
X P L A N AT I O N : F P G A 1 0 1

	 38	 Xcell Journal	 Second Quarter 2014

How to Use
Interrupts on
the Zynq SoC
by Adam P. Taylor
Head of Engineering – Systems
e2v Technologies
aptaylor@theiet.org

X P L A N A N T I O N : F P G A 1 0 1

	 Second Quarter 2014 	 Xcell Journal 	 39

I
n embedded processing, an interrupt is
a signal that temporarily halts the pro-
cessor’s current activities. The proces-
sor saves its current state and executes
an interrupt service routine to address

the reason for the interrupt. An interrupt can
come from one of the three following places:

•	� Hardware – An electronic signal connected
directly to the processor

•	� Software – A software instruction loaded by 	
the processor

•	� Exception – An exception generated by the 	
processor when an error or exceptional 	
event occurs

	 Regardless of the source, interrupts can also
be classified as either maskable or non-mas-
kable. You can safely ignore a maskable inter-
rupt by setting the appropriate bit in an inter-
rupt mask register. But you cannot ignore a
non-maskable interrupt, because these are the
types typically used for timers and watchdogs.
	 Interrupts can be either edge triggered or
level triggered. The Xilinx® Zynq®-7000 All Pro-
grammable SoC supports configuration of the
interrupt either way, as we will see later.

WHY USE AN INTERRUPT-
DRIVEN APPROACH?
Real-time designs often require an inter-
rupt-driven approach simply because many
systems will have a number of inputs (for ex-
ample keyboards, mice, pushbuttons, sensors
and the like) that will at times require process-
ing. Inputs from these devices are generally
asynchronous to the process or task currently
executing, so you cannot always predict when
the event will occur.
	 Using interrupts enables the processor to
continue processing until an event occurs,
at which time the processor can address the
event. This interrupt-driven approach also
enables a faster response time to events than
a polled approach, in which a program active-
ly samples the status of an external device in
a synchronous manner.

THE ZYNQ SOC’S INTERRUPT STRUCTURE
As processors get more advanced, there are a
number of sources interrupts can come from.
The Zynq SoC uses a Generic Interrupt Con-

Real-time computing often
requires interrupts to respond
quickly to events. It’s not hard
to design an interrupt-driven
system once you grasp how
the interrupt structure of the

Zynq SoC works.

X P L A N A N T I O N : F P G A 1 0 1

	 40	 Xcell Journal	 Second Quarter 2014

troller (GIC), as shown in Figure 1, to process interrupts.
The GIC handles interrupts from the following sources:

•	� Software-generated interrupts – There are 16 such inter-
rupts for each processor. They can interrupt one or both 	
of the Zynq SoC’s ARM® Cortex™-A9 processor cores.

•	� Shared peripheral interrupts – Numbering 60 in total, 	
these interrupts can come from the I/O peripherals, or to 	
and from the programmable logic (PL) side of the device. 	
They are shared between the Zynq SoC’s two CPUs.

•	� Private peripheral interrupts – The five interrupts in
this category are private to each CPU—for example
CPU timer, CPU watchdog timer and dedicated
PL-to-CPU interrupt.

	 The shared peripheral interrupts are very interesting, as
they are very flexible. They can be routed to either CPU from
the I/O peripherals (44 interrupts in total) or from the FPGA
logic (16 interrupts in total). However, it is also possible to
route interrupts from the I/O peripherals to the programmable
logic side of the device, as shown in Figure 2.

PROCESSING THE INTERRUPTS ON THE ZYNQ SOC
When an interrupt occurs within the Zynq SoC, the pro-
cessor will take the following actions:

1.	� The interrupt is shown as pending.

2.	 The processor stops executing the current thread.

3.	� The processor saves the state of the thread in the stack 	
to allow processing to continue once it has handled 	
the interrupt.

4.	� The processor executes the interrupt service routine, 	
which defines how the interrupt is to be handled.

5.	� The processor resumes operation of the interrupted
thread after restoring it from the stack.

	 Because interrupts are asynchronous events, it is pos-
sible for multiple interrupts to occur at the same time. To
address this issue, the processor prioritizes interrupts such
that it can service the highest-priority interrupt pending first.
	 To implement this interrupt structure correctly, we will
need to write two functions: an interrupt service routine
to define the actions that will take place when the inter-
rupt occurs, and an interrupt setup to configure the inter-
rupt. The interrupt setup is a reusable routine that allows
for constructing different interrupts. Generic for all inter-
rupts within a system, the routine will set up and enable
the interrupts for the general-purpose I/O (GPIO).

USING INTERRUPTS IN SDK
Interrupts are supported and can be implemented on a
bare-metal system using the standalone board support
package (BSP) within the Xilinx Software Development Kit

Application Processor Unit (APU)

•
•
•

ARM Cortex™-A9
CPU

ARM Cortex™-A9
CPU

Central
Interconnect

DMA
Chennels

Clock
Generation

SMC Timing
Calulation

I/O Peripherals

Bank0
MIO

(15:0)

I/O
MUX
(MIO)

Bank1
MIO

(53:15)

Resets

Extended
MIO (EMIO) PS-PL

Clock Ports

32b GP
AXI

Master
Ports

32b GP
AXI

Slave
Ports

DMA8
Channel

Config
AES/
SHA

IRQ High Performance
AXI 32b/64b Slave

Ports

XADC

DMA Syns

DEVC

DAP

Programmable
Logic to Memory

Inerconnect

SPI 0
SPI 1
I2C 0
I2C1
CAN 0
CAN 1
UART 0
UART 1
GPIO
SD 0
SD1
USB 0
USB 1
ENET 0
ENET 1

GIC

General
Settings

SRAM/NOR
NAND
QUAD SPI

Syetem Level
Control Regs

FLASH Memory
Interfaces

SWDT
TTC

CoreSight
Components

64b
AXI
ACP
Slave
Ports

OCM
Interconnect

256 KB
SRAM

DR2/3,LPDDR2
Controller

512 KB L2 Cache and Controller

Snoop Control unit

Memory Interfaces

Processing System (PS)

Programmable Logic (PL)

 12 13 14 15
 8 9 10 11
 4 5 6 7
 0 1 2 3

Figure 1 – The Generic Interrupt Controller is circled in red.

X P L A N A N T I O N : F P G A 1 0 1

	 Second Quarter 2014 	 Xcell Journal 	 41

(SDK). The BSP contains a number of functions that greatly
ease this task of creating an interrupt-driven system. They
are provided within the following header files:

•	� Xparameters.h – This file contains the processor’s 	
address space and the device IDs.

•	� Xscugic.h – This file holds the drivers for the configuration
and use of the GIC.

•	� Xil_exception.h – This file contains exception functions 	
for the Cortex-A9.

	 To address a hardware peripheral, we need to know the
address range and the device ID for the devices we wish
to use—in other words, the GIC, which is provided mostly
within the BSP header file xparameters. However, the inter-
rupt ID is provided from xparameters_ps.h (there is no need
to declare this header file within your source code as it is
included in the xparameters.h file). We can use this interrupt
labeled “ID” (it’s the GPIO_Interrupt_ID) within our source
file as shown below:

#define GPIO_DEVICE_ID XPAR_XGPIOPS_0_DEVICE_ID
#define INTC_DEVICE_ID XPAR_SCUGIC_SINGLE_DEVICE_ID
#define GPIO_INTERRUPT_ID XPS_GPIO_INT_ID

	 For this simple example, we will be configuring the Zynq
SoC’s GPIO to generate an interrupt following a button

push. To set up the interrupt, we will need two static global
variables and the interrupt ID defined above to make the
following:

static XScuGic Intc; // Interrupt Controller Driver
static XGpioPs Gpio; //GPIO Device

	 Within the interrupt setup function, we will need to ini-
tialize the Zynq SoC’s exceptions; configure and initialize
the GIC; and connect the GIC to the interrupt-handling hard-
ware. The Xil_exception.h and Xscugic.h files provide the
functions we need to accomplish this task. The result is the
following code:

//GIC config
XScuGic_Config *IntcConfig;
Xil_ExceptionInit();

//initialize the GIC
IntcConfig = XScuGic_LookupConfig(INTC_DEVICE_ID);

XScuGic_CfgInitialize(GicInstancePtr, IntcConfig,
IntcConfig->CpuBaseAddress);

//connect to the hardware
Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_IN-
T,(Xil_ExceptionHandler)XScuGic_InterruptHandler,
	 GicInstancePtr);

	 When it comes to configuring the GPIO to function as an
interrupt within the same interrupt configuration routine,

Figure 2 – These are the interrupts available between the processing system and the programmable logic.

X P L A N A N T I O N : F P G A 1 0 1

	 42	 Xcell Journal	 Second Quarter 2014

we can configure either a bank or an individual pin. This task
can be achieved using functions provided within xgpiops.h,
for example:

voi�d XGpioPs_IntrEnable(XGpioPs *InstancePtr, u8
Bank, u32 Mask);

voi�d XGpioPs_IntrEnablePin(XGpioPs *InstancePtr,
int Pin);

	 Naturally, you will also need to configure the interrupt
correctly. For instance, do you wish it to be edge triggered or
level triggered? If so, which edge and level can be achieved
using the function?

void XGpioPs_SetIntrTypePin(XGpioPs *InstancePtr,
int Pin, u8 IrqType);

where the IrqType is defined by one of the five definitions
within xgpiops.h. They are:

#defi�ne XGPIOPS_IRQ_TYPE_EDGE_RISING 0 /**<
Interrupt on Rising edge */

#defi�ne XGPIOPS_IRQ_TYPE_EDGE_FALLING 1 /**<
Interrupt Falling edge */

#defi�ne XGPIOPS_IRQ_TYPE_EDGE_BOTH 2 /**<
Interrupt on both edges */

#defi�ne XGPIOPS_IRQ_TYPE_LEVEL_HIGH 3 /**<
Interrupt on high level */

#defi�ne XGPIOPS_IRQ_TYPE_LEVEL_LOW 4 /**<
Interrupt on low level */

	 If you decide to use the bank enable, you need to know which
bank the pin or pins you wish to enable interrupts are on. The
Zynq SoC supports a maximum of 118 GPIOs. In this configura-
tion, all of the MIOs (54 pins) are being used as GPIO along with
the EMIOs (64 pins). We can break this configuration into four
banks, with each bank containing up to 32 pins.
	 This setup function will also define the interrupt service
routine, which is to be called when the interrupt occurs that
uses the function:

XGpioPs_SetCallbackHandler(Gpio,
 (void *)Gpio, IntrHandler);

	 The interrupt service routine can be as simple or as com-
plicated as the application defines. For this example, it will
toggle the status of an LED on and off each time a button is
pressed. The interrupt service routine will also print out a
message to the console each time the button is pressed.

static void IntrHandler(void *CallBackRef, int
Bank, u32 Status)
{
	 int delay;
 	 �XGpioPs *Gpioint = (XGpioPs *)

CallBackRef;
	 �XGpioPs_IntrClearPin(Gpioint, pbsw);
	� printf(“****button pressed****\n\r”);

toggle = !toggle;
	� XGpioPs_WritePin(Gpioint, ledpin, toggle);

for(delay = 0; delay < LED_DELAY; delay++)
//wait

	 {}
}

PRIVATE TIMER EXAMPLE
The Zynq SoC has a number of timers and watchdogs avail-
able. These are either private to a CPU or a shared resource
available to both CPUs. Interrupts are required if you are to
use these components efficiently in your design. The timers
and watchdogs include the following:

•	� CPU 32-bit timer (SCUTIMER), clocked at half the CPU 	
frequency

•	� CPU 32-bit watchdog (SCUWDT), clocked at half the CPU 	
frequency

•	� Shared 64-bit global timer (GT), clocked at half the CPU 	
frequency (each CPU has its own 64-bit comparator; it is 	
used with the GT, which drives a private interrupt for 	
each CPU)

•	� System watchdog timer (WDT), which can be clocked 	
from the CPU clock or an external source

•	� A pair of triple timer counters (TTCs), each containing 	
three independent timers. The TTCs can be clocked by the 	
CPU clock or by means of an external source from the 	
MIO or EMIO in the programmable logic.

	 To gain the maximum benefit from the available timers
and watchdogs, we need to be able to make use of the Zynq
SoC’s interrupts. The simplest of these to configure is the pri-
vate timer. Like most of the Zynq SoC’s peripherals, this tim-
er comes with a number of predefined functions and macros
to help you use the resource efficiently. They are contained
within the following:

#include “xscutimer.h”

	 This file contains functions (macros) that will provide a
number of capabilities, including initialization and self-test.
The functions within this file will also start and stop the tim-
er, and manage the timer (restart it; check to see if it has
expired; load the timer; enable/disable auto loading). Anoth-
er of their jobs is to set up, enable, disable, clear and man-
age the timer interrupts. Finally, these functions also get and
then set the prescaler.

The timer itself is controlled via the following four
registers:

•	� Private Timer Load Register – This register is used in auto
reload mode. It contains the value that is reloaded into the
Private Timer Counter Register when auto reload is enabled.

•	� Private Timer Counter Register – This is the actual 	
counter itself. When enabled, once this register reaches 	
zero the interrupt event flag is set.

•	� Private Timer Control Register – The control register 	
enables or disables the timer, auto reload mode and 	
interrupt generation. It also contains the prescaler for 	
the timer.

	 Second Quarter 2014 	 Xcell Journal 	 43

X P L A N A N T I O N : F P G A 1 0 1

	 //enable interrupt on the timer
	 XScuTimer_EnableInterrupt(TimerInstancePtr);

	 Where TimerIntrHandler is the name of the function that
is called when the interrupt occurs, the timer interrupt must
be enabled on the GIC and within the timer itself.

The timer interrupt service routine is very simple. All it
does is to clear the pending interrupt and write out a message
over the STDOUT, as follows:

static void TimerIntrHandler(void *CallBackRef)
{

	 XScuTimer *TimerInstancePtr =
 (XScuTimer *) CallBackRef;
	 XScuTimer_ClearInterruptStatus(TimerInstancePtr);
	 printf(“****Timer Event!!!!!!!!!!!!!****\n\r”);

	 With this action complete, the final thing to do is to mod-
ify the GPIO interrupt service routine to start the timer each
time the button is pushed, as such:

 //load timer
 XScuTimer_LoadTimer(&Timer, TIMER_LOAD_VALUE);
 //start timer
 XScuTimer_Start(&Timer);

	 To do this we first load the timer value into the timer
and then call the timer start function. Now we can again
clear the pushbutton interrupt and resume processing, as
seen in Figure 3.

Many engineers initially approach an interrupt-driv-
en system design with trepidation. However, the Zynq
SoC’s architecture, with the Generic Interrupt Controller
coupled with the drivers provided with the SDK, enables
you to get an interrupt-driven system up and running very
quickly and efficiently.

•	� Private Timer Interrupt Status Register – This register 	
contains the private timer interrupt status event flag.

	 As for using the GPIO, the timer device ID and timer in-
terrupt ID that are needed to set up the timer are contained
within the XParameters.h file. Our example will use the
pushbutton interrupt that we developed previously. When
the button is pressed, the timer will load and start to run
(not in auto reload mode). Upon expiration of the timer,
an interrupt will be generated that will write a message out
over the STDOUT. The interrupt will then be cleared to wait
until the next time the button is pressed. This example will
always load the same value into the counter; hence with the
declarations at the top of the file, the timer count value is
declared, as follows:

#define TIMER_LOAD_VALUE	 0xFFFFFFFF

	 The next stage is to configure and initialize the private
timer and load the timer count value into it.

 //timer initialisation
 TMRConfigPtr = XScuTimer_LookupConfig
 (TIMER_DEVICE_ID);
 XScuTimer_CfgInitialize(&Timer,
 TMRConfigPtr,TMRConfigPtr->BaseAddr);
//load the timer
 XScuTimer_LoadTimer(&Timer, TIMER_LOAD_VALUE);

	 We also need to update the interrupt setup subroutine to
connect the timer interrupts to the GIC and enable the timer
interrupt.

 //set up the timer interrupt
	 XScuGic_Connect(GicInstancePtr, TimerIntrId,
(Xil_ExceptionHandler)TimerIntrHandler,
 (void *)TimerInstancePtr);
	 //enable the interrupt for the Timer at GIC
	 XScuGic_Enable(GicInstancePtr, TimerIntrId);

Figure 3 – This screen shows an example of the GPIO and timer interrupt event outputs.

