defined procedures and references to global variables are
not normally PIC.

Uses a global offset table (GOT) (in data segment) and procedure
linkage table (PLT) (in text segment).

Clearly, PIC code has performance disadvantages.

10/29/2009

Complete Picture

10/29/2009

EE382N-4 Embedded Systems Architecture

m.cC a.c
Translator Translator
m.o libwhatever.a

~ | o

Static Linker (Id)

libc.so 1libm.so

¢//

Loader/Dynamic Linker

(Id-linux.so0)

]

p!

EE382N-4 Embedded Systems Architecture

Publicly Available Standard C Libraries

There are a large number of available standard C libraries which
can be used to build an embedded Linux system. A sampling:

GNU C library
uClibc

Newlib

Klibc

10/29/2009

EE382N-4 Embedded Systems Architecture

Tool chain support for Embedded Linux Libraries

Associated with each one of these libraries are a number of tool

chains and tool chain builders which support a particular library.

Code Sourcery http://www.codesourcery.com/gnu_toolchains/arm
Supports glibc only.

Free Electrons uClibc http://free-electrons.com/community/tools/uclibc
Only runs on i386 GNU/Linux
Supported platforms: arm, i386, m68k, ppc, mips, mipsel, sh

ScratchBox http://www.scratchbox.org/
Supports ARM and x86 targets (PowerPC, MIPS and CRIS targets are experimental)
Especially Debian is supported, but Scratchbox has also been used to cross-compile
eg. Slackware for ARM.
Provides glibc and uClibc as C-library choices

Buildroot http://buildroot.uclibc.org/
Dedicated Makefile to build uClibc based toolchains
and even entire root filesystems. Also compatible with minimalist Busybox shell
BASH-like command collection.

Crosstool http://www.kegel.com/crosstool/
Dedicated script to build glibc based toolchains
Doesn’t support uClibc yet.

10/29/2009

http://www.codesourcery.com/gnu_toolchains/arm/
http://free-electrons.com/community/tools/uclibc
http://www.scratchbox.org/
http://www.debian.org/
http://www.armedslack.org/
http://www.uclibc.org/

EE382N-4 Embedded Systems Architecture

GNU C library

http://www.gnhu.org/software/libc/
License: LGPL
C library from the GNU project

Designed for performance, standards compliance and portability
Found on all GNU / Linux host systems

Quite big for small embedded systems: about 1.5 MB on the ARM
Linux (libc: 1.5 MB, libm: 500 KB)

10/29/2009

http://www.gnu.org/software/libc/
http://en.wikipedia.org/wiki/Image:Heckert_GNU_white.svg

EE382N-4 Embedded Systems Architecture

uClibc

http://www.uclibc.org/ for CodePoet Consulting
License: LGPL

Lightweight C library for small embedded systems, with most
features though.

The whole Debian Woody was ported to it...
You can assume it satisfied most needs!

Size (ARM): Only 25% the size of glibc!
uClibc: approx. 400 KB (libuClibc: 300 KB, libm: 55KB)
glibc: approx 1700 KB (libc: 1.5 MB, libm: 500 KB)

Now supported by MontaVista and TimeSys

10/29/2009

http://www.uclibc.org/

EE382N-4 Embedded Systems Architecture

newlib

http://sources.redhat.com/newlib/

Minimal C library for very small embedded systems

Lets you remove floating point support wherever you don't need
it. Also provides an integer only iprintf() function. Much smaller!

Provides single precision math library functions. Much faster than
the standard IEEE compliant ones.

10/29/2009

http://sources.redhat.com/newlib/

EE382N-4 Embedded Systems Architecture

Diet libc

http://www.fefe.de/dietlibc/

C library primarily optimized for size
Intended for small, statically linked programs.

Compiled dietlibc size is 70 KB

10/29/2009

http://www.fefe.de/dietlibc/

EE382N-4 Embedded Systems Architecture

http://www.kernel.org/pub/linux/libs/klibc/
“Kernel C library”

Tiny and minimalistic C library designed for use in an initramfs at
boot time (newer, vastly superior alternative to initrds).

Fine for the creation of simple shell scripts.

Not elaborate enough to support BusyBox applications.

10/29/2009

http://www.kernel.org/pub/linux/libs/klibc/

EE382N-4 Embedded Systems Architecture

Sample code sizes for some standard libraries

C Program Compiled with Shared Compiled with Static
Libraries Libraries

glibc uClibc glibc uClibc

“hello world” 4.6 KB 4.4 KB 475 KB 25 KB

Busybox 245 KB 231 KB 843 KB 311 KB

10/29/2009

EE382N-4 Embedded Systems Architecture

Summary of C library options

Gnu C library — glibc
Full featured, standards compliant library

Best for desktops, notebooks, and servers with ample resources

uClibc

Very high compatibility, but not quite as complete as glibc

Excellent for resource-constrained embedded systems

Others: newlib, kilbc, diet libc

Best suited for extremely resource-constrained systems using initramfs
(or initrds)

10/29/2009

EE382N-4 Embedded Systems Architecture

Building specialized libraries

10/29/2009

EE382N-4 Embedded Systems Architecture

Processor tuned standard libraries

Processor tuned libraries maximize performance using processor
specific code generation and still maintain binary portability
across different processors.

Library source code is compiled with -mcpu=CPU
Compile library source code multiple times with different -mcpu values
Compile for each processor to be supported
One default build environment which will run anywhere

Install compiled libraries to:

Default library lives in .../lib/
This is the library you link your application against

Processor tuned libraries live in .../lib/cpu_type/
Example: /lib/arm926/, /lib/arm920/, /lib/arm11/, etc.

Searches processor-specific library directories first.

10/29/2009

EE382N-4 Embedded Systems Architecture

Processor tuned libraries (cont)

At boot time, the Linux kernel determines the system'’s

processor(s).
The kernel exports the processor name to a user space vector.

Runtime linker/loader uses the vector value during library load time:
Scans through each directory (SDIR) in the library search path.
Searches for libs within SDIR/<AT_PLATFORM>/
Then searches within SDIR
Only works for shared libraries

The vector contains system information such as:
Processor type
Hardware capabilities
Cache sizes
Page size
Etc.

10/29/2009

EE382N-4 Embedded Systems Architecture

Developing custom libraries for embedded systems

Properly viewed, library development should be thought of as a
key element of a good modular design methodology.

Group functions that interact directly with platform-specific hardware into a
separate library.

Use library functions to abstract sensor and actuator interfaces.

Abstract communications functions into a separate library to cleave abstract
behaviors (e.g., send message) from physical media (e.g., Ethernet, RS-232).

Group product domain-specific algorithms (automatic meter reading,
package tracking, etc.).

10/29/2009

EE382N-4 Embedded Systems Architecture

Developing custom libraries for embedded systems

Goal: Make application level source code readily portable across
platforms and architectures without modification.

Software that changes should be isolated in custom libraries.

Reduces porting costs, lengthens software life cycle, fosters compatibility

Custom libraries may differ from platform to platform in all
respects except the function specification.

Different source code

Different underlying algorithm

Different interaction with system resources

10/29/2009

EE382N-4 Embedded Systems Architecture

Developing custom libraries for embedded systems

Highly resource constrained systems deeply influence
requirements and parameters for library selection and
configuration.

In the extreme, individual library functions may be culled as source code to
link with application software. Library “concepts” should still be preserved.

Shared libraries may entail too much overhead on systems with a very small
number of processes

Functionality may be removed, if necessary, as has been done with some
variants of the standard C library.

Real-time requirements may make off-the-shelf standard system
libraries unworkable

Non-uniform, heterogeneous memory architectures can pose
challenges to structuring library software (e.g., flash vs. DRAM)

10/29/2009

EE382N-4 Embedded Systems Architecture

Conclusions
Software libraries are a fundamental element of modern
software development methodologies.
Code reuse, modularity, portability, maintainability, etc.
Standard system libraries in embedded Linux systems come in

many forms, each optimized for different platforms and
applications.

Trade-offs between functionality and size
Variations based on system resources and capabilities (e.g., FPU vs. no FPU)
Statically linked libraries are generally less efficient to use in

systems with multiple applications executing or in those with
limited file system storage.

They do offer protection against the introduction of new bugs in library
revisions.

Dynamically linked libraries generally offer many advantages.

10/29/2009

	Software Library Development
	Agenda
	What is a Software Library?
	Why have Software Libraries?
	Refresher: Components of the Linux System
	Introduction to Object Files
	Object File Formats
	ELF Object Files
	ELF Object File Format (cont)
	ELF Object File Format (cont)
	ELF Object File Format (cont)
	ELF Object File Format (cont)
	Libraries
	System Libraries
	Static Libraries
	Static Libraries (cont)
	Static Libraries (cont)
	Static Libraries (cont)
	Static Libraries (cont)
	Static Libraries (cont)
	Shared Libraries
	Shared Libraries (cont)
	Shared Libraries (cont)
	Shared Libraries (cont)
	Complete Picture
	Publicly Available Standard C Libraries
	Tool chain support for Embedded Linux Libraries
	GNU C library
	uClibc
	newlib
	Diet libc
	klibc
	Sample code sizes for some standard libraries
	Summary of C library options
	Building specialized libraries
	Processor tuned standard libraries
	Processor tuned libraries (cont)
	Developing custom libraries for embedded systems
	Developing custom libraries for embedded systems
	Developing custom libraries for embedded systems
	Conclusions

