
Zynq UltraScale+ MPSoC
Software Developer Guide

UG1137 (2020.1) September 4, 2020

https://www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary
09/04/2020 Version 2020.1

Chapter 10: Platform Management Unit Firmware Updated PMU Firmware Build Flags to add a new flag.

Chapter 12: Reset Updated RPU Subsystem Restart for RPU only restart
support details.

Appendix E: XilSecure Library v4.2 Added Additional References.

Appendix H: XilFPGA Library v5.2 Added Additional References.

12/05/2019 Version 2019.2

Vitis Embedded Flow Updated SDK flows to Vitis Embedded Flow throughout the
document.

06/26/2019 Version 2019.1

Chapter 4: Software Stack Updated Multimedia Stack Overview.

Chapter 7: System Boot and Configuration Updated Miscellaneous Functions

Chapter 10: Platform Management Unit Firmware Added CSU/PMU Register Access and updated PMU
Firmware Build Flags

Chapter 11: Power Management Framework Updated Sub-system Power Management

Added appendix

01/18/2019 Version 9.0

Chapter 2: Programming View of Zynq UltraScale+ MPSoC
Devices

Updated Boot Modes and System-Level Protections sections

Chapter 3: Development Tools Added Device Tree Generator

Chapter 4: Software Stack Removed XilRSA references

Chapter 8: Security Features Updated Configuring XMPU Registers

Chapter 9: Platform Management Updated Power Management Framework

Chapter 10: Platform Management Unit Firmware Updated PMU Firmware Build Flags, FPD WDT, and PMU
Firmware Memory Layout and Footprint

Chapter 12: Reset Updated Warm Restart with a note about on-chip memory
(OCM)

Chapter 16: Boot Image Creation Removed content and updated the chapter with a short
description and added a reference to the Bootgen user
guide.

06/22/2018 Version 8.0

Chapter 7: System Boot and Configuration Added a note that SHA-2 will be deprecated from 2019.1
release with a recommendation to use SHA-3

Chapter 8: Security Features Added Enhanced RSA Key Revocation Support

Chapter 10: Platform Management Unit Firmware Updated PMU firmware Signals PLL Lock Errors on
PS_ERROR_OUT section and PMU firmware Loading Options

05/04/2018 Version 7.0

Chapter 8: Security Features Added BIF File for Obfuscated Form (Gray) Key Stored in
eFUSE and updated deprecation of SHA-2 authentication

Revision History

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=2

Section Revision Summary
Chapter 12: Reset Added Warm Restart

Chapter 16: Boot Image Creation Updated Boot Image format documentation

01/19/2018 Version 6.0

Chapter 5: Software Development Flow Updated Bare Metal Application Development

Chapter 7: System Boot and Configuration Updated Boot Flow and Boot Modes sections

Chapter 8: Security Features Updated BIF File with Multiple AESKEY Files

Chapter 13: High-Speed Bus Interfaces Updated Ethernet flow figures

Chapter 16: Boot Image Creation Updated example for [fsbl_config] parameter

11/15/2017 Version 5.0

Chapter 1: About This Guide Updated Prerequisites

Chapter 2: Programming View of Zynq UltraScale+ MPSoC
Devices

Updated Boot Process and Security sections

Chapter 4: Software Stack Updated FreeRTOS Software Stack

Chapter 7: System Boot and Configuration Added FSBL Build Process and Setting FSBL Compilation
Flags sections. Updated Boot Modes

Chapter 8: Security Features Updated Boot Time Security

Chapter 9: Platform Management Platform Management in PS and PMU Firmware sections

Chapter 10: Platform Management Unit Firmware Added new chapter

Chapter 11: Power Management Framework Updated Zynq UltraScale+ MPSoC Power Management
Software Architecture, Using the API for Power
Management, Sub-system Power Management, and XilPM
Implementation Details sections

Chapter 16: Boot Image Creation Updated BIF File Parameters, Boot Image Format and Boot
Header Table.

05/03/2017 Version 4.0

Chapter 2: Programming View of Zynq UltraScale+ MPSoC
Devices

Added Boot Process

Chapter 4: Software Stack Added information about Linux software stack exception
levels EL0-EL3.

Chapter 7: System Boot and Configuration Added QSPI24 and QSPI32 Boot Modes, eMMC18 Boot
Mode, JTAG Boot Mode, USB Boot Mode. Updated Setting
FSBL Compilation Flags to include FSBL_USB_EXCLUDE.

Chapter 8: Security Features Added Bitstream Authentication Using External Memory,
System Memory Management Unit, A53 Memory
Management Unit, and R5 Memory Protection Unit.
Updated Encryption and Authentication sections.

Chapter 16: Boot Image Creation Added parameters and descriptions in Table 16-1. Added
Boot Image Format. Added additional bit descriptions in
Table 16-9.

Added Appendixes for OS & Libraries content (Appendixes
A-K).

12/15/2016 Version 3.0

Chapter 1: About This Guide Updated Introduction

Chapter 7: System Boot and Configuration Updated Boot Modes

10/05/2016 Version 2.0

Chapter 2: Programming View of Zynq UltraScale+ MPSoC
Devices

Updated Boot Modes and removed Interrupt Features.

Revision History

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 3Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=3

Section Revision Summary
Chapter 3: Development Tools Added Vivado Design Suite. Modified Supported features in

Xilinx Software Development Kit. Added a link to the
SDK_Download. Replaced PetaLinux figure with table in Arm
GNU Tools section.

Chapter 4: Software Stack Added FreeRTOS Software Stack

Chapter 5: Software Development Flow Removed Developing Open Source Software.

Chapter 6: Software Design Paradigms Added Frameworks for Multiprocessor Development

Chapter 7: System Boot and Configuration Modified SD Mode diagram, Figure 7-2. Modified NAND
Mode diagram Figure 7-4. Removed Keys organization in the
CSU and Wake UP Mechanisms. Added Pre-Boot Sequence.

Chapter 8: Security Features Updated chapter and removed Encryption Key Types and
Key Registers table.

Chapter 9: Platform Management Added Power Management Framework and updated PMU
Firmware

DMA Removed chapter

System Coherency Removed chapter

Chapter 16: Boot Image Creation Added new chapter

11/18/2015 Version 1.0

Initial release. N/A

Revision History

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 4Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=4

Table of Contents
Revision History...2

Chapter 1: About This Guide...10
Introduction... 10
Intended Audience and Scope of this Document... 11
Prerequisites.. 11

Chapter 2: Programming View of Zynq UltraScale+ MPSoC
Devices... 13
Hardware Architecture Overview.. 13
Boot Process.. 16
Virtualization..19
System Level Reset Requirements.. 19
Security... 20
Safety and Reliability...23
Memory Overview for APU and RPU Executables... 26

Chapter 3: Development Tools.. 28
Vivado Design Suite.. 28
Vitis Unified Software Platform... 30
Arm GNU Tools.. 32
Device Tree Generator..33
PetaLinux Tools..33
Linux Software Development using Yocto... 34

Chapter 4: Software Stack... 37
Bare Metal Software Stack... 37
Linux Software Stack...40
Third-Party Software Stack...44

Chapter 5: Software Development Flow.. 45
Bare Metal Application Development...46
Application Development Using PetaLinux Tools... 48

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=5

Linux Application Development Using Vitis... 48

Chapter 6: Software Design Paradigms... 53
Frameworks for Multiprocessor Development..53
Symmetric Multiprocessing (SMP).. 54
Asymmetric Multiprocessing (AMP)..55

Chapter 7: System Boot and Configuration... 59
Boot Process Overview... 59
Boot Flow..59
Boot Image Creation...61
Boot Modes.. 64
Detailed Boot Flow.. 69
Disabling FPD in Boot Sequence... 72
Setting FSBL Compilation Flags... 72
FSBL Build Process.. 75

Chapter 8: Security Features.. 100
Boot Time Security.. 100
Bitstream Authentication Using External Memory... 112
Run-Time Security... 114
Arm Trusted Firmware..115
FPGA Manager Solution... 118
Xilinx Memory Protection Unit...120
Xilinx Peripheral Protection Unit... 121
System Memory Management Unit..121
A53 Memory Management Unit.. 122
R5 Memory Protection Unit..122

Chapter 9: Platform Management.. 123
Platform Management in PS..123
Wake Up Mechanisms.. 126
Platform Management for Memory..127
DDR Controller...127
Platform Management for Interconnects.. 127
PMU Firmware... 128

Chapter 10: Platform Management Unit Firmware................................ 129
Features..129

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=6

PMU Firmware Architecture...130
Execution Flow...131
Handling Inter-Process Interrupts in PMU firmware... 133
PMU Firmware Modules... 137
Error Management (EM) Module.. 140
Power Management (PM) Module..146
Scheduler..147
Safety Test Library...147
CSU/PMU Register Access..148
Timers... 149
Configuration Object.. 152
PMU Firmware Loading Options... 154
PMU Firmware Usage... 160
PMU Firmware Memory Layout and Footprint..166
Dependencies.. 168

Chapter 11: Power Management Framework...169
Introduction... 169
Zynq UltraScale+ MPSoC Power Management Overview...171
Power Management Framework Overview... 175
Using the API for Power Management...188
XilPM Implementation Details... 194
Linux... 197
Arm Trusted Firmware (ATF)..214
PMU Firmware... 217

Chapter 12: Reset.. 220
System-Level Reset... 220
Block-Level Resets...220
Application Processing Unit Reset.. 221
Real Time Processing Unit Reset...222
Full Power Domain Reset... 222
Warm Restart...222
Supported Use Cases..226

Chapter 13: High-Speed Bus Interfaces... 248
USB 3.0..248
Gigabit Ethernet Controller..251
PCI Express...254

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=7

Chapter 14: Clock and Frequency Management....................................... 260
Changing the Peripheral Frequency... 260

Chapter 15: Target Development Platforms..262
QEMU..262
Boards and Kits..262

Chapter 16: Boot Image Creation.. 263

Appendix A: Standalone Library v7.2...264
Xilinx Hardware Abstraction Layer API...264
MicroBlaze Processor API...278
Cortex R5 Processor API... 287
ARM Processor Common API...310
Cortex A9 Processor API...313
Cortex A53 32-bit Processor API..345
Cortex A53 64-bit Processor Boot Code..358

Appendix B: LwIP 2.1.1 Library.. 370
Introduction... 370
Using lwIP...371
LwIP Library APIs...381

Appendix C: XilIsf Library v5.15.. 387
Overview...387
XilIsf Library API.. 388
Library Parameters in MSS File..404

Appendix D: XilFFS Library v4.3...406
XilFFS Library API Reference.. 406
Library Parameters in MSS File..408

Appendix E: XilSecure Library v4.2.. 411
Overview...411
AES-GCM...412
RSA.. 423
SHA-3.. 429
XilSecure Utilities...436
Additional References...438

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=8

Appendix F: XilSkey Library v4.9...440
Overview...440
BBRAM PL API.. 445
Zynq UltraScale+ MPSoC BBRAM PS API.. 447
Zynq eFUSE PS API.. 449
Zynq UltraScale+ MPSoC eFUSE PS API.. 451
eFUSE PL API.. 464
CRC Calculation API...467
User-Configurable Parameters..469
Error Codes.. 493
Status Codes.. 503
Procedures... 503
Data Structure Index...505

Appendix G: XilPM Library v3.1... 509
XilPM Zynq UltraScale+ MPSoC APIs... 509
Error Status.. 544
Data Structure Index...546

Appendix H: XilFPGA Library v5.2.. 549
Overview...549
XilFPGA APIs...558

Appendix I: XilMailbox v1.2... 565
Overview...565
Data Structure Index...574

Appendix J: Additional Resources and Legal Notices.............................575
Xilinx Resources...575
Documentation Navigator and Design Hubs.. 575
References..575
Please Read: Important Legal Notices... 578

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=9

Chapter 1

About This Guide

Introduction
This document provides the software-centric information required for designing and developing
system software and applications for the Xilinx® Zynq® UltraScale+™ MPSoCs. The
Zynq UltraScale+ MPSoC family has different products, based upon the following system
features:

• Application processing unit (APU):

○ Dual or Quad-core Arm® Cortex™-A53 MPCore

○ CPU frequency up to 1.5 GHz

• Real-time processing unit (RPU):

○ Dual-core Arm Cortex™-R5F MPCore

○ CPU frequency up to 600 MHz

• Graphics processing unit (GPU):

○ Arm Mali-400 MP2

○ GPU frequency up to 667 MHz

• Video codec unit (VCU):

○ Simultaneous Encode and Decode through separate cores

○ H.264 high profile level 5.2 (4Kx2K-60)

○ H.265 (HEVC) main, main10 profile, level 5.1, high Tier, up to 4Kx2K-60 rate

○ 8 and 10-bit encoding

○ 4:2:0 and 4:2:2 chroma sampling

For more details, see the Zynq UltraScale+ MPSoC Product Table and the Product Advantages.

Chapter 1: About This Guide

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 10Send Feedback

https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productTable
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productAdvantages
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=10

Intended Audience and Scope of this
Document

The purpose of this guide is to enable software developers and system architects to become
familiar with:

• Xilinx software development tools.

• Available programming options.

• Xilinx software components that include device drivers, middleware stacks, frameworks, and
example applications.

• Platform management unit firmware (PMU firmware), Arm Trusted Firmware (ATF), OpenAMP,
PetaLinux tools, Xen Hypervisor, and other tools developed for the Zynq UltraScale+ MPSoC
device.

Prerequisites
This document assumes that you are:

• Experienced with embedded software development

• Familiar with Armv7 and Armv8 architecture

• Familiar with Xilinx development tools such as the Vivado® Integrated Design Environment
(IDE), the Vitis™ unified software platform, compilers, debuggers, and operating systems.

This document includes the following chapters:

• Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices: Briefly explains the
architecture of the Zynq UltraScale+ MPSoC hardware. Xilinx recommends you to go through
and understand each feature of this chapter.

• Chapter 3: Development Tools: Provides a brief description about the Xilinx software
development tools. This chapter helps you to understand all the available features in the
software development tools. It is recommended for software developers to go through this
chapter and understand the procedure involved in building and debugging software
applications.

• Chapter 4: Software Stack: Provides a description of various software stacks such as bare
metal software, RTOS-based software and the full-fledged Linux stack provided by Xilinx for
developing systems with the Zynq UltraScale+ MPSoC device.

• Chapter 5: Software Development Flow: Walks you through the software development
process. It also provides a brief description of the APIs and drivers supported in the Linux OS
and bare metal.

Chapter 1: About This Guide

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 11Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=11

• Chapter 6: Software Design Paradigms: Helps you understand different approaches to develop
software on the heterogeneous processing systems. After reading this chapter, you will have a
better understanding of programming in different processor modes like symmetric multi-
processing (SMP), asymmetric multi-processing (AMP), virtualization, and a hybrid mode that
combines SMP and AMP.

• Chapter 7: System Boot and Configuration: Describes the booting process using different
booting devices in both secure and non-secure modes.

• Chapter 8: Security Features: Describes the Zynq UltraScale+ MPSoC devices features you
can leverage to enhance security during application boot- and run-time.

• Chapter 9: Platform Management: Describes the features available to manage power
consumption, and how to control the various power modes using software.

• Chapter 10: Platform Management Unit Firmware: Describes the features and functionality of
PMU firmware developed for Zynq UltraScale+ MPSoC device.

• Chapter 11: Power Management Framework: Describes the functionality of the Xilinx Power
Management Framework (PMF) that supports a flexible power management control through
the platform management unit (PMU).

• Chapter 12: Reset: Explains the system and module-level resets.

• Chapter 13: High-Speed Bus Interfaces: Explains the configuration flow of the high-speed
interface protocols.

• Chapter 14: Clock and Frequency Management: Briefly explains the clock and frequency
management of peripherals in Zynq UltraScale+ MPSoC devices.

• Chapter 15: Target Development Platforms: Explains about the different development
platforms available for the Zynq UltraScale+ MPSoC device, such as quick emulators (QEMU),
and the Zynq UltraScale+ MPSoC boards and kits.

• Chapter 16: Boot Image Creation: Describes Bootgen, a standalone tool for creating a
bootable image forZynq UltraScale+ MPSoC devices. Bootgen is included in the Vitis software
platform.

• Appendix A - Appendix K: Describe the available libraries and board support packages to help
you develop a software platform.

• Appendix J: Additional Resources and Legal Notices: Provides links to additional information
that is cited throughout the document.

Chapter 1: About This Guide

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 12Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=12

Chapter 2

Programming View of Zynq
UltraScale+ MPSoC Devices

The Zynq® UltraScale+™ MPSoC supports a wide range of applications that require
heterogeneous multiprocessing. Heterogeneous multiprocessing system consists of multiple
single and multi-core processors of differing types. It supports the following features:

• Multiple levels of security

• Increased safety

• Advanced power management

• Superior processing, I/O, and memory bandwidth

• A design approach, based on heterogeneous multiprocessing presents design challenges,
which includes:

○ Meeting application performance requirements within a specified power envelope

○ Optimizing memory access within heterogeneous multiprocessing system

○ Providing low-latency, coherent communications between various processing engines

○ Managing and optimizing system power consumption in all operational modes

Xilinx® provides comprehensive tools for hardware and software development on the
Zynq UltraScale+ MPSoC, and various software modules such as operating systems,
heterogeneous system software, and security management modules.

The Zynq UltraScale+ MPSoC is a heterogeneous device that includes the Arm® Cortex™-A53,
high-performance, energy-efficient, 64-bit application processor, and also the 32-bit Arm
Cortex™-R5F dual-core real-time processor.

Hardware Architecture Overview
The Zynq UltraScale+ MPSoCs provide power savings, programmable acceleration, I/O, and
memory bandwidth. These features are ideal for applications that require heterogeneous
multiprocessing.

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=13

The following figure shows the Zynq UltraScale+ MPSoC architecture with next-generation
programmable engines for security, safety, reliability, and scalability.

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=14

Figure 1: Zynq UltraScale+ MPSoC Device Hardware Architecture

RPU

256 KB
OCM

LPD-DMA

CSU
PMU

Processing System

Cortex-R5F
32 KB I/D

128 KB TCM

Cortex-R5F
32 KB I/D

128 KB TCM

4 x 1GE

APU

Cortex-A53
32 KB I/D

Cortex-A53
32 KB I/D

Cortex-A53
32 KB I/D

Cortex-A53
32 KB I/D

GIC

SCU

ACP 1 MB L2

GPU
Mali-400 MP2

64 KB L2

2 x USB 3.0

NAND x8
ONFI 3.1

2 x SD3.0/
eMMC4.51

Quad-SPI
x 8

2 x SPI

2 x CAN

2 x I2C

2 x UART

GPIOs

SYSMON

M
IO Central

Switch

FPD-DMA

VCU
H.264/H.265

PCIe
Gen4

DisplayPort
v1.2 x1, x2

2 x SATA
v3.0

PCIe Gen2
x1, x2, or x4

SHA3
AES-GCM
RSA

Processor
System BPU

DDRC (DDR4/3/3L, LPDDR3/4)

Programmabl
e Logic

128 KB RAM

PL
_L

PD
H

P

GIC

LL
LP

LL
LP

RGMII

ULPI PS
-G

TR

SMMU/CCI

GFC

USB 3.0

SGMII

Low Power Switch

To ACP

Low Power Full PowerBattery
Power

32-bit/64-bit

64-bit
M S

128-bit
M S

LP
D_

PL
H

PC
H

PM

GTY
Quad

GTH
Quad

Interlaken 100G
Ethernet

AC
E DisplayPort

Video and
Audio Interface

M => AXI Master S => AXI Slave X23704-021320

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=15

The Zynq UltraScale+ MPSoC features are as follows:

• Cortex-R5F dual-core real-time processor unit (RPU)

• Arm Cortex-A53 64-bit quad/dual-core processor unit (APU)

• Mali-400 MP2 graphic processing unit (GPU)

• External memory interfaces: DDR4, LPDDR4, DDR3, DDR3L, LPDDR3, 2x Quad-SPI, and
NAND

• General connectivity: 2x USB 3.0, 2x SD/SDIO, 2x UART, 2x CAN 2.0B, 2x I2C, 2x SPI, 4x
1GE, and GPIO

• Security: Advanced Encryption Standard (AES), RSA public key encryption algorithm, and
Secure Hash Algorithm-3 (SHA-3)

• AMS system monitor: 10-bit, 1 MSPS ADC, temperature, voltage, and current monitor

• The processor subsystem (PS) has five high-speed serial I/O (HSSIO) interfaces supporting the
protocols:

○ PCIe®: base specification, version 2.1 compliant, and Gen2x4

○ SATA 3.0

○ DisplayPort: Implements a DisplayPort source-only interface with video resolution up to 4k
x 2k

○ USB 3.0: Compliant to USB 3.0 specification implementing a 5 Gb/s line rate

○ Serial GMII: Supports a 1 Gb/s SGMII interface

• Platform Management Unit (PMU) for functions that include power sequencing, safety,
security, and debug.

For more details, see the following sections of the Zynq UltraScale+ Device Technical Reference
Manual (UG1085): APU, RPU, PMU, GPU, and inter-processor interrupt (IPI).

Boot Process
The platform management unit (PMU) and configuration security unit (CSU) manage and perform
the multi-staged booting process. You can boot the device in either secure or non-secure mode.
See Boot Process Overview or, see the Boot and Configuration chapter of the Zynq UltraScale+
Device Technical Reference Manual (UG1085).

Boot Modes
You can use any of the following as the boot mode for booting from external devices:

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 16Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=16

• Quad SPI flash memory (QSPI24, QSPI32)

• eMMC18

• NAND

• Secure Digital Interface Memory (SD0, SD1)

• JTAG

• USB

The bootROM does not directly support booting from SATA, Ethernet, or PCI Express (PCIe). The
boot security does not rely on, and is largely orthogonal to TrustZone (TZ). The bootROM
(running on the Platform Management Unit) performs the security resources management (for
example, key management) and establishes root-of-trust. It authenticates FSBL, locks boot
security resources, and transfers chain-of-trust control to FSBL (either on APU or RPU).

To understand more about the boot process in the different boot modes, see the ‘Boot and
Configuration’ chapter of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

QSPI24 and QSPI32

The QSPI boot mode supports the following:

• x1, x2, and x4 read modes for single Quad SPI flash memory (QSPI24) and x8 for dual QSPI

• Image search for MultiBoot

• I/O mode is not supported in FSBL

Note: Single Quad-SPI memory (x1, x2 and x4) is the only boot mode that supports execute-in-place (XIP).

For additional information, see QSPI24 and QSPI32 Boot Modes.

eMMC18

The eMMC18 boot mode supports:

• FAT 16 and FAT 32 file systems for reading the boot images.

• Image search for MultiBoot. The maximum number of searchable files as part of an image
search for MultiBoot is 8,191.

For additional information, see eMMC18 Boot Mode.

NAND

The NAND boot supports the following:

• 8-bit widths for reading the boot images

• Image search for MultiBoot

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 17Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=17

For additional information, see NAND Boot Mode.

SD

The SD boot supported version is 3.0. This version supports:

• FAT 16/32 file systems for reading the boot images.

• Image search for MultiBoot. The maximum number of searchable files as part of an image
search for MultiBoot is 8,191.

For additional information, see SD Boot Mode.

JTAG

You can download any software images needed for the PS and hardware images needed for the
PL using JTAG.

IMPORTANT! In JTAG mode, you can boot the Zynq UltraScale+ MPSoC in non-secure mode only.

For additional information, see JTAG Boot Mode.

Zynq UltraScale+ devices do not support JTAG accesses while the CPU cores are powered down
randomly by the software running on the device.

In case of PetaLinux, these kernel configuration options are known to be incompatible with the
JTAG debugger:

• CONFIG_PERF_EVENTS

• CONFIG_FREEZER

• CONFIG_SUSPEND

• CONFIG_PM

• CONFIG_CPU_IDLE

USB

USB boot mode supports USB 3.0. It does not support MultiBoot, image fallback, or XIP. It
supports both secure and non-secure boot mode. It is not supported for systems without DDR.
USB boot mode is disabled by default. For additional information, see USB Boot Mode.

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=18

Virtualization
Virtualization allows multiple software stacks to run simultaneously on the same processor,
which enhances the productivity of the Zynq UltraScale+ MPSoC. The role of virtualization varies
from system to system. For some designers, virtualization allows the processor to be kept fully
loaded at all times, saving power and maximizing performance. For others systems, virtualization
provides the means to partition the various software stacks for isolation or redundancy.

For more information, see System Virtualization in the Zynq UltraScale+ Device Technical Reference
Manual (UG1085).

The support for virtualization applies only to an implementation that includes Arm exception
level-2 (EL2). Armv8 supports virtualization extension to achieve full virtualization with near
native guest operating systems performance. There are three key hardware components for
virtualization:

• CPU virtualization

• Interrupt virtualization

• System MMU for I/O virtualization

System Level Reset Requirements
The system-level reset term is used to describe the system or subsystem level resets. ‘System’
reset (different from system-level resets) is a specific type of system-level reset. The following
table provides summary of system-level resets, which are described in details in subsequent
sections.

Table 1: System-Level Resets

Reset Type Description
External POR The external POR reset is triggered by external pin assertion. There are a

number of software only registers which are not reset by the POR resets. At first
POR boot, a safety system (requiring HFT1 by PS & PL) can be configured such
that a subsequent POR only resets PS (and not PL).

Internal POR Internal POR reset can be triggered by software register write, or by safety
errors. With the exception of error status register (which are reset by external
POR, but not by internal POR), internal POR resets the same thing as external
reset does. Internal-POR cannot be guaranteed without silicon validation (due
to in-rush power concern), so internal-POR is for internal purpose unless
validated.

System Reset System reset is to be able to reset system excluding debug logic. To simplify
system reset, there are few other things (xBIST, scan clear, power gating) which
are not reset by this reset. Also, boot mode information is not reset by system
reset. The system reset can be triggered by external pin (SRST), or software
register write, or by safety errors.

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 19Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxSystemVirtualization
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=19

Table 1: System-Level Resets (cont'd)

Reset Type Description
PS Only Reset The PS only reset is to reset the PS while the PL remains active. This reset can be

triggered by hardware error signals or by software register write. This reset is a
subset of system reset (excluding the PL reset). If the PS reset is triggered by an
error signal, then the error is also transmitted to the PL.

FPD Reset The FPD reset resets all of the FPD power domain. It can be triggered by errors
or software register write. If the FPD reset is triggered by an error signal, then
the error is also transmitted to LPD & PL.

RPU Reset The RPU Reset is to reset the RPU in case of errors. While each of the R5 core
can be independently reset, but in lockstep, only R5_0 needs to be reset to reset
both the R5 cores. This reset can be triggered by errors or software register
write.

Security
The increasing ubiquity of Xilinx devices makes protecting the intellectual property (IP) within
them as important as protecting the data processed by the device. As security threats have
increased, the range of security threats or potential weaknesses that must be considered to
deploy secure products has grown as well.

The Zynq UltraScale+ MPSoC provides the following features to help secure applications running
on the SoC:

• Encryption and authentication of configuration files.

• Hardened crypto accelerators for use by the user application.

• Secure methods of storing cryptographic keys.

Methods for detecting and responding to tamper events. See the Security chapter of the Zynq
UltraScale+ Device Technical Reference Manual (UG1085) for more information.

Configuration Security Unit
The following are some of the important responsibilities of the configuration security unit (CSU):

• Secure boot.

• Tamper monitoring and response.

• Secure key storage and management.

• Cryptographic hardware acceleration.

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 20Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdfxDeviceSecureBoot
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=20

The CSU comprises two main blocks as shown in the following figure. On the left is the secure
processor block that contains a triple redundant processor for controlling boot operation. It also
contains an associated ROM, a small private RAM, and the necessary control/status registers
required to support all secure operations. The block on the right is the crypto interface block
(CIB) and contains the AES-GCM, DMA, SHA, RSA, and PCAP interfaces.

Figure 2: Configuration and Security Unit Architecture

CSU PMU Switch

ROM
Validation

ROM
(128 KB)

RAM
(32 KB)

Triple
Redundant
MicroBlaze

SHA-3
384

AES-
GCM
256

Secure Stream Switch

PCAP

CSU DMA

CSU
Registers

Key
Management

To PL
Configuration

PMU ROM
Validation

To/From LPD Main Switch

Tamper
Sources INTC

ECC

BBRAM
eFUSE
PUF
Operation
KUP
Family

CSU
Local

Registers

PUF RSA
Multiplier

PSTP

Security Processor Block Crypto Interface Block
X15318-032817

After boot, the CSU provides tamper response monitoring. These crypto interfaces are available
during runtime. To understand how to use these features, see Appendix K, XilFPGA Library v5.0.
See the Security chapter of the Zynq UltraScale+ Device Technical Reference Manual (UG1085) for
more information.

• Secure Processor Block: The triple-redundant processor architecture enhances the CSU
operations during single event upset (SEU) conditions.

• Crypto Interface Block (CIB): Consists of AES-GCM, DMA, SHA-3/384, RSA, and PCAP
interfaces.

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 21Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdfxDeviceSecureBoot
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=21

• AES-GCM: The AES-GCM core has a 32-bit word-based data interface, with 256-bits of key
support.

• Key Management: To use the AES, a key must be loaded into the AES block. The key is
selected by CSU bootROM.

• SHA-3/384: The SHA-3/384 engine is used to calculate a hash value of the input image for
authentication.

• RSA-4096 Accelerator: Facilitates RSA authentication.

To understand boot image encryption or authentication, refer to the following:

• Chapter 7: System Boot and Configuration

• Chapter 16: Boot Image Creation

• The Security chapter of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

• Boot and Configuration information in the Zynq UltraScale+ Device Technical Reference Manual
(UG1085).

System-Level Protections
The system-level protection mechanism involves the following areas:

• Zynq UltraScale+ MPSoC system software stack relies on the Arm Trusted Firmware (ATF).
Protection can be enhanced even further by configuring the XMPU and XPPU to provide the
system-level run-time security.

○ Protection against buggy or malicious software (erroneous software) from corrupting
system memory or causing a system failure.

○ Protection against incorrect programming, or malicious devices (erroneous hardware) from
corrupting system memory or causing a system failure.

○ Memory (DDR, OCM) and peripherals (peripheral control, SLCRs) are protected from illegal
accesses by erroneous software or hardware to protect the system.

• The Xilinx memory protection unit (XMPU) enforces memory partitioning and TrustZone (TZ)
protection for memory and FPD slaves. The XMPU can be configured to isolate a master or a
given set of masters to a developer-defined set of address ranges.

• The Xilinx peripheral protection unit (XPPU) provides LPD peripheral isolation and inter-
processor interrupt (IPI) protection. The XPPU can be configured to permit one or more
masters to access an LPD peripheral. For more information, see the XPPU Protection of Slaves
section of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 22Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdfxDeviceSecureBoot
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdfxBootAndConfiguration
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdfxXPPUProtectionOfSlaves
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=22

Safety and Reliability
The Zynq UltraScale+ MPSoC architecture includes features that enhance the reliability of safety
critical applications to give users and designers increased confidence in their systems. The key
features are as follows:

• Memory and cache error detection and correction

• RPU safety features

• System-wide safety features

To understand how to use these features, see Chapter 8: Security Features.

Safety Features
The Cortex-A53 MPCore processor supports cache protection in the form of ECC on all RAM
instances in the processor using the following separate protection elements:

• SCU-L2 cache protection

• CPU cache protection

These elements enable the Cortex-A53 MPCore processor to detect and correct a 1-bit error in
any RAM, and to detect 2-bit errors.

Cortex-A53 MPCore RAMs are protected against single-event-upset (SEU) such that the
processor system can detect and then, take specific action to continue making progress without
data corruption. Some RAMs have parity single-error detect (SED) capability, while others have
ECC single-error correct, double-error detect (SECDED) capability.

The RPU includes two major safety features:

• Lock-step operation, shown in the following figure.

• Error checking and correction, described further in Error Checking and Correction.

Lock-Step Operation
Cortex-R5F processors support lock-step operation mode, which operates both RPU CPU cores
as a redundant CPU configuration called safety mode.

The Cortex-R5F processor set to operate in the lock-step configuration exposes only one CPU
interface. Because Cortex-R5F processor only supports the static split and lock configuration,
switching between these modes is permitted only while the processor group is held in power-
onreset (POR). The input signals SLCLAMP and SLSPLIT control the mode of the processor
group.

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=23

These signals control the multiplex and clamp logic in the lock-step configuration. When the
Cortex-R5F processors are in the lock-step mode (shown in the following figure), there must be
code in the reset handler to manage that the distributor within the GIC dispatches interrupts only
to CPU0. The RPU includes a dedicated interrupt controller for Cortex-R5F MPCore processors.
This Arm PL390 generic interrupt controller (GIC) is based on the GICv1 specification.

Figure 3: RPU Lock-Step Operation

X14824-062717

TCMs Associated
with CPU1

TCM A

TCM B

TCMs Associated
with CPU0

TCM A

TCM B

Shim
Shim

Cortex-R5F
CPU0

Cortex-
R5F CPU0

Comparison and Synchronization Logic

Caches Associated
with CPU0

D-Cache

I-Cache

GIC

Tightly coupled memories (TCMs) are mapped in the local address space of each Cortex-R5F
processor; however, they are also mapped in the global address space where any master can
access them provided that the XPPU is configured to allow such accesses.

The following table lists the address maps from the RPU point of view:

Table 2: RPU Address Maps

Operation Mode Memory R5_0 View (Start
Address)

R5_1 View (Start
Address)

Global Address
View (Start

Address)
Split Mode R5_0 ATCM (64 KB) 0x0000_0000 N/A 0xFFE0_0000

R5_0 BTCM (64 KB) 0x0002_0000 N/A 0xFFE2_0000

R5_0 instruction cache I-Cache N/A 0xFFE4_0000

R5_0 data cache D-Cache N/A 0xFFE5_0000

Split Mode R5_1 ATCM (64 KB) N/A 0x0000_0000 0xFFE9_0000

R5_1 BTCM (64 KB) N/A 0x0002_0000 0xFFEB_0000

R5_1 instruction cache I-Cache N/A 0xFFEC_0000

R5_1 data cache D-Cache N/A 0xFFED_0000

Lock-step Mode R5_0 ATCM (128 KB) 0x0000_0000 N/A 0xFFE0_0000

R5_0 BTCM (128 KB) 0x0002_0000 N/A 0xFFE2_0000

R5_0 instruction cache I-Cache N/A 0xFFE4_0000

R5_0 data cache D-Cache N/A 0xFFE5_0000

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 24Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=24

Error Checking and Correction
The Cortex-R5F processor supports error checking and correction (ECC) schemes of data. The
data has similar properties although the size of the data chunk to which the ECC scheme applies
is different.

For each aligned data chunk, the processor computes and stores a number of redundant code
bits with the data. This enables the processor to detect up to two errors in the data chunk or its
code bits, and correct any single error in the data chunk or its associated code bits. This is also
referred to as a single-error correction, double-error detection (SEC-DED) ECC scheme.

System-Wide Safety Features
The system-wide safety features are designed to address error-free operation of the
Zynq UltraScale+ MPSoC.

These features include the following:

Platform Management Unit

The platform management unit (PMU) in the Zynq UltraScale+ MPSoC executes the code loaded
from ROM and RAM within a flat memory space, implements power safety routines to prevent
tampering of PS voltage rails, performs logic built-in self-test (LBIST), and responds to a user-
driven power management sequence.

The PMU also includes some registers to control the functions that are typically very critical to
the operation and safety of the device. Some of the registers related to safety are as follows:

• GLOBAL_RESET: Contains reset for safety-related blocks.

• SAFETY_GATE: Gates hardware features from accidental enablement.

• SAFETY_CHK: Checks the integrity of the interconnect data lines by using target registers for
safety applications by periodically writing to and reading from these registers.

PMU Triple-Redundancy

The power management unit (PMU) contains triple-redundant embedded processors for a high-
level of system reliability and strong SEU resilience. PMU controls the power-up, reset, and
monitoring of resources within the entire system. The PMU performs multiple tasks including the
following tasks:

• Initializing the system during boot

• Managing power gating and retention states for different power domains and islands

• Communicating the supply voltage settings to the external power control devices

• Managing sleep states including the deep-sleep mode and processing of wake functions

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=25

More details about PMU are available in Chapter 9: Platform Management.

Interrupts

The generic interrupt controller (GIC) handles interrupts. Both the APU and the RPU have a
separate dedicated GIC for interrupt handling. The RPU includes an Arm PL390 GIC, which is
based upon the GICv1 specification due to its flexibility and protection. The APU includes a
GICv2 controller. The GICv2 is a centralized resource for supporting and managing interrupts in
multi-processor systems. It aids the GIC virtualization extensions that support the
implementation of the GIC in systems supporting processor virtualization.

The Zynq UltraScale+ MPSoC embeds an inter-processor interrupt (IPI) block that aids in
communication between the heterogeneous processors. Because PMUs can communicate with
different processors simultaneously, the PMU has four IPIs connected to the GIC of the PMU.

For more information on IPI routing to different processors, see the “Interrupts” chapter in the
Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Memory Overview for APU and RPU
Executables

The following tables give the configurable memory regions for APUs and RPUs.

Note:

• In RPU lock-step mode (Lock-Step Operation), R5_0_ATCM_MEM_0 and R5_0_BTCM_MEM_0 memory
address are mapped to R5_0_ATCM_LSTEP and R5_0_BTCM_LSTEP memory ranges respectively in the
system address map.

• In RPU split mode, R5_x_ATCM_MEM_0 and R5_x_BTCM_MEM_0 memory address are mapped to
R5_x_ATCM_SPLIT and R5_x_BTCM_SPLIT memory ranges respectively in the system address map.

• QSPI memory is accessible when QSPI controller is in linear mode.

See the System Addresses chapter of the Zynq UltraScale+ Device Technical Reference Manual
(UG1085) for more information.

See Real-time Processing Unit (RPU) and On-Chip Memory (OCM) sections of the Zynq UltraScale
+ Device Technical Reference Manual (UG1085) for more information on RPU, R5 and OCM.

Table 3: Configurable Memory Regions for APUs

Memory Type Start Address Size
DDR Low 0x00000000 2 GB

DDR High 0x800000000 2 GB

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 26Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxSystemAddresses
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=26

Table 3: Configurable Memory Regions for APUs (cont'd)

Memory Type Start Address Size
OCM 0xFFFC0000 256 KB

QSPI 0xC0000000 512 MB

Table 4: Configurable Memory Regions for RPU Lock-Step Mode

Memory Type Start Address Size
DDR Low 0x100000 2047 MB

OCM 0xFFFC0000 256 KB

QSPI 0xC0000000 512 MB

R5_0_ATCM_MEM_0 0x00000 64 KB

R5_0_BTCM_MEM_0 0x20000 64 KB

R5_TCM_RAM_0_MEM 0x00000 256 KB

Table 5: Configurable Memory Regions for RPU Split Mode

Memory Type Start Address Size
R5_0

DDR Low 0x100000 2047 MB

OCM 0xFFFC0000 256 KB

QSPI 0xC0000000 512 MB

R5_0_ATCM_MEM_0 0x00000 64 KB

R5_0_BTCM_MEM_0 0x20000 64 KB

R5_1

DDR Low 0x100000 2047 MB

OCM 0xFFFC0000 256 KB

QSPI 0xC0000000 512 MB

R5_1_ATCM_MEM_0 0x00000 64 KB

R5_1_BTCM_MEM_0 0x20000 64 KB

Note: BootROM always copies First Stage Boot Loader (FSBL) from 0xFFFC0000 and it is not configurable.
If FSBL is compiled for a different load address, Bootgen may refuse it as CSU bootROM (CBR) does not
parse partition headers in the boot image but merely copies the FSBL code at a fixed OCM memory
location (0xfffc0000). See Chapter 7: System Boot and Configuration for more information on Bootgen.

Chapter 2: Programming View of Zynq UltraScale+ MPSoC Devices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=27

Chapter 3

Development Tools
This chapter focuses on Xilinx® tools and flows available for programming software for
Zynq® UltraScale+™ MPSoCs. However, the concepts are generally applicable to third-party tools
as the Xilinx tools incorporate familiar components such as an

Eclipse-based integrated development environment (IDE) and the GNU compiler tool chain.

This chapter also provides a brief description about the open source tools available that you can
use for open source development on different processors of the Zynq UltraScale+ MPSoC.

A comprehensive set of tools for developing and debugging software applications on
Zynq UltraScale+ MPSoC devices includes:

• Hardware IDE

• Software IDEs

• Compiler toolchain

• Debug and trace tools

• Embedded OS and software libraries

• Simulators (for example: QEMU)

• Models and virtual prototyping tools (for example: emulation board platforms)

Third-party tool solutions vary in the level of integration and direct support for
Zynq UltraScale+ MPSoC devices.

The following sections provide a summary of the available Xilinx development tools.

Vivado Design Suite
The Xilinx Vivado® Design Suite contains tools that are encapsulated in the Vivado integrated
design environment (IDE). The IDE provides an intuitive graphical user interface (GUI) with
powerful features.

Chapter 3: Development Tools

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=28

The Vivado Design Suite supersedes the Xilinx ISE software with additional features for system-
on-a-chip development and high-level synthesis. It delivers a SoC-strength, IP- and system-
centric, next generation development environment built exclusively by Xilinx to address the
productivity bottlenecks in system-level integration and implementation.

All of the tools and tool options in Vivado Design Suite are written in native Tool Command
Language (Tcl) format, which enables use both in the Vivado IDE or the Vivado Design Suite Tcl
shell. Analysis and constraint assignment is enabled throughout the entire design process. For
example, you can run timing or power estimations after synthesis, placement, or routing. Because
the database is accessible through Tcl, changes to constraints, design configuration, or tool
settings happen in real time, often without forcing re-implementation.

The Vivado IDE uses a concept of opening designs in memory. Opening a design loads the design
netlist at that particular stage of the design flow, assigns the constraints to the design, and then
applies the design to the target device. This provides the ability to visualize and interact with the
design at each design stage.

IMPORTANT! The Vivado IDE supports designs that target 7 series and newer devices only.

You can improve design performance and ease of use through the features delivered by the
Vivado Design Suite, including:

• The Processor Configuration Wizard (PCW) within the IP integrator with graphical user
interfaces to let you create and modify the PS within the IP integrator block design.

VIDEO: For a better understanding of the PCW, see the Quick Take Video: Vivado Processor Configuration
Wizard Overview.

• Register transfer level (RTL) design in VHDL, Verilog, and SystemVerilog.

• Quick integration and configuration of IP cores from the Xilinx IP catalog to create block
designs through the Vivado IP integrator.

• Vivado synthesis.

• C-based sources in C, C++, and SystemC.

• Vivado implementation for place and route.

• Vivado serial I/O and logic analyzer for debugging.

• Vivado power analysis.

• SDC-based Xilinx Design Constraints (XDC) for timing constraints entry.

• Static timing analysis.

• Flexible floorplanning.

• Detailed placement and routing modification.

• Bitstream generation.

Chapter 3: Development Tools

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 29Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-ps-configuration-wizard-overview.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/vivado-ps-configuration-wizard-overview.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=29

• Vivado Tcl Store, which you can use to add to and modify the capabilities in Vivado.

You can download the Vivado Design Suite from the Xilinx Vivado Design Suite – HLx Editions.

Vitis Unified Software Platform
The Vitis™ unified software platform is an integrated development environment (IDE) for the
development of embedded software applications targeted towards Xilinx embedded processors.
The Vitis software platform works with hardware designs created with Vivado Design Suite. The
Vitis software platform is based on the Eclipse open source standard and the features for
software developers include:

• Feature-rich C/C++ code editor and compilation environment

• Project management

• Application build configuration and automatic Makefile generation

• Error navigation

• Integrated environment for seamless debugging and profiling of embedded targets

• Source code version control

• System-level performance analysis

• Focused special tools to configure FPGA

• Bootable image creation

• Flash programming

• Script-based command-line tool

The Vitis IDE lets you create software applications using a unified set of Xilinx tools for the Arm®

Cortex™-A53 and Cortex™-R5F processors as well as for Xilinx MicroBlaze™ processors. It
provides various methods to create applications, as follows:

• Bare metal and FreeRTOS applications for MicroBlaze

• Bare metal, Linux, and FreeRTOS applications for APU

• Bare metal and FreeRTOS applications for RPU

• User customization of PMU firmware

• Library examples are provided with the Vitis tool (ready to load sources and build), as follows:

○ OpenCV

○ OpenAMP RPC

○ FreeRTOS “HelloWorld”

Chapter 3: Development Tools

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 30Send Feedback

https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=30

○ lwIP

○ Performance tests (Dhrystone, memory tests, peripheral tests)

○ RSA authentication for preventing tampering or modification of images and bitstream

○ First stage boot loader (FSBL) for APU or RPU.

You can export a block design, hardware design files, and bitstream files to the export directory
directly from the Vivado Project Navigator. For more information regarding the Vivado Design
Suite, see the Vivado Design Suite Documentation.

All processes necessary to successfully complete this export process are run automatically. The
Vitis IDE creates a new hardware platform project within the workspace containing the following
files:

• .project: Project file

• psu_init.tcl: PS initialization script

• psu_init.c, psu_init.h: PS initialization code

• psu_init.html: Register summary viewer

• system.hdf: Hardware definition file

The compiler can be switched as follows:

• 32-bit or 64-bit (applications that are targeted to Cortex-A53)

• 32-bit only (applications targeted to Cortex-R5F, and Xilinx MicroBlaze devices)

For the list of build procedures, see the Vitis Unified Software Platform Documentation: Embedded
Software Development (UG1400), where built-in help content lets you explore further after you
launch the Vitis IDE.

The Vitis software platform has the following IDE extensions.

• XSCT Console: Xilinx Software Command-line Tool (XSCT) is an interactive and scriptable
command-line interface to the Vitis software platform. As with other Xilinx tools, the scripting
language for XSCT is based on Tools Command Language (Tcl). You can run XSCT commands
interactively or script the commands for automation. XSCT supports the following actions.

• Creating platform projects and application projects

• Manage repositories

• Manage domain settings and add libraries to domains

• Set toolchain preferences

• Configure and build applications

• Download and run applications on hardware targets

Chapter 3: Development Tools

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 31Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1400-vitis-embedded.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=31

• Create and flash boot images by running Bootgen and program_flash tools

• Bootgen Utility: Bootgen is a Xilinx tool that lets you stitch binary files together and generate
device boot images. Bootgen defines multiple properties, attributes and parameters that are
input while creating boot images for use in a Xilinx device. Bootgen comes with both a
graphical user interface and a command line option. The tool is integrated into the Vitis
software platform for generating basic boot images using a GUI, but the majority of Bootgen
options are command line-driven. For more information on the Bootgen utility, see the
Bootgen User Guide (UG1283).

• Program Flash: Program Flash is a tool used to program the flash memories in the design.
Various types of flash types are supported by the Vitis software platform for programming.

• Repositories: A software repository is a directory where you can install third-party software
components, as well as custom copies of drivers, libraries, and operating systems. When you
add a software repository, the Vitis software platform automatically infers all the components
contained with the repository and makes them available for use in its environment. Your
workspace can point to multiple software repositories.

• Program FPGA: You can use the Program FPGA feature to program FPGA using bitstream.

• Device Tree Generation: Device tree (DT) is a data structure that describes hardware. This
describes hardware that is readable by an operating system like Linux so that it does not need
to hard code details of the machine. Linux uses the DT basically for platform identification,
runtime configuration like bootargs, and device node population.

For a detailed explanation on the Vitis IDE features, and to understand the embedded software
design flow, see the Vitis Unified Software Platform Documentation: Embedded Software
Development (UG1400).

You can download the Vitis tool from the Embedded Design Tools Download.

Arm GNU Tools
The Arm GNU open source toolchain is adopted for the Xilinx software development platform.
The GNU tools for Linux hosts are available as part of Vitis software platform. This section details
the open source GNU tools and Linux tools available for the processing clusters in the
Zynq UltraScale+ MPSoC.

The following table lists some of the Xilinx Arm GNU tools available for programming the APU,
RPU, and embedded MicroBlaze processors.

Table 6: Xilinx Arm GNU Tools

Tool Description
aarch64-none-elf-gcc aarch64-none-elf-g++ GNU C/C++ compiler.

Chapter 3: Development Tools

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 32Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1400-vitis-embedded.pdf
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=32

Table 6: Xilinx Arm GNU Tools (cont'd)

Tool Description
aarch64-none-elf-as GNU assembler.

aarch64-none-elf-ld GNU linker.

aarch64-none-elf-ar A utility for creating, modifying, and extracting from
archives.

aarch64-none-elf-objcopy Copies and translates object files.

aarch64-none-elf-objdump Displays information from object files.

aarch64-none-elf-size Lists the section sizes of an object or archive file.

aarch64-none-elf-gprof Displays profiling information.

aarch64-none-elf-gdb The GNU debugger.

Device Tree Generator
The device tree (DT) data structure consists of nodes with properties that describe a hardware.
The Linux kernel uses the device tree to support a wide range of hardware configurations.

In FPGAs, it is possible to have different combinations of peripheral logics, each using a different
configuration. For all the different combinations, the device tree generator (DTG) generates
the .dts/.dtsi device tree files.

The following is a list of the .dts/.dtsi files generated by the device tree generator:

• pl.dtsi: Contains all the memory mapped peripheral logic (PL) IPs.

• pcw.dtsi: Contains the dynamic properties for the PS IPs.

• system-top.dts: Contains the memory, boot arguments, and command line parameters.

• zynqmp.dtsi: Contains all the PS specific and the CPU information.

• zynqmp-clk-ccf.dtsi: Contains all the clock information for the PS peripheral IPs.

For more information, see the Build Device Tree Blob page on the Xilinx Wiki.

PetaLinux Tools
The PetaLinux tools offer everything necessary to customize, build, and deploy open source
Linux software to devices.

PetaLinux tools include the following:

Chapter 3: Development Tools

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 33Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842279/Build%2BDevice%2BTree%2BBlob
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=33

• Build tools such as GNU, petalinux-build, and make to build the kernel images and the
application software.

• Debug tools such as GDB, petalinux-boot, and oprofile for profiling.

The following table shows the supported PetaLinux tools.

Table 7: PetaLinux Supported Tools

Tools Description
GNU Arm GNU tools.

petalinux-build Used to build software image files.

Make Make build for compiling the applications.

GDB GDB tools for debugging.

petalinux-boot Used to boot Linux.

QEMU Emulator platform for the Zynq UltraScale+ MPSoC device.

OProfile Used for profiling.

See the following documentation for more details:

• PetaLinux Tools documentation

• Zynq UltraScale+ MPSoC: Embedded Design Tutorial (UG1209)

• Libmetal and OpenAMP for Zynq Devices User Guide (UG1186)

Linux Software Development using Yocto
Xilinx offers the meta-xilinx Yocto/OpenEmbedded recipes to enable those customers with
in-house Yocto build systems to configure, build, and deploy Linux for Zynq® UltraScale+™
MPSoCs.

The meta-xilinx layer also provides a number of BSPs for common boards which use Xilinx
devices.

The meta-xilinx layer provides additional support for Yocto/OE, adding recipes for various
components. See meta-xilinx for more information.

You can develop Linux software on Cortex-A53 using open source Linux tools. This section
explains the Linux Yocto tools and its project development environment.

The following table lists the Yocto tools.

Chapter 3: Development Tools

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 34Send Feedback

https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1209-embedded-design-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1186-zynq-openamp-gsg.pdf
http://git.yoctoproject.org/cgit/cgit.cgi/meta-xilinx/
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=34

Table 8: Yocto Tools

Tool Type Name Description
Yocto build tools Bitbake Generic task execution engine that

allows shell and Python tasks to be run
efficiently, and in parallel, while
working within complex inter-task
dependency constraints.

Yocto profile and trace tools Perf Profiling and tracing tool that comes
bundled with the Linux Kernel.

Ftrace Refers to the ftrace function tracer but
encompasses a number of related
tracers along with the infrastructure
used by all the related tracers.

Oprofile System-wide profiler that runs on the
target system as a command-line
application.

Sysprof System-wide profiler that consists of a
single window with three panes, and
buttons, which allow you to start, stop,
and view the profile from one place.

Blktrace A tool for tracing and reporting low-
level disk I/O.

Yocto Project Development Environment
Developers can configure the Yocto project development environment to support developing
Linux software for Zynq UltraScale+ MPSoCs through Yocto recipes provided from the Xilinx GIT
server. You can use components from the Yocto project to design, develop, and build a Linux-
based software stack.

The following figure shows the complete Yocto project development environment. The Yocto
project has wide range of tools which can be configured to download the latest Xilinx kernel and
build with some enhancements made locally in the form of local projects.

You can also change the build and hardware configuration through BSP.

Yocto combines a compiler and other tools to build and test images. After the images pass the
quality tests and package feeds required for SDK generation are received, the Yocto tool
launches the Vitis IDE for application development.

The important features of the Yocto project are, as follows:

• Provides a recent Linux kernel along with a set of system commands and libraries suitable for
the embedded environment.

• Makes available system components such as X11, GTK+, Qt, Clutter, and SDL (among others)
so you can create a rich user experience on devices that have display hardware. For devices
that do not have a display or where you wish to use alternative UI frameworks, these
components need not be installed.

Chapter 3: Development Tools

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=35

• Creates a focused and stable core compatible with the OpenEmbedded project with which
you can easily and reliably build and develop Linux software.

• Supports a wide range of hardware and device emulation through the quick emulator (QEMU).
See the Xilinx Quick Emulator User Guide: QEMU (UG1169) for more information.

IMPORTANT! Enabling full Yocto of Xilinx QEMU is not available.

Figure 4: Yocto Project Development Environment

User Configuration

Metadata
(.bb+patches)

Machine(BSP)
Configuration

Policy Configuration

Source
Fetching

Patch
Application

Configuration /
Compile /

Autoreconf as
needed

Output
Analysis for

package
splitting plus

Package
relationships

.rpm
Generation

.deb
Generation

.ipk
Generation

QA
Tests

image
Generation

Images
Application

Development
SDK

Package Feeds

Source Mirror(s)

Upstream
Project

Releases

Local
Projects

SCMs
(optional)

Upstram Source
Metadata/Inputs
Build System

Output Packages
Process steps (Tasks)
Output Image Data

SDK
Generation

X14841-021317

You can download the Yocto tools and the Yocto project development environment from the
Yocto Project Organization.

For more information about Xilinx-provided Yocto features, see Yocto Features in the PetaLinux
Tools Documentation: Reference Guide (UG1144).

Chapter 3: Development Tools

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 36Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1169-xilinx-qemu.pdf
https://www.yoctoproject.org/downloads
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=36

Chapter 4

Software Stack
This chapter provides an overview of the various software stacks available for the Zynq®

UltraScale+™ MPSoC devices.

For more information about the various software development tools used with this device, see
Chapter 3: Development Tools. For more information about bare metal and Linux software
application development, see Chapter 5: Software Development Flow.

Bare Metal Software Stack
Xilinx® provides a bare metal software stack called the standalone board support package (BSP)
as part of the Vitis™ software platform. The Standalone BSP gives you a simple, single-threaded
environment that provides basic features such as standard input/output and access to processor
hardware features. The BSP and included libraries are configurable to provide the necessary
functionality with the least overhead. You can locate the standalone drivers at the following path:

<Xilinx Installation Directory>\Vitis\<version>\data\embeddedsw
\XilinxProcessorIPLib\drivers

You can locate libraries at the following path:

<Xilinx Installation Directory>\Vitis\<version>\data\embeddedsw\lib
\sw_services

The following figure illustrates the bare metal software stack in the APU.

Chapter 4: Software Stack

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=37

Figure 5: Bare-Metal Software Development Stack

User Applications

Zynq UltraScale+ MPSoC Hardware

lwIP 141 XilFlash XilSecure

XilMFS XilFFS XilISF

Xilpm

XilSkeyXilRSA

Display
Driver

ZDMA
drivers

Ethernet
Driver

USB
Driver

SD card
Driver

Flash
Drivers

SPI, I2C,
UART

Drivers

SYSMON
Drivers

Libraries

Standalone
Drivers

X17169-062717

Note: The software stack of libraries and drivers layer for bare metal in RPU is same as that of APU.

The key components of this bare metal stack are:

• Software drivers for peripherals including core routines needed for using the Arm® Cortex™-
A53, Arm® Cortex™-R5F processors in the PS as well as the Xilinx® MicroBlaze™ processors
in the PL.

• Bare metal drivers for PS peripherals and optional PL peripherals.

• Standard C libraries: libc and libm, based upon the open source Newlib library, ported to the
Arm Cortex-A53, Arm Cortex-R5F, and the MicroBlaze processors.

• Additional middleware libraries that provide networking, file system, and encryption support.

• Application examples including the first stage boot loader (FSBL) and test applications.

The C Standard Library (libc)
libc library contains standard functions that all C programs can use. The following table lists the
libc modules:

Table 9: Libc.a Functions and Descriptions

Header File Description
alloca.h Allocates space in the stack

assert.h Diagnostics code

ctype.h Character operations

errno.h System errors

Chapter 4: Software Stack

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=38

Table 9: Libc.a Functions and Descriptions (cont'd)

Header File Description
inttypes.h Integer type conversions

math.h Mathematics

setjmp.h Non-local goto code

stdint.h Standard integer types

stdio.h Standard I/O facilities

stdlib.h General utilities functions

time.h Time function

The C Standard Library Mathematical Functions
(libm)
The following table lists the libm mathematical C modules:

Table 10: libm.a Function Types and Function Listing

Function Type Supported Functions
Algebraic cbrt, hypot, sqrt

Elementary transcendental asin, acos, atan, atan2, asinh, acosh, atanh, exp, expm1, pow, log,
log1p, log10, sin, cos, tan, sinh, cosh, tanh

Higher transcendentals j0, j1, jn, y0, y1, yn, erf, erfc, gamma, lgamma, and gamma_ramma_r

Integral rounding eil, floor, rint

IEEE standard recommended copysign, fmod, ilogb, nextafter, remainder, scalbn, and fabs

IEEE classification isnan

Floating point logb, scalb, significand

User-defined error handling routine matherr

Standalone BSP
The libraries available with the standalone BSP are as follows:

• XilFatFS: Is a LibXil FATFile system and provides read/write access to files stored on a Xilinx
system ACE compact flash.

• XilFFS: Generic Fat File System Library.

• XilFlash: Xilinx flash library for Intel/AMD CFI compliant parallel flash.

• XilISF: In-System Flash library that supports the Xilinx in-system flash hardware.

• XilMFS: Memory file system.

• XilSecure: Xilinx Secure library provides support to access secure hardware (AES, RSA and
SHA) engines.

Chapter 4: Software Stack

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=39

• XilSkey: Xilinx secure key library.

• lwIP Library: An open source TCP/IP protocol suite that provides access to the core lwIP stack
and BSD (Berkeley Software Distribution) sockets style interface to the stack.

These libraries are documented in Appendix B, Xilinx Standard C Libraries.

Linux Software Stack
The Linux OS supports the Zynq UltraScale+ MPSoC. With the sole exception of the Arm GPU,
Xilinx provides open source drivers for all peripherals in the PS as well as key peripherals in the
PL. The following figure illustrates the full software stack in APU, including Linux and an optional
hypervisor.

Figure 6: Linux Software Development Stack

App4

Third Party Secure OS

ARM Trusted Firmware

EL0

EL1

EL2

EL3

Secure World

App1 App2 App3

Linux SMP

Hypervisor

Non-secure World

PMU Firmware

X18968-071217

The Armv8 exception model defines exception levels EL0–EL3, where:

• EL0 has the lowest software execution privilege. Execution at EL0 is called unprivileged
execution.

• Increased exception levels, from 1 to 3, indicate an increased software execution privilege.

Chapter 4: Software Stack

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 40Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=40

• EL2 provides support for processor virtualization. You may optionally include an open source
or commercial hypervisor in the software stack.

• EL3 provides support for a secure state. The Cortex-A53 MPCore processor implements all
the exception levels (EL0-EL3) and supports both execution states (AArch64 and AArch32) at
each exception level.

You can leverage the Linux software stack for the Zynq UltraScale+ MPSoC in multiple ways. The
following are some of your options:

• PetaLinux Tools: The PetaLinux tools include a branch of the Linux source tree, U-Boot as well
as Yocto-based tools to make it easy to build complete Linux images including the kernel, the
root file system, device tree, and applications for Xilinx devices. See the PetaLinux Product
Page for more information. The PetaLinux tools work with the same open source Linux
components described immediately below.

• Open Source Linux and U-Boot: The Linux Kernel sources including drivers, board
configurations, and U-Boot updates for the Zynq UltraScale+ MPSoC are available from the
Xilinx Github link, and on a continuing basis from the main Linux kernel and U-Boot trees as
well. Yocto board support packages are also available from the main Yocto tree.

• Commercial Linux Distributions: Some commercial distributions also include support for Xilinx
UltraScale+ MPSoC devices and they include advanced tools for Linux configuration,
optimization, and debug. You can find more information about these from the Xilinx
Embedded Computing page.

Multimedia Stack Overview
This section describes the multimedia software stack in the Zynq UltraScale+ MPSoC.

The GPU and a high performance DisplayPort accelerate the graphics application. The GPU
provides hardware acceleration for 2D and 3D graphics by including one geometry processor
(GP) and two pixel processors (PP0 and PP1), each having a dedicated memory management unit
(MMU). The cache coherency between the APU and the GPU is achieved by cache-coherent
interconnect (CCI), which supports the AXI coherency extension (ACE) only.

CCI in-turn connects the APU and the GPU to the DDR controller, which arbitrates the DDR
access.

The following figure shows the multimedia stack.

Chapter 4: Software Stack

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 41Send Feedback

https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://github.com/Xilinx/linux-xlnx/
https://www.xilinx.com/products/design-tools/software-zone/embedded-computing.html
https://www.xilinx.com/products/design-tools/software-zone/embedded-computing.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=41

Figure 7: Multimedia Stack

Graphics Application

Display Server
Ex: XII, Wayland Mali common

Libraries

Video Codecs

Graphic Libraries
Ex: Open GLES1,

Open GLES 2, Open
VG

Gstreamer

Frame Buffer
Driver Display DriversVideo Drivers

Ex: V4L2
Mali Graphic

DriversDRM

APU

Linux Kernel Drivers

DDR Controller

Memory

GPO PPO PP1
Display Port

ARM MALI GPU
Cache Coherent

Interconnect

Ffmpeg pipeline

X14795-071317

The Linux kernel drivers for multimedia enables the hardware access by the applications running
on the processors.

The following table lists the multimedia drivers through the middleware stack that consists of the
libraries and framework components the applications use.

Chapter 4: Software Stack

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=42

Table 11: Libraries and Framework Components

Component Description
Display server Coordinates the input and output from the applications to

the operating system.

Graphics library The Zynq UltraScale+ MPSoC architecture supports OpenGL
ES 1.1 and 2.2, and Open VG 1.1.

Mali™-400 MP2 common libraries Mali-400 MP2 graphic libraries. For more details on how to
switch between different EGL backends, refer to Xilinx MALI
Driver.

Gstreamer A freeware multimedia framework that allows a
programmer to create a variety of media handling
components.

Video codecs Video encoders and decoders.

The following table lists the Linux kernel graphics drivers.

Table 12: Linux Kernel Drivers

Drivers Description
Frame buffer driver Kernel graphics driver exposing its interface through /dev/

fb*. This interface implements limited functionality
(allowing you to set a video mode and drawing to a linear
frame buffer).

Direct rendering manager (DRM) Serves in rendering the hardware between multiple user
space components.

Mali-400 MP2 graphics drivers Provides the hardware access to the GPU hardware.

Video drivers Video capture and output device pipeline drivers based on
the V4L2 framework. The Xilinx Linux V4L2 pipeline driver
represents the whole pipeline with multiple sub-devices.
You can configure the pipeline through the media node, and
you can perform control operations, such as stream on/off,
through the video node.
Device nodes are created be the pipeline driver. The
pipeline driver also includes the wrapper layer of the DMA
engine API, and this enables it to read/write frames from
RAM.

Display port drivers Enables the hardware access to the display port, based on
DRM framework.

FreeRTOS Software Stack
Xilinx provides a FreeRTOS board support package (BSP) as a part of the Vitis™ software
platform. The FreeRTOS BSP provides you a simple, multi-threading environment with basic
features such as, standard input/output and access to processor hardware features. The BSP and
the included libraries are highly configurable to provide you the necessary functionality with the
least overhead. The FreeRTOS software stack is similar to the bare metal software stack, except
that it contains the FreeRTOS library. Xilinx device drivers included with the standalone libraries

Chapter 4: Software Stack

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 43Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841928/Xilinx%2BMALI%2Bdriver
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841928/Xilinx%2BMALI%2Bdriver
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=43

can typically be used within FreeRTOS provided that only a single thread requires access to the
device. Xilinx bare metal drivers are not aware of Operating Systems. They do not provide any
support for mutexes to protect critical sections, nor do they provide any mechanism for
semaphores to be used for synchronization. While using the driver API with FreeRTOS kernel,
you must take care of this aspect.

The following figure illustrates the FreeRTOS software stack for RPU.

Figure 8: FreeRTOS Software Stack

X16911-071217

User Applications

Lwip Networking Memory
FileSystem (xilmfs) File system (xilffs) Serial Flash (xilisf)

Secure Key
(xilkey)

Standard ‘C’
Library(libxil.a)

Display
Driver

ZDMA
drivers

Ethernet
Driver

USB
Driver

SD card
Driver

Flash
Drivers

SPI, I2C, UART
Drivers

SYSMON
Drivers

Libraries

Drivers

Secure
(xilsecure)

RSA
(xilrsa)

Power Mgr API
(xilpm)

OpenAmp
(xilopenamp)

Parallel Flash
(xilflash)

ARM Cortex-R5 Core 0
RPU

FreeRTOS

ARM Cortex-R5 Core 1

Note: The FreeRTOS software stack for APU is same as that for RPU except that the libraries support both
32-bit and 64-bit for APU.

Third-Party Software Stack
Many other embedded software solutions are also available from the Xilinx partner ecosystem.
More information is available from the Xilinx website, Embedded Computing and the website,
Xilinx Third Party Tools.

Chapter 4: Software Stack

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 44Send Feedback

https://www.xilinx.com/products/design-tools/software-zone/embedded-computing.html
https://www.xilinx.com/support/answer-navigation/design-tools/third-party-tools.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=44

Chapter 5

Software Development Flow
This chapter explains the bare metal software development for RPU and APU using the Vitis™
unified software platform as well as Linux software development for APU using PetaLinux tools
and the Vitis software platform.

The following figure depicts the top-level software architecture of the
Zynq® UltraScale+™ MPSoC.

Chapter 5: Software Development Flow

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=45

Figure 9: Software Development Architecture

Software Development
Tools

IDE

Boot Loader
Ex: U-Boot

Power Management
Firmware

Hardware
Handoff

Build Tools

Compiler Assembler

Linker

Zynq UltraScale+ MPSoC Hardware

Quad core
ARM-A53 APU

ARM Mali400
GPU

Dual core ARM
Cortex-R5F RPU

Enhanced DSP
and AXI

Platform
Management

Unit

System
Configuration

and Security Unit

DDR Memory
Controller

Debugger Profiler

Simulator Flash Writer

Debug Tools

· Configure PS
· Integrate IP
· Export Hardware to SDK

Vivado

Software

HardwareOS Kernel

Applications

Middleware Stack
(Ex: Graphics, File system)

System Software
 (Ex: Hypervisor, OpenAMP)

Security Management
Software

Software Stack

Programmable
Logic

Peripherals

OS Kernel

Drivers

X14793-051519

Bare Metal Application Development
This section assists you in understanding the design flow of bare metal application development
for APU and RPU using the Vitis software platform. The following figure shows the top-level
design flow in the Vitis software platform. You can create a C or C++ standalone application
project by using the New Application Project wizard.

Chapter 5: Software Development Flow

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=46

To create a project, follow these steps:

1. Click File → New → Application Project. The New Application Project dialog box appears.

Note: This is equivalent to clicking on File → New → Project to open the New Project wizard, selecting
Xilinx → Application Project, and clicking Next.

2. Type a project name into the Project Name field.

3. Select the location for the project. You can use the default location as displayed in the
Location field by leaving the Use default location check box selected. Otherwise, click the
check box and type or browse to the directory location.

4. Select Create a new platform from hardware (XSA). The Vitis IDE lists the all the available
pre-defined hardware designs.

5. Select any one hardware design from the list and click Next.

6. From the CPU drop-down list, select the processor for which you want to build the
application. This is an important step when there are multiple processors in your design. In
this case you can either select psu_cortexa53_0 or psu_cortexr5_0.

7. Select your preferred language: C or C++.

8. Select an OS for the targeted application.

9. Click Next to advance to the Templates screen.

The Vitis software platform provides useful sample applications listed in Templates dialog box
that you can use to create your project. The Description box displays a brief description of
the selected sample application. When you use a sample application for your project, the
Vitis software platform creates the required source and header files and linker script.

10. Select the desired template. If you want to create a blank project, select Empty Application.
You can then add C files to the project, after the project is created.

11. Click Finish to create your application project and board support package (if it does not exist).

Note:

1. Xilinx recommends that you use the Managed Make flow rather than Standard Make C/C++ unless you
are comfortable working with make files.For more details on QEMU, see the Xilinx Quick Emulator User
Guide: QEMU (UG1169).

2. Cortex™-R5F and Cortex™-A53 32-bit bare metal software do not support 64-bit addressed data
transfer using device DMA.

3. By default, all standalone applications will run only on APU0. The other APU cores will be off.

Chapter 5: Software Development Flow

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 47Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1169-xilinx-qemu.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=47

Application Development Using PetaLinux
Tools

Software development flow in the PetaLinux tools environment involves many stages. To simplify
understanding, the following figure shows a chart with all the stages in the PetaLinux tools
application development.

Figure 10: PetaLinux Tool-Based Software Development Flow

Petalinux Tools

Build Tools

Debug and Profile Tools

GNU Petalinux-Build

Yocto Make

GDB Petalinux-Boot

QEMU OProfile

X14815-063017

Linux Application Development Using Vitis
Xilinx software design tools facilitate the development of Linux user applications. This section
provides an overview of the development flow for Linux application development.

The following figure illustrates the typical steps involved to develop Linux user applications using
the Vitis software platform.

Chapter 5: Software Development Flow

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=48

Figure 11: Linux Application Development Flow

Invoke SDK

Create a Linux application
project

Build the Linux application
project

Software Application
DevelopmentProfiling

Performance met?

Download Hardware
Bitstream to FPGA

Debug

Functionality
achieved?

Open / Create
SDK workspace

Adding an Application to
Linux file system

Yes Yes

No No

Boot Linux & set up target
connection

X14816-063017

Creating a Linux Application Project
You can create a C or C++ Linux application project by using the New Application Project wizard.

Chapter 5: Software Development Flow

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=49

To create a project:

1. Click File → New → Application Project. The New Application Project dialog box appears.

2. Type a project name into the Project Name field.

3. Select the location for the project. You can use the default location as displayed in the
Location field by leaving the Use default location check box selected. Otherwise, click the
check box and type or browse to the directory location.

4. Select Next.

5. On the Select platform tab, select the Platform that has a Linux domain and click Next.

Note: If your platform does not yet have a Linux domain, refer to .

6. On the Domain window, select the domain from the Domain drop-down.

7. Select your preferred language: C or C++.

8. Optionally, select Linux System Root to specify the Linux sysroot path and select Linux
Toolchain to specify the Linux toolchain path.

9. Click Next to move to the Templates screen.

10. The Vitis software platform provides useful sample applications listed in the Templates dialog
box that you can use to create your project. The Description box displays a brief description
of the selected sample application. When you use a sample application for your project, the
Vitis software platform creates the required source and header files and linker script.

11. Select the desired template. If you want to create a blank project, select Empty Application.
You can then add C files to the project, after the project is created.

12. Click Finish to create your Linux application project.

13. Click the icon to generate or build the application project.

Create a Hello World Application
After installing the Vitis™ software platform, the next step is to create a software application
project. Software application projects are the final application containers. The project directory
that is created contains (or links to) your C/C++ source files, executable output file, and
associated utility files, such as the Makefiles used to build the project.

Note: The Vitis software platform automatically creates a system project for you. A system project is a top-
level container project that holds all of the applications that can run in a system at the same time. This is
useful if you have many processors in your system, especially if they communicate with one another,
because you can debug, launch, and profile applications as a set instead of as individual items.

Build a Sample Application

This section describes how to create a sample Hello World application using an existing template.

1. Launch the Vitis software platform.

Chapter 5: Software Development Flow

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=50

2. Select a workspace directory for your first project.

3. Click Launch. The welcome page appears.

4. Close the welcome page. The development perspective opens.

5. Select File → New → Application Project.

6. Enter a name in the Project name field and click Next. The Select platform tab opens. You
should choose a platform for your project. You can either use a pre-supplied platform (from
Xilinx or another vendor), a previously created custom platform, or you can create one
automatically from an exported Vivado® hardware project.

7. On the Select platform tab, click the platform you just created and click Next. To use your

own hardware platform, click the icon and add your platform to the list.

8. Select the system configuration for your project and click Next. The Templates window
opens.

9. Select Hello World and click Next. Your workspace opens with the Explorer pane showing
the hello_world_system system project and the zcu102 platform project.

10. Right-click the system project and select Build Project. You have now built your application
and the Console tab shows the details of the file and application size.

Debug and Run the Application

Now that you have generated the executable binary, you can test it on a board. To run the
application on the board, perform the following preliminary steps:

• Connect a JTAG cable to the computer.

• Set the Boot Mode switch of the board to JTAG mode.

• Connect a USB UART cable and setup your UART console.

• Power up the board.

1. Expand the system project and choose the application project you want to debug. Right-click
the application and select Debug As → Launch on Hardware (Single Application Debug).

2. On the Confirm Perspective Switch dialog, click Yes. The Vitis IDE switches to the Debug
perspective and the debugger stops at the entry to your main() function.

3. Using the commands in the toolbar, step through the application. After you step through the
print() function, Hello World appears in the UART console.

Adding Driver Support for Custom IP in the PL
The Vitis software platform supports Linux BSP generation for peripherals in the PS as well as
custom IP in the PL. When generating a Linux BSP, the Vitis software platform produces a device
tree, which is a data structure describing the hardware system that passes to the kernel when
you boot.

Chapter 5: Software Development Flow

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=51

Device drivers are available as part of the kernel or as separate modules, and the device tree
defines the set of hardware functions available and features enabled.

Additionally, you can add dynamic, loadable drivers. The Linux kernel supports these drivers.
Custom IP in the PL are highly configurable, and the device tree parameters define both the set
of IP available in the system and the hardware features enabled in each IP.

See Chapter 3: Development Tools for additional overview information on the Linux Kernel and
boot sequence.

Chapter 5: Software Development Flow

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=52

Chapter 6

Software Design Paradigms
The Xilinx® Zynq® UltraScale+™ MPSoC architecture supports heterogeneous multiprocessor
engines targeted at different tasks. The main approaches for developing software to target these
processors are by using the following:

• Frameworks for Multiprocessor Development: Describes the frameworks available for
development on the Zynq UltraScale+ MPSoC.

• Symmetric Multiprocessing (SMP): Using SMP with PetaLinux is the most simple flow for
developing an SMP with a Linux platform for the Zynq UltraScale+ MPSoC.

• Asymmetric Multiprocessing (AMP): AMP is a powerful mode to use multiple processor
engines with precise control over what runs on each processor. Unlike SMP, there are many
different ways to use AMP. This section describes two ways of using AMP with varying levels
of complexity.

The following sections describe these development methods in more detail.

Frameworks for Multiprocessor Development
Xilinx provides multiple frameworks for Zynq UltraScale+ MPSoCs to facilitate the application
development on the heterogeneous processors and Xilinx 7 series FPGAs. The following bullets
explain these frameworks:

• Hypervisor Framework: Xilinx provides the Xen hypervisor, a critical item needed to support
virtualization on APU of Zynq UltraScale+ MPSoC. The Use of Hypervisors section covers
more details.

• Authentication Framework: The Zynq UltraScale+ MPSoC supports authentication and
encryption features as a part of authentication framework. To understand more about the
authentication framework, see Boot Time Security.

• TrustZone Framework: The TrustZone technology allows and maintains isolation between
secure and non-secure processes within the same system.

Xilinx provides the trustzone support through the Arm® Trusted Firmware (ATF) to maintain
the isolation between secure and non-secure worlds. To understand more about ATF, seeArm
Trusted Firmware.

Chapter 6: Software Design Paradigms

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=53

• Multiprocessor Communication Framework: Xilinx provides the OpenAMP framework for
Zynq UltraScale+ MPSoCs to allow communication between the different processing units.
For more details, see the Xilinx Quick Emulator User Guide: QEMU (UG1169)

• Power Management Framework: The power management framework allows software
components running across different processing units to communicate with the power
management unit.

Symmetric Multiprocessing (SMP)
SMP enables the use of multiple processors via a single operating system instance. The operating
system handles most of the complexity of managing multiple processors, caches, peripheral
interrupts, and load balancing.

The APU in the Zynq UltraScale+ MPSoCs contains four homogeneous cache coherent Arm
Cortex-A53 processors that support SMP mode of operation using an OS (Linux or VxWorks).
Xilinx and its partners provide operating systems that make it easy to leverage SMP in the APU.
The following diagram shows an example of Linux SMP with multiple applications running on a
single OS.

Figure 12: Example SMP Using Linux

APU

Arm
Cortex-A53

Arm
Cortex-A53

Arm
Cortex-A53

Arm
Cortex-A53

Linux Kernel in SMP

Application n

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 n

Application 1

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 n

X14837-063017

Chapter 6: Software Design Paradigms

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 54Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1169-xilinx-qemu.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=54

This would not be the best mode of operation when there are hard, real-time requirements as it
ignores Linux application core affinity which should be available to developers with the existing
Xilinx software.

Asymmetric Multiprocessing (AMP)
AMP uses multiple processors with precise control over what runs on each processor. Unlike
SMP, there are many different ways to use AMP. This section describes two ways of using AMP
with varying levels of complexity.

In AMP, a software developer must decide what code has to run on each processor before
compiling and creating a boot image that includes the software executable for each CPU. Using
AMP with the Arm Cortex-R5F processors (SMP is not supported in Cortex-R5F) in the RPU
enables developers to meet highly demanding, hard real-time requirements as opposed to soft
real-time requirements.

You can develop the applications independently, and program those applications to communicate
with each other using inter-processing communication (IPC) options. See this link to the
“Interrupts” chapter of the Zynq UltraScale+ Device Technical Reference Manual (UG1085) for
further description of this feature.

You can also apply this AMP method to applications running on MicroBlaze processors in the PL
or even in the APU. The following diagram shows an AMP example with applications running on
the RPU and the PL without any communication with each other.

Figure 13: AMP Example using Bare-Metal Applications Running on RPU and PL

MicroBlaze

Bare-metal
Application

Bare-metal
Application

Bare-metal
Application

RPU
PL

Arm
Cortex-R5

Arm
Cortex-R5

MicroBlaze

MicroBlaze

X19225-071317

OpenAMP
The OpenAMP framework provides mechanisms to do the following:

Chapter 6: Software Design Paradigms

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 55Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?%3Bt=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxInterrupts
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=55

• Load and unload firmware

• Communicate between applications using a standard API

The following diagram shows an example of an OpenAMP and the hard real-time capabilities of
the RPU using the OpenAMP framework.

In this case, Linux applications running on the APU perform the loading and unloading of RPU
applications. This allows developers to load different processing dedicated algorithms to the RPU
processing engines as needed with very deterministic performance.

Figure 14: Example with SMP and AMP using OpenAMP Framework

X14839-063017

APU

Arm
Cortex-A53

Arm
Cortex-A53

Arm
Cortex-A53

Arm
Cortex-A53

Linux Kernel in SMP mode RTOS
Kernel

Baremetal
Application

Application 1

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 n

RPU

Arm
Cortex-R5

Arm
Cortex-R5

PL

MicroBlaze

MicroBlaze

RTOS
Kernel

Baremetal
Application

Baremetal
Application

Application n

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 n

RPMsg

Open AMP
(APIs for loading/ Unloading
firmware, Message Passing)

RPMsg

See the Libmetal and OpenAMP for Zynq Devices User Guide (UG1186) for more information about
the OpenAMP Framework.

Virtualization with Hypervisor
The Zynq UltraScale+ MPSoCs include a hardware virtualization extension on the Arm Cortex-
A53 processors, interrupt controller, and Arm System MMU (SMMU) that provides flexibility to
combine various operating system combinations, including SMP and AMP, within the APU.

The following diagram shows an example of an SMP-capable OS, like Linux working along with
Real-Time Operating System (RTOS) as well as a bare metal application using a single hypervisor.

This enables independent development of applications in their respective mode of operation.

Chapter 6: Software Design Paradigms

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 56Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1186-zynq-openamp-gsg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=56

Figure 15: Example with Hypervisor

X14840-063017

Hypervisor

APU

Arm
Cortex-A53

Arm
Cortex-A53

Arm
Cortex-A53

Arm
Cortex-A53

Linux Kernel in
SMP mode

RTOS
Kernel

Baremetal
Application

Application 1

Th
re

ad
 1

Th
re

ad
 2

Th
re

ad
 n

Ap
pl

ic
at

io
n

n

Ta
sk

 1

Ta
sk

 2

Ta
sk

 n

Although the hardware virtualization included within Zynq UltraScale+ MPSoC and its
hypervisors allow the standard operating systems and their applications to function with low to
moderate effort, the addition of a hypervisor does bring design complexity to low-level system
functions such as power management, FPGA bitstream management,

OpenAMP software stack, and security accelerator access which must use additional underlying
layers of system firmware. Hence, Xilinx recommends that the developers must initiate early
effort into these aspects of system architecture and implementation.

For more details on using Hypervisor like the Xen Hypervisor, see the MPSoC Xen Hypervisor
website.

Chapter 6: Software Design Paradigms

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 57Send Feedback

http://dornerworks.com/services/xilinxxen
http://dornerworks.com/services/xilinxxen
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=57

Use of Hypervisors
Xilinx distributes a port for the Xen open source hypervisor in the Xilinx
Zynq UltraScale+ MPSoC. Xen hypervisor provides the ability to run multiple operating systems
on the same computing platform. Xen hypervisor, which runs directly on the hardware, is
responsible for managing CPU, memory, and interrupts. Multiple numbers of OS can run on top
of the hypervisor. These operating systems are called domains (also called as virtual machines
(VMs)).

The Xen hypervisor provides the ability to concurrently run multiple operating systems and their
standard applications with relative ease. However, Xen does not provide a generic interface
which gives the guest an operating system access to system functions. Hence, you need to follow
the cautions mentioned in this section.

Xen hypervisor controls one domain, which is domain 0, and one or more guest domains. The
control domain has special privileges, such as the following:

• Capability to access the hardware directly

• Ability to handle access to the I/O functions of the system

• Interaction with other virtual machines.

It also exposes a control interface to the outside world, through which the system is controlled.
Each guest domain runs its own OS and application. Guest domains are completely isolated from
the hardware.

Running multiple Operating Systems using Xen hypervisor involves setting up the host OS and
adding one or more guest OS.

Note: Xen hypervisor is available as a selectable component within the PetaLinux tools; Xen hypervisor can
also be downloaded from Xilinx GIT. With Linux and Xen software that is made available by Xilinx, it is
possible to build custom Linux guest configurations. Guest OS other than Linux require additional software
and effort from third-parties. See the PetaLinux Product Page for more information.

Chapter 6: Software Design Paradigms

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 58Send Feedback

https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=58

Chapter 7

System Boot and Configuration
Zynq® UltraScale+™ MPSoCs support the ability to boot from different devices such as a QSPI
flash, an SD card, a host with Device Firmware Upgrade utility installed on it, or a NAND flash in
place. This chapter details the booting process using different booting devices in both secure and
non-secure modes.

Boot Process Overview
The platform management unit (PMU) and configuration security unit (CSU) manage and perform
the multi-staged booting. You can boot the device in either secure (using authenticated boot
image) or non-secure (using an unauthenticated boot image) mode. The boot stages are as
follows:

• Pre-configuration stage: The PMU primarily controls pre-configuration stage that executes
PMU ROM to setup the system. The PMU handles all of the processes related to reset and
wake-up.

• Configuration stage: This stage is responsible for loading the first-stage boot loader (FSBL)
code for the PS into the on-chip RAM (OCM). It supports both secure and non-secure boot
modes. Through the boot header, you can execute FSBL on the Cortex™-R5F-0 / R5-1
processor or the Cortex™-A53 processor. The Cortex-R5F-0 processor also supports lock step
mode.

• Post-configuration stage: After FSBL execution starts, the Zynq UltraScale+ MPSoC enters
the post configuration stage.

Boot Flow
There are two boot flows in the Zynq UltraScale+ MPSoC architecture: secure and non-secure.
The following sections describe some of the example boot sequences in which you bring up
various processors and execute the required boot tasks.

Note: The figures in these sections show the complete boot flow, including all mandatory and optional
components.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=59

Figure 16: Boot Flow Example

Time

Release CSU Power
Monitoring

Load
FSBL

Tamper
Monitoring

PMU

CSU

RPU FSBL

APU U-Boot LinuxATF

X18969-071317

Non-Secure Boot Flow

In non-secure boot mode, the PMU releases the reset of the configuration security unit (CSU),
and enters the PMU server mode where it monitors power. After the PMU releases the CSU
from reset, it loads the FSBL into OCM. PMU firmware runs from PMU RAM in parallel to FSBL
in OCM. FSBL is run on APU or RPU. FSBL runs from APU/RPU and ATF; U-Boot and Linux run
on APU. Other boot configurations allow the RPU to start and operate wholly independent of
the APU and vice-versa.

• On APU, ATF will be executed after the FSBL hands off to ATF. ATF hands off to a second
stage boot loader like U-Boot which executes and loads an operating system such as Linux.

• On RPU, FSBL hands off to a software application.

• Linux, in turn, loads the executable software.

Note: The operating system manages the multiple Cortex-A53 processors in symmetric multi-processing
(SMP) mode.

Secure Boot Flow

In the secure boot mode, the PMU releases the reset of the configuration security unit (CSU) and
enters the PMU server mode where it monitors power. After the PMU releases the CSU from
reset, the CSU checks to determine if authentication is required by the FSBL or the user
application.

The CSU does the following:

• Performs an authentication check and proceeds only if the authentication check passes. Then
checks the image for any encrypted partitions.

• If the CSU detects partitions that are encrypted, the CSU performs decryption and loads the
FSBL into the OCM.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=60

For more information on CSU, see the Configuration Security Unit section.

FSBL running on APU hands off to ATF. FSBL running on RPU loads ATF. In both the cases, ATF
loads U-Boot which loads the OS. ATF then executes the U-Boot and loads an OS such as Linux.
Then Linux, in turn, loads the executable software. Similarly, FSBL checks for authentication and
encryption of each partition it tries to load. The partitions are only loaded by FSBL on successful
authentication and decryption (if previously encrypted).

Note: In the secure boot mode, psu_coresight_0 is not supported as a stdout port.

Boot Image Creation
Bootgen is a tool that lets you stitch binary files together and generate device boot images.
Bootgen defines multiple properties, attributes and parameters that are input while creating boot
images for use in a device.

The secure boot feature for devices uses public and private key cryptographic algorithms.
Bootgen provides assignment of specific destination memory addresses and alignment
requirements for each partition. It also supports encryption and authentication, described in the
Bootgen User Guide (UG1283). More advanced authentication flows and key management options
are discussed in the Using HSM Mode section of Bootgen User Guide (UG1283), where Bootgen
can output intermediate hash files that can be signed offline using private keys to sign the
authentication certificates included in the boot image. The program assembles a boot image by
adding header blocks to a list of partitions.

Optionally, each partition can be encrypted and authenticated with Bootgen. The output is a
single file that can be directly programmed into the boot flash memory of the system.

Various input files can be generated by the tool to support authentication and encryption as well.

Bootgen comes with both a GUI interface and a command line option. The tool is integrated into
the software development toolkit, Integrated Development Environment (IDE), for generating
basic boot images using a GUI, but the majority of Bootgen options are command line-driven.
Command line options can be scripted. The Bootgen tool is driven by a boot image format (BIF)
configuration file, with a file extension of *.bif. Along with SoC, Bootgen has the ability to
encrypt and authenticate partitions for and later FPGAs, as described in FPGA Support. Along
with SoC and ACAP devices, Bootgen has the ability to encrypt and authenticate partitions for
and later FPGAs, as described in FPGA Support. In addition to the supported command and
attributes that define the behavior of a Boot Image, there are utilities that help you work with
Bootgen. Bootgen code is now available on Github.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 61Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=61

Creating a Bootable Image
When a system project is selected, by running build, the Vitis software platform builds all
applications in the system project and creates a bootable image according to a pre-defined BIF or
an auto-generated BIF.

You can create bootable images using Bootgen. In the Vitis IDE, the Create Boot Image menu
option is used to create the boot image.

To create a bootable image, follow these steps:

1. Select the Application Project in the Project Explorer view.

2. Right-click the application and select Create Boot Image to open the Create Boot Image
dialog box.

3. Specify the boot loader and the partitions.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=62

4. Click Create Image to create the image and generate the BOOT.bin in the
<Application_project_name>/_ide/bootimage folder.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=63

Boot Modes
See Table 7-4 for a brief list of available boot modes. Refer to this link to the “Boot and
Configuration” chapter of the Zynq UltraScale+ Device Technical Reference Manual (UG1085) for a
comprehensive table of the available boot modes.

QSPI24 and QSPI32 Boot Modes
The QSPI24 and QSPI32 boot modes support the following:

• x1, x2, and x4 read modes for single Quad SPI flash memory 24 (QSPI24) and single Quad SPI
flash memory 32 (QSPI32)

• x8 read mode for dual QSPI.

• Image search for MultiBoot

• I/O mode for BSP drivers (no support in FSBL)

The bootROM searches the first 256 Mb in x8 mode. In QSPI24 and QSPI32 boot modes (where
the QSPI24/32 device is < 128 Mb), to use MultiBoot, place the multiple images so that they fit
in memory locations less than 128 Mb. The pin configuration for QSPI24 boot mode is 0x1.

Note: QSPI dual stacked (x8) boot is not supported. Only QSPI Single Transmission Rate (STR) is supported.
Single Quad-SPI memory (x1, x2, and x4) is the only boot mode that supports execute-in-place (XIP).

To create a QSPI24/QSPI32 boot image, provide the following files to the Bootgen tool:

• An FSBL ELF

• A secondary boot loader (SBL), such as U-Boot, or a Cortex-R5F-0/R5-1 and/or a Cortex-A53
application ELF

• Authentication and encryption key (optional)

For more information on Authentication and Encryption, see Chapter 8: Security Features.

Bootgen generates the boot.mcs and a boot.bin binary file that you can write into the QSPI
flash using the flash writer. MCS is an Intel hex-formatted file that includes a checksum for
reliability.

Note: The pin configuration for QSPI24 boot mode is 0x1 for qspi 24 and 0x2 for qspi32.

SD Boot Mode
SD boot (version 3.0) supports the following:

• FAT 16/32 file systems for reading the boot images.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 64Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=64

• Image search for MultiBoot with a maximum number 8,192 files are supported.

The following figure shows an example for booting Linux in SD mode.

Figure 17: Booting in SD Mode

Bootgen Tool

Boot.bin

FAT 32
Kernel Image

Device tree file

Root file system
EXT 3

File system

Zynq
UltraScale+

MPSoc

0 1 0 1

Petalinux SDK

SDK
FSBL

U-Boot

A53 Image

KEY

.bif

SD card Boot Mode
pins

KEY

Board

X14933-063017

To create an SD boot image, provide the following files to Bootgen:

• An FSBL ELF

• A Cortex-R5F-0/R5-1 and/or an Cortex-A53 application ELF

• Optional authentication and encryption keys

The Bootgen tool generates the boot.bin binary file. You can write the boot.bin file into an SD
card using a SD card reader.

In PetaLinux, do the following:

1. Build the Linux kernel image, device tree file, and the root file system.

2. Copy the files into the SD card.

The formatted SD card then contains the boot.bin, the kernel image, and the device tree file in
the FAT32 partition; the root file system resides in the EXT 3 partition.

IMPORTANT! To boot from SD1, configure the boot pins to 0x5. To boot from SD0, configure the boot pins to
0x3.To boot from SD with a level shifter, configure the boot pins to 0xE.

eMMC18 Boot Mode
eMMC18 boot (version 4.5) supports the following:

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=65

• FAT 16/32 file systems for reading the boot images.

• Image search for MultiBoot with a maximum number of 8,192 files being supported.

The following figure shows an example for booting Linux in eMMC18 mode.

Figure 18: Booting in eMMC18 Mode

Bootgen Tool

Boot.bin

FAT 32
Kernel Image

Device tree file

Root file system
EXT 3

File system

Zynq
UltraScale+

MPSoc

0 1 1 0

PetaLinux SDK

SDK
FSBL

U-Boot

A53 Image

KEY

.bif

eMMC18 card Boot Mode
pins

KEY

Board

X18971-071317

To create an eMMC18 boot image, provide the following files to Bootgen:

• An FSBL ELF

• A Cortex-R5F-0/R5-1 and/or a Cortex-A53 application ELF

• Optional authentication and encryption keys

The Bootgen tool generates the boot.bin binary file. You can write the boot.bin file into an
eMMC18 card using an eMMC18 card reader.

In PetaLinux, do the following:

• Build the Linux kernel image, device tree file, and the root file system.

• Copy the files into the eMMC18 card.

The formatted eMMC18 card then contains the boot.bin, the kernel image, and the device tree
files in the FAT32 partition; the root file system resides in the EXT3 partition.

NAND Boot Mode
The NAND boot only supports 8-bit widths for reading the boot images, and image search for
MultiBoot. The following figure shows an example for booting Linux in NAND mode.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=66

Figure 19: Booting in NAND Mode

Boot Header

FSBL

SBL

R5 Image

A53 Image

Bootgen
Tool Flash

Writer

Flash

Boot.bin

eFuse

FSBL

R5 Image

A53 Image

.bif

SDK

JTAG

Key

QSPI

Board

NAND
Converter

NAND
image

Key

FSBL

Boot Pins

Zynq
UltraScale+

MPSoC

0100

X14934-071317

To create a NAND boot image, provide the following files to Bootgen:

• An FSBL ELF

• A Cortex-R5F-0/R5-1 application ELF and/or an Cortex-A53 application ELF

• Optional authentication/encryption keys

The Bootgen tool generates the boot.bin binary file. You can then write the NAND bootable
image into the NAND flash using the flash writer

IMPORTANT! To boot from NAND, configure boot pins to 0x4.

JTAG Boot Mode
You can manually download any software image needed for the PS and any hardware image on
the PL using JTAG. For JTAG boot mode settings, see this link in the Zynq UltraScale+ Device
Technical Reference Manual (UG1085).

IMPORTANT! Secure boot is not supported in the JTAG mode.

USB Boot Mode
The USB boot mode supports only USB 2.0. In USB boot mode, both the secure and non-secure
boot modes are supported. USB boot mode is not supported for DDR-less systems. Features like
Multiboot, fallback image, and XIP are not supported.

Note: USB boot mode is disabled by default in FSBL. To enable the USB boot mode, configure the
FSBL_USB_EXCLUDE_VAL to 0 in xfsbl_config.h file.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 67Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?%3Bt=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxBootAndConfiguration
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=67

Table 13: USB Boot Mode Details

Pin Functionality
Mode pins 0x7

MIO pins MIO[63:52]

Non-secure Yes

Secure Yes

Signed Yes

Mode Slave

USB boot mode requires a host PC with dfu-utils installed on it. The host and device need to be
connected through a USB 2.0 or USB 3.0 cable. The host must contain one boot.bin to be loaded
by bootROM, which contains only fsbl.elf and another boot_all.bin to be loaded by
FSBL. On powering up the board in USB boot mode, issue the following commands:

• On Linux host:

• dfu-util -D boot.bin: This downloads the file to the device, which is processed by
bootROM.

• dfu-util -D boot_all.bin: This downloads the file to the device, which is processed by FSBL.

• On Windows host:

• dfu-util.exe -D boot.bin: This downloads the file to the device, which is processed by
bootROM.

• dfu-util.exe -D boot_all.bin: This downloads the file to the device, which is then processed
by FSBL.

The size limit of boot.bin and boot_all.bin are the sizes of OCM and DDR. The size of
OCM is 256 KB.

Secondary Boot Mode
There is a provision to have two boot devices in the Zynq UltraScale+ MPSoC architecture. The
primary boot mode is the boot mode used by bootROM to load FSBL and optionally PMU FW.
The secondary boot mode is the boot device used by FSBL to load all the other partitions. The
supported secondary boot modes are QSPI24, QSPI32, SD0, eMMC, SD1, SD1-LS, NAND and
USB.

When using PS-PCIe® on ZU+ in Endpoint mode, running FSBL is enough to set up the block for
endpoint mode operation. FSBL should be able to program the PS/PS-PCIe® and GTR within 100
ms. However, this doesn’t include PL-bitstream programming as including that would make this
greater than 100 ms.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=68

IMPORTANT! If secondary boot mode is specified, it should be different from the primary boot device. For
example, if QSPI32 is the primary boot mode, QSPI24 cannot be the secondary boot mode. Instead, you can
have SD0, eMMC, SD1, SD1-LS, NAND, USB as secondary boot modes. All combinations of boot devices are
supported as primary and secondary boot devices.

Note: By default, the secondary boot mode is the same as primary boot mode and there will be only one
boot image.

See What is Secondary Boot Mode in FSBL wiki page for more information.

Detailed Boot Flow
The platform management unit (PMU) in the Zynq UltraScale+ MPSoC is responsible for handling
the primary pre-boot tasks.

PMU ROM will execute from a ROM during boot to configure a default power state for the
device, initialize RAMs, and test memories and registers. After the PMU performs these tasks and
relinquishes system control to the configuration security unit (CSU), it enters a service mode. In
this mode, the PMU responds to interrupt requests made by system software through the
register interface or by hardware through the dedicated I/O to perform platform management
services.

Pre-Boot Sequence
The following table lists the tasks performed by the PMU in the pre-Boot sequence.

Table 14: Pre-Boot Sequence

Pre-Boot Task Description
0 Initialize MicroBlaze™ processor. Capture key states.

1 Scan, and clear LPD and FPD.

2 Initialize the System Monitor.

3 Initialize the PLL used for MBIST clocks.

4 Zero out the PMU RAM.

5 Validate the PLL. Configure the MBIST clock.

6 Validate the power supply.

7 Repair FPD memory (if required).

8 Zeroize the LPD and FPD and initialize memory self-test.

9 Power-down any disabled IPs.

10 Either release CSU or enter error state.

11 Enter service mode.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 69Send Feedback

http://www.wiki.xilinx.com/FSBL#What%20is%20Secondary%20Boot%20mode
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=69

As soon as the CSU reset is released, it executes the CSU bootROM and performs the following
sequence:

1. Initializes the OCM.

2. Determines the boot mode by reading the boot mode register, which captures the boot-mode
pin strapping at the POR.

3. The CSU continues with the FSBL load and the optional PMU firmware load. PMU firmware
is the software that can be executed by the PMU unit. The code executes from the RAM of
the PMU. See Chapter 9: Platform Management for more information.

The following figure shows the detailed boot flow diagram.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=70

Figure 20: Detailed Boot Flow Example

Power ON

PMU releases CSU Reset

Read Boot Mode Pins

Read Boot Header from
the Boot image

Check for
Authentication

Fallback bootDecrypt FSBL

Load FSBL to OCM

FSBL configures the PS

FSBL configures PL with
the bitstream

FSBL loads the RPU
software

FSBL loads the APU
software

FSBL Handoff to APU
software

Is FSBL
Authenticated?

YES

YES NOYES

NO

Is FSBL
Encrypted?

Authentication
Test passed?

Decryption
Fails?

NO

Fallback boot

YES

APU/RPU

CSU

PMU

X14935-070717

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=71

Disabling FPD in Boot Sequence
Perform the following to avoid an FPD lockout, where FPD Power is applied momentarily:

• Apply the power until the completion of bootROM execution.

• To power down the FP during FSBL execution, set FPD bit '22' of PMU_GLOBAL
REQ_PWRDWN_STATUS register.

• To bring the FP domain up in a later stage of the boot process, set the PMU_GLOBAL
REQ_PWRUP_STATUS bit to '22’.

Perform the following in cases where the FPD power is not applied before the FSBL boots

1. Power up the R5.

2. A register is set indicating the FPD is locked pending POR as the reset or clear sequence
cannot execute on the FPD.

3. R5 can read the FP locked status from PMU_GLOBAL REQ_ISO_STATUS register bit ‘4’.

4. At this stage, PMU_GLOBAL REQ_PWRUP_STATUS bit '22' will not be set.

5. To bring the FPD node back up, power must be supplied to the node and a POR needs to be
issued.

Setting FSBL Compilation Flags
You can set compilation flags using the C/C++ settings in the Vitis FSBL project, as shown in the
following figure:

Note: There is no need to change any of the FSBL source files or header files to include these flags.

Figure 21: FSBL Debug Flags

The following table lists the FSBL compilation flags.

Table 15: FSBL Compilation Flags

Flag Description
FSBL_DEBUG Prints basic information and error prints, if any.

FSBL_DEBUG_INFO Enables debug information in addition to the basic information.

FSBL_DEBUG_DETAILED Prints information with all data exchanged.

FSBL_NAND_EXCLUDE Excludes NAND support code.

FSBL_QSPI_EXCLUDE Excludes QSPI support code.

FSBL_SD_EXCLUDE Excludes SD support code.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 72Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=72

Table 15: FSBL Compilation Flags (cont'd)

Flag Description
FSBL_RSA_EXCLUDE Excludes authentication code.

FSBL_AES_EXCLUDE Excludes decryption code.

FSBL_BS_EXCLUDE Excludes bitstream code.

FSBL_WDT_EXCLUDE Excludes WDT support code.

FSBL_USB_EXCLUDE Excludes USB code.
This is set to 1 by default.
Set this value to 0 to enable USB boot mode.

FSBL_FORCE_ENC_EXCLUDE_VAL Excludes forcing encryption of all partitions when ENC_ONLY fuse is
programmed. By default, this is set to 0.
FSBL forces to enable encryption for all the partitions when ENC_ONLY
is programmed.

See I’m unable to build FSBL due to size issues, how can I reduce its footprint section in FSBL
wiki page for more information.

Enabling Debug Prints

See FSBL wiki page for more information on debugging FSBL.

Fallback and MultiBoot Flow
In the Zynq® UltraScale+™ MPSoC, the CSU bootROM supports MultiBoot and fallback boot
image search where the configuration security unit CSU ROM or bootROM searches through the
boot device looking for a valid image to load. The sequence is as follows:

• BootROM searches for a valid image identification string (XLNX as image ID) at offsets of 32
KB in the flash.

• After finding a valid identification value, validates the checksum for the header.

• If the checksum is valid, the bootROM loads the image. This allows for more than one image in
the flash.

In MultiBoot:

• CSU ROM or FSBL or the user application must initiate the boot image search to choose a
different image from which to boot.

• To initiate this image search, CSU ROM or FSBL updates the MultiBoot offset to point to the
intended boot image, and generates a soft reset by writing into the CRL_APB register.

The following figure shows an example of the fallback and MultiBoot flow.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 73Send Feedback

http://www.wiki.xilinx.com/FSBL
http://www.wiki.xilinx.com/FSBL
http://www.wiki.xilinx.com/FSBL
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=73

Figure 22: MultiBoot Flow

Boot Header

Image 1

.

.

.

.

Boot Header

Image 2

0x100_0000

0x002_0000

0x000_0000
Boot Header 1

Image 1

.

.

.

.

.

Boot Header 2

Image 2

0x100_0000

0x002_0000

0x000_0000

.

.

.

.

0x001_0000

0x000_8000

0x001_8000

Multi-Boot
Offset=1

Multi-Boot
Offset=2

Multi-Boot
Offset=3

Multi-Boot
Offset=4

X14936-071217

Note: The same flow is applicable to both Secure and Non-secure boot methods.

In the example fallback boot flow figure, the following sequence occurs:

• Initially, the CSU bootROM loads the boot image found at 0x000_0000.

• If this image is found to be corrupted or the decryption and authentication fails, CSU
bootROM increments the MultiBoot offset by one and searches for a valid boot image at
0x000_8000 (32 KB offset).

• If the CSU bootROM does not find the valid identification value, it again increments the
MultiBoot offset by 1, and searches for a valid boot image at the next 32 KB aligned address.

• The CSU bootROM repeats this until a valid boot image is found or the image search limit is
reached. In this example flow, the next image is shown at 0x002_0000 corresponding to a
MultiBoot offset value of four.

• In the example MultiBoot flow, to load the second image that is at the address 0x002_0000,
MutiBoot offset is updated to four by FSBL/CSU-ROM. When the MultiBoot offset is
updated, soft reset the system.

The following table shows the MultiBoot image search range for different booting devices.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=74

Table 16: Boot Devices and MultiBoot Image Search Range

Boot Device MultiBoot Image Search Range
QSPI Single (24-bit) 16 MB

QSPI Dual (24-bit) 32 MB

QSPI Single (32-bit) 256 MB

QSPI Dual (32-bit) 512 MB

NAND 128 MB

SD/EMMC 8,191 boot files

USB Not applicable

FSBL Build Process
After authenticating and/or decrypting, the FSBL is loaded into OCM and handed off by the CSU
bootROM. First Stage Boot Loader configures the FPGA with a bitstream (if it exists) and loads
the Standalone (SA) Image or Second Stage Boot Loader image from the non-volatile memory
(NAND/SD/eMMC/QSPI) to RAM(DDR/TCM/OCM). It takes the Cortex-R5F-0/R5F-1 processor
or the Cortex-A53 processor unit out of reset. It supports multiple partitions. Each partition can
be a code image or a bitstream. Each of these partitions, if required, will be authenticated and/or
decrypted.

Note: If you are creating a custom FSBL, you should be aware that the OCM size is 256 KB and is available
to CSU bootROM. The FSBL size is close to 170 KB and it would fit in the OCM. While using the USB boot
mode, you should make sure that the PMU firmware is loaded by the FSBL and not by the CSU bootROM.
This is because the size of boot.bin loaded by the CSU bootROM should be less than 256 KB.

Creating a New Zynq UltraScale+ MPSoC FSBL
Application Project
To create a new Zynq UltraScale+ MPSoC FSBL application in the Vitis software platform, do the
following:

1. Click File → New → Application Project.

The New Application Project dialog box appears.

2. In the Project Name field, type a name for the new project.

3. Select the location for the project. To use the default location as displayed in the Location
field, leave the Use default location check box selected. Otherwise, click to deselect the
check box, then type or browse to the directory location.

4. Select Create a new platform from hardware (XSA). The Vitis IDE lists the all the available
pre-defined hardware designs.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 75Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=75

5. Select any one hardware design from the list and click Next.

6. From the CPU drop-down list, select the processor for which you want to build the
application. This is an important step when there are multiple processors in your design. In
this case you can either select psu_cortexa53_0 or psu_cortexr5_0.

7. Select your preferred language: C.

8. Select an OS for the targeted application.

9. Click Next.

10. In the Templates dialog box, select the Zynq UltraScale+ MPSoC FSBL template.

11. Click Finish to create your application project and board support package (if it does not exist).

Phases of FSBL Operation
FSBL operation includes the following four stages:

• Initialization

• Boot device initialization

• Partition loading

• Handoff

The following figure shows the stages of FSBL operation:

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=76

Figure 23: Stages of FSBL

CSU
ROM

1.
Initializatio

n

2. Boot
Device

Initializatio
n

3. Partition
Copy,

Validation
4. HandoffApplic

ation

wfe

PDR/RST Handoff to
FSBL

Success

wfe

Error
Error

Error

JTAG
Boot

Error

SLCR RST
(FallBack)

Handof
f

Jtag Boot/
No Image

Partition
Completed

Partition Not
Completed

Fallback
Not Supported

FSBL Stage Diagram

FSBL Block Diagram

1. Initialization
1a. Get Reset Reason
1b. System Initialization
1c. Processor Initialization
1d. DDR Initialization
1e. Board Initialization
1f. Reset Validation

2. Boot Device Installation and
 Header Validation

2a. Primary Boot Device
 Initialization
2b. Header Validation
2c. Secondary Boot Device
 Initialization

XFsbl Initialize()

XFsbl_BootDeviceInitAnd:
Validate()

3. Partition Copy Validation
3a. Partition Header
 Validation
3b. Partition Copy

XFsbl_PartitionLoad()

4. Handoff
4a. PM Init
4b. Protection Config
4c. Handoff to CPUs

XFsbl_Handoff()

X19962-101917

Initialization

Initialization consists of the following four internal stages:

XFsbl_SystemInit

This function powers up PL for 1.0 and 2.0 silicon and removes PS-PL isolation. It initializes
clocks and peripherals as specified in psu-init. This function is not called in APU only reset.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=77

Figure 24: FSBL System Initialization

Stage
1a

xFsbl_SystemInit()

System
Initialization

Home

XFsbl_PowerUpIsland()
XFsbl_IsolationRestore()

PowerupPL(Remove Isolation,
For 1.0 & 2.0 silicon)

psu_init()
*DDR, MIO, CLK, PLL Settings,
Peripheral, SERDES Initialization

Configuration
Successful? no

Error
Lock
Down

yes

In MMUtable for A53 mask
DDR regions “memory”

Stage
1c

X19952-101917

XFsbl_ProcessorInit

Processor initialization will start in this stage. It will set up the Instruction and Data caches, L2
caches, MMU settings, stack pointers in case of A53 and I/D caches, MPU settings, memory
regions, stack pointers, and TCM settings for R5-0. Most of these settings will be performed in
BSP code initialization. IVT vector is changed to the start of OCM for A53 and to start of TCM
(0x0 in lowvec and 0xffff0000 in highvec) in case of R5-0.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=78

Figure 25: Processor Initialization

Stage
1c

Stage
1b

Partition
Initialization

Home

xFsbl_ProcessorInit()

Handoff from
CSUROM main()

· Configure
 Memory
 Regions, SP,
 TCM (in BSP)
· Enable MPU I/D
 Cache (In BSP)
· Copy IVT to
 TCM (0x0)
· Change reset
 address to TCM
 (0x0)

Read Cluster ID

A9? no

yes

· Configure SP
· Enable MMU, I/D
 Cache, L2 Cache
· Change IVT to
 start of OCM

XFsbl_RegisterHandlers()
Enable Exceptions
Register Exception Handlers

Stage
1d

X19954-101917

Initialize DDR

DDR would be initialized in this stage. This function is not called in Master only reset.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=79

Figure 26: DDR Initialization

Stage
1d

Stage
1c

Stage
1e

DDR Initialization

DDR has ECC? no

yes

ECC Initialization
of DDR

yes

Higher DDR
Preset!

Stage
1eno

ECC Initialization
of higher DDR

Stage
1e

X19957-101917

XFsbl_BoardInit

This function performs required board specific initializations. Most importantly, it configures GT
lanes and IIC.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=80

Figure 27: Board Initialization

Stage
1e

Stage
1d

Board Init

no Stage
1f

Initiate I2C driver

Board is
2cu102 or

2cu100

yes

Stage
1f

Configuration
programming I2C

USB
xxxxx

PCIE Reset for
2CU102

X19960-101917

Boot Device Initialization

XFsbl_PrimaryBootDeviceInit

This stage involves reading boot mode register to identify the primary boot device and initialize
the corresponding device. Each boot device driver provides init, copy and release functions which
are initialized to DevOps function pointers in this stage.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=81

Figure 28: Primary Boot Device Initialization

Stage
2a Stage

1c

xFsbl_PrimaryBootDeviceInit()

yes

Home
Primary Boot Device

Initialization

XFsbl_InitWdt()
XFsbl_CsuDmainit()

Initialize
WDT,CSUDMA

drivers

BootMode==
(JTAG || PJTAG0 ||

PJTAG1)
yes

BootMode ==
(QSP124 || QSP132 || SD0

||EMMC||NAND||SD1 ||
SD1 with level shifter)

no Wfe;

QSPI ?

no

Error
Lock
Down

yes
Configure QSPI
In Single/Dual/
Stacked mode

Configuration
Success? no

Error
Lock
Down

NAND ? yes Configuration
Success?

no

no

Error
Lock
Down

SD/eMMC yes Configuration
Success?

no

no

Create boot
image name

yes

yes

no

no

Stage
2b

X19958-101917

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=82

XFsbl_ValidateHeader

Using the copy functions provided, the FSBL reads the boot header attributes and image offset
address. It reads the EFUSE bit to check for authentication. It reads the image header and
validates the image header table. It then reads the Partition Present Device attribute of image
header. A non-zero value indicates a secondary boot device. A zero value indicates that the
secondary boot device is the same as the primary boot device.

Figure 29: Validating Header

Stage
2b Stage

2a

xFsbl_ValidateHeader()

Home
Header

Validation

XFsbl_ReadIma
geHeader() Read

Image Header

no
Error
Lock
Down

Validate Image
header

Populate handoff
parameter to ATF

Success?

no
Image Header

Table Validation
Successful?

yes

yes

Stage
3a

Image Header Validation
Checks
* No partitions present
* Num of partitions supported
* Start of Partition Header
offset Address check
* Image Header Table
Checksum

X19959-101917

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=83

XFsbl_SecondaryBootDeviceInit

This function is called in case of a non-zero value of Partition Present Device attribute of image
header table. It initializes the secondary boot device driver and the secondary boot device would
be used to load all partitions by FSBL.

XFsbl_SetATFHandoffParams

ATF is assumed to be the next loadable partition after FSBL. It is capable of loading U-Boot and
secure OS and hence, it is passed a handoff structure.

The first partition of an application will have a non-zero execution address. All the remaining
partitions of that application will have 0 as execution address. Hence look for the non-zero
execution address for partition which is not the first one and ensure the CPU is A53.

This function sets the handoff parameters to the Arm Trusted Firmware (ATF). The first argument
is taken from the FSBL partition header. A pointer to the handoff structure containing these
parameters is stored in the PMU_GLOBAL.GLOBAL_GEN_STORAGE6 register, which the ATF
reads. The structure is filled with magic characters 'X', 'L', 'N', and 'X' followed by the total number
of partitions and execution address of each partition.

Partition Loading

XFsbl_PartitionHeaderValidation

Partition header is validated against various checks. All the required partition variables are
updated at this stage. If the partition owner is not FSBL, partition will be ignored and FSBL will
continue loading the other partitions.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=84

Figure 30: Partition Header Validation

Stage
3a Stage

2b

xFsbl_PartitionHeaderValidation()

Partition Header
Validation

XFsbl_ValidateChecksum()
Validate Partition Header

Checksum ?

Partition
Parsing done

yes

Partition
Owner ==

FSBL

yes

Stage
3b

Home

Stage
4

Update Partition
Variables

Error
Lock
Down

no

no Stage
3a

Check partition word
lengths for Plain Encrypted

and Autheticated

yes

XFsbl_thecheckvalidMemoryAddress()
Destination Load Address/Eexcuable address Checkt

* No DDR and address in DDR
* Address not in TCM, DRR, PL DDR

Error
Lock
Down

no

yes

Checksum word
offset, Image header

offset, Data word
offset check

yes

* Checksum type not supported
* Destination Cpu not supported

* Running in lockstep mode and destination cpu is r5-0/r5-1
* Destination Cpu same for 2 Images

* XIP Image and length

no

no

no

yes
xFsbl_ValidatePartitionHeader()

X19951-101917

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=85

XFsbl_PartitionCopy

Partition will be copied to the DDR or TCM or OCM or PMU RAM.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=86

Figure 31: Partition Copy

Stage
3b

Stage
3a

xFsbl_PartitionCopy()

yes

Home

Partition
Copy

If no Load address
specified, else
Adress = Load

adress

PS DDR
Present

Skip
Copying(DDRLess)no

DestinationCPU ==
R5 && Load
address is in

TCM

Destination
Device == PL

no

· Update Load
 address Map it
 to high TCM
· Power up the
 TCMs and
 initialize TCM
 & CC

yes

Running CPU is
R5 AND Partition is

Non secure Partition
AND Application
address overlaps

with IVT

Copy overlapping
Part of Partition to a

local buffer

yes

Trigger PMU0 IPI
and wait until PMU
Microblaze goes to
sleep before PMU

FW download

Destn Dev =
PMU

Copy
Successful?

yes

Stage
3a

PSOnly Reset no

yes

Stage
3a

no

no

yes

X19950-101917

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=87

XFsbl_PartitionValidation

Partition will be validated based on the partition attributes. If checksum bit is enabled, then the
partition will be validated first for checksum correctness and then, based on the authentication
flag, it would be authenticated. If encryption flag is set, then the partition will be decrypted and
then copied to the destination.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=88

Figure 32: Partition Validation Function

Xsecure_AesDecrypt()
Decrypt Image from DDR/

TCMP/PMU_RAM
To DDR/TCM/PMU_RAM

Stage
3c

Stage
3b

Checksum
enabled?

Stage xFsbl_PartitionValidation()

Checksum
Validation
Sucessful?

yes no

Home

Authenticaion
Enabled?

yes no
XFabl_Authentication()

Authentication Validation
Successful?

yes
no

Partition
Validation

(PS Image II
PMU firmware) &&

(Encrypted) ?
yes

no
yes

Decryption
Successful ?

Error
Xxx
xxxx

no

FsblHookBefore
BitstreamDownload

yes

Initialize PCAP
Interface

For 3.0 Ps version &
above Powerup PL

Encrypted
bitstream?

Xsecure_AesDecrypt()
Send bitstream via

CSUDMA_AES_to PCAP
yes

Send bitstream to
PCAP through

CSUDMA

PL Done
Successful?

Wait until PL Done no
Error
Xxx
xxxx

Remove the Isolation
for PS-PL

Provide PS-PL
reset

FSBL Hook after
Bitstream download

Stage
4

PL Image?

yes

no

no

X19949-101917

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=89

Handoff

In this stage, protection_config functions from psu_init will be executed and then, any
handoff functionality is executed. Also PS-PL isolation is removed unconditionally. R5 will be
brought out of reset if there is any partition supposed to run on its cores. R5-0/R5-1 will be
configured to boot in lowvec mode or highvec mode as per the settings provided by you while
building the boot image. The handoff address in lowvec mode is 0x0 and 0xffff0000 in
highvec mode. Lowvec/Highvec information should be specified by you while building the boot
image. After all the other PS images are done, then the running CPU will be handed off with an
update of the PC value. If there is no image to hand off for the running the CPU, FSBL will be in
wfe loop.

Any running processor cannot pass any parameters to any other processor. Any communication
between various partitions can happen by reading from (or writing to) the PMU global registers.

Handoff on the running processor involves updating Program Counter (PC) of the running
processor, as is done in the case of APU Reset. Handoff to other processors involves updating
their PCs and bringing the processors out of reset.

XFsbl_PmInit

This function initializes and configures the Inter Processor Interrupts (IPI). It then writes the PM
configuration object address to an IPI buffer and triggers an IPI to the target. The PMU firmware
then reads and configures the device nodes as specified in the configuration object.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=90

Figure 33: PM Initialization

4a

Stage
3c

PM_INIT

Is PS-only
Reset

Remove PS-PL
isolation

Is APV-only
Reset

PM Init

4b

4c

yes

no

no

yes

X19946-101917

Protection Configuration

In this stage, protection_config functions from psu_init will be executed. The application
of protection happens in this stage.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 91Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=91

Figure 34: Protection Configuration

Disable tamper
responses

4b

4a

Protection Config

Is protection
byte met

psu-apply xxxxx3
psu-ocm-protection

4c

Stage

psu-protection
psu-protection mode

Enable tamper
response

yes

no

X19947-101917

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=92

Handoff

Handoff on the running processor involves updating Program Counter (PC) of the running
processor, as is done in the case of APU Reset. Handoff to other processors involves updating
their PCs and bringing the processors out of reset. A53 FSBL will bring R5 out of reset if there is
any partition to run on it. R5 will be configured to boot in lowvec mode or highvec mode as per
the settings provided by you while building the boot image. The handoff address in lowvec mode
is 0x0 and 0xffff0000 in highvec mode.

You must specify Lowvec/Highvec information while building the boot image. After all the other
PS images are done, then running the CPU image will be handed off to that cpu with an update
on the PC value. If there no image for the running CPU, it will be in wfe loop.

Figure 35: Handoff

Stage
4c

Stage
4b

xFsbl_Handoff()

Home

Handoff

Copy Arm
predefined code

to 0xffff0000

PS Image present? yes

· Update Reset
 vector address
 at 0xFFFFFF00
· Take CPU out of
 reset

Running CPU
handoff image

present ?

no wfe

Disable
exceptions

yes

R5 ? no Update PC

yes

HANDOFF

· Copy the original
 vector table to
 TCM if required
· Update PC

X19948-101917

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=93

Supported Handoffs

The following table shows the various combinations of handoffs that are supported in FSBL.

Table 17: Supported Handoffs

FSBL Application Processor Cores Execution Address
64-bit 64-bit All (i.e. A53-0, A53-1, A53-2, A53-3) Any Address

64-bit 32-bit A53-1, A53-2, A53-3 0x0

32-bit 32-bit A53-0 Any Address

32-bit 32-bit A53-1, A53-2, A53-3 0x0

32-bit 64-bit A53-1, A53-2, A53-3 Any Address

Error Lock Down

XFsbl_ErrorLockDown function handles errors in FSBL. This function is called whenever the
return value of a function is unsuccessful. This function updates error status register and then
loops indefinitely, if fallback is not supported.

In case the boot mode supports fallback, MultiBoot offset register is updated and then waits for a
WDT reset to occur. On reboot, bootROM and FSBL read the image from the new address
calculated from MultiBoot offset, thus loading a new image.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=94

Figure 36: Error Lock Down Function

XFsbl_ErrorLockDown()

Home

Update Error
Status Register

BootMode ==
(QSP124 || QSP132 || SD0

||EMMC|NAND|SD1 ||
SD1 with level shifter)

no

yes

Fallback not
supported by this

bootmode

XFsbl_HookBefor
eFallback() FSBL

Hook Before
Fallback

yes

Update Multiboot
Address register

wfe

SLCR Reset
X19953-101917

Miscellaneous Functions

The following functions are available in FSBL:

XFsbl_PrintArray

This function prints entire array in bytes as specified by the debug type.

void XFsbl_PrintArray (u32 DebugType, const u8 Buf[], u32 Len, const char
*Str);

Table 18: XFsbl_PrintArray Parameters in FSBL

Parameters Description
DebugType Printing of the array is performed as defined by the debug

type.

Buf Pointer to the buffer to be printed

Len Length of the bytes to be printed

Str Pointer to the data that is printed

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=95

XFsbl_Strcpy

This function to copy the source string to the destination string.

char *XFsbl_Strcpy(char *DestPtr, const char *SrcPtr)

Table 19: XFsbl_Strcpy Parameters in FSBL

Parameters Description
DestPtr Pointer to the buffer to be printed

SrcPtr Pointer to the buffer containing the source string

XFsbl_Strcat

This function to append the second string to the first string.

char* XFsbl_Strcat(char* Str1Ptr, const char* Str2Ptr)

Table 20: XFsbl_Strcat Parameters in FSBL

Parameters Description
Str1Ptr Pointer to the original string to which string pointed to by

Str2Ptr would be appended

Str2Ptr Pointer to the second string

XFsbl_Strcmp

This function compares strings.

s32 XFsbl_Strcmp(const char* Str1Ptr, const char* Str2Ptr)

Table 21: XFsbl_Strcmp Parameters in FSBL

Parameters Description
Str1Ptr Pointer to the first string

Str2Ptr Pointer to the second string

XFsbl_MemCpy

This function copies the memory contents pointed to by SrcPtr to the memory pointed to by
DestPtr. Len is number of bytes to be copied.

void* XFsbl_MemCpy(void * DestPtr, const void * SrcPtr, u32 Len)

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=96

Table 22: XFsbl_MemCpy Parameters in FSBL

Parameters Description
SrcPtr Pointer to the memory contents to be copied

DestPtr Pointer to the destination

Len Length of the bytes to be printed

XFsbl_PowerUpIsland

This function checks the power state of one or more power islands and powers them up if
required.

u32 XFsbl_PowerUpIsland(u32 PwrIslandMask)

Table 23: XFsbl_PowerUpIsland Parameters in FSBL

Parameters Description
PwrIslandMask Mask of island that needs to be powered up

XFsbl_IsolationRestore

This function requests isolation restore through the PMU firmware.

u32 XFsbl_IsolationRestore(u32 IsolationMask);

Table 24: XFsbl_IsolationRestore Parameters in FSBL

Parameters Description
IsolationMask Mask of the entries for which isolation is to be restored

XFsbl_SetTlbAttributes

This function sets the memory attributes for a section in the translation table.

void XFsbl_SetTlbAttributes(INTPTR Addr, UINTPTR attrib);

Table 25: XFsbl_SetTlbAttributes Parameters in FSBL

Parameters Description
Addr Address for which the attributes are to be set

Attrib Attributes for the memory region

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=97

XFsbl_GetSiliconIdName

This function reads the CSU_ID_CODE register and calculates the SvdId of the device. It returns
the corresponding deviceID name.

const char *XFsbl_GetSiliconIdName(void);

XFsbl_GetProcEng

This function determines and returns the engine type. Currently only CG, EG, and EV engine
types are supported.

const char *XFsbl_GetProcEng(void);

XFsbl_CheckSupportedCpu

This function checks if a given CPU is supported by this variant of Silicon. Currently it checks if it
is CG part and disallows handoff to A53_2/3 cores.

u32 XFsbl_CheckSupportedCpu(u32 CpuId);

Table 26: XFsbl_CheckSupportedCpu Parameters in FSBL

Parameters Description
Cpuld Checks if the processor is A53_2 or A53_3 or not.

XFsbl_AdmaCopy

This function copies data memory to memory using ADMA. You must take care of cache
invalidation and flushing. ADMA also should be configured to simple DMA before calling this
function.

u32 XFsbl_AdmaCopy(void * DestPtr, void * SrcPtr, u32 Size);

Table 27: XFsbl_AdmaCopy Parameters in FSBL

Parameters Description
DestPtr Pointer to the destination buffer to which data needs to be

copied

SrcPtr Pointer to the source buffer from which data needs to be
copied

Size Number of bytes of data that needs to be copied

XFsbl_GetDrvNumSD

This function is used to obtain drive number based on design and boot mode.

u32 XFsbl_GetDrvNumSD(u32 DeviceFlags);

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=98

Table 28: XFsbl_GetDrvNumSD Parameters in FSBL

Parameters Description
Device flags Contains the boot mode information, that is, one of SD0,

SD1, eMMC, or SD1-LS boot modes

XFsbl_MakeSdFileName

This function returns the file name of the boot image. The name is deduced from the parameters.

void XFsbl_MakeSdFileName(char*XFsbl_SdEmmcFileName, u32 MultiBootReg, u32
DrvNum);

Table 29: XFsbl_MakeSdFileName Parameters in FSBL

Parameters Description
XFsbl_SdEmmcFileName Contains the final file name

Multiboot reg The value of the MultiBoot register gets appended to the file
name, if its value is non zero

DrvNum Differentiates between SD0 and SD1 logical drives

Hooks in FSBL

Hooks are the functions that can be defined by you. FSBL provides blank functions and executes
them from certain strategic locations. The following table shows the currently available hooks.

Table 30: Hooks in FSBL

Hook Purpose/Location Hook Function Name
Before PL bitstream loading XFsbl_HookBeforeBSDownload()

After PL bitstream loading XFsbl_HookAfterBSDownload()

Before (the first) Handoff (to any application) XFsbl_HookBeforeHandoff()

Before fallback XFsbl_HookBeforeFallback()

To add more initialization code, in addition to that in psu_init
or to replace psu_init with custom initialization

XFsbl_HookPsuInit(()

See FSBL wiki page for more information on FSBL.

Chapter 7: System Boot and Configuration

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 99Send Feedback

http://www.wiki.xilinx.com/FSBL
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=99

Chapter 8

Security Features
This chapter details the Zynq® UltraScale+™ MPSoC features that you can leverage to address
security during boot time and run time of an application. The Secure Boot mechanism is
described in detail in this link to the Security chapter of the Zynq UltraScale+ Device Technical
Reference Manual (UG1085).

The system protection unit (SPU) provides the following hardware features for run-time security
of an application running on Zynq UltraScale+ MPSoCs:

• Xilinx Memory Protection Unit

• Xilinx Peripheral Protection Unit

• System Memory Management Unit

• A53 Memory Management Unit

• R5 Memory Protection Unit

One of the runtime security features is access controls on the PMU and CSU global registers
from Linux. These registers are classified into two lists: The white list (accessible all the time by
default) and the black list (accessible only when a compile time flag is set). For more details, see
CSU/PMU Register Access.

Boot Time Security
This section details the various boot image formats for authentication and encryption.

Encryption
Zynq UltraScale+ MPSoCs has AES-GCM hardware engine that supports confidentiality of your
boot images, and can also be used by you post-boot to encrypt and decrypt your data.

The AES crypto engine has access to a diverse set of key sources. For more information on the
key sources, see Zynq UltraScale+ Device Technical Reference Manual (UG1085).

The red key is used to encrypt the image. During the generation of the Boot file (BOOT.bin), the
red key, and the initialization vector (IV) must be provided to the Bootgen tool in.nky file
format.

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 100Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=100

PMU firmware can be loaded by CSU bootROM or FSBL. The CSUROM treats the FSBL and
PMU firmware as separate partitions and hence, decrypts each of them individually. If both the
FSBL and PMU firmware are encrypted, the AES Key/IV will be reused, which is a violation of the
standard.

IMPORTANT! If both the FSBL and PMU firmware are encrypted, the PMU firmware must be loaded by the
FSBL (and not the CSU bootROM) to avoid reusing the AES Key/IV pair. For more information, see Xilinx Answer
70622.

The following BIF file is for encrypted image, where PMU firmware is loaded by FSBL:

the_ROM_image:
{
[aeskeyfile] bbram.nky [keysrc_encryption] bbram_red_key
[bootloader, encryption=aes, destination_cpu=a53-0] ZynqMP_Fsbl.elf
[destination_cpu = pmu, encryption=aes] pmufw.elf
}

BIF File with BBRAM Red Key

The following BIF file sample shows the red key stored in BBRAM:

the_ROM_image: { [aeskeyfile] bbram.nky
[keysrc_encryption] bbram_red_key
[bootloader, encryption=aes, destination_cpu=a53-0] ZynqMP_Fsbl.elf
[destination_cpu = a53-0, encryption=aes] App_A53_0.elf
}

BIF File with eFUSE Red Key

The following BIF file sample shows the red key stored in eFUSE.

the_ROM_image: { [aeskeyfile] efuse.nky
[keysrc_encryption] efuse_red_key
[bootloader, encryption=aes, destination_cpu=a53-0] fsbl.elf
[destination_cpu = a53-0, encryption=aes] App_A53_0.elf
}

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 101Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers%3Bd%3D70622.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=101

BIF File with an Operational Key

For creating a boot image using Bootgen with an operational key, you must provide the tool with
the operational key, along with the red key and IV in an .nky file. Bootgen places this
operational key in a header and encrypts it with the device red key. The result is what is called an
encrypted secure header. The main advantage of this is that it minimizes the use of the device
key, thus limiting its exposure. For more details, refer to “Minimizing Use of the AES Boot Key
(OP Key Option)” in the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

the_ROM_image:
{
[aeskeyfile] bbram.nky [fsbl_config] opt_key [keysrc_encryption]
bbram_red_key
[bootloader, encryption=aes, destination_cpu=a53-0] ZynqMP_Fsbl.elf
[destination_cpu = a53-0, encryption=aes] App_A53_0.elf
}

Using Op Key to Protect the Device Key in a Development Environment

The following steps provide a solution in a scenario where two development teams Team-A
(secure team), which manages the secret red key and Team-B (not so secure team) work
collaboratively to build an encrypted image without sharing the secret red key. Team-A manages
the secret red key. Team-B builds encrypted images for development and test. However, it does
not have access to the secret red key.

Team-A encrypts the boot loader with the device key (using the Op Key option) and delivers the
encrypted bootloader to Team-B. Team-B encrypts all the other partitions using the Op Key.

Team-B takes the encrypted partitions that they created and the encrypted boot loader they
received from the Team-A and uses Bootgen to ‘stitch’ everything together into a single
boot.bin.

The following procedures describe the steps to build an image:

Procedure 1

In the initial step, Team-A encrypts the boot loader with the device Key using the opt_key option,
delivers the encrypted boot loader to Team-B. Now, Team-B can create the complete image at a
go with all the partitions and the encrypted boot loader using the operational key as device key.

1. Encrypt boot loader with device key:

bootgen -arch zynqmp -image stage1.bif -o fsbl_e.bin -w on -log error

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 102Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=102

Example stage1.bif:

stage1:
{
[aeskeyfile] aes.nky
[fsbl_config] opt_key
[keysrc_encryption] bbram_red_key
[bootloader,destination_cpu=a53-0,encryption=aes]fsbl.elf
}

Example aes.nky for stage1:

Device xc7z020clg484;
Key 0 AD00C023E238AC9039EA984D49AA8C819456A98C124AE890ACEF002100128932;
IV 0 F7F8FDE08674A28DC6ED8E37;
Key Opt 229C993D1310DD27B6713749B6D07FCF8D3DCA01EC9C64778CBAF457D613508F;

2. Attach the encrypted boot loader and rest of the partitions with the operational key as device
key to form a complete image:

bootgen -arch zynqmp -image stage2a.bif -o final.bin -w on -log error

Example of stage2.bif:

stage2:
{
[aeskeyfile] aes-opt.nky
[bootimage]fsbl_e.bin
[destination_cpu=a53-0,encryption=aes]hello.elf
[destination_cpu=a53-1,encryption=aes]hello1.elf
}

Example aes-opt.nky for stage2:

Device xc7z020clg484;
Key 0 229C993D1310DD27B6713749B6D07FCF8D3DCA01EC9C64778CBAF457D613508F;
IV 0 F7F8FDE08674A28DC6ED8E37;

Procedure 2

In the initial step, Team-A encrypts the boot loader with the device key using the opt_key option
and delivers the encrypted boot loader to Team-B. Now, Team-B can create encrypted images for
each partition independently, using the operational key as the device key. Finally, Team-B can use
Bootgen to stitch all the encrypted partitions and the encrypted boot loader, to get the complete
image.

1. Encrypt boot loader with device key:

bootgen -arch zynqmp -image stage1.bif -o fsbl_e.bin -w on -log error

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 103Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=103

Example stage1.bif:

stage1:
{
[aeskeyfile] aes.nky
[fsbl_config] opt_key
[keysrc_encryption] bbram_red_key
[bootloader,destination_cpu=a53-0,encryption=aes]fsbl.elf
}

Example aes.nky for stage1:

Device xc7z020clg484;
Key 0 AD00C023E238AC9039EA984D49AA8C819456A98C124AE890ACEF002100128932;
IV 0 F7F8FDE08674A28DC6ED8E37;
Key Opt 229C993D1310DD27B6713749B6D07FCF8D3DCA01EC9C64778CBAF457D613508F;

2. Encrypt the rest of the partitions with operational key as device key:

bootgen -arch zynqmp -image stage2a.bif -o hello_e.bin -w on -log error

Example of stage2a.bif:

stage2a:
{
[aeskeyfile] aes-opt.nky
[destination_cpu=a53-0,encryption=aes]hello.elf
}
bootgen -arch zynqmp -image stage2b.bif -o hello1_e.bin -w on -log error

Example of stage2b.bif:

stage2b:
{
[aeskeyfile] aes-opt.nky
[destination_cpu=a53-1,encryption=aes]hello1.elf

Example of aes-opt.nky for stage2a and stage2b:

Device xc7z020clg484;
Key 0 229C993D1310DD27B6713749B6D07FCF8D3DCA01EC9C64778CBAF457D613508F;
IV 0 F7F8FDE08674A28DC6ED8E37;

3. Use Bootgen to stitch the above to form a complete image:

Example of stage3.bif:

stage3:
{
[bootimage]fsbl_e.bin [bootimage]hello_e.bin [bootimage]hello1_e.bin
}

Note: Key Opt of aes.nky is same as Key 0 in aes-opt.nky and IV 0 must be same in both nky files.

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=104

BIF File for Black Key Stored in eFUSE

For customers who would like to have the device key stored encrypted when not in use, the
physical unclonable function (PUF) can be used. Here, the actual red key is encrypted with the
PUF key encryption key (KEK), which is an encryption key that is generated by the PUF. The
device will decrypt the black key to get the actual red key, so you need to provide the required
inputs to Bootgen. The black key can be stored in either eFUSE or the Boot Header. Shutter
value indicates the time for which the oscillator values can be captured for PUF. This value must
always be 0x100005E.

For more details, refer to “Storing Keys in Encrypted Form (Black)” in the Zynq UltraScale+ Device
Technical Reference Manual (UG1085).

The following example shows storage of the black key in eFUSE.

the_ROM_image:
{
[pskfile]PSK.pem
[sskfile]SSK.pem
[aeskeyfile]red.nky
[keysrc_encryption] efuse_blk_key
[fsbl_config] shutter=0x0100005E
[auth_params] ppk_select=0
[bootloader, encryption = aes, authentication = rsa,
destination_cpu=a53-0]fsbl.elf
[bh_key_iv] black_key_iv.txt
}

BIF File for Black Key Stored in Boot Header

The following BIF file sample shows boot header black key encryption:

the_ROM_image:
{
[aeskeyfile] redkey.nky
[keysrc_encryption] bh_blk_key
[bh_keyfile] blackkey.txt
[bh_key_iv] black_key_iv.txt
[fsbl_config] pufhd_bh , puf4kmode , shutter=0x0100005E, bh_auth_enable
[pskfile] PSK.pem
[sskfile] SSK.pem
[bootloader,authentication=rsa , encryption=aes,
destination_cpu=a53-0]fsbl.elf
[puf_file]hlprdata4k.txt
}

Note: Authentication of boot image is compulsory for using black key encryption.

To generate or program eFUSE with black key, see Zynq eFUSE PS API in Appendix I, XilSKey
Library v6.8.

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 105Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=105

BIF File for Obfuscated Form (Gray) Key Stored in eFUSE

If you would like to have the device key store in obfuscated form, you can encrypt the actual red
key with the family key which is an encryption key. Device will decrypt the obfuscated key to get
the actual red key. Hence, you need to provide the required inputs to Bootgen. The obfuscated
key can be stored in either eFUSE or the Boot Header.

For more details, see Storing Keys in Obfuscated Form (Gray) section in the Zynq UltraScale+
Device Technical Reference Manual (UG1085).

Note: The Family key is the same for all devices within a given ZynqMP SoC family. This solution allows you
to distribute the Obfuscated key to contract manufacturer's without disclosing the actual user key.

The following example shows storage of the obfuscated key in eFUSE:

the_ROM_image:
{
[aeskeyfile] red.nky
[keysrc_encryption] efuse_gry_key
[bh_key_iv] bhkeyiv.txt
[bootloader, encryption=aes, destination_cpu=a53-0] fsbl.elf
}

The following example shows storage of the obfuscated form (gray) key in boot header:

the_ROM_image:
{
[aeskeyfile] red.nky [keysrc_encryption] bh_gry_key [bh_key_iv]
bhkeyiv.txt
[bh_keyfile] bhkey.txt
[bootloader, encryption=aes, destination_cpu=a53-0] fsbl.elf
}

To Generate Obfuscated Key with Family Key:

Use Xilinx tools (Bootgen) to create the Obfuscated key. However, the family key is not
distributed with the Xilinx development tools. It is provided separately. The family key received
from Xilinx should be provided in the bif as shown in the example below.

IMPORTANT! To receive the family key, please contact secure.solutions:dirxilinx.com.

Sample bif to generate Obfuscated key:

all:
{
[aeskeyfile] aes.nky
[familykey] familyKey.cfg
[bh_key_iv] bhiv.txt
}

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 106Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
mailto:secure.solutions@xilinx.com
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=106

Using Bootgen to Generate Keys

If you are using Bootgen to create keys, NIST approved KDF is used, which is Counter Mode KDF
with CMAC as the PRF.

With a Single Key/IV pair:

• If seed is specified - Key Generation is based on Seed.

• If seed is NOT specified - Key Generation is based on Key0.

If an empty file is mentioned, Bootgen generates a seed with time based randomization. This is
not a standard like the KDF. This seed will in turn be the input for KDF to generate the Key/IV
pairs.

BIF File with Multiple AESKEY Files

The following BIF file samples show the encryptions using aeskey files:

One AES Key / Partition

You may specify multiple nky files, one for each partition in the image. The partitions are
encrypted using the key that is specified before the partition.

sample_bif:
{
[aeskeyfile] test1.nky
[bootloader, encryption=aes] fsbl.elf
[aeskeyfile] test2.nky
[encryption=aes] hello.elf
[aeskeyfile] test3.nky
[encryption=aes] app.elf
}

The fsbl.elf partition is encrypted using the keys from test1.nky file. If we assume that the
hello.elf file has two partitions since it has two loadable sections, then both the partitions
are encrypted using keys from test2.nky file. The app.elf partition is encrypted using keys
from test3.nky file.

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=107

One AES Key / Each Partition (Multiple Loadable Sections Scenario)

You may specify multiple nky files, one for each partition in the image. The partitions are
encrypted using the key that is specified before the partition. You are allowed to have unique key
files for each of the partition created due to multiple loadable sections by having key file names
appended with ‘.1’, ‘.2’...’.n’ in the same directory of the key file meant for that partition.

sample_bif:
{
[aeskeyfile] test1.nky
[bootloader, encryption=aes] fsbl.elf
[aeskeyfile] test2.nky
[encryption=aes] hello.elf
[aeskeyfile] test3.nky
[encryption=aes] app.elf
}

The fsbl.elf partition is encrypted using the keys from test1.nky file. Assume that the
hello.elf file has three partitions since it has three loadable sections, and hello.elf.0 is
encrypted using the keys from test2.nky file, hello.elf.1 is encrypted using the keys from
test2.1.nky, and hello.elf.2 is encrypted using the keys from test2.2.nky file. The
app.elf partition is encrypted using keys from test3.nky file.

Using the same .nky across multiple partitions, re uses the AES Key and AES Key/IV Pair in each
partition. Using the AES key across multiple partitions increases the exposure of the key and may
be a security vulnerability. Using the same AES Key/IV Pair across multiple partitions is a
violation of the standard. To avoid the re-use of AES Key/IV pair, Bootgen increments the IV with
the partition number. To avoid the re-use of both AES Key and AES Key/IV pair, Bootgen allows
you to provide multiple .nky files, one for each partition.

IMPORTANT! To avoid key re-use, support for single nky file across multiple partitions will be deprecated.

CAUTION! Using a single .nky  file with multiple partitions means that the same key is being used in each
partition - which can be a security vulnerability. A warning is issued in the current release with the plan to
generate an error in future releases.

Note: Key0/IV0 - should be the same in all the nky files.

If you specify multiple keys and if the number of keys are less than the number of blocks to be
encrypted, it is ERRORED OUT.

If you need to specify multiple Key/IV pairs, you must specify (number-of-blocks+1) pairs. The
extra Key/IV pair is for SH. Ex: If blocks=4;8;16 - you have to specify 4+1=5 Key/IV pairs.

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=108

Authentication
The SHA hardware accelerator included in the Zynq UltraScale+ MPSoC implements the SHA-3
algorithm and produces a 384-bit digest. It is used together with the RSA accelerator to provide
image authentication and the AES-GCM is used to decrypt the image. These blocks
(SHA-3/384,RSA and AES-GCM) are hardened and part of crypto interface block (CIB).

Authentication flow treats the FSBL as raw data, where it makes no difference whether the
image is encrypted or not. There are two level of keys: primary key (PK) and secondary Key (SK).

Each key has two complementary parts: secret key and public key:

• PK contains primary public key (PPK) and primary secret key (PSK).

• SK contains secondary public key (SPK) and secondary secret key (SSK).

The hardened RSA block in the CIB is a Montgomery multiplier for acceleration of the big math
required for RSA. The hardware accelerator can be used for signature generation or verification.
The ROM code only supports signature verification. Secret keys are only used in the signature
generation stage when the certificate is generated.

IMPORTANT! Signature generation is not done on the device, but in software during preparation of the boot
image.

To better understand the format of the authentication certificate, see Bootgen User Guide
(UG1283).

The PPK and SPK keys authenticate a partition. PSK and SSK are used to sign the partition. The
equations for each signature (SPK, boot header, and boot image) are listed here:

• SPK signature. The 512 bytes of the SPK signature is generated by the following calculation:

SPK signature = RSA(PSK, padding || SHA(SPK+ auth_header)).

• Boot header signature. The 512 bytes of the boot header signature is generated by the
following calculation:

Boot header signature = RSA(SSK, padding || SHA(boot header)).

• Boot image signature. The 512 bytes of the boot image signature is generated by the
following calculation:

BI signature = RSA(SSK, padding || SHA(PFW + FSBL + authentication
certificate)).

Note: For SHA-3 authentication, always use Keccak SHA3 to calculate hash on boot header, PPK hash and
boot image. NIST-SHA3 is used for all other partitions which are not loaded by ROM.

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 109Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=109

Bootgen supports RSA signature generation only. The modulus, exponentiation and precalculated
R^2 Mod N are required. Software is supported only for RSA public key encryption, for
encrypting the signature RSA engine requires modulus, exponentiation and pre-calculated R^2
Mod N, all these are extracted from keys.

BIF File with SHA-3 Boot Header Authentication and PPK0

The following BIF file sample supports the BH RSA option. This option supports integration and
test prior to the system being fielded. For more details, see “Integration and Test Support (BH
RSA Option)” in the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

The BIF file is for SHA-3 boot header authentication, where actual PPK hash is not compared
with the eFUSE stored value.

the_ROM_image: {
[fsbl_config] bh_auth_enable
[auth_params] ppk_select=0; spk_id=0x00000000
[pskfile] primary_4096.pem
[sskfile] secondary_4096.pem
[bootloader, authentication=rsa, destination_cpu=a53-0] fsbl.elf
[pmufw_image, authentication=rsa] xpfw.elf
}

BIF File with SHA-3 eFUSE RSA Authentication and PPK0

The following BIF file sample shows eFUSE RSA authentication using PPK0 and SHA-3.

the_ROM_image:
{
[auth_params]ppk_select=0;spk_id=0x584C4E58
[pskfile]psk.pem
[sskfile]ssk.pem
[bootloader, authentication = rsa, destination_cpu=a53-0]zynqmp_fsbl.elf
[destination_cpu = a53-0, authentication = rsa]Application.elf
}

Enhanced RSA Key Revocation Support
The RSA key provides the ability to revoke the secondary keys of one partition without revoking
them for all partitions.

Note: Primary key should be the same across all partitions.

This is achieved by using USER_FUSE0 to USER_FUSE7 eFuses (one can revoke up to 256 keys, if
all are not required for their usage) with the new BIF parameter spk_select.

The following BIF file sample shows enhanced user fuse revocation:

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 110Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=110

Image header and FSBL uses different SSK's for authentication (ssk1.pem and ssk2.pem
respectively) with the following bif input.

the_ROM_image: {
[auth_params]ppk_select = 0
[pskfile]psk.pem
[sskfile]ssk1.pem
[bootloader, authentication = rsa, spk_select = spk-efuse, spk_id =
0x12345678, sskfile = ssk2.pem]zynqmp_fsbl.elf
[destination_cpu =a53-0, authentication = rsa, spk_select = user-efuse,
spk_id = 0x3, sskfile = ssk3.pem]Application1.elf
[destination_cpu =a53-0, authentication = rsa, spk_select = spk-efuse,
spk_id = 0x12345678, sskfile = ssk4.pem]Application2.elf
}

Same SSK will be used for both Image header and FSBL (ssk2.pem), if separate SSK is not
mentioned.

the_ROM_image: {

{
[auth_params]ppk_select = 0 [pskfile]psk.pem
[bootloader, authentication = rsa, spk_select = spk-efuse, spk_id =
0x12345678, sskfile = ssk2.pem]zynqmp_fsbl.elf
[destination_cpu =a53-0, authentication = rsa, spk_select = user-efuse,
spk_id = 0xF, sskfile = ssk3.pem]Application1.elf
[destination_cpu =a53-0, authentication = rsa, spk_select = spk-efuse,
spk_id = 0x12345678, sskfile = ssk4.pem]Application2.elf
}

spk_select = spk-efuse indicates that spk_id eFuse will be used for that partition.

spk_select = user-efuse indicates that user eFuse will be used for that partition.
Partitions loaded by CSU ROM will always use spk_efuse.

Note: The spk_id eFuse specifies which key is valid. Hence, the ROM checks the entire field of spk_id
eFuse against the SPK ID to make sure it is a bit for bit match.

Valid range of spk_id for spk_select user-efuse is 0x1 to 0x100 (in decimal 1 to 256). The
user eFuse specifies which key ID is not valid (has been revoked). Hence, the firmware (non-
ROM) checks to see if a given user eFuse that represents the SPK ID has been programmed.

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 111Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=111

Bitstream Authentication Using External
Memory

Authentication of bitstream is different from all other partitions. The FSBL can be wholly
contained within the OCM, and therefore authenticated and decrypted inside of the device. For
the bitstream, the size of the file is so large that it cannot be wholly contained inside the device
and external memory must be used. The use of external memory creates a challenge to maintain
security because an adversary may have access to this external memory.

The following section describes how the bitstream is authenticated securely using external
memory.

Bootgen
When bitstream is requested for authentication, Bootgen divides the whole bitstream into 8 MB
blocks and has an authentication certificate for each block.

If a bitstream is not in multiples of 8 MB, the last block contains the remaining bitstream data.

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 112Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=112

Figure 37: Bitstream Blocks

Boot Header

FSBL

FSBL AC

8MB block 1

8MB block 2

.
PL Bitstream Data

.

.

LastBlock(remaining)

Block1 AC

Block2 AC
.
.
.

Last Block AC

Whole
Bitstream

Authenticatio
n
certificates of
bitstream

X19220-071317

When authentication and encryption are both enabled, encryption is first done on the bitstream.
Then Bootgen divides the encrypted data into blocks and places an authentication certificate for
each block.

Software
To securely authenticate the bitstream partition, FSBL uses the ATF section's OCM memory to
copy the bitstream in chunks from FLASH or DDR. Therefore, while creating a boot image, the
bitstream partition should be before ATF partition. Otherwise ATF memory is

over-written while processing the bitstream partition.

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 113Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=113

The workflow for the DDR and DDR-less systems is nearly identical. The only difference is that
for systems with the DDR, FSBL copies the entire bitstream partition (bitstream and
authentication certificates) to the DDR from the FLASH devices, because DDR is faster to
access. FSBL then, each time, copies a chunk of bitstream from the DDR. For the DDR-less
systems, FSBL copies a chunk of bitstream directly from the FLASH devices.

The following is the software workflow for authenticating the bitstream:

1. FSBL identifies the availability of the DDR on the system based on the XFSBL_PS_DDR
macro. FSBL has two buffers in OCM, ReadBuffer buffer of size 56 KB and HashsOfChunks[]
to store intermediate hashs calculated for each 56 KB of 8 MB blocks.

2. FSBL copies a 56 KB chunk from the first 8 MB block to ReadBuffer.

3. FSBL calculates hash on 56 KB and stores in HashsOfChunks.

4. FSBL repeats the previous steps until the entire 8 MB of block is completed.

Note: 56 KB is taken for performance; it can be of any size.

5. FSBL authenticates the bitstream.

6. Once the authentication is successful, FSBL starts copying 56 KB starting from the first block
which is located in DDR/FLASH to ReadBuffer, calculates the hash, and then compares it
with the hash stored at HashsOfChunks.

7. If hash comparison is successful, FSBL transmits data to PCAP via DMA (for unencrypted
bitstream) or AES (if encryption is enabled).

8. FSBL repeats the previous two steps until the entire 8 MB block is completed.

9. Repeats the entire process for all the blocks of bitstream.

Note: If there is any failure at any stage, PL is reset and FSBL is exited.

The bitstream is directly routed to PCAP via CSU DMA by configuring secure stream switch.

For a DDR system, the whole encrypted bitstream is copied to DDR. For DDR-less system,
decryption is copied to OCM(ATF section) in chunks.

Note: Xilinx recommends that you have a bitstream partition immediately after the FSBL partition in the
boot image.

Run-Time Security
Run-time security involves protecting the system against incorrectly programmed or malicious
devices corrupting the system memory or causing a system failure.

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 114Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=114

To protect the system, it is important to secure memory and the peripherals during a software
execution. The Zynq UltraScale+ MPSoCs provide memory and peripheral protection through the
following blocks:

• Arm Trusted Firmware

• Xilinx Memory Protection Unit

• Xilinx Peripheral Protection Unit

• System Memory Management Unit

• A53 Memory Management Unit

• R5 Memory Protection Unit

One of the runtime security features is access controls on the PMU and CSU global registers
from Linux. These registers are classified into two lists:

• The white list which is accessible all the time by default.

• The black list which is accessible only when a compile time flag is set.

Arm Trusted Firmware
The Zynq UltraScale+ MPSoC incorporates the standard execution model advocated for Armv8
cores. This model runs the normal operating system at a less privileged state, requiring it to
request access to security-sensitive hardware or registers using a proxy software called as secure
monitor code (SMC). The specific SMC provided by Xilinx for the Zynq UltraScale+ MPSoC
device is a part of Linaro Arm Trusted Firmware (ATF). Xilinx neither requires nor provides a
Trusted OS as secure boot functionality is available through the CSU and PMU as previously
described. However, the ATF provided by Xilinx does include hooks which allow customers to
add their own Trusted OS for incorporation of additional trusted applications. ATF includes a
secure monitor for switching between the secure and the non-secure world.

The primary purpose of ATF is to ensure that the system modules (drivers, applications) do not
have access to a resource unless absolutely necessary. For example, Linux should be prevented
from accessing the region where the public key is stored in the SoC. Likewise, the driver for a
crypto block does not need to know the current session key; the session key could be
programmed by the key negotiation algorithm and stored in a secure location within the crypto
block.

PSCI is the interface from non-secure software to firmware implementing power management
use-cases (for example, secondary CPU boot, hotplug, and idle). It might be necessary for
supervisory systems running at exception levels to perform actions, such as restoring context and
switches to the power state of core. Non-secure software can access ATF runtime services using
the Arm secure monitor call (SMC) instruction.

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 115Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=115

In the Arm architecture, synchronous control transfers between the non-secure state to a secure
state through SMC exceptions, which are generated by the SMC instruction, and handled by the
secure monitor. The operation of the secure monitor is determined by the parameters passed in
through registers.

Two types of calls are defined:

• Fast calls to execute atomic secure operations

• Standard calls to start preemptive secure operations

Two calling conventions for the SMC instruction defines two function identifiers for the SMC
instruction define two calling conventions:

• SMC32: A 32-bit interface that either 32-bit or 64-bit client code can use. SMC32 passes up
to six 32-bit arguments.

• SMC64: A 64-bit interface used only by 64-bit client code that passes up to six 64-bit
arguments.

You define the SMC function identifiers based upon the calling convention. When you define the
SMC function identifier, you pass that identifier into every SMC call in register R0 or W0, which
determines the following:

• Call type

• Calling convention

• Secure function to invoke

ATF implements a framework for configuring and managing interrupts generated in either
security state. It implements a subset of the trusted board boot requirements (TBBR) and the
platform design document (PDD) for Arm reference platforms.

The cold boot path is where the TBBR sequence starts when the platform is powered on, and
runs up to the stage where it hands-off control to firmware running in the non-secure world in
DRAM. The cold boot path starts when you physically turn on the platform.

• You chose one of the CPUs released from reset as the primary CPU, and the remaining CPUs
are considered secondary CPUs.

• The primary CPU is chosen through platform-specific means. The cold boot path is mainly
executed by the primary CPU, other than essential CPU initialization executed by all CPUs.

• The secondary CPUs are kept in a safe platform-specific state until the primary CPU has
performed enough initialization to boot them.

For a warm boot, the CPU jumps to a platform-specific address in the same processor mode as it
was when released from reset.

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 116Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=116

ATF Functions
The following table lists the ATF functions:

Table 31: ATF Functions

ATF Functions Description
bl31_arch_setup(); Generic architectural setup from EL3.

bl31_platform_setup(); Platform setup in BL1.

bl31_lib_init(); Simple function to initialize all BL31 helper libraries.

cm_init(); Context management library initialization routine.

dcsw_op_all(DCCSW); Cleans caches before re-entering the non-secure software
world.

(*bl32_init)(); Function pointer to initialize the BL32 image.

runtime_svc_init(); Calls the initialization routine in the descriptor exported by a
runtime service. After a descriptor is validated, its start and
end owning entity numbers and the call type are combined
to form a unique oen. The unique oen is an index into the
rt_svc_descs_indices array. This index stores the index of the
runtime service descriptor.

validate_rt_svc_desc(); Simple routine to sanity check a runtime service descriptor
before it is used.

get_unique_oen(); Gets a unique oen.

bl31_prepare_next_image_entry(); Programs EL3 registers and performs other setup to enable
entry into the next image after BL31 at the next ERET.

bl31_get_next_image_type(); Returns the next_image_type.

bl31_plat_get_next_image_ep_info (image_type); Returns a reference to the entry_point_info structure
corresponding to the image that runs in the specified
security state.

get_security_state () Gets the security state.

cm_init_context() Initializes a cpu_context for the first use by the current CPU,
and sets the initial entry point state as specified by the
entry_point_info structure.

get_scr_el3_from_routing_model() Returns the cached copy of the SCR_EL3 which contains the
routing model (expressed through the IRQ and FIQ bits) for
a security state that is stored through a previous call to
set_routing_model().

cm_prepare_el3_exit() Prepares the CPU system registers for first entry into the
secure or the non-secure software world.
• If execution is requested to EL2 or hyp mode SCTLR_EL2

is initialized.
• If execution is requested to the non-secure EL1 or svc

mode, and the CPU supports EL2; then EL2 is disabled by
configuring all necessary EL2 registers.

For all entries, the EL1 registers are initialized from the
cpu_context.

cm_get_context(security_state); Gets the context of the security state.

el1_sysregs_context_restore Restores the context of the system registers.

cm_set_next_context Programs the context used for exception return. This
initializes the SP_EL3 to a pointer to a cpu_context set for the
required security state.

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 117Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=117

Table 31: ATF Functions (cont'd)

ATF Functions Description
bl31_register_bl32_init Initializes the pointer to BL32 init function.

bl31_set_next_image_type Accessor function to help runtime services determine which
image to execute after BL31.

For more information about ATF, see Arm Trusted Firmware documentation.

FPGA Manager Solution
The FPGA Manager in the Zynq UltraScale+ MPSoC provides an interface to download different
types of bitstreams (full, partial, authenticated, encrypted and so on) during runtime from Linux
environment. The key features of the FPGA Manager are as follows:

• Full bitstream loading

• Partial Reconfiguration (partial bitstream loading)

• Encrypted full/partial bitsream loading

• Authenticated full/partial bitstream loading

• Authenticated and encrypted full/partial bitstream loading

• Readback of configuration registers

• Readback of bitstream (configuration data)

FPGA Manager Architecture
The following figure shows the architecture of the FPGA Manager.

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 118Send Feedback

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0928e/CJHIDGJF.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=118

Figure 38: FPGA Manager Architecture Block Diagram

Linux FPGA Manager (kernel)

ATF

EEMI/SCMI/SVC

PMUFW

IPI

xilfpga

xilfpga APIs

FPGA/PL

X22151-121818

Execution Flow

FPGA manager provides an abstraction for the user to load bitstream using Linux. The the xilfpga
library initializes the PCAP, CSUDMA and other hardware. For more details about xilfpga, see the
Appendix K, XilFPGA Library v5.0 section.

To load a bitstream, the FPGA manager allocates the required memory and invokes the EEMI API
using the FPGA LOAD API ID. This request is a blocking call. The FPGA Manger waits for
response from the ATF and response is provided to the fpga core layer which passes it to the
application. This is described in the following figure:

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 119Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=119

Figure 39: FPGA Manager Flow

fpgautil -b system.bit
Application Layer

FPGA Manager Core Framework Linux Kernel — EL1 NS

ZYNQMP FPGA Manager driver

ZYNQMP Firmware driver

ATF

PMUFW

Xilfpga Library

ATF (BL31) — EL3

PMUFW and XILFPGA — EL3

Write Request

SMC CALL

IPI

EEMI Request

X22152-121818

Xilinx Memory Protection Unit
The Xilinx memory protection unit (XMPU) is a region-based memory protection unit. For more
details, see “System Protection Unit” chapter in the Zynq UltraScale+ Device Technical Reference
Manual (UG1085).

Protecting Memory with XMPU
To understand more about XMPU features and functionality, refer to “System Protection Unit”
chapter in the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 120Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=120

Configuring XMPU Registers
The XMPU is configurable either one-time or through trust-zone access from a secure master
(PMU, APU TrustZone secure master, or RPU when configured as secure master). At boot time,
XMPU can be configured and its configuration can be locked such that it can only be
reconfigured at next power-on reset. If the configuration is not locked, then XMPU can be
reconfigured any number of times by secure master accesses. If you choose to configure the
XMPU dynamically, you must also consider many aspects including the idling of active devices
and the AXI bus.

For more information on using the XMPU please see Isolation Methods in Zynq UltraScale+
MPSoCs (XAPP1320).

Xilinx Peripheral Protection Unit
To understand more about Xilinx peripheral protection unit (XPPU) features and functionality, see
this link to the “Xilinx Peripheral Protection Unit” section of the Zynq UltraScale+ Device Technical
Reference Manual (UG1085).

For more information on using the XMPU please see Isolation Methods in Zynq UltraScale+
MPSoCs (XAPP1320).

System Memory Management Unit
The system memory management unit (SMMU) offers isolation services. The SMMU provides
address translation for an I/O device to identify more than its actual addressing capability. In
absence of memory isolation, I/O devices can corrupt system memory. The SMMU provides
device isolation to prevent DMA attacks. To offer isolation and memory protection, it restricts
device access for DMA-capable I/O to a pre-assigned physical space.

To understand more about SMMU features and functionality, see this link to the “System
Memory Management Unit” section of the Zynq UltraScale+ Device Technical Reference Manual
(UG1085).

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 121Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxXilinxPeripheralProtectionUnit
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxSystemMemoryManagementUnit
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=121

A53 Memory Management Unit
The memory management unit (MMU) controls table-walk hardware that accesses translation
tables in main memory. The MMU translates virtual addresses to physical addresses. The MMU
provides fine-grained memory system control through a set of virtual-to-physical address
mappings and memory attributes held in page tables. These are loaded into the translation
lookaside buffer (TLB) when a location is accessed.

To understand more about MMU features and functionality, see this link to the “Memory
Management Unit” section of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

R5 Memory Protection Unit
The memory protection unit (MPU) enables you to partition memory into regions and set
individual protection attributes for each region. When the MPU is disabled, no access permission
checks are performed, and memory attributes are assigned according to the default memory map.
The MPU has a maximum of 16 regions.

To understand more about MPU features and functionality, see this link to the “Memory
Protection Unit” section of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Chapter 8: Security Features

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 122Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxMemoryManagementUnit
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxMemoryProtectionUnit
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=122

Chapter 9

Platform Management
Zynq® UltraScale+™ MPSoCs are designed for high performance and power-sensitive
applications in a wide range of markets. The system power consumption depends on how
intelligently software manages the various subsystems – turning them on and off only when they
are needed and, also at a finer level, trading off performance for power. This chapter describes
the features available to manage power consumption, and how to control the various power
modes using software.

Platform Management in PS
To increase the scalability in the platform management unit (PMU), the Zynq UltraScale+ MPSoC
supports multiple power domains such as:

• Full Power Domain

• Low Power Domain

• Battery Power Domain

• PL Power Domain

For details on the PMU and the optional PMU firmware (PMU firmware) functionality, see the
Zynq UltraScale+ Device Technical Reference Manual (UG1085).

For more information on dynamically changing the PS clocks, see Chapter 14: Clock and
Frequency Management.

The PS block offers high levels of functionality and performance. At the same time, there is a
strong need to optimize the power consumption of this block with respect to the functionality
and performance that is necessary at each stage of the operation.

The Zynq UltraScale+ MPSoC has multiple power rails. Each rail can be turned off independently,
or can use a different voltage. Many of the blocks on a specific power rail implement power-
gating, which allows blocks to be gated off independently.

Examples of these power-gated domains are the: Arm® Cortex™-A53 and the Cortex™-R5F
processors, GPU pixel processors (PP), large RAMs, and individual USBs.

The following figure shows a block diagram of the platform management at the PS level.

Chapter 9: Platform Management

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 123Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=123

Figure 40: Platform Management at the PS Level

SoC Debug

Quadcore APU L2
RAM

GPU

Interconnect IPI

IOU CSU PMU

eFuse
AMS

BBRAM RTC

ADMA

SLCR

PLLs

Dual
R5

TCM

GIC RPU

O
C
M

USB

OSC
PS

PL

DAP, RPU Debug

BPU

Low power domain

Battery power domain

Full power domain

X19226-071317

From the power perspective, Zynq UltraScale+ MPSoCs offers the following modes of operation
at the PS level:

• Full-power operation mode

• Low-power operation mode

• Deep-sleep mode

• Shutdown mode

• Battery-power mode

The following sections describe these modes.

Chapter 9: Platform Management

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 124Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=124

Full-Power Operation Mode
In the full-power operation mode (shown as full power domain in the figure above), the entire
system is up and running. Total power dissipation depends on the number of components that
are running: their states and their frequencies. In this mode, dynamic power will likely dominate
the total power dissipation.

To optimize static and dynamic power in full-power mode, all large modules have their own
power islands to allow them to be shut down when they are not being used. To understand about
full-power operation mode, see this link to the “Platform Management Unit” chapter in the Zynq
UltraScale+ Device Technical Reference Manual (UG1085).

Low-Power Operation Mode
In the low-power operation mode, a subset of the PS (shown as low-power domain in the figure
above) is powered up that includes: the PMU, RPU, CSU, and the IOU.

In this mode, the ability to change system frequency allows power dissipation to be tuned. The
CSU must be running continuously to monitor the system security against SEU and tampering. In
this mode, the ability to change system frequency allows power dissipation to be tuned.

The low-power mode includes all lower-domain peripherals. Among the blocks within the low-
power mode, PLLs, dual Cortex-R5F, USBs, and the TCM and OCM block RAMs offer power
gating.

Note: SATA, PCIe®, and DisplayPort blocks are within the full power domain (FPD).

You can control power gating to different blocks through software by configuring the LPD_SLCR
registers. See the SLCR_Registers link in the Zynq UltraScale+ Device Register Reference (UG1087)
for more information on LPD_SLCR register.

Deep-Sleep Operation Mode
Deep-Sleep is a special mode in which the PS is suspended and waiting a wake-up signal. The
wake can be triggered by the MIO, the USB, or the RTC.

Upon wake, the PS does not have to go through the boot process, and the security state of the
system is preserved. The device consumes the lowest power during this mode while still
maintaining its boot and security state.

In this mode, all the blocks outside the low-power domain, such as the system monitor and PLLs,
are powered down. In LPD, Cortex-R5F is powered down. Because this mode has to preserve the
context, TCM and OCM are in a retention state.

Chapter 9: Platform Management

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 125Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxPowerManagement
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+ultrascale
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=125

Shutdown Mode
Shutdown mode powers down the entire APU core. This mode is applicable to APU only. During
shutdown, the entire processor state, including its caches, is completely lost; therefore, software
is required to save all states before requesting the PMU to power down the APU core.

When a CPU is shutdown, it is expected that any interrupt from a peripheral that is associated
with that CPU to initiate its power up; therefore, the interrupt lines to an APU core are also
routed to the PMU interrupt controller, and are enabled when the APU core is powered down.

The Embedded Energy Management Interface EEMI API Reference Guide (UG1200) describe the
APIs to invoke shutdown.

For more details, see this link to the “Platform Management Unit Programming Model” section in
the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Battery-Powered Mode
When the system is OFF, limited functionality within the PS must stay ON by operating on a
battery. The following features operate within the battery-powered domain PS:

• Battery-backed RAM (BBRAM) to hold key for secure configuration

• Real-time clock (RTC) including the crystal I/O

The Zynq UltraScale+ MPSoC includes only one battery-powered domain and only the functions
those are implemented in the PS can be battery backed-up. The required I/O for the battery-
powered domain includes the battery power pads and the I/O pads for the RTC crystal.

Power Management Framework
The Embedded Energy Management Interface EEMI API Reference Guide (UG1200) describes how to
use the power API functions.

Note: There is no difference between bare metal, FreeRTOS, or Linux-specific power management Xilinx
EEMI API offerings.

Wake Up Mechanisms
To understand about wake up mechanisms, see this link to the “Platform Management Unit
Operation” section of “Chapter 6, Platform Management Unit” of theZynq UltraScale+ Device
Technical Reference Manual (UG1085).

Chapter 9: Platform Management

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 126Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1200-eemi-api.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1200-eemi-api.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxPlatformManagementUnit
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=126

Platform Management for Memory
The Zynq UltraScale+ MPSoCs include large RAMs like L2 cache, OCM, and TCM. These RAMs
support various power management features such as: clock gating, power gating, and memory
retention modes.

• TCM and OCM support independent power gating and retention modes.

• The L2 cache controller supports dynamic clock gating, retention, and shutdown modes to
reduce power consumption at a finer granularity.

DDR Controller
The DDR controller implements the following mechanisms to reduce its power consumption:

• Clock Stop: When enabled, the DDR PHY can stop the clocks to the DRAM.

• For DDR2 and DDR3, this feature is only effective in self-refresh mode.

• For LPDDR2, this feature becomes effective during idle periods, power-down mode, self-
refresh mode, and deep power-down mode.

• Pre-Charge Power Down: When enabled, the DDRC dynamically uses pre-charge power
down mode to reduce power consumption during idle periods. Normal operation continues
when a new request is received by the controller.

• Self-Refresh: The DDR controller can dynamically put the DRAM into self-refresh mode
during idle periods. Normal operation continues when a new request is received by the
controller.

In this mode, DRAM contents are maintained even when the DDRC core logic is fully
powered down; this allows stopping the DDR3X clock and the DCI clock that controls the
DDR termination.

Platform Management for Interconnects
The Interconnect lays across multiple power rails and power islands which can be on or off at
different times. To ease the implementation, in most cases, the clocks for two power domains
that communicate with one another must be asynchronous; consequently, requiring
synchronizers on their interconnection.

Chapter 9: Platform Management

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 127Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=127

To ease timing, the power domain is placed exactly at the clock crossing. The synchronizer must
be implemented as two separate pieces with each placed in one of the two domains that are
connected through the synchronizer, creating a bridge.

The bridge consists of a slave interface and a master interface with each lying entirely within a
single power and clock domain. The clock frequencies at the interfaces can vary independent of
each other, and each half can be reset independent of the other half.

Level shifters or clamping, or both, must be implemented between the two halves of the bridge
for multi-voltage implementation or power-off.

Also, the bridge keeps track of open transactions, as follows:

• When the bridge receives a power-down request from the PMU, it logs that request.

• All new transactions return an error while the previously open transactions are being
processed as usual until the transaction counter becomes 0. At that point, the bridge
acknowledges to the PMU that it is safe to shut down the master or slave connected to the
bridge.

• The entire Interconnect shuts down only when all bridges within that interconnect are idle.

For more details, see this link to the “PMU Interconnect” sub-section in the “Platform
Management Unit” chapter of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

PMU Firmware
Every system configuration that is supported by Xilinx includes PMU firmware in addition to the
functions of power-up and sleep management. The PMU can execute user programs that
implement advanced system monitoring and power management algorithms. In this mode, an
application or a real-time processor copies the power management program into the PMU
internal RAM through an inbound LPD switch. The PMU executes software that implements the
required reset, power management, system monitoring, and interrupt controls within all Xilinx
supported system configurations.

For more details, see this link to the “Platform Management Unit Programming Model” section in
“Chapter 6” of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

You can use the Vitis software platform to create custom PMU firmware. It provides the source
code for the PMU firmware template and the necessary library support. For details on how to
create a Vitis project, see Chapter 5: Software Development Flow.

Chapter 9: Platform Management

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 128Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxPMUInterconnect
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=128

Chapter 10

Platform Management Unit
Firmware

The Platform Management Unit (PMU) in Zynq® UltraScale+™ MPSoCs is located within the
Low-power sub-system. The PMU consists of a MicroBlaze™ processor which loads executable
code from 32 KB ROM and 128 KB RAM into flat memory space. The PMU controls the power-
up, reset, and monitoring of resources within the system including inter-processor interrupts and
power management registers. The ROM is preloaded with PMU bootROM (PBR) which performs
pre-boot tasks and enters a service mode. PMU_FW must be loaded to provide advanced system
functionality for each of the Xilinx® supported use-cases. This chapter explains the features and
functionality of PMU firmware developed for Zynq UltraScale+ MPSoC.

Features
The following are the key features of PMU firmware:

• Provides modular functionality: PMU firmware is designed to be modular. It enables you to
add a new functionality in the form of a module

• Provides easy customization of modules

• Easily configurable to include only the required functionality for a user application

• Support communication with other components in the system over IPI (Inter-Processor
Interrupt)

• Run time configurability for EM module

• Support for various Power Management features

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 129Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=129

PMU Firmware Architecture
The following figure shows the architecture block diagram of PMU firmware. PMU firmware is
designed to be modular and enables adding new functionality in the form of modules. Each
functionally distinct feature is designed as a module so that the PMU firmware can be configured
to include only the required functionality for a user application. This type of modular design
allows easy addition of new features and optimizes memory footprint by disabling unused
modules.

PMU firmware can be divided into base firmware and modules. PMU Base Firmware does
initialization of modules, registering events for the modules, and provides all the common
functions that may be required by the modules. These common functions can be categorized into
the following APIs:

1. PMU firmware Core APIs

a. Scheduler

b. Event Manager

c. IPI Manager

2. PMU firmware General APIs

a. BSP/Utility APIs

b. Reset Services APIs

c. ROM Services APIs

These APIs can be used by the modules in PMU firmware to perform the specified actions as
required.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 130Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=130

Figure 41: PMU firmware Architecture Block diagram

Execution Flow
The initialization in PMU firmware takes place in a normal context. Interrupts are disabled to
avoid unintended interruptions and prevent usage of the system resources before they are
properly initialized. After initialization completes, interrupts are enabled and the required tasks
are scheduled to be executed. The system enters in to a sleep state. The system wakes up only
when an event occurs or the scheduled tasks are triggered and the corresponding handlers are
executed. The following figure shows the state transitions for PMU firmware.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 131Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=131

Figure 42: State Transitions for PMU firmware in Main Loop

PMU firmware execution flow consists of the following three phases:

• Initialization phase: This phase consists of PMU firmware starting up, performing self-tests
and validations, initializing the hardware, creating and initializing modules. Interrupts are
disabled during this phase and are enabled at the end.

• Post initialization: In this phase, PMU firmware enters service mode, wherein it enters into
sleep and waits for an interrupt.

• Waking up: PMU firmware enters the interrupt context and services the interrupt. After
completing this task, it goes back to sleep.

The following figure shows the execution flow for PMU firmware.

Figure 43: Execution Context View for PMU firmware

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 132Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=132

Handling Inter-Process Interrupts in PMU
firmware

IPI is a key interface between PMU firmware and non-PMU entities on the SoC. PMU includes
four Inter-Processor Interrupts (IPI) assigned to it and one set of buffers. PMU firmware uses
IPI-0 and associated buffers for communication by default, which is initiated by other masters on
SoC to PMU. PMU firmware uses IPI-1 and associated buffers for callbacks from PMU to other
masters and for communication initiated by PMU firmware.

The following figure shows the IPI handling stack with interfaces between different components
involved in this process. PMU firmware uses IPI driver to send and receive the messages. An IPI
manager layer in Base Firmware is implemented over the driver and it takes care of dispatching
the IPI message to the registered module handlers based on IPI ID in the first word of the
message. The following table displays the message format for IPI.

Table 32: IPI Message Format

Word Content Description
0 Header <target_module_id, api_id>

1 Payload Module dependent payload

2

3

4

5

6 Reserved Reserved - for future use

7 Checksum

IPI-1 is used for the callbacks from PMU to other masters and for communication initiated by
PMU firmware. Currently, PM and EM modules use IPIs and this can be taken as reference for
implementing custom modules which require IPI messaging.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 133Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=133

Figure 44: IPI Handler Stack with Interfaces

Core Framework

IPI Manager

IPI Driver

Module

GetSource

Write Buffer
TriggerIPI

Read Buffer
GetIpiMask

GetMsg
SendMsg

Dispatch IPI

X22155-121818

PMU firmware provides wrapper APIs around IPI driver functions to send and receive IPI
messages. During initialization, PMU firmware initializes the IPI driver and enables IPI interrupt
from the masters which are IPI assigned.

Send IPI Message
XPfw_IpiWriteMessage() API is used to send IPI message to target. This function internally
calls the IPI driver write API with buffer type as Message buffer.

Parameters

Table 33: Send IPI Message

Parameter Description
ModPtr Module pointer from where the IPI message is being sent. In IPI

message, target_module_id field will be updated with the Module IPI ID
information which is present in Module pointer.

DestCpuMask Destination target IPI ID

MsgPtr Message Pointer

MsgLen Message Length

Return

XST_SUCCESS: If message is sent successfully.

XST_FAILURE: If message fails.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 134Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=134

Send IPI Response
XPfw_IpiWriteResponse() API is used to send the response to the master which sent an IPI
message. This function internally calls the IPI driver write API with buffer type as Response
buffer.

Parameters

Table 34: Send IPI Response

Parameter Description
ModPtr Module pointer to check which module received this IPI response

SrcCpuMask Source IPI ID to read IPI response

MsgPtr Response Message Pointer

MsgLen Response Message Length

Return

XST_SUCCESS: If IPI response is read successfully.

XST_FAILURE: If response fails.

Read IPI Message
XPfw_IpiReadMessage() is used to read the IPI message received when IPI interrupt comes.
This function internally calls the IPI driver read API with buffer type as Message buffer.

Parameters

Table 35: Read IPI Message

Parameter Description
SrcCpuMask Source IPI ID to read the IPI message

MsgPtr Message Pointer

MsgLen Message Length

Return

XST_SUCCESS: If IPI message is read successfully.

XST_FAILURE: If message fails.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 135Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=135

Read IPI Response
XPfw_IpiReadResponse() is used to read the IPI response for the message sent. This
function internally calls the IPI driver read API with buffer type as response buffer.

Parameters

Table 36: Read IPI Response

Parameter Description
ModPtr Module pointer to check which module received this IPI response

SrcCpuMask Source IPI ID to read IPI response

MsgPtr Response Message Pointer

MsgLen Response Message Length

Return

XST_SUCCESS: If IPI response is read successfully.

XST_FAILURE: If response fails.

Triggering an IPI
XPfw_IpiTrigger() is used to trigger an IPI to the destination. This function internally calls
the IPI driver trigger. This function should be called after the IPI message writes IPI buffer.

Parameters

Table 37: Triggering an IPI

Parameter Description
DestCpuMask Destination target IPI ID

Return

XST_SUCCESS: If IPI is triggered successfully.

XST_FAILURE: If trigger fails.

Note: Vivado® allows you to enable or disable the IPI. To do so, select MPSoC IP → Re-customize IP → 
Switch To Advanced Mode → Advanced Configuration → Inter Processor Interrupt (IPI) Configuration → 
IPI-Master Mapping. However, it is not recommended that you disable IPI channels for APU or RPU for the
PMU firmware PM module to work as expected because in the default configuration, PM assumes that
both APU and RPU IPI channels are enabled.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 136Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=136

PMU Firmware Modules
PMU firmware consists of the following modules:

1. Error Management (EM)

2. Power Management (PM)

3. Scheduler

4. Safety Test Library (STL)

PMU firmware has a module data structure (XPfw_Module_t) which contains the information
about the module. This data structure is defined for each module when the module is created.
The following table shows its members.

Table 38: Module Data Structure Members

Member Range Additional Information
ModId 0.. 31

CfgInitHandler Init handler function pointer Default to NULL

IpiHandler Handler for IPI manager Default to NULL

EventHandler Handler for registered events of the
module

Default to NULL

IpiId 16-bit IPI ID Unique to each module

PMU firmware also has a core data structure which contains the list and the details of all
modules. The following table shows its members.

Table 39: Core Data Structure Members

Member Range Additional Information
ModList array 0.. 31 Module list array (of 32 elements) of

Module structure

Scheduler Scheduler structure Scheduler task owned by the module

ModCount 0.. 31

IsReady Core is ready/dead

Mode Safety Diagnostics mode/Normal mode

Base PMU firmware supports a few APIs that are used by these modules. Also, if you want to
create a custom module, these APIs can be used from xpfw_core.h.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 137Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=137

Creating a Module
XPfw_CoreCreateMod() API is called during the startup to create a module. PMU firmware
can have maximum of 32 modules. This function checks if the module count reached the
maximum count. If not, it fills in the details to core structure ModList and returns this module
data structure to the caller. Otherwise, it returns NULL.

Setting up Handlers for the Module
Each module can be provided with three handlers which are called during the respective phases
as described below:

Table 40: Module Handlers

Module
Handler Purpose API for Registering the Handler Execution

context
Init Called during the init of the core to

configure the module, register for
events or add scheduler tasks. This
can be used to load the
configuration data into the module
if required.

XPfw_CoreSetCfgHandler(const XPfw_Module_t
*ModPtr,
XPfwModCfgInitHandler_tCfgHandler);

StartUp

Event Handler Called when an event occurs
(module should have registered for
this event, preferably during the init
phase

XPfw_CoreSetEventHandler(const
XPfw_Module_t *ModPtr,
XPfwModEventHandler_t EventHandler);

Interrupt

IPI Handler Called when an IPI message with
respective module-id arrives

XPfw_CoreSetIpiHandler(const XPfw_Module_t
*ModPtr, XPfwModIpiHandler_t IpiHandler,
u16 IpiId);

Interrupt

PMU Firmware Build Flags
In PMU firmware, each module can be enabled/disabled based on your requirement. This is
achieved by using build flags. The following table describes the important build flags in PMU
firmware and its usage. Please see xpfw_config.h file in PMU firmware sources for a complete
list of build flags.

Table 41: PMU Firmware Build Flags

Flag Description Prerequisites Default
Setting

XPFW_DEBUG_DETAILED Enables detailed debug prints in PMU
firmware.
This feature is supported in 2017.3 release
and above.

Disabled

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 138Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=138

Table 41: PMU Firmware Build Flags (cont'd)

Flag Description Prerequisites Default
Setting

PM_LOG_LEVEL Enables print based debug functions for
PM module. Possible values are:
• Alerts
• Errors
• Warnings
• Information
Higher numbers include the debug scope
of lower number, i.e. enabling 3
(warnings) also enables 1 (alerts) and 2
(errors).

Disabled

ENABLE_EM Enables Error Management Module. ENABLE_SCHEDULER Disabled

ENABLE_ESCALATION Enables escalation of sub-system restart to
SRST/PS-Only if the first restart attempt
fails.

ENABLE_RECOVERY,
ENABLE_EM,
ENABLE_SCHEDULER

Disabled

ENABLE_RECOVERY Enables WDT based restart of APU sub-
system.

ENABLE_EM, ENABLE_PM,
EMABLE_SCHEDULER

Disabled

ENABLE_PM Enables Power Management Module Enabled

ENABLE_NODE_IDLING Enables idling and reset of nodes before
force shutdown of a sub-system.

Disabled

ENABLE_SCHEDULER Enables Scheduler module Enabled

ENABLE_WDT Enables CSU WDT based restart of system
used by PMU.

ENABLE_SCHEDULER,
ENABLE_EM

Disabled

ENABLE_STL Enables STL Module. None Disabled

ENABLE_RTC_TEST Enables RTC event handler test module. None Disabled

ENABLE_SAFETY Enables CRC calculation for IPI messages. None Disabled

ENABLE_FPGA_LOAD Enables FPGA bit stream loading feature. ENABLE PM Enabled

ENABLE_SECURE Enables security features. ENABLE PM Enabled

IDLE_PERIPHERALS Enables idling peripherals before PS-only
or System reset.

ENABLE PM Disabled

ENABLE_POS Enables Power Off Suspend feature. ENABLE PM Disabled

EFUSE_ACCESS Enables efuse access feature. ENABLE PM Disabled

ENABLE_UNUSED_RPU_
PWR_DWN

Powers down RPU(s) and slaves if they are
not running after receiving PmInitFinalize.

Enabled

USE_DDR_FOR_APU_RESTART Enables handling of APU restart gracefully
by storing FSBL to DDR during boot and
restoring it back to OCM before
performing APU restart.

ENABLE_SECURE Enabled

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 139Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=139

Error Management (EM) Module
Error Management Hardware
Zynq UltraScale+ MPSoC has a dedicated error handler to aggregate and handle fatal errors
across the SoC. See the TRM/Arch Spec for more information.

All fatal errors routed to Error Manager can either set to be handled by HW (and trigger a
SRST/PoR/PS error out) or trigger an interrupt to PMU.

Error Management in PMU firmware
Error management module initializes and handles the errors that are generated by hardware and
provides an option for you to customize these handlers. In hardware, there are two error status
registers which hold the type of error that occurred. Also any error can be enabled/disabled from
interrupting the PMU MicroBlaze. For each of the errors, you can decide what action should be
taken when the error occurs. The possible scenarios would be one or a combination of the
following choices:

1. Asserting of PS_ERROR_OUT signal on the device

2. Generation of an interrupt to the PMU processor

3. Generation of a system reset (SRST)

4. Generation of a power-on-reset (POR)

PMU firmware provides APIs to register custom error handlers or assign a default (SRST/PoR/PS
error out) action in response to an Error. When PMU firmware starts, it sets an error action as
interrupt to PMU for some of the errors and PS error out for others as per the ErrorTable[]
structure defined in xpfw_error_manager.c.

Error Management API Calls

This section describes the APIs supported by Error Management module in PMU firmware.

Setting up Error Action

XPfw_EmSetAction() API is used to setup an action for the specified error.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 140Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=140

Parameters

Table 42: XPfw_EmSetAction

Parameter Description
ErrorId ErrorId is ID for error as defined in EM Error ID Table.

ActionId ActionId is one of the actions defined in EM Error Action
Table.

ErrorHandler ErrorHandler is the handler to be called in case where action
is interrupt to PMU

Return

XST_SUCCESS: If error action is set properly.

XST_FAILURE: If error action fails.

Removing Error Action

XPfw_EmDisable() API is used to remove error action for the specified error.

Parameters

Table 43: XPfw_EmDisable

Parameter Description
ErrorId ErrorId is ID for error to remove error action

Return

XST_SUCCESS: If successful.

XST_FAILURE: If action fails.

Processing an Error

XPfw_EmProcessError() API processes the errors that occur. If the respective error is
registered with an error handler, then this function will call the respective handler to take
appropriate action.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 141Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=141

Parameters

Table 44: XPfw_EmProcessError

Parameter Description
ErrorType Type of error received

(EM_ERR_TYPE_1: For errors in PMU GLOBAL
ERROR_STATUS_1
EM_ERR_TYPE_2: For errors in PMU GLOBAL
ERROR_STATUS_2)

Return

XST_SUCCESS: If successful.

XST_FAILURE: If action fails.

IPI Handling by EM Module

Along with the PM module, error management module also uses IPI-0 channel for message
exchange. APU and RPU 0/1 masters can communicate to this module using IPI. The
target_module_id in IPI message differentiates which module needs to take an action based
on the message received. The target_module_id for IPI handler registered for EM module is
0xE. Currently, PMU firmware supports only the messages shown in the following table using IPI.

Table 45: IPI Messages Supported by PMU firmware

S.No IPI Message IPI Message ID/API ID
1 Set error action 0x1

2 Remove error action 0x2

3 Send errors occurred 0x3

Set Error Action

When this IPI message is received from any target to PMU firmware, PMU firmware sets the
error action for the error ID received in the message. If processing of the message is successful, it
sends SUCCESS (0x0) response to the target. Otherwise FAILURE (0x1) response will be sent.
The message format for the same is as below:

Table 46: Message Format for Error Action

Word Description
0 <target_module_id, api_id>

1 Error ID. See EM Error ID Table for the Error IDs supported.

2 Error Action. See EM Error Action Table for the Error Actions supported.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 142Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=142

Remove Error Action

When this IPI message is received from any target to PMU firmware, EM module IPI handler will
remove the error action for the error ID received. And after processing the message, it will send
SUCCESS/FAILURE response to the target respectively. The message format for the same is as
below:

Table 47: Message Format for Removing Error Action

Word Description
0 <target_module_id, api_id>

1 Error ID. See EM Error ID Table for the Error IDs supported.

Send Errors Occurred

PMU firmware saves the errors that occur in the system and sends to the target upon request.
The message format is as below:

Table 48: Message Format for Sending Errors Occurred

Word Description
0 <target_module_id, api_id>

The following table shows the response message sent by PMU firmware.

Table 49: Response Message by PMU Firmware

Word Description
0 <target_module_id, Success/Failure>

1 Error_1 (Bit description is as ERROR_STATUS_1 register in PMU Global registers. If a bit is
set to 1, then it means the respective error as described in ERROR_STATUS_1 has
occurred)

2 Error_2 (Bit description is as ERROR_STATUS_2 register in PMU Global registers. If a bit is
set to 1, then it means the respective error as described in ERROR_STATUS_2 has
occurred)

3 PMU RAM Correctable ECC Count

EM Error ID Table

Error ID Error
Number Error Description Default Error

Action
EM_ERR_ID_CSU_ROM 1 Errors logged by CSU bootROM (CBR) PS Error Out

EM_ERR_ID_PMU_PB 2 Errors logged by PMU bootROM (PBR)
in the pre-boot stage

PS Error Out

EM_ERR_ID_PMU_SERVICE 3 Errors logged by PBR in service mode PS Error Out

EM_ERR_ID_PMU_FW 4 Errors logged by PMU firmware PS Error Out

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 143Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=143

Error ID Error
Number Error Description Default Error

Action
EM_ERR_ID_PMU_UC 5 Un-Correctable errors logged by PMU

HW. This includes PMU ROM validation
Error, PMU TMR Error, uncorrectable
PMU RAM ECC Error, and PMU Local
Register Address Error

PS Error Out

EM_ERR_ID_CSU 6 CSU HW related Errors PS Error Out

EM_ERR_ID_PLL_LOCK 7 Errors set when a PLL looses lock (These
need to be enabled only after the PLL
locks-up)

PS Error Out

EM_ERR_ID_PL 8 PL Generic Errors passed to PS PS Error Out

EM_ERR_ID_TO 9 All Time-out Errors [FPS_TO, LPS_TO] PS Error Out

EM_ERR_ID_AUX3 10 Auxiliary Error 3 PS Error Out

EM_ERR_ID_AUX2 11 Auxiliary Error 2 PS Error Out

EM_ERR_ID_AUX1 12 Auxiliary Error 1 PS Error Out

EM_ERR_ID_AUX0 13 Auxiliary Error 0 PS Error Out

EM_ERR_ID_DFT 14 CSU System Watch-Dog Timer Error System Reset

EM_ERR_ID_CLK_MON 15 Clock Monitor Error PS Error Out

EM_ERR_ID_XMPU 16 XPMU Errors [LPS XMPU, FPS XPMU] Interrupt to PMU

EM_ERR_ID_PWR_SUPPLY 17 Supply Detection Failure Errors PS Error Out

EM_ERR_ID_FPD_SWDT 18 FPD System Watch-Dog Timer Error Interrupt to PMU if
ENABLE_RECO
VERY flag is defined
and FSBL runs on APU.
Otherwise, System
Reset

EM_ERR_ID_LPD_SWDT 19 LPD System Watch-Dog Timer Error Interrupt to PMU if
ENABLE_RECO
VERY flag is defined
and FSBL runs on RPU.
Otherwise, System
Reset

EM_ERR_ID_RPU_CCF 20 Asserted if any of the RPU CCF errors
are generated

PS Error Out

EM_ERR_ID_RPU_LS 21 Asserted if any of the RPU CCF errors
are generated

Interrupt to PMU

EM_ERR_ID_FPD_TEMP 22 FPD Temperature Shutdown Alert PS Error Out

EM_ERR_ID_LPD_TEMP 23 LPD Temperature Shutdown Alert PS Error Out

EM_ERR_ID_RPU1 24 RPU1 Error including both Correctable
and Uncorrectable Errors

PS Error Out

EM_ERR_ID_RPU0 25 RPU0 Error including both Correctable
and Uncorrectable Errors

PS Error Out

EM_ERR_ID_OCM_ECC 26 OCM Uncorrectable ECC Error PS Error Out

EM_ERR_ID_DDR_ECC 27 DDR Uncorrectable ECC Error PS Error Out

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 144Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=144

EM Error Action Table
Table 50: EM Error Action Table

Error Action Error Action
Number Error Action Description

EM_ACTION_POR 1 Trigger a Power-On-Reset

EM_ACTION_SRST 2 Trigger a System Reset

EM_ACTION_CUSTOM 3 Call the custom handler registered as ErrorHandler
parameter

EM_ACTION_PSERR 4 Trigger a PS-Error Out action

PMU Firmware Signals PLL Lock Errors on
PS_ERROR_OUT
When EM module is enabled, it is recommended to enable SCHEDULER also. During FSBL
execution of psu_init, it is expected to get the PLL lock errors. To avoid these errors during
EM module initialization, PMU firmware will not enable PLL Lock errors. It waits for psu_init
completion by FSBL using a scheduler task. After FSBL completes execution of psu_init, PMU
firmware will enable all PLL Lock errors.

In xpfw_error_management.c, you can see the following default behavior of the PMU
firmware for PLL Lock Errors:

[EM_ERR_ID_PLL_LOCK] = { .Type = EM_ERR_TYPE_2, .RegMask =
PMU_GLOBAL_ERROR_STATUS_2_PLL_LOCK_MASK, .Action = EM_ACTION_NONE, .Handler
=
NullHandler},

where, PMU_GLOBAL_ERROR_STATUS_2_PLL_LOCK_MASK is #defined with 0X00001F00
value, which means that all the PLL Lock Errors are enabled. Hence, if the design do not use any
PLL/PLLs that are not locked, this triggers the PS_ERROR_OUT signal. It means that the
PMU_GLOBAL.ERROR_STATUS_2 register (bits [12:8]) signals that one or more PLLs are NOT
locked and that triggers the PS_ERROR_OUT signal.

To analyze further and see if this is really an issue is to fully understand the status of the PLL in
the design. For example, if the design only uses IO_PLL and DDR_PLL and
PMU_GLOBAL.ERROR_STATUS_2 register signals 0x1600 value, it means that the RPU_PLL,
APU_PLL, and Video_PLL Lock errors have occurred. Looking at a few more registers, you can
really understand the status of the PLLs.

PLL_STATUS

• PLL_STATUS (CRL_APB) = FF5E0040: 00000019

• PLL_STATUS (CRF_APB) = FD1A0044: 0000003A

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 145Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=145

Table 51: PLL_STATUS

PLL STATUS ERROR_STATUS_2
IOPLL is locked and stable Bit [8] is for IO_PLL = 0

RPLL is stabled and NOT locked (which means bypassed) Bit [9] is for RPU_PLL = 1

APPL is stabled and NOT locked (which means bypassed) Bit [10] is for APU_PLL = 1

DPLL is locked and stable Bit [11] is for DDR_PLL = 0

VPLL is stabled and NOT locked (which means bypassed) Bit [12] is for Video_PLL = 1

Hence, if the design only uses IO_PLL and DDR_PLL, then it is not really an error to have
RPU_PLL, APU_PLL and Video_PLL in NOT locked status.

Xilinx recommends you to customize the PMU_GLOBAL_ERROR_STATUS_2_PLL_LOCK_MASK
to cover only the PLL of interest so that you can have a meaningful PS_ERROR_OUT signal.

Example:

#define PMU_GLOBAL_ERROR_STATUS_2_PLL_LOCK_MASK ((u32)0X00000900U) will only
signal on PS_ERROR_OUT IO_PLL and DDR_PLL errors.

Power Management (PM) Module
Zynq UltraScale+ MPSoC Power Management framework is based on an implementation of the
Embedded Energy Management Interface (EEMI). This framework allows software components
running across different processing units (PUs) on a chip or device to issue or respond to requests
for power management.

The Power Management module is implemented within the PMU firmware as an event-driven
module. Events processed by the Power Management module are called power management
events. All power management events are triggered via interrupts.

When handling an interrupt the PMU firmware determines whether the associated event shall be
processed by the Power Management module. Accordingly, if the PMU firmware determines that
an event is power management related and if the Power Management module is enabled, the
PMU firmware triggers it to process the event.

For example, all the PS and PL interrupts can be routed to the PMU via the GIC Proxy. When the
application processors (APU or RPU) are temporarily suspended, the PMU handles the GIC Proxy
interrupt and wakes up the application processors to service the original interrupts. The PMU
firmware does not actually service these interrupts, although you are free to customize the PMU
firmware so that these interrupts are serviced by the PMU instead of by the application
processors. For more information, see the ‘Interrupts’ chapter of the Zynq UltraScale+ Device
Technical Reference Manual (UG1085).

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 146Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=146

When processing a power management event the Power Management controller may exploit the
PMU ROM handlers for particular operations regarding the state control of hardware resources.
Warm restart and FPGA configuration manager are part of Power Management module. PMU
firmware includes XilFPGA and XilSecure libraries to support the functionalities of PL FPGA
configuration and to access secure features respectively. See Chapter 11: Power Management
Framework for more information.

Note: Since the Power Management module uses base firmware APIs such as IPI manager/event manager,
it is not possible to run standalone power management features without PMU firmware. See PM Examples
wiki page for XilPM based design examples.

Scheduler
A scheduler is required by modules like STL in order to support periodic tasks like register
coverage, scrubbing, etc. PMU firmware also uses scheduler for LPD WDT functionality. This will
be explained in the following section. PMU MicroBlaze has 4 PITs (0-3) and Scheduler uses PIT1.
The scheduler supports up to 10 tasks. Table shows the Scheduler’s task list data structure with
members.

Table 52: Scheduler Data Structure Members

Member Values/Range Additional information
Task ID 0 0.. 9 0 - Highest priority

Interval Task interval in Milliseconds

OwnerId 0.. 9 Modules that owns this task

Status Enabled/Disabled

Callback Function pointer Default to NULL

Note: By default, scheduler functionality is disabled. To enable the same, ENABLE_SCHEDULER build flag
needs to be defined.

Safety Test Library
Safety Test Library (STL) is a collection of software safety mechanisms complementing hardware
safety features for the detection of random hardware (HW) faults. PMU firmware has a
placeholder for STL initialization during PMU firmware startup. This is enabled when
ENABLE_STL build flag is defined. The software library and the safety documentation can be
seen at the Safety Lounge.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 147Send Feedback

http://www.wiki.xilinx.com/Zynq+UltraScale%EF%BC%8B+MPSoC+Power+Management+-+ZCU102+SW+Design+Examples
http://www.wiki.xilinx.com/Zynq+UltraScale%EF%BC%8B+MPSoC+Power+Management+-+ZCU102+SW+Design+Examples
https://www.xilinx.com/member/safety.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=147

CSU/PMU Register Access
The following section discusses how to Read/Write the CSU and PMU global registers and
provides a list of White and Black registers.

Register Write

$ echo > /sys/firmware/zynqmp/config_reg

Register Read

$ echo > /sys/firmware/zynqmp/config_reg
$ cat /sys/firmware/zynqmp/config_reg

CSU and PMU global registers are categorized into two lists:

• By default, the White list registers can be accessed all the time. The following is a list of white
registers.

○ CSU Module:

- Csu_status

- Csu_multi_boot

- Csu_tamper_trig

- Csu_ft_status

- Jtag_chain_status

- Idcode

- Version

- Csu_rom_digest(0:11)

- Aes_status

- Pcap_status

○ PMU Global Module:

- Global_control

- Global_Gen_Storage0 - 6

- Pers_Glob_Gen_Storage0-6

- Req_Iso_Status

- Req_SwRst_Status

- Csu_Br_Error

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 148Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=148

- Safety_Chk

• The Black list registers can accessed when a compile time flag is set.

Every other register in both the CSU Module and the PMU_GLOBAL Module that is not covered
in the above white list will be a black register. RSA and RSA_CORE module registers are black
registers.

The #define option (SECURE_ACCESS_VAL) provides access to the black list. To access black
list registers, build the PMU firmware with SECURE_ACCESS_VAL flag set.

Timers
Zynq UltraScale+ MPSoCs have two system watchdog timers, one each for full-power domain
(FPD) and low-power domain (LPD). Each of these WDT provides error condition information to
the error manager. EM module can be configured to set a specific error action when FPD or LPD
WDT expires. This section describes the usage of these watchdog timers and the PMU firmware
functionality when these watchdog timers expire.

FPD WDT
FPD WDT can be used to reset the APU or the FPD. PMU firmware error management module
can configure the error action to be taken when the FPD WDT error occurs. PMU firmware
implemented a recovery mechanism for FPD WDT error. This mechanism is disabled by default.
The same can be enabled by defining ENABLE_RECOVERY build flag.

The EM module in PMU firmware sets FPD WDT error action as ‘system reset’ when recovery
mechanism is not enabled. In this case, PMU firmware doesn't initialize and configure the FPD
WDT. It is left for Linux driver to initialize and start the WDT if required. When WDT expires,
system restart happens.

When ENABLE_RECOVERY flag is defined and FSBL runs on APU, PMU firmware sets FPD WDT
error action as ‘interrupt to PMU’ and registers a handler to be called when this error occurs. In
this case, when PMU firmware comes up, it initializes and starts the WDT. It also initializes and
sets the timer mode of TTC to interval mode.

PMU firmware configures FPD WDT expiry time to 60 seconds. And if WDT error occurs, PMU
firmware gets an interrupt and it calls the registered handler. PMU firmware has a restart tracker
structure to track the restart phase and other information for a master. APU and RPU are the
masters currently using this structure. Following are its members:

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 149Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=149

Table 53: Restart Tracker Structure Members

Member Description
Master Master whose restart cycle is to be tracked

RestartState Track different phases in restart cycle

RestartScope Restart scope upon FPD WDT error interrupt

WdtBaseAddress Base address for WDT assigned to this master

WdtTimeout Timeout value for WDT

ErrorId Error Id corresponding to the WDT

WdtPtr Pointer to WDT for this master

WdtResetId Wdt reset ID

TtcDeviceId TTC timer device ID

TtcPtr Pointer to TTC for this master

TtcTimeout Timeout to notify master for event

TtcResetId Reset line ID for TTC

When WDT error occurs, WDT error handler is called and PMU firmware performs the following:

1. It checks if master is APU and error ID is FPD WDT. Then, it checks if restart state is in
progress or not. If restart state is not in progress, then it changes the restart state to in
progress.

2. Later, it restarts the WDT so that the PMU firmware knows when the WDT error is not due
to APU application.

3. Then, it idles APU by sending an IPI to ATF via timer interrupt TTC3_0.

Note: This is only true for Linux, and not for bare metal where there is no ATF.

4. If the first restart attempt fails, then PMU firmware escalates restart to either system-reset or
PS-only reset if ENABLE_ESCALATION flag is defined. If ENABLE_ESCALATION is not
defined, PMU firmware restarts the APU. Otherwise, PMU firmware performs the following:

• First, PMU firmware checks if PL is configured or not.

• If PL is configured, PMU firmware initiates PS-only restart. Otherwise, it initiates system-
reset.

Note: Ensure that the WDT heartbeat application is running in Linux.

LPD WDT
LPD WDT can be used to reset the RPU. PMU firmware error management module can configure
the error action to be taken when the LPD WDT error occurs. PMU firmware implements a
recovery mechanism for LPD WDT error. This mechanism is disabled by default. The same can be
enabled by defining the ENABLE_RECOVERY build flag.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 150Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=150

The EM module in the PMU firmware sets LPD WDT error action as "system reset' when
recovery mechanism is not enabled. In this case, PMU firmware doesn't initialize and configure
the LPD WDT. It is left to the RPU user application to initialize and start the WDT, if required.
When WDT expires, the system restarts.

When ENABLE_RECOVERY flag is defined and FSBL is running on RPU, PMU firmware sets FPD
WDT error action as "interrupt to PMU" and registers a handler to be called when this error
occurs. In this case, when PMU firmware comes up, it initializes and starts the WDT.

PMU firmware configures LPD WDT expiry time to 60s. And if WDT error occurs, PMU firmware
gets an interrupt and it calls the registered handler. PMU firmware maintains a restart tracker
structure for LPD WDT. Refer to Table 10-23 for more information.

When WDT error occurs, the WDT error handler is called and PMU firmware performs the
following actions:

1. It checks if master is RPU and error ID is LPD WDT. Then, it checks if restart state is in
progress or not. If restart state is not in progress, then it changes the restart state to in
progress and restarts the WDT to track the next WDT expiry.

2. It applies AIB isolation for RPU and removes it.

3. If restart scope is set as a subsystem, then it will restart RPU subsystem.

4. If restart scope is set as PS only restart, then PMU firmware will restart PS subsystem.

5. If restart scope is set as system, then it will perform the system restart.

CSU WDT
The CSU WDT is configured to be used by PMU firmware that if PMU firmware application
hangs for some reason, then the system would restart. This functionality is enabled only when
ENABLE_WDT flag is defined.

EM modules sets CSU WDT error action as ‘System Reset’ Initialization of CSU WDT depends on
bringing WDT out of reset which is performed by psu_init from FSBL. FSBL writes the status
of psu_init completion to PMU Global general storage register 5, so that PMU firmware can
check for its completion before initializing CSU WDT. When ENABLE_WDT flag is defined during
PMU firmware initialization, it adds a task to scheduler to be triggered for every 100 milli-
seconds until psu_init completion status is updated by FSBL. After psu_init is completed,
this task will be removed from scheduler tasks list and PMU firmware initializes CSU WDT and
configures it to 90 milli-seconds. It also starts a scheduler task to restart the WDT for every 50
milli-seconds. Whenever CSU WDT error occurs due to PMU firmware code hanging, this error is
handled in hardware to trigger ‘System Reset’ and the system will restart.

Following are the dependencies to use this WDT functionality:

1. EM module needs to be enabled by defining ENABLE_EM flag.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 151Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=151

2. ENABLE_WDT flag needs to be defined to use CSU WDT.

3. Scheduler module needs to be enabled by defining ENABLE_SCHEDULER to add a task to
scheduler to check for psu_init completion and to restart WDT periodically.

Configuration Object
The configuration object is a binary data object used to allow updating data structures in the
PMU firmware power management module at boot time. The configuration object must be
copied into memory by a processing unit on the Zynq UltraScale+ MPSoC. The memory region
containing the configuration object must be accessible by the PMU.

The PMU is triggered to load the configuration object via the following API call:

XPm_SetConfiguration(address);

The address argument represents the start address of the memory where the configuration
object is located. The PMU determines the size of the configuration object based on its content.

Once the PMU loads the configuration object it updates its data structures which are used to
manage the states of hardware resources (nodes). Partial configurations are not possible. If the
configuration object does not provide information as defined in this document or provides partial
information, the consistency of PMU firmware power management data cannot be guaranteed.
The creator of the configuration object must ensure the consistency of the information provided
in the configuration object. The PMU does not change the state of nodes once the configuration
object is loaded. The PMU also does not check whether the information about current states of
nodes provided in the configuration object really matches the current state of the hardware.
Current state is a state of a hardware resource at the moment of processing the configuration
object by the PMU.

The configuration object specifies the following:

• List of masters available in the system

• All the slave nodes the master is currently using and current requirement of the master for the
slave configuration

• All the slave nodes the master is allowed to use and default requirement of the master for the
slave configuration

• For each power node, which masters are allowed to request/release/power down

• For each reset line, which masters are allowed to request the change of a reset line value

• Which shutdown mode the master is allowed to request and shutdown timeout value for the
master

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 152Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=152

• Which masters are allowed to set configuration after the configuration is already set upon the
system boot by the FSBL

PM Configuration Object Generation
PM Configuration Object is generated as follows:

1. Specify the custom PM framework Configuration using the PCW tool

2. PCW generates the HDF file

3. At build time, the HDF Parser parses the HDF file and insert the configuration object into the
FSBL code

Figure 45: Configuration Object Generation

Initial Configuration at Boot
The configuration object shall be loaded prior to calling any EEMI API, except the following APIs:

• Get API version

• Set configuration

• Get Chip ID

Until the first configuration object is loaded the PM controller is configured to initially expect the
EEMI API calls from the APU or RPU master, via IPI_APU or IPI_RPU_0 IPI channels, respectively.
In other words, the first configuration object has to be loaded by APU or RPU.

After the first configuration object is loaded, the next loading of the configuration object can be
triggered by a privileged master. Privileged masters are defined in the configuration object that
was loaded the last.

Following are the steps at boot level:

1. FSBL sends the configuration object to PMU with the Set Configuration API

2. PMU parses the configuration object and configures

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 153Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=153

3. PMU powers off all the nodes which are unused after all the masters have completed the
initialization

All other requests prior to the first Set Configuration API call will be rejected by PMU firmware.

Figure 46: Initial Configuration at Boot

PMU Firmware Loading Options
PMU firmware can be loaded by either FSBL or CSU BootROM (CBR). Both these flows are
supported by Xilinx. Loading PMU firmware using FSBL has the following benefits:

• Possible quick boot time, when PMU firmware is loaded after bitstream.

• In use cases where you want two BIN files - stable and upgradable, PMU firmware can be part
of the upgradable (by FSBL) image.

IMPORTANT! CBR loads FSBL. If CBR also loads PMU firmware, it means that the secure headers for both
FSBL and PMU firmware are decrypted with same Key-IV pair, which is a security vulnerability (security rule is:
no two partitions should use the same Key-IV pair). This is addressed in FSBL, not in CBR. Hence, you should
avoid CBR loading PMU firmware in secure (decryption) cases.

For DDR self-refresh over Warm restart, FSBL and PMU firmware must be loaded first (in any order) before all
other images (e.g. bitstream).

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 154Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=154

For Power Off Suspend, PMU firmware must be loaded first (i.e. by CSU) before FSBL.

Loading PMU Firmware in JTAG Boot Mode
PM operations depend on the configuration object loaded by FSBL from 2017.1 release onwards.
Hence, In JTAG boot mode, it is mandatory to load PMU FW before loading FSBL. In device boot
modes, loading of configuration object to PMU firmware by FSBL is handled both in CBR loading
PMU firmware and FSBL loading PMU firmware options. Use the following steps to boot in JTAG
mode:

1. Disable security gates to view PMU MicroBlaze. PMU MicroBlaze is not visible in xsdb for
Silicon v3.0 and above.

2. Load PMU firmware and run.

3. Load FSBL and run.

4. Continue with U-Boot/Linux/user specific application.

Following is a complete Tcl script:

#Disable Security gates to view PMU MB target
targets -set -filter {name =~ "PSU"}

#By default, JTAGsecurity gates are enabled
#This disables security gates for DAP, PLTAP and PMU.
mwr 0xffca0038 0x1ff
after 500

#Load and run PMU FW
targets -set -filter {name =~ "MicroBlaze PMU"}
dow xpfw.elf
con
after 500

#Reset A53, load and run FSBL
targets -set -filter {name =~ "Cortex-A53 #0"}
rst -processor
dow fsbl_a53.elf
con

#Give FSBL time to run
after 5000
stop

#Other SW...
dow u-boot.elf
dow bl31.elf
con

#Loading bitstream to PL
Targets -set -nocase -filter {name =~ "*PL*"}
fpga download.bit

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 155Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=155

Loading PMU Firmware in NON-JTAG Boot Mode
When PMU firmware is loaded in a non-JTAG Boot mode on a 1.0 Silicon, an error message
‘Error: Unhandled IPI received’ may be logged by PMU firmware at startup, which can be safely
ignored. This is due to the IPI0 ISR not being cleared by PMU ROM. This is fixed in 2.0 and later
versions of silicon.

Using FSBL to Load PMU Firmware

1. Build PMU firmware application in the Vitis IDE.

2. Build an FSBL in the Vitis IDE for A53. (R5F can also be used).

3. Create a hello_world example for A53.

4. Select Xilinx → Create Boot Image.

5. Create a new bif file. Choose:

a. Architecture: ZynqMP

b. You will see A53 fsbl and hello_world example by default in partitions. Also, we need
PMU firmware.

c. Click on Add, then provide pmufw.elf path. Also select Partition type as datafile,
Destination device as PS, and Destination CPU as PMU.

d. Click OK.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 156Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=156

6. After adding pmufw as partition. Click on pmufw partition and then, click UP.

7. Make sure to select the following partition order:

a. A53 FSBL

b. PMU firmware

c. Hello World application

8. Click on Create Image. You will see BOOT.bin created in a new bootimage folder in your
example project.

9. View the .BIF file to confirm the partition order.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 157Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=157

10. Now copy this BOOT.bin into SD card.

11. Boot the ZCU102 board in SD boot mode. You can see the fsbl → pmufw → hello_world
example prints in a sequence.

Using CBR to load PMU Firmware

When PMU firmware is loaded by CBR, it is executed prior to FSBL. So the MIOs, Clocks and
other initializations are not done at this point. Consequently, the PMU firmware banner and
other prints may not be seen prior to FSBL. Post FSBL execution, the PMU firmware prints can
be seen as usual.

To make the CBR load PMU firmware, follow these steps:

1. Change the BOOT.bin boot partitions.

2. Perform the steps listed in Loading PMU Firmware in NON-JTAG Boot Mode.

3. Create a new bif file. Choose the following:

a. Architecture: ZynqMP.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 158Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=158

b. You will see A53 fsbl and hello_world example by default in partitions. Also, we need
pmufw.

c. Click Add and then provide the pmufw.elf path. Select the Partition type as pmu
(loaded by bootrom).

d. Click OK.

e. Click on Create Image. You will see BOOT.bin created in a new folder named bootimage
in your example project.

f. You can also view .BIF to confirm the partition order.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 159Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=159

g. Now copy this BOOT.bin into SD card.

h. Boot the ZCU102 board in SD boot mode. You can see the pmufw → fsbl → hello_world
example prints in a sequence.

PMU Firmware Usage
This section describes the usage of PMU firmware with examples.

Enable/Disable Modules
This section describes how to enable/disable PMU firmware build flags both in the Vitis software
platform and PetaLinux.

In PetaLinux

1. Create a PetaLinux project.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 160Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=160

2. Open <plnx-project-root>/project-spec/meta-user/recipes-bsp/pmu/pmu-
f irmware_%.bbappend file and add the following line:

YAML_COMPILER_FLAGS_append = -DENABLE_EM

The above line enables EM module. To enable any flag, it should be prefixed with '-D'.

3. After any change to the YAML compiler flags, force a clean state before rebuilding the
application.

Custom Module Usage
Each set of user defined routines performing a specific functionality should be designed to be a
module in PMU firmware. These files must be self-contained. However, these files can use
declarations from xpfw_core.h. Each module can register with the following interfaces. If any
of the handler is not needed by the module, it can be skipped from being registered.

• Config Handler: Called during initialization.

• Event Handler: Called when a registered event is triggered.

• IPI Handler: Called when an IPI message arrives with the registered IPI ID

Creating a Custom Module

To create a custom module, add the following code to PMU firmware:

/* IPI Handler */
static void CustomIpiHandler(const XPfw_Module_t *ModPtr, u32 IpiNum, u32
SrcMask,
const u32* Payload, u8 Len)
{
 /**
* Code to handle the IPI message received
*/
}

/* CfgInit Handler */
static void CustomCfgInit(const XPfw_Module_t *ModPtr, const u32 *CfgData,
u32 Len)
{
 /**
* Code to configure the module, register for events or add scheduler tasks
*/
}

/* Event Handler */
static void CustomEventHandler(const XPfw_Module_t *ModPtr, u32 EventId)
{
 /**
* Code to handle the events received
*/
}

/*
* Create a Mod and assign the Handlers. We will call this function

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 161Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=161

* from XPfw_UserStartup()
*/
void ModCustomInit(void)
{
 const XPfw_Module_t *CustomModPtr = XPfw_CoreCreateMod();
 (void) XPfw_CoreSetCfgHandler(CustomModPtr, CustomCfgInit);
 (void) XPfw_CoreSetEventHandler(CustomModPtr, CustomEventHandler);
 (void) XPfw_CoreSetIpiHandler(CustomModPtr, CustomIpiHandler, (u16)IPI_ID);
}

Registering for an Event

All interrupts that come into PMU are exposed to user as Events with specific EVENTIDs defined
in xpfw_events.h. Any module can register for an event (usually in CfgHandler) and the module's
EventHandler will be called when an event is triggered.

To register for an RTC Event:

Status = XPfw_CoreRegisterEvent(ModPtr,XPFW_EV_RTC_SECONDS);

Example of an EventHandler:

void RtcEventHandler(const XPfw_Module_t *ModPtr, u32 EventId)
{
 xil_printf("MOD%d:EVENTID: %d\r\n", ModPtr->ModId, EventId);
 if(XPFW_EV_RTC_SECONDS == EventId){
 /* Ack the Int in RTC Module */
 Xil_Out32(RTC_RTC_INT_STATUS,1U);
 xil_printf("RTC: %d \r\n", Xil_In32(RTC_CURRENT_TIME));
 }
}

Error Management Usage
This sections describes the usage of the EM module to configure the error action to be taken for
the errors that comes to PMU firmware (the errors generated in the system which are mapped to
PMU MB).

Example for Error Management (Custom Handler)

For this example, OCM uncorrectable error (EM_ERR_ID_OCM_ECC) is considered. The default
error action for this error is set to PS Error Out. In the following example, a custom handler is
registered for this error in PMU firmware and the handler in this case just prints out the error
message. In a more realistic case, the corrupted memory may be reloaded, but this example is
just limited to clearing the error and printing a message.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 162Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=162

Adding the Error Handler for OCM Uncorrectable ECC in PMU firmware:

+++ b/lib/sw_apps/zynqmp_pmufw/src/xpfw_mod_em.c
@@ -140,6 +140,14 @@ void FpdSwdtHandler(u8 ErrorId)
 XPfw_RecoveryHandler(ErrorId);
 }
+/* OCM Uncorrectable Error Handler */
+static void OcmErrHandler(u8 ErrorId)
+{
+ XPfw_Printf(DEBUG_DETAILED, "EM: OCM ECC error detected\n");
+ /* Clear the Error Status in OCM registers */
+ XPfw_Write32(0xFF960004, 0x80);
+}
+ /* CfgInit Handler */
 static void EmCfgInit(const XPfw_Module_t *ModPtr, const u32 *CfgData,
 u32 Len)
@@ -162,6 +170,8 @@ static void EmCfgInit(const XPfw_Module_t *ModPtr,
const u32
*CfgData,
 }
 }
+ XPfw_EmSetAction(EM_ERR_ID_OCM_ECC, EM_ACTION_CUSTOM, OcmErrHandler);
+
 if (XPfw_RecoveryInit() == XST_SUCCESS) {
 /* This is to enable FPD WDT and enable recovery mechanism when

To inject OCM Uncorrectable ECC error using debugger (xsdb):

;# Enable ECC UE interrupt in OCM_IEN
mwr -force 0xFF96000C [expr 1<<7]

;# Write to Fault Injection Data 0 Register OCM_FI_D0
;# Errors will be injected in the bits which are set, here its bit0, bit1
mwr -force 0xFF96004C 3

;# Enable ECC and Fault Injection
mwr -force 0xFF960014 1
;
Clear the Count Register : OCM_FI_CNTR
mwr -force 0xFF960074 0
;# Now write data to OCM for the fault to be injected
Since OCM does a RMW for 32-bit transactions, it should trigger error here
mwr -force 0xFFFE0000 0x1234

;# Read back to trigger error again
mrd -force 0xFFFE0000

Example for Error Management (PoR as a Response to Error)

Some error may be too fatal and the system recovery from those errors may not be feasible
without doing a Reset of entire system. In such cases PoR or SRST can be used as actions. In this
example we use PoR reset as a response to the OCM ECC double-bit error.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 163Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=163

Here is the code that adds the PoR as action:

@@ -162,6 +162,8 @@ static void EmCfgInit(const XPfw_Module_t *ModPtr,
const u32
*CfgData,
 }
 }
+ XPfw_EmSetAction(EM_ERR_ID_OCM_ECC, EM_ACTION_POR, NULL);
+
 if (XPfw_RecoveryInit() == XST_SUCCESS) {
 /* This is to enable FPD WDT and enable recovery mechanism when

The Tcl script to inject OCM ECC error is same as the one for above example. Once you trigger
the error, a PoR occurs and you may see that all processors are in reset state similar to how they
would be in a fresh power-on state. PMU RAM also gets cleared off during a PoR. Hence, PMU
firmware needs to be reloaded.

Example for Error Management (PS Error out as a Response to
Error)

If you need to communicate outside of system when any error occurs, PS ERROR OUT response
can be set for that respective error. So, when that error occurs, error will be propagated outside
and PS_ERROUT signal LED will glow. In this example we use PS ERROR OUT as a response to
the OCM ECC double-bit error.

Following is the code that adds the PS ERROR OUT as action:

@@ -162,6 +162,8 @@ static void EmCfgInit(const XPfw_Module_t *ModPtr,
const u32
*CfgData,
 }
 }
+ XPfw_EmSetAction(EM_ERR_ID_OCM_ECC, EM_ACTION_PSERR, NULL);
+
 if (XPfw_RecoveryInit() == XST_SUCCESS) {
 /* This is to enable FPD WDT and enable recovery mechanism when

The Tcl script to inject OCM ECC error is same as the one for above example. Once you trigger
the error, a PS_ERROUT LED will glow on board.

IPI Messaging Usage
This section describes the usage of IPI messaging from PMU firmware to RPU0 and RPU0 to
PMU firmware. PMU firmware, while initializing IPI driver, also enables IPI interrupt from the IPI
channel assigned master.

From PMU Firmware to RPU0

See Zynq UltraScale Plus MPSoC - IPI Messaging Example for more information.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 164Send Feedback

http://www.wiki.xilinx.com/Zynq+UltraScale+Plus+MPSoC+-+IPI+Messaging+Example#IPI%20messaging%20example%20from%20RPU%20to%20PMU
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=164

Note: You need to enable EM module in PMU firmware to run this example.

From RPU0 to PMU Firmware

See Zynq UltraScale Plus MPSoC - IPI Messaging Example for IPI messaging example from RPU
to PMU.

IMPORTANT! Since the example in the wiki page shows how to trigger IPI from PMU to RPU0 and vice versa,
to trigger an IPI to/from APU or RPU1, you need to change the destination CPU mask to the intended master.

Adding a Task to Scheduler
Tasks are functions which take void arguments and return void. Currently PMU firmware has no
way to check that the task returns in a pre-determined time, so this needs to be ensured by the
task design. Let us consider a task which prints out a message:

void TaskPrintMsg(void)
{
xil_printf("Task has been triggered\r\n");
}

If we want to schedule the above task to occur every 500ms, the following code can be used.
The TaskModPtr is a pointer for module which is scheduling the task.

Status = XPfw_CoreScheduleTask(TaskModPtr, 500U, TaskPrintMsg);
if(XST_SUCCESS == Status) {
xil_printf("Task has been added successfully !\r\n");
}
else {
xil_printf(Ërror: Failed to add Task !\r\n");
}

Reading FPD Locked Status from RPU
Register 0xFFD600F0 is a local register to PMU firmware, in which bit 31 displays whether FPD
is locked or not locked. (If bit 31 is set to 1, then FPD is locked. It remains isolated until POR is
asserted). You can verify the FPD locked status by reading this register through PMU firmware.
This can be achieved by an MMIO read call to PMU firmware. Use the following steps to read
FPD locked status from R5:

1. Create an empty application for R5 processor. Enable xilpm library in BSP settings.

2. Create a new.c file in the project and add the following code:

#include "xipipsu.h"
#include "pm_api_sys.h"
#define IPI_DEVICE_IDXPAR_XIPIPSU_0_DEVICE_ID
#define IPI_PMU_PM_INT_MASKXPAR_XIPIPS_TARGET_PSU_PMU_0_CH0_MASK

#define MMIO_READ_API_ID20U
#define FPD_LOCK_STATUS_REG0xFFD600F0

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 165Send Feedback

http://www.wiki.xilinx.com/Zynq+UltraScale+Plus+MPSoC+-+IPI+Messaging+Example#IPI%20messaging%20example%20from%20RPU%20to%20PMU
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=165

int main(void)
{
XIpiPsu IpiInstance; XIpiPsu_Config *Config; s32 Status;
u32 Value;

/* Initialize IPI peripheral */
Config = XIpiPsu_LookupConfig(IPI_DEVICE_ID); if (Config == NULL) {
xil_printf("Config Null\r\n"); goto END;
}

Status = XIpiPsu_CfgInitialize(&IpiInstance, Config, Config-
>BaseAddress);
if (0x0U != Status) { xil_printf("Config init failed\r\n"); goto END;
}

/* Initialize the XilPM library */ Status = XPm_InitXilpm(&IpiInstance);
if (0x0U != Status) {
xil_printf("XilPM init failed\r\n"); goto END;
}
/* Read using XPm_MmioRead() */
Status = XPm_MmioRead(FPD_LOCK_STATUS_REG, &Value); if (0x0U != Status)
{
xil_printf("XilPM MMIO Read failed\r\n"); goto END;
}
xil_printf("Value read from 0x%x: 0x%x\r\n",FPD_LOCK_STATUS_REG, Value);

END:
xil_printf("Exit from main\r\n");
}

Note: This application must be run after FSBL is successfully executed. This application cannot run
successfully, if FSBL fails to send configuration object to PMU firmware.

PMU Firmware Memory Layout and Footprint
This section contains the approximate details of PMU firmware Memory Layout and also the
Memory Footprint with various modules enabled.

In PMU RAM, some part is reserved for PBR leaving around 125.7 KB for PMU firmware. The
following figure shows the memory layout of PMU RAM.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 166Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=166

Figure 47: PMU Firmware Memory Layout

128K PMU RAM

32'hFFDC_0000

xxx
xxx
xxx

Reserved: Never Cleared

Stack

xxx

ROM Extension table
_XpbrServExtTbl

Reserved for Firmware

MicroBlaze Reserved

__fw_hw_exception_vector

__fw_interrupt_vector

__fw_sw_exception_vector

__fw_start_vector
0xffdc_0000

fw_start: 0xffdc_0050

0x00

0x08

0x10

0x20

128656 Bytes

1024 Bytes

32 Bytes

244 Bytes

0xffdd_f6e8

0xffdd_fae0
0xffdd_fb00

0xffdd_ff00

0xffdd_fff4
0xffdd_fff8
0xffdd_fffc

0xffdd_0000

X22156-121818

In PMU firmware, only PM module is enabled by default along with Base Firmware and all the
other modules are disabled. See the PMU Firmware Build Flags section to know about the
default setting of a module.

Note: All the metrics are with compilation optimized for size -Os. This optimization setting is enabled by
default in the Vitis IDE. To disable the same, follow the steps mentioned in Enable/Disable Modules
section.

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 167Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=167

Table 54: PMU Firmware Metrics

S.No Feature/Component
Size

Occupied
(KB)

Free
Space
(KB)

Additional Notes Remarks

1 PMU firmware without
detailed debug prints
enabled

110.6 17.4 This is with base PMU firmware and
PM module.

2 PMU firmware with detailed
debug prints enabled

114.5 13.5 Detailed debug prints are enabled
when XPFW_DEBUG_DETAILED flag is
defined.

This estimation
is with
combination of
(1) and (2)

3 PMU firmware with Error
Management Module
enabled

113.6 14.4 Error Management module is enabled
when ENABLE_EM and
ENABLE_SCHEDULER flags are defined.

This estimation
is with
combination of
(1) and (3)

4 PMU firmware with Restart
functionality enabled

115.8 12.2 Restart functionality is enabled when
ENABLE_RECOVERY,
ENABLE_ESCALATION and
CHECK_HEALTHY_BOOT flags are
defined along with EMABLE_EM and
ENABLE_SCHEDULER flags.

This estimation
is with
combination of
(1) and (4)

Dependencies
RECOMMENDED: It is recommended to have all the software components (FSBL, PMU firmware, ATF, U-Boot
and Linux) of the same release tag (e.g.: 2017.3).

Chapter 10: Platform Management Unit Firmware

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 168Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=168

Chapter 11

Power Management Framework

Introduction
The Zynq® UltraScale+™ MPSoC is the industry's first heterogeneous multiprocessor SoC
(MPSoC) that combines multiple user programmable processors, FPGA, and advanced power
management capabilities.

Modern power efficient designs requires usage of complex system architectures with several
hardware options to reduce power consumption as well as usage of a specialized CPU to handle
all power management requests coming from multiple masters to power on, power off resources
and handle power state transitions. The challenge is to provide an intelligent software framework
that complies to industry standard (IEEEP2415) and is able to handle all requests coming from
multiple CPUs running different operating systems.

Xilinx has created the Power Management Framework (PMF) to support a flexible power
management control through the platform management unit (PMU).

This Power Management Framework handles several use case scenarios. For example, Linux
provides basic power management capabilities such as idle, hotplug, suspend, resume, and
wakeup. The kernel relies on the underlining APIs to execute power management decisions, but
most RTOSes do not have this capability. Therefore they rely on user implementation, which is
made easier with use of the Power Management Framework.

Industrial applications such as embedded vision, Advanced Driver Assistance, surveillance,
portable medical, and Internet of Things (IoT) are ramping up their demand for

high-performance heterogeneous SoCs, but they have a tight power budget. Some of the
applications are battery operated, and battery life is a concern. Some others such as cloud and
data center have demanding cooling and energy cost, not including their need to reduce
environmental cost. All of these applications benefit from a flexible power management solution.

Key Features
The following are the key features of the Power Management Framework.

• Provides centralized power state information through use of a Power Management Unit
(PMU)

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 169Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=169

• Supports Embedded Energy Management Interface (EEMI) APIs (IEEE P2415)

• Manages power state of all devices

• Provides support for Linux power management, including:

○ Linux device tree power management

○ ATF/PSCI power management support

○ Idle

○ Hotplug

○ Suspend

○ Resume

○ Wakeup process management

• Provides direct control of the following power management features with more than 24 APIs:

○ Processor unit suspend and wake up management

○ Memories and peripherals management

Power Management Software Architecture
The Zynq UltraScale+ MPSoC architecture employs a dedicated programmable unit (PMU) that
controls the power-up, power-down, monitor, and wakeup mechanisms of all system resources.
The customer benefits from a system that is better equipped on handling power management
administration for a multiprocessor heterogeneous system. However, it is inherently more
complex. The goal of the Power Management Framework is to abstract this complexity, exposing
only the APIs you need to be aware of to meet your power budget goal.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 170Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=170

Figure 48: Power Management Framework

Power Management Framework (PMF)

RPU User Application

RTOS & Bare Metal

XilPM APIs

EEMI APIs

PMI Firmware Bare-Metal

PM firmware
EEMI APIs

APU User Application

Linux

ATF/PSCI

Bare Metal & OSes

XilPM APIs

RPU PMU APU

EEMI APIs

PM
request

PM state

PM
request

PM state

X19504-071317

The intention of the EEMI is to provide a common API that allows all software components to
power manage cores and peripherals. At a high level, EEMI allows you to specify a high-level
power management goal such as suspending a complex processor cluster or just a single core.
The underlying implementation is then free to autonomously implement an optimal power-saving
approach.

The Linux device tree provides a common description format for each device and its power
characteristics. Linux also provides basic power management capabilities such as idle, hotplug,
suspend, resume, and wakeup. The kernel relies on the underlining APIs to execute power
management decisions.

You can also create your own power management applications using the XilPM library, which
provides access to more than 24 APIs.

Zynq UltraScale+ MPSoC Power Management
Overview

The Zynq UltraScale+ MPSoC power management framework is a set of power management
options, based upon an implementation of the Embedded Energy Management Interface (EEMI).
The power management framework allows software components running across different
processing units (PUs) on a chip or device to issue or respond to requests for power
management.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 171Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=171

Zynq UltraScale+ MPSoC Power Management
Hardware Architecture
The Zynq UltraScale+ MPSoC is divided into four major power domains:

• Full power domain (FPD): Contains the Arm® Cortex™-A53 application processor unit (APU)
as well as a number of peripherals typically used by the APU.

• Low power domain (LPD): Contains the Arm Cortex™-R5F real-time processor unit (RPU), the
platform management unit (PMU), and the configuration security unit (CSU), as well as the
remaining on-chip peripherals.

• Programmable logic (PL) power domain: Contains the PL.

• Battery-power domain: Contains the real-time clock (RTC) as well as battery-backed RAM
(BBRAM).

Other power domains listed in the following figure are not actively managed by the power
framework. Designs that want to take advantage of the Power Management switching of power
domains must keep some power rails discrete. This allows individual rails to be powered off with
the power domain switching logic. For more details, see the “PCB Power Distribution and
Migration in UltraScale+ FPGAs” in the UltraScale Architecture PCB Design User Guide (UG583).

The following diagram illustrates the Zynq UltraScale+ MPSoC power domains and islands.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 172Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug583-ultrascale-pcb-design.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=172

Figure 49: Zynq UltraScale+ MPSoC Power Domain and Islands

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 173Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=173

Because of the heterogeneous multi-core architecture of the Zynq UltraScale+ MPSoC, no single
processor can make autonomous decisions about power states of individual components or
subsystems.

Instead, a collaborative approach is taken, where a power management API delegates all power
management control to the platform management unit (PMU). It is the key component
coordinating the power management requests received from the other processing units (PUs),
such as the APU or the RPU, and the coordination and execution from other processing units
through the power management API.

IMPORTANT! In the EEMI implementation for Zynq UltraScale+ MPSoC, the platform management unit (PMU)
serves as the power management controller for the different processor units (PUs), such as the APU and the
RPU. These APU/RPU act as a power management (PM) master node and make power management requests.
Based on those requests, the PMU controls the power states of all PM slave nodes as well as the PM masters.
Unless otherwise specified, the terms "PMU" and "power management controller" are interchangeable.

The Zynq UltraScale+ MPSoC also supports inter-processor interrupts (IPIs), which are used as
the basis for power-management related communication between the different processors. See
this link to the “Interrupts” chapter of the Zynq UltraScale+ Device Technical Reference Manual
(UG1085) for more detail on this topic.

Zynq UltraScale+ MPSoC Power Management
Software Architecture
To enable multiple processing units to cooperate in terms of power management, the software
framework for the Zynq UltraScale+ MPSoC provides an implementation of the power
management API for managing heterogeneous multiprocessing systems.

The following figure illustrates the API-based power management software architecture.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 174Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxInterrupts
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=174

Figure 50: API-Based Power Management Software Architecture

PMU PMM

APU

OS/Application(s)

PM-API

RPU

RTOS/Application(s)

PM-API

MicroBlaze

Application(s)

PM-API

PM Masters

PM-API
PM Controller

PM Slaves Memory_A Memory_B Peripheral_A Peripheral_B

IPI - communication IPI - c
ommunication

Power state

control

Power state control

Power state control

X19503-071317

Power Management Framework Overview
The Zynq UltraScale+ MPSoC power management framework (PMF) is based on an
implementation of EEMI, see the Embedded Energy Management Interface EEMI API Reference
Guide (UG1200). It includes APIs that consist of functions available to the processor units (PUs)
to send messages to the power management controller, as well as callback functions in for the
power management controller to send messages to the PUs. The APIs can be grouped into the
following functional categories:

• Suspending and waking up PUs

• Slave device power management, such as memories and peripherals

• Miscellaneous

• Direct-access

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 175Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1200-eemi-api.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=175

API Calls and Responses
Power Management Communication using IPIs

In the Zynq UltraScale+ MPSoC, the power management communication layer is implemented
using inter-processor interrupts (IPIs), provided by the IPI block. See this link to the “Interrupts”
chapter of the Zynq UltraScale+ Device Technical Reference Manual (UG1085) for more details on
IPIs.

Each PU has a dedicated IPI channel with the power management controller, consisting of an
interrupt and a payload buffer. The buffer passes the API ID and up to five arguments. The IPI
interrupt to the target triggers the processing of the API, as follows:

• When calling an API function, a PU generates an IPI to the power management unit (PMU),
prompting the execution of necessary power management action.

• The PMU performs each PM action atomically, meaning that the action cannot be interrupted.

• To support PM callbacks, which are used for notifications from the PMU to a PU, each PU
implements handling of these callback IPIs.

Acknowledge Mechanism
The Zynq UltraScale+ MPSoC power management framework (PMF) supports blocking and non-
blocking acknowledges. In most API calls that offer an acknowledge argument, the caller can
choose one of the following three acknowledge options:

• REQUEST_ACK_NO: No acknowledge requested

• REQUEST_ACK_BLOCKING: Blocking acknowledge requested

• REQUEST_ACK_NON_BLOCKING: Non-blocking acknowledge using callback requested

Multiple power management API calls are serialized because each processor unit (PU) uses a
single IPI channel for the API calls. After one request is sent to the power management
controller, the next one can be issued only after the power management controller has
completed servicing the first one. Therefore, no matter which acknowledge mechanism is used,
the caller can be blocked when issuing subsequent requests.

No Acknowledge

If no acknowledge is requested (REQUEST_ACK_NO), the power management controller
processes the request without returning an acknowledge to the caller, otherwise an
acknowledgment is sent.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 176Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxInterrupts
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=176

Blocking Acknowledge

After initiating a PM request with the (REQUEST_ACK_BLOCKING) specified, a caller remains
blocked as long as the power management controller does not provide the acknowledgment.

The platform management unit (PMU) writes the acknowledge values into the response portion
of the IPI buffer before it clears the IPI interrupt. The caller reads the acknowledge values from
the IPI buffer after the IPI observation register shows that the interrupt is cleared, which is when
PMU has completed servicing the issued IPI. The IPI for the PU is disabled until the PMU is ready
to handle the next request.

Non-Blocking Acknowledge

After initiating a PM request with the (REQUEST_ACK_NON_BLOCKING) specified, a caller does
not wait for the platform management unit (PMU) to process that request. Moreover, the caller is
free to perform some other activities while waiting for the acknowledge from the PMU.

After the PMU completes servicing the request, it writes the acknowledge values into the IPI
buffer. Next, the PMU triggers the IPI to the caller PU to interrupt its activities, and to inform it
about the sent acknowledge.

Non-blocking acknowledges are implemented using a callback function that is implemented by
the calling PU, see XPm_NotifyCb Callback.

For more information about XPm_NotifyCb, see Appendix J, XilPM Library v3.0.

Power Management Framework Layers
There are different API layers in the power management framework (PMF) implementation for
Zynq UltraScale+ MPSoCs, which are, as follows:

• Xilpm: This is a library layer used for standalone applications in the different processing units,
such as the APU and RPU.

• ATF: The Arm Trusted Firmware (ATF) contains its own implementation of the client-side PM
framework. It is currently used by Linux operating systems.

• PMU firmware: The power management unit firmware (PMUFW) runs on the power
management unit (PMU) and implements of the power management API.

For more details, see this link in the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

The following figure shows the interaction between the APU, the RPU, and the PMF APIs.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 177Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DG8.407200
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=177

Figure 51: API Layers Used with Bare-Metal Applications Only

RPU

Bare metal application

xilpm

PM-API

PMU

PM-API

APU

Bare metal application

xilpm

PM-API

IPI

X19094-071317

If the APU is running a complete software stack with an operating system, the Xilpm library is not
used. Instead, the ATF running on EL3 implements the client-side power management API, and
provides a secure monitor call (SMC)-based interface to the upper layers.

The following figure illustrates this behavior. See the Armv8 manuals for more details on the
Armv8 architecture and its different execution modes. It illustrates the PMF layers that are
involved when running a full software stack on the APU.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 178Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=178

Figure 52: PM Framework Layers Involved When Running a Full Software Stack on the
APU

APU

RPU

OS

ATF

PM-API

EL0/1

EL3

SMC

Bare metal application

xilpm

PM-API

PMU

PM-API

IPI

X19093-071317

Typical Power Management API Call Flow
Any entity involved in power management is referred to as a node. The following sections
describe how the power management framework (PMF) works with slave nodes allocated to the
APU and the RPU.

Generally, the APU or the RPU inform the power management controller about their usage of a
slave node, by requesting for it. They then inform the power management controller about the
capability requirement needed from the slave node. At this point, the power management
controller powers up the slave node so that it can be initialized by the APU or the RPU.

Requesting and Releasing Slave Nodes

When a PU requires a slave node, either peripheral or memory, it must request that slave node
using the power management API. After the slave node has performed its function and is no
longer required, it may be released, allowing the slave node to be powered off.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 179Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=179

The following figure shows the call flow for a use-case in which the APU and the RPU are sharing
an OCM memory bank, ocm0.

Figure 53: PM Framework Call Sequence for APU and RPU Sharing an OCM Memory
Bank

APU

pm_request_node
(nodelD=ocm0,

cap=full, ack=1)

PMC + PSM RPU ocm0

pm_release_node
(node=ocm0,
latency=0)

pm_self_suspend
(nodelD=APU 0,

latency=MAX)

WFI interrupt

pm_request_node
(nodeID=ocm0,

cap=full, ack=1)

pm_release_node
(node=ocm0,
latency=0)

RUN

POWER
DOWN

RUN RUN OFF

ON

OFF

X20022-062420

Note: The ocm0 memory remains powered on after the APU calls XStatus XPm_ReleaseNode, because
the RPU has also requested the same slave node. It is after the RPU also releases the ocm0 node that the
PMU powers off the ocm0 memory.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 180Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=180

Processor Unit Suspend and Resume

To allow a processor unit (PU) to be powered off, as opposed to just entering an idle state, an
external entity is required to take care of the power-down and power-up transitions. For the
Zynq UltraScale+ MPSoC, the platform management unit (PMU) is the responsible entity for
performing all power state changes.

The processor unit (PU) notifies the PMU that a power state transition is being requested. The
following figure illustrates the process.

Figure 54: APU Suspend and Resume Procedure

PMU OCM DDR L2$

RUN ON

APU_0 APU_1/2/
3 Peripheral

ON ON RUN POWER
DOWN

ON

save context
save context

self_suspend
(nodeID-APU_0, latency=MAX)

configure

set_wakeup_source
(targetID=APU, nodeID=Periheral, enable=true)

set_requirement
(nodeID=OCM, capabilities=context, ack=0)

WFI Interrupt

Interrupt

restore context

restore context

serve interrupt

ON ON RUN

Retention Power
Down

Power
Down

X20023-110217

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 181Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=181

The Self-Suspending a CPU/PU section in Implementing Power Management on a Processor Unit
provides more details on the suspend or resume procedure. Each PU usually depends on a
number of slave nodes to be able to operate.

Sub-system Power Management
Isolation Configuration

The Zynq UltraScale+ MPSoC can be partitioned into sub-systems, so that they can be managed
independently by the power management framework. For example, you can define a Linux sub-
system and a Real-time sub-system. The Linux sub-system may include the APU (as the PM
master) and a number of peripherals (as the PM slaves). The Real-time sub-system may include
the RPU and a number of other peripherals. Each sub-system can be powered up, powered
down, restarted or suspended without affecting the other sub-systems. A sub-system has only
one PM Master, and may include both FPD and LPD peripherals.

You can create your own sub-systems using the Vivado PCW tool. The following figure shows
the PCW screen shots of a valid configuration, which contains only an APU sub-system and no
RPU sub-systems.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 182Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=182

Figure 55: PCW Configuration

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 183Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=183

Figure 56: PCW Configuration Contd

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 184Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=184

Figure 57: PCW Configuration Contd

Note: The PCW tool is also used to isolate some peripherals from each other for security purposes. See
Zynq UltraScale+ MPSoC: Embedded Design Tutorial (UG1209) and Zynq UltraScale+ MPSoC Processing System
LogiCORE IP Product Guide (PG201) for details on how to set up isolation between peripherals.

Configuration Object

The sub-system configuration is captured in a Configuration Object, which is generated by the
Vivado and PetaLinux toolchain. The Configuration Object contains:

• The PM Masters that are present in the system (APU and/or RPU). Any PM Master not
specified in the Configuration Object will be powered down by the PMU.

• Configurable permissions for each PM Master, such as:

○ Which PM Master can use which PM Slave (A PM Master can use all the PM Slaves that
belong in the same sub-system.)

○ Access to MMIO address regions.

○ Access to peripheral reset lines.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 185Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1209-embedded-design-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=zynq_ultra_ps_e;v=latest;d=pg201-zynq-ultrascale-plus-processing-system.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=185

• Pre-allocated PM Slaves. The PM Master can use these PM Slaves without requesting for
them first. These PM Slaves are needed by the PM Master in order to boot. The toolchain
makes sure that the APU can access the L2 cache and DDR banks without first requesting for
them. The same is true for the RPU accessing all the TCM banks.

During boot, the Configuration Object is passed from the FSBL to the PMU firmware. For more
details, see the Configuration Object.

Note: Isolation is not required for the Configuration Object to be created. You can create subsystems to
customize the Configuration Object and then uncheck the isolation checkbox.

Power Management Initialization

Power management is disabled during boot and all the peripherals are powered up at this time.
That is because it is often necessary to allow for possible, and temporary, inter-dependencies
between peripherals during boot and initialization. When FSBL is finished with initializing the
peripherals and loading the application binaries, it passes the Configuration Object to the PMU.
The PMU is now aware of all the sub-systems and their associated PM Masters and PM Slaves.
PM Masters and PM Slaves that are not included in the Configuration Object are never used, and
are powered down by the PMU.

A PM Master is not likely to use all the PM Slaves at all times. Therefore, a PM Slave should be
powered up only when it is being used. The PM Master must notify the PMU before and after
using a PM Slave. This functionality is implemented in the PetaLinux kernel. This requirement
hinders developers starting with a new RPU application, when the focus is on functionality and
not power optimization. Therefore, it is convenient for the PMU to also support PM-incapable
Masters that do not provide notifications when they are using the PM Slaves. This is done by
keeping all the PM Slaves in the sub-system powered up until the PM Master sends the
PmInitFinalize request to the PMU. A PM-incapable Master will never send this request,
which means that its PM Slaves will remain powered up at all times or until this PM Master itself
is powered down.

A PM-capable Master sends this request after initializing the sub-system. The PMU then begins
powering down the PM Slaves in this sub-system whenever they are not being used.

As a result, when there is an RPU master present in the system but it is not running any
application, the PMU firmware will consider it as a PM incapable master and hence will never
power down the RPU and its slaves. From the 2018.3 release and onwards, this behavior is fixed
and allows you to power down unused RPUs. This change is protected by the compilation flag
ENABLE_UNUSED_RPU_PWR_DWN and is enabled by default. When this flag is enabled, the
unused RPU and allocated slaves will be powered down if not in use.

Note: If you do not want to power down RPU by default, set the ENABLE_UNUSED_RPU_PWR_DWN flag
to 0 while compiling the PMU firmware. For the JTAG boot mode there is no impact on behavior change
even though ENABLE_UNUSED_RPU_PWR_DWN flag is 1.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 186Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=186

Note: Sub-systems may overlap each other. This means that some PM Slaves may belong to more than one
sub-system (for example, DDR, OCM, and so on). If a PM Slave is in more than one sub-system, the PMU
does not power down this PM Slave until it has been released by all its PM Masters, or until all these PM
Masters have powered down themselves.

Default Configuration

By default, Isolation Configuration is disabled, and the tool chain generates a configuration with
three sub-systems. Each has a PM Master: APU, R5-0 and R5-1. All three sub-systems contain all
the PM Slaves (meaning that the sub-systems completely overlap each other.) This is the default
configuration generated by PCW when the “Enable Isolation” box is unchecked. The default
PetaLinux kernel configuration is PM-capable, but R5-0 and R5-1 must be also running “PM-
capable” applications, or be powered down. Otherwise, the PMU will not power down any PM
Slaves.

Note: You can create a configuration that does not allow the processors to boot and run. If you are a
beginner, use the APU-only configuration as described in Isolation Configuration section and customize it
as necessary.

RPU Lock-step vs. Split Mode

The toolchain infers the RPU run modes from the PCW Isolation Configuration as follows:

• No RPU present in any subsystem: Configuration Object contains no RPU.

• Only R5-0 present in subsystem(s): Configuration Object contains R5-0 running in lock-step
mode.

• Both R5-0 and R5-1 in subsystems: Configuration Object contains R5-0 and R5-1 running in
split mode.

• Only R5-1 present in subsystem(s): Configuration Object contains R5-1 running in split mode.

The default Configuration Object contains two RPU PM Masters: R5-0 and R5-1, and the PMU
assumes that the R5-0 and R5-1 are running in split mode. However, the boot image actually
determines whether the RPU runs in lock-step or split mode at boot time. The RPU run mode
from the boot image must match the number of RPU PM Masters in the Configuration Object.
Otherwise, the power management framework will not work properly.

Note: If you intend to use the R5 in lock-step mode, you need to ensure that the Isolation Configuration is
enabled in PCW, and only R5-0 (not R5-1) is present in a subsystem.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 187Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=187

Sharing Devices
Sharing access to devices between APU and RPU is possible but must always be done with great
care. The access and operation of a device depend on its clock (if applicable), its configuration
and its power state (on, off, retention, and so on.) The PMU makes sure the device is in the
lowest power state that will satisfy the requirement of all the PM Masters, but it is up to the APU
and RPU to set up the clock and configuration of the device.

Extra care must be taken when a device is shared between the APU running Linux and the RPU.
Linux is not aware that another entity might be using one of its devices, and will clock-gate,
power-gate and disable the device whenever it is not being used. The options available are:

• Disable Linux runtime power management of the device. See https://www.kernel.org/doc/
Documentation/ABI/testing/sysfs-devices-power. This will keep the device running even
when Linux is not using it, but the device will still be clock-gated and disabled when Linux
goes to sleep.

• Implement a special driver for the device.

Any devices not used by the APU should be removed from the device tree.

Using the API for Power Management
This chapter contains detailed instructions on how to use the Xilinx® power management
framework (PMF) APIs to carry out common power management tasks.

Implementing Power Management on a Processor
Unit
The Xilpm library provides the functions that the standalone applications executing on a
processor can use to initiate the power management API calls.

See the SDK Online Help (UG782) for information on how to include the Xilpm library in a project.

Initializing the Xilpm Library

Before initiating any power management API calls, you must initialize the Xilpm library by calling
XPm_InitXilpm, and passing a pointer to a properly initialized inter-processor interrupt (IPI)
driver instance.

See this link to the “Interrupts” chapter of the Zynq UltraScale+ Device Technical Reference Manual
(UG1085). for more information regarding IPIs.

For more information about XPm_InitXilpm, see Appendix J, XilPM Library v3.0.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 188Send Feedback

ttps://www.kernel.org/doc/Documentation/ABI/testing/sysfs-devices-power
ttps://www.kernel.org/doc/Documentation/ABI/testing/sysfs-devices-power
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=SDK_Doc/index.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxInterrupts
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=188

Working with Slave Devices

The Zynq UltraScale+ MPSoC power management framework (PMF) contains functions
dedicated to managing slave devices (also referred to as PM slaves), such as memories and
peripherals. Processor units (PUs) use these functions to inform the power management
controller about the requirements (such as capabilities and wake-up latencies) for those devices.
The power management controller manages the system so that each device resides in the lowest
possible power state, meeting the requirements from all eligible PUs.

Requesting and Releasing a Node

A PU uses the XPm_RequestNode API to request the access to a slave device and assert its
requirements on that device. The power management controller manages the requested device's
power-on and active state, provided the PU and the slave belong to the same sub-system.

After a device is no longer used, the PU typically calls the XPm_ReleaseNode function to allow
the PM controller to re-evaluate the power state of that device, and potentially place it into a
low-power state. It also then allows other PUs to request that device.

For more information about XPm_ReleaseNode, see Appendix J, XilPM Library v3.0.

Changing Requirements

When a PU is using a PM slave, its requirement on the slave's capability may change. For
example, an interface port may go into a low power state, or even be completely powered off, if
the interface is not being used. The PU may use XPm_SetRequirement to change the
capability requirement of the PM slave. Typically, the PU would not release the PM slave if it will
be changing the requirement again in the future.

The following example call changes the requirement for the node argument to require wake-
interrupts only:

XPm_SetRequirement(node, PM_CAP_WAKEUP, 0, REQUEST_ACK_NO);

IMPORTANT! Setting requirements of a node to zero is not equivalent to releasing the PM slave. By releasing
the PM slave, a PU may be allowing other PUs to use the device exclusively.

When multiple PUs share a PM slave (this applies mostly to memories), the power management
controller selects a power state of the PM slave that satisfies all requirements of the requesting
PUs.

The requirements on a PM slave include capability as well as latency requirements. Capability
requirements may include a top capability state, some intermediate capability states, an inactive
state (but with the configuration retained), and the off state. Latency requirement specifies the
maximum time allowed for the PM slave to switch to the top capability state from any other
state. If this time limit cannot be met, the power management controller will leave the PM slave
in the top capability state regardless of other capability requirements.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 189Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=189

For more information about XPM_SetRequirement, see Appendix J, XilPM Library v3.0.

Self-Suspending a CPU/PU

A PU can be a cluster of CPUs. The APU is a PU, that has four CPUs. An RPU has two CPUs, but
it is considered as two PUs when running in the split mode, and one PU when it is running in the
lock-step mode.

To suspend itself, a CPU must inform the power management controller about its intent by calling
the XPM_SelfSuspend function. The following actions then occur:

• After the XPm_SelfSuspend() call is processed, none of the future interrupts can prevent
the CPU from entering a sleep state. To manage such behavior in the case of the APU and
RPU, after the XPm_SelfSuspend() call has completed, all of the interrupts to a CPU are
directed to the power management controller as GIC wake interrupts.

• The power management controller then waits for the CPU to finalize the suspend procedure.
The PU informs the power management controller that it is ready to enter a sleep state by
calling XPm_SuspendFinalize.

• The XPm_SuspendFinalize() function is architecture-dependent. It ensures that any
outstanding power management API call is processed, then executes the architecture-specific
suspend sequence, which also signals the suspend completion to the power management
controller.

• For Arm® processors such as the APU and RPU, the XPm_SuspendFinalize() function
uses the wait for interrupt (WFI) instruction, which suspends the CPU and triggers an
interrupt to the power management controller.

• When the suspend completion is signaled to the power management controller, the power
management controller places the CPU into reset, and may power down the power island of
the CPU, provided that no other component within the island is currently active.

• Interrupts enabled through the GIC interface of the CPU are redirected to the power
management controller (PMC) as a GIC wake interrupt assigned to that particular CPU.
Because the interrupts are redirected, the CPU can only be woken up using the power
management controller.

• Suspending a PU requires suspending all of its CPUs individually.

For more information about XPM_SelfSuspend and XPm_SuspendFinalize, see Appendix J,
XilPM Library v3.0.

Resuming Execution

A CPU can be woken up either by a wake interrupt triggered by a hardware resource or by an
explicit wake request using the XPM_RequestWakeup API.

The CPU starts executing from the resume address provided with the XPm_SelfSuspend call.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 190Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=190

For more information about XPM_RequestWakeup and XPm_SelfSuspend, see Appendix J,
XilPM Library v3.0.

Setting up a Wake-up Source

The power management controller can power down the entire FPD if none of the FPD devices
are in use and existing latency requirements allow this action. If the FPD is powered off and the
APU is to be woken up by an interrupt triggered by a device in the LPD, the GIC Proxy must be
configured to allow propagation of FPD wake events. The APU can ensure this by calling
XPM_SetWakeUpSource for all devices that might need to issue wake interrupts.

Hence, prior to suspending, the APU must call XPm_SetWakeupSource(NODE_APU, node,
1) to add the required slaves as a wake-up source. The APU can then set the requirements to
zero for all slaves it is using. After the APU finalizes its suspend procedure, and provided that no
other PU is using any resource in the FPD, the PM controller powers off the entire FPD and
configures the GIC proxy to enable propagation of the wake event of the LPD slaves.

For more information about XPM_SetWakeUpSource, see Appendix J, XilPM Library v3.0.

Aborting a Suspend Procedure

If a PU decides to abort the suspend procedure after calling the XPM_SetSelfSuspend
function, it must inform the power management controller about the aborted suspend by calling
the XPm_AbortSuspend function.

For more information about XPM_SetSelfSuspend and XPm_AbortSuspend, see Appendix J,
XilPM Library v3.0.

Handling PM Slaves During the Suspend Procedure

A PU that suspends itself must inform the power management controller about its changed
requirements on the peripherals and memories in use. If a PU fails inform the power management
controller, all of the used devices remain powered on. Typically, for memories you must ensure
that their context is preserved by using the following function:

XPm_SetRequirement(node, PM_CAP_CONTEXT, 0, REQUEST_ACK_NO);

When setting requirements for a PM slave during the suspend procedure; after calling
XPM_SelfSuspend, the setting is deferred until the CPU finishes the suspend. This deference
ensures that devices that are needed for completing the suspend procedure can enter a low
power state after the calling CPU finishes suspend.

A common example is instruction memory, which a CPU can access until the end of a suspend.
After the CPU suspends a memory, that memory can be placed into retention. All deferred
requirements reverse automatically before the respective CPU is woken up.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 191Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=191

When an entire PU suspends, the last awake CPU within the PU must manage the changes to the
devices.

For more information about XPM_SelfSuspend, see Appendix J, XilPM Library v3.0.

Example Code for Suspending an APU/RPU

There the following is an example of source code for suspending the APU or RPU:

/* Base address of vector table (reset-vector) */ extern void
*_vector_table;
/* Inform PM controller that APU_0 intends to suspend */
XPm_SelfSuspend(NODE_APU_0, MAX_LATENCY, 0, (u64)&_vector_table);
/**
* Set requirements for OCM banks to preserve their context.
* The PM controller will defer putting OCMs into retention until the
suspend is finalized
*/
XPm_SetRequirement(NODE_OCM_BANK_0, PM_CAP_CONTEXT, 0, REQUEST_ACK_NO);
XPm_SetRequirement(NODE_OCM_BANK_1, PM_CAP_CONTEXT, 0, REQUEST_ACK_NO);
XPm_SetRequirement(NODE_OCM_BANK_2, PM_CAP_CONTEXT, 0, REQUEST_ACK_NO);
XPm_SetRequirement(NODE_OCM_BANK_3, PM_CAP_CONTEXT, 0, REQUEST_ACK_NO);

/* Flush data cache */ Xil_DCacheFlush();
/* Inform PM controller that suspend procedure is completed */
XPm_SuspendFinalize();

Suspending the Entire FPD Domain

To power-down the entire full power domain, the power management controller must suspend
the APU at a time when none of the FPD devices is in use. After this condition is met, the power
management controller can power-down the FPD automatically. The power management
controller powers down the FPD if no latency requirements constrain this action, otherwise the
FPD remains powered on.

Forcefully Powering Down the FPD

There is the option to force the FPD to power-down by calling the function
XPM_ForcePowerdown. This requires that the requesting PU has proper privileges configured in
the power management controller. The power management controller releases all PM Slaves
used by the APU automatically.

Note: This force method is typically not recommended, especially when running complex operating systems
on the APU because it could result in loss of data or system corruption, due to the OS not suspending itself
gracefully.

IMPORTANT! Use the XPm_RequestSuspend  API.

For more information about XPM_ForcePowerdown, see Appendix J, XilPM Library v3.0.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 192Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=192

Interacting with Other Processing Units
Suspending a PU

A PU can request that another PU be suspended by calling XPm_RequestSuspend, and passing
the targeted node name as an argument.

This causes the power management controller to call XPm_InitSuspendCb(), which is a
callback function implemented in the target PU. The target PU then initiates its own suspend
procedure, or call XPm_AbortSuspend and specify the abort reason. For example, you can
request an APU to suspend with the following command:

XPm_RequestSuspend(NODE_APU, REQUEST_ACK_NON_BLOCKING, MAX_LATENCY, 0);

The following diagram shows the general sequence triggered by a call to the
XPM_RequestSuspend.

For more information about XPm_RequestSuspend, XPm_InitSuspendCb, and
XPm_AbortSuspend, see Appendix J, XilPM Library v3.0.

Figure 58: APU initiating suspend for the RPU by calling XPm_RequestSuspend

APU

XPm_RequestSuspend
(nodeID=RPU,
latency=MAX)

PMU RPU TCM

RUN RUN RUN ON

XPm_InitSuspendCb
(reason=PU REQ,

latency=MAX)

XPm_SelfSuspend
(nodeID=RPU,
latency=MAX)

XPm_SetRequirement
(nodeID=TCM,

cap=context, ack=0)

XPm_SuspendFinalize

Power
Down Retention

save context

X20024-110217

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 193Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=193

Waking a PU

Additionally, a PU can request the wake-up of one of its CPUs or of another PU by calling
XPm_RequestWakeup.

• When processing the call, the power management controller causes a target CPU or PU to be
awakened.

• If a PU is the target, only one of its CPUs is woken-up by this request.

• The CPU chosen by the power management controller is considered the primary CPU within
the PU.

The following is an example of a wake-up request:

XPm_RequestWakeup(NODE_APU_1, REQUEST_ACK_NO);

For more information about XPm_RequestWakeup, see Appendix J, XilPM Library v3.0.

XilPM Implementation Details
The system layer of the PM framework is implemented on the Zynq UltraScale+ MPSoC using
inter-processor interrupts (IPIs). To issue an EEMI API call, a PU will write the API data (API ID
and arguments) into the IPI request buffer and then trigger the IPI to the PMU.

After the PM controller processes the request it will send the acknowledge depending on the
particular EEMI API and provided arguments.

Payload Mapping for API Calls to PMU
Each EEMI API call is uniquely identified by the following data:

• EEMI API identifier (ID)

• EEMI API arguments

Please see Appendix A for a list of all API identifiers as well as API argument values.

Prior to initiating an IPI to the PMU, the PU shall write the information about the call into the IPI
request buffer. Each data written into the IPI buffer is a 32-bit word. Total size of the payload is
six 32-bit words - one word is reserved for the EEMI API identifier, while the remaining words
are used for the arguments. Writing to the IPI buffer starts from offset zero. The information is
mapped as follows:

• Word [0] EEMI API ID

• Word [1:5] EEMI API arguments

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 194Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=194

The IPI response buffer is used to return the status of the operation as well as up to 3 values.

• Word [0] success or error code

• Word [1:3] value 1..3

Payload Mapping for API Callbacks from the PMU
The EEMI API includes callback functions, invoked by the PM controller, sent to a PU.

• Word [0]EEMI API Callback ID

• Word [1:5]EEMI API arguments

Refer to Appendix J, XilPM Library v3.0 for a list of all API identifiers as well as API argument
values.

Issuing EEMI API calls to the PMU
Before issuing an API call to the PMU, a PU must wait until its previous API call is processed by
the PMU. A check for completion of a PMU action can be implemented by reading the
corresponding IPI observation register.

An API call is issued by populating the IPI payload buffer with API data and triggering an IPI
interrupt to the PMU. In case of a blocking API call, the PMU will respond by populating the
response buffer with the status of the operation and up to 3 values. See Appendix B for a list of
all errors that can be sent by the PMU if a PM operation was unsuccessful. The PU must wait
until the PMU has finished processing the API call prior to reading the response buffer, to ensure
that the data in the response buffer is valid.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 195Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=195

Figure 59: Example Flow of Issuing API Call to the PMU

XEMI API Call

Previous
API call

processed by
the PMU?

Copy API data into IPI
request buffer

Trigger IPI interrupt

Blocking API call?

API call
processed by

the PMU?

Read response from
the PMU

Return

No

No

Yes

Yes

Yes

X19506-071017

Handling API callbacks from the PMU
The PMU invokes callback functions to the PU by populating the IPI buffers with the API callback
data and triggering an IPI interrupt to the PU. In order to receive such interrupts, the PU must
properly initialize the IPI block and interrupt controller. A single interrupt is dedicated to all
callbacks. For this reason, element 0 of the payload buffer contains the API ID, which the PU
should use to identify the API callback. The PU should then call the respective API callback
function, passing in the arguments obtained from locations 1 to 4 of the IPI request buffer.

An implementation of this behavior can be found in the XilPM library.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 196Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=196

Linux
Linux executes on the EL1 level, and the communication between Linux and the ATF software
layer is realized using SMC calls.

Power management features based on the EEMI API have been ported to the Linux kernel,
ensuring that the Linux-centric power management features utilize the EEMI services provided
by the PMU.

Additionally, the EEMI API can be access directly via debugfs for debugging purposes. Note that
direct access to the EEMI API through debugfs will interfere with the kernel power management
operations and may cause unexpected problems.

All the Linux power management features presented in this chapter are available in the PetaLinux
default configuration.

User Space PM Interface

System Power States

You may request to change the power state of a system or the entire system. The PMU facilitates
the switching of the system or sub-system to the new power state.

Shutdown

You may shutdown the APU sub-system with the standard 'shutdown' command.

To shut down the entire system, the user must shut down all the other sub-systems prior to
shutting down the APU sub-system. For example, use the following command to power down
the PL.

echo pm_release_node 69 > /sys/kernel/debug/zynqmp-firmware/pm

Use this command to power up the PL again:

echo pm_request_node 69 > /sys/kernel/debug/zynqmp-firmware/pm

For information about how to shut down the PL sub-system, see the Libmetal and OpenAMP for
Zynq Devices User Guide (UG1186).

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 197Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1186-zynq-openamp-gsg.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=197

Reboot

You can use the reboot command to reset the APU, the PS or the System. By default, the reboot
command resets the system. You can change the scope of the reboot command to APU or PS if
required. To change the reboot scope to APU:

echo subsystem > /sys/firmware/zynqmp/shutdown_scope

To change the reboot scope to PS:

echo ps_only > /sys/firmware/zynqmp/shutdown_scope

To change the reboot scope to System:

echo system > /sys/firmware/zynqmp/shutdown_scope

The reboot scope is set to System again after the reset.

Suspend

The kernel is suspended when the CPU and most of the peripherals are powered down. The
system run states needed to resume from suspend is stored in the DRAM, which is put into self-
refresh mode.

Kernel configurations required:

• Power management options

○ [*] Suspend to RAM and standby

○ [*] User space wakeup sources interface

○ [*] Device power management core functionality

• Device Drivers

○ SoC (System On Chip) specific Drivers

- Xilinx SoC drivers

- Zynq MPSoC SoC

- [*] Enable Xilinx Zynq MPSoC Power Management driver

- [*] Enable Zynq MPSoC generic PM domains

• Firmware Drivers

○ Zynq MPSoC Firmware Drivers

- -*- Enable Xilinx Zynq MPSoC firmware interface

Note: Any device can prevent the kernel from suspending.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 198Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=198

See also https://wiki.archlinux.org/index.php/Power_management/Suspend_and_hibernate.

To suspend the kernel:

$ echo mem > /sys/power/state

Wake-up Source

The kernel resumes from the suspend mode when a wake-up event occurs. The following wake-
up sources can be used:

• UART

If enabled as a wake-up source, a UART input will trigger the kernel to resume from the
suspend mode.

Kernel configurations required:

○ Same as Suspend.

For example, to wake up the APU on UART input:

$ echo enabled > /sys/devices/platform/amba/ff000000.serial/tty/ttyPS0/
power/wakeup

• RTC

If enabled as a wake-up source, the kernel will resume from the suspend mode when the RTC
timer expires. Note that the RTC wake-up source is enabled by default.

Kernel configurations required:

○ Same as Suspend.

For example, to set RTC to wake up the APU after 10 seconds:

$ echo +10 > /sys/class/rtc/rtc0/wakealarm

• GPIO

If enabled as a wake-up source, a GPIO event will trigger the kernel to resume from the
suspend mode.

Kernel configurations required:

○ Device Drivers

- Input device support, [*]

Generic input layer (needed for keyboard, mouse, ...) (INPUT [=y]) [*] Keyboards
(INPUT_KEYBOARD [=y])

[*] GPIO Buttons (CONFIG_KEYBOARD_GPIO=y)

[*] Polled GPIO buttons

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 199Send Feedback

https://wiki.archlinux.org/index.php/Power_management/Suspend_and_hibernate
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=199

For example, to wake up the APU on the GPIO pin:

$ echo enabled > /sys/devices/platform/gpio-keys/power/wakeup

Power Management for the CPU

CPU Hotplug

The user may take one or more APU cores on-line and off-line as needed via the CPU Hotplug
control interface.

Kernel configurations required:

• Kernel Features

○ [*] Support for hot-pluggable CPUs

See also:

• https://www.kernel.org/doc/Documentation/cpu-hotplug.txt

• http://lxr.free-electrons.com/source/Documentation/devicetree/bindings/arm/idle-states.txt

For example, to take CPU3 off-line:

$ echo 0 > /sys/devices/system/cpu/cpu3/online

CPU Idle

If enabled, the kernel may cut power to individual APU cores when they are idling. The kernel
configurations required are:

• CPU Power Management

○ CPU Idle

- [*] CPU idle PM support

- Arm CPU Idle Drivers

- [*] Generic Arm/Arm64 CPU idle Driver

See also:

• https://www.kernel.org/doc/Documentation/cpuidle/core.txt

• https://www.kernel.org/doc/Documentation/cpuidle/driver.txt

• https://www.kernel.org/doc/Documentation/cpuidle/governor.txt

• https://www.kernel.org/doc/Documentation/cpuidle/sysfs.txt

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 200Send Feedback

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt
http://lxr.free-electrons.com/source/Documentation/devicetree/bindings/arm/idle-states.txt
https://www.kernel.org/doc/Documentation/cpuidle/core.txt
https://www.kernel.org/doc/Documentation/cpuidle/driver.txt
https://www.kernel.org/doc/Documentation/cpuidle/governor.txt
https://www.kernel.org/doc/Documentation/cpuidle/sysfs.txt
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=200

Below is the sysfs interface for cpuidle.

$ ls -lR /sys/devices/system/cpu/cpu0/cpuidle/

/sys/devices/system/cpu/cpu0/cpuidle/:
drwxr-xr-x 2 root root 0 Jun 10 21:55 state0
drwxr-xr-x 2 root root 0 Jun 10 21:55 state1

/sys/devices/system/cpu/cpu0/cpuidle/state0:
-r--r--r-- 1 root root 4096 Jun 10 21:55 desc
-rw-r--r-- 1 root root 4096 Jun 10 21:55 disable
-r--r--r-- 1 root root 4096 Jun 10 21:55 latency
-r--r--r-- 1 root root 4096 Jun 10 21:55 name
-r--r--r-- 1 root root 4096 Jun 10 21:55 power
-r--r--r-- 1 root root 4096 Jun 10 21:55 residency
-r--r--r-- 1 root root 4096 Jun 10 21:55 time
-r--r--r-- 1 root root 4096 Jun 10 21:55 usage

/sys/devices/system/cpu/cpu0/cpuidle/state1:
-r--r--r-- 1 root root 4096 Jun 10 21:55 desc
-rw-r--r-- 1 root root 4096 Jun 10 21:55 disable
-r--r--r-- 1 root root 4096 Jun 10 21:55 latency
-r--r--r-- 1 root root 4096 Jun 10 21:55 name
-r--r--r-- 1 root root 4096 Jun 10 21:55 power
-r--r--r-- 1 root root 4096 Jun 10 21:55 residency
-r--r--r-- 1 root root 4096 Jun 10 21:55 time
-r--r--r-- 1 root root 4096 Jun 10 21:55 usage

where:

• desc: Small description about the idle state (string)

• disable: Option to disable this idle state (bool)

• latency: Latency to exit out of this idle state (in microseconds)

• name: Name of the idle state (string)

• power: Power consumed while in this idle state (in milliwatts)

• time: Total time spent in this idle state (in microseconds)

• usage: Number of times this state was entered (count)

Below is the sysfs interface for cpuidle governors.

$ ls -lR /sys/devices/system/cpu/cpuidle/
/sys/devices/system/cpu/cpuidle/:
-r--r--r-- 1 root root 4096 Jun 10 21:55 current_driver
-r--r--r-- 1 root root 4096 Jun 10 21:55 current_governor_ro

CPU Frequency

If enabled, the CPU cores may switch between different operation clock frequencies. The kernel
configurations required are:

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 201Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=201

• CPU Frequency scaling

○ [*] CPU Frequency scaling

○ Default CPUFreq governor

- Userspace

• CPU Power Management

○ [*] CPU Frequency scaling

○ Default CPUFreq governor

- Userspace

- <*> Generic DT based cpufreq driver

Look up the available CPU speeds:

$ cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_cpu_freq

Select the 'userspace' governor for CPU frequency control:

$ echo userspace > /sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

Look up the current CPU speed (same for all cores):

$ cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_cpu_freq

Change the CPU speed (same for all cores):

$ echo <freq> > /sys/devices/system/cpu/cpu0/cpufreq/scaling_setspeed

For details on adding and changing CPU frequencies, see the Linux kernel documentation on
Generic Operating Points.

Power Management for the Devices

Clock Gating

Stop device clocks when they are not being used (also called Common Clock Framework.) The
kernel configurations required are:

• Common Clock Framework

○ [*] Support for Xilinx ZynqMP Ultrascale+ clock controllers

Runtime PM

Power off devices when they are not being used. Note that individual drivers may or may not
support run-time power management. The kernel configurations required are:

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 202Send Feedback

https://www.kernel.org/doc/Documentation/devicetree/bindings/opp/opp.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/opp/opp.txt
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=202

• Power management options

○ [*] Suspend to RAM and standby

• Device Drivers

○ SoC (System-on-a-chip) specific drivers

- [*] Xilinx Zynq MPSoC driver support

Global General Storage Registers

Four 32-bit storage registers are available for general use. Their values are not preserved across
after software reboots. The following table lists the global general storage registers.

Table 55: Global General Storage Registers

Device Node MMIO Register MMIO Address Valid Value Range
/sys/firmware/zynqmp/ggs0 GLOBAL_GEN_STORAGE0 0xFFD80030 0x00000000 - 0xFFFFFFFF

/sys/firmware/zynqmp/ggs1 GLOBAL_GEN_STORAGE1 0xFFD80034 0x00000000 - 0xFFFFFFFF

/sys/firmware/zynqmp/ggs2 GLOBAL_GEN_STORAGE2 0xFFD80038 0x00000000 - 0xFFFFFFFF

/sys/firmware/zynqmp/ggs3 GLOBAL_GEN_STORAGE3 0xFFD8003C 0x00000000 - 0xFFFFFFFF

Read the value of a global storage register:

$cat /sys/firmware/zynqmp/ggs0

Write the mask and value of a global storage register:

$echo 0xFFFFFFFF 0x1234ABCD > /sys/firmware/zynqmp/ggs0

Persistent Global General Storage Registers

Four 32-bit persistent global storage registers are available for general use. Their values are
preserved across after software reboots. The lists the persistent global general storage registers.

Table 56: Persistent Global General Storage Registers

Device Node MMIO Register MMIO Address Valid Value Range
/sys/firmware/zynqmp/pggs0 PERS_GLOB_GEN_STORAGE0 0xFFD80050 0x00000000 -0xFFFFFFFF

/sys/firmware/zynqmp/pggs1 PERS_GLOB_GEN_STORAGE1 0xFFD80054 0x00000000 -0xFFFFFFFF

/sys/firmware/zynqmp/pggs2 PERS_GLOB_GEN_STORAGE2 0xFFD80058 0x00000000 -0xFFFFFFFF

/sys/firmware/zynqmp/pggs3 PERS_GLOB_GEN_STORAGE3 0xFFD8005C 0x00000000 -0xFFFFFFFF

Read the value of a persistent global storage register:

$cat /sys/firmware/zynqmp/pggs0

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 203Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=203

Write the mask and value of a persistent global storage register:

$echo 0xFFFFFFFF 0x1234ABCD > /sys/firmware/zynqmp/pggs0

Demo
A demo script is included with the PetaLinux pre-built images, which performs a few simple
power management tasks:

• System Suspend

• CPU Hotplug

• CPU Freq

• System Reboot

• System Shutdown

To start the demo, type the following command:

$ hellopm

Debug Interface
The PM platform driver exports a standard debugfs interface to access all EEMI services. The
interface is intended for testing only and does not contain any checking regarding improper
usage, and the number, type and valid ranges of the arguments. The user should be aware that
invoking EEMI services directly via this interface can very easily interfere with the kernel power
management operations, resulting in unexpected behavior or system crash. Zynq MPSoC debugfs
interface is disabled by default in defconfig. It needs to be enabled explicitly as mentioned below.

Kernel configurations required (in this order):

• Kernel hacking

○ Compile-time checks and compiler options

- [*] Debug File system

• Firmware Drivers

○ Zynq MPSoC Firmware Drivers

- [*] Enable Xilinx Zynq MPSoC firmware interface

- [*] Enable Xilinx Zynq MPSoC firmware debug APIs

You may invoke any EEMI API except for:

• Self Suspend

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 204Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=204

• System Shutdown

• Force Power Down the APU

• Request Wake-up the APU

Command-line Input

The user may invoke an EEMI service by writing the EEMI API ID, followed by up to four
arguments, to the debugfs interface node.

API ID

Function ID can be EEMI API function name or ID number, type string or type integer,
respectively.

Arguments

The number and type of the arguments directly depend on the selected API function. All
arguments must be provided as integer types and represent the ordinal number for that specific
argument type from the EEMI argument list. For more information about function descriptions,
type and number of arguments see the EEMI API Specification.

Example

The following example shows how to invoke a request_node API call for NODE_USB_0.

$ echo "pm_request_node 22 1 100 1" > /sys/kernel/debug/zynqmp-firmware/pm

Command List

Get API Version

Get the API version.

$ echo pm_get_api_version > /sys/kernel/debug/zynqmp-firmware/pm

Request Suspend

Request another PU to suspend itself.

$ echo pm_request_suspend <node> > /sys/kernel/debug/zynqmp-firmware/pm

Self Suspend

Notify PMU that this PU is about to suspend itself.

$ echo pm_self_suspend <node> > /sys/kernel/debug/zynqmp-firmware/pm

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 205Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=205

Force Power Down

Force another PU to power down.

$ echo pm_force_powerdown <node> > /sys/kernel/debug/zynqmp-firmware/pm

Abort Suspend

Notify PMU that the attempt to suspend has been aborted.

$ echo pm_abort_suspend > /sys/kernel/debug/zynqmp-firmware/pm

Request Wake-up

Request another PU to wake up from suspend state.

$ echo pm_request_wakeup <node> <set_address> <address> > /sys/kernel/debug/
zynqmp-firmware/pm

Set Wake-up Source

Set up a node as the wake-up source.

$ echo pm_set_wakeup_source <target> <wkup_node> <enable> > /sys/kernel/
debug/zynqmp-firmware/pm

Request Node

Request to use a node.

$ echo pm_request_node <node> > /sys/kernel/debug/zynqmp-firmware/pm

Release Node

Free a node that is no longer being used.

$ echo pm_release_node <node> > /sys/kernel/debug/zynqmp-firmware/pm

Set Requirement

Set the power requirement on the node.

$ echo pm_set_requirement <node> <capabilities> > /sys/kernel/debug/zynqmp-
firmware/pm

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 206Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=206

Set Max Latency

Set the maximum wake-up latency requirement for a node.

$ echo pm_set_max_latency <node> <latency> > /sys/kernel/debug/zynqmp-
firmware/pm

Get Node Status

Get status information of a node. (Any PU can check the status of any node, regardless of the
node assignment.)

$ echo pm_get_node_status <node> > /sys/kernel/debug/zynqmp-firmware/pm

Get Operating Characteristic

Get operating characteristic information of a node.

$ echo pm_get_operating_characteristic <node> > /sys/kernel/debug/zynqmp-
firmware/pm

Reset Assert

Assert/de-assert on specific reset lines.

$ echo pm_reset_assert <reset> <action> > /sys/kernel/debug/zynqmp-
firmware/pm

Reset Get Status

Get the status of the reset line.

$ echo pm_reset_get_status <reset> > /sys/kernel/debug/zynqmp-firmware/pm

Get Chip ID

Get the chip ID.

$ echo pm_get_chipid > /sys/kernel/debug/zynqmp-firmware/pm

Get Pin Control Functions

Get current selected function for given pin.

$ echo pm_pinctrl_get_function <pin-number> > /sys/kernel/debug/zynqmp-
firmware/pm

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 207Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=207

Set Pin Control Functions

Set requested function for given pin.

$ echo pm_pinctrl_set_function <pin-number> <function-id> > /sys/kernel/
debug/zynqmp-firmware/pm

Get Configuration Parameters for the Pin

Get value of requested configuration parameter for given pin.

$ echo pm_pinctrl_config_param_get <pin-number> <parameter to get> > /sys/
kernel/debug/zynqmp-firmware/pm

Set Configuration Parameters for the Pin

Set value of requested configuration parameter for given pin.

$ echo pm_pinctrl_config_param_set <pin-number> <parameter to set> <param
value> > /sys/kernel/debug/zynqmp-firmware/pm

Control Device and Configurations

Control device and configurations and get configurations values.

$ echo pm_ioctl <node id> <ioctl id> <arg1> <arg2> > /sys/kernel/debug/
zynqmp-firmware/pm

Table 57: IOCTLs in SDG

IOCTL_ID Name Description
0 IOCTL_GET_RPU_OPER_MODE returns current RPU operating mode (lockstep/split).

1 IOCTL_SET_RPU_OPER_MODE configures RPU operating mode (lockstep/split).

2 IOCTL_RPU_BOOT_ADDR_CONFIG configures RPU boot address

3 IOCTL_TCM_COMB_CONFIG configures TCM to be in split mode or combined
mode

4 IOCTL_SET_TAPDELAY_BYPASS enable/disable tap delay bypass

5 IOCTL_SET_SGMII_MODE enable/disable SGMII mode for the GEM device

6 IOCTL_SD_DLL_RESET resets DLL logic for the SD device

7 IOCTL_SET_SD_TAPDELAY sets input/output tap delay for the SD device

8 IOCTL_SET_PLL_FRAC_MODE sets PLL mode

9 IOCTL_GET_PLL_FRAC_MODE returns current PLL mode

10 IOCTL_SET_PLL_FRAC_DATA sets PLL fraction data

11 IOCTL_GET_PLL_FRAC_DATA returns PLL fraction data value

12 IOCTL_WRITE_GGS writes value to GGS register

13 IOCTL_READ_GGS returns GGS register value

14 IOCTL_WRITE_PGGS writes value to PGGS register

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 208Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=208

Table 57: IOCTLs in SDG (cont'd)

IOCTL_ID Name Description
15 IOCTL_READ_PGGS returns PGGS register value

16 IOCTL_ULPI_RESET performs the ULPI reset sequence for resetting the
ULPI transceiver

17 IOCTL_SET_BOOT_HEALTH_STATUS sets healthy bit value to indicate boot health status to
firmware.

18 IOCTL_AFI writes the afi values at given index

Table 58: Description of IOCTLs

IOCTL_
ID Name Descript

ion
Arguments

Node ID Arg1 Arg2 Return Value
0 IOCTL_GET_RPU_OPER_MO

DE
returns
current
RPU
operating
mode
(lockstep/
split)

unused unused unused Operating
mode

0:
LOCKSTEP
1: SPLIT

1 IOCTL_SET_RPU_OPER_MO
DE

configure
s RPU
operating
mode
(lockstep/
split)

unused Value of operating
mode

0: LOCKSTEP
1: SPLIT

unused unused

2 IOCTL_RPU_BOOT_AD
DR_CONFIG

configure
s RPU
boot
address

NODE_RPU
_0
NODE_RPU
_1

Value to set for
boot address

0: LOVEC/TCM
1: HIVEC/OCM

unused unused

3 IOCTL_TCM_COMB_C
ONFIG

configure
s TCM to
be in split
mode or
combined
mode

unused Value to set (Split/
Combined)

0: SPLIT
1: COMB

unused unused

4 IOCTL_SET_TAPDELAY_BYP
ASS

enables/
disables
tap delay
bypass

unused Type of tap delay

0:
NAND_DQS_IN
1:
NAND_DQS_OU
T
- 2: QSPI

Tap-delay
Enable/ Disable

0: DISABLE
1: ENABLE

unused

5 IOCTL_SET_SGMII_MO DE enables/
disables
SGMII
mode for
the GEM
device

NODE_ETH
_0,
NODE_ETH
_1,
NODE_ETH
_2,
NODE_ETH
_3

"GMII mode
Enable/ Disable

0: DISABLE
1: ENABLE

unused unused

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 209Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=209

Table 58: Description of IOCTLs (cont'd)

IOCTL_
ID Name Descript

ion
Arguments

Node ID Arg1 Arg2 Return Value
6 IOCTL_SD_DLL_RESET resets DLL

logic for
the SD
device

NODE_SD_0
,
NODE_SD_1

SD DLL Reset type

0: ASSERT
1: RELEASE
2: PULSE

unused unused

7 IOCTL_SET_SD_TAPDE LAY sets
input/
output tap
delay for
the SD
device

NODE_SD_0
,
NODE_SD_1

Type of tap delay to
set

0: INPUT
1: OUTPUT

Value to set for
the tap delay

unused

8 IOCTL_SET_PLL_FRAC_
MODE

sets PLL
mode

unused PLL clock ID PLL Mode

0:
FRAC_MOD
E
1:
INT_MODE

unused

9 IOCTL_GET_PLL_FRAC_
MODE

returns
current
PLL mode

unused PLL clock ID unused PLL Mode

0:
FRAC_MOD
E
1:
INT_MODE

10 IOCTL_SET_PLL_FRAC_
DATA

sets PLL
fraction
data

unused PLL clock ID PLL fraction
data

unused

11 IOCTL_GET_PLL_FRAC_
DATA

returns
PLL
fraction
data value

unused PLL clock ID unused PLL fraction
data

12 IOCTL_WRITE_GGS writes
value to
GGS
register

unused GGS register index
(0/1/2/3)

Register value
to be written

unused

13 IOCTL_READ_GGS returns
GGS
register
value

unused GGS register index
(0/1/2/3)

unused Register value

14 IOCTL_WRITE_PGGS writes
value to
PGGS
register

unused PGGS register
index (0/1/2/3)

Register value
to be written

unused

15 IOCTL_READ_PGGS returns
PGGS
register
value

unused PGGS register
index (0/1/2/3)

unused Register value

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 210Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=210

Table 58: Description of IOCTLs (cont'd)

IOCTL_
ID Name Descript

ion
Arguments

Node ID Arg1 Arg2 Return Value
16 IOCTL_ULPI_RESET performs

the ULPI
reset
sequence
for
resetting
the ULPI
transceive
r

unused unused unused unused

17 IOCTL_SET_BOOT_HEA
LTH_STATUS

sets
healthy
bit value
to indicate
boot
health
status to
firmware

unused healthy bit value unused unused

18 IOCTL_AFI writes the
afi values
at given
index

unused AFI register index
(0 to 15)

Register value
to be written

unused

Query Data

Request data from firmware.

$ echo pm_query_data <query id> <arg1> <arg2> <arg3> > /sys/kernel/debug/
zynqmp-firmware/pm

Enable Clock

Enable the clock for a given clock node id.

$ echo pm_clock_enable <clock id> > /sys/kernel/debug/zynqmp-firmware/pm

Disable Clock

Disable the clock for a given clock node id.

$ echo pm_clock_disable <clock id> > /sys/kernel/debug/zynqmp-firmware/pm

Get Clock State

Get the state of clock for a given clock node id.

$ echo pm_clock_getstate <clock id> > /sys/kernel/debug/zynqmp-firmware/pm

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 211Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=211

Set Clock Divider

Set the divider value of clock for a given clock node id.

$ echo pm_clock_setdivider <clock id> <divider value> > /sys/kernel/debug/
zynqmp-firmware/pm

Get Clock Divider

Get the divider value of clock for a given clock node id.

$ echo pm_clock_getdivider <clock id> > /sys/kernel/debug/zynqmp-firmware/pm

Set Clock Rate

Set the clock rate for a given clock node id.

$ echo pm_clock_setrate <clock id> <clock rate> > /sys/kernel/debug/zynqmp-
firmware/pm

Get Clock Rate

Get the clock rate for a given clock node id.

$ echo pm_clock_getrate <clock id> > /sys/kernel/debug/zynqmp-firmware/pm

Set Clock Parent

Set the parent clock for a given clock node id.

$ echo pm_clock_setparent <clock id> <parent clock id> > /sys/kernel/debug/
zynqmp-firmware/pm

Get Clock Parent

Get the parent clock for a given clock node id.

$ echo pm_clock_getparent <clock id> > /sys/kernel/debug/zynqmp-firmware/pm

Note: Clock id definitions are available in the following txt file of the clock bindings documentation:
Documentation/devicetree/bindings/clock/xlnx,zynqmp-clk.txt

PM Platform Driver
The Zynq UltraScale+ MPSoC power management for Linux is encapsulated in a power
management driver, power domain driver and platform firmware driver. The system-level API
functions are exported and as such, can be called by other Linux modules with GPL compatible
license. The function declarations are available in the following location:

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 212Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=212

include/linux/firmware/xilinx/zynqmp/firmware.h

The function implementations are available in the following location:

drivers/firmware/xilinx/zynqmp/firmware*.c

Provide the correct node in the Linux device tree for proper driver initialization. The firmware
driver relies on the 'firmware' node to detect the presence of PMU firmware, determine the
calling method (either 'smc' or 'hvc') to the PM-Framework firmware layer and to register the
callback interrupt number.

The ‘firmware’ node contains following properties:

• Compatible: Must contain ‘xlnx,zynqmp-firmware’.

• Method: The method of calling the PM framework firmware. It should be ‘smc’.

Note: Additional information is available in the following txt file of Linux Documentation:
Documentation/devicetree/bindings/firmware/xilinx/xlnx,zynqmp-firmware.txt.

Example:

firmware {
zynqmp_firmware: zynqmp-firmware { compatible = "xlnx,zynqmp-firmware";
method = "smc";
};
};

Note: Power domain driver and power management driver binding details are available in the following files
of Linux Documentation:

• Documentation/devicetree/bindings/soc/xilinx/xlnx,zynqmp-power.txt

• Documentation/devicetree/bindings/power/zynqmp-genpd.txt

Note: xilPM do not support the following EEMI APIs. For current release, they are only supported for Linux
through ATF.

• query_data

• ioctl

• clock_enable

• clock_disable

• clock_getstate

• clock_setdivider

• clock_getdivider

• clock_setrate

• clock_getrate

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 213Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=213

• clock_setparent

• clock_getparent

• pinctrl_request

• pinctrl_release

• pinctrl_set_function

• pinctrl_get_function

• pinctrl_set_config

• pinctrl_get_config

Arm Trusted Firmware (ATF)
The Arm Trusted Firmware (ATF) executes in EL3. It supports the EEMI API for managing the
power state of the slave nodes, by sending PM requests through the IPI-based communication to
the PMU.

ATF Application Binary Interface
All APU executable layers below EL3 may indirectly communicate with the PMU via the ATF. The
ATF receives all calls made from the lower ELs, consolidates all requests and send the requests to
the PMU.

Following Arm's SMC Calling Convention, the PM communication from the non-secure world to
the ATF is organized as SiP Service Calls, using a predefined SMC function identifier and SMC
sub-range ownership as specified by the calling convention.

Note that the EEMI API implementation for the APU is compliant with the SMC64 calling
convention only.

EEMI API calls made from the OS or hypervisor software level pass the 32-bit API ID as the SMC
Function Identifier, and up to four 32-bit arguments as well. As all PM arguments are 32-bit
values, pairs of two are combined into one 64-bit value.

The ATF returns up to five 32-bit return values:

• Return status, either success or error and reason

• Additional information from the PM controller

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 214Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=214

Checking the API Version

Before using the EEMI API to manage the slave nodes, the user must check that EEMI API
version implemented in the ATF matches the version implemented in the PMU firmware. EEMI
API version is a 32-bit value separated in higher 16 bits of MAJOR and lower 16 bits of MINOR
part. Both fields must be the same between the ATF and the PMU firmware.

The EEMI version implemented in the ATF is defined in the local EEMI_API_VERSON flag. The
rich OS may invoke the PM_GET_API_VERSION function to retrieve the EEMI API version from
the PMU. If the versions are different, this call will report an error.

Note: This EEMI API call is version independent; every EEMI version implements it.

Checking the Chip ID

Linux or other rich OS can invoke the PM_GET_CHIPID function via SMC to retrieve the chip ID
information from the PMU.

The return values are:

• CSU idcode register (see TRM).

• CSU version register (see TRM).

For more details, see the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Power State Coordination Interface (PSCI)
Power State Coordination Interface is a standard interface for controlling the system power state
of Arm processors, such as suspend, shutdown, and reboot. For the PSCI specifications, see
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022c/index.html.

ATF handles the PSCI requests from Linux. ATF supports PSCI v0.2 only (with no backward
compatible support for v0.1).

The Linux kernel comes with standard support for PSCI. For information regarding the binding
between the kernel and the ATF/PSCI, see https://www.kernel.org/doc/Documentation/
devicetree/bindings/arm/psci.txt.

Table 59: PSCI v0.2 Functions Supported by the ATF

Functions Description Supported
PSCI Version Return the version of PSCI implemented. Yes

CPU Suspend Suspend execution on a core or higher level topology node. This call is
intended for use in idle subsystems where the core is expected to return to
execution through a wakeup event.

Yes

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 215Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.den0022c/index.html
https://www.kernel.org/doc/Documentation/devicetree/bindings/arm/psci.txt
https://www.kernel.org/doc/Documentation/devicetree/bindings/arm/psci.txt
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=215

Table 59: PSCI v0.2 Functions Supported by the ATF (cont'd)

Functions Description Supported
CPU On Power up a core. This call is used to power up cores that either:

• Have not yet been booted into the calling supervisory software.

• Have been previously powered down with a CPU_OFF call.

Yes

CPU Off Power down the calling core. This call is intended for use in hotplug. A core
that is powered down by CPU_OFF can only be powered up again in
response to a CPU_ON.

Yes

Affinity Info Enable the caller to request status of an affinity instance. Yes

Migrate (Optional) This is used to ask a uniprocessor Trusted OS to migrate its context to a
specific core.

Yes

Migrate Info Type
(Optional)

This function allows a caller to identify the level of multicore support
present in the Trusted OS.

Yes

Migrate Info Up CPU
(Optional)

For a uniprocessor Trusted OS, this function returns the current resident
core.

Yes

System Off Shut down the system. Yes

System Reset Reset the system. Yes

PSCI Features Introduced in PSCI v1.0.
Query API that allows discovering whether a specific PSCI function is
implemented and its features.

Yes

CPU Freeze (Optional) Introduced in PSCI v1.0.
Places the core into an IMPLEMENTATION DEFINED low-power state.
Unlike CPU_OFF it is still valid for interrupts to be targeted to the core.
However, the core must remain in the low power state until it a CPU_ON
command is issued for it.

No

CPU Default Suspend
(Optional)

Introduced in PSCI v1.0.
Will place a core into an IMPLEMENTATION DEFINED low-power state.
Unlike CPU_SUSPEND the caller need not specify a power state parameter.

No

Node HW State
(Optional)

Introduced in PSCI v1.0.
This function is intended to return the true HW state of a node in the
power domain topology of the system.

Yes

System Suspend
(Optional)

Introduced in PSCI v1.0.
Used to implement suspend to RAM. The semantics are equivalent to a
CPU_SUSPEND to the deepest low-power state.

Yes

PSCI Set Suspend Mode
(Optional)

Introduced in PSCI v1.0.
This function allows setting the mode used by CPU_SUSPEND to coordinate
power states.

No

PSCI Stat Residency
(Optional)

Introduced in PSCI v1.0.
Returns the amount of time the platform has spent in the given power
state since cold boot.

Yes

PSCI Stat Count
(Optional)

Introduced in PSCI v1.0.
Return the number of times the platform has used the given power state
since cold boot.

Yes

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 216Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=216

PMU Firmware
The EEMI service handlers are implemented in the PMU firmware, as one of the modules called
PM Controller (There are other modules running in the PMU firmware to handle other types of
services). For more details, see the Chapter 10: Platform Management Unit Firmware.

Power Management Events
The PM Controller is event-driven, and all of the operations are triggered by one of the following
events:

• EEMI API events triggered via IPI0 interrupt.

• Wake events triggered via GPI1 interrupt.

• Sleep events triggered via GPI2 interrupt.

• Timer event triggered via PIT2 interrupt.

EEMI API Events

EEMI API events are software-generated events. The events are triggered via IPI interrupt when
a PM master initiates an EEMI API call to the PMU. The PM Controller handles the EEMI request
and may send back an acknowledgment (if one is requested.) An EEMI request often triggers a
change in the power state of a node or a master, with some exceptions.

Wake Events

Wake events are hardware-generated events. They are triggered by a peripheral signaling that a
PM master should be woken-up. All wake events are triggered via the GPI1 interrupt.

The following wake events are supported by the PM controller:

• GIC wake events which signal that a CPU shall be woken up due to an interrupt triggered by a
hardware resource to the associated GIC interface. The following GIC wake events are
supported:

○ APU[3:0]An event for each APU processor

○ RPU[1:0]An event for each RPU processor

• FPD wake event directed by the GIC Proxy. This wake event is triggered when any of the
wake sources enabled prior to suspending. The purpose of this event is to trigger a wake-up of
APU master when FPD is powered down. If FPD is not powered down, none of the wake
signals would propagate through FPD wake. Instead, the wake would propagate through GIC
wake if the associated interrupt at the GIC is properly enabled. All wake events targeted to
the RPU propagate via the associated GIC wake.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 217Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=217

Sleep Events

Sleep events are software-generated events. The events are triggered by a CPU after it finalizes
the suspend procedure with the aim to signal to the PMU that it is ready to be put in a low power
state. All sleep events are triggered via GPI2 interrupt.

The following sleep events are supported:

• APU[3:0]An event for each APU processor

• RPU[1:0]An event for each RPU processor

When the PM controller PM Controller receives the sleep event for a particular CPU, the CPU is
put into a low power state.

Timer Event

Timer event is hardware-generated event. It is triggered by a hardware timer when a period of
time expires. The event is used for power management timeout accounting and it is triggered via
PIT2 interrupt.

General flow of an EEMI API Call
The following diagram illustrates the sequence diagram of a typical API call, starting with the call
initiated by a PM Master (such as another PU):

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 218Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=218

Figure 60: EEMI API Call Sequence Diagram

PM Master PMU Firmware PM Controller PMU ROM

IPI

XEMI API event

handler()

return

acknowledge

return

XEMI API call

X20021-110217

The previous diagram shows four actors, where the first one represents the PM Master, i.e. either
the RPU, APU, or a MicroBlaze™ processor core. The remaining 3 actors are the different
software layers of the PMU.

First the PMU firmware receives the IPI interrupt. Once the interrupt has been identified as a
power management related interrupt, the IPI arguments are passed to the Power Management
Module. The PM controller then processes the API call. If necessary it may call the PMU ROM in
order to perform power management actions, such as power on or off a power island, or a power
domain.

Chapter 11: Power Management Framework

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 219Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=219

Chapter 12

Reset
The Zynq® UltraScale+™ MPSoC reset block is responsible for handling both internal and
external reset inputs to the system, and to meet the reset requirements for all the peripherals
and the APU and RPU. The reset block generates resets for the programmable logic part of the
device, and allows independent reset assertion for PS and PL blocks.

This chapter explains the reset mechanisms involved in the system reset and the individual
module resets.

System-Level Reset
The Zynq UltraScale+ MPSoCs let you reset individual blocks such as the APU, RPU, or even
individual power domains like the FPD and LPD. There are multiple, system-level reset options,
as follows:

• Power-on reset (POR)

• System reset (SRST_B)

• Debug system reset

For more details on the system-level reset flow, see this link to the “Reset System” chapter in the
Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Block-Level Resets
The PS-only reset can be implemented as a subset of system-reset; however, the user must
provide software that ensures PS-to-PS AXI transactions are gracefully terminated before
initiating a PS-only reset.

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 220Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxResetSystem
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=220

PS-Only Reset
The PS-only reset re-boots the PS while that PL remains active. You can trigger the PS-only reset
by hardware error signal(s) or a software register write. If the PS-only reset is due to an error
signal, then the error can be indicated to the PL also, so that the PL can prepare for the PR
restart.

The PS-only reset sequence can be implemented as follows:

• [ErrorLogic] Error interrupt is asserted whose action requires PS-only reset. This request is
sent to PMU as an interrupt.

• [PMU-FW] Set PMU Error (=>PS-only reset) to indicate to PL.

See the PS Only Reset section in the “Reset System” chapter of the Zynq UltraScale+ Device
Technical Reference Manual (UG1085) describes the PS-only reset sequence.

Note: PS-only reset is not supported in qspi24 mode on systems with a flash size that is greater than 16
MB.

Application Processing Unit Reset
You can independently reset each of the APU CPU core in the software.

The APU MPCore reset can be triggered by FPD, WDT, or a software register write; however,
APU MPCore is reset without gracefully terminating requests to and from the APU. The intent is
that you use the FPD in case of catastrophic failures in the FPD. The APU reset is primarily for
software debug.

The Zynq UltraScale+ Device Technical Reference Manual (UG1085) describes the APU reset
sequence.

APU-Only Reset
APU-only reset is supported in qspi24, qspi32, sd0, sd1, sd-ls boot modes. However, APU-only
reset is not supported in qspi24 mode on systems with a flash size that is greater than 16 MB.

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 221Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=221

Real Time Processing Unit Reset
Each Cortex™-R5F core can be independently reset. In lockstep mode, only the Cortex-R5F_0
needs to be reset to reset both Cortex-R5F cores. It can be triggered by errors or a software
register write. The Cortex-R5F reset can be triggered due to a lockstep error to be able to reset
and restart the RPU. It needs to gracefully terminate Cortex-R5F ingress and egress transactions
before initiating reset of corresponding Cortex-R5F.

Full Power Domain Reset
The FPD-reset resets all of the FPD power domain and can be triggered by errors or a software
register write. If the FPD reset is due to error signal, then the error must be indicated to both the
LPD and the PL.

The FPD reset can be implemented by leveraging the FPD power-up sequence; however, it needs
to gracefully terminate FPD ingress and egress AXI transactions before initiating reset of FPD.
FPD reset sequence can be PL Reset.

The Zynq UltraScale+ MPSoCs has general-purpose output pins from the PMU block that can be
used to reset the blocks in PL. Additionally, GPIO using the EMIO interface can also be used to
reset PL logic blocks. For a detailed description of the reset flow, see the this link to the “Reset
System” chapter in the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

For more information on the software APIs for reset, see the PMU firmware in Chapter 9:
Platform Management.

Warm Restart
The Zynq UltraScale+ MPSoC is a highly complex piece of silicon, capable of running multiple
subsystems on the chip simultaneously. As such, Zynq UltraScale+ supports various types of
reset. This varies from the simplest system reset to the much more complicated subsystem
restart. In any system or subsystem that has a processor component and a programmable logic
component, reset must entail both reset to the hardware as well as software. Reset to the
hardware includes the following:

• Resetting of the processor and all peripherals associated with the system/subsystem

• Cleaning up of the memory as needed

• Making sure that the interconnect is in a clean state that is capable of routing traffic.

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 222Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf;a=xResetSystem
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=222

Reset to the software results in the processor starting from the reset vector. However, designer
must make sure that a valid and clean code for the system/subsystem is located at the reset
vector in order to bring the system back to a clean running state.

Resets for Zynq UltraScale+ are broadly divided into two categories. They are:

• Full system resets

• Subsystem restarts

Full system resets include the following:

• Power-On-Reset (POR)

• System-reset

• PS-only-reset

Subsystem restarts include APU subsystems and RPU subsystem restarts.

Full system resets are quite straight forward. Hardware is brought back to the reset state and
software starts executing ROM code, with a minor behavior difference between the reset types.
There are subtleties to PS-only reset which will be discussed in later sections.

Subsystem restart is more complicated. A subsystem in Zynq UltraScale+ is composed of all the
components of a particular operating system. The following figure shows both Vivado's view of
the PS as well as example subsystems as defined by the OS. The default IP configuration menu in
Vivado provides a flattened view, consisting of all available PS components. In the example, these
components are partitioned into three separate subsystems, each running an independent
operating system. Each subsystem consists of a processor, list of peripherals and memory. The
example shows the following subsystems:

• RPU based subsystem running uC/OS-II

• RPU based subsystem running FreeRTOS

• APU based subsystem running Linux

Subsystems can be configured in the Isolation Configuration view that is inside the Vivado PCW
(PS Configuration Wizard), when the Advanced Mode check box is enabled.

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 223Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=223

Figure 61: Vivado IP Configuration Menu

During subsystem restart, the entire subsystem is restarted from a clean state without affecting
the running of the other active subsystems defined in MPSoC. For example, during an APU
subsystem restart, an APU subsystem running Linux is restarted as far back as FSBL, while the
RPU subsystem running FreeRTOS and uC/OS-II continues to function undisturbed. Similarly for
a RPU subsystem restart, an APU subsystem continues to function undisturbed.

Subsystem restarts are managed by the platform management unit (PMU). To restart each
subsystem, PMU must first ensure that all on-going AXI-transactions are terminated and that no
new transactions are issued. In the subsystems shown in the following figure, the interconnects
that connects the components of the subsystem, are not explicitly shown. However, each
subsystem includes multiple interconnects and the same interconnects are used by all three
subsystems. If the PMU firmware resets all the components in a subsystem while leaving
unfinished transactions in the interconnect, the AXI master and slave might both be in the reset
state. However, the unfinished AXI transactions will remain in the interconnect, thus blocking all
subsequent traffic. Stuck transactions in the interconnect causes the system to freeze as these
connections are shared. It is therefore imperative that the PMU ensures all transactions are
completely finished before resetting each and every components in the subsystem, including the
processor.

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 224Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=224

Figure 62: Subsystem Components for Various Operating Systems

Before releasing the processor from reset, the PMU must ensure that the code in the reset vector
will result in a clean system restart. In the case of the RPU subsystem running standalone
applications, this means either loading a clean copy of the application elf or making sure that the
application code is re-entrant. In the case of the APU subsystem running Linux, this means
starting from a re-entrant copy of FSBL.

Note: The on-chip memory (OCM) module contains 256 KB of RAM starting at 0xFFFC0000. The OCM is
mainly used by the FSBL and ATF components. The FSBL uses the OCM region from 0xFFFC0000 to
0xFFFE9FFF. The last 512B of this region is used by the FSBL to share the handoff parameters
corresponding to applications that the ATF hands off. The ATF uses the rest of the OCM i.e. from
0xFFFEA000 to 0xFFFFFFFF.

The current implementation of a warm reset requires the FSBL to be in the OCM to support the PMU
firmware hand off to (already existing) the FSBL without actually restarting. Hence, the OCM is completely
used and no other application is allowed to use it when a warm restart is enabled.

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 225Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=225

Supported Use Cases
APU Subsystem Restart
For an APU subsystem only restart, you must define the APU subsystem using PCW in the
Vivado design tools. The PMU executes the function to restart the APU subsystem. First, the
PMU idles all components in the APU subsystem. When all is quiet, the PMU will reset each
component, including the APU processors. When the reset is released, it will re-execute the FSBL
code in the OCM. The task carried out by the FSBL for restart differs only slightly than that of
the POR.

Note: The FSBL is re-entrant. Hence, the APU can simply re-execute the FSBL without having to reload a
clean copy.

The following figure shows the APU subsystem restart process.

Figure 63: APU Subsystem Restart Process

The start of this flow diagram represents a clean running state. Linux, RPU, PMU, and CSU
subsystems are in running status. The health of the APU subsystem is monitored by an APU
WDT (watchdog timer). Linux runs a background application which periodically boosts the
watchdog to prevent it from timing out. If an APU subsystem hangs, the WDT times out. The
timeout interrupts the PMU and results in an APU subsystem restart. Alternatively, you can
invoke the APU subsystem restart by directly calling for it in Linux.

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 226Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=226

Implementation

To support any subsystem restart, a subsystem must first be defined in the Vivado design tools
using the Isolation Configuration view. For an APU subsystem running Linux, the following APU
subsystem are required in addition to the default PMU subsystem:

• A secure APU system for running the FSBL and ATF

• A non-secure APU subsystem for running Linux.

See Sub-system Power Management for more information on subsystem configuration and an
example of the APU only subsystem.

IMPORTANT! While APU subsystem consists solely of PS components, it is often the case that APU subsystem
also includes IP peripherals implemented in PL. Unfortunately, isolation configuration menu does not include
features to assign PL IPs to different subsystems. As a result, all IPs instantiated in Vivado are added to the
generated device tree source (DTS) file. In order to properly define the APU subsystem, all PL IPs that do not
belong in the APU subsystem need to be manually removed from the DTS file. Otherwise, drivers for all the soft
IPs will be enabled for Linux, and APU will attempt to manage all the soft IPs even when the APU is going
through a warm restart.

IMPORTANT! During a subsystem restart, all components in the subsystem must be in the idle state, followed
by reset. This is implemented for supported components in the PS. For all IPs in PL of a subsystem that are AXI
slaves, no additional tasks are required to idle them. You may supply code to reset these slaves if desired. For PL
IPs that are AXI masters, you must provide the necessary code to stop and complete all AXI transactions from
the master as well as to reset it. See Idle and Reset of Peripherals for details on adding the idle and reset code.

See GPIO Reset to PL for design issue and guidelines pertaining to using resetn signal from PS
to PL (ps_resetn). You can optionally enable the recovery and escalation features as desired.
Building Software for detailed instructions on building the software.

RPU Subsystem Restart
RPU as Master

For an RPU subsystem only restart, you must define the RPU subsystem using PCW in the Xilinx
Vivado® Design Suite. The PMU executes the function to restart the RPU subsystem. First, the
PMU checks if master is RPU and FSBL was initially running on RPU. Then PMU will idle all
components in the RPU subsystem. When all is quiet, the PMU will reset each component,
including the RPU processors. When the reset is released, it will re-execute the FSBL code. FSBL
for subsystem restart loads only RPU partitions without interrupting other subsystems.

Note: RPU only subsystem restart is supported only with FSBL running on RPU just as APU only restart.
Here the FSBL is re-entrant. Hence, the RPU can simply re-execute the FSBL without having to reload a
clean copy.

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 227Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=227

Once all the subsystems have started and represent a clean running state, the health of the RPU
subsystem can be monitored using an LPD WDT (watchdog timer) by an application running on
RPU. This application must take care of boosting the watchdog to prevent it from timing out. If
an RPU subsystem hangs, this WDT times out and interrupts the PMU which results in RPU
subsystem restart. For more information, see the LPD WDT section.

Alternatively, you can invoke the RPU subsystem restart by directly calling for it in RPU
application.

Implementation

The implementation is same as APU only subsystem restart except that RPU subsystem must be
defined in the Vivado® Design Suite using the Isolation Configuration view.

Note: To support any subsystem restart, a subsystem must first be defined in the Vivado design tools using
the Isolation Configuration view.

The RPU subsystem requires RPU running an FSBL and RPU application in addition to PMU
subsystem. See Sub-system Power Management for more information on subsystem
configuration and an example of the APU only subsystem.

IMPORTANT! During a subsystem restart, all components in the subsystem must be in the idle state, followed
by reset. This is implemented for supported components in the PS. For all IPs in PL of a subsystem that are AXI
slaves, no additional tasks are required to idle them. You may supply code to reset these slaves if desired. For PL
IPs that are AXI masters, you must provide the necessary code to stop and complete all AXI transactions from
the master as well as to reset it. See Idle and Reset of Peripherals for details on adding the idle and reset code.

See GPIO Reset to PL for design issue and guidelines pertaining to using resetn signal from PS
to PL (ps_resetn). You can optionally enable the recovery and escalation features as desired.
See Building Software for detailed instructions on building the software.

APU as Master

RPU subsystem restart requires the APU subsystem and one or more RPU subsystems running in
lock-step or split mode. The APU subsystem running Linux is the master of the RPU subsystems
and manages the life cycle of the subsystem using the remoteproc feature of OpenAMP. APU
uses remoteproc to load, start, and stop the RPU application. It also re-syncs the APU subsystem
with RPU subsystem after the restart. APU subsystem can trigger a RPU restart by following
sequence:

1. First, it stops the RPU

2. Loads the new firmware

3. Then, it starts the RPU again.

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 228Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=228

Many events including user command, RPU watchdog timeout or message from the RPU to APU
via message pipe may trigger the RPU subsystem restart. Then, APU issues remoteproc
command to PMU to start or stop the RPU, and the PMU changes the state of the RPU
subsystem.

The following figure shows the RPU subsystem restart process.

Figure 64: RPU Subsystem Restart

The start of the above diagram represents a clean running state for all subsystems, Linux, RPU,
PMU and CSU. In the flowchart, APU receives a RPU subsystem restart request. When APU
receives the restart request, it uses remoteproc features to stop the RPU subsystem, load new
firmware code, and then starts the RPU subsystem again. The flow chart shows the use of a RPU
WDT. The RPU periodically boosts the watch dog. If the RPU hangs, WDT times out. Linux will
receive the timeout and restarts the RPU subsystem.

Implementation

You must define the RPU subsystem using the Isolation Configuration view in Vivado PCW, and
both PMU and APU subsystems are required. In addition, two configurations are possible for the
RPU subsystem: RPUs in lock step mode or in split mode. See the Isolation Configuration
Consideration wiki page for more information on subsystem configuration. Sharing of peripherals
between subsystems are not supported. Make sure that the peripherals in all subsystems are
mutually exclusive.

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 229Send Feedback

http://www.wiki.xilinx.com/Isolation%2BConfiguration%2BConsideration
http://www.wiki.xilinx.com/Isolation%2BConfiguration%2BConsideration
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=229

IMPORTANT! In the process of subsystem restart, all components in the subsystem must be in the idle state,
followed by reset. This is implemented for supported components in the PS. For all IPs in PL of a subsystem that
are AXI slaves, no additional tasks are required to idle them. User may supply code to reset the slaves if desired.
For PL IPs that are AXI masters, user must provide the necessary code to stop and complete all AXI transactions
from the master as well as to reset it. See Idle and Reset of Peripherals for details on adding the idle and reset
code.

RPU subsystem restart is supported with Linux kernel implementation of remoteproc on APU in
conjunction with OpenAMP library on RPU. It is currently not supported with Linux userspace
OpenAMP library on APU. RPU application must be written in accordance with the OpenAMP
application requirements. See Libmetal and OpenAMP for Zynq Devices User Guide (UG1186) for
more information. Note that the rpmsg is not required for remoteproc. You can employ rpmsg
feature to provide a communication pipe between the two processors. However, remoteproc is
independent of rpmsg. To make remoteproc function properly with subsystem restart, RPU
application needs to include a resource table with static shared memory allocation. Dynamic
shared memory allocation is not supported for subsystem restart. You must implement the steps
outlined in How to Write a Simple OpenAMP Application in Libmetal and OpenAMP for Zynq
Devices User Guide (UG1186) to satisfy the remoteproc requirement, but not beyond that. After
initialization, the RPU application needs to signal to the PMU that it is Power Management (PM)
aware by calling XPm_InitFinalize().

Note: If you call XPm_InitFinalize() too early, then the slaves that are not yet initialized are powered
off. They will be powered up again when the RPU application comes around to initialize them, which will
incur some additional power-up latency. See ZU+ Example - PM Hello World wiki page for more
information on how to write a PM aware RPU application.

Finally, you must ensure that the address of the reserved memory for RPU code is synchronized
across all layers. It must be defined under memory for both APU and RPU subsystems in the
isolation configuration of Vivado. The same address region should be used in the DTS file for
OpenAMP overlay in Linux and again, in resource table and linker script for the RPU application.

See GPIO Reset to PL for design issue and guidelines pertaining to using resetn signal from PS
to PL (ps_resetn). You can optionally enable the recovery and escalation features as desired.
Building Software for detailed instructions on building the software.

PS-Only Reset
For a PS-only restart, the entire processor system is reset while PL continues to function. Prior to
invoking PS-only reset, PMU turns on isolation between PS and PL, thus clamping the signals
between them in well-defined states. After PS-only reset is released, PS executes the standard
boot process starting from the PMU ROM, followed by CSU ROM, then FSBL and so on. During
FSBL, the isolation between PS and PL is removed.

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 230Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1186-zynq-openamp-gsg.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1186-zynq-openamp-gsg.pdf
http://www.wiki.xilinx.com/ZU%EF%BC%8B%2BExample%2B-%2BPM%2BHello%2BWorld
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=230

IMPORTANT! As the software has gone through a reset cycle, the state of the hardware IPs in PL which
continue to run during the PS-only reset may become out of sync with the state of the software which interfaces
or controls the IPs. It is your responsibility to make sure that the software and hardware states are properly re-
synchronized. In a PS-only reset, you cannot download the bitstream again.

PS-only reset can be initiated by Linux command or watchdog timeout or PMU error
management block. If you are interested in PS-only reset without APU/RPU subsystem restart,
subsystem/isolation configuration is not required. Linux commands for setting reboot type and
reboot will work without additional modifications.

System Reset
In a system-reset, the entire hardware, both PS and PL are reset. After system reset is released,
PS executes the standard boot process starting from the PMU ROM, followed by CSU ROM,
then FSBL and so on. The following table shows the differences between system reset and POR:

Table 60: Differences between POR and System Reset

POR System Reset
Reset persistent registers Preserves persistent registers

Resamples boot mode pins Does not resample boot mode pins

Reset debug states Preserves debug states

Resample eFuse values Requires explicit software action to refresh

Security state determined Security state locked

Clear tamper response Preserves tamper response

Select security key source Security key source locked

Optional LBIST and/or SCAN/CLEAR Does not run LBIST or SCAN/CLEAR

Run MBIST Explicit software action needed to run MBIST

System reset can be initiated by Linux command or watchdog timeout or PMU error
management block. If you are interested in only System reset without APU/RPU subsystem
restart, subsystem/isolation configuration is not required.

Note: System reset is not supported in qspi24 mode on systems with a flash size that is greater than 16
MB.

Idle and Reset of Peripherals
It is necessary to stop/complete any ongoing transaction by any IP or processor of the subsystem
before resetting them. Otherwise, it may lead to hanging of the interconnect and eventually
hanging of the entire system. Also, to ensure proper operation by the IP after reboot, it is best to
reset them and bring them to post bootROM state.

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 231Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=231

PMU firmware implements peripheral idling and resetting for the PS IPs that can be idled / reset
during the subsystem reset. The IPs that will be attempted to idled/reset is based on isolation
configuration of the Vivado.

Build PMU firmware with the following idling flags to enable subsystem node idling and resetting:

• ENABLE_NODE_IDLING

• IDLE_PERIPHERALS

Node Reset and Idle

During a subsystem restart, the PMU firmware makes sure that the associated PS peripheral
nodes are idled and brought to reset state. Following is the list of currently supported PS
peripherals that will undergo idle/reset, if they are part of the subsystem that is undergoing reset:

• TTC

• Ethernet/EMAC

• I2C

• SD

• eMMC

• QSPI

• USB

• DP

• SATA

See GPIO reset to PL to understand the implication of GPIO reset.

Note: PS peripherals are idled prior to invoking resets for user invoked reboot of PS-only and system-reset
command.

Custom Hooks
PMU firmware does not keep track of PL peripherals. Hence, there is no idle/reset function
implementation available in the PMU firmware. However, it is necessary to treat those
peripherals in the same the PS peripherals are treated. You can add a custom hook in the
idle_hooks.c file to idle the PL peripherals and reset them. These hooks can be called from
the PmMasterIdleSlaves function in the pm_master.c file of the PMU firmware.

lib/sw_apps/zynqmp_pmufw/src/pm_master.c
:dir:dir -769,6 +769,12 :dir:dir static void PmMasterIdleSlaves(PmMaster*
const master)

PmDbg(DEBUG_DETAILED,"%s\r\n", PmStrNode(master->nid));

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 232Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=232

+ /*
+ * Custom hook to idle PL peripheral before PS peripheral idle
+ */
+
+ Xpfw_PL_Idle_HookBeforeSlaveIdle(master);
+
while (NULL != req) {
u32 usage = PmSlaveGetUsageStatus(req->slave, master); Node = &req->slave-
>node;
:dir:dir -783,6 +789,11 :dir:dir static void PmMasterIdleSlaves(PmMaster*
const master)
}
req = req->nextSlave;
}
+
+ /*
+ * Custom hook to idle PL peripheral after PS peripheral idle
+ */
+ Xpfw_PL_Idle_HookAfterSlaveIdle(master);
#endif
}

The Xpfw_PL_Idle_HookBeforeSlaveIdle and Xpfw_PL_Idle_HookAfterSlaveIdle
can contain the code to idle the PL peripherals and reset them if necessary. The implementation
can be either of the following:

• Write AXI registers of PL IPs to bring them to idle state and reset. This is the preferred and a
graceful way to idle PL peripherals.

• Implement a signal based handshake where PMU firmware signals PL to idle all PL IPs. This
implementation should be used when there is no direct control to gracefully stop traffic. For
example, you can use this implementation if there are non DMA PL IPs, which does not have
reset control but are connected through a firewall IP. This implementation also allows stopping
all traffic passing through it unlike the other where each IP needs to be idled individually.

Note: Implementation for these custom hooks is not provided by Xilinx.

GPIO Reset to PL
Vivado configuration allows you to enable fabric resets from PS to PL. The following figure shows
that the Zynq UltraScale+ block outputs pl_resetn0 and pl_resetn1 signals with Fabric
Reset Enabled and the Number of Fabric Resets set to 2, can be used to drive reset pins of PL
components.

Figure 65: Resets from PS to PL

The pl_resetn signals are implemented with PS GPIOs. Pl_resetn pins are released after
bitstream configuration in software using the psu_ps_pl_reset_config_data function. In
the case where a subsystem also uses GPIO for purpose other than reset, the GPIO block is
included in the subsystem definition. The image below shows an example of an APU subsystem
with GPIO as a slave peripheral.

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 233Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=233

Figure 66: APU Subsystem with GPIO

In the case where GPIO is a subsystem slave peripheral, the entire GPIO component will be reset
as part of the restart process when the subsystem is being restarted. Since pl_resetn are
implemented with GPIOs, pl_resetn will be forced low during subsystem restart. This behavior
may be undesirable if the pl_resent signals are being used to drive PL IPs in subsystems other
than the one being reset. For example, if pl_resetn0 drives resets to PL IP for APU subsystem
and pl_resetn1 drives PL IPs for RPU subsystem.

During APU subsystem restart, both pl_resetn0 and pl_resent1 will be forced into the
reset state. Consequently, PL IPs in RPU subsystem will be reset. This is the wrong behavior since
APU-restart should not affect the RPU subsystem as the GPIO is implicitly shared between the
APU and RPU subsystem via pl_resetn signals. Since sharing of peripherals is not supported
for subsystem restart, pl_resetn causes problems during subsystem reset. The work-around is
to skip idling and resetting GPIO peripheral during any subsystem restart even if the component
is assigned in the subsystem/isolation configuration.

To skip the GPIO reset during the node Idling and reset, build the PMU firmware with following
flag:

REMOVE_GPIO_FROM_NODE_RESET_INFO

Note: GPIO component goes through a reset cycle also during PS-only reset. PMU firmware enables PS-PL
isolation prior to calling PS only reset which locks pl_resetn to High. However, as soon as FSBL removes
the PS-PL isolation, the reset goes Low. FSBL then calls psu_ps_pl_reset_config_data to
reconfigure pl_resetn back to High. This is needed since resetting the PL components allows proper
synchronization of software and hardware states after reset.

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 234Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=234

Recovering from a Hang System
In an event of system hang, as indicated by FPT WDT timeout, PMU can be used to carry out a
sequence of events to try and recover from the unresponsive condition. By default, when FPD
WDT times out, PMU firmware will not invoke any type of restart. This is so that user can specify
the exact desired behavior. However, Xilinx provides a typical recovery scheme in which PMU
firmware monitors the state of APU subsystem using FPD WDT and restart APU (Linux)
subsystem if the timer expires, indicating problem with Linux.

Since RPU subsystem is managed by Linux using remoteproc, the life-cycle of the RPU subsystem
is completely up to Linux. PMU is not involved in deciding when to restart RPU subsystem(s).
RPU hang recovery can also be implemented with help of either software or hardware watchdog
between APU and RPU subsystems. In that case, the watchdog is configured and handled by
Linux but the heartbeats is provided by RPU application(s). The exact method of deciding when
to restart RPU is up to the user, watchdog is simply one of many possibilities. To enable recovery,
PMU firmware should be built with enabling error management and recovery. Following macros
enable the Recovery feature:

• ENABLE_EM

• ENABLE_RECOVERY

It is also necessary to build ATF with following flags (see APU Idling for details):

ZYNQMP_WARM_RESTART=1

IMPORTANT! One TTC timer (timer 9) will be reserved for PMU's use when these compile flags are enabled.

Watchdog Management
The FPD WDT is used for monitoring APU state. Software running on APU periodically touch
FPD WDT to keep it from timing out. The occurrence of WDT timeout indicates an unexpected
condition on the APU which prevents the software from running properly and an APU restart is
invoked. FPD WDT is configured by PMU firmware at initialization stage, but is periodically
serviced by software running on APU.

The default timeout configured for WDT is 60 seconds and can be changed by
RECOVERY_TIMEOUT flag in PMU firmware. When APU subsystem goes into a restart cycle,
FPD WDT is kept running to ensure that the restart lands in a clean running state where software
running on APU is able to touch the WDT again. Therefore, the timeout for the WDT must be
long enough to cover the entire APU subsystem restart cycle to prevent the WDT from timing
out in the middle of restart process. It is advisable to start providing the heartbeat as soon as is

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 235Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=235

feasible in Linux. PetaLinux BSP includes recipe to add the watchdog management service in
init.d. As FPD WDT is owned by PMU firmware, it would be unsafe to use full fledged Linux
driver for handling WDT. It is advisable to just pump the heartbeats by writing restart key
(0x1999) to restart register (WDT base + 0x8) of the WDT. It can be done through C program
daemon or it can be part of bash script daemon.

It is recommended to be part of idle thread or similar low priority thread, which if hangs we
should consider the subsystem hang.

The following is the snippet of the single heartbeat stroke to the FPD WDT from command
prompt. This can be included in the bash script which runs periodically.

devmem 0xFD4D0008 32 0x1999

The following wdt-heartbeat application periodically provides the heartbeat to FPD WDT. For
demo purpose this application is launched as daemon. The code from this application can be
implemented in appropriate location such as an idle thread of Linux.

#include <stdio.h>
#include <sys/mman.h>
#include <fcntl.h>
#include <unistd.h>

#define WDT_BASE 0xFD4D0000
#define WDT_RESET_OFFSET 0x8
#define WDT_RESET_KEY 0x1999

#define REG_WRITE(addr, off, val) (*(volatile unsigned int*)(addr
+off)=(val))
#define REG_READ(addr,off) (*(volatile unsigned int*)(addr+off))

void wdt_heartbeat(void)
{
char *virt_addr; int fd;
int map_len = getpagesize();
fd = open("/dev/mem", (O_RDWR | O_SYNC)); virt_addr = mmap(NULL,
map_len, PROT_READ|PROT_WRITE,
MAP_SHARED,
fd, WDT_BASE);

if (virt_addr == MAP_FAILED) perror("mmap failed");

close(fd);

REG_WRITE(virt_addr,WDT_RESET_OFFSET, WDT_RESET_KEY);

munmap((void *)virt_addr, map_len);
}
int main()
{
while(1)
{
wdt_heartbeat(); sleep(2);
}
return 0;
}

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 236Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=236

On the expiry of watchdog, PMU firmware receives and handles the WDT interrupt. PMU
firmware idles the subsystem's master CPU i.e., all A53 cores (see APU Idling), and then carries
out APU only restart flow which includes CPU reset and idling and resetting peripherals (see
Peripheral Idling) associated to the subsystem reset.

Note: If ESCALATION is enabled PMU firmware will trigger the appropriate restart flow (which can be
other than APU only restart) as explained in Escalation section.

APU Idling
Each A53 is idled by taking them to the WFI state. This is done through Arm Trusted Firmware
(ATF). For idling CPU, the PMU firmware raises TTC interrupt (timer 9) to ATF, which issues
software interrupt to each alive A53 core. The respective cores then clears the pending SGI on
itself and put itself into WFI.

The last core just before going into WFI issues pm_system_shutdown (PMU firmware API) to
PMU firmware, which then performs APU only restart flow.

This feature must be enabled in ATF for recovery to work properly. It can be enabled by building
ATF with ZYNQMP_WARM_RESTART=1 flag.

Modifying Recovery Scheme

When ENABLE_RECOVERY is turned on, Xilinx provides a recovery implementation in which a
FPD WDT timeout results in the invocation of APU subsystem restart. You can easily modify the
recovery behavior by modifying the code. Alternatively, an example of PMU firmware invoking
system-reset on FPD WDT timeout is detailed in Xilinx Answer: 69423.

Escalation
If current recovery cannot bring the system back to the working state, the system must escalate
to a more severe type of reset on the next WDT expiry in order to try and recover fully. It is up to
you to decide on the escalation scheme. A commonly used scheme starts with APU-restart on
the first watchdog expiration, followed by PS-only reset on the next watchdog expiration, then
finally system-reset.

To enable escalation, PMU firmware must be built with following flags:

ENABLE_ESCALATION
Escalation Scheme

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 237Send Feedback

https://www.xilinx.com/support/answers/69423.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=237

Default Scheme

Default escalation scheme checks for the successful pm_system_shutdown call from ATF for
APU-only restart which happens when the ATF is able to successfully idle all active CPUs. If ATF
is not successful in idling the active cores, WDT will time out again with the WDT_in_Progess
flag set, resulting in do escalation.

Escalation will trigger System level reset. System level reset is defined as PS only reset if PL is
present or System restart if PL is not present.

The following figure shows the flow of the control in case of default escalation scheme.

Figure 67: name

Is WDT_In_ProgressRaise Interrupt to
PMU Firmware

No
Do

Escalation

Restart WDT

Set WDT_in_Progress flag

Raise IPI request to ATF for Clearing APU
Sleep and

wait for
event

Restart WDT

Clear WDT_in_Progress flagDo APU only
restart

Clear all the pending
interrupts on this core

ATF Raises Sw interrupts
for all Active cores

Is Last Active
Core?

Call Pm System shutdown
call for APU only reset

WFI

Each Active core invoked runs same codeIPI to ATF

IPI to PMU-firmware

Legends

AM Trusted Firmware

Hardware

PMU Firmware

Yes

FPD
WDT

Expired

X21016-060618

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 238Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=238

Healthy Bit Scheme

Default scheme for escalation does not guarantee the successful reboot of the system. It only
guarantees the successful role of ATF to idle the CPU during the recovery. Consider the scenario
in which the FPD_WDT has timed out and APU subsystem restart is called in which ATF is able
to successfully make the pm_system_shutdown call. However, APU subsystem restart is far
from finished after pm_system_shutdown is called. The restart process can be stuck
elsewhere, such as fsbl, u-boot or Linux init state. If the restart process is stuck in one of the
aforementioned tasks, FPD_WDT will expire again, causing the same cycle to be repeated as long
as ATF is loaded and functioning. This cycle can continue indefinitely without the system booting
back into a clean running state.

The Healthy Bit scheme solves this problem. In addition to default scheme, the PMU firmware
checks for a Healthy Bit, which is set by Linux on successful booting. On WDT expiry, if Healthy
Bit is set, it indicates that Linux is able to boot into a clean running state, then no escalation is
needed. However, if Healthy Bit is not set, that means the last restart attempt did not
successfully boot into Linux and escalation is needed. There is no need to repeat the same type
of restart. PMU firmware will escalate and call a system level reset.

Healthy Bit scheme is implemented using the bit-29 of PMU global general storage register
(PMU_GLOBAL_GLOBAL_GEN_STORAGE0[29]). PMU firmware clears the bit before starting the
recovery or normal reboot and Linux must set this bit to flag a healthy boot.

PMU global registers are accessed through sysfs interface from Linux. Hence, to set the healthy
bit from the Linux, execute the following command (or include in the code):

echo "0x20000000 0x20000000" > "/sys/devices/platform/firmware/ggs0"

To enable the healthy bit based escalation scheme, build the PMU firmware with the following
flag:

CHECK_HEALTHY_BOOT

The following figure shows the flow of the control in case of the healthy bit escalation scheme.

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 239Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=239

Figure 68: Healthy Bit Escalation Scheme

Is WDT_In_Progress

Healthy Bit Set?
FPD
WDT

Expired

Raise Interrupt to
PMU Firmware

No Do
EscalationNo

Restart WDT

Yes

Set WDT_in_Progress flag

Raise IPI request to ATF for Clearing APU
Sleep and

wait for
event

Restart WDT

Clear WDT_in_Progress flagDo APU only
restart

Clear all the pending
interrupts on this core

ATF Raises Sw interrupts
for all Active cores

Is Last Active
Core?

Call Pm System shutdown
call for APU only reset

WFI

Each Active core invoked runs same codeIPI to ATF

IPI to PMU-firmware

Legends

AM Trusted Firmware

Hardware

PMU Firmware

Yes

X21015-060618

Customizing Recovery and Escalation Scheme

By default, when FPD WDT times out, PMU FW will not invoke any type of restart. While Xilinx
has provided predefined RECOVERY and ESCALATION behaviors, users can easily customize
different desired schemes.

When FPD _WDT times out, it calls FpdSwdtHandler. If ENABLE_EM is defined,
FpdSwdtHandler calls XPfw_recoveryHandler. It is otherwise an empty function.

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 240Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=240

In xpfw_mod_em.c,

#ifdef ENABLE_EM
oid FpdSwdtHandler(u8 ErrorId)
{
XPfw_Printf(DEBUG_ERROR,"EM: FPD Watchdog Timer Error (Error ID: %d)\r\n",
ErrorId);
XPfw_RecoveryHandler(ErrorId);
}

#else
void FpdSwdtHandler(u8 ErrorId) { }

Without ENABLE_EM, you can simply update FpdSwdtHandler which will be called at FPD
Timeout. With ENABLE_EM turned on, you need to update XPfw_recoveryHandler.

Similarly, turning on RECOVERY defines the XPfw_RecoveryHandler (see
xpfw_restart.c). Unless RECOVERY is turned on, XPfw_ RecoveryHandler is an empty
function and nothing will happen when FPD_WDT times out.

RecoveryHandler basically follows the flow chart detailed in the Escalation Scheme section.
When FPD_WDT times out, the code follows the progression of orange boxes. If WDT is not
already in progress, Restart WDT, Set WDT_In_Progress flag, Raise TTC (timer 9) interrupt to
ATF. Then ATF takes over. It Raises SW interrupt for all active cores, clear pending interrupts,
etc. (see blue boxes). Essentially, PMU restarts and boosts the WDT, then sends a request to ATF.
ATF cleanly idles all four APUs and when they all get to WFI (Last Active Core is true), ATF issues
PMU System Shutdown with APU subsystem as argument back to PMU. When PMU gets this
command, it invokes APU subsystem restart.

If ENABLE_ESCALATION is not set, the code never takes the Do Escalation path. If the
RecoveryHandler hangs for some reason (for example, something went wrong and APU
cannot put all four CPU cores to WFI), it keeps retrying APU restart or hang forever. When
ENABLE_ESCLATION is on and if anything goes wrong during execution of the flowchart, it will
look like WDT is still in progress (since clear WDT_in_progress flag happens only as the last step),
Do Escalation will call SYSTEM_RESET instead of trying APU-restart again and again.

To customize recovery and escalation behavior, use the provided XPfw_recoveryHandler as a
template to provide a customized XPfw_recoveryHandler function.

Building Software
All the software components are built and packaged by Xilinx PetaLinux tool. See PetaLinux wiki
page for more information on how to build and package software components.

Build Flag for Restart Solution

Following build time flags are not set by default and can alter the behavior of the restart in
Zynq UltraScale+ MPSoC:

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 241Send Feedback

http://www.wiki.xilinx.com/PetaLinux
http://www.wiki.xilinx.com/PetaLinux
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=241

Table 61: Build Time Flags

Component Flag Name Description Dependenc
y

PMU firmware

ENABLE_EM Enable error management
and provide WDT interrupt
handling. This is not directly
related to restart solution but
needed for recovery.

ENABLE_RECOVERY Enable Recovery during WDT
expiry

ENABLE_ESCALATION Allow escalation on failure of
boot or recovery

CHECK_HEALTHY_BOOT Use Healthy bit to determine
escalation

IDLE_PERIPHERALS ENABLE_NODE_IDLING Both the flags must be used
together to allow PMU
firmware to attempt
peripherals node idling (and
reset).

REMOVE_GPIO_FROM_NODE_RESET_INFO Skips GPIO from the node
idling and resetting list.
This is needed when the
system is using GPIO to
provide reset (or similar)
signals to PL or other
peripherals outside current
subsystem.
If this flag is set, GPIO is not
reset.

ATF ZYNQMP_WARM_RESTART=1 Enable WARM RESTART
recovery feature in ATF that
allow the CPU idling triggered
from PMU firmware.

FSBL FSBL_PROT_BYPASS Skip XMPU/XPPU based
configuration for system
except for DDR and OCM.

Linux CONFIG_SRAM Needed for Remoteproc to
work for load RPU images in
the TCM.

Modifying Component Recipes
Each component's recipe can be changed to either include the build time compilation flags or to
include patches for custom code modification/addition. PetaLinux provides meta-user Yocto
based layer for user specific modifications. The layer can be found in project directory project-
spec/meta-user/ location.

PMU Firmware

User specific recipe for PMU firmware can be found in the following location:

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 242Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=242

dir:project-spec/meta-user/recipes-bsp/pmu/pmu-firmware_%.bbappend (if
doesn't exist please create this file at this path).

The PMU firmware code can be modified by patches against embeddedsw GitHub repo. Location
for the source code is embeddedsw/tree/master/lib/sw_apps/zynqmp_pmufw. The
patches should be copied to project-spec/meta-user/recipes-bsp/pmu/files
directory and the same patch names should be added pmu-firmware_%.bbappend file.

Example:

If my_changes.patch (against PMU firmware source) is to be added and all the flags explained
in the Build Time Flags in Building Software are to be enabled (set), then project-spec/
meta-user/recipes-bsp/pmu/pmu-firmware_%.bbappend may look like the following
file:

YAML_COMPILER_FLAGS_append = " -O2 -DENABLE_EM -DENABLE_RECOVERY
-DENABLE_ESCALATION -DENABLE_NODE_IDLING -DREMOVE_GPIO_FROM_NODE_RESET_INFO
-DCHECK_HEALTHY_BOOT -DIDLE_PERIPHERALS"

FILESEXTRAPATHS_prepend := "${THISDIR}/files:" SRC_URI_append = " file://
my_changes.patch"

FSBL

User specific recipe for the FSBL can be found in the following location:

dir:project-spec/meta-user/recipes-bsp/fsbl/fsbl_%.bbappend (if does not
exist, please create this file at this path). The FSBL code can be modified by patches against
embeddedsw GitHub repo. Location for the source code is as follows:

embeddedsw/tree/master/lib/sw_apps/zynqmp_fsbl

The patches should be copied to project-spec/meta-user/recipes-bsp/fsbl/files
directory and the same patch names should be added to fsbl_%.bbappend file.

Example:

If my_changes.patch (against the FSBL source) is to be added and all the flags explained in the
Build Time Flags in Building Software are to be enabled (set), then the modified project-
spec/meta-user/recipes-bsp/fsbl/fsbl_%.bbappend file will look like the following
file (XPS_BOARD_ZCU102 flag was already existing):

YAML_COMPILER_FLAGS_append = " -DXPS_BOARD_ZCU102 -DFSBL_PROT_BYPASS"
FILESEXTRAPATHS_prepend := "${THISDIR}/files:"
SRC_URI_append = " file://my_changes.patch"

ATF

User specific recipe for ATF can be found in the following location:

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 243Send Feedback

https://github.com/xilinx/embeddedsw
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=243

dirproject-spec/meta-user/recipes-bsp/arm-trusted-firmware/arm-
trusted-firmware_%.bbappend file (if it doesn't exist, create this file in this path). You can
find the ATF files in Git repository for arm trusted firmware.

Example:

To add warm restart flag to ATF, project-spec/meta-user/recipes-bsp/arm-
trusted-firmware/arm-trusted-firmware_%.bbappend will look like the following file:

#
Enabling warm restart feature
#
EXTRA_OEMAKE_append = " ZYNQMP_WARM_RESTART=1"

Linux

There are many ways to add /modify Linux configuration. See PetaLinux Tools Documentation:
Reference Guide (UG1144) for the same.

User specific recipe for Linux kernel can be found in the following location:

project-spec/meta-user/recipes-kernel/linux/linux-xlnx_%.bbappend (if it
doesn't exist, create this file at this path).

You can find the Linux files at Git Repository for Linux Example:

To add SRAM config to Linux, create the following bsp.cfg file:

project-spec/meta-user/recipes-kernel/linux/linux-xlnx/bsp.cfg

CONFIG_SRAM=y

Add this file in the following bbapend file of Linux:

project-spec/meta-user/recipes-kernel/linux/linux-xlnx_%.bbappend

SRC_URI += "file://bsp.cfg"
FILESEXTRAPATHS_prepend := "${THISDIR}/${PN}:"

Modifying Device Tree

User specific recipe for device tree can be found in the following location:

project-spec/meta-user/recipes-bsp/device-tree/device-tree-generation_
%.bbappend. This file contains the following contents:

SRC_URI_append ="\ file://system-user.dtsi \
"
FILESEXTRAPATHS_prepend := "${THISDIR}/files:"

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 244Send Feedback

https://github.com/Xilinx/arm-trusted-firmware
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1144-petalinux-tools-reference-guide.pdf
https://github.com/Xilinx/linux-xlnx
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=244

The content of system-user.dtsi in project-spec/meta-user/recipes-bsp/
device-tree/files directory is as follows:

/include/ "system-conf.dtsi"
/ {
};

This file can be modified to extend the device tree functionality by adding, removing, or
modifying the DTS nodes.

Example: Adding DT node(s) [remoteproc RPU split mode]

The overlay dtsi(s) can be added in files/ directory (remember to update bbappend file
accordingly) and included in system-user.dtsi. For adding remoteproc related entries to
enable RPU subsystem to load, unload, or restart, add a new overlay file called
remoteproc.dtsi.

Note: This is for split mode. Check open amp documentation for lockstep and other possible
configurations.

File: remoteproc.dtsi

/ {

reserved-memory {

#address-cells = <2>;

#size-cells = <2>; ranges;
rproc_0_reserved: rproc:dir3ed000000 { no-map;
reg = <0x0 0x3ed00000 0x0 0x1000000>;

};

};

power-domains {

pd_r5_0: pd_r5_0 {

#power-domain-cells = <0x0>; pd-id = <0x7>;
};

pd_r5_1: pd_r5_1 {

#power-domain-cells = <0x0>; pd-id = <0x8>;
};

pd_tcm_0_a: pd_tcm_0_a {

#power-domain-cells = <0x0>; pd-id = <0xf>;
};

pd_tcm_0_b: pd_tcm_0_b {

#power-domain-cells = <0x0>; pd-id = <0x10>;

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 245Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=245

};

pd_tcm_1_a: pd_tcm_1_a {

#power-domain-cells = <0x0>;

pd-id = <0x11>;
};

pd_tcm_1_b: pd_tcm_1_b {

#power-domain-cells = <0x0>; pd-id = <0x12>;
};
};
amba {

r5_0_tcm_a: tcm:dirffe00000 { compatible = "mmio-sram";
reg = <0x0 0xFFE00000 0x0 0x10000>;

pd-handle = <&pd_tcm_0_a>;

};

r5_0_tcm_b: tcm:dirffe20000 { compatible = "mmio-sram";
reg = <0x0 0xFFE20000 0x0 0x10000>;

pd-handle = <&pd_tcm_0_b>;

};

r5_1_tcm_a: tcm:dirffe90000 { compatible = "mmio-sram";
reg = <0x0 0xFFE90000 0x0 0x10000>;

pd-handle = <&pd_tcm_1_a>;

};

r5_1_tcm_b: tcm:dirffeb0000 { compatible = "mmio-sram";
reg = <0x0 0xFFEB0000 0x0 0x10000>;

pd-handle = <&pd_tcm_1_b>;

};

elf_ddr_0: ddr:dir3ed00000 { compatible = "mmio-sram";
reg = <0x0 0x3ed00000 0x0 0x40000>;

};

elf_ddr_1: ddr:dir3ed40000 { compatible = "mmio-sram";
reg = <0x0 0x3ed40000 0x0 0x40000>;

};

test_r50: zynqmp_r5_rproc:dir0 {

compatible = "xlnx,zynqmp-r5-remoteproc-1.0";

reg = <0x0 0xff9a0100 0x0 0x100>, <0x0 0xff340000 0x0 0x100>, <0x0
0xff9a0000 0x0 0x100>;

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 246Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=246

reg-names = "rpu_base", "ipi", "rpu_glbl_base"; dma-ranges;

core_conf = "split0"; sram_0 = <&r5_0_tcm_a>; sram_1 = <&r5_0_tcm_b>;
sram_2 = <&elf_ddr_0>; pd-handle = <&pd_r5_0>;
interrupt-parent = <&gic>; interrupts = <0 29 4>;
} ;
test_r51: zynqmp_r5_rproc:dir1 {
compatible = "xlnx,zynqmp-r5-remoteproc-1.0";
reg =<0x0 0xff9a0200 0x0 0x100>, <0x0 0xff340000 0x0 0x100>, <0x0
0xff9a0000 0x0 0x100>;

reg-names = "rpu_base", "ipi", "rpu_glbl_base"; dma-ranges;
core_conf = "split1"; sram_0 = <&r5_1_tcm_a>; sram_1 = <&r5_1_tcm_b>;
sram_2 = <&elf_ddr_1>; pd-handle = <&pd_r5_1>;
interrupt-parent = <&gic>; interrupts = <0 29 4>;
} ;
};
};

Now include this node in system-user.dtsi:

/include/ "system-conf.dtsi"
/include/ "remoteproc.dtsi"
/ {
};

For information on OpenAMP and remoteproc, see the OpenAmp wiki page.

Example: Removing DT node(s) [PL node]

It is necessary to remove PL nodes, which are not accessed or dependent on APU subsystem,
from the device tree. Again, you can modify system-user.dtsi in project-spec/meta-
user/recipes-bsp/device-tree/files to remove specific node or property.

For example, you can modify the system-user.dtsi as following, if you are willing to remove
AXI DMA node from the dts:

/include/ "system-conf.dtsi"
/include/ "remoteproc.dtsi"
/ {
/delete-node/axi-dma;
};

Chapter 12: Reset

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 247Send Feedback

http://www.wiki.xilinx.com/OpenAMP
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=247

Chapter 13

High-Speed Bus Interfaces
The Zynq® UltraScale+™ MPSoC has a serial input/output unit (SIOU) for a high-speed serial
interface. It supports protocols such as PCIe®, USD 3.0, DisplayPort, SATA, and Ethernet
protocols.

• The SIOU block is part of the full-power domain (FPD) in the PS.

• The USB and Ethernet controller blocks that are part of the low-power domain (LPD) in the
Zynq UltraScale+ MPSoC also share the PS-GTR transceivers.

• The interconnect matrix enables multiplexing of four PS-GTR transceivers in various
combinations across multiple controller blocks.

• A register block controls or monitors signals within the SIOU.

This chapter explains the configuration flow of the high-speed interface protocols.

See this link to the “High-Speed PS-GTR Transceiver Interface” of the Zynq UltraScale+ Device
Technical Reference Manual (UG1085) for more information.

USB 3.0
The Zynq UltraScale+ MPSoC USB 3.0 controller consists of two independent dual-role device
(DRD) controllers. Both can be individually configured to work as host or device at any given
time. The USB 3.0 DRD controller provides an eXtensible host controller interface (xHCI) to the
system software through the advanced eXtensible interface (AXI) slave interface.

• An internal DMA engine is present in the controller and it uses the AXI master interface to
transfer data.

• The three dual-port RAM configurations implement the RX data FIFO, TX data FIFO, and the
descriptor/register cache.

The following flow diagrams illustrate how to configure USB as mass storage device.

Chapter 13: High-Speed Bus Interfaces

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 248Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxHighSpeedPSGTRTranscieverInterface
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=248

Figure 69: USB Example Flow: USB Initialization

USB config initialize

Start

Call a function to hook up the handler for control packets

Is Req type==
Std dev req?

Stall on endpoint 0

Call a function to hook up the handler for mass storage

Stall the endpoint 0

Handle standard device request

Is Req type==
class req?

Handle the class request

Is Req type==
vendor req?

Do nothing

Is Req ==
Mass storage

reset?

Do nothing
(Status phase is handled by driver)

Is Req ==
Get_Maz_LUN

Prepare a URB with number of LUNs

Yes

Yes

Yes

Yes

Yes

No

No

No

No

No

A

X15463-071017

Chapter 13: High-Speed Bus Interfaces

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 249Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=249

Figure 70: Example USB Flow: Hookup Bulk in and Bulk out Handlers and Initialize
Interrupt Controller

Prepare device descriptors

Prepare configuration descriptors

Call a function to hook up the bulkout handler

Is phase ==
Data?

Send command status wrapper (CSW)

Call a function to hook up the bulk In handler

Read the packet data into Receive BufferIs phase ==
Status?

Initialize the driver interrupt controller

Config initialize for GIC

Connect the interrupt controller

Is phase ==
Command? Parse CBW

Send reduced block command (RBC)
Write operation

Is phase ==
Data?

Is
RBC

Mode sense ==
1?

Send CSW with mode

Yes

Yes

No

No

Yes

No

Yes Yes

Send CSW with mode
No

No

B

A

X15477-071017

Chapter 13: High-Speed Bus Interfaces

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 250Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=250

Figure 71: Enable Interrupts and Start the USB Controller

Enable all the required interrupts

Connect the interrupt controller to the interrupt
handling logic in ARM

Enable interrupts in the ARM

Wait for interrupts

Start USB Controller

B

X15478-021317

For more information on USB controller, see this link to the “USB 2.0/3.0 Host, Device, and
Controller,” chapter of the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Gigabit Ethernet Controller
The gigabit Ethernet controller (GEM) implements a 10/100/1000 Mb/s Ethernet MAC
compatible with IEEE Standard for Ethernet (IEEE Std 802.3-2008) and is capable of operating in
either half or full-duplex mode in 10/100 mode and full-duplex in 1000 mode.

The processor system (PS) is equipped with four gigabit Ethernet controllers. Registers are used
to configure the features of the MAC, and select different modes of operation. The DMA
controller connects to memory through the advanced eXtensible interface (AXI). It is attached to
the FIFO interface of the controller of the MAC to provide a scatter-gather type capability for
packet data storage in an embedded processing system.

The following figures illustrate an example for configuring an Ethernet controller to send a single
packet of data in RGMII mode.

Chapter 13: High-Speed Bus Interfaces

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 251Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxUSB2030HostDeviceAndOTGController
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=251

Figure 72: Example Ethernet Flow: Initialize Ethernet Controller

Start

Setup UART

Get the Configuration of Ethernet
Hardware

Get Cache Coherence Selection

Initialize Ethernet hardware, setup interrupts and
callbacks

Error initializing? Return error and exit

Set the MAC address

Set the loopback speed to 1G

Get the PHY interface

Detect the PHY address

Read the PHY Model

No

Yes

A

X15462-071017

Chapter 13: High-Speed Bus Interfaces

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 252Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=252

Figure 73: Example Ethernet Flow: Configure the Ethernet Parameters & Initiate the
Transmit

Clear the PHY of any existing bits

RGMII mode PHY specific register initialization

Configure the Interface modes

Set the speed and put the PHY in reset

Put the PHY in loopback

Return Error and ExitError Setting the
PHY loopback?

Set PHY <-> MAC Data clock

Delay

Setup BD space

Setup attributes of BD space

Set up the packet to be transmitted

Clear out the receive packet memory area

Calculate the frame length (not including FCS)

Setup BD Rings and push the Frame

Start the Ethernet Device and Initiate Transmit

Wait for status of the transmitted packet

No

Yes

A

B
X15479-071017

Chapter 13: High-Speed Bus Interfaces

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 253Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=253

Figure 74: Example Ethernet Flow: Receive and Validate the Data

Wait for status of the transmitted packet

Receive the packet

Return error and exitError

Get the length of the arrived data

Read the packet data received

Verify the received frame length

Validate the frame data

Stop Ethernet Hardware and disable
Interrupts

No

Yes

Stop

B

X15480-021317

For more information on Ethernet Controller, see this link to the “Gigabit Ethernet Controller”
chapter in the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

PCI Express
The Zynq UltraScale+ MPSoC provides a controller for the integrated block for PCI™ Express
v2.1 compliant, AXI-PCIe® Bridge, and DMA modules. The AXI-PCIe® Bridge provides high-
performance bridging between PCIe® and AXI.

Chapter 13: High-Speed Bus Interfaces

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 254Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxGigabitEthernetController
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=254

The following flow diagrams illustrate an example for configuring PCIe root complex for a data
transfer.

Figure 75: Example PCIe Flow: Enable the Legacy Interrupts and Create PCIe Root Bus

Map the register memory space for PCIe bridge
and controller

Start

Map the memory space for ECAM

Write the bridge offset in the bridge register base

Enable the bridge in the bridge control register

Disable the DMA channel registers

Enable the bridge configuration interrupt

Enable Ingress Subtractive decode translation

Enable message filtering

Get the PCIe link up

ECAM
Bit==1

?
Return error and exit

Enable ECAM in ECAM control register

Yes

No

A
X15481-071217

Chapter 13: High-Speed Bus Interfaces

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 255Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=255

Figure 76: Example PCIe Flow: Configure the PCIe Parameters and Initialize the
Transmit

Clear the PHY of any existing bits

RGMII mode PHY specific register initialization

Configure the Interface modes

Set the speed and put the PHY in reset

Put the PHY in loopback

Return Error and ExitError Setting the
PHY loopback?

Set PHY <-> MAC Data clock

Delay

Setup BD space

Setup attributes of BD space

Set up the packet to be transmitted

Clear out the receive packet memory area

Calculate the frame length (not including FCS)

Setup BD Rings and push the Frame

Start the Ethernet Device and Initiate Transmit

Wait for status of the transmitted packet

No

Yes

A

B
X15479-071017

Chapter 13: High-Speed Bus Interfaces

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 256Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=256

Figure 77: Example PCIe Flow: Enable the Legacy Interrupts and Create PCIe Root Bus

Get the legacy interrupt number

Return error and exitInvalid interrupt
number

Register the legacy interrupt handler

Return error and exitFailed to
register handle?

Enable all legacy interrupts

Get the bridge resources

Error getting
resources?

Create PCIe root bus

Return error and exit

Return error and exitError creating
 root bus? Yes

Yes

Yes

Yes

No

No

No

No

B

C
X15483-071217

Chapter 13: High-Speed Bus Interfaces

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 257Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=257

Figure 78: Example PCIe Flow: Enable MSI Interrupts and Wait for Interrupts

Assign MSI chip hooks

No

Create the IRQ domain

Enable MSII and MSII status

Error creating
IRQ domain? Return error and exit

Yes

No

MSII bit Present?
No

Write the MSII low and high addresses

Disable and clear all high range MSI interrupts

Get the MSI_1 IRQ number

Disable and clear all low range MSI interrupts

Get the MSI_0 IRQ number

Enable all low range interrupts

Enable all high range interrupts

Remove the Interrupt Domain

Error Registering
 MSI_0 handle?

No

Yes

Register the MSI_0 handle

Error getting the IRQ number?

No

Error Registering
 MSI_1 handle?

Yes

Yes

Register the MSI_1 handle

Error getting the IRQ number? Yes

Yes

No

No

Is MSI bit set?

Yes

C

Scan the PCIe child bus

Assign unassigned bus resoources

Add PCIe bus devices

Set the platform driver data

Wait for interrupts

X15484-071217

Chapter 13: High-Speed Bus Interfaces

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 258Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=258

Note: For endpoint operation, refer to this link to “Controller for PCI Express” in the Zynq UltraScale+ Device
Technical Reference Manual (UG1085).

After the memory space for PCIe bridge and ECAM is mapped, ECAM is enabled for ECAM
translations. You then acquire the bus range to set up the bus numbers, and write the primary,
secondary, and subordinate bus numbers. The interrupt system must be set up by enabling all the
miscellaneous and legacy interrupts. You can parse the ranges property of a PCI host bridge
device node, and setup the resource mapping based on its content.

To create a root bus, allocate the PCIe root bus and add initial resources to the bus. If the MSI bit
is set, you must enable the message signaling interrupt (MSI). After configuring the MSI
interrupts, scan the PCIe slot and enumerate the entire PCIe bus and allocate bus resources to
scanned buses. Now, you can add PCIe devices to the system.

For more information on PCI Express, see this link to the “DMA Controller” section and this link
to “Controller for PCI Express” in the Zynq UltraScale+ Device Technical Reference Manual
(UG1085).

Chapter 13: High-Speed Bus Interfaces

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 259Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxControllerForPCIExpress
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxDMAController
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=259

Chapter 14

Clock and Frequency Management
The Zynq® UltraScale+™ MPSoC architecture includes a programmable clock generator that
takes a clock of a definite input frequency and generates multiple-derived clocks using the
phase-locked loop (PLL) blocks in the PS. The output clock from each of the PLLs is used as a
reference clock for the different PS peripherals.

Unlike the USB and Ethernet peripherals, some peripherals like the UART and SD allow you to
dynamically change the device frequency setting.

This chapter provides information about changing the operating frequency of these peripherals
dynamically. See Chapter 11: Power Management Framework for more information on reducing
or adjusting the clock frequencies.

Changing the Peripheral Frequency
You can change the peripheral operation frequency by directly setting the frequency in the
corresponding peripheral clock configuration register. The Zynq UltraScale+ MPSoC BSP
provides APIs that aid in changing the peripheral clock frequency dynamically according to your
requirements.

The following table shows the standalone APIs that can be used to change the frequency of the
peripherals

Table 62: Standalone APIs

APIs Description
XSDPS_change_clkfreq Change the clock frequency of SD.

XSPIPS_setclkprescaler XSPIPS_getclkprescaler Pre-scale the SPI frequency.

XRtcPSu_calculatecalibration Change the oscillator frequency.

XQSPIPSU_setclkprescaler Change the clock frequency of QSPI.

Chapter 14: Clock and Frequency Management

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 260Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=260

In case of a Linux application, the frequency of all the peripherals is set in the device tree file. The
following code snippet shows the setting of peripheral clock.

ps7_qspi_0: ps7-qspi:dir0xFF0F0000 {
#address-cells = <0x1>;
#size-cells = <0x0>;
#bus-cells = <0x1>;
clock-names = “ref_clk”, “pclk”;
compatible = “xlnx,usmp-gqspi”, “cdns,spi-r1p6”; stream-connected-dma =
<0x26>;
clocks = <0x1e 0x1e>; dma = <0xb>; interrupts = <0xf>;
num-chip-select = <0x2>;
reg = <0x0 0xff0f0000 0x1000 0x0 0xc0000000 0x8000000>;
speed-hz = <0xbebc200>; xlnx,fb-clk = <0x1>;
xlnx,qspi-clk-freq-hz = <0xbebc200>; xlnx,qspi-mode = <0x2>;

To avoid any error condition, the peripheral needs to be stopped before changing the
corresponding clock frequency.

The steps to follow before changing the clock frequency for any peripheral are as follows:

1. Stop the transition pertaining to the peripheral (IP) and make it idle.

2. Stop the IP by appropriately configuring the registers.

3. Change the clock frequency of the peripheral.

4. Issue soft reset to the IP.

5. Restart the IP.

For more information on Zynq UltraScale+ MPSoC clock generator, see this link in the “Clocking”
chapter in the in the Zynq UltraScale+ Device Technical Reference Manual (UG1085).

Chapter 14: Clock and Frequency Management

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 261Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides%3Bd%3Dug1085-zynq-ultrascale-trm.pdf%3Ba%3DxClocking
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=261

Chapter 15

Target Development Platforms
This chapter describes various development platforms available for the
Zynq® UltraScale+™ MPSoC, such as Quick Emulators (QEMU) and the Zynq UltraScale+ MPSoC
boards and kits.

QEMU
QEMU is a system emulation model that functions on an Intel-compatible Linux host system.
Xilinx® QEMU implements a framework for generating custom machine models based on a
device tree passed to it using the command line. See the Xilinx Quick Emulator User Guide: QEMU
(UG1169) for more information about QEMU.

Boards and Kits
Xilinx provides the Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit for developers. To
understand more about the ZCU102 evaluation kit, see the Preliminary ZCU102 Getting Started
Guide Answer Record: 66249.

See the Zynq UltraScale+ MPSoC Products Page to know the different
Zynq UltraScale+ MPSoCs.

Chapter 15: Target Development Platforms

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 262Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1169-xilinx-qemu.pdf
https://www.xilinx.com/support/answers/66249.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productAdvantages
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=262

Chapter 16

Boot Image Creation
Zynq® UltraScale+™ MPSoC supports both secure and non-secure booting. While deploying the
devices in field, it is important to prevent unauthorized or modified code from being run on these
devices. Zynq UltraScale+ MPSoC provides the required confidentiality, integrity, and
authentication to host applications securely. For more information on security features, see Zynq
UltraScale+ Device Technical Reference Manual (UG1085).

Zynq UltraScale+ MPSoCs typically have many hardware and software binaries that are used to
boot them to function as designed and expected. These binaries includes FPGA bitstreams,
Firmware, boot loaders, operating system, and applications that you select. For example: FPGA
bitstream files, first stage boot loader (FSBL), PMU firmware, ATF, U-Boot, Linux kernel, Rootfs,
device tree, standalone or RTOS applications and so on). Xilinx provides a standalone tool,
Bootgen, to stitch all these binary images together and generate a device bootable image in a
specific format that Xilinx loader programs can interpret while loading.

Bootgen has multiple attributes and commands that define its behavior while generating boot
images. They are secure boot image generation, non-secure boot image generation, Secure key
generation, HMI Mode and so on. For complete details of how to get the Bootgen tool, the
installation procedure, and details of Zynq Ultrascale+ Boot Image format, Bootgen commands,
attributes, and boot image generation procedure with examples, see Bootgen User Guide
(UG1283).

Chapter 16: Boot Image Creation

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 263Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=263

Appendix A

Standalone Library v7.2

Xilinx Hardware Abstraction Layer API
This section describes the Xilinx Hardware Abstraction Layer API, These APIs are applicable for
all processors supported by Xilinx.

Assert APIs and Macros
The xil_assert.h file contains assert related functions and macros. Assert APIs/Macros specifies
that a application program satisfies certain conditions at particular points in its execution. These
function can be used by application programs to ensure that, application code is satisfying
certain conditions.

Table 63: Quick Function Reference

Type Name Arguments
void Xil_Assert

file
line

void XNullHandler
void * NullParameter

void Xil_AssertSetCallback
routine

Functions

Xil_Assert

Implement assert.

Currently, it calls a user-defined callback function if one has been set. Then, it potentially enters
an infinite loop depending on the value of the Xil_AssertWait variable.

Note: None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 264Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=264

Prototype

void Xil_Assert(const char8 *File, s32 Line);

Parameters

The following table lists the Xil_Assert function arguments.

Table 64: Xil_Assert Arguments

Name Description
file filename of the source

line linenumber within File

Returns

None.

XNullHandler

Null handler function.

This follows the XInterruptHandler signature for interrupt handlers. It can be used to assign a null
handler (a stub) to an interrupt controller vector table.

Note: None.

Prototype

void XNullHandler(void *NullParameter);

Parameters

The following table lists the XNullHandler function arguments.

Table 65: XNullHandler Arguments

Name Description
NullParameter arbitrary void pointer and not used.

Returns

None.

Xil_AssertSetCallback

Set up a callback function to be invoked when an assert occurs.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 265Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=265

If a callback is already installed, then it will be replaced.

Note: This function has no effect if NDEBUG is set

Prototype

void Xil_AssertSetCallback(Xil_AssertCallback Routine);

Parameters

The following table lists the Xil_AssertSetCallback function arguments.

Table 66: Xil_AssertSetCallback Arguments

Name Description
routine callback to be invoked when an assert is taken

Returns

None.

Register IO interfacing APIs
The xil_io.h file contains the interface for the general I/O component, which encapsulates the
Input/Output functions for the processors that do not require any special I/O handling.

Table 67: Quick Function Reference

Type Name Arguments
u16 Xil_EndianSwap16

u16 Data

u32 Xil_EndianSwap32
u32 Data

INLINE u8 Xil_In8
UINTPTR Addr

INLINE u16 Xil_In16
UINTPTR Addr

INLINE u32 Xil_In32
UINTPTR Addr

INLINE u64 Xil_In64
UINTPTR Addr

INLINE void Xil_Out8
UINTPTR Addr
u8 Value

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 266Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=266

Table 67: Quick Function Reference (cont'd)

Type Name Arguments
INLINE void Xil_Out16

UINTPTR Addr
u16 Value

INLINE void Xil_Out32
UINTPTR Addr
u32 Value

INLINE void Xil_Out64
UINTPTR Addr
u64 Value

INLINE u32 Xil_SecureOut32
UINTPTR Addr
u32 Value

INLINE u16 Xil_In16BE
void

INLINE u32 Xil_In32BE
void

INLINE void Xil_Out16BE
void

INLINE void Xil_Out32BE
void

Functions

Xil_EndianSwap16

Perform a 16-bit endian conversion.

Prototype

u16 Xil_EndianSwap16(u16 Data);

Parameters

The following table lists the Xil_EndianSwap16 function arguments.

Table 68: Xil_EndianSwap16 Arguments

Name Description
Data 16 bit value to be converted

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 267Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=267

Returns

16 bit Data with converted endianness

Xil_EndianSwap32

Perform a 32-bit endian conversion.

Prototype

u32 Xil_EndianSwap32(u32 Data);

Parameters

The following table lists the Xil_EndianSwap32 function arguments.

Table 69: Xil_EndianSwap32 Arguments

Name Description
Data 32 bit value to be converted

Returns

32 bit data with converted endianness

Xil_In8

Performs an input operation for a memory location by reading from the specified address and
returning the 8 bit Value read from that address.

Prototype

INLINE u8 Xil_In8(UINTPTR Addr);

Parameters

The following table lists the Xil_In8 function arguments.

Table 70: Xil_In8 Arguments

Name Description
Addr contains the address to perform the input operation

Returns

The 8 bit Value read from the specified input address.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 268Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=268

Xil_In16

Performs an input operation for a memory location by reading from the specified address and
returning the 16 bit Value read from that address.

Prototype

INLINE u16 Xil_In16(UINTPTR Addr);

Parameters

The following table lists the Xil_In16 function arguments.

Table 71: Xil_In16 Arguments

Name Description
Addr contains the address to perform the input operation

Returns

The 16 bit Value read from the specified input address.

Xil_In32

Performs an input operation for a memory location by reading from the specified address and
returning the 32 bit Value read from that address.

Prototype

INLINE u32 Xil_In32(UINTPTR Addr);

Parameters

The following table lists the Xil_In32 function arguments.

Table 72: Xil_In32 Arguments

Name Description
Addr contains the address to perform the input operation

Returns

The 32 bit Value read from the specified input address.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 269Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=269

Xil_In64

Performs an input operation for a memory location by reading the 64 bit Value read from that
address.

Prototype

INLINE u64 Xil_In64(UINTPTR Addr);

Parameters

The following table lists the Xil_In64 function arguments.

Table 73: Xil_In64 Arguments

Name Description
Addr contains the address to perform the input operation

Returns

The 64 bit Value read from the specified input address.

Xil_Out8

Performs an output operation for an memory location by writing the 8 bit Value to the the
specified address.

Prototype

INLINE void Xil_Out8(UINTPTR Addr, u8 Value);

Parameters

The following table lists the Xil_Out8 function arguments.

Table 74: Xil_Out8 Arguments

Name Description
Addr contains the address to perform the output operation

Value contains the 8 bit Value to be written at the specified address.

Returns

None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 270Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=270

Xil_Out16

Performs an output operation for a memory location by writing the 16 bit Value to the the
specified address.

Prototype

INLINE void Xil_Out16(UINTPTR Addr, u16 Value);

Parameters

The following table lists the Xil_Out16 function arguments.

Table 75: Xil_Out16 Arguments

Name Description
Addr contains the address to perform the output operation

Value contains the Value to be written at the specified address.

Returns

None.

Xil_Out32

Performs an output operation for a memory location by writing the 32 bit Value to the the
specified address.

Prototype

INLINE void Xil_Out32(UINTPTR Addr, u32 Value);

Parameters

The following table lists the Xil_Out32 function arguments.

Table 76: Xil_Out32 Arguments

Name Description
Addr contains the address to perform the output operation

Value contains the 32 bit Value to be written at the specified address.

Returns

None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 271Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=271

Xil_Out64

Performs an output operation for a memory location by writing the 64 bit Value to the the
specified address.

Prototype

INLINE void Xil_Out64(UINTPTR Addr, u64 Value);

Parameters

The following table lists the Xil_Out64 function arguments.

Table 77: Xil_Out64 Arguments

Name Description
Addr contains the address to perform the output operation

Value contains 64 bit Value to be written at the specified address.

Returns

None.

Xil_SecureOut32

Performs an output operation for a memory location by writing the 32 bit Value to the the
specified address and then reading it back to verify the value written in the register.

Prototype

INLINE u32 Xil_SecureOut32(UINTPTR Addr, u32 Value);

Parameters

The following table lists the Xil_SecureOut32 function arguments.

Table 78: Xil_SecureOut32 Arguments

Name Description
Addr contains the address to perform the output operation

Value contains 32 bit Value to be written at the specified address

Returns

Returns Status

• XST_SUCCESS on success

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 272Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=272

• XST_FAILURE on failure

Definitions for available xilinx platforms
The xplatform_info.h file contains definitions for various available Xilinx platforms. Also, it
contains prototype of APIs, which can be used to get the platform information.

Table 79: Quick Function Reference

Type Name Arguments
u32 XGetPlatform_Info

None.

Functions

XGetPlatform_Info

This API is used to provide information about platform.

Prototype

u32 XGetPlatform_Info(void);

Parameters

The following table lists the XGetPlatform_Info function arguments.

Table 80: XGetPlatform_Info Arguments

Name Description
None.

Returns

The information about platform defined in xplatform_info.h

Data types for Xilinx Software IP Cores
The xil_types.h file contains basic types for Xilinx software IP. These data types are applicable for
all processors supported by Xilinx.

Customized APIs for Memory Operations
The xil_mem.h file contains prototype for functions related to memory operations. These APIs
are applicable for all processors supported by Xilinx.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 273Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=273

Table 81: Quick Function Reference

Type Name Arguments
void Xil_MemCpy

void * dst
const void * src
u32 cnt

Functions

Xil_MemCpy

This function copies memory from once location to other.

Prototype

void Xil_MemCpy(void *dst, const void *src, u32 cnt);

Parameters

The following table lists the Xil_MemCpy function arguments.

Table 82: Xil_MemCpy Arguments

Name Description
dst pointer pointing to destination memory

src pointer pointing to source memory

cnt 32 bit length of bytes to be copied

Xilinx software status codes
The xstatus.h file contains the Xilinx software status codes.These codes are used throughout the
Xilinx device drivers.

Test Utilities for Memory and Caches
The xil_testcache.h, xil_testio.h and the xil_testmem.h files contain utility functions to test cache
and memory. Details of supported tests and subtests are listed below.

The xil_testcache.h file contains utility functions to test cache.

The xil_testio.h file contains utility functions to test endian related memory IO functions.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 274Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=274

A subset of the memory tests can be selected or all of the tests can be run in order. If there is an
error detected by a subtest, the test stops and the failure code is returned. Further tests are not
run even if all of the tests are selected.

The xil_testmem.h file contains utility functions to test memory. A subset of the memory tests
can be selected or all of the tests can be run in order. If there is an error detected by a subtest,
the test stops and the failure code is returned. Further tests are not run even if all of the tests are
selected. Following list describes the supported memory tests:

• XIL_TESTMEM_ALLMEMTESTS: This test runs all of the subtests.

• XIL_TESTMEM_INCREMENT: This test starts at 'XIL_TESTMEM_INIT_VALUE' and uses the
incrementing value as the test value for memory.

• XIL_TESTMEM_WALKONES: Also known as the Walking ones test. This test uses a walking '1'
as the test value for memory.

location 1 = 0x00000001
location 2 = 0x00000002
...

• XIL_TESTMEM_WALKZEROS: Also known as the Walking zero's test. This test uses the
inverse value of the walking ones test as the test value for memory.

location 1 = 0xFFFFFFFE
location 2 = 0xFFFFFFFD
...

• XIL_TESTMEM_INVERSEADDR: Also known as the inverse address test. This test uses the
inverse of the address of the location under test as the test value for memory.

• XIL_TESTMEM_FIXEDPATTERN: Also known as the fixed pattern test. This test uses the
provided patters as the test value for memory. If zero is provided as the pattern the test uses
'0xDEADBEEF".

CAUTION! The tests are DESTRUCTIVE. Run before any initialized memory spaces have been set up. The
address provided to the memory tests is not checked for validity except for the NULL case. It is possible to
provide a code-space pointer for this test to start with and ultimately destroy executable code causing random
failures.

Note: Used for spaces where the address range of the region is smaller than the data width. If the memory
range is greater than 2 ** width, the patterns used in XIL_TESTMEM_WALKONES and
XIL_TESTMEM_WALKZEROS will repeat on a boundary of a power of two making it more difficult to
detect addressing errors. The XIL_TESTMEM_INCREMENT and XIL_TESTMEM_INVERSEADDR tests
suffer the same problem. Ideally, if large blocks of memory are to be tested, break them up into smaller
regions of memory to allow the test patterns used not to repeat over the region tested.

Table 83: Quick Function Reference

Type Name Arguments
s32 Xil_TestDCacheRange

void

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 275Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=275

Table 83: Quick Function Reference (cont'd)

Type Name Arguments
s32 Xil_TestDCacheAll

void

s32 Xil_TestICacheRange
void

s32 Xil_TestICacheAll
void

s32 Xil_TestIO8
u8 * Addr
s32 Length
u8 Value

s32 Xil_TestIO16
u16 * Addr
s32 Length
u16 Value
s32 Kind
s32 Swap

s32 Xil_TestIO32
u32 * Addr
s32 Length
u32 Value
s32 Kind
s32 Swap

Functions

Xil_TestIO8

Perform a destructive 8-bit wide register IO test where the register is accessed using Xil_Out8
and Xil_In8, and comparing the written values by reading them back.

Prototype

s32 Xil_TestIO8(u8 *Addr, s32 Length, u8 Value);

Parameters

The following table lists the Xil_TestIO8 function arguments.

Table 84: Xil_TestIO8 Arguments

Name Description
Addr a pointer to the region of memory to be tested.

Length Length of the block.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 276Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=276

Table 84: Xil_TestIO8 Arguments (cont'd)

Name Description
Value constant used for writing the memory.

Returns

• -1 is returned for a failure

• 0 is returned for a pass

Xil_TestIO16

Perform a destructive 16-bit wide register IO test.

Each location is tested by sequentially writing a 16-bit wide register, reading the register, and
comparing value. This function tests three kinds of register IO functions, normal register IO, little-
endian register IO, and big-endian register IO. When testing little/big-endian IO, the function
performs the following sequence, Xil_Out16LE/Xil_Out16BE, Xil_In16, Compare In-Out values,
Xil_Out16, Xil_In16LE/Xil_In16BE, Compare In-Out values. Whether to swap the read-in value
before comparing is controlled by the 5th argument.

Prototype

s32 Xil_TestIO16(u16 *Addr, s32 Length, u16 Value, s32 Kind, s32 Swap);

Parameters

The following table lists the Xil_TestIO16 function arguments.

Table 85: Xil_TestIO16 Arguments

Name Description
Addr a pointer to the region of memory to be tested.

Length Length of the block.

Value constant used for writing the memory.

Kind Type of test. Acceptable values are: XIL_TESTIO_DEFAULT, XIL_TESTIO_LE,
XIL_TESTIO_BE.

Swap indicates whether to byte swap the read-in value.

Returns

• -1 is returned for a failure

• 0 is returned for a pass

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 277Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=277

Xil_TestIO32

Perform a destructive 32-bit wide register IO test.

Each location is tested by sequentially writing a 32-bit wide register, reading the register, and
comparing value. This function tests three kinds of register IO functions, normal register IO, little-
endian register IO, and big-endian register IO. When testing little/big-endian IO, the function
perform the following sequence, Xil_Out32LE/ Xil_Out32BE, Xil_In32, Compare, Xil_Out32,
Xil_In32LE/Xil_In32BE, Compare. Whether to swap the read-in value *before comparing is
controlled by the 5th argument.

Prototype

s32 Xil_TestIO32(u32 *Addr, s32 Length, u32 Value, s32 Kind, s32 Swap);

Parameters

The following table lists the Xil_TestIO32 function arguments.

Table 86: Xil_TestIO32 Arguments

Name Description
Addr a pointer to the region of memory to be tested.

Length Length of the block.

Value constant used for writing the memory.

Kind type of test. Acceptable values are: XIL_TESTIO_DEFAULT, XIL_TESTIO_LE,
XIL_TESTIO_BE.

Swap indicates whether to byte swap the read-in value.

Returns

• -1 is returned for a failure

• 0 is returned for a pass

MicroBlaze Processor API
This section provides a linked summary and detailed descriptions of the MicroBlaze Processor
APIs.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 278Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=278

MicroBlaze Pseudo-asm Macros and Interrupt
Handling APIs
MicroBlaze BSP includes macros to provide convenient access to various registers in the
MicroBlaze processor. Some of these macros are very useful within exception handlers for
retrieving information about the exception.Also, the interrupt handling functions help manage
interrupt handling on MicroBlaze processor devices.To use these functions, include the header
file mb_interface.h in your source code

Table 87: Quick Function Reference

Type Name Arguments
void microblaze_enable_interrupts

void

void microblaze_disable_interrupts
void

void microblaze_enable_icache
void

void microblaze_disable_icache
void

void microblaze_enable_dcache
void

void microblaze_disable_dcache
void

void microblaze_enable_exceptions
void

void microblaze_disable_exceptions
void

void microblaze_register_handler
XInterruptHandler Handler
void * DataPtr

void microblaze_register_exception_handler
u32 ExceptionId
Top
void * DataPtr

void microblaze_invalidate_icache
void

void microblaze_invalidate_dcache
void

void microblaze_flush_dcache
void

void microblaze_invalidate_icache_range
void

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 279Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=279

Table 87: Quick Function Reference (cont'd)

Type Name Arguments
void microblaze_invalidate_dcache_range

void

void microblaze_flush_dcache_range
void

void microblaze_scrub
void

void microblaze_invalidate_cache_ext
void

void microblaze_flush_cache_ext
void

void microblaze_flush_cache_ext_range
void

void microblaze_invalidate_cache_ext_range
void

void microblaze_update_icache
void

void microblaze_init_icache_range
void

void microblaze_update_dcache
void

void microblaze_init_dcache_range
void

Functions

microblaze_register_handler

Registers a top-level interrupt handler for the MicroBlaze.

The argument provided in this call as the DataPtr is used as the argument for the handler when it
is called.

Prototype

void microblaze_register_handler(XInterruptHandler Handler, void *DataPtr);

Parameters

The following table lists the microblaze_register_handler function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 280Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=280

Table 88: microblaze_register_handler Arguments

Name Description
Handler Top level handler.

DataPtr a reference to data that will be passed to the handler when it gets called.

Returns

None.

microblaze_register_exception_handler

Registers an exception handler for the MicroBlaze.

The argument provided in this call as the DataPtr is used as the argument for the handler when it
is called.

None.

Note:

Prototype

void microblaze_register_exception_handler(u32 ExceptionId,
Xil_ExceptionHandler Handler, void *DataPtr);

Parameters

The following table lists the microblaze_register_exception_handler function
arguments.

Table 89: microblaze_register_exception_handler Arguments

Name Description
ExceptionId is the id of the exception to register this handler for.

Top level handler.

DataPtr is a reference to data that will be passed to the handler when it gets called.

Returns

None.

MicroBlaze exception APIs
The xil_exception.h file contains MicroBlaze specific exception related APIs and macros.
Application programs can use these APIs/Macros for various exception related operations (i.e.
enable exception, disable exception, register exception handler etc.)

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 281Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=281

Note: To use exception related functions, the xil_exception.h file must be added in source code

Table 90: Quick Function Reference

Type Name Arguments
void microblaze_enable_exceptions

void

void microblaze_disable_exceptions
void

void microblaze_enable_interrupts
void

void microblaze_disable_interrupts
void

void Xil_ExceptionNullHandler
void * Data

void Xil_ExceptionInit
None.

void Xil_ExceptionEnable
void

void Xil_ExceptionDisable
None.

void Xil_ExceptionRegisterHandler
u32 Id
Xil_ExceptionHandler Handler
void * Data

void Xil_ExceptionRemoveHandler
u32 Id

Functions

Xil_ExceptionNullHandler

This function is a stub handler that is the default handler that gets called if the application has
not setup a handler for a specific exception.

The function interface has to match the interface specified for a handler even though none of the
arguments are used.

Prototype

void Xil_ExceptionNullHandler(void *Data);

Parameters

The following table lists the Xil_ExceptionNullHandler function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 282Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=282

Table 91: Xil_ExceptionNullHandler Arguments

Name Description
Data unused by this function.

Xil_ExceptionInit

Initialize exception handling for the processor.

The exception vector table is setup with the stub handler for all exceptions.

Prototype

void Xil_ExceptionInit(void);

Parameters

The following table lists the Xil_ExceptionInit function arguments.

Table 92: Xil_ExceptionInit Arguments

Name Description
None.

Returns

None.

Xil_ExceptionEnable

Enable Exceptions.

Prototype

void Xil_ExceptionEnable(void);

Returns

None.

Xil_ExceptionDisable

Disable Exceptions.

Prototype

void Xil_ExceptionDisable(void);

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 283Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=283

Parameters

The following table lists the Xil_ExceptionDisable function arguments.

Table 93: Xil_ExceptionDisable Arguments

Name Description
None.

Returns

None.

Xil_ExceptionRegisterHandler

Makes the connection between the Id of the exception source and the associated handler that is
to run when the exception is recognized.

The argument provided in this call as the DataPtr is used as the argument for the handler when it
is called.

Prototype

void Xil_ExceptionRegisterHandler(u32 Id, Xil_ExceptionHandler Handler,
void *Data);

Parameters

The following table lists the Xil_ExceptionRegisterHandler function arguments.

Table 94: Xil_ExceptionRegisterHandler Arguments

Name Description
Id contains the 32 bit ID of the exception source and should be XIL_EXCEPTION_INT or be

in the range of 0 to XIL_EXCEPTION_LAST. See xil_mach_exception.h for further
information.

Handler handler function to be registered for exception

Data a reference to data that will be passed to the handler when it gets called.

Xil_ExceptionRemoveHandler

Removes the handler for a specific exception Id.

The stub handler is then registered for this exception Id.

Prototype

void Xil_ExceptionRemoveHandler(u32 Id);

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 284Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=284

Parameters

The following table lists the Xil_ExceptionRemoveHandler function arguments.

Table 95: Xil_ExceptionRemoveHandler Arguments

Name Description
Id contains the 32 bit ID of the exception source and should be XIL_EXCEPTION_INT or in

the range of 0 to XIL_EXCEPTION_LAST. See xexception_l.h for further information.

MicroBlaze Processor FSL Macros
MicroBlaze BSP includes macros to provide convenient access to accelerators connected to the
MicroBlaze Fast Simplex Link (FSL) Interfaces.To use these functions, include the header file fsl.h
in your source code

MicroBlaze PVR access routines and macros
MicroBlaze processor v5.00.a and later versions have configurable Processor Version Registers
(PVRs). The contents of the PVR are captured using the pvr_t data structure, which is defined as
an array of 32-bit words, with each word corresponding to a PVR register on hardware. The
number of PVR words is determined by the number of PVRs configured in the hardware. You
should not attempt to access PVR registers that are not present in hardware, as the pvr_t data
structure is resized to hold only as many PVRs as are present in hardware. To access information
in the PVR:

1. Use the microblaze_get_pvr() function to populate the PVR data into a pvr_t data
structure.

2. In subsequent steps, you can use any one of the PVR access macros list to get individual data
stored in the PVR.

3. pvr.h header file must be included to source to use PVR macros.

Table 96: Quick Function Reference

Type Name Arguments
int microblaze_get_pvr

pvr-

Functions

microblaze_get_pvr

Populate the PVR data structure to which pvr points, with the values of the hardware PVR
registers.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 285Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=285

Prototype

int microblaze_get_pvr(pvr_t *pvr);

Parameters

The following table lists the microblaze_get_pvr function arguments.

Table 97: microblaze_get_pvr Arguments

Name Description
pvr- address of PVR data structure to be populated

Returns

0 - SUCCESS -1 - FAILURE

Sleep Routines for MicroBlaze
The microblaze_sleep.h file contains microblaze sleep APIs. These APIs provides delay for
requested duration.

Note: The microblaze_sleep.h file may contain architecture-dependent items.

Table 98: Quick Function Reference

Type Name Arguments
void MB_Sleep

MilliSeconds-

Functions

MB_Sleep

Provides delay for requested duration.

Note: Instruction cache should be enabled for this to work.

Prototype

void MB_Sleep(u32 MilliSeconds) __attribute__((__deprecated__));

Parameters

The following table lists the MB_Sleep function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 286Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=286

Table 99: MB_Sleep Arguments

Name Description
MilliSeconds- Delay time in milliseconds.

Returns

None.

Cortex R5 Processor API
Standalone BSP contains boot code, cache, exception handling, file and memory management,
configuration, time and processor-specific include functions. It supports gcc compiler. This
section provides a linked summary and detailed descriptions of the Cortex R5 processor APIs.

Cortex R5 Processor Boot Code
The boot code performs minimum configuration which is required for an application to run
starting from processor's reset state. Below is a sequence illustrating what all configuration is
performed before control reaches to main function.

1. Program vector table base for exception handling

2. Program stack pointer for various modes (IRQ, FIQ, supervisor, undefine, abort, system)

3. Disable instruction cache, data cache and MPU

4. Invalidate instruction and data cache

5. Configure MPU with short descriptor translation table format and program base address of
translation table

6. Enable data cache, instruction cache and MPU

7. Enable Floating point unit

8. Transfer control to _start which clears BSS sections and jumping to main application

Cortex R5 Processor MPU specific APIs
MPU functions provides access to MPU operations such as enable MPU, disable MPU and set
attribute for section of memory. Boot code invokes Init_MPU function to configure the MPU. A
total of 10 MPU regions are allocated with another 6 being free for users. Overview of the
memory attributes for different MPU regions is as given below,

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 287Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=287

Memory Range Attributes of MPURegion
DDR 0x00000000 - 0x7FFFFFFF Normal write-back Cacheable

PL 0x80000000 - 0xBFFFFFFF Strongly Ordered

QSPI 0xC0000000 - 0xDFFFFFFF Device Memory

PCIe 0xE0000000 - 0xEFFFFFFF Device Memory

STM_CORESIGHT 0xF8000000 - 0xF8FFFFFF Device Memory

RPU_R5_GIC 0xF9000000 - 0xF90FFFFF Device memory

FPS 0xFD000000 - 0xFDFFFFFF Device Memory

LPS 0xFE000000 - 0xFFFFFFFF Device Memory

OCM 0xFFFC0000 - 0xFFFFFFFF Normal write-back Cacheable

Note: For a system where DDR is less than 2GB, region after DDR and before PL is marked as undefined in
translation table. Memory range 0xFE000000-0xFEFFFFFF is allocated for upper LPS slaves, where as
memory region 0xFF000000-0xFFFFFFFF is allocated for lower LPS slaves.

Table 100: Quick Function Reference

Type Name Arguments
void Xil_SetTlbAttributes

INTPTR Addr
u32 attrib

void Xil_EnableMPU
None.

void Xil_DisableMPU
None.

u32 Xil_SetMPURegion
Addr
u64 size
u32 attrib

u32 Xil_UpdateMPUConfig
u32 reg_num
INTPTR address
u32 size
u32 attrib

void Xil_GetMPUConfig
XMpu_Config mpuconfig

u32 Xil_GetNumOfFreeRegions
none

u32 Xil_GetNextMPURegion
none

u32 Xil_DisableMPURegionByRegNum
u32 reg_num

u16 Xil_GetMPUFreeRegMask
none

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 288Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=288

Table 100: Quick Function Reference (cont'd)

Type Name Arguments
u32 Xil_SetMPURegionByRegNum

u32 reg_num
address
u64 size
u32 attrib

void * Xil_MemMap
void

Functions

Xil_SetTlbAttributes

This function sets the memory attributes for a section covering 1MB, of memory in the
translation table.

Prototype

void Xil_SetTlbAttributes(INTPTR Addr, u32 attrib);

Parameters

The following table lists the Xil_SetTlbAttributes function arguments.

Table 101: Xil_SetTlbAttributes Arguments

Name Description
Addr 32-bit address for which memory attributes need to be set.

attrib Attribute for the given memory region.

Returns

None.

Xil_EnableMPU

Enable MPU for Cortex R5 processor.

This function invalidates I cache and flush the D Caches, and then enables the MPU.

Prototype

void Xil_EnableMPU(void);

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 289Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=289

Parameters

The following table lists the Xil_EnableMPU function arguments.

Table 102: Xil_EnableMPU Arguments

Name Description
None.

Returns

None.

Xil_DisableMPU

Disable MPU for Cortex R5 processors.

This function invalidates I cache and flush the D Caches, and then disabes the MPU.

Prototype

void Xil_DisableMPU(void);

Parameters

The following table lists the Xil_DisableMPU function arguments.

Table 103: Xil_DisableMPU Arguments

Name Description
None.

Returns

None.

Xil_SetMPURegion

Set the memory attributes for a section of memory in the translation table.

Prototype

u32 Xil_SetMPURegion(INTPTR addr, u64 size, u32 attrib);

Parameters

The following table lists the Xil_SetMPURegion function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 290Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=290

Table 104: Xil_SetMPURegion Arguments

Name Description
Addr 32-bit address for which memory attributes need to be set..

size size is the size of the region.

attrib Attribute for the given memory region.

Returns

None.

Xil_UpdateMPUConfig

Update the MPU configuration for the requested region number in the global MPU configuration
table.

Prototype

u32 Xil_UpdateMPUConfig(u32 reg_num, INTPTR address, u32 size, u32 attrib);

Parameters

The following table lists the Xil_UpdateMPUConfig function arguments.

Table 105: Xil_UpdateMPUConfig Arguments

Name Description
reg_num The requested region number to be updated information for.

address 32 bit address for start of the region.

size Requested size of the region.

attrib Attribute for the corresponding region.

Returns

XST_FAILURE: When the requested region number if 16 or more. XST_SUCCESS: When the
MPU configuration table is updated.

Xil_GetMPUConfig

The MPU configuration table is passed to the caller.

Prototype

void Xil_GetMPUConfig(XMpu_Config mpuconfig);

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 291Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=291

Parameters

The following table lists the Xil_GetMPUConfig function arguments.

Table 106: Xil_GetMPUConfig Arguments

Name Description
mpuconfig This is of type XMpu_Config which is an array of 16 entries of type structure

representing the MPU config table

Returns

none

Xil_GetNumOfFreeRegions

Returns the total number of free MPU regions available.

Prototype

u32 Xil_GetNumOfFreeRegions(void);

Parameters

The following table lists the Xil_GetNumOfFreeRegions function arguments.

Table 107: Xil_GetNumOfFreeRegions Arguments

Name Description
none

Returns

Number of free regions available to users

Xil_GetNextMPURegion

Returns the next available free MPU region.

Prototype

u32 Xil_GetNextMPURegion(void);

Parameters

The following table lists the Xil_GetNextMPURegion function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 292Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=292

Table 108: Xil_GetNextMPURegion Arguments

Name Description
none

Returns

The free MPU region available

Xil_DisableMPURegionByRegNum

Disables the corresponding region number as passed by the user.

Prototype

u32 Xil_DisableMPURegionByRegNum(u32 reg_num);

Parameters

The following table lists the Xil_DisableMPURegionByRegNum function arguments.

Table 109: Xil_DisableMPURegionByRegNum Arguments

Name Description
reg_num The region number to be disabled

Returns

XST_SUCCESS: If the region could be disabled successfully XST_FAILURE: If the requested region
number is 16 or more.

Xil_GetMPUFreeRegMask

Returns the total number of free MPU regions available in the form of a mask.

A bit of 1 in the returned 16 bit value represents the corresponding region number to be
available. For example, if this function returns 0xC0000, this would mean, the regions 14 and 15
are available to users.

Prototype

u16 Xil_GetMPUFreeRegMask(void);

Parameters

The following table lists the Xil_GetMPUFreeRegMask function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 293Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=293

Table 110: Xil_GetMPUFreeRegMask Arguments

Name Description
none

Returns

The free region mask as a 16 bit value

Xil_SetMPURegionByRegNum

Enables the corresponding region number as passed by the user.

Prototype

u32 Xil_SetMPURegionByRegNum(u32 reg_num, INTPTR addr, u64 size, u32
attrib);

Parameters

The following table lists the Xil_SetMPURegionByRegNum function arguments.

Table 111: Xil_SetMPURegionByRegNum Arguments

Name Description
reg_num The region number to be enabled

address 32 bit address for start of the region.

size Requested size of the region.

attrib Attribute for the corresponding region.

Returns

XST_SUCCESS: If the region could be created successfully XST_FAILURE: If the requested region
number is 16 or more.

Cortex R5 Processor Cache Functions

Cache functions provide access to cache related operations such as flush and invalidate for
instruction and data caches. It gives option to perform the cache operations on a single
cacheline, a range of memory and an entire cache.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 294Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=294

Table 112: Quick Function Reference

Type Name Arguments
void Xil_DCacheEnable

None.

void Xil_DCacheDisable
None.

void Xil_DCacheInvalidate
None.

void Xil_DCacheInvalidateRange
INTPTR adr
u32 len

void Xil_DCacheFlush
None.

void Xil_DCacheFlushRange
INTPTR adr
u32 len

void Xil_DCacheInvalidateLine
INTPTR adr

void Xil_DCacheFlushLine
INTPTR adr

void Xil_DCacheStoreLine
INTPTR adr

void Xil_ICacheEnable
None.

void Xil_ICacheDisable
None.

void Xil_ICacheInvalidate
None.

void Xil_ICacheInvalidateRange
INTPTR adr
u32 len

void Xil_ICacheInvalidateLine
INTPTR adr

Functions

Xil_DCacheEnable

Enable the Data cache.

Note: None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 295Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=295

Prototype

void Xil_DCacheEnable(void);

Parameters

The following table lists the Xil_DCacheEnable function arguments.

Table 113: Xil_DCacheEnable Arguments

Name Description
None.

Returns

None.

Xil_DCacheDisable

Disable the Data cache.

Note: None.

Prototype

void Xil_DCacheDisable(void);

Parameters

The following table lists the Xil_DCacheDisable function arguments.

Table 114: Xil_DCacheDisable Arguments

Name Description
None.

Returns

None.

Xil_DCacheInvalidate

Invalidate the entire Data cache.

Prototype

void Xil_DCacheInvalidate(void);

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 296Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=296

Parameters

The following table lists the Xil_DCacheInvalidate function arguments.

Table 115: Xil_DCacheInvalidate Arguments

Name Description
None.

Returns

None.

Xil_DCacheInvalidateRange

Invalidate the Data cache for the given address range.

If the bytes specified by the address (adr) are cached by the Data cache,the cacheline containing
that byte is invalidated. If the cacheline is modified (dirty), the modified contents are lost and are
NOT written to system memory before the line is invalidated.

Prototype

void Xil_DCacheInvalidateRange(INTPTR adr, u32 len);

Parameters

The following table lists the Xil_DCacheInvalidateRange function arguments.

Table 116: Xil_DCacheInvalidateRange Arguments

Name Description
adr 32bit start address of the range to be invalidated.

len Length of range to be invalidated in bytes.

Returns

None.

Xil_DCacheFlush

Flush the entire Data cache.

Prototype

void Xil_DCacheFlush(void);

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 297Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=297

Parameters

The following table lists the Xil_DCacheFlush function arguments.

Table 117: Xil_DCacheFlush Arguments

Name Description
None.

Returns

None.

Xil_DCacheFlushRange

Flush the Data cache for the given address range.

If the bytes specified by the address (adr) are cached by the Data cache, the cacheline containing
those bytes is invalidated.If the cacheline is modified (dirty), the written to system memory
before the lines are invalidated.

Prototype

void Xil_DCacheFlushRange(INTPTR adr, u32 len);

Parameters

The following table lists the Xil_DCacheFlushRange function arguments.

Table 118: Xil_DCacheFlushRange Arguments

Name Description
adr 32bit start address of the range to be flushed.

len Length of the range to be flushed in bytes

Returns

None.

Xil_DCacheInvalidateLine

Invalidate a Data cache line.

If the byte specified by the address (adr) is cached by the data cache, the cacheline containing
that byte is invalidated.If the cacheline is modified (dirty), the modified contents are lost and are
NOT written to system memory before the line is invalidated.

Note: The bottom 4 bits are set to 0, forced by architecture.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 298Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=298

Prototype

void Xil_DCacheInvalidateLine(INTPTR adr);

Parameters

The following table lists the Xil_DCacheInvalidateLine function arguments.

Table 119: Xil_DCacheInvalidateLine Arguments

Name Description
adr 32bit address of the data to be flushed.

Returns

None.

Xil_DCacheFlushLine

Flush a Data cache line.

If the byte specified by the address (adr) is cached by the Data cache, the cacheline containing
that byte is invalidated. If the cacheline is modified (dirty), the entire contents of the cacheline
are written to system memory before the line is invalidated.

Note: The bottom 4 bits are set to 0, forced by architecture.

Prototype

void Xil_DCacheFlushLine(INTPTR adr);

Parameters

The following table lists the Xil_DCacheFlushLine function arguments.

Table 120: Xil_DCacheFlushLine Arguments

Name Description
adr 32bit address of the data to be flushed.

Returns

None.

Xil_DCacheStoreLine

Store a Data cache line.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 299Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=299

If the byte specified by the address (adr) is cached by the Data cache and the cacheline is
modified (dirty), the entire contents of the cacheline are written to system memory.After the
store completes, the cacheline is marked as unmodified (not dirty).

Note: The bottom 4 bits are set to 0, forced by architecture.

Prototype

void Xil_DCacheStoreLine(INTPTR adr);

Parameters

The following table lists the Xil_DCacheStoreLine function arguments.

Table 121: Xil_DCacheStoreLine Arguments

Name Description
adr 32bit address of the data to be stored

Returns

None.

Xil_ICacheEnable

Enable the instruction cache.

Prototype

void Xil_ICacheEnable(void);

Parameters

The following table lists the Xil_ICacheEnable function arguments.

Table 122: Xil_ICacheEnable Arguments

Name Description
None.

Returns

None.

Xil_ICacheDisable

Disable the instruction cache.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 300Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=300

Prototype

void Xil_ICacheDisable(void);

Parameters

The following table lists the Xil_ICacheDisable function arguments.

Table 123: Xil_ICacheDisable Arguments

Name Description
None.

Returns

None.

Xil_ICacheInvalidate

Invalidate the entire instruction cache.

Prototype

void Xil_ICacheInvalidate(void);

Parameters

The following table lists the Xil_ICacheInvalidate function arguments.

Table 124: Xil_ICacheInvalidate Arguments

Name Description
None.

Returns

None.

Xil_ICacheInvalidateRange

Invalidate the instruction cache for the given address range.

If the bytes specified by the address (adr) are cached by the Data cache, the cacheline containing
that byte is invalidated. If the cachelineis modified (dirty), the modified contents are lost and are
NOT written to system memory before the line is invalidated.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 301Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=301

Prototype

void Xil_ICacheInvalidateRange(INTPTR adr, u32 len);

Parameters

The following table lists the Xil_ICacheInvalidateRange function arguments.

Table 125: Xil_ICacheInvalidateRange Arguments

Name Description
adr 32bit start address of the range to be invalidated.

len Length of the range to be invalidated in bytes.

Returns

None.

Xil_ICacheInvalidateLine

Invalidate an instruction cache line.If the instruction specified by the address is cached by the
instruction cache, the cacheline containing that instruction is invalidated.

Note: The bottom 4 bits are set to 0, forced by architecture.

Prototype

void Xil_ICacheInvalidateLine(INTPTR adr);

Parameters

The following table lists the Xil_ICacheInvalidateLine function arguments.

Table 126: Xil_ICacheInvalidateLine Arguments

Name Description
adr 32bit address of the instruction to be invalidated.

Returns

None.

Cortex R5 Time Functions
The xtime_l.h provides access to 32-bit TTC timer counter. These functions can be used by
applications to track the time.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 302Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=302

Table 127: Quick Function Reference

Type Name Arguments
void XTime_SetTime

XTime Xtime_Global

void XTime_GetTime
XTime * Xtime_Global

Functions

XTime_SetTime

TTC Timer runs continuously and the time can not be set as desired.

This API doesn't contain anything. It is defined to have uniformity across platforms.

Note: In multiprocessor environment reference time will reset/lost for all processors, when this function
called by any one processor.

Prototype

void XTime_SetTime(XTime Xtime_Global);

Parameters

The following table lists the XTime_SetTime function arguments.

Table 128: XTime_SetTime Arguments

Name Description
Xtime_Global 32 bit value to be written to the timer counter register.

Returns

None.

XTime_GetTime

Get the time from the timer counter register.

Prototype

void XTime_GetTime(XTime *Xtime_Global);

Parameters

The following table lists the XTime_GetTime function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 303Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=303

Table 129: XTime_GetTime Arguments

Name Description
Xtime_Global Pointer to the 32 bit location to be updated with the time current value of timer

counter register.

Returns

None.

Cortex R5 Event Counters Functions
Cortex R5 event counter functions can be utilized to configure and control the Cortex-R5
performance monitor events. Cortex-R5 Performance Monitor has 3 event counters which can
be used to count a variety of events described in Coretx-R5 TRM. The xpm_counter.h file defines
configurations XPM_CNTRCFGx which can be used to program the event counters to count a set
of events.

Table 130: Quick Function Reference

Type Name Arguments
void Xpm_SetEvents

s32 PmcrCfg

void Xpm_GetEventCounters
u32 * PmCtrValue

u32 Xpm_DisableEvent
Event

u32 Xpm_SetUpAnEvent
Event

u32 Xpm_GetEventCounter
Event
Pointer

void Xpm_DisableEventCounters
None.

void Xpm_EnableEventCounters
None.

void Xpm_ResetEventCounters
None.

void Xpm_SleepPerfCounter
u32 delay
u64 frequency

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 304Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=304

Functions

Xpm_SetEvents

This function configures the Cortex R5 event counters controller, with the event codes, in a
configuration selected by the user and enables the counters.

Prototype

void Xpm_SetEvents(s32 PmcrCfg);

Parameters

The following table lists the Xpm_SetEvents function arguments.

Table 131: Xpm_SetEvents Arguments

Name Description
PmcrCfg Configuration value based on which the event counters are

configured.XPM_CNTRCFG* values defined in xpm_counter.h can be utilized for setting
configuration

Returns

None.

Xpm_GetEventCounters

This function disables the event counters and returns the counter values.

Prototype

void Xpm_GetEventCounters(u32 *PmCtrValue);

Parameters

The following table lists the Xpm_GetEventCounters function arguments.

Table 132: Xpm_GetEventCounters Arguments

Name Description
PmCtrValue Pointer to an array of type u32 PmCtrValue[6]. It is an output parameter which is used

to return the PM counter values.

Returns

None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 305Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=305

Xpm_DisableEvent

Disables the requested event counter.

Note: None.

Prototype

u32 Xpm_DisableEvent(u32 EventHandlerId);

Parameters

The following table lists the Xpm_DisableEvent function arguments.

Table 133: Xpm_DisableEvent Arguments

Name Description
Event Counter ID. The counter ID is the same that was earlier returned through a call to

Xpm_SetUpAnEvent. Cortex-R5 supports only 3 counters. The valid values are 0, 1, or 2.

Returns

• XST_SUCCESS if successful.

• XST_FAILURE if the passed Counter ID is invalid (i.e. greater than 2).

Xpm_SetUpAnEvent

Sets up one of the event counters to count events based on the Event ID passed.

For supported Event IDs please refer xpm_counter.h. Upon invoked, the API searches for an
available counter. After finding one, it sets up the counter to count events for the requested
event.

Note: None.

Prototype

u32 Xpm_SetUpAnEvent(u32 EventID);

Parameters

The following table lists the Xpm_SetUpAnEvent function arguments.

Table 134: Xpm_SetUpAnEvent Arguments

Name Description
Event ID. For valid values, please refer xpm_counter.h.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 306Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=306

Returns

• Counter Number if successful. For Cortex-R5, valid return values are 0, 1, or 2.

• XPM_NO_COUNTERS_AVAILABLE (0xFF) if all counters are being used

Xpm_GetEventCounter

Reads the counter value for the requested counter ID.

This is used to read the number of events that has been counted for the requsted event ID. This
can only be called after a call to Xpm_SetUpAnEvent.

Note: None.

Prototype

u32 Xpm_GetEventCounter(u32 EventHandlerId, u32 *CntVal);

Parameters

The following table lists the Xpm_GetEventCounter function arguments.

Table 135: Xpm_GetEventCounter Arguments

Name Description
Event Counter ID. The counter ID is the same that was earlier returned through a call to

Xpm_SetUpAnEvent. Cortex-R5 supports only 3 counters. The valid values are 0, 1, or 2.

Pointer to a 32 bit unsigned int type. This is used to return the event counter value.

Returns

• XST_SUCCESS if successful.

• XST_FAILURE if the passed Counter ID is invalid (i.e. greater than 2).

Xpm_DisableEventCounters

This function disables the Cortex R5 event counters.

Prototype

void Xpm_DisableEventCounters(void);

Parameters

The following table lists the Xpm_DisableEventCounters function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 307Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=307

Table 136: Xpm_DisableEventCounters Arguments

Name Description
None.

Returns

None.

Xpm_EnableEventCounters

This function enables the Cortex R5 event counters.

Prototype

void Xpm_EnableEventCounters(void);

Parameters

The following table lists the Xpm_EnableEventCounters function arguments.

Table 137: Xpm_EnableEventCounters Arguments

Name Description
None.

Returns

None.

Xpm_ResetEventCounters

This function resets the Cortex R5 event counters.

Prototype

void Xpm_ResetEventCounters(void);

Parameters

The following table lists the Xpm_ResetEventCounters function arguments.

Table 138: Xpm_ResetEventCounters Arguments

Name Description
None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 308Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=308

Returns

None.

Xpm_SleepPerfCounter

This is helper function used by sleep/usleep APIs to generate delay in sec/usec.

Prototype

void Xpm_SleepPerfCounter(u32 delay, u64 frequency);

Parameters

The following table lists the Xpm_SleepPerfCounter function arguments.

Table 139: Xpm_SleepPerfCounter Arguments

Name Description
delay - delay time in sec/usec

frequency - Number of countes in second/micro second

Returns

None.

Cortex R5 Processor Specific Include Files
The xpseudo_asm.h includes xreg_cortexr5.h and xpseudo_asm_gcc.h.

The xreg_cortexr5.h file contains definitions for inline assembler code. It provides inline
definitions for Cortex R5 GPRs, SPRs,co-processor registers and Debug register

The xpseudo_asm_gcc.h contains the definitions for the most often used inline assembler
instructions, available as macros. These can be very useful for tasks such as setting or getting
special purpose registers, synchronization,or cache manipulation. These inline assembler
instructions can be used from drivers and user applications written in C.

Cortex R5 peripheral definitions
The xparameters_ps.h file contains the canonical definitions and constant declarations for
peripherals within hardblock, attached to the ARM Cortex R5 core. These definitions can be used
by drivers or applications to access the peripherals.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 309Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=309

ARM Processor Common API
This section provides a linked summary and detailed descriptions of the ARM Processor Common
APIs.

ARM Processor Exception Handling
ARM processors specific exception related APIs for cortex A53,A9 and R5 can utilized for
enabling/disabling IRQ, registering/removing handler for exceptions or initializing exception
vector table with null handler.

Table 140: Quick Function Reference

Type Name Arguments
void Xil_ExceptionRegisterHandler

exception_id
Xil_ExceptionHandler Handler
void * Data

void Xil_ExceptionRemoveHandler
exception_id

void Xil_GetExceptionRegisterHandler
exception_id
Xil_ExceptionHandler * Handler
void ** Data

void Xil_ExceptionInit
None.

void Xil_DataAbortHandler
void

void Xil_PrefetchAbortHandler
void

void Xil_UndefinedExceptionHandler
void

Functions

Xil_ExceptionRegisterHandler

Register a handler for a specific exception.

This handler is being called when the processor encounters the specified exception.

Note: None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 310Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=310

Prototype

void Xil_ExceptionRegisterHandler(u32 Exception_id, Xil_ExceptionHandler
Handler, void *Data);

Parameters

The following table lists the Xil_ExceptionRegisterHandler function arguments.

Table 141: Xil_ExceptionRegisterHandler Arguments

Name Description
exception_id contains the ID of the exception source and should be in the range of 0 to

XIL_EXCEPTION_ID_LAST. See xil_exception.h for further information.

Handler to the Handler for that exception.

Data is a reference to Data that will be passed to the Handler when it gets called.

Returns

None.

Xil_ExceptionRemoveHandler

Removes the Handler for a specific exception Id.

The stub Handler is then registered for this exception Id.

Note: None.

Prototype

void Xil_ExceptionRemoveHandler(u32 Exception_id);

Parameters

The following table lists the Xil_ExceptionRemoveHandler function arguments.

Table 142: Xil_ExceptionRemoveHandler Arguments

Name Description
exception_id contains the ID of the exception source and should be in the range of 0 to

XIL_EXCEPTION_ID_LAST. See xil_exception.h for further information.

Returns

None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 311Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=311

Xil_GetExceptionRegisterHandler

Get a handler for a specific exception.

This handler is being called when the processor encounters the specified exception.

Note: None.

Prototype

void Xil_GetExceptionRegisterHandler(u32 Exception_id, Xil_ExceptionHandler
*Handler, void **Data);

Parameters

The following table lists the Xil_GetExceptionRegisterHandler function arguments.

Table 143: Xil_GetExceptionRegisterHandler Arguments

Name Description
exception_id contains the ID of the exception source and should be in the range of 0 to

XIL_EXCEPTION_ID_LAST. See xil_exception.h for further information.

Handler to the Handler for that exception.

Data is a reference to Data that will be passed to the Handler when it gets called.

Returns

None.

Xil_ExceptionInit

The function is a common API used to initialize exception handlers across all supported arm
processors.

For ARM Cortex-A53, Cortex-R5, and Cortex-A9, the exception handlers are being initialized
statically and this function does not do anything. However, it is still present to take care of
backward compatibility issues (in earlier versions of BSPs, this API was being used to initialize
exception handlers).

Note: None.

Prototype

void Xil_ExceptionInit(void);

Parameters

The following table lists the Xil_ExceptionInit function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 312Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=312

Table 144: Xil_ExceptionInit Arguments

Name Description
None.

Returns

None.

Xil_DataAbortHandler

Default Data abort handler which prints data fault status register through which information
about data fault can be acquired

Prototype

void Xil_DataAbortHandler(void *CallBackRef);

Xil_PrefetchAbortHandler

Default Prefetch abort handler which prints prefetch fault status register through which
information about instruction prefetch fault can be acquired.

Prototype

void Xil_PrefetchAbortHandler(void *CallBackRef);

Xil_UndefinedExceptionHandler

Default undefined exception handler which prints address of the undefined instruction if debug
prints are enabled.

Prototype

void Xil_UndefinedExceptionHandler(void *CallBackRef);

Cortex A9 Processor API
Standalone BSP contains boot code, cache, exception handling, file and memory management,
configuration, time and processor-specific include functions. It supports gcc compilers.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 313Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=313

Cortex A9 Processor Boot Code
The boot code performs minimum configuration which is required for an application to run
starting from processor's reset state. Below is a sequence illustrating what all configuration is
performed before control reaches to main function.

1. Program vector table base for exception handling

2. Invalidate instruction cache, data cache and TLBs

3. Program stack pointer for various modes (IRQ, FIQ, supervisor, undefine, abort, system)

4. Configure MMU with short descriptor translation table format and program base address of
translation table

5. Enable data cache, instruction cache and MMU

6. Enable Floating point unit

7. Transfer control to _start which clears BSS sections, initializes global timer and runs global
constructor before jumping to main application

None.

Note:

translation_table.S contains a static page table required by MMU for cortex-A9. This translation
table is flat mapped (input address = output address) with default memory attributes defined for
zynq architecture. It utilizes short descriptor translation table format with each section defining
1MB of memory.

The overview of translation table memory attributes is described below.

Memory Range Definition in Translation Table
DDR 0x00000000 - 0x3FFFFFFF Normal write-back Cacheable

PL 0x40000000 - 0xBFFFFFFF Strongly Ordered

Reserved 0xC0000000 - 0xDFFFFFFF Unassigned

Memory mapped devices 0xE0000000 - 0xE02FFFFF Device Memory

Reserved 0xE0300000 - 0xE0FFFFFF Unassigned

NAND, NOR 0xE1000000 - 0xE3FFFFFF Device memory

SRAM 0xE4000000 - 0xE5FFFFFF Normal write-back Cacheable

Reserved 0xE6000000 - 0xF7FFFFFF Unassigned

AMBA APB Peripherals 0xF8000000 - 0xF8FFFFFF Device Memory

Reserved 0xF9000000 - 0xFBFFFFFF Unassigned

Linear QSPI - XIP 0xFC000000 - 0xFDFFFFFF Normal write-through cacheable

Reserved 0xFE000000 - 0xFFEFFFFF Unassigned

OCM 0xFFF00000 - 0xFFFFFFFF Normal inner write-back cacheable

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 314Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=314

For region 0x00000000 - 0x3FFFFFFF, a system where DDR is less than 1GB, region after DDR
and before PL is marked as undefined/reserved in translation table. In 0xF8000000 -
0xF8FFFFFF, 0xF8000C00 - 0xF8000FFF, 0xF8010000 - 0xF88FFFFF and 0xF8F03000 to
0xF8FFFFFF are reserved but due to granual size of 1MB, it is not possible to define separate
regions for them. For region 0xFFF00000 - 0xFFFFFFFF, 0xFFF00000 to 0xFFFB0000 is
reserved but due to 1MB granual size, it is not possible to define separate region for it

Note:

Cortex A9 Processor Cache Functions
Cache functions provide access to cache related operations such as flush and invalidate for
instruction and data caches. It gives option to perform the cache operations on a single
cacheline, a range of memory and an entire cache.

Table 145: Quick Function Reference

Type Name Arguments
void Xil_DCacheEnable

None.

void Xil_DCacheDisable
None.

void Xil_DCacheInvalidate
None.

void Xil_DCacheInvalidateRange
INTPTR adr
u32 len

void Xil_DCacheFlush
None.

void Xil_DCacheFlushRange
INTPTR adr
u32 len

void Xil_ICacheEnable
None.

void Xil_ICacheDisable
None.

void Xil_ICacheInvalidate
None.

void Xil_ICacheInvalidateRange
INTPTR adr
u32 len

void Xil_DCacheInvalidateLine
u32 adr

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 315Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=315

Table 145: Quick Function Reference (cont'd)

Type Name Arguments
void Xil_DCacheFlushLine

u32 adr

void Xil_DCacheStoreLine
u32 adr

void Xil_ICacheInvalidateLine
u32 adr

void Xil_L1DCacheEnable
None.

void Xil_L1DCacheDisable
None.

void Xil_L1DCacheInvalidate
None.

void Xil_L1DCacheInvalidateLine
u32 adr

void Xil_L1DCacheInvalidateRange
u32 adr
u32 len

void Xil_L1DCacheFlush
None.

void Xil_L1DCacheFlushLine
u32 adr

void Xil_L1DCacheFlushRange
u32 adr
u32 len

void Xil_L1DCacheStoreLine
Address

void Xil_L1ICacheEnable
None.

void Xil_L1ICacheDisable
None.

void Xil_L1ICacheInvalidate
None.

void Xil_L1ICacheInvalidateLine
u32 adr

void Xil_L1ICacheInvalidateRange
u32 adr
u32 len

void Xil_L2CacheEnable
None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 316Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=316

Table 145: Quick Function Reference (cont'd)

Type Name Arguments
void Xil_L2CacheDisable

None.

void Xil_L2CacheInvalidate
None.

void Xil_L2CacheInvalidateLine
u32 adr

void Xil_L2CacheInvalidateRange
u32 adr
u32 len

void Xil_L2CacheFlush
None.

void Xil_L2CacheFlushLine
u32 adr

void Xil_L2CacheFlushRange
u32 adr
u32 len

void Xil_L2CacheStoreLine
u32 adr

Functions

Xil_DCacheEnable

Enable the Data cache.

Note: None.

Prototype

void Xil_DCacheEnable(void);

Parameters

The following table lists the Xil_DCacheEnable function arguments.

Table 146: Xil_DCacheEnable Arguments

Name Description
None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 317Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=317

Returns

None.

Xil_DCacheDisable

Disable the Data cache.

Note: None.

Prototype

void Xil_DCacheDisable(void);

Parameters

The following table lists the Xil_DCacheDisable function arguments.

Table 147: Xil_DCacheDisable Arguments

Name Description
None.

Returns

None.

Xil_DCacheInvalidate

Invalidate the entire Data cache.

Note: None.

Prototype

void Xil_DCacheInvalidate(void);

Parameters

The following table lists the Xil_DCacheInvalidate function arguments.

Table 148: Xil_DCacheInvalidate Arguments

Name Description
None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 318Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=318

Returns

None.

Xil_DCacheInvalidateRange

Invalidate the Data cache for the given address range.

If the bytes specified by the address range are cached by the Data cache, the cachelines
containing those bytes are invalidated. If the cachelines are modified (dirty), the modified
contents are lost and NOT written to the system memory before the lines are invalidated. data.
This issue raises few possibilities. work.

1. Avoid situations where invalidation has to be done after the data is updated by
peripheral/DMA directly into the memory. It is not tough to achieve (may be a bit risky). The
common use case to do invalidation is when a DMA happens. Generally for such use cases,
buffers can be allocated first and then start the DMA. The practice that needs to be followed
here is, immediately after buffer allocation and before starting the DMA, do the invalidation.
With this approach, invalidation need not to be done after the DMA transfer is over. are
brought into cache (between the time it is invalidated and DMA completes) because of some
speculative prefetching or reading data for a variable present in the same cache line, then we
will have to invalidate the cache after DMA is complete.

Note: None.

Prototype

void Xil_DCacheInvalidateRange(INTPTR adr, u32 len);

Parameters

The following table lists the Xil_DCacheInvalidateRange function arguments.

Table 149: Xil_DCacheInvalidateRange Arguments

Name Description
adr 32bit start address of the range to be invalidated.

len Length of the range to be invalidated in bytes.

Returns

None.

Xil_DCacheFlush

Flush the entire Data cache.

Note: None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 319Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=319

Prototype

void Xil_DCacheFlush(void);

Parameters

The following table lists the Xil_DCacheFlush function arguments.

Table 150: Xil_DCacheFlush Arguments

Name Description
None.

Returns

None.

Xil_DCacheFlushRange

Flush the Data cache for the given address range.

If the bytes specified by the address range are cached by the data cache, the cachelines
containing those bytes are invalidated. If the cachelines are modified (dirty), they are written to
the system memory before the lines are invalidated.

Note: None.

Prototype

void Xil_DCacheFlushRange(INTPTR adr, u32 len);

Parameters

The following table lists the Xil_DCacheFlushRange function arguments.

Table 151: Xil_DCacheFlushRange Arguments

Name Description
adr 32bit start address of the range to be flushed.

len Length of the range to be flushed in bytes.

Returns

None.

Xil_ICacheEnable

Enable the instruction cache.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 320Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=320

Note: None.

Prototype

void Xil_ICacheEnable(void);

Parameters

The following table lists the Xil_ICacheEnable function arguments.

Table 152: Xil_ICacheEnable Arguments

Name Description
None.

Returns

None.

Xil_ICacheDisable

Disable the instruction cache.

Note: None.

Prototype

void Xil_ICacheDisable(void);

Parameters

The following table lists the Xil_ICacheDisable function arguments.

Table 153: Xil_ICacheDisable Arguments

Name Description
None.

Returns

None.

Xil_ICacheInvalidate

Invalidate the entire instruction cache.

Note: None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 321Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=321

Prototype

void Xil_ICacheInvalidate(void);

Parameters

The following table lists the Xil_ICacheInvalidate function arguments.

Table 154: Xil_ICacheInvalidate Arguments

Name Description
None.

Returns

None.

Xil_ICacheInvalidateRange

Invalidate the instruction cache for the given address range.

If the instructions specified by the address range are cached by the instrunction cache, the
cachelines containing those instructions are invalidated.

Note: None.

Prototype

void Xil_ICacheInvalidateRange(INTPTR adr, u32 len);

Parameters

The following table lists the Xil_ICacheInvalidateRange function arguments.

Table 155: Xil_ICacheInvalidateRange Arguments

Name Description
adr 32bit start address of the range to be invalidated.

len Length of the range to be invalidated in bytes.

Returns

None.

Xil_DCacheInvalidateLine

Invalidate a Data cache line.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 322Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=322

If the byte specified by the address (adr) is cached by the Data cache, the cacheline containing
that byte is invalidated. If the cacheline is modified (dirty), the modified contents are lost and are
NOT written to the system memory before the line is invalidated.

Note: The bottom 4 bits are set to 0, forced by architecture.

Prototype

void Xil_DCacheInvalidateLine(u32 adr);

Parameters

The following table lists the Xil_DCacheInvalidateLine function arguments.

Table 156: Xil_DCacheInvalidateLine Arguments

Name Description
adr 32bit address of the data to be flushed.

Returns

None.

Xil_DCacheFlushLine

Flush a Data cache line.

If the byte specified by the address (adr) is cached by the Data cache, the cacheline containing
that byte is invalidated. If the cacheline is modified (dirty), the entire contents of the cacheline
are written to system memory before the line is invalidated.

Note: The bottom 4 bits are set to 0, forced by architecture.

Prototype

void Xil_DCacheFlushLine(u32 adr);

Parameters

The following table lists the Xil_DCacheFlushLine function arguments.

Table 157: Xil_DCacheFlushLine Arguments

Name Description
adr 32bit address of the data to be flushed.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 323Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=323

Returns

None.

Xil_DCacheStoreLine

Store a Data cache line.

If the byte specified by the address (adr) is cached by the Data cache and the cacheline is
modified (dirty), the entire contents of the cacheline are written to system memory. After the
store completes, the cacheline is marked as unmodified (not dirty).

Note: The bottom 4 bits are set to 0, forced by architecture.

Prototype

void Xil_DCacheStoreLine(u32 adr);

Parameters

The following table lists the Xil_DCacheStoreLine function arguments.

Table 158: Xil_DCacheStoreLine Arguments

Name Description
adr 32bit address of the data to be stored.

Returns

None.

Xil_ICacheInvalidateLine

Invalidate an instruction cache line.

If the instruction specified by the address is cached by the instruction cache, the cacheline
containing that instruction is invalidated.

Note: The bottom 4 bits are set to 0, forced by architecture.

Prototype

void Xil_ICacheInvalidateLine(u32 adr);

Parameters

The following table lists the Xil_ICacheInvalidateLine function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 324Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=324

Table 159: Xil_ICacheInvalidateLine Arguments

Name Description
adr 32bit address of the instruction to be invalidated.

Returns

None.

Xil_L1DCacheEnable

Enable the level 1 Data cache.

Note: None.

Prototype

void Xil_L1DCacheEnable(void);

Parameters

The following table lists the Xil_L1DCacheEnable function arguments.

Table 160: Xil_L1DCacheEnable Arguments

Name Description
None.

Returns

None.

Xil_L1DCacheDisable

Disable the level 1 Data cache.

Note: None.

Prototype

void Xil_L1DCacheDisable(void);

Parameters

The following table lists the Xil_L1DCacheDisable function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 325Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=325

Table 161: Xil_L1DCacheDisable Arguments

Name Description
None.

Returns

None.

Xil_L1DCacheInvalidate

Invalidate the level 1 Data cache.

Note: In Cortex A9, there is no cp instruction for invalidating the whole D-cache. This function invalidates
each line by set/way.

Prototype

void Xil_L1DCacheInvalidate(void);

Parameters

The following table lists the Xil_L1DCacheInvalidate function arguments.

Table 162: Xil_L1DCacheInvalidate Arguments

Name Description
None.

Returns

None.

Xil_L1DCacheInvalidateLine

Invalidate a level 1 Data cache line.

If the byte specified by the address (Addr) is cached by the Data cache, the cacheline containing
that byte is invalidated. If the cacheline is modified (dirty), the modified contents are lost and are
NOT written to system memory before the line is invalidated.

Note: The bottom 5 bits are set to 0, forced by architecture.

Prototype

void Xil_L1DCacheInvalidateLine(u32 adr);

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 326Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=326

Parameters

The following table lists the Xil_L1DCacheInvalidateLine function arguments.

Table 163: Xil_L1DCacheInvalidateLine Arguments

Name Description
adr 32bit address of the data to be invalidated.

Returns

None.

Xil_L1DCacheInvalidateRange

Invalidate the level 1 Data cache for the given address range.

If the bytes specified by the address range are cached by the Data cache, the cachelines
containing those bytes are invalidated. If the cachelines are modified (dirty), the modified
contents are lost and NOT written to the system memory before the lines are invalidated.

Note: None.

Prototype

void Xil_L1DCacheInvalidateRange(u32 adr, u32 len);

Parameters

The following table lists the Xil_L1DCacheInvalidateRange function arguments.

Table 164: Xil_L1DCacheInvalidateRange Arguments

Name Description
adr 32bit start address of the range to be invalidated.

len Length of the range to be invalidated in bytes.

Returns

None.

Xil_L1DCacheFlush

Flush the level 1 Data cache.

Note: In Cortex A9, there is no cp instruction for flushing the whole D-cache. Need to flush each line.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 327Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=327

Prototype

void Xil_L1DCacheFlush(void);

Parameters

The following table lists the Xil_L1DCacheFlush function arguments.

Table 165: Xil_L1DCacheFlush Arguments

Name Description
None.

Returns

None.

Xil_L1DCacheFlushLine

Flush a level 1 Data cache line.

If the byte specified by the address (adr) is cached by the Data cache, the cacheline containing
that byte is invalidated. If the cacheline is modified (dirty), the entire contents of the cacheline
are written to system memory before the line is invalidated.

Note: The bottom 5 bits are set to 0, forced by architecture.

Prototype

void Xil_L1DCacheFlushLine(u32 adr);

Parameters

The following table lists the Xil_L1DCacheFlushLine function arguments.

Table 166: Xil_L1DCacheFlushLine Arguments

Name Description
adr 32bit address of the data to be flushed.

Returns

None.

Xil_L1DCacheFlushRange

Flush the level 1 Data cache for the given address range.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 328Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=328

If the bytes specified by the address range are cached by the Data cache, the cacheline
containing those bytes are invalidated. If the cachelines are modified (dirty), they are written to
system memory before the lines are invalidated.

Note: None.

Prototype

void Xil_L1DCacheFlushRange(u32 adr, u32 len);

Parameters

The following table lists the Xil_L1DCacheFlushRange function arguments.

Table 167: Xil_L1DCacheFlushRange Arguments

Name Description
adr 32bit start address of the range to be flushed.

len Length of the range to be flushed in bytes.

Returns

None.

Xil_L1DCacheStoreLine

Store a level 1 Data cache line.

If the byte specified by the address (adr) is cached by the Data cache and the cacheline is
modified (dirty), the entire contents of the cacheline are written to system memory. After the
store completes, the cacheline is marked as unmodified (not dirty).

Note: The bottom 5 bits are set to 0, forced by architecture.

Prototype

void Xil_L1DCacheStoreLine(u32 adr);

Parameters

The following table lists the Xil_L1DCacheStoreLine function arguments.

Table 168: Xil_L1DCacheStoreLine Arguments

Name Description
Address to be stored.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 329Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=329

Returns

None.

Xil_L1ICacheEnable

Enable the level 1 instruction cache.

Note: None.

Prototype

void Xil_L1ICacheEnable(void);

Parameters

The following table lists the Xil_L1ICacheEnable function arguments.

Table 169: Xil_L1ICacheEnable Arguments

Name Description
None.

Returns

None.

Xil_L1ICacheDisable

Disable level 1 the instruction cache.

Note: None.

Prototype

void Xil_L1ICacheDisable(void);

Parameters

The following table lists the Xil_L1ICacheDisable function arguments.

Table 170: Xil_L1ICacheDisable Arguments

Name Description
None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 330Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=330

Returns

None.

Xil_L1ICacheInvalidate

Invalidate the entire level 1 instruction cache.

Note: None.

Prototype

void Xil_L1ICacheInvalidate(void);

Parameters

The following table lists the Xil_L1ICacheInvalidate function arguments.

Table 171: Xil_L1ICacheInvalidate Arguments

Name Description
None.

Returns

None.

Xil_L1ICacheInvalidateLine

Invalidate a level 1 instruction cache line.

If the instruction specified by the address is cached by the instruction cache, the cacheline
containing that instruction is invalidated.

Note: The bottom 5 bits are set to 0, forced by architecture.

Prototype

void Xil_L1ICacheInvalidateLine(u32 adr);

Parameters

The following table lists the Xil_L1ICacheInvalidateLine function arguments.

Table 172: Xil_L1ICacheInvalidateLine Arguments

Name Description
adr 32bit address of the instruction to be invalidated.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 331Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=331

Returns

None.

Xil_L1ICacheInvalidateRange

Invalidate the level 1 instruction cache for the given address range.

If the instrucions specified by the address range are cached by the instruction cache, the
cacheline containing those bytes are invalidated.

Note: None.

Prototype

void Xil_L1ICacheInvalidateRange(u32 adr, u32 len);

Parameters

The following table lists the Xil_L1ICacheInvalidateRange function arguments.

Table 173: Xil_L1ICacheInvalidateRange Arguments

Name Description
adr 32bit start address of the range to be invalidated.

len Length of the range to be invalidated in bytes.

Returns

None.

Xil_L2CacheEnable

Enable the L2 cache.

Note: None.

Prototype

void Xil_L2CacheEnable(void);

Parameters

The following table lists the Xil_L2CacheEnable function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 332Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=332

Table 174: Xil_L2CacheEnable Arguments

Name Description
None.

Returns

None.

Xil_L2CacheDisable

Disable the L2 cache.

Note: None.

Prototype

void Xil_L2CacheDisable(void);

Parameters

The following table lists the Xil_L2CacheDisable function arguments.

Table 175: Xil_L2CacheDisable Arguments

Name Description
None.

Returns

None.

Xil_L2CacheInvalidate

Invalidate the entire level 2 cache.

Note: None.

Prototype

void Xil_L2CacheInvalidate(void);

Parameters

The following table lists the Xil_L2CacheInvalidate function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 333Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=333

Table 176: Xil_L2CacheInvalidate Arguments

Name Description
None.

Returns

None.

Xil_L2CacheInvalidateLine

Invalidate a level 2 cache line.

If the byte specified by the address (adr) is cached by the Data cache, the cacheline containing
that byte is invalidated. If the cacheline is modified (dirty), the modified contents are lost and are
NOT written to system memory before the line is invalidated.

Note: The bottom 4 bits are set to 0, forced by architecture.

Prototype

void Xil_L2CacheInvalidateLine(u32 adr);

Parameters

The following table lists the Xil_L2CacheInvalidateLine function arguments.

Table 177: Xil_L2CacheInvalidateLine Arguments

Name Description
adr 32bit address of the data/instruction to be invalidated.

Returns

None.

Xil_L2CacheInvalidateRange

Invalidate the level 2 cache for the given address range.

If the bytes specified by the address range are cached by the L2 cache, the cacheline containing
those bytes are invalidated. If the cachelines are modified (dirty), the modified contents are lost
and are NOT written to system memory before the lines are invalidated.

Note: None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 334Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=334

Prototype

void Xil_L2CacheInvalidateRange(u32 adr, u32 len);

Parameters

The following table lists the Xil_L2CacheInvalidateRange function arguments.

Table 178: Xil_L2CacheInvalidateRange Arguments

Name Description
adr 32bit start address of the range to be invalidated.

len Length of the range to be invalidated in bytes.

Returns

None.

Xil_L2CacheFlush

Flush the entire level 2 cache.

Note: None.

Prototype

void Xil_L2CacheFlush(void);

Parameters

The following table lists the Xil_L2CacheFlush function arguments.

Table 179: Xil_L2CacheFlush Arguments

Name Description
None.

Returns

None.

Xil_L2CacheFlushLine

Flush a level 2 cache line.

If the byte specified by the address (adr) is cached by the L2 cache, the cacheline containing that
byte is invalidated. If the cacheline is modified (dirty), the entire contents of the cacheline are
written to system memory before the line is invalidated.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 335Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=335

Note: The bottom 4 bits are set to 0, forced by architecture.

Prototype

void Xil_L2CacheFlushLine(u32 adr);

Parameters

The following table lists the Xil_L2CacheFlushLine function arguments.

Table 180: Xil_L2CacheFlushLine Arguments

Name Description
adr 32bit address of the data/instruction to be flushed.

Returns

None.

Xil_L2CacheFlushRange

Flush the level 2 cache for the given address range.

If the bytes specified by the address range are cached by the L2 cache, the cacheline containing
those bytes are invalidated. If the cachelines are modified (dirty), they are written to the system
memory before the lines are invalidated.

Note: None.

Prototype

void Xil_L2CacheFlushRange(u32 adr, u32 len);

Parameters

The following table lists the Xil_L2CacheFlushRange function arguments.

Table 181: Xil_L2CacheFlushRange Arguments

Name Description
adr 32bit start address of the range to be flushed.

len Length of the range to be flushed in bytes.

Returns

None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 336Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=336

Xil_L2CacheStoreLine

Store a level 2 cache line.

If the byte specified by the address (adr) is cached by the L2 cache and the cacheline is modified
(dirty), the entire contents of the cacheline are written to system memory. After the store
completes, the cacheline is marked as unmodified (not dirty).

Note: The bottom 4 bits are set to 0, forced by architecture.

Prototype

void Xil_L2CacheStoreLine(u32 adr);

Parameters

The following table lists the Xil_L2CacheStoreLine function arguments.

Table 182: Xil_L2CacheStoreLine Arguments

Name Description
adr 32bit address of the data/instruction to be stored.

Returns

None.

Cortex A9 Processor MMU Functions
MMU functions equip users to enable MMU, disable MMU and modify default memory
attributes of MMU table as per the need.

Table 183: Quick Function Reference

Type Name Arguments
void Xil_SetTlbAttributes

INTPTR Addr
u32 attrib

void Xil_EnableMMU
None.

void Xil_DisableMMU
None.

void * Xil_MemMap
UINTPTR PhysAddr
size_t size
u32 flags

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 337Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=337

Functions

Xil_SetTlbAttributes

This function sets the memory attributes for a section covering 1MB of memory in the
translation table.

Note: The MMU or D-cache does not need to be disabled before changing a translation table entry.

Prototype

void Xil_SetTlbAttributes(INTPTR Addr, u32 attrib);

Parameters

The following table lists the Xil_SetTlbAttributes function arguments.

Table 184: Xil_SetTlbAttributes Arguments

Name Description
Addr 32-bit address for which memory attributes need to be set.

attrib Attribute for the given memory region. xil_mmu.h contains definitions of commonly
used memory attributes which can be utilized for this function.

Returns

None.

Xil_EnableMMU

Enable MMU for cortex A9 processor.

This function invalidates the instruction and data caches, and then enables MMU.

Prototype

void Xil_EnableMMU(void);

Parameters

The following table lists the Xil_EnableMMU function arguments.

Table 185: Xil_EnableMMU Arguments

Name Description
None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 338Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=338

Returns

None.

Xil_DisableMMU

Disable MMU for Cortex A9 processors.

This function invalidates the TLBs, Branch Predictor Array and flushed the D Caches before
disabling the MMU.

Note: When the MMU is disabled, all the memory accesses are treated as strongly ordered.

Prototype

void Xil_DisableMMU(void);

Parameters

The following table lists the Xil_DisableMMU function arguments.

Table 186: Xil_DisableMMU Arguments

Name Description
None.

Returns

None.

Xil_MemMap

Memory mapping for Cortex A9 processor.

Note: : Previously this was implemented in libmetal. Move to embeddedsw as this functionality is specific
to A9 processor.

Prototype

void * Xil_MemMap(UINTPTR PhysAddr, size_t size, u32 flags);

Parameters

The following table lists the Xil_MemMap function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 339Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=339

Table 187: Xil_MemMap Arguments

Name Description
PhysAddr is physical address.

size is size of region.

flags is flags used to set translation table.

Returns

Pointer to virtual address.

Cortex A9 Time Functions

xtime_l.h provides access to the 64-bit Global Counter in the PMU. This counter increases by one
at every two processor cycles. These functions can be used to get/set time in the global timer.

Table 188: Quick Function Reference

Type Name Arguments
void XTime_SetTime

XTime Xtime_Global

void XTime_GetTime
XTime * Xtime_Global

Functions

XTime_SetTime

Set the time in the Global Timer Counter Register.

Note: When this function is called by any one processor in a multi- processor environment, reference time
will reset/lost for all processors.

Prototype

void XTime_SetTime(XTime Xtime_Global);

Parameters

The following table lists the XTime_SetTime function arguments.

Table 189: XTime_SetTime Arguments

Name Description
Xtime_Global 64-bit Value to be written to the Global Timer Counter Register.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 340Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=340

Returns

None.

XTime_GetTime

Get the time from the Global Timer Counter Register.

Note: None.

Prototype

void XTime_GetTime(XTime *Xtime_Global);

Parameters

The following table lists the XTime_GetTime function arguments.

Table 190: XTime_GetTime Arguments

Name Description
Xtime_Global Pointer to the 64-bit location which will be updated with the current timer value.

Returns

None.

Cortex A9 Event Counter Function
Cortex A9 event counter functions can be utilized to configure and control the Cortex-A9
performance monitor events.

Cortex-A9 performance monitor has six event counters which can be used to count a variety of
events described in Coretx-A9 TRM. xpm_counter.h defines configurations XPM_CNTRCFGx
which can be used to program the event counters to count a set of events.

Note: It doesn't handle the Cortex-A9 cycle counter, as the cycle counter is being used for time keeping.

Table 191: Quick Function Reference

Type Name Arguments
void Xpm_SetEvents

s32 PmcrCfg

void Xpm_GetEventCounters
u32 * PmCtrValue

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 341Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=341

Functions

Xpm_SetEvents

This function configures the Cortex A9 event counters controller, with the event codes, in a
configuration selected by the user and enables the counters.

Note: None.

Prototype

void Xpm_SetEvents(s32 PmcrCfg);

Parameters

The following table lists the Xpm_SetEvents function arguments.

Table 192: Xpm_SetEvents Arguments

Name Description
PmcrCfg Configuration value based on which the event counters are configured.

XPM_CNTRCFG* values defined in xpm_counter.h can be utilized for setting
configuration.

Returns

None.

Xpm_GetEventCounters

This function disables the event counters and returns the counter values.

Note: None.

Prototype

void Xpm_GetEventCounters(u32 *PmCtrValue);

Parameters

The following table lists the Xpm_GetEventCounters function arguments.

Table 193: Xpm_GetEventCounters Arguments

Name Description
PmCtrValue Pointer to an array of type u32 PmCtrValue[6]. It is an output parameter which is used

to return the PM counter values.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 342Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=342

Returns

None.

PL310 L2 Event Counters Functions
xl2cc_counter.h contains APIs for configuring and controlling the event counters in PL310 L2
cache controller. PL310 has two event counters which can be used to count variety of events like
DRHIT, DRREQ, DWHIT, DWREQ, etc. xl2cc_counter.h contains definitions for different
configurations which can be used for the event counters to count a set of events.

Table 194: Quick Function Reference

Type Name Arguments
void XL2cc_EventCtrInit

s32 Event0
s32 Event1

void XL2cc_EventCtrStart
None.

void XL2cc_EventCtrStop
u32 * EveCtr0

Functions

XL2cc_EventCtrInit

This function initializes the event counters in L2 Cache controller with a set of event codes
specified by the user.

Note: The definitions for event codes XL2CC_* can be found in xl2cc_counter.h.

Prototype

void XL2cc_EventCtrInit(s32 Event0, s32 Event1);

Parameters

The following table lists the XL2cc_EventCtrInit function arguments.

Table 195: XL2cc_EventCtrInit Arguments

Name Description
Event0 Event code for counter 0.

Event1 Event code for counter 1.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 343Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=343

Returns

None.

XL2cc_EventCtrStart

This function starts the event counters in L2 Cache controller.

Note: None.

Prototype

void XL2cc_EventCtrStart(void);

Parameters

The following table lists the XL2cc_EventCtrStart function arguments.

Table 196: XL2cc_EventCtrStart Arguments

Name Description
None.

Returns

None.

XL2cc_EventCtrStop

This function disables the event counters in L2 Cache controller, saves the counter values and
resets the counters.

Note: None.

Prototype

void XL2cc_EventCtrStop(u32 *EveCtr0, u32 *EveCtr1);

Parameters

The following table lists the XL2cc_EventCtrStop function arguments.

Table 197: XL2cc_EventCtrStop Arguments

Name Description
EveCtr0 Output parameter which is used to return the value in event counter 0. EveCtr1:

Output parameter which is used to return the value in event counter 1.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 344Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=344

Returns

None.

Cortex A9 Processor and pl310 Errata Support
Various ARM errata are handled in the standalone BSP. The implementation for errata handling
follows ARM guidelines and is based on the open source Linux support for these errata.

Note: The errata handling is enabled by default. To disable handling of all the errata globally, un-define the
macro ENABLE_ARM_ERRATA in xil_errata.h. To disable errata on a per-erratum basis, un-define relevant
macros in xil_errata.h.

Cortex A9 Processor Specific Include Files
The xpseudo_asm.h includes xreg_cortexa9.h and xpseudo_asm_gcc.h.

The xreg_cortexa9.h file contains definitions for inline assembler code. It provides inline
definitions for Cortex A9 GPRs, SPRs, MPE registers, co-processor registers and Debug registers.

The xpseudo_asm_gcc.h contains the definitions for the most often used inline assembler
instructions, available as macros. These can be very useful for tasks such as setting or getting
special purpose registers, synchronization, or cache manipulation etc. These inline assembler
instructions can be used from drivers and user applications written in C.

Cortex A53 32-bit Processor API
Cortex-A53 standalone BSP contains two separate BSPs for 32-bit mode and 64-bit mode. The
32-bit mode of cortex-A53 is compatible with ARMv7-A architecture.

Cortex A53 32-bit Processor Boot Code
The boot code performs minimum configuration which is required for an application to run
starting from processor's reset state. Below is a sequence illustrating what all configuration is
performed before control reaches to main function.

1. Program vector table base for exception handling

2. Invalidate instruction cache, data cache and TLBs

3. Program stack pointer for various modes (IRQ, FIQ, supervisor, undefine, abort, system)

4. Program counter frequency

5. Configure MMU with short descriptor translation table format and program base address of
translation table

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 345Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=345

6. Enable data cache, instruction cache and MMU

7. Transfer control to _start which clears BSS sections and runs global constructor before
jumping to main application

Cortex A53 32-bit Processor Cache Functions
Cache functions provide access to cache related operations such as flush and invalidate for
instruction and data caches. It gives option to perform the cache operations on a single
cacheline, a range of memory and an entire cache.

Table 198: Quick Function Reference

Type Name Arguments
void Xil_DCacheEnable

None.

void Xil_DCacheDisable
None.

void Xil_DCacheInvalidate
None.

void Xil_DCacheInvalidateRange
INTPTR adr
u32 len

void Xil_DCacheFlush
None.

void Xil_DCacheFlushRange
INTPTR adr
u32 len

void Xil_DCacheInvalidateLine
u32 adr

void Xil_DCacheFlushLine
u32 adr

void Xil_ICacheInvalidateLine
u32 adr

void Xil_ICacheEnable
None.

void Xil_ICacheDisable
None.

void Xil_ICacheInvalidate
None.

void Xil_ICacheInvalidateRange
INTPTR adr
u32 len

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 346Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=346

Functions

Xil_DCacheEnable

Enable the Data cache.

Note: None.

Prototype

void Xil_DCacheEnable(void);

Parameters

The following table lists the Xil_DCacheEnable function arguments.

Table 199: Xil_DCacheEnable Arguments

Name Description
None.

Returns

None.

Xil_DCacheDisable

Disable the Data cache.

Note: None.

Prototype

void Xil_DCacheDisable(void);

Parameters

The following table lists the Xil_DCacheDisable function arguments.

Table 200: Xil_DCacheDisable Arguments

Name Description
None.

Returns

None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 347Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=347

Xil_DCacheInvalidate

Invalidate the Data cache.

The contents present in the data cache are cleaned and invalidated.

Note: In Cortex-A53, functionality to simply invalid the cachelines is not present. Such operations are a
problem for an environment that supports virtualisation. It would allow one OS to invalidate a line
belonging to another OS. This could lead to the other OS crashing because of the loss of essential data.
Hence, such operations are promoted to clean and invalidate to avoid such corruption.

Prototype

void Xil_DCacheInvalidate(void);

Parameters

The following table lists the Xil_DCacheInvalidate function arguments.

Table 201: Xil_DCacheInvalidate Arguments

Name Description
None.

Returns

None.

Xil_DCacheInvalidateRange

Invalidate the Data cache for the given address range.

The cachelines present in the adderss range are cleaned and invalidated

@notice In Cortex-A53, functionality to simply invalid the cachelines is not present. Such
operations are a problem for an environment that supports virtualisation. It would allow one OS
to invalidate a line belonging to another OS. This could lead to the other OS crashing because of
the loss of essential data. Hence, such operations are promoted to clean and invalidate to avoid
such corruption.

Prototype

void Xil_DCacheInvalidateRange(INTPTR adr, u32 len);

Parameters

The following table lists the Xil_DCacheInvalidateRange function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 348Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=348

Table 202: Xil_DCacheInvalidateRange Arguments

Name Description
adr 32bit start address of the range to be invalidated.

len Length of the range to be invalidated in bytes.

Returns

None.

Xil_DCacheFlush

Flush the Data cache.

@notice None.

Prototype

void Xil_DCacheFlush(void);

Parameters

The following table lists the Xil_DCacheFlush function arguments.

Table 203: Xil_DCacheFlush Arguments

Name Description
None.

Returns

None.

Xil_DCacheFlushRange

Flush the Data cache for the given address range.

If the bytes specified by the address range are cached by the Data cache, the cachelines
containing those bytes are invalidated. If the cachelines are modified (dirty), they are written to
system memory before the lines are invalidated.

@notice None.

Prototype

void Xil_DCacheFlushRange(INTPTR adr, u32 len);

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 349Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=349

Parameters

The following table lists the Xil_DCacheFlushRange function arguments.

Table 204: Xil_DCacheFlushRange Arguments

Name Description
adr 32bit start address of the range to be flushed.

len Length of range to be flushed in bytes.

Returns

None.

Xil_DCacheInvalidateLine

Invalidate a Data cache line.

The cacheline is cleaned and invalidated.

Note: In Cortex-A53, functionality to simply invalid the cachelines is not present. Such operations are a
problem for an environment that supports virtualisation. It would allow one OS to invalidate a line
belonging to another OS. This could lead to the other OS crashing because of the loss of essential data.
Hence, such operations are promoted to clean and invalidate to avoid such corruption.

Prototype

void Xil_DCacheInvalidateLine(u32 adr);

Parameters

The following table lists the Xil_DCacheInvalidateLine function arguments.

Table 205: Xil_DCacheInvalidateLine Arguments

Name Description
adr 32 bit address of the data to be invalidated.

Returns

None.

Xil_DCacheFlushLine

Flush a Data cache line.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 350Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=350

If the byte specified by the address (adr) is cached by the Data cache, the cacheline containing
that byte is invalidated. If the cacheline is modified (dirty), the entire contents of the cacheline
are written to system memory before the line is invalidated.

@notice The bottom 4 bits are set to 0, forced by architecture.

Prototype

void Xil_DCacheFlushLine(u32 adr);

Parameters

The following table lists the Xil_DCacheFlushLine function arguments.

Table 206: Xil_DCacheFlushLine Arguments

Name Description
adr 32bit address of the data to be flushed.

Returns

None.

Xil_ICacheInvalidateLine

Invalidate an instruction cache line.

If the instruction specified by the address is cached by the instruction cache, the cachecline
containing that instruction is invalidated.

@notice The bottom 4 bits are set to 0, forced by architecture.

Prototype

void Xil_ICacheInvalidateLine(u32 adr);

Parameters

The following table lists the Xil_ICacheInvalidateLine function arguments.

Table 207: Xil_ICacheInvalidateLine Arguments

Name Description
adr 32bit address of the instruction to be invalidated..

Returns

None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 351Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=351

Xil_ICacheEnable

Enable the instruction cache.

@notice None.

Prototype

void Xil_ICacheEnable(void);

Parameters

The following table lists the Xil_ICacheEnable function arguments.

Table 208: Xil_ICacheEnable Arguments

Name Description
None.

Returns

None.

Xil_ICacheDisable

Disable the instruction cache.

Note: None.

Prototype

void Xil_ICacheDisable(void);

Parameters

The following table lists the Xil_ICacheDisable function arguments.

Table 209: Xil_ICacheDisable Arguments

Name Description
None.

Returns

None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 352Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=352

Xil_ICacheInvalidate

Invalidate the entire instruction cache.

Note: None.

Prototype

void Xil_ICacheInvalidate(void);

Parameters

The following table lists the Xil_ICacheInvalidate function arguments.

Table 210: Xil_ICacheInvalidate Arguments

Name Description
None.

Returns

None.

Xil_ICacheInvalidateRange

Invalidate the instruction cache for the given address range.

If the instructions specified by the address range are cached by the instrunction cache, the
cachelines containing those instructions are invalidated.

@notice None.

Prototype

void Xil_ICacheInvalidateRange(INTPTR adr, u32 len);

Parameters

The following table lists the Xil_ICacheInvalidateRange function arguments.

Table 211: Xil_ICacheInvalidateRange Arguments

Name Description
adr 32bit start address of the range to be invalidated.

len Length of the range to be invalidated in bytes.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 353Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=353

Returns

None.

Cortex A53 32-bit Processor MMU Handling
MMU functions equip users to enable MMU, disable MMU and modify default memory
attributes of MMU table as per the need.

None.

Note:

Table 212: Quick Function Reference

Type Name Arguments
void Xil_SetTlbAttributes

UINTPTR Addr
u32 attrib

void Xil_EnableMMU
None.

void Xil_DisableMMU
None.

Functions

Xil_SetTlbAttributes

This function sets the memory attributes for a section covering 1MB of memory in the
translation table.

Note: The MMU or D-cache does not need to be disabled before changing a translation table entry.

Prototype

void Xil_SetTlbAttributes(UINTPTR Addr, u32 attrib);

Parameters

The following table lists the Xil_SetTlbAttributes function arguments.

Table 213: Xil_SetTlbAttributes Arguments

Name Description
Addr 32-bit address for which the attributes need to be set.

attrib Attributes for the specified memory region. xil_mmu.h contains commonly used
memory attributes definitions which can be utilized for this function.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 354Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=354

Returns

None.

Xil_EnableMMU

Enable MMU for Cortex-A53 processor in 32bit mode.

This function invalidates the instruction and data caches before enabling MMU.

Prototype

void Xil_EnableMMU(void);

Parameters

The following table lists the Xil_EnableMMU function arguments.

Table 214: Xil_EnableMMU Arguments

Name Description
None.

Returns

None.

Xil_DisableMMU

Disable MMU for Cortex A53 processors in 32bit mode.

This function invalidates the TLBs, Branch Predictor Array and flushed the data cache before
disabling the MMU.

Note: When the MMU is disabled, all the memory accesses are treated as strongly ordered.

Prototype

void Xil_DisableMMU(void);

Parameters

The following table lists the Xil_DisableMMU function arguments.

Table 215: Xil_DisableMMU Arguments

Name Description
None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 355Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=355

Returns

None.

Cortex A53 32-bit Mode Time Functions
xtime_l.h provides access to the 64-bit physical timer counter.

Table 216: Quick Function Reference

Type Name Arguments
void XTime_StartTimer

None.

void XTime_SetTime
XTime Xtime_Global

void XTime_GetTime
XTime * Xtime_Global

Functions

XTime_StartTimer

Start the 64-bit physical timer counter.

Note: The timer is initialized only if it is disabled. If the timer is already running this function does not
perform any operation.

Prototype

void XTime_StartTimer(void);

Parameters

The following table lists the XTime_StartTimer function arguments.

Table 217: XTime_StartTimer Arguments

Name Description
None.

Returns

None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 356Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=356

XTime_SetTime

Timer of A53 runs continuously and the time can not be set as desired.

This API doesn't contain anything. It is defined to have uniformity across platforms.

Note: None.

Prototype

void XTime_SetTime(XTime Xtime_Global);

Parameters

The following table lists the XTime_SetTime function arguments.

Table 218: XTime_SetTime Arguments

Name Description
Xtime_Global 64bit Value to be written to the Global Timer Counter Register. But since the function

does not contain anything, the value is not used for anything.

Returns

None.

XTime_GetTime

Get the time from the physical timer counter register.

Note: None.

Prototype

void XTime_GetTime(XTime *Xtime_Global);

Parameters

The following table lists the XTime_GetTime function arguments.

Table 219: XTime_GetTime Arguments

Name Description
Xtime_Global Pointer to the 64-bit location to be updated with the current value in physical timer

counter.

Returns

None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 357Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=357

Cortex A53 32-bit Processor Specific Include Files
The xpseudo_asm.h includes xreg_cortexa53.h and xpseudo_asm_gcc.h. The xreg_cortexa53.h
file contains definitions for inline assembler code. It provides inline definitions for Cortex A53
GPRs, SPRs, co-processor registers and floating point registers.

The xpseudo_asm_gcc.h contains the definitions for the most often used inline assembler
instructions, available as macros. These can be very useful for tasks such as setting or getting
special purpose registers, synchronization, or cache manipulation etc. These inline assembler
instructions can be used from drivers and user applications written in C.

Cortex A53 64-bit Processor Boot Code
Cortex-A53 standalone BSP contains two separate BSPs for 32-bit mode and 64-bit mode. The
64-bit mode of cortex-A53 contains ARMv8-A architecture. This section provides a linked
summary and detailed descriptions of the Cortex A53 64-bit Processor APIs.

Cortex A53 64-bit Processor Cache Functions
Cache functions provide access to cache related operations such as flush and invalidate for
instruction and data caches. It gives option to perform the cache operations on a single
cacheline, a range of memory and an entire cache.

Table 220: Quick Function Reference

Type Name Arguments
void Xil_DCacheEnable

None.

void Xil_DCacheDisable
None.

void Xil_DCacheInvalidate
None.

void Xil_DCacheInvalidateRange
INTPTR adr
INTPTR len

void Xil_DCacheInvalidateLine
INTPTR adr

void Xil_DCacheFlush
None.

void Xil_DCacheFlushLine
INTPTR adr

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 358Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=358

Table 220: Quick Function Reference (cont'd)

Type Name Arguments
void Xil_ICacheEnable

None.

void Xil_ICacheDisable
None.

void Xil_ICacheInvalidate
None.

void Xil_ICacheInvalidateRange
INTPTR adr
INTPTR len

void Xil_ICacheInvalidateLine
INTPTR adr

void Xil_ConfigureL1Prefetch
u8 num

Functions

Xil_DCacheEnable

Enable the Data cache.

Note: None.

Prototype

void Xil_DCacheEnable(void);

Parameters

The following table lists the Xil_DCacheEnable function arguments.

Table 221: Xil_DCacheEnable Arguments

Name Description
None.

Returns

None.

Xil_DCacheDisable

Disable the Data cache.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 359Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=359

Note: None.

Prototype

void Xil_DCacheDisable(void);

Parameters

The following table lists the Xil_DCacheDisable function arguments.

Table 222: Xil_DCacheDisable Arguments

Name Description
None.

Returns

None.

Xil_DCacheInvalidate

Invalidate the Data cache.

The contents present in the cache are cleaned and invalidated.

Note: In Cortex-A53, functionality to simply invalid the cachelines is not present. Such operations are a
problem for an environment that supports virtualisation. It would allow one OS to invalidate a line
belonging to another OS. This could lead to the other OS crashing because of the loss of essential data.
Hence, such operations are promoted to clean and invalidate which avoids such corruption.

Prototype

void Xil_DCacheInvalidate(void);

Parameters

The following table lists the Xil_DCacheInvalidate function arguments.

Table 223: Xil_DCacheInvalidate Arguments

Name Description
None.

Returns

None.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 360Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=360

Xil_DCacheInvalidateRange

Invalidate the Data cache for the given address range.

The cachelines present in the adderss range are cleaned and invalidated

Note: In Cortex-A53, functionality to simply invalid the cachelines is not present. Such operations are a
problem for an environment that supports virtualisation. It would allow one OS to invalidate a line
belonging to another OS. This could lead to the other OS crashing because of the loss of essential data.
Hence, such operations are promoted to clean and invalidate which avoids such corruption.

Prototype

void Xil_DCacheInvalidateRange(INTPTR adr, INTPTR len);

Parameters

The following table lists the Xil_DCacheInvalidateRange function arguments.

Table 224: Xil_DCacheInvalidateRange Arguments

Name Description
adr 64bit start address of the range to be invalidated.

len Length of the range to be invalidated in bytes.

Returns

None.

Xil_DCacheInvalidateLine

Invalidate a Data cache line.

The cacheline is cleaned and invalidated.

Note: In Cortex-A53, functionality to simply invalid the cachelines is not present. Such operations are a
problem for an environment that supports virtualisation. It would allow one OS to invalidate a line
belonging to another OS. This could lead to the other OS crashing because of the loss of essential data.
Hence, such operations are promoted to clean and invalidate which avoids such corruption.

Prototype

void Xil_DCacheInvalidateLine(INTPTR adr);

Parameters

The following table lists the Xil_DCacheInvalidateLine function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 361Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=361

Table 225: Xil_DCacheInvalidateLine Arguments

Name Description
adr 64bit address of the data to be flushed.

Returns

None.

Xil_DCacheFlush

Flush the Data cache.

Note: None.

Prototype

void Xil_DCacheFlush(void);

Parameters

The following table lists the Xil_DCacheFlush function arguments.

Table 226: Xil_DCacheFlush Arguments

Name Description
None.

Returns

None.

Xil_DCacheFlushLine

Flush a Data cache line.

If the byte specified by the address (adr) is cached by the Data cache, the cacheline containing
that byte is invalidated. If the cacheline is modified (dirty), the entire contents of the cacheline
are written to system memory before the line is invalidated.

Note: The bottom 6 bits are set to 0, forced by architecture.

Prototype

void Xil_DCacheFlushLine(INTPTR adr);

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 362Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=362

Parameters

The following table lists the Xil_DCacheFlushLine function arguments.

Table 227: Xil_DCacheFlushLine Arguments

Name Description
adr 64bit address of the data to be flushed.

Returns

None.

Xil_ICacheEnable

Enable the instruction cache.

Note: None.

Prototype

void Xil_ICacheEnable(void);

Parameters

The following table lists the Xil_ICacheEnable function arguments.

Table 228: Xil_ICacheEnable Arguments

Name Description
None.

Returns

None.

Xil_ICacheDisable

Disable the instruction cache.

Note: None.

Prototype

void Xil_ICacheDisable(void);

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 363Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=363

Parameters

The following table lists the Xil_ICacheDisable function arguments.

Table 229: Xil_ICacheDisable Arguments

Name Description
None.

Returns

None.

Xil_ICacheInvalidate

Invalidate the entire instruction cache.

Note: None.

Prototype

void Xil_ICacheInvalidate(void);

Parameters

The following table lists the Xil_ICacheInvalidate function arguments.

Table 230: Xil_ICacheInvalidate Arguments

Name Description
None.

Returns

None.

Xil_ICacheInvalidateRange

Invalidate the instruction cache for the given address range.

If the instructions specified by the address range are cached by the instrunction cache, the
cachelines containing those instructions are invalidated.

Note: None.

Prototype

void Xil_ICacheInvalidateRange(INTPTR adr, INTPTR len);

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 364Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=364

Parameters

The following table lists the Xil_ICacheInvalidateRange function arguments.

Table 231: Xil_ICacheInvalidateRange Arguments

Name Description
adr 64bit start address of the range to be invalidated.

len Length of the range to be invalidated in bytes.

Returns

None.

Xil_ICacheInvalidateLine

Invalidate an instruction cache line.

If the instruction specified by the parameter adr is cached by the instruction cache, the cacheline
containing that instruction is invalidated.

Note: The bottom 6 bits are set to 0, forced by architecture.

Prototype

void Xil_ICacheInvalidateLine(INTPTR adr);

Parameters

The following table lists the Xil_ICacheInvalidateLine function arguments.

Table 232: Xil_ICacheInvalidateLine Arguments

Name Description
adr 64bit address of the instruction to be invalidated.

Returns

None.

Xil_ConfigureL1Prefetch

Configure the maximum number of outstanding data prefetches allowed in L1 cache.

Note: This function is implemented only for EL3 privilege level.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 365Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=365

Prototype

void Xil_ConfigureL1Prefetch(u8 num);

Parameters

The following table lists the Xil_ConfigureL1Prefetch function arguments.

Table 233: Xil_ConfigureL1Prefetch Arguments

Name Description
num maximum number of outstanding data prefetches allowed, valid values are 0-7.

Returns

None.

Cortex A53 64-bit Processor MMU Handling
MMU function equip users to modify default memory attributes of MMU table as per the need.

None.

Note:

Table 234: Quick Function Reference

Type Name Arguments
void Xil_SetTlbAttributes

UINTPTR Addr
u64 attrib

Functions

Xil_SetTlbAttributes

brief It sets the memory attributes for a section, in the translation table.

If the address (defined by Addr) is less than 4GB, the memory attribute(attrib) is set for a section
of 2MB memory. If the address (defined by Addr) is greater than 4GB, the memory attribute
(attrib) is set for a section of 1GB memory.

Note: The MMU and D-cache need not be disabled before changing an translation table attribute.

Prototype

void Xil_SetTlbAttributes(UINTPTR Addr, u64 attrib);

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 366Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=366

Parameters

The following table lists the Xil_SetTlbAttributes function arguments.

Table 235: Xil_SetTlbAttributes Arguments

Name Description
Addr 64-bit address for which attributes are to be set.

attrib Attribute for the specified memory region. xil_mmu.h contains commonly used
memory attributes definitions which can be utilized for this function.

Returns

None.

Cortex A53 64-bit Mode Time Functions
xtime_l.h provides access to the 64-bit physical timer counter.

Table 236: Quick Function Reference

Type Name Arguments
void XTime_StartTimer

None.

void XTime_SetTime
XTime Xtime_Global

void XTime_GetTime
XTime * Xtime_Global

Functions

XTime_StartTimer

Start the 64-bit physical timer counter.

Note: The timer is initialized only if it is disabled. If the timer is already running this function does not
perform any operation. This API is effective only if BSP is built for EL3. For EL1 Non-secure, it simply exits.

Prototype

void XTime_StartTimer(void);

Parameters

The following table lists the XTime_StartTimer function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 367Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=367

Table 237: XTime_StartTimer Arguments

Name Description
None.

Returns

None.

XTime_SetTime

Timer of A53 runs continuously and the time can not be set as desired.

This API doesn't contain anything. It is defined to have uniformity across platforms.

Note: None.

Prototype

void XTime_SetTime(XTime Xtime_Global);

Parameters

The following table lists the XTime_SetTime function arguments.

Table 238: XTime_SetTime Arguments

Name Description
Xtime_Global 64bit value to be written to the physical timer counter register. Since API does not do

anything, the value is not utilized.

Returns

None.

XTime_GetTime

Get the time from the physical timer counter register.

Note: None.

Prototype

void XTime_GetTime(XTime *Xtime_Global);

Parameters

The following table lists the XTime_GetTime function arguments.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 368Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=368

Table 239: XTime_GetTime Arguments

Name Description
Xtime_Global Pointer to the 64-bit location to be updated with the current value of physical timer

counter register.

Returns

None.

Cortex A53 64-bit Processor Specific Include Files
The xpseudo_asm.h includes xreg_cortexa53.h and xpseudo_asm_gcc.h. The xreg_cortexa53.h
file contains definitions for inline assembler code. It provides inline definitions for Cortex A53
GPRs, SPRs and floating point registers.

The xpseudo_asm_gcc.h contains the definitions for the most often used inline assembler
instructions, available as macros. These can be very useful for tasks such as setting or getting
special purpose registers, synchronization, or cache manipulation etc. These inline assembler
instructions can be used from drivers and user applications written in C.

Appendix A: Standalone Library v7.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 369Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=369

Appendix B

LwIP 2.1.1 Library

Introduction
The lwIP is an open source TCP/IP protocol suite available under the BSD license. The lwIP is a
standalone stack; there are no operating systems dependencies, although it can be used along
with operating systems. The lwIP provides two A05PIs for use by applications:

• RAW API: Provides access to the core lwIP stack.

• Socket API: Provides a BSD sockets style interface to the stack.

The lwip211_v1.2 is built on the open source lwIP library version 2.1.1. The lwip211 library
provides adapters for the Ethernetlite (axi_ethernetlite), the TEMAC (axi_ethernet), and the
Gigabit Ethernet controller and MAC (GigE) cores. The library can run on MicroBlaze™, ARM
Cortex-A9, ARM Cortex-A53, and ARM Cortex-R5 processors. The Ethernetlite and TEMAC
cores apply for MicroBlaze systems. The Gigabit Ethernet controller and MAC (GigE) core is
applicable only for ARM Cortex-A9 system (Zynq-7000 processor devices) and ARM Cortex-A53
& ARM Cortex-R5 system (Zynq UltraScale+ MPSoC).

Features
The lwIP provides support for the following protocols:

• Internet Protocol (IP)

• Internet Control Message Protocol (ICMP)

• User Datagram Protocol (UDP)

• TCP (Transmission Control Protocol (TCP)

• Address Resolution Protocol (ARP)

• Dynamic Host Configuration Protocol (DHCP)

• Internet Group Message Protocol (IGMP)

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 370Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=370

References
• FreeRTOS: http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://
interactive.freertos.org/forums

• lwIP wiki: http://lwip.scribblewiki.com

• Xilinx® lwIP designs and application examples: http://www.xilinx.com/support/
documentation/application_notes/xapp1026.pdf

• lwIP examples using RAW and Socket APIs: http://savannah.nongnu.org/projects/lwip/

• FreeRTOS Port for Zynq is available for download from the [FreeRTOS][freertos] website

Using lwIP
Overview
The following are the key steps to use lwIP for networking:

1. Creating a hardware system containing the processor, ethernet core, and a timer. The timer
and ethernet interrupts must be connected to the processor using an interrupt controller.

2. Configuring lwip211_v1.2 to be a part of the software platform. For operating with lwIP
socket API, the Xilkernel library or FreeRTOS BSP is a prerequisite. See the Note below.

Note: The Xilkernel library is available only for MicroBlaze systems. For Cortex-A9 based systems (Zynq)
and Cortex-A53 or Cortex-R5 based systems (Zynq® UltraScale™+ MPSoC), there is no support for
Xilkernel. Instead, use FreeRTOS. A FreeRTOS BSP is available for Zynq and Zynq UltraScale+ MPSoC
systems and must be included for using lwIP socket API. The FreeRTOS BSP for Zynq and Zynq UltraScale+
MPSoC is available for download from the the [FreeRTOS][http://www.freertos.org/Interactive_Frames/
Open_Frames.html?http://interactive.freertos.org/forums] website.

Setting up the Hardware System
This section describes the hardware configurations supported by lwIP. The key components of
the hardware system include:

• Processor: Either a MicroBlaze or a Cortex-A9 or a Cortex-A53 or a Cortex-R5 processor. The
Cortex-A9 processor applies to Zynq systems. The Cortex-A53 and Cortex-R5 processors
apply to Zynq UltraScale+ MPSoC systems.

• MAC: LwIP supports axi_ethernetlite, axi_ethernet, and Gigabit Ethernet controller and MAC
(GigE) cores.

• Timer: to maintain TCP timers, lwIP raw API based applications require that certain functions
are called at periodic intervals by the application. An application can do this by registering an
interrupt handler with a timer.

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 371Send Feedback

http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freertos.org/forums
http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freertos.org/forums
http://lwip.scribblewiki.com
http://www.xilinx.com/support/documentation/application_notes/xapp1026.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp1026.pdf
http://savannah.nongnu.org/projects/lwip/
http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freertos.org/forums
http://www.freertos.org/Interactive_Frames/Open_Frames.html?http://interactive.freertos.org/forums
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=371

• DMA: For axi_ethernet based systems, the axi_ethernet cores can be configured with a soft
DMA engine (AXI DMA and MCDMA) or a FIFO interface. For GigE-based Zynq and Zynq
UltraScale+ MPSoC systems, there is a built-in DMA and so no extra configuration is needed.
Same applies to axi_ethernetlite based systems, which have their built-in buffer management
provisions.

The following figure shows a sample system architecture with a Kintex-6 device utilizing the
axi_ethernet core with DMA.

Figure 79: System Architecture using axi_ethernet core with DMA

Setting up the Software System
To use lwIP in a software application, you must first compile the lwIP library as a part of the
software application.

1. Click File > New > Platform Project.

2. Click Specify to create a new Hardware Platform Specification.

3. Provide a new name for the domain in the Project name field if you wish to override the
default value.

4. Select the location for the board support project files. To use the default location, as
displayed in the Location field, leave the Use default location check box selected. Otherwise,
deselect the checkbox and then type or browse to the directory location.

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 372Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=372

5. From the Hardware Platform drop-down choose the appropriate platform for your application
or click the New button to browse to an existing Hardware Platform.

6. Select the target CPU from the drop-down list.

7. From the Board Support Package OS list box, select the type of board support package to
create. A description of the platform types displays in the box below the drop-down list.

8. Click Finish. The wizard creates a new software platform and displays it in the Vitis Navigator
pane.

9. Select Project > Build Automatically to automatically build the board support package. The
Board Support Package Settings dialog box opens. Here you can customize the settings for
the domain.

10. Click OK to accept the settings, build the platform, and close the dialog box.

11. From the Explorer, double-click platform.spr file and select the appropriate domain/board
support package. The overview page opens.

12. In the overview page, click Modify BSP Settings.

13. Using the Board Support Package Settings page, you can select the OS Version and which of
the Supported Libraries are to be enabled in this domain/BSP.

14. Select the lwip211 library from the list of Supported Libraries.

15. Expand the Overview tree and select lwip211. The configuration options for the lwip211
library are listed.

16. Configure the lwip211 library and click OK.

Configuring lwIP Options

The lwIP library provides configurable parameters. There are two major categories of
configurable options:

• Xilinx Adapter to lwIP options: These control the settings used by Xilinx adapters for the
ethernet cores.

• Base lwIP options: These options are part of lwIP library itself, and include parameters for
TCP, UDP, IP and other protocols supported by lwIP. The following sections describe the
available lwIP configurable options.

Customizing lwIP API Mode

The lwip211_v1.3 supports both raw API and socket API:

• The raw API is customized for high performance and lower memory overhead. The limitation
of raw API is that it is callback-based, and consequently does not provide portability to other
TCP stacks.

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 373Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=373

• The socket API provides a BSD socket-style interface and is very portable; however, this mode
is not as efficient as raw API mode in performance and memory requirements. The
lwip211_v1.3 also provides the ability to set the priority on TCP/IP and other lwIP application
threads.

The following table describes the lwIP library API mode options.

Attribute Description Type Default
api_mode {RAW_API |
SOCKET_API}

The lwIP library mode of
operation

enum RAW_API

socket_mode_thread_prio Priority of lwIP TCP/IP thread
and all lwIP application
threads. This setting applies
only when Xilkernel is used
in priority mode. It is
recommended that all
threads using lwIP run at the
same priority level. For GigE
based Zynq-7000 and Zynq
UltraScale+ MPSoC systems
using FreeRTOS, appropriate
priority should be set. The
default priority of 1 will not
give the expected behaviour.
For FreeRTOS (Zynq-7000
and Zynq UltraScale+ MPSoC
systems), all internal lwIP
tasks (except the main
TCP/IP task) are created with
the priority level set for this
attribute. The TCP/IP task is
given a higher priority than
other tasks for improved
performance. The typical
TCP/IP task priority is 1 more
than the priority set for this
attribute for FreeRTOS.

integer 1

use_axieth_on_zynq In the event that the
AxiEthernet soft IP is used on
a Zynq-7000 device or a Zynq
UltraScale+ MPSoC device.
This option ensures that the
GigE on the Zynq-7000 PS
(EmacPs) is not enabled and
the device uses the
AxiEthernet soft IP for
Ethernet traffic. The existing
Xilinx-provided lwIP adapters
are not tested for multiple
MACs. Multiple Axi
Ethernet's are not supported
on Zynq UltraScale+ MPSOC
devices.

integer 0 = Use Zynq-7000 PS-based
or ZynMP PS-based GigE
controller 1= User
AxiEthernet

Configuring Xilinx Adapter Options

The Xilinx adapters for EMAC/GigE cores are configurable.

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 374Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=374

Ethernetlite Adapter Options

The following table describes the configuration parameters for the axi_ethernetlite adapter.

Attribute Description Type Default
sw_rx_fifo_size Software Buffer Size in bytes

of the receive data between
EMAC and processor

integer 8192

sw_tx_fifo_size Software Buffer Size in bytes
of the transmit data between
processor and EMAC

integer 8192

TEMAC Adapter Options

The following table describes the configuration parameters for the axi_ethernet and GigE
adapters.

Attribute Type Description
n_tx_descriptors integer Number of Tx descriptors to be used.

For high performance systems there
might be a need to use a higher value.
Default is 64.

n_rx_descriptors integer Number of Rx descriptors to be used.
For high performance systems there
might be a need to use a higher value.
Typical values are 128 and 256. Default
is 64.

n_tx_coalesce integer Setting for Tx interrupt coalescing.
Default is 1.

n_rx_coalesce integer Setting for Rx interrupt coalescing.
Default is 1.

tcp_rx_checksum_offload boolean Offload TCP Receive checksum
calculation (hardware support
required). For GigE in Zynq and Zynq
UltraScale+ MPSoC, the TCP receive
checksum offloading is always present,
so this attribute does not apply. Default
is false.

tcp_tx_checksum_offload boolean Offload TCP Transmit checksum
calculation (hardware support
required). For GigE cores (Zynq and
Zynq UltraScale+ MPSoC), the TCP
transmit checksum offloading is always
present, so this attribute does not
apply. Default is false.

tcp_ip_rx_checksum_ofload boolean Offload TCP and IP Receive checksum
calculation (hardware support
required). Applicable only for AXI
systems. For GigE in Zynq and Zynq
UltraScale+ MPSoC devices, the TCP
and IP receive checksum offloading is
always present, so this attribute does
not apply. Default is false.

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 375Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=375

Attribute Type Description
tcp_ip_tx_checksum_ofload boolean Offload TCP and IP Transmit checksum

calculation (hardware support
required). Applicable only for AXI
systems. For GigE in Zynq and Zynq
UltraScale+ MPSoC devices, the TCP
and IP transmit checksum offloading is
always present, so this attribute does
not apply. Default is false.

phy_link_speed CONFIG_LINKSPEED_ AUTODETECT Link speed as auto-negotiated by the
PHY. lwIP configures the TEMAC/GigE
for this speed setting. This setting must
be correct for the TEMAC/GigE to
transmit or receive packets. The
CONFIG_LINKSPEED_ AUTODETECT
setting attempts to detect the correct
linkspeed by reading the PHY registers;
however, this is PHY dependent, and
has been tested with the Marvell and TI
PHYs present on Xilinx development
boards. For other PHYs, select the
correct speed. Default is enum.

temac_use_jumbo_
frames_experimental

boolean Use TEMAC jumbo frames (with a size
up to 9k bytes). If this option is
selected, jumbo frames are allowed to
be transmitted and received by the
TEMAC. For GigE in Zynq there is no
support for jumbo frames, so this
attribute does not apply. Default is
false.

Configuring Memory Options

The lwIP stack provides different kinds of memories. Similarly, when the application uses socket
mode, different memory options are used. All the configurable memory options are provided as a
separate category. Default values work well unless application tuning is required. The following
table describes the memory parameter options.

Attribute Default Type Description
mem_size 131072 Integer Total size of the heap

memory available, measured
in bytes. For applications
which use a lot of memory
from heap (using C library
malloc or lwIP routine
mem_malloc or pbuf_alloc
with PBUF_RAM option), this
number should be made
higher as per the
requirements.

memp_n_pbuf 16 Integer The number of memp struct
pbufs. If the application
sends a lot of data out of
ROM (or other static
memory), this should be set
high.

memp_n_udp_pcb 4 Integer The number of UDP protocol
control blocks. One per
active UDP connection.

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 376Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=376

Attribute Default Type Description
memp_n_tcp_pcb 32 Integer The number of

simultaneously active TCP
connections.

memp_n_tcp_pcb _listen 8 Integer The number of listening TC
connections.

memp_n_tcp_seg 256 Integer The number of
simultaneously queued TCP
segments.

memp_n_sys_timeout 8 Integer Number of simultaneously
active timeouts.

memp_num_netbuf 8 Integer Number of allowed structure
instances of type netbufs.
Applicable only in socket
mode.

memp_num_netconn 16 Integer Number of allowed structure
instances of type netconns.
Applicable only in socket
mode.

memp_num_api_msg 16 Integer Number of allowed structure
instances of type api_msg.
Applicable only in socket
mode.

memp_num_tcpip_msg 64 Integer Number of TCPIP msg
structures (socket mode
only).

Note: Because Sockets Mode support uses Xilkernel services, the number of semaphores chosen in the
Xilkernel configuration must take the value set for the memp_num_netbuf parameter into account. For
FreeRTOS BSP there is no setting for the maximum number of semaphores. For FreeRTOS, you can create
semaphores as long as memory is available.

Configuring Packet Buffer (Pbuf) Memory Options

Packet buffers (Pbufs) carry packets across various layers of the TCP/IP stack. The following are
the pbuf memory options provided by the lwIP stack. Default values work well unless application
tuning is required. The following table describes the parameters for the Pbuf memory options.

Attribute Default Type Description
pbuf_pool_size 256 Integer Number of buffers in pbuf

pool. For high performance
systems, you might consider
increasing the pbuf pool size
to a higher value, such as
512.

pbuf_pool_bufsize 1700 Integer Size of each pbuf in pbuf
pool. For systems that
support jumbo frames, you
might consider using a pbuf
pool buffer size that is more
than the maximum jumbo
frame size.

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 377Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=377

Attribute Default Type Description
pbuf_link_hlen 16 Integer Number of bytes that should

be allocated for a link level
header.

Configuring ARP Options

The following table describes the parameters for the ARP options. Default values work well
unless application tuning is required.

Attribute Default Type Description
arp_table_size 10 Integer Number of active hardware

address IP address pairs
cached.

arp_queueing 1 Integer If enabled outgoing packets
are queued during hardware
address resolution. This
attribute can have two
values: 0 or 1.

Configuring IP Options

The following table describes the IP parameter options. Default values work well unless
application tuning is required.

Attribute Default Type Description
ip_forward 0 Integer Set to 1 for enabling ability

to forward IP packets across
network interfaces. If
running lwIP on a single
network interface, set to 0.
This attribute can have two
values: 0 or 1.

ip_options 0 Integer When set to 1, IP options are
allowed (but not parsed).
When set to 0, all packets
with IP options are dropped.
This attribute can have two
values: 0 or 1.

ip_reassembly 1 Integer Reassemble incoming
fragmented IP packets.

ip_frag 1 Integer Fragment outgoing IP
packets if their size exceeds
MTU.

ip_reass_max_pbufs 128 Integer Reassembly pbuf queue
length.

ip_frag_max_mtu 1500 Integer Assumed max MTU on any
interface for IP fragmented
buffer.

ip_default_ttl 255 Integer Global default TTL used by
transport layers.

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 378Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=378

Configuring ICMP Options

The following table describes the parameter for ICMP protocol option. Default values work well
unless application tuning is required.

For GigE cores (for Zynq and Zynq MPSoC) there is no support for ICMP in the hardware.

Attribute Default Type Description
icmp_ttl 255 Integer ICMP TTL value.

Configuring IGMP Options

The IGMP protocol is supported by lwIP stack. When set true, the following option enables the
IGMP protocol.

Attribute Default Type Description
imgp_options false Boolean Specify whether IGMP is

required.

Configuring UDP Options

The following table describes UDP protocol options. Default values work well unless application
tuning is required.

Attribute Default Type Description
lwip_udp true Boolean Specify whether UDP is

required.

udp_ttl 255 Integer UDP TTL value.

Configuring TCP Options

The following table describes the TCP protocol options. Default values work well unless
application tuning is required.

Attribute Default Type Description
lwip_tcp true Boolean Require TCP.

tcp_ttl 255 Integer TCP TTL value.

tcp_wnd 2048 Integer TCP Window size in bytes.

tcp_maxrtx 12 Integer TCP Maximum
retransmission value.

tcp_synmaxrtx 4 Integer TCP Maximum SYN
retransmission value.

tcp_queue_ooseq 1 Integer Accept TCP queue segments
out of order. Set to 0 if your
device is low on memory.

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 379Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=379

Attribute Default Type Description
tcp_mss 1460 Integer TCP Maximum segment size.

tcp_snd_buf 8192 Integer TCP sender buffer space in
bytes.

Configuring DHCP Options

The DHCP protocol is supported by lwIP stack. The following table describes DHCP protocol
options. Default values work well unless application tuning is required.

Attribute Default Type Description
lwip_dhcp false Boolean Specify whether DHCP is

required.

dhcp_does_arp_check false Boolean Specify whether ARP checks
on offered addresses.

Configuring the Stats Option

lwIP stack has been written to collect statistics, such as the number of connections used; amount
of memory used; and number of semaphores used, for the application. The library provides the
stats_display() API to dump out the statistics relevant to the context in which the call is used. The
stats option can be turned on to enable the statistics information to be collected and displayed
when the stats_display API is called from user code. Use the following option to enable collecting
the stats information for the application.

Attribute Description Type Default
lwip_stats Turn on lwIP Statistics int 0

Configuring the Debug Option

lwIP provides debug information. The following table lists all the available options.

Attribute Default Type Description
lwip_debug false Boolean Turn on/off lwIP debugging.

ip_debug false Boolean Turn on/off IP layer
debugging.

tcp_debug false Boolean Turn on/off TCP layer
debugging.

udp_debug false Boolean Turn on/off UDP layer
debugging.

icmp_debug false Boolean Turn on/off ICMP protocol
debugging.

igmp_debug false Boolean Turn on/off IGMP protocol
debugging.

netif_debug false Boolean Turn on/off network
interface layer debugging.

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 380Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=380

Attribute Default Type Description
sys_debug false Boolean Turn on/off sys arch layer

debugging.

pbuf_debug false Boolean Turn on/off pbuf layer
debugging

LwIP Library APIs
The lwIP library provides two different APIs: RAW API and Socket API.

Raw API
The Raw API is callback based. Applications obtain access directly into the TCP stack and vice-
versa. As a result, there is no extra socket layer, and using the Raw API provides excellent
performance at the price of compatibility with other TCP stacks.

Xilinx Adapter Requirements when using the RAW API

In addition to the lwIP RAW API, the Xilinx adapters provide the xemacif_input utility
function for receiving packets. This function must be called at frequent intervals to move the
received packets from the interrupt handlers to the lwIP stack. Depending on the type of packet
received, lwIP then calls registered application callbacks. The <Vitis_install_path>/sw/
ThirdParty/sw_services/lwip211/src/lwip-2.1.1/doc/rawapi.txt file describes
the lwIP Raw API.

LwIP Performance

The following table provides the maximum TCP throughput achievable by FPGA, CPU, EMAC,
and system frequency in RAW modes. Applications requiring high performance should use the
RAW API.

FPGA CPU EMAC System Frequency
Max TCP

Throughput in
RAW Mode (Mbps)

Virtex MicroBlaze axi-ethernet 100 MHz RX Side: 182 TX Side:
100

Virtex MicroBlaze xps-ll-temac 100 MHz RX Side: 178 TX Side:
100

Virtex MicroBlaze xps-ethernetlite 100 MHz RX Side: 50 TX Side: 38

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 381Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=381

RAW API Example

Applications using the RAW API are single threaded. The following pseudo-code illustrates a
typical RAW mode program structure.

int main()
{
 struct netif *netif, server_netif;
 ip_addr_t ipaddr, netmask, gw;

 unsigned char mac_ethernet_address[] =
 {0x00, 0x0a, 0x35, 0x00, 0x01, 0x02};

 lwip_init();

 if (!xemac_add(netif, &ipaddr, &netmask,
 &gw, mac_ethernet_address,
 EMAC_BASEADDR)) {
 printf(“Error adding N/W interface\n\r”);
 return -1;
 }
 netif_set_default(netif);

 platform_enable_interrupts();

 netif_set_up(netif);

 start_application();

 while (1) {
 xemacif_input(netif);

 transfer_data();
 }
}

Socket API
The lwIP socket API provides a BSD socket-style API to programs. This API provides an execution
model that is a blocking, open-read-write-close paradigm.

Xilinx Adapter Requirements when using the Socket API

Applications using the Socket API with Xilinx adapters need to spawn a separate thread called
xemacif_input_thread. This thread takes care of moving received packets from the interrupt
handlers to the tcpip_thread of the lwIP. Application threads that use lwIP must be created
using the lwIP sys_thread_new API. Internally, this function makes use of the appropriate
thread or task creation routines provided by XilKernel or FreeRTOS.

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 382Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=382

Xilkernel/FreeRTOS scheduling policy when using the Socket API

lwIP in socket mode requires the use of the Xilkernel or FreeRTOS, which provides two policies
for thread scheduling: round-robin and priority based. There are no special requirements when
round-robin scheduling policy is used because all threads or tasks with same priority receive the
same time quanta. This quanta is fixed by the RTOS (Xilkernel or FreeRTOS) being used. With
priority scheduling, care must be taken to ensure that lwIP threads or tasks are not starved. For
Xilkernel, lwIP internally launches all threads at the priority level specified in
socket_mode_thread_prio. For FreeRTOS, lwIP internally launches all tasks except the main
TCP/IP task at the priority specified in socket_mode_thread_prio. The TCP/IP task in
FreeRTOS is launched with a higher priority (one more than priority set in
socket_mode_thread_prio). In addition, application threads must launch
xemacif_input_thread. The priorities of both xemacif_input_thread, and the lwIP
internal threads (socket_mode_thread_prio) must be high enough in relation to the other
application threads so that they are not starved.

Socket API Example

XilKernel-based applications in socket mode can specify a static list of threads that Xilkernel
spawns on startup in the Xilkernel Software Platform Settings dialog box. Assuming that
main_thread() is a thread specified to be launched by XIlkernel, control reaches this first
thread from application main after the Xilkernel schedule is started. In main_thread, one more
thread (network_thread) is created to initialize the MAC layer. For FreeRTOS (Zynq and Zynq
Ultrascale+ MPSoC processor systems) based applications, once the control reaches application
main routine, a task (can be termed as main_thread) with an entry point function as
main_thread() is created before starting the scheduler. After the FreeRTOS scheduler starts, the
control reaches main_thread(), where the lwIP internal initialization happens. The application
then creates one more thread (network_thread) to initialize the MAC layer. The following
pseudo-code illustrates a typical socket mode program structure.

void network_thread(void *p)
{
 struct netif *netif;
 ip_addr_t ipaddr, netmask, gw;

 unsigned char mac_ethernet_address[] =
 {0x00, 0x0a, 0x35, 0x00, 0x01, 0x02};

 netif = &server_netif;

 IP4_ADDR(&ipaddr,192,168,1,10);
 IP4_ADDR(&netmask,255,255,255,0);
 IP4_ADDR(&gw,192,168,1,1);

 if (!xemac_add(netif, &ipaddr, &netmask,
 &gw, mac_ethernet_address,
 EMAC_BASEADDR)) {
 printf(“Error adding N/W interface\n\r”);

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 383Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=383

 return;
 }
 netif_set_default(netif);

 netif_set_up(netif);

 sys_thread_new(“xemacif_input_thread”, xemacif_input_thread,
 netif,
 THREAD_STACKSIZE, DEFAULT_THREAD_PRIO);

 sys_thread_new(“httpd” web_application_thread, 0,
 THREAD_STACKSIZE DEFAULT_THREAD_PRIO);
}

int main_thread()
{

 lwip_init();

 sys_thread_new(“network_thread” network_thread, NULL,
 THREAD_STACKSIZE DEFAULT_THREAD_PRIO);

 return 0;
}

Using the Xilinx Adapter Helper Functions
The Xilinx adapters provide the following helper functions to simplify the use of the lwIP APIs.

Table 240: Quick Function Reference

Type Name Arguments
void xemacif_input_thread

void

struct netif * xemac_add
void

void lwip_init
void

int xemacif_input
void

void xemacpsif_resetrx_on_no_rxdata
void

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 384Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=384

Functions

xemacif_input_thread

In the socket mode, the application thread must launch a separate thread to receive the input
packets. This performs the same work as the RAW mode function, xemacif_input() , except
that it resides in its own separate thread; consequently, any lwIP socket mode application is
required to have code similar to the following in its main thread:

Note: For Socket mode only.

sys_thread_new(“xemacif_input_thread”,

 xemacif_input_thread
 , netif, THREAD_STACK_SIZE, DEFAULT_THREAD_PRIO);

The application can then continue launching separate threads for doing application specific tasks.
The xemacif_input_thread() receives data processed by the interrupt handlers, and passes
them to the lwIP tcpip_thread.

Prototype

void xemacif_input_thread(struct netif *netif);

Returns

xemac_add

The xemac_add() function provides a unified interface to add any Xilinx EMAC IP as well as
GigE core. This function is a wrapper around the lwIP netif_add function that initializes the
network interface ‘netif’ given its IP address ipaddr, netmask, the IP address of the gateway, gw,
the 6 byte ethernet address mac_ethernet_address, and the base address, mac_baseaddr, of the
axi_ethernetlite or axi_ethernet MAC core.

Prototype

struct netif * xemac_add(struct netif *netif, ip_addr_t *ipaddr, ip_addr_t
*netmask, ip_addr_t *gw, unsigned char *mac_ethernet_address, unsigned
mac_baseaddr);

lwip_init

Initialize all modules. Use this in NO_SYS mode. Use tcpip_init() otherwise.

This function provides a single initialization function for the lwIP data structures. This replaces
specific calls to initialize stats, system, memory, pbufs, ARP, IP, UDP, and TCP layers.

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 385Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=385

Prototype

void lwip_init(void);

xemacif_input

The Xilinx lwIP adapters work in interrupt mode. The receive interrupt handlers move the packet
data from the EMAC/GigE and store them in a queue. The xemacif_input() function takes
those packets from the queue, and passes them to lwIP; consequently, this function is required
for lwIP operation in RAW mode. The following is a sample lwIP application in RAW mode.

Note: For RAW mode only.

 while (1) {

 xemacif_input
 (netif);

}

Note: The program is notified of the received data through callbacks.

Prototype

int xemacif_input(struct netif *netif);

Returns

xemacpsif_resetrx_on_no_rxdata

There is an errata on the GigE controller that is related to the Rx path. The errata describes
conditions whereby the Rx path of GigE becomes completely unresponsive with heavy Rx traffic
of small sized packets. The condition occurrence is rare; however a software reset of the Rx logic
in the controller is required when such a condition occurs. This API must be called periodically
(approximately every 100 milliseconds using a timer or thread) from user applications to ensure
that the Rx path never becomes unresponsive for more than 100 milliseconds.

Note: Used in both Raw and Socket mode and applicable only for the Zynq-7000 and Zynq MPSoC
processors and the GigE controller

Prototype

void xemacpsif_resetrx_on_no_rxdata(struct netif *netif);

Returns

Appendix B: LwIP 2.1.1 Library

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 386Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=386

Appendix C

XilIsf Library v5.15

Overview
The LibXil Isf library:

• Allows you to Write, Read, and Erase the Serial Flash.

• Allows protection of the data stored in the Serial Flash from unwarranted modification by
enabling the Sector Protection feature.

• Supports multiple instances of Serial Flash at a time, provided they are of the same device
family (Atmel, Intel, STM, Winbond, SST, or Spansion) as the device family is selected at
compile time.

• Allows your application to perform Control operations on Intel, STM, Winbond, SST, and
Spansion Serial Flash.

• Requires the underlying hardware platform to contain the axi_quad_spi, ps7_spi, ps7_qspi,
psu_qspi, psv_ospi, or psu_spi device for accessing the Serial Flash.

• Uses the Xilinx SPI interface drivers in interrupt-driven mode or polled mode for
communicating with the Serial Flash. In interrupt mode, the user application must
acknowledge any associated interrupts from the Interrupt Controller.

Additional information

• In interrupt mode, the application is required to register a callback to the library and the
library registers an internal status handler to the selected interface driver.

• When your application requests a library operation, it is initiated and control is given back to
the application. The library tracks the status of the interface transfers, and notifies the user
application upon completion of the selected library operation.

• Added support in the library for SPI PS and QSPI PS. You must select one of the interfaces at
compile time.

• Added support for QSPIPSU and SPIPS flash interface on Zynq UltraScale+ MPSoC.

• Added support for OSPIPSV flash interface

• When your application requests selection of QSPIPS interface during compilation, the QSPI
PS or QSPI PSU interface, based on the hardware platform, are selected.

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 387Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=387

• When the SPIPS interface is selected during compilation, the SPI PS or the SPI PSU interface
is selected.

• When the OSPI interface is selected during compilation, the OSPIPSV interface is selected.

Supported Devices

The table below lists the supported Xilinx in-system and external serial flash memories.

Device Series Manufacturer
AT45DB011D AT45DB021D AT45DB041D AT45DB081D
AT45DB161D AT45DB321D AT45DB642D

Atmel

W25Q16 W25Q32 W25Q64 W25Q80 W25Q128 W25X10
W25X20 W25X40 W25X80 W25X16 W25X32 W25X64

Winbond

S25FL004 S25FL008 S25FL016 S25FL032 S25FL064 S25FL128
S25FL129 S25FL256 S25FL512 S70FL01G

Spansion

SST25WF080 SST

N25Q032 N25Q064 N25Q128 N25Q256 N25Q512 N25Q00AA
MT25Q01 MT25Q02 MT25Q512 MT25QL02G MT25QU02G
MT35XU512ABA

Micron

MX66L1G45G MX66U1G45G Macronix

IS25WP256D IS25LP256D IS25LWP512M IS25LP512M
IS25WP064A IS25LP064A IS25WP032D IS25LP032D
IS25WP016D IS25LP016D IS25WP080D IS25LP080D
IS25LP128F IS25WP128F

ISSI

Note: Intel, STM, and Numonyx serial flash devices are now a part of Serial Flash devices provided by
Micron.

References

• Spartan-3AN FPGA In-System Flash User Guide (UG333):http://www.xilinx.com/support/
documentation/user_guides/ug333.pdf

• Winbond Serial Flash Page:http://www.winbond.com/hq/product/code-storage-flash-
memory/ serial-nor-flash/?__locale=en

• Intel (Numonyx) S33 Serial Flash Memory, SST SST25WF080, Micron N25Q flash family :
https://www.micron.com/products/nor-flash/serial-nor-flash

XilIsf Library API
This section provides a linked summary and detailed descriptions of the XilIsf library APIs.

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 388Send Feedback

http://www.xilinx.com/support/documentation/user_guides/ug333.pdf
http://www.xilinx.com/support/documentation/user_guides/ug333.pdf
http://www.winbond.com/hq/product/code-storage-flash-memory/serial-nor-flash/?__locale=en
http://www.winbond.com/hq/product/code-storage-flash-memory/serial-nor-flash/?__locale=en
https://www.micron.com/products/nor-flash/serial-nor-flash
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=388

Table 241: Quick Function Reference

Type Name Arguments
int XIsf_Initialize

XIsf * InstancePtr
XIsf_Iface * SpiInstPtr
u8 SlaveSelect
u8 * WritePtr

int XIsf_GetStatus
XIsf * InstancePtr
u8 * ReadPtr

int XIsf_GetStatusReg2
XIsf * InstancePtr
u8 * ReadPtr

int XIsf_GetDeviceInfo
XIsf * InstancePtr
u8 * ReadPtr

int XIsf_Transfer
void

u32 GetRealAddr
XIsf_Iface * QspiPtr
u32 Address

int XIsf_Write
XIsf * InstancePtr
XIsf_WriteOperation Operation
void * OpParamPtr

int XIsf_Read
XIsf * InstancePtr
XIsf_ReadOperation Operation
void * OpParamPtr

int XIsf_Erase
XIsf * InstancePtr
XIsf_EraseOperation Operation
u32 Address

int XIsf_SectorProtect
XIsf * InstancePtr
XIsf_SpOperation Operation
u8 * BufferPtr

int XIsf_Ioctl
XIsf * InstancePtr
XIsf_IoctlOperation Operation

int XIsf_WriteEnable
XIsf * InstancePtr
u8 WriteEnable

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 389Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=389

Table 241: Quick Function Reference (cont'd)

Type Name Arguments
void XIsf_RegisterInterface

XIsf * InstancePtr

int XIsf_SetSpiConfiguration
XIsf * InstancePtr
XIsf_Iface * SpiInstPtr
u32 Options
u8 PreScaler

void XIsf_SetStatusHandler
XIsf * InstancePtr
XIsf_Iface * XIfaceInstancePtr
XIsf_StatusHandler XilIsf_Handler

void XIsf_IfaceHandler
void * CallBackRef
u32 StatusEvent
unsigned int ByteCount

Functions

XIsf_Initialize

This API when called initializes the SPI interface with default settings.

With custom settings, user should call XIsf_SetSpiConfiguration() and then call this API.
The geometry of the underlying Serial Flash is determined by reading the Joint Electron Device
Engineering Council (JEDEC) Device Information and the Status Register of the Serial Flash.

Note:

• The XIsf_Initialize() API is a blocking call (for both polled and interrupt modes of the Spi driver).
It reads the JEDEC information of the device and waits till the transfer is complete before checking if
the information is valid.

• This library can support multiple instances of Serial Flash at a time, provided they are of the same
device family (either Atmel, Intel or STM, Winbond or Spansion) as the device family is selected at
compile time.

Prototype

int XIsf_Initialize(XIsf *InstancePtr, XIsf_Iface *SpiInstPtr, u8
SlaveSelect, u8 *WritePtr);

Parameters

The following table lists the XIsf_Initialize function arguments.

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 390Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=390

Table 242: XIsf_Initialize Arguments

Type Name Description
XIsf * InstancePtr Pointer to the XIsf instance.

XIsf_Iface * SpiInstPtr Pointer to XIsf_Iface instance to be worked on.

u8 SlaveSelect It is a 32-bit mask with a 1 in the bit position of slave being
selected. Only one slave can be selected at a time.

u8 * WritePtr Pointer to the buffer allocated by the user to be used by the In-
system and Serial Flash Library to perform any read/write
operations on the Serial Flash device. User applications must pass
the address of this buffer for the Library to work.

• Write operations :

○ The size of this buffer should be equal to the Number of
bytes to be written to the Serial Flash +
XISF_CMD_MAX_EXTRA_BYTES.

○ The size of this buffer should be large enough for usage
across all the applications that use a common instance of
the Serial Flash.

○ A minimum of one byte and a maximum of ISF_PAGE_SIZE
bytes can be written to the Serial Flash, through a single
Write operation.

• Read operations :

○ The size of this buffer should be equal to
XISF_CMD_MAX_EXTRA_BYTES, if the application only reads
from the Serial Flash (no write operations).

Returns

• XST_SUCCESS if successful.

• XST_DEVICE_IS_STOPPED if the device must be started before transferring data.

• XST_FAILURE, otherwise.

XIsf_GetStatus

This API reads the Serial Flash Status Register.

Note: The contents of the Status Register is stored at second byte pointed by the ReadPtr.

Prototype

int XIsf_GetStatus(XIsf *InstancePtr, u8 *ReadPtr);

Parameters

The following table lists the XIsf_GetStatus function arguments.

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 391Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=391

Table 243: XIsf_GetStatus Arguments

Type Name Description
XIsf * InstancePtr Pointer to the XIsf instance.

u8 * ReadPtr Pointer to the memory where the Status Register content is copied.

Returns

XST_SUCCESS if successful else XST_FAILURE.

XIsf_GetStatusReg2

This API reads the Serial Flash Status Register 2.

Note: The contents of the Status Register 2 is stored at the second byte pointed by the ReadPtr. This
operation is available only in Winbond Serial Flash.

Prototype

int XIsf_GetStatusReg2(XIsf *InstancePtr, u8 *ReadPtr);

Parameters

The following table lists the XIsf_GetStatusReg2 function arguments.

Table 244: XIsf_GetStatusReg2 Arguments

Type Name Description
XIsf * InstancePtr Pointer to the XIsf instance.

u8 * ReadPtr Pointer to the memory where the Status Register content is copied.

Returns

XST_SUCCESS if successful else XST_FAILURE.

XIsf_GetDeviceInfo

This API reads the Joint Electron Device Engineering Council (JEDEC) information of the Serial
Flash.

Note: The Device information is stored at the second byte pointed by the ReadPtr.

Prototype

int XIsf_GetDeviceInfo(XIsf *InstancePtr, u8 *ReadPtr);

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 392Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=392

Parameters

The following table lists the XIsf_GetDeviceInfo function arguments.

Table 245: XIsf_GetDeviceInfo Arguments

Type Name Description
XIsf * InstancePtr Pointer to the XIsf instance.

u8 * ReadPtr Pointer to the buffer where the Device information is copied.

Returns

XST_SUCCESS if successful else XST_FAILURE.

XIsf_Transfer

Prototype

int XIsf_Transfer(XIsf *InstancePtr, u8 *WritePtr, u8 *ReadPtr, u32
ByteCount);

GetRealAddr

Function to get the real address of flash in case dual parallel and stacked configuration.

Function to get the real address of flash in case dual parallel and stacked configuration.

This functions translates the address based on the type of interconnection. In case of stacked,
this function asserts the corresponding slave select.

Note: None.

Prototype

u32 GetRealAddr(XIsf_Iface *QspiPtr, u32 Address);

Parameters

The following table lists the GetRealAddr function arguments.

Table 246: GetRealAddr Arguments

Type Name Description
XIsf_Iface * QspiPtr is a pointer to XIsf_Iface instance to be worked on.

u32 Address which is to be accessed (for erase, write or read)

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 393Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=393

Returns

RealAddr is the translated address - for single it is unchanged for stacked, the lower flash size is
subtracted for parallel the address is divided by 2.

XIsf_Write

This API writes the data to the Serial Flash.

Operations

• Normal Write(XISF_WRITE), Dual Input Fast Program (XISF_DUAL_IP_PAGE_WRITE), Dual
Input Extended Fast Program(XISF_DUAL_IP_EXT_PAGE_WRITE), Quad Input Fast
Program(XISF_QUAD_IP_PAGE_WRITE), Quad Input Extended Fast Program
(XISF_QUAD_IP_EXT_PAGE_WRITE):

○ The OpParamPtr must be of type struct XIsf_WriteParam.

- OpParamPtr->Address is the start address in the Serial Flash.

- OpParamPtr->WritePtr is a pointer to the data to be written to the Serial Flash.

- OpParamPtr->NumBytes is the number of bytes to be written to Serial Flash.

- This operation is supported for Atmel, Intel, STM, Winbond and Spansion Serial Flash.

• Auto Page Write (XISF_AUTO_PAGE_WRITE):

○ The OpParamPtr must be of 32 bit unsigned integer variable.

○ This is the address of page number in the Serial Flash which is to be refreshed.

○ This operation is only supported for Atmel Serial Flash.

• Buffer Write (XISF_BUFFER_WRITE):

○ The OpParamPtr must be of type struct XIsf_BufferToFlashWriteParam.

○ OpParamPtr->BufferNum specifies the internal SRAM Buffer of the Serial Flash. The valid
values are XISF_PAGE_BUFFER1 or XISF_PAGE_BUFFER2. XISF_PAGE_BUFFER2 is not
valid in case of AT45DB011D Flash as it contains a single buffer.

○ OpParamPtr->WritePtr is a pointer to the data to be written to the Serial Flash SRAM
Buffer.

○ OpParamPtr->ByteOffset is byte offset in the buffer from where the data is to be written.

○ OpParamPtr->NumBytes is number of bytes to be written to the Buffer. This operation is
supported only for Atmel Serial Flash.

• Buffer To Memory Write With Erase (XISF_BUF_TO_PAGE_WRITE_WITH_ERASE)/ Buffer To
Memory Write Without Erase (XISF_BUF_TO_PAGE_WRITE_WITHOUT_ERASE):

○ The OpParamPtr must be of type struct XIsf_BufferToFlashWriteParam.

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 394Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=394

○ OpParamPtr->BufferNum specifies the internal SRAM Buffer of the Serial Flash. The valid
values are XISF_PAGE_BUFFER1 or XISF_PAGE_BUFFER2. XISF_PAGE_BUFFER2 is not
valid in case of AT45DB011D Flash as it contains a single buffer.

○ OpParamPtr->Address is starting address in the Serial Flash memory from where the data
is to be written. These operations are only supported for Atmel Serial Flash.

• Write Status Register (XISF_WRITE_STATUS_REG):

○ The OpParamPtr must be of type of 8 bit unsigned integer variable. This is the value to be
written to the Status Register.

○ This operation is only supported for Intel, STM Winbond and Spansion Serial Flash.

• Write Status Register2 (XISF_WRITE_STATUS_REG2):

○ The OpParamPtr must be of type (u8 *) and should point to two 8 bit unsigned integer
values. This is the value to be written to the 16 bit Status Register. This operation is only
supported in Winbond (W25Q) Serial Flash.

• One Time Programmable Area Write(XISF_OTP_WRITE):

○ The OpParamPtr must be of type struct XIsf_WriteParam.

○ OpParamPtr->Address is the address in the SRAM Buffer of the Serial Flash to which the
data is to be written.

○ OpParamPtr->WritePtr is a pointer to the data to be written to the Serial Flash.

○ OpParamPtr->NumBytes should be set to 1 when performing OTPWrite operation. This
operation is only supported for Intel Serial Flash.

Note:

• Application must fill the structure elements of the third argument and pass its pointer by type casting it
with void pointer.

• For Intel, STM, Winbond and Spansion Serial Flash, the user application must call the
XIsf_WriteEnable() API by passing XISF_WRITE_ENABLE as an argument, before calling the
XIsf_Write() API.

Prototype

int XIsf_Write(XIsf *InstancePtr, XIsf_WriteOperation Operation, void
*OpParamPtr);

Parameters

The following table lists the XIsf_Write function arguments.

Table 247: XIsf_Write Arguments

Type Name Description
XIsf * InstancePtr Pointer to the XIsf instance.

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 395Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=395

Table 247: XIsf_Write Arguments (cont'd)

Type Name Description
XIsf_WriteOperation Operation Type of write operation to be performed on the Serial Flash. The

different operations are

• XISF_WRITE: Normal Write

• XISF_DUAL_IP_PAGE_WRITE: Dual Input Fast Program

• XISF_DUAL_IP_EXT_PAGE_WRITE: Dual Input Extended Fast
Program

• XISF_QUAD_IP_PAGE_WRITE: Quad Input Fast Program

• XISF_QUAD_IP_EXT_PAGE_WRITE: Quad Input Extended Fast
Program

• XISF_AUTO_PAGE_WRITE: Auto Page Write

• XISF_BUFFER_WRITE: Buffer Write

• XISF_BUF_TO_PAGE_WRITE_WITH_ERASE: Buffer to Page
Transfer with Erase

• XISF_BUF_TO_PAGE_WRITE_WITHOUT_ERASE: Buffer to Page
Transfer without Erase

• XISF_WRITE_STATUS_REG: Status Register Write

• XISF_WRITE_STATUS_REG2: 2 byte Status Register Write

• XISF_OTP_WRITE: OTP Write.

void * OpParamPtr Pointer to a structure variable which contains operational
parameters of the specified operation. This parameter type is
dependant on value of first argument(Operation). For more details,
refer Operations .

Returns

XST_SUCCESS if successful else XST_FAILURE.

XIsf_Read

This API reads the data from the Serial Flash.

Operations

• Normal Read (XISF_READ), Fast Read (XISF_FAST_READ), One Time Programmable Area
Read(XISF_OTP_READ), Dual Output Fast Read (XISF_CMD_DUAL_OP_FAST_READ), Dual
Input/Output Fast Read (XISF_CMD_DUAL_IO_FAST_READ), Quad Output Fast Read
(XISF_CMD_QUAD_OP_FAST_READ) and Quad Input/Output Fast Read
(XISF_CMD_QUAD_IO_FAST_READ):

○ The OpParamPtr must be of type struct XIsf_ReadParam.

○ OpParamPtr->Address is start address in the Serial Flash.

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 396Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=396

○ OpParamPtr->ReadPtr is a pointer to the memory where the data read from the Serial
Flash is stored.

○ OpParamPtr->NumBytes is number of bytes to read.

○ OpParamPtr->NumDummyBytes is the number of dummy bytes to be transmitted for the
Read command. This parameter is only used in case of Dual and Quad reads.

○ Normal Read and Fast Read operations are supported for Atmel, Intel, STM, Winbond and
Spansion Serial Flash.

○ Dual and quad reads are supported for Winbond (W25QXX), Numonyx(N25QXX) and
Spansion (S25FL129) quad flash.

○ OTP Read operation is only supported in Intel Serial Flash.

• Page To Buffer Transfer (XISF_PAGE_TO_BUF_TRANS):

○ The OpParamPtr must be of type struct XIsf_FlashToBufTransferParam .

○ OpParamPtr->BufferNum specifies the internal SRAM Buffer of the Serial Flash. The valid
values are XISF_PAGE_BUFFER1 or XISF_PAGE_BUFFER2. XISF_PAGE_BUFFER2 is not
valid in case of AT45DB011D Flash as it contains a single buffer.

○ OpParamPtr->Address is start address in the Serial Flash. This operation is only supported
in Atmel Serial Flash.

• Buffer Read (XISF_BUFFER_READ) and Fast Buffer Read(XISF_FAST_BUFFER_READ):

○ The OpParamPtr must be of type struct XIsf_BufferReadParam.

○ OpParamPtr->BufferNum specifies the internal SRAM Buffer of the Serial Flash. The valid
values are XISF_PAGE_BUFFER1 or XISF_PAGE_BUFFER2. XISF_PAGE_BUFFER2 is not
valid in case of AT45DB011D Flash as it contains a single buffer.

○ OpParamPtr->ReadPtr is pointer to the memory where data read from the SRAM buffer is
to be stored.

○ OpParamPtr->ByteOffset is byte offset in the SRAM buffer from where the first byte is
read.

○ OpParamPtr->NumBytes is the number of bytes to be read from the Buffer. These
operations are supported only in Atmel Serial Flash.

Note:

• Application must fill the structure elements of the third argument and pass its pointer by type casting it
with void pointer.

• The valid data is available from the fourth location pointed to by the ReadPtr for Normal Read and
Buffer Read operations.

• The valid data is available from fifth location pointed to by the ReadPtr for Fast Read, Fast Buffer Read
and OTP Read operations.

• The valid data is available from the (4 + NumDummyBytes)th location pointed to by ReadPtr for Dual/
Quad Read operations.

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 397Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=397

Prototype

int XIsf_Read(XIsf *InstancePtr, XIsf_ReadOperation Operation, void
*OpParamPtr);

Parameters

The following table lists the XIsf_Read function arguments.

Table 248: XIsf_Read Arguments

Type Name Description
XIsf * InstancePtr Pointer to the XIsf instance.

XIsf_ReadOperation Operation Type of the read operation to be performed on the Serial Flash. The
different operations are

• XISF_READ: Normal Read

• XISF_FAST_READ: Fast Read

• XISF_PAGE_TO_BUF_TRANS: Page to Buffer Transfer

• XISF_BUFFER_READ: Buffer Read

• XISF_FAST_BUFFER_READ: Fast Buffer Read

• XISF_OTP_READ: One Time Programmable Area (OTP) Read

• XISF_DUAL_OP_FAST_READ: Dual Output Fast Read

• XISF_DUAL_IO_FAST_READ: Dual Input/Output Fast Read

• XISF_QUAD_OP_FAST_READ: Quad Output Fast Read

• XISF_QUAD_IO_FAST_READ: Quad Input/Output Fast Read

void * OpParamPtr Pointer to structure variable which contains operational parameter
of specified Operation. This parameter type is dependant on the
type of Operation to be performed. For more details, refer
Operations .

Returns

XST_SUCCESS if successful else XST_FAILURE.

XIsf_Erase

This API erases the contents of the specified memory in the Serial Flash.

Note:

• The erased bytes will read as 0xFF.

• For Intel, STM, Winbond or Spansion Serial Flash the user application must call
XIsf_WriteEnable() API by passing XISF_WRITE_ENABLE as an argument before calling
XIsf_Erase() API.

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 398Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=398

• Atmel Serial Flash support Page/Block/Sector Erase operations.

• Intel, Winbond, Numonyx (N25QXX) and Spansion Serial Flash support Sector/Block/Bulk Erase
operations.

• STM (M25PXX) Serial Flash support Sector/Bulk Erase operations.

Prototype

int XIsf_Erase(XIsf *InstancePtr, XIsf_EraseOperation Operation, u32
Address);

Parameters

The following table lists the XIsf_Erase function arguments.

Table 249: XIsf_Erase Arguments

Type Name Description
XIsf * InstancePtr Pointer to the XIsf instance.

XIsf_EraseOperation Operation Type of Erase operation to be performed on the Serial Flash. The
different operations are

• XISF_PAGE_ERASE: Page Erase

• XISF_BLOCK_ERASE: Block Erase

• XISF_SECTOR_ERASE: Sector Erase

• XISF_BULK_ERASE: Bulk Erase

u32 Address Address of the Page/Block/Sector to be erased. The address can be
either Page address, Block address or Sector address based on the
Erase operation to be performed.

Returns

XST_SUCCESS if successful else XST_FAILURE.

XIsf_SectorProtect

This API is used for performing Sector Protect related operations.

Note:

• The SPR content is stored at the fourth location pointed by the BufferPtr when performing
XISF_SPR_READ operation.

• For Intel, STM, Winbond and Spansion Serial Flash, the user application must call the
XIsf_WriteEnable() API by passing XISF_WRITE_ENABLE as an argument, before calling the
XIsf_SectorProtect() API, for Sector Protect Register Write (XISF_SPR_WRITE) operation.

• Atmel Flash supports all these Sector Protect operations.

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 399Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=399

• Intel, STM, Winbond and Spansion Flash support only Sector Protect Read and Sector Protect Write
operations.

Prototype

int XIsf_SectorProtect(XIsf *InstancePtr, XIsf_SpOperation Operation, u8
*BufferPtr);

Parameters

The following table lists the XIsf_SectorProtect function arguments.

Table 250: XIsf_SectorProtect Arguments

Type Name Description
XIsf * InstancePtr Pointer to the XIsf instance.

XIsf_SpOperation Operation Type of Sector Protect operation to be performed on the Serial
Flash. The different operations are

• XISF_SPR_READ: Read Sector Protection Register

• XISF_SPR_WRITE: Write Sector Protection Register

• XISF_SPR_ERASE: Erase Sector Protection Register

• XISF_SP_ENABLE: Enable Sector Protection

• XISF_SP_DISABLE: Disable Sector Protection

u8 * BufferPtr Pointer to the memory where the SPR content is read to/written
from. This argument can be NULL if the Operation is SprErase,
SpEnable and SpDisable.

Returns

• XST_SUCCESS if successful.

• XST_FAILURE if it fails.

XIsf_Ioctl

This API configures and controls the Intel, STM, Winbond and Spansion Serial Flash.

Note:

• Atmel Serial Flash does not support any of these operations.

• Intel Serial Flash support Enter/Release from DPD Mode and Clear Status Register Fail Flags.

• STM, Winbond and Spansion Serial Flash support Enter/Release from DPD Mode.

• Winbond (W25QXX) Serial Flash support Enable High Performance mode.

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 400Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=400

Prototype

int XIsf_Ioctl(XIsf *InstancePtr, XIsf_IoctlOperation Operation);

Parameters

The following table lists the XIsf_Ioctl function arguments.

Table 251: XIsf_Ioctl Arguments

Type Name Description
XIsf * InstancePtr Pointer to the XIsf instance.

XIsf_IoctlOperation Operation Type of Control operation to be performed on the Serial Flash. The
different control operations are

• XISF_RELEASE_DPD: Release from Deep Power Down (DPD)
Mode

• XISF_ENTER_DPD: Enter DPD Mode

• XISF_CLEAR_SR_FAIL_FLAGS: Clear Status Register Fail Flags

Returns

XST_SUCCESS if successful else XST_FAILURE.

XIsf_WriteEnable

This API Enables/Disables writes to the Intel, STM, Winbond and Spansion Serial Flash.

Note: This API works only for Intel, STM, Winbond and Spansion Serial Flash. If this API is called for Atmel
Flash, XST_FAILURE is returned.

Prototype

int XIsf_WriteEnable(XIsf *InstancePtr, u8 WriteEnable);

Parameters

The following table lists the XIsf_WriteEnable function arguments.

Table 252: XIsf_WriteEnable Arguments

Type Name Description
XIsf * InstancePtr Pointer to the XIsf instance.

u8 WriteEnable Specifies whether to Enable (XISF_CMD_ENABLE_WRITE) or Disable
(XISF_CMD_DISABLE_WRITE) the writes to the Serial Flash.

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 401Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=401

Returns

XST_SUCCESS if successful else XST_FAILURE.

XIsf_RegisterInterface

This API registers the interface SPI/SPI PS/QSPI PS.

Prototype

void XIsf_RegisterInterface(XIsf *InstancePtr);

Parameters

The following table lists the XIsf_RegisterInterface function arguments.

Table 253: XIsf_RegisterInterface Arguments

Type Name Description
XIsf * InstancePtr Pointer to the XIsf instance.

Returns

None

XIsf_SetSpiConfiguration

This API sets the configuration of SPI.

This will set the options and clock prescaler (if applicable).

Note: This API can be called before calling XIsf_Initialize() to initialize the SPI interface in other
than default options mode. PreScaler is only applicable to PS SPI/QSPI.

Prototype

int XIsf_SetSpiConfiguration(XIsf *InstancePtr, XIsf_Iface *SpiInstPtr, u32
Options, u8 PreScaler);

Parameters

The following table lists the XIsf_SetSpiConfiguration function arguments.

Table 254: XIsf_SetSpiConfiguration Arguments

Type Name Description
XIsf * InstancePtr Pointer to the XIsf instance.

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 402Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=402

Table 254: XIsf_SetSpiConfiguration Arguments (cont'd)

Type Name Description
XIsf_Iface * SpiInstPtr Pointer to XIsf_Iface instance to be worked on.

u32 Options Specified options to be set.

u8 PreScaler Value of the clock prescaler to set.

Returns

XST_SUCCESS if successful else XST_FAILURE.

XIsf_SetStatusHandler

This API is to set the Status Handler when an interrupt is registered.

Note: None.

Prototype

void XIsf_SetStatusHandler(XIsf *InstancePtr, XIsf_Iface
*XIfaceInstancePtr, XIsf_StatusHandler XilIsf_Handler);

Parameters

The following table lists the XIsf_SetStatusHandler function arguments.

Table 255: XIsf_SetStatusHandler Arguments

Type Name Description
XIsf * InstancePtr Pointer to the XIsf Instance.

XIsf_Iface * XIfaceInstancePtr Pointer to the XIsf_Iface instance to be worked on.

XIsf_StatusHandler XilIsf_Handler Status handler for the application.

Returns

None

XIsf_IfaceHandler

This API is the handler which performs processing for the QSPI driver.

It is called from an interrupt context such that the amount of processing performed should be
minimized. It is called when a transfer of QSPI data completes or an error occurs.

This handler provides an example of how to handle QSPI interrupts but is application specific.

Note: None.

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 403Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=403

Prototype

void XIsf_IfaceHandler(void *CallBackRef, u32 StatusEvent, unsigned int
ByteCount);

Parameters

The following table lists the XIsf_IfaceHandler function arguments.

Table 256: XIsf_IfaceHandler Arguments

Type Name Description
void * CallBackRef Reference passed to the handler.

u32 StatusEvent Status of the QSPI .

unsigned int ByteCount Number of bytes transferred.

Returns

None

Library Parameters in MSS File
XilIsf Library can be integrated with a system using the following snippet in the Microprocessor
Software Specification (MSS) file:

BEGIN LIBRARY`
PARAMETER LIBRARY_NAME = xilisf
PARAMETER LIBRARY_VER = 5.15
PARAMETER serial_flash_family = 1
PARAMETER serial_flash_interface = 1
END

The table below describes the libgen customization parameters.

Parameter Default Value Description
LIBRARY_NAME xilisf Specifies the library name.

LIBRARY_VER 5.15 Specifies the library version.

serial_flash_family 1 Specifies the serial flash family.
Supported numerical values are: 1 =
Xilinx In-system Flash or Atmel Serial
Flash 2 = Intel (Numonyx) S33 Serial
Flash 3 = STM (Numonyx) M25PXX/
N25QXX Serial Flash 4 = Winbond Serial
Flash 5 = Spansion Serial Flash/Micron
Serial Flash/Cypress Serial Flash 6 = SST
Serial Flash

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 404Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=404

Parameter Default Value Description
Serial_flash_interface 1 Specifies the serial flash interface.

Supported numerical values are: 1 =
AXI QSPI Interface 2 = SPI PS Interface
3 = QSPI PS Interface or QSPI PSU
Interface 4 = OSPIPSV Interface for
OSPI

Note: Intel, STM, and Numonyx serial flash devices are now a part of Serial Flash devices provided by
Micron.

Appendix C: XilIsf Library v5.15

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 405Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=405

Appendix D

XilFFS Library v4.3

XilFFS Library API Reference
The Xilinx fat file system (FFS) library consists of a file system and a glue layer. This FAT file
system can be used with an interface supported in the glue layer. The file system code is open
source and is used as it is. Currently, the Glue layer implementation supports the SD/eMMC
interface and a RAM based file system. Application should make use of APIs provided in ff.h.
These file system APIs access the driver functions through the glue layer.

The file system supports FAT16, FAT32, and exFAT (optional). The APIs are standard file system
APIs. For more information, see the http://elm-chan.org/fsw/ff/00index_e.html.

Note: The XilFFS library uses Revision R0.13b of the generic FAT filesystem module.

Library Files

The table below lists the file system files.

File Description
ff.c Implements all the file system APIs

ff.h File system header

ffconf.h File system configuration header – File system
configurations such as READ_ONLY, MINIMAL, can be set
here. This library uses FF_FS_MINIMIZE and FF_FS_TINY and
Read/Write (NOT read only)

The table below lists the glue layer files.

File Description
diskio.c Glue layer – implements the function used by file system to

call the driver APIs

ff.h File system header

diskio.h Glue layer header

Appendix D: XilFFS Library v4.3

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 406Send Feedback

http://elm-chan.org/fsw/ff/00index_e.html
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=406

Selecting a File System with an SD Interface
To select a file system with an SD interface:

1. Click File → New → Platform Project.

2. Click Specify to create a new hardware platform specification.

3. Provide a new name for the domain in the Project name field if you wish to override the
default value.

4. Select the location for the board support project files. To use the default location, as
displayed in the Location field, leave the Use default location check box selected. Otherwise,
deselect the checkbox and then type or browse to the directory location.

5. From the Hardware Platform drop-down, choose the appropriate platform for your
application or click the New button to browse to an existing hardware platform.

6. Select the target CPU from the drop-down list.

7. From the Board Support Package OS list box, select the type of board support package to
create. A description of the platform types displays in the box below the drop-down list.

8. Click Finish. The wizard creates a new software platform and displays it in the Vitis Navigator
pane.

9. Select Project → Build Automatically to automatically build the board support package. The
Board Support Package Settings dialog box opens. Here you can customize the settings for
the domain.

10. Click OK to accept the settings, build the platform, and close the dialog box.

11. From the Explorer, double-click platform.spr file and select the appropriate domain/
board support package. The Overview page opens.

12. In the overview page, click Modify BSP Settings.

13. Using the Board Support Package Settings page, you can select the OS version and which of
the supported libraries are to be enabled in this domain/BSP.

14. Select the xilffs library from the list of Supported Libraries.

15. Expand the Overview tree and select xilffs. The configuration options for xilffs are listed.

16. Configure the xilffs by setting the fs_interface = 1 to select the SD/eMMC. This is the
default value. Ensure that the SD/eMMC interface is available, prior to selecting the
fs_interface = 1 option.

17. Build the bsp and the application to use the file system with SD/eMMC. SD or eMMC will be
recognized by the low level driver.

Selecting a RAM Based File System

To select a RAM based file system:

Appendix D: XilFFS Library v4.3

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 407Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=407

1. Click File → New → Platform Project.

2. Click Specify to create a new hardware platform specification.

3. Provide a new name for the domain in the Project name field if you wish to override the
default value.

4. Select the location for the board support project files. To use the default location, as
displayed in the Location field, leave the Use default location check box selected. Otherwise,
deselect the checkbox and then type or browse to the directory location.

5. From the Hardware Platform drop-down, choose the appropriate platform for your
application or click the New button to browse to an existing hardware platform.

6. Select the target CPU from the drop-down list.

7. From the Board Support Package OS list box, select the type of board support package to
create. A description of the platform types displays in the box below the drop-down list.

8. Click Finish. The wizard creates a new software platform and displays it in the Vitis Navigator
pane.

9. Select Project → Build Automatically to automatically build the board support package. The
Board Support Package Settings dialog box opens. Here you can customize the settings for
the domain.

10. Click OK to accept the settings, build the platform, and close the dialog box.

11. From the Explorer, double-click platform.spr file and select the appropriate domain/
board support package. The Overview page opens.

12. In the Overview page, click Modify BSP Settings.

13. Using the Board Support Package Settings page, you can select the OS version and which of
the supported libraries are to be enabled in this domain/BSP.

14. Select the xilffs library from the list of Supported Libraries.

15. Expand the Overview tree and select xilffs. The configuration options for xilffs are listed.

16. Configure the xilffs by setting the fs_interface = 2 to select the RAM.

17. As this project is used by LWIP based application, select lwip library and configure according
to your requirements. For more information, see the LwIP Library API Reference
documentation.

18. Use any lwip application that requires a RAM based file system - TCP/UDP performance test
apps or tftp or webserver examples.

19. Build the bsp and the application to use the RAM based file system.

Library Parameters in MSS File

Appendix D: XilFFS Library v4.3

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 408Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=408

XilFFS Library can be integrated with a system using the following code snippet in the
Microprocessor Software Specification (MSS) file:

 BEGIN LIBRARY
 PARAMETER LIBRARY_NAME = xilffs
 PARAMETER LIBRARY_VER = 4.3
 PARAMETER fs_interface = 1
 PARAMETER read_only = false
 PARAMETER use_lfn = 0
 PARAMETER enable_multi_partition = false
 PARAMETER num_logical_vol = 2
 PARAMETER use_mkfs = true
 PARAMETER use_strfunc = 0
 PARAMETER set_fs_rpath = 0
 PARAMETER enable_exfat = false
 PARAMETER word_access = true
 PARAMETER use_chmod = false
 END

The table below describes the libgen customization parameters.

Parameter Default Value Description
LIBRARY_NAME xilffs Specifies the library name.

LIBRARY_VER 4.3 Specifies the library version.

fs_interface
1 for SD/eMMC
2 for RAM

File system interface. SD/eMMC and
RAM based file system are supported.

read_only False Enables the file system in Read Only
mode, if true. Default is false. For Zynq
UltraScale+ MPSoC devices, sets this
option as true.

use_lfn 0 Enables the Long File Name(LFN)
support if non-zero. 0: Disabled
(Default) 1: LFN with static working
buffer 2 (on stack) or 3 (on heap):
Dynamic working buffer

enable_multi_partitio False Enables the multi partition support, if
true.

num_logical_vol 2 Number of volumes (logical drives,
from 1 to 10) to be used.

use_mkfs True Enables the mkfs support, if true. For
Zynq UltraScale+ MPSoC devices, set
this option as false.

use_strfunc 0 Enables the string functions (valid
values 0 to 2). Default is 0.

set_fs_rpath 0 Configures relative path feature (valid
values 0 to 2). Default is 0.

ramfs_size 3145728 Ram FS size is applicable only when
RAM based file system is selected.

ramfs_start_addr 0x10000000 RAM FS start address is applicable only
when RAM based file system is
selected.

Appendix D: XilFFS Library v4.3

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 409Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=409

Parameter Default Value Description
enable_exfat false Enables support for exFAT file system.

0: Disable exFAT 1: Enable exFAT(Also
Enables LFN)

word_access True Enables word access for misaligned
memory access platform.

use_chmod false Enables use of CHMOD functionality for
changing attributes (valid only with
read_only set to false).

Appendix D: XilFFS Library v4.3

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 410Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=410

Appendix E

XilSecure Library v4.2

Overview
The XilSecure library provides APIs to access cryptographic accelerators on the Zynq UltraScale+
MPSoC devices. The library is designed to run on top of Xilinx standalone BSPs. It is tested for
A53, R5 and MicroBlaze. XilSecure is used during the secure boot process. The primary post-boot
use case is to run this library on the PMU MicroBlaze with PMUFW to service requests from
Uboot or Linux for cryptographic acceleration.

Note: The XilSecure library does not check for memory bounds while performing cryptographic operations.
You must check the bounds before using the functions provided in this library. If needed, you can take
advantage of the XMPU, the XPPU, and/or TrustZone to limit memory access.

The XilSecure library includes:

• SHA-3/384 engine for 384 bit hash calculation.

• AES-GCM engine for symmetric key encryption and decryption using a 256-bit key.

• RSA engine for signature generation, signature verification, encryption and decryption. Key
sizes supported include 2048, 3072, and 4096.

CAUTION! SDK defaults to using a software stack in DDR and any variables used by XilSecure will be placed in
DDR. For better security, change the linker settings to make sure the stack used by XilSecure is either in the
OCM or the TCM.

Board Support Package Settings

XilSecure provides an user configuration under BSP settings to enable or disable secure
environment, this bsp parameter is valid only when BSP is build for the PMU MicroBlaze for post
boot use cases and XilSecure is been accessed using the IPI response calls to PMUFW from Linux
or U-boot or baremetal applications. When the application environment is secure and trusted
this variable should be set to TRUE.

Parameter Description
secure_environment Default = FALSE. Set the value to TRUE to allow usage of

device key through the IPI response calls.

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 411Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=411

By default, PMUFW will not allow device key for any decryption operation requested through IPI
response unless authentication is enabled. If the user space is secure and trusted PMUFW can be
build by setting the secure_environment variable. Only then the PMUFW allows usage of the
device key for encrypting or decrypting the data blobs, decryption of bitstream or image.

Source Files

The source files for the library can be found at:

• https://github.com/Xilinx/embeddedsw/blob/master/lib/sw_services/xilsecure/

• https://github.com/Xilinx/embeddedsw/tree/master/lib/sw_services/xilsecure/src/common

AES-GCM
This software uses AES-GCM hardened cryptographic accelerator to encrypt or decrypt the
provided data and requires a key of size 256 bits and initialization vector(IV) of size 96 bits.

XilSecure library supports the following features:

• Encryption of data with provided key and IV

• Decryption of data with provided key and IV

• Authentication using a GCM tag.

• Key loading based on key selection, the key can be either the user provided key loaded into
the KUP key or the device key used during boot.

For either encryption or decryption the AES-GCM engine should be initialized first using the
XSecure_AesInitiaze function.

AES Encryption Function Usage

When all the data to be encrypted is available, the XSecure_AesEncryptData() can be
used. When all the data is not available, use the following functions in the suggested order:

1. XSecure_AesEncryptInit()

2. XSecure_AesEncryptUpdate() - This function can be called multiple times till input
data is completed.

AES Decryption Function Usage

When all the data to be decrypted is available, the XSecure_AesDecryptData() can be used.
When all the data is not available, use the following functions in the suggested order:

1. XSecure_AesDecryptInit()

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 412Send Feedback

https://github.com/Xilinx/embeddedsw/blob/master/lib/sw_services/xilsecure/
https://github.com/Xilinx/embeddedsw/tree/master/lib/sw_services/xilsecure/src/common
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=412

2. XSecure_AesDecryptUpdate() - This function can be called multiple times till input
data is completed.

During decryption, the passed in GCM tag will be compared to the GCM tag calculated by the
engine. The two tags are then compared in the software and returned to the user as to whether
or not the tags matched.

CAUTION! when using the KUP key for encryption/decryption of the data, where the key is stored should be
carefully considered. Key should be placed in an internal memory region that has access controls. Not doing so
may result in security vulnerability.

Table 257: Quick Function Reference

Type Name Arguments
s32 XSecure_AesInitialize

XSecure_Aes * InstancePtr
XCsuDma * CsuDmaPtr
u32 KeySel
Iv
Key

u32 XSecure_AesDecryptInit
XSecure_Aes * InstancePtr
u8 * DecData
u32 Size
u8 * GcmTagAddr

s32 XSecure_AesDecryptUpdate
XSecure_Aes * InstancePtr
u8 * EncData
u32 Size

s32 XSecure_AesDecryptData
XSecure_Aes * InstancePtr
u8 * DecData
u8 * EncData
u32 Size

s32 XSecure_AesDecrypt
XSecure_Aes * InstancePtr
const u8 * Src
u8 * Dst
u32 Length

u32 XSecure_AesEncryptInit
XSecure_Aes * InstancePtr
u8 * EncData
u32 Size

u32 XSecure_AesEncryptUpdate
XSecure_Aes * InstancePtr
const u8 * Data
u32 Size

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 413Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=413

Table 257: Quick Function Reference (cont'd)

Type Name Arguments
u32 XSecure_AesEncryptData

XSecure_Aes * InstancePtr
u8 * Dst
const u8 * Src
u32 Len

void XSecure_AesReset
XSecure_Aes * InstancePtr

Functions

XSecure_AesInitialize

This function initializes the instance pointer.

Note: All the inputs are accepted in little endian format but the AES engine accepts the data in big endian
format, The decryption and encryption functions in xsecure_aes handle the little endian to big endian
conversion using few API's, Xil_Htonl (provided by Xilinx xil_io library) and
XSecure_AesCsuDmaConfigureEndiannes for handling data endianness conversions. If higher performance
is needed, users can strictly use data in big endian format and modify the xsecure_aes functions to remove
the use of the Xil_Htonl and XSecure_AesCsuDmaConfigureEndiannes functions as required.

Prototype

s32 XSecure_AesInitialize(XSecure_Aes *InstancePtr, XCsuDma *CsuDmaPtr, u32
KeySel, u32 *IvPtr, u32 *KeyPtr);

Parameters

The following table lists the XSecure_AesInitialize function arguments.

Table 258: XSecure_AesInitialize Arguments

Name Description
InstancePtr Pointer to the XSecure_Aes instance.

CsuDmaPtr Pointer to the XCsuDma instance.

KeySel Key source for decryption, can be KUP/device key

• XSECURE_CSU_AES_KEY_SRC_KUP :For KUP key

• XSECURE_CSU_AES_KEY_SRC_DEV :For Device Key

Iv Pointer to the Initialization Vector for decryption

Key Pointer to Aes key in case KUP key is used. Pass Null if the device key is to be used.

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 414Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=414

Returns

XST_SUCCESS if initialization was successful.

XSecure_AesDecryptInit

This function initializes the AES engine for decryption and is required to be called before calling
XSecure_AesDecryptUpdate.

Note: If all of the data to be decrypted is available, the XSecure_AesDecryptData function can be used
instead.

Prototype

u32 XSecure_AesDecryptInit(XSecure_Aes *InstancePtr, u8 *DecData, u32 Size,
u8 *GcmTagAddr);

Parameters

The following table lists the XSecure_AesDecryptInit function arguments.

Table 259: XSecure_AesDecryptInit Arguments

Name Description
InstancePtr Pointer to the XSecure_Aes instance.

DecData Pointer in which decrypted data will be stored.

Size Expected size of the data in bytes whereas the number of bytes provided should be
multiples of 4.

GcmTagAddr Pointer to the GCM tag which needs to be verified during decryption of the data.

Returns

None

XSecure_AesDecryptUpdate

This function decrypts the encrypted data passed in and updates the GCM tag from any previous
calls. The size from XSecure_AesDecryptInit is decremented from the size passed into this
function to determine when the GCM tag passed to XSecure_AesDecryptInit needs to be
compared to the GCM tag calculated in the AES engine.

Note: When Size of the data equals to size of the remaining data that data will be treated as final data. This
API can be called multpile times but sum of all Sizes should be equal to Size mention in init. Return of the
final call of this API tells whether GCM tag is matching or not.

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 415Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=415

Prototype

s32 XSecure_AesDecryptUpdate(XSecure_Aes *InstancePtr, u8 *EncData, u32
Size);

Parameters

The following table lists the XSecure_AesDecryptUpdate function arguments.

Table 260: XSecure_AesDecryptUpdate Arguments

Name Description
InstancePtr Pointer to the XSecure_Aes instance.

EncData Pointer to the encrypted data which needs to be decrypted.

Size Expected size of data to be decrypted in bytes, whereas the number of bytes should be
multiples of 4.

Returns

Final call of this API returns the status of GCM tag matching.

• XSECURE_CSU_AES_GCM_TAG_MISMATCH: If GCM tag is mismatched

• XSECURE_CSU_AES_ZEROIZATION_ERROR: If GCM tag is mismatched, zeroize the
decrypted data and send the status of zeroization.

• XST_SUCCESS: If GCM tag is matching.

XSecure_AesDecryptData

This function decrypts the encrypted data provided and updates the DecData buffer with
decrypted data.

Note: When using this function to decrypt data that was encrypted with XSecure_AesEncryptData, the
GCM tag will be stored as the last sixteen (16) bytes of data in XSecure_AesEncryptData's Dst (destination)
buffer and should be used as the GcmTagAddr's pointer.

Prototype

s32 XSecure_AesDecryptData(XSecure_Aes *InstancePtr, u8 *DecData, u8
*EncData, u32 Size, u8 *GcmTagAddr);

Parameters

The following table lists the XSecure_AesDecryptData function arguments.

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 416Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=416

Table 261: XSecure_AesDecryptData Arguments

Name Description
InstancePtr Pointer to the XSecure_Aes instance.

DecData Pointer to a buffer in which decrypted data will be stored.

EncData Pointer to the encrypted data which needs to be decrypted.

Size Size of data to be decrypted in bytes, whereas the number of bytes should be multiples
of 4.

Returns

This API returns the status of GCM tag matching.

• XSECURE_CSU_AES_GCM_TAG_MISMATCH: If GCM tag was mismatched

• XST_SUCCESS: If GCM tag was matched.

XSecure_AesDecrypt

This function will handle the AES-GCM Decryption.

Note: This function is used for decrypting the Image's partition encrypted by Bootgen

Prototype

s32 XSecure_AesDecrypt(XSecure_Aes *InstancePtr, u8 *Dst, const u8 *Src,
u32 Length);

Parameters

The following table lists the XSecure_AesDecrypt function arguments.

Table 262: XSecure_AesDecrypt Arguments

Name Description
InstancePtr Pointer to the XSecure_Aes instance.

Src Pointer to encrypted data source location

Dst Pointer to location where decrypted data will be written.

Length Expected total length of decrypted image expected.

Returns

returns XST_SUCCESS if successful, or the relevant errorcode.

XSecure_AesEncryptInit

This function is used to initialize the AES engine for encryption.

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 417Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=417

Note: If all of the data to be encrypted is available, the XSecure_AesEncryptData function can be used
instead.

Prototype

u32 XSecure_AesEncryptInit(XSecure_Aes *InstancePtr, u8 *EncData, u32 Size);

Parameters

The following table lists the XSecure_AesEncryptInit function arguments.

Table 263: XSecure_AesEncryptInit Arguments

Name Description
InstancePtr Pointer to the XSecure_Aes instance.

EncData Pointer of a buffer in which encrypted data along with GCM TAG will be stored. Buffer
size should be Size of data plus 16 bytes.

Size A 32 bit variable, which holds the size of the input data to be encrypted in bytes,
whereas number of bytes provided should be multiples of 4.

Returns

None

XSecure_AesEncryptUpdate

This function encrypts the clear-text data passed in and updates the GCM tag from any previous
calls. The size from XSecure_AesEncryptInit is decremented from the size passed into this
function to determine when the final CSU DMA transfer of data to the AES-GCM cryptographic
core.

Note: If all of the data to be encrypted is available, the XSecure_AesEncryptData function can be used
instead.

Prototype

u32 XSecure_AesEncryptUpdate(XSecure_Aes *InstancePtr, const u8 *Data, u32
Size);

Parameters

The following table lists the XSecure_AesEncryptUpdate function arguments.

Table 264: XSecure_AesEncryptUpdate Arguments

Name Description
InstancePtr Pointer to the XSecure_Aes instance.

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 418Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=418

Table 264: XSecure_AesEncryptUpdate Arguments (cont'd)

Name Description
Data Pointer to the data for which encryption should be performed.

Size A 32 bit variable, which holds the size of the input data in bytes, whereas the number
of bytes provided should be multiples of 4.

Returns

None

XSecure_AesEncryptData

This function encrypts Len (length) number of bytes of the passed in Src (source) buffer and
stores the encrypted data along with its associated 16 byte tag in the Dst (destination) buffer.

Note: If data to be encrypted is not available in one buffer one can call XSecure_AesEncryptInit()
and update the AES engine with data to be encrypted by calling XSecure_AesEncryptUpdate() API
multiple times as required.

Prototype

u32 XSecure_AesEncryptData(XSecure_Aes *InstancePtr, u8 *Dst, const u8
*Src, u32 Len);

Parameters

The following table lists the XSecure_AesEncryptData function arguments.

Table 265: XSecure_AesEncryptData Arguments

Name Description
InstancePtr A pointer to the XSecure_Aes instance.

Dst A pointer to a buffer where encrypted data along with GCM tag will be stored. The Size
of buffer provided should be Size of the data plus 16 bytes

Src A pointer to input data for encryption.

Len Size of input data in bytes, whereas the number of bytes provided should be multiples
of 4.

Returns

None

XSecure_AesReset

This function sets and then clears the AES-GCM's reset line.

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 419Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=419

Prototype

void XSecure_AesReset(XSecure_Aes *InstancePtr);

Parameters

The following table lists the XSecure_AesReset function arguments.

Table 266: XSecure_AesReset Arguments

Name Description
InstancePtr is a pointer to the XSecure_Aes instance.

Returns

None

Definitions

XSecure_AesWaitForDone

This macro waits for AES engine completes configured operation.

Definition

#define XSecure_AesWaitForDoneXil_WaitForEvent((InstancePtr)->BaseAddress +
XSECURE_CSU_AES_STS_OFFSET,\
 XSECURE_CSU_AES_STS_AES_BUSY, \
 0U, \
 XSECURE_AES_TIMEOUT_MAX)

Parameters

The following table lists the XSecure_AesWaitForDone definition values.

Table 267: XSecure_AesWaitForDone Values

Name Description
InstancePtr Pointer to the XSecure_Aes instance.

Returns

XST_SUCCESS if the AES engine completes configured operation. XST_FAILURE if a timeout has
occurred.

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 420Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=420

AES-GCM Error Codes
The table below lists the AES-GCM error codes.

Error Code Error Value Description
XSECURE_CSU_AES_GCM_TAG_MISMATC
H

0x1 User provided GCM tag does not match
with GCM calculated on data

XSECURE_CSU_AES_IMAGE_LEN_MISMA
TCH

0x2 When there is a Image length
mismatch

XSECURE_CSU_AES_DEVICE_COPY_ERRO
R

0x3 When there is device copy error.

XSECURE_CSU_AES_ZEROIZATION_ERRO
R

0x4 When there is an error with
Zeroization.

Note: In case of any error during Aes
decryption, we perform zeroization of
the decrypted data.

XSECURE_CSU_AES_KEY_CLEAR_ERROR 0x20 Error when clearing key storage
registers after Aes operation.

AES-GCM API Example Usage
The following example illustrates the usage of AES encryption and decryption APIs.

static s32 SecureAesExample(void)
{
 XCsuDma_Config *Config;
 s32 Status;
 u32 Index;
 XCsuDma CsuDmaInstance;
 XSecure_Aes Secure_Aes;

 /* Initialize CSU DMA driver */
 Config = XCsuDma_LookupConfig(XSECURE_CSUDMA_DEVICEID);
 if (NULL == Config) {
 return XST_FAILURE;
 }

 Status = XCsuDma_CfgInitialize(&CsuDmaInstance, Config,
 Config->BaseAddress);
 if (Status != XST_SUCCESS) {
 return XST_FAILURE;
 }

 /* Initialize the Aes driver so that it's ready to use */
 XSecure_AesInitialize(&Secure_Aes, &CsuDmaInstance,
 XSECURE_CSU_AES_KEY_SRC_KUP,
 (u32 *)Iv, (u32 *)Key);

 xil_printf("Data to be encrypted: \n\r");
 for (Index = 0; Index < XSECURE_DATA_SIZE; Index++) {
 xil_printf("%02x", Data[Index]);
 }
 xil_printf("\r\n\n");

 /* Encryption of Data */

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 421Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=421

 /*
 * If all the data to be encrypted is contiguous one can call
 * XSecure_AesEncryptData API directly.
 */
 XSecure_AesEncryptInit(&Secure_Aes, EncData, XSECURE_DATA_SIZE);
 XSecure_AesEncryptUpdate(&Secure_Aes, Data, XSECURE_DATA_SIZE);

 xil_printf("Encrypted data: \n\r");
 for (Index = 0; Index < XSECURE_DATA_SIZE; Index++) {
 xil_printf("%02x", EncData[Index]);
 }
 xil_printf("\r\n");

 xil_printf("GCM tag: \n\r");
 for (Index = 0; Index < XSECURE_SECURE_GCM_TAG_SIZE; Index++) {
 xil_printf("%02x", EncData[XSECURE_DATA_SIZE + Index]);
 }
 xil_printf("\r\n\n");

 /* Decrypt's the encrypted data */
 /*
 * If data to be decrypted is contiguous one can also call
 * single API XSecure_AesDecryptData
 */
 XSecure_AesDecryptInit(&Secure_Aes, DecData, XSECURE_DATA_SIZE,
 EncData + XSECURE_DATA_SIZE);
 /* Only the last update will return the GCM TAG matching status */
 Status = XSecure_AesDecryptUpdate(&Secure_Aes, EncData,
 XSECURE_DATA_SIZE);
 if (Status != XST_SUCCESS) {
 xil_printf("Decryption failure- GCM tag was not matched\n
\r");
 return Status;
 }

 xil_printf("Decrypted data\n\r");
 for (Index = 0; Index < XSECURE_DATA_SIZE; Index++) {
 xil_printf("%02x", DecData[Index]);
 }
 xil_printf("\r\n");

 /* Comparison of Decrypted Data with original data */
 for(Index = 0; Index < XSECURE_DATA_SIZE; Index++) {
 if (Data[Index] != DecData[Index]) {
 xil_printf("Failure during comparison of the data\n
\r");
 return XST_FAILURE;
 }
 }

 return XST_SUCCESS;
}

Note: Relevant examples are available in the <library-install-path>\examples folder. Where <library-install-
path> is the XilSecure library installation path.

AES-GCM Usage to decrypt Boot Image
The Multiple key(Key Rolling) or Single key encrypted images will have the same format. The
images include:

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 422Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=422

• Secure header - This includes the dummy AES key of 32byte + Block 0 IV of 12byte + DLC for
Block 0 of 4byte + GCM tag of 16byte(Un-Enc).

• Block N - This includes the boot image data for the block N of n size + Block N+1 AES key of
32byte + Block N+1 IV of 12byte + GCM tag for Block N of 16byte(Un-Enc).

The Secure header and Block 0 will be decrypted using the device key or user provided key. If
more than one block is found then the key and the IV obtained from previous block will be used
for decryption.

Following are the instructions to decrypt an image:

1. Read the first 64 bytes and decrypt 48 bytes using the selected Device key.

2. Decrypt Block 0 using the IV + Size and the selected Device key.

3. After decryption, you will get the decrypted data+KEY+IV+Block Size. Store the KEY/IV into
KUP/IV registers.

4. Using Block size, IV and the next Block key information, start decrypting the next block.

5. If the current image size is greater than the total image length, perform the next step. Else, go
back to the previous step.

6. If there are failures, an error code is returned. Else, the decryption is successful.

RSA
The xsecure_rsa.h file contains hardware interface related information for the RSA hardware
accelerator. This hardened cryptographic accelerator, within the CSU, performs the modulus
math based on the Rivest-Shamir-Adelman (RSA) algorithm. It is an asymmetric algorithm.

Initialization & Configuration

The RSA driver instance can be initialized by using the XSecure_RsaInitialize() function.
The method used for RSA implementation can take a pre-calculated value of R^2 mod N. If you
do not have the pre-calculated exponential value pass NULL, the controller will take care of the
exponential value.

Note:

• From the RSA key modulus, the exponent should be extracted.

• For verification, PKCS v1.5 padding scheme has to be applied for comparing the data hash with
decrypted hash.

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 423Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=423

Table 268: Quick Function Reference

Type Name Arguments
s32 XSecure_RsaInitialize

XSecure_Rsa * InstancePtr
u8 * Mod
u8 * ModExt
u8 * ModExpo

u32 XSecure_RsaSignVerification
u8 * Signature
u8 * Hash
u32 HashLen

s32 XSecure_RsaPublicEncrypt
XSecure_Rsa * InstancePtr
u8 * Input
u32 Size
u8 * Result

s32 XSecure_RsaPrivateDecrypt
XSecure_Rsa * InstancePtr
u8 * Input
u32 Size
u8 * Result

Functions

XSecure_RsaInitialize

This function initializes a a XSecure_Rsa structure with the default values required for operating
the RSA cryptographic engine.

Note: Modulus, ModExt and ModExpo are part of prtition signature when authenticated boot image is
generated by bootgen, else the all of them should be extracted from the key.

Prototype

s32 XSecure_RsaInitialize(XSecure_Rsa *InstancePtr, u8 *Mod, u8 *ModExt, u8
*ModExpo);

Parameters

The following table lists the XSecure_RsaInitialize function arguments.

Table 269: XSecure_RsaInitialize Arguments

Name Description
InstancePtr Pointer to the XSecure_Rsa instance.

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 424Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=424

Table 269: XSecure_RsaInitialize Arguments (cont'd)

Name Description
Mod A character Pointer which contains the key Modulus of key size.

ModExt A Pointer to the pre-calculated exponential (R^2 Mod N) value.

• NULL - if user doesn't have pre-calculated R^2 Mod N value, control will take care
of this calculation internally.

ModExpo Pointer to the buffer which contains key exponent.

Returns

XST_SUCCESS if initialization was successful.

XSecure_RsaSignVerification

This function verifies the RSA decrypted data provided is either matching with the provided
expected hash by taking care of PKCS padding.

Prototype

u32 XSecure_RsaSignVerification(u8 *Signature, u8 *Hash, u32 HashLen);

Parameters

The following table lists the XSecure_RsaSignVerification function arguments.

Table 270: XSecure_RsaSignVerification Arguments

Name Description
Signature Pointer to the buffer which holds the decrypted RSA signature

Hash Pointer to the buffer which has the hash calculated on the data to be authenticated.

HashLen Length of Hash used.

• For SHA3 it should be 48 bytes

• For SHA2 it should be 32 bytes

Returns

• XST_SUCCESS if decryption was successful.

• XST_FAILURE in case of mismatch.

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 425Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=425

XSecure_RsaPublicEncrypt

This function handles the RSA encryption with the public key components provided when
initializing the RSA cryptographic core with the XSecure_RsaInitialize function.

Note: The Size passed here needs to match the key size used in the XSecure_RsaInitialize function.

Prototype

s32 XSecure_RsaPublicEncrypt(XSecure_Rsa *InstancePtr, u8 *Input, u32 Size,
u8 *Result);

Parameters

The following table lists the XSecure_RsaPublicEncrypt function arguments.

Table 271: XSecure_RsaPublicEncrypt Arguments

Name Description
InstancePtr Pointer to the XSecure_Rsa instance.

Input Pointer to the buffer which contains the input data to be encrypted.

Size Key size in bytes, Input size also should be same as Key size mentioned.Inputs
supported are

• XSECURE_RSA_4096_KEY_SIZE

• XSECURE_RSA_2048_KEY_SIZE

• XSECURE_RSA_3072_KEY_SIZE

Result Pointer to the buffer where resultant decrypted data to be stored .

Returns

• XST_SUCCESS if encryption was successful.

• Error code on failure

XSecure_RsaPrivateDecrypt

This function handles the RSA decryption with the private key components provided when
initializing the RSA cryptographic core with the XSecure_RsaInitialize function.

Note: The Size passed in needs to match the key size used in the XSecure_RsaInitialize function..

Prototype

s32 XSecure_RsaPrivateDecrypt(XSecure_Rsa *InstancePtr, u8 *Input, u32
Size, u8 *Result);

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 426Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=426

Parameters

The following table lists the XSecure_RsaPrivateDecrypt function arguments.

Table 272: XSecure_RsaPrivateDecrypt Arguments

Name Description
InstancePtr Pointer to the XSecure_Rsa instance.

Input Pointer to the buffer which contains the input data to be decrypted.

Size Key size in bytes, Input size also should be same as Key size mentioned. Inputs
supported are

• XSECURE_RSA_4096_KEY_SIZE,

• XSECURE_RSA_2048_KEY_SIZE

• XSECURE_RSA_3072_KEY_SIZE

Result Pointer to the buffer where resultant decrypted data to be stored .

Returns

• XST_SUCCESS if decryption was successful.

• XSECURE_RSA_DATA_VALUE_ERROR - if input data is greater than modulus.

• XST_FAILURE - on RSA operation failure.

RSA API Example Usage
The following example illustrates the usage of the RSA library to encrypt data using the public
key and to decrypt the data using private key.

Note: Application should take care of the padding.

u32 SecureRsaExample(void)
{
 u32 Index;

 /* RSA signature decrypt with private key */
 /*
 * Initialize the Rsa driver with private key components
 * so that it's ready to use
 */
 XSecure_RsaInitialize(&Secure_Rsa, Modulus, NULL, PrivateExp);

 if(XST_SUCCESS != XSecure_RsaPrivateDecrypt(&Secure_Rsa, Data,
 Size, Signature)) {
 xil_printf("Failed at RSA signature decryption\n\r");
 return XST_FAILURE;
 }

 xil_printf("\r\n Decrypted Signature with private key\r\n ");

 for(Index = 0; Index < Size; Index++) {

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 427Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=427

 xil_printf(" %02x ", Signature[Index]);
 }
 xil_printf(" \r\n ");

 /* Verification if Data is expected */
 for(Index = 0; Index < Size; Index++) {
 if (Signature[Index] != ExpectedSign[Index]) {
 xil_printf("\r\nError at verification of RSA
signature"
 " Decryption\n\r");
 return XST_FAILURE;
 }
 }

 /* RSA signature encrypt with Public key components */

 /*
 * Initialize the Rsa driver with public key components
 * so that it's ready to use
 */

 XSecure_RsaInitialize(&Secure_Rsa, Modulus, NULL, (u8 *)&PublicExp);

 if(XST_SUCCESS != XSecure_RsaPublicEncrypt(&Secure_Rsa, Signature,
 Size,
EncryptSignatureOut)) {
 xil_printf("\r\nFailed at RSA signature encryption\n\r");
 return XST_FAILURE;
 }
 xil_printf("\r\n Encrypted Signature with public key\r\n ");

 for(Index = 0; Index < Size; Index++) {
 xil_printf(" %02x ", EncryptSignatureOut[Index]);
 }

 /* Verification if Data is expected */
 for(Index = 0; Index < Size; Index++) {
 if (EncryptSignatureOut[Index] != Data[Index]) {
 xil_printf("\r\nError at verification of RSA
signature"
 " encryption\n\r");
 return XST_FAILURE;
 }
 }

 return XST_SUCCESS;
}

Note: Relevant examples are available in the <library-install-path>\examples folder. Where <library-install-
path> is the XilSecure library installation path.

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 428Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=428

SHA-3
This block uses the NIST-approved SHA-3 algorithm to generate a 384-bit hash on the input
data. Because the SHA-3 hardware only accepts 104 byte blocks as the minimum input size, the
input data will be padded with user selectable Keccak or NIST SHA-3 padding and is handled
internally in the SHA-3 library.

Initialization & Configuration

The SHA-3 driver instance can be initialized using the XSecure_Sha3Initialize()
function. A pointer to CsuDma instance has to be passed during initialization as the CSU DMA
will be used for data transfers to the SHA module.

SHA-3 Function Usage

When all the data is available on which the SHA3 hash must be calculated, the
XSecure_Sha3Digest() can be used with the appropriate parameters as described. When all
the data is not available, use the SHA3 functions in the following order:

1. XSecure_Sha3Start()

2. XSecure_Sha3Update() - This function can be called multiple times until all input data
has been passed to the SHA-3 cryptographic core.

3. XSecure_Sha3Finish() - Provides the final hash of the data. To get intermediate hash
values after each XSecure_Sha3Update() , you can call XSecure_Sha3_ReadHash()
after the XSecure_Sha3Update() call.

Table 273: Quick Function Reference

Type Name Arguments
s32 XSecure_Sha3Initialize

XSecure_Sha3 * InstancePtr
XCsuDma * CsuDmaPtr

void XSecure_Sha3Start
XSecure_Sha3 * InstancePtr

u32 XSecure_Sha3Update
XSecure_Sha3 * InstancePtr
const u8 * Data
const u32 Size

u32 XSecure_Sha3Finish
XSecure_Sha3 * InstancePtr
u8 * Hash

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 429Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=429

Table 273: Quick Function Reference (cont'd)

Type Name Arguments
u32 XSecure_Sha3Digest

XSecure_Sha3 * InstancePtr
const u8 * In
const u32 Size
u8 * Out

void XSecure_Sha3_ReadHash
XSecure_Sha3 * InstancePtr
u8 * Hash

s32 XSecure_Sha3PadSelection
XSecure_Sha3 * InstancePtr
Sha3Type

s32 XSecure_Sha3LastUpdate
XSecure_Sha3 * InstancePtr

u32 XSecure_Sha3WaitForDone
XSecure_Sha3 * InstancePtr

Functions

XSecure_Sha3Initialize

This function initializes a XSecure_Sha3 structure with the default values required for operating
the SHA3 cryptographic engine.

Note: The base address is initialized directly with value from xsecure_hw.h The default is NIST SHA3
padding, to change to KECCAK padding call XSecure_Sha3PadSelection() after
XSecure_Sha3Initialize() .

Prototype

s32 XSecure_Sha3Initialize(XSecure_Sha3 *InstancePtr, XCsuDma *CsuDmaPtr);

Parameters

The following table lists the XSecure_Sha3Initialize function arguments.

Table 274: XSecure_Sha3Initialize Arguments

Name Description
InstancePtr Pointer to the XSecure_Sha3 instance.

CsuDmaPtr Pointer to the XCsuDma instance.

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 430Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=430

Returns

XST_SUCCESS if initialization was successful

XSecure_Sha3Start

This function configures Secure Stream Switch and starts the SHA-3 engine.

Prototype

void XSecure_Sha3Start(XSecure_Sha3 *InstancePtr);

Parameters

The following table lists the XSecure_Sha3Start function arguments.

Table 275: XSecure_Sha3Start Arguments

Name Description
InstancePtr Pointer to the XSecure_Sha3 instance.

Returns

None

XSecure_Sha3Update

This function updates the SHA3 engine with the input data.

Prototype

u32 XSecure_Sha3Update(XSecure_Sha3 *InstancePtr, const u8 *Data, const u32
Size);

Parameters

The following table lists the XSecure_Sha3Update function arguments.

Table 276: XSecure_Sha3Update Arguments

Name Description
InstancePtr Pointer to the XSecure_Sha3 instance.

Data Pointer to the input data for hashing.

Size Size of the input data in bytes.

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 431Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=431

Returns

XST_SUCCESS if the update is successful XST_FAILURE if there is a failure in SSS config

XSecure_Sha3Finish

This function updates SHA3 engine with final data which includes SHA3 padding and reads final
hash on complete data.

Prototype

u32 XSecure_Sha3Finish(XSecure_Sha3 *InstancePtr, u8 *Hash);

Parameters

The following table lists the XSecure_Sha3Finish function arguments.

Table 277: XSecure_Sha3Finish Arguments

Name Description
InstancePtr Pointer to the XSecure_Sha3 instance.

Hash Pointer to location where resulting hash will be written

Returns

XST_SUCCESS if finished without any errors XST_FAILURE if Sha3PadType is other than
KECCAK or NIST

XSecure_Sha3Digest

This function calculates the SHA-3 digest on the given input data.

Prototype

u32 XSecure_Sha3Digest(XSecure_Sha3 *InstancePtr, const u8 *In, const u32
Size, u8 *Out);

Parameters

The following table lists the XSecure_Sha3Digest function arguments.

Table 278: XSecure_Sha3Digest Arguments

Name Description
InstancePtr Pointer to the XSecure_Sha3 instance.

In Pointer to the input data for hashing

Size Size of the input data

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 432Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=432

Table 278: XSecure_Sha3Digest Arguments (cont'd)

Name Description
Out Pointer to location where resulting hash will be written.

Returns

XST_SUCCESS if digest calculation done successfully XST_FAILURE if any error from
Sha3Update or Sha3Finish.

XSecure_Sha3_ReadHash

This function reads the SHA3 hash of the data and it can be called between calls to
XSecure_Sha3Update.

Prototype

void XSecure_Sha3_ReadHash(XSecure_Sha3 *InstancePtr, u8 *Hash);

Parameters

The following table lists the XSecure_Sha3_ReadHash function arguments.

Table 279: XSecure_Sha3_ReadHash Arguments

Name Description
InstancePtr Pointer to the XSecure_Sha3 instance.

Hash Pointer to a buffer in which read hash will be stored.

Returns

None

XSecure_Sha3PadSelection

This function provides an option to select the SHA-3 padding type to be used while calculating
the hash.

Note: The default provides support for NIST SHA-3. If a user wants to change the padding to Keccak
SHA-3, this function should be called after XSecure_Sha3Initialize()

Prototype

s32 XSecure_Sha3PadSelection(XSecure_Sha3 *InstancePtr, XSecure_Sha3PadType
Sha3PadType);

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 433Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=433

Parameters

The following table lists the XSecure_Sha3PadSelection function arguments.

Table 280: XSecure_Sha3PadSelection Arguments

Name Description
InstancePtr Pointer to the XSecure_Sha3 instance.

Sha3Type Type of SHA3 padding to be used.

• For NIST SHA-3 padding - XSECURE_CSU_NIST_SHA3

• For KECCAK SHA-3 padding - XSECURE_CSU_KECCAK_SHA3

Returns

XST_SUCCESS if pad selection is successful. XST_FAILURE if pad selecction is failed.

XSecure_Sha3LastUpdate

This function is to notify this is the last update of data where sha padding is also been included
along with the data in the next update call.

Prototype

s32 XSecure_Sha3LastUpdate(XSecure_Sha3 *InstancePtr);

Parameters

The following table lists the XSecure_Sha3LastUpdate function arguments.

Table 281: XSecure_Sha3LastUpdate Arguments

Name Description
InstancePtr Pointer to the XSecure_Sha3 instance.

Returns

XST_SUCCESS if last update can be accepted

XSecure_Sha3WaitForDone

This inline function waits till SHA3 completes its operation.

Prototype

u32 XSecure_Sha3WaitForDone(XSecure_Sha3 *InstancePtr);

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 434Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=434

Parameters

The following table lists the XSecure_Sha3WaitForDone function arguments.

Table 282: XSecure_Sha3WaitForDone Arguments

Name Description
InstancePtr Pointer to the XSecure_Sha3 instance.

Returns

XST_SUCCESS if the SHA3 completes its operation. XST_FAILURE if a timeout has occurred.

SHA-3 API Example Usage
The xilsecure_sha_example.c file is a simple example application that demonstrates the usage of
SHA-3 accelerator to calculate a 384-bit hash on the Hello World string. A typical use case for
the SHA3 accelerator is for calcuation of the boot image hash as part of the autentication
operation. This is illustrated in the xilsecure_rsa_example.c.

The contents of the xilsecure_sha_example.c file are shown below:

int SecureHelloWorldExample()
{
 u8 HelloWorld[4] = {'h','e','l','l'};
 u32 Size = sizeof(HelloWorld);
 u8 Out[384/8];
 XCsuDma_Config *Config;

 int Status;

 Config = XCsuDma_LookupConfig(0);
 if (NULL == Config) {
 xil_printf("config failed\n\r");
 return XST_FAILURE;
 }

 Status = XCsuDma_CfgInitialize(&CsuDma, Config, Config-
>BaseAddress);
 if (Status != XST_SUCCESS) {
 return XST_FAILURE;
 }

 /*
 * Initialize the SHA-3 driver so that it's ready to use
 */
 XSecure_Sha3Initialize(&Secure_Sha3, &CsuDma);

 XSecure_Sha3Digest(&Secure_Sha3, HelloWorld, Size, Out);

 xil_printf(" Calculated Digest \r\n ");
 int i= 0;
 for(i=0; i< (384/8); i++)
 {
 xil_printf(" %0x ", Out[i]);

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 435Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=435

 }
 xil_printf(" \r\n ");

 return XST_SUCCESS;
}

Note: The xilsecure_sha_example.c and xilsecure_rsa_example.c example files are available in the <library-
install-path>\examples folder. Where <library-install-path> is the XilSecure library installation path.

XilSecure Utilities
The xsecure_utils.h file contains common functions used among the XilSecure library like
holding hardware crypto engines in Reset or bringing them out of reset, and secure stream switch
configuration for AES and SHA3.

Table 283: Quick Function Reference

Type Name Arguments
u32 XSecure_ReadReg

u32 BaseAddress
u16 RegOffset

void XSecure_WriteReg
u32 BaseAddress
u32 RegOffset
u32 RegisterValue

void XSecure_SetReset
u32 BaseAddress
u32 BaseAddress

void XSecure_ReleaseReset
u32 BaseAddress
u32 BaseAddress

Functions

XSecure_ReadReg

Read from the register.

Note: C-Style signature: u32 XSecure_ReadReg(u32 BaseAddress, u16 RegOffset)

Prototype

u32 XSecure_ReadReg(u32 BaseAddress, u16 RegOffset);

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 436Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=436

Parameters

The following table lists the XSecure_ReadReg function arguments.

Table 284: XSecure_ReadReg Arguments

Name Description
BaseAddress contains the base address of the device.

RegOffset contains the offset from the base address of the device.

Returns

The value read from the register.

XSecure_WriteReg

Write to the register.

Note: C-Style signature: void XSecure_WriteReg(u32 BaseAddress, u16 RegOffset, u16 RegisterValue)

Prototype

void XSecure_WriteReg(u32 BaseAddress, u32 RegOffset, u32 RegisterValue);

Parameters

The following table lists the XSecure_WriteReg function arguments.

Table 285: XSecure_WriteReg Arguments

Name Description
BaseAddress contains the base address of the device.

RegOffset contains the offset from the base address of the device.

RegisterValue is the value to be written to the register

Returns

None.

XSecure_SetReset

This function places the hardware core into the reset.

Prototype

void XSecure_SetReset(u32 BaseAddress, u32 Offset);

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 437Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=437

Parameters

The following table lists the XSecure_SetReset function arguments.

Table 286: XSecure_SetReset Arguments

Name Description
BaseAddress Base address of the core.

BaseAddress Offset of the reset register.

Returns

None

XSecure_ReleaseReset

This function takes the hardware core out of reset.

Prototype

void XSecure_ReleaseReset(u32 BaseAddress, u32 Offset);

Parameters

The following table lists the XSecure_ReleaseReset function arguments.

Table 287: XSecure_ReleaseReset Arguments

Name Description
BaseAddress Base address of the core.

BaseAddress Offset of the reset register.

Returns

None

Additional References
For more information on Linux interface to Zynq® UltraScale+™ MPSoC secure modules, see:

• https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/152305667/Zynq+Ultrascale+MPSoC
+Secure+Driver+for+Linux

• https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841936/RSA+Driver

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 438Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/152305667/Zynq+Ultrascale+MPSoC+Secure+Driver+for+Linux
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/152305667/Zynq+Ultrascale+MPSoC+Secure+Driver+for+Linux
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841936/RSA+Driver
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=438

• https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841654/Linux+SHA+Driver+for+Zynq
+Ultrascale+MPSoC

• https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/64749783/ZynqMP+AES+Driver

For more information on the U-boot interface, see https://xilinx-wiki.atlassian.net/wiki/spaces/A/
pages/18842432/Loading+authenticated+and+or+encrypted+image+partitions+from+u-boot.

Appendix E: XilSecure Library v4.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 439Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841654/Linux+SHA+Driver+for+Zynq+Ultrascale+MPSoC
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18841654/Linux+SHA+Driver+for+Zynq+Ultrascale+MPSoC
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/64749783/ZynqMP+AES+Driver
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842432/Loading+authenticated+and+or+encrypted+image+partitions+from+u-boot
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842432/Loading+authenticated+and+or+encrypted+image+partitions+from+u-boot
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=439

Appendix F

XilSkey Library v4.9

Overview
The XilSKey library provides APIs for programming and reading eFUSE bits and for programming
the battery-backed RAM (BBRAM) of Zynq-7000 SoC, UltraScale, UltraScale+ and the Zynq
UltraScale+ MPSoC devices.

• In Zynq-7000 devices:

○ PS eFUSE holds the RSA primary key hash bits and user feature bits, which can enable or
disable some Zynq-7000 processor features.

○ PL eFUSE holds the AES key, the user key and some of the feature bits.

○ PL BBRAM holds the AES key.

• In Kintex/Virtex UltraScale or UltraScale+:

○ PL eFUSE holds the AES key, 32 bit and 128 bit user key, RSA hash and some of the feature
bits.

○ PL BBRAM holds AES key with or without DPA protection enable or obfuscated key
programming.

• In Zynq UltraScale+ MPSoC:

○ PUF registration and Regeneration.

○ PS eFUSE holds:

Programming AES key and can perform CRC verification of AES key

• Programming/Reading User fuses

• Programming/Reading PPK0/PPK1 sha3 hash

• Programming/Reading SPKID

• Programming/Reading secure control bits

○ PS BBRAM holds the AES key.

○ PL eFUSE holds the AES key, 32 bit and 128 bit user key, RSA hash and some of the feature
bits.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 440Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=440

○ PL BBRAM holds AES key with or without DPA protection enable or obfuscated key
programming.

Board Support Package Settings
There are few configurable parameters available under bsp settings, which can be configured
during compilation of board support package.

Configurations For Adding New device

The below configurations helps in adding new device information not supported by default.
Currently, MicroBlaze, Zynq UltraScale and Zynq UltraScale+ MPSoC devices are supported.

Parameter Name Description
device_id Mention the device ID

device_irlen Mention IR length of the device. Default is 0

device_numslr Mention number of SLRs available. Range of values can be 1
to 4. Default is 1. If no slaves are present and only one
master SLR is available then only 1 number of SLR is
available.

device_series Select the device series. Default is FPGA SERIES ZYNQ. The
following device series are
supported:XSK_FPGA_SERIES_ZYNQ - Select if the device
belongs to the Zynq-7000 family. XSK_FPGA_SERIES_ULTRA -
Select if the device belongs to the Zynq UltraScale family.
XSK_FPGA_SERIES_ULTRA_PLUS - Select if the device belongs
to Zynq UltraScale MPSoC family.

device_masterslr Mention the master SLR number. Default is 0.

Configurations For Zynq UltraScale+ MPSoC devices

Parameter Name Description
override_sysmon_cfg Default = TRUE, library configures sysmon before accessing

efuse memory. If you are using the Sysmon library and
XilSkey library together, XilSkey overwrites the user defined
sysmon configuration by default. When
override_sysmon_cfg is set to false, XilSkey expects you to
configure the sysmon to read the 3 ADC channels - Supply 1
(VPINT), Supply 3 (VPAUX) and LPD Temperature. XilSkey
validates the user defined sysmon configuration is correct
before performing the eFuse operations.

Note: On Ultrascale and Ultrascale plus devices there can be multiple or single SLRs and among which one
can be master and the others are slaves, where SLR 0 is not always the master SLR. Based on master and
slave SLR order SLRs in this library are referred with config order index. Master SLR is mentioned with
CONFIG ORDER 0, then follows the slaves config order, CONFIG ORDER 1,2 and 3 are for slaves in order.
Due to the added support for the SSIT devices, it is recommended to use the updated library with updated
examples only for the UltraScale and the UltraScale+ devices.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 441Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=441

Hardware Setup
This section describes the hardware setup required for programming PL BBRAM or PL eFUSE.

Hardware setup for Zynq PL

This section describes the hardware setup required for programming BBRAM or eFUSE of Zynq
PL devices. PL eFUSE or PL BBRAM is accessed through PS via MIO pins which are used for
communication PL eFUSE or PL BBRAM through JTAG signals, these can be changed depending
on the hardware setup. A hardware setup which dedicates four MIO pins for JTAG signals should
be used and the MIO pins should be mentioned in application header file (xilskey_input.h). There
should be a method to download this example and have the MIO pins connected to JTAG before
running this application. You can change the listed pins at your discretion.

MUX Usage Requirements

To write the PL eFUSE or PL BBRAM using a driver you must:

• Use four MIO lines (TCK,TMS,TDO,TDI)

• Connect the MIO lines to a JTAG port

If you want to switch between the external JTAG and JTAG operation driven by the MIOs, you
must:

• Include a MUX between the external JTAG and the JTAG operation driven by the MIOs

• Assign a MUX selection PIN

To rephrase, to select JTAG for PL EFUSE or PL BBRAM writing, you must define the following:

• The MIOs used for JTAG operations (TCK,TMS,TDI,TDO).

• The MIO used for the MUX Select Line.

• The Value on the MUX Select line, to select JTAG for PL eFUSE or PL BBRAM writing.

The following graphic illustrates the correct MUX usage:

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 442Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=442

Figure 80: MUX Usage

Note: If you use the Vivado Device Programmer tool to burn PL eFUSEs, there is no need for MUX circuitry
or MIO pins.

Hardware setup for UltraScale or UltraScale+

This section describes the hardware setup required for programming BBRAM or eFUSE of
UltraScale devices. Accessing UltraScale MicroBlaze eFuse is done by using block RAM
initialization. UltraScale eFUSE programming is done through MASTER JTAG. Crucial
Programming sequence will be taken care by Hardware module. It is mandatory to add Hardware
module in the design. Use hardware module's vhd code and instructions provided to add
Hardware module in the design.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 443Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=443

• You need to add the Master JTAG primitive to design, that is, the MASTER_JTAG_inst
instantiation has to be performed and AXI GPIO pins have to be connected to TDO, TDI, TMS
and TCK signals of the MASTER_JTAG primitive.

• For programming eFUSE, along with master JTAG, hardware module(HWM) has to be added
in design and it's signals XSK_EFUSEPL_AXI_GPIO_HWM_READY ,
XSK_EFUSEPL_AXI_GPIO_HWM_END and XSK_EFUSEPL_AXI_GPIO_HWM_START, needs
to be connected to AXI GPIO pins to communicate with HWM. Hardware module is not
mandatory for programming BBRAM. If your design has a HWM, it is not harmful for
accessing BBRAM.

• All inputs (Master JTAG's TDO and HWM's HWM_READY, HWM_END) and all outputs
(Master JTAG TDI, TMS, TCK and HWM's HWM_START) can be connected in one channel (or)
inputs in one channel and outputs in other channel.

• Some of the outputs of GPIO in one channel and some others in different channels are not
supported.

• The design should contain AXI BRAM control memory mapped (1MB).

Note: MASTER_JTAG will disable all other JTAGs.

For providing inputs of MASTER JTAG signals and HWM signals connected to the GPIO pins and
GPIO channels, refer GPIO Pins Used for PL Master JTAG Signal and GPIO Channels sections of
the UltraScale User-Configurable PL eFUSE Parameters and UltraScale User-Configurable PL
BBRAM Parameters. The procedure for programming BBRAM of eFUSE of UltraScale or
UltraScale+ can be referred at UltraScale BBRAM Access Procedure and UltraScale eFUSE
Access Procedure.

Source Files

The following is a list of eFUSE and BBRAM application project files, folders and macros.

• xilskey_efuse_example.c: This file contains the main application code. The file helps in the
PS/PL structure initialization and writes/reads the PS/PL eFUSE based on the user settings
provided in the xilskey_input.h file.

• xilskey_input.h: This file ontains all the actions that are supported by the eFUSE library. Using
the preprocessor directives given in the file, you can read/write the bits in the PS/PL eFUSE.
More explanation of each directive is provided in the following sections. Burning or reading
the PS/PL eFUSE bits is based on the values set in the xilskey_input.h file. Also contains GPIO
pins and channels connected to MASTER JTAG primitive and hardware module to access
Ultrascale eFUSE.

In this file:

○ specify the 256 bit key to be programmed into BBRAM.

○ specify the AES(256 bit) key, User (32 bit and 128 bit) keys and RSA key hash(384 bit) key
to be programmed into UltraScale eFUSE.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 444Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=444

○ XSK_EFUSEPS_DRIVER: Define to enable the writing and reading of PS eFUSE.

○ XSK_EFUSEPL_DRIVER: Define to enable the writing of PL eFUSE.

• xilskey_bbram_example.c: This file contains the example to program a key into BBRAM and
verify the key.

Note: This algorithm only works when programming and verifying key are both executed in the
recommended order.

• xilskey_efuseps_zynqmp_example.c: This file contains the example code to program the PS
eFUSE and read back of eFUSE bits from the cache.

• xilskey_efuseps_zynqmp_input.h: This file contains all the inputs supported for eFUSE PS of
Zynq UltraScale+ MPSoC. eFUSE bits are programmed based on the inputs from the
xilskey_efuseps_zynqmp_input.h file.

• xilskey_bbramps_zynqmp_example.c: This file contains the example code to program and
verify BBRAM key of Zynq UltraScale+ MPSoC. Default is zero. You can modify this key on
top of the file.

• xilskey_bbram_ultrascale_example.c: This file contains example code to program and verify
BBRAM key of UltraScale.

Note: Programming and verification of BBRAM key cannot be done separately.

• xilskey_bbram_ultrascale_input.h: This file contains all the preprocessor directives you need to
provide. In this file, specify BBRAM AES key or Obfuscated AES key to be programmed, DPA
protection enable and, GPIO pins and channels connected to MASTER JTAG primitive.

• xilskey_puf_registration.c: This file contains all the PUF related code. This example illustrates
PUF registration and generating black key and programming eFUSE with PUF helper data,
CHash and Auxilary data along with the Black key.

• xilskey_puf_registration.h: This file contains all the preprocessor directives based on which
read/write the eFUSE bits and Syndrome data generation. More explanation of each directive
is provided in the following sections.

CAUTION! Ensure that you enter the correct information before writing or 'burning' eFUSE bits. Once burned,
they cannot be changed. The BBRAM key can be programmed any number of times.

Note: POR reset is required for the eFUSE values to be recognized.

BBRAM PL API
This section provides a linked summary and detailed descriptions of the battery-backed RAM
(BBRAM) APIs of Zynq PL and UltraScale devices.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 445Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=445

Example Usage

• Zynq BBRAM PL example usage:

○ The Zynq BBRAM PL example application should contain the xilskey_bbram_example.c and
xilskey_input.h files.

○ You should provide user configurable parameters in the xilskey_input.h file. For more
information, refer Zynq User-Configurable PL BBRAM Parameters.

• UltraScale BBRAM example usage:

○ The UltraScale BBRAM example application should contain the
xilskey_bbram_ultrascale_input.h and xilskey_bbram_ultrascale_example.c files.

○ You should provide user configurable parameters in the xilskey_bbram_ultrascale_input.h
file. For more information, refer UltraScale or UltraScale+ User-
Configurable BBRAM PL Parameters.

Note: It is assumed that you have set up your hardware prior to working on the example application. For
more information, refer Hardware Setup.

Table 288: Quick Function Reference

Type Name Arguments
int XilSKey_Bbram_Program

XilSKey_Bbram * InstancePtr

int XilSKey_Bbram_JTAGServerInit
void

Functions

XilSKey_Bbram_Program

This function implements the BBRAM algorithm for programming and verifying key.

The program and verify will only work together in and in that order.

Note: This function will program BBRAM of Ultrascale and Zynq as well.

Prototype

int XilSKey_Bbram_Program(XilSKey_Bbram *InstancePtr);

Parameters

The following table lists the XilSKey_Bbram_Program function arguments.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 446Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=446

Table 289: XilSKey_Bbram_Program Arguments

Type Name Description
XilSKey_Bbram * InstancePtr Pointer to XilSKey_Bbram

Returns

XilSKey_Bbram_JTAGServerInit

Prototype

int XilSKey_Bbram_JTAGServerInit(XilSKey_Bbram *InstancePtr);

Zynq UltraScale+ MPSoC BBRAM PS API
This section provides a linked summary and detailed descriptions of the battery-backed RAM
(BBRAM) APIs for Zynq UltraScale+ MPSoC devices.

Example Usage

• The Zynq UltraScale+ MPSoc example application should contain the
xilskey_bbramps_zynqmp_example.c file.

• User configurable key can be modified in the same file (xilskey_bbramps_zynqmp_example.c),
at the XSK_ZYNQMP_BBRAMPS_AES_KEY macro.

Table 290: Quick Function Reference

Type Name Arguments
u32 XilSKey_ZynqMp_Bbram_Program

u32 * AesKey

u32 XilSKey_ZynqMp_Bbram_Zeroise
None.

Functions

XilSKey_ZynqMp_Bbram_Program

This function implements the BBRAM programming and verifying the key written.

Program and verification of AES will work only together. CRC of the provided key will be
calculated internally and verified after programming.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 447Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=447

Prototype

u32 XilSKey_ZynqMp_Bbram_Program(u32 *AesKey);

Parameters

The following table lists the XilSKey_ZynqMp_Bbram_Program function arguments.

Table 291: XilSKey_ZynqMp_Bbram_Program Arguments

Type Name Description
u32 * AesKey Pointer to the key which has to be programmed.

Returns

• Error code from XskZynqMp_Ps_Bbram_ErrorCodes enum if it fails

• XST_SUCCESS if programming is done.

XilSKey_ZynqMp_Bbram_Zeroise

This function zeroize's Bbram Key.

Note: BBRAM key will be zeroized.

Prototype

u32 XilSKey_ZynqMp_Bbram_Zeroise(void);

Parameters

The following table lists the XilSKey_ZynqMp_Bbram_Zeroise function arguments.

Table 292: XilSKey_ZynqMp_Bbram_Zeroise Arguments

Type Name Description
Commented parameter
None. does not exist in
function
XilSKey_ZynqMp_Bbram_
Zeroise.

None.

Returns

None.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 448Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=448

Zynq eFUSE PS API
This chapter provides a linked summary and detailed descriptions of the Zynq eFUSE PS APIs.

Example Usage

• The Zynq eFUSE PS example application should contain the xilskey_efuse_example.c and the
xilskey_input.h files.

• There is no need of any hardware setup. By default, both the eFUSE PS and PL are enabled in
the application. You can comment 'XSK_EFUSEPL_DRIVER' to execute only the PS. For more
details, refer Zynq User-Configurable PS eFUSE Parameters.

Table 293: Quick Function Reference

Type Name Arguments
u32 XilSKey_EfusePs_Write

InstancePtr

u32 XilSKey_EfusePs_Read
InstancePtr

u32 XilSKey_EfusePs_ReadStatus
XilSKey_EPs * InstancePtr
u32 * StatusBits

Functions

XilSKey_EfusePs_Write

PS eFUSE interface functions.

PS eFUSE interface functions.

Note: When called, this Initializes the timer, XADC subsystems. Unlocks the PS eFUSE
controller.Configures the PS eFUSE controller. Writes the hash and control bits if requested. Programs the
PS eFUSE to enable the RSA authentication if requested. Locks the PS eFUSE controller. Returns an error,
if the reference clock frequency is not in between 20 and 60 MHz or if the system not in a position to
write the requested PS eFUSE bits (because the bits are already written or not allowed to write) or if the
temperature and voltage are not within range

Prototype

u32 XilSKey_EfusePs_Write(XilSKey_EPs *PsInstancePtr);

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 449Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=449

Parameters

The following table lists the XilSKey_EfusePs_Write function arguments.

Table 294: XilSKey_EfusePs_Write Arguments

Type Name Description
Commented parameter
InstancePtr does not
exist in function
XilSKey_EfusePs_Write.

InstancePtr Pointer to the PsEfuseHandle which describes which PS eFUSE bit
should be burned.

Returns

• XST_SUCCESS.

• In case of error, value is as defined in xilskey_utils.h Error value is a combination of Upper 8 bit
value and Lower 8 bit value. For example, 0x8A03 should be checked in error.h as 0x8A00 and
0x03. Upper 8 bit value signifies the major error and lower 8 bit values tells more precisely.

XilSKey_EfusePs_Read

This function is used to read the PS eFUSE.

Note: When called: This API initializes the timer, XADC subsystems. Unlocks the PS eFUSE Controller.
Configures the PS eFUSE Controller and enables read-only mode. Reads the PS eFUSE (Hash Value), and
enables read-only mode. Locks the PS eFUSE Controller. Returns an error, if the reference clock frequency
is not in between 20 and 60MHz. or if unable to unlock PS eFUSE controller or requested address
corresponds to restricted bits. or if the temperature and voltage are not within range

Prototype

u32 XilSKey_EfusePs_Read(XilSKey_EPs *PsInstancePtr);

Parameters

The following table lists the XilSKey_EfusePs_Read function arguments.

Table 295: XilSKey_EfusePs_Read Arguments

Type Name Description
Commented parameter
InstancePtr does not
exist in function
XilSKey_EfusePs_Read.

InstancePtr Pointer to the PsEfuseHandle which describes which PS eFUSE
should be burned.

Returns

• XST_SUCCESS no errors occurred.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 450Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=450

• In case of error, value is as defined in xilskey_utils.h. Error value is a combination of Upper 8
bit value and Lower 8 bit value. For example, 0x8A03 should be checked in error.h as 0x8A00
and 0x03. Upper 8 bit value signifies the major error and lower 8 bit values tells more
precisely.

XilSKey_EfusePs_ReadStatus

This function is used to read the PS efuse status register.

Note: This API unlocks the controller and reads the Zynq PS eFUSE status register.

Prototype

u32 XilSKey_EfusePs_ReadStatus(XilSKey_EPs *InstancePtr, u32 *StatusBits);

Parameters

The following table lists the XilSKey_EfusePs_ReadStatus function arguments.

Table 296: XilSKey_EfusePs_ReadStatus Arguments

Type Name Description
XilSKey_EPs * InstancePtr Pointer to the PS eFUSE instance.

u32 * StatusBits Buffer to store the status register read.

Returns

• XST_SUCCESS.

• XST_FAILURE

Zynq UltraScale+ MPSoC eFUSE PS API
This chapter provides a linked summary and detailed descriptions of the Zynq MPSoC UltraScale
+ eFUSE PS APIs.

Example Usage

• For programming eFUSEs other than the PUF, the Zynq UltraScale+ MPSoC example
application should contain the xilskey_efuseps_zynqmp_example.c and the
xilskey_efuseps_zynqmp_input.h files.

• For PUF registration, programming PUF helper data, AUX, chash, and black key, the Zynq
UltraScale+ MPSoC example application should contain the xilskey_puf_registration.c and the
xilskey_puf_registration.h files.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 451Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=451

• For more details on the user configurable parameters, refer Zynq UltraScale+ MPSoC
User-Configurable PS eFUSE Parameters and Zynq UltraScale+ MPSoC
User-Configurable PS PUF Parameters.

Table 297: Quick Function Reference

Type Name Arguments
u32 XilSKey_ZynqMp_EfusePs_CheckAesKey

Crc u32 CrcValue

u32 XilSKey_ZynqMp_EfusePs_ReadUserFuse
u32 * UseFusePtr
u8 UserFuse_Num
u8 ReadOption

u32 XilSKey_ZynqMp_EfusePs_ReadPpk0Has
h u32 * Ppk0Hash

u8 ReadOption

u32 XilSKey_ZynqMp_EfusePs_ReadPpk1Has
h u32 * Ppk1Hash

u8 ReadOption

u32 XilSKey_ZynqMp_EfusePs_ReadSpkId
u32 * SpkId
u8 ReadOption

void XilSKey_ZynqMp_EfusePs_ReadDna
u32 * DnaRead

u32 XilSKey_ZynqMp_EfusePs_ReadSecCtrlBi
ts XilSKey_SecCtrlBits * ReadBackSecCtrlBits

u8 ReadOption

u32 XilSKey_ZynqMp_EfusePs_CacheLoad
void

u32 XilSKey_ZynqMp_EfusePs_Write
XilSKey_ZynqMpEPs * InstancePtr

u32 XilSkey_ZynqMpEfuseAccess
void

u32 XilSKey_ZynqMp_EfusePs_WritePufHelpr
Data XilSKey_Puf * InstancePtr

u32 XilSKey_ZynqMp_EfusePs_ReadPufHelpr
Data u32 * Address

u32 XilSKey_ZynqMp_EfusePs_WritePufChas
h XilSKey_Puf * InstancePtr

u32 XilSKey_ZynqMp_EfusePs_ReadPufChas
h u32 * Address

u8 ReadOption

u32 XilSKey_ZynqMp_EfusePs_WritePufAux
XilSKey_Puf * InstancePtr

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 452Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=452

Table 297: Quick Function Reference (cont'd)

Type Name Arguments
u32 XilSKey_ZynqMp_EfusePs_ReadPufAux

u32 * Address
u8 ReadOption

u32 XilSKey_Write_Puf_EfusePs_SecureBits
XilSKey_Puf_Secure * WriteSecureBits

u32 XilSKey_Read_Puf_EfusePs_SecureBits
SecureBits
u8 ReadOption

u32 XilSKey_Puf_Registration
XilSKey_Puf * InstancePtr

u32 XilSKey_Puf_Regeneration
XilSKey_Puf * InstancePtr

Functions

XilSKey_ZynqMp_EfusePs_CheckAesKeyCrc

This function performs the CRC check of AES key.

Note: For Calculating the CRC of the AES key use the XilSKey_CrcCalculation() function or
XilSkey_CrcCalculation_AesKey() function

Prototype

u32 XilSKey_ZynqMp_EfusePs_CheckAesKeyCrc(u32 CrcValue);

Parameters

The following table lists the XilSKey_ZynqMp_EfusePs_CheckAesKeyCrc function
arguments.

Table 298: XilSKey_ZynqMp_EfusePs_CheckAesKeyCrc Arguments

Type Name Description
u32 CrcValue A 32 bit CRC value of an expected AES key.

Returns

• XST_SUCCESS on successful CRC check.

• ErrorCode on failure

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 453Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=453

XilSKey_ZynqMp_EfusePs_ReadUserFuse

This function is used to read a user fuse from the eFUSE or cache.

Note: It is highly recommended to read from eFuse cache. Because reading from efuse may reduce the life
of the efuse. And Cache reload is required for obtaining updated values for ReadOption 0.

Prototype

u32 XilSKey_ZynqMp_EfusePs_ReadUserFuse(u32 *UseFusePtr, u8 UserFuse_Num,
u8 ReadOption);

Parameters

The following table lists the XilSKey_ZynqMp_EfusePs_ReadUserFuse function
arguments.

Table 299: XilSKey_ZynqMp_EfusePs_ReadUserFuse Arguments

Type Name Description
u32 * UseFusePtr Pointer to an array which holds the readback user fuse.

u8 UserFuse_Num A variable which holds the user fuse number. Range is (User fuses:
0 to 7)

u8 ReadOption Indicates whether or not to read from the actual eFUSE array or
from the eFUSE cache.

• 0(XSK_EFUSEPS_READ_FROM_CACHE) Reads from eFUSE cache

• 1(XSK_EFUSEPS_READ_FROM_EFUSE) Reads from eFUSE array

Returns

• XST_SUCCESS on successful read

• ErrorCode on failure

XilSKey_ZynqMp_EfusePs_ReadPpk0Hash

This function is used to read the PPK0 hash from an eFUSE or eFUSE cache.

Note: It is highly recommended to read from eFuse cache. Because reading from efuse may reduce the life
of the efuse. And Cache reload is required for obtaining updated values for ReadOption 0.

Prototype

u32 XilSKey_ZynqMp_EfusePs_ReadPpk0Hash(u32 *Ppk0Hash, u8 ReadOption);

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 454Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=454

Parameters

The following table lists the XilSKey_ZynqMp_EfusePs_ReadPpk0Hash function
arguments.

Table 300: XilSKey_ZynqMp_EfusePs_ReadPpk0Hash Arguments

Type Name Description
u32 * Ppk0Hash A pointer to an array which holds the readback PPK0 hash.

u8 ReadOption Indicates whether or not to read from the actual eFUSE array or
from the eFUSE cache.

• 0(XSK_EFUSEPS_READ_FROM_CACHE) Reads from eFUSE cache

• 1(XSK_EFUSEPS_READ_FROM_EFUSE) Reads from eFUSE array

Returns

• XST_SUCCESS on successful read

• ErrorCode on failure

XilSKey_ZynqMp_EfusePs_ReadPpk1Hash

This function is used to read the PPK1 hash from eFUSE or cache.

Note: It is highly recommended to read from eFuse cache. Because reading from efuse may reduce the life
of the efuse. And Cache reload is required for obtaining updated values for ReadOption 0.

Prototype

u32 XilSKey_ZynqMp_EfusePs_ReadPpk1Hash(u32 *Ppk1Hash, u8 ReadOption);

Parameters

The following table lists the XilSKey_ZynqMp_EfusePs_ReadPpk1Hash function
arguments.

Table 301: XilSKey_ZynqMp_EfusePs_ReadPpk1Hash Arguments

Type Name Description
u32 * Ppk1Hash Pointer to an array which holds the readback PPK1 hash.

u8 ReadOption Indicates whether or not to read from the actual eFUSE array or
from the eFUSE cache.

• 0(XSK_EFUSEPS_READ_FROM_CACHE) Reads from eFUSE cache

• 1(XSK_EFUSEPS_READ_FROM_EFUSE) Reads from eFUSE array

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 455Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=455

Returns

• XST_SUCCESS on successful read

• ErrorCode on failure

XilSKey_ZynqMp_EfusePs_ReadSpkId

This function is used to read SPKID from eFUSE or cache based on user's read option.

Note: It is highly recommended to read from eFuse cache. Because reading from efuse may reduce the life
of the efuse. And Cache reload is required for obtaining updated values for ReadOption 0.

Prototype

u32 XilSKey_ZynqMp_EfusePs_ReadSpkId(u32 *SpkId, u8 ReadOption);

Parameters

The following table lists the XilSKey_ZynqMp_EfusePs_ReadSpkId function arguments.

Table 302: XilSKey_ZynqMp_EfusePs_ReadSpkId Arguments

Type Name Description
u32 * SpkId Pointer to a 32 bit variable which holds SPK ID.

u8 ReadOption Indicates whether or not to read from the actual eFUSE array or
from the eFUSE cache.

• 0(XSK_EFUSEPS_READ_FROM_CACHE) Reads from eFUSE cache

• 1(XSK_EFUSEPS_READ_FROM_EFUSE) Reads from eFUSE array

Returns

• XST_SUCCESS on successful read

• ErrorCode on failure

XilSKey_ZynqMp_EfusePs_ReadDna

This function is used to read DNA from eFUSE.

Prototype

void XilSKey_ZynqMp_EfusePs_ReadDna(u32 *DnaRead);

Parameters

The following table lists the XilSKey_ZynqMp_EfusePs_ReadDna function arguments.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 456Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=456

Table 303: XilSKey_ZynqMp_EfusePs_ReadDna Arguments

Type Name Description
u32 * DnaRead Pointer to an array of 3 x u32 words which holds the readback

DNA.

Returns

None.

XilSKey_ZynqMp_EfusePs_ReadSecCtrlBits

This function is used to read the PS eFUSE secure control bits from cache or eFUSE based on
user input provided.

Note: It is highly recommended to read from eFuse cache. Because reading from efuse may reduce the life
of the efuse. And Cache reload is required for obtaining updated values for ReadOption 0.

Prototype

u32 XilSKey_ZynqMp_EfusePs_ReadSecCtrlBits(XilSKey_SecCtrlBits
*ReadBackSecCtrlBits, u8 ReadOption);

Parameters

The following table lists the XilSKey_ZynqMp_EfusePs_ReadSecCtrlBits function
arguments.

Table 304: XilSKey_ZynqMp_EfusePs_ReadSecCtrlBits Arguments

Type Name Description
XilSKey_SecCtrlBits * ReadBackSecCtrlBits Pointer to the XilSKey_SecCtrlBits which holds the read secure

control bits.

u8 ReadOption Indicates whether or not to read from the actual eFUSE array or
from the eFUSE cache.

• 0(XSK_EFUSEPS_READ_FROM_CACHE) Reads from eFUSE cache

• 1(XSK_EFUSEPS_READ_FROM_EFUSE) Reads from eFUSE array

Returns

• XST_SUCCESS if reads successfully

• XST_FAILURE if reading is failed

XilSKey_ZynqMp_EfusePs_CacheLoad

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 457Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=457

Prototype

u32 XilSKey_ZynqMp_EfusePs_CacheLoad(void);

XilSKey_ZynqMp_EfusePs_Write

This function is used to program the PS eFUSE of ZynqMP, based on user inputs.

Note: After eFUSE programming is complete, the cache is automatically reloaded so all programmed eFUSE
bits can be directly read from cache.

Prototype

u32 XilSKey_ZynqMp_EfusePs_Write(XilSKey_ZynqMpEPs *InstancePtr);

Parameters

The following table lists the XilSKey_ZynqMp_EfusePs_Write function arguments.

Table 305: XilSKey_ZynqMp_EfusePs_Write Arguments

Type Name Description
XilSKey_ZynqMpEPs * InstancePtr Pointer to the XilSKey_ZynqMpEPs.

Returns

• XST_SUCCESS if programs successfully.

• Errorcode on failure

XilSkey_ZynqMpEfuseAccess

Prototype

u32 XilSkey_ZynqMpEfuseAccess(const u32 AddrHigh, const u32 AddrLow);

XilSKey_ZynqMp_EfusePs_WritePufHelprData

This function programs the PS eFUSEs with the PUF helper data.

Note: To generate PufSyndromeData please use XilSKey_Puf_Registration API

Prototype

u32 XilSKey_ZynqMp_EfusePs_WritePufHelprData(XilSKey_Puf *InstancePtr);

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 458Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=458

Parameters

The following table lists the XilSKey_ZynqMp_EfusePs_WritePufHelprData function
arguments.

Table 306: XilSKey_ZynqMp_EfusePs_WritePufHelprData Arguments

Type Name Description
XilSKey_Puf * InstancePtr Pointer to the XilSKey_Puf instance.

Returns

• XST_SUCCESS if programs successfully.

• Errorcode on failure

XilSKey_ZynqMp_EfusePs_ReadPufHelprData

This function reads the PUF helper data from eFUSE.

Note: This function only reads from eFUSE non-volatile memory. There is no option to read from Cache.

Prototype

u32 XilSKey_ZynqMp_EfusePs_ReadPufHelprData(u32 *Address);

Parameters

The following table lists the XilSKey_ZynqMp_EfusePs_ReadPufHelprData function
arguments.

Table 307: XilSKey_ZynqMp_EfusePs_ReadPufHelprData Arguments

Type Name Description
u32 * Address Pointer to data array which holds the PUF helper data read from

eFUSEs.

Returns

• XST_SUCCESS if reads successfully.

• Errorcode on failure.

XilSKey_ZynqMp_EfusePs_WritePufChash

This function programs eFUSE with CHash value.

Note: To generate the CHash value, please use XilSKey_Puf_Registration function.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 459Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=459

Prototype

u32 XilSKey_ZynqMp_EfusePs_WritePufChash(XilSKey_Puf *InstancePtr);

Parameters

The following table lists the XilSKey_ZynqMp_EfusePs_WritePufChash function
arguments.

Table 308: XilSKey_ZynqMp_EfusePs_WritePufChash Arguments

Type Name Description
XilSKey_Puf * InstancePtr Pointer to the XilSKey_Puf instance.

Returns

• XST_SUCCESS if chash is programmed successfully.

• An Error code on failure

XilSKey_ZynqMp_EfusePs_ReadPufChash

This function reads eFUSE PUF CHash data from the eFUSE array or cache based on the user
read option.

Note: Cache reload is required for obtaining updated values for reading from cache..

Prototype

u32 XilSKey_ZynqMp_EfusePs_ReadPufChash(u32 *Address, u8 ReadOption);

Parameters

The following table lists the XilSKey_ZynqMp_EfusePs_ReadPufChash function
arguments.

Table 309: XilSKey_ZynqMp_EfusePs_ReadPufChash Arguments

Type Name Description
u32 * Address Pointer which holds the read back value of the chash.

u8 ReadOption Indicates whether or not to read from the actual eFUSE array or
from the eFUSE cache.

• 0(XSK_EFUSEPS_READ_FROM_CACHE) Reads from cache

• 1(XSK_EFUSEPS_READ_FROM_EFUSE) Reads from eFUSE array

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 460Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=460

Returns

• XST_SUCCESS if programs successfully.

• Errorcode on failure

XilSKey_ZynqMp_EfusePs_WritePufAux

This function programs eFUSE PUF auxiliary data.

Note: To generate auxiliary data, please use XilSKey_Puf_Registration function.

Prototype

u32 XilSKey_ZynqMp_EfusePs_WritePufAux(XilSKey_Puf *InstancePtr);

Parameters

The following table lists the XilSKey_ZynqMp_EfusePs_WritePufAux function arguments.

Table 310: XilSKey_ZynqMp_EfusePs_WritePufAux Arguments

Type Name Description
XilSKey_Puf * InstancePtr Pointer to the XilSKey_Puf instance.

Returns

• XST_SUCCESS if the eFUSE is programmed successfully.

• Errorcode on failure

XilSKey_ZynqMp_EfusePs_ReadPufAux

This function reads eFUSE PUF auxiliary data from eFUSE array or cache based on user read
option.

Note: Cache reload is required for obtaining updated values for reading from cache.

Prototype

u32 XilSKey_ZynqMp_EfusePs_ReadPufAux(u32 *Address, u8 ReadOption);

Parameters

The following table lists the XilSKey_ZynqMp_EfusePs_ReadPufAux function arguments.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 461Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=461

Table 311: XilSKey_ZynqMp_EfusePs_ReadPufAux Arguments

Type Name Description
u32 * Address Pointer which holds the read back value of PUF's auxiliary data.

u8 ReadOption Indicates whether or not to read from the actual eFUSE array or
from the eFUSE cache.

• 0(XSK_EFUSEPS_READ_FROM_CACHE) Reads from cache

• 1(XSK_EFUSEPS_READ_FROM_EFUSE) Reads from eFUSE array

Returns

• XST_SUCCESS if PUF auxiliary data is read successfully.

• Errorcode on failure

XilSKey_Write_Puf_EfusePs_SecureBits

This function programs the eFUSE PUF secure bits.

Prototype

u32 XilSKey_Write_Puf_EfusePs_SecureBits(XilSKey_Puf_Secure
*WriteSecureBits);

Parameters

The following table lists the XilSKey_Write_Puf_EfusePs_SecureBits function
arguments.

Table 312: XilSKey_Write_Puf_EfusePs_SecureBits Arguments

Type Name Description
XilSKey_Puf_Secure * WriteSecureBits Pointer to the XilSKey_Puf_Secure structure

Returns

• XST_SUCCESS if eFUSE PUF secure bits are programmed successfully.

• Errorcode on failure.

XilSKey_Read_Puf_EfusePs_SecureBits

This function is used to read the PS eFUSE PUF secure bits from cache or from eFUSE array.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 462Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=462

Prototype

u32 XilSKey_Read_Puf_EfusePs_SecureBits(XilSKey_Puf_Secure *SecureBitsRead,
u8 ReadOption);

Parameters

The following table lists the XilSKey_Read_Puf_EfusePs_SecureBits function
arguments.

Table 313: XilSKey_Read_Puf_EfusePs_SecureBits Arguments

Type Name Description
Commented parameter
SecureBits does not exist
in function
XilSKey_Read_Puf_EfuseP
s_SecureBits.

SecureBits Pointer to the XilSKey_Puf_Secure structure which holds the read
eFUSE secure bits from the PUF.

u8 ReadOption Indicates whether or not to read from the actual eFUSE array or
from the eFUSE cache.

• 0(XSK_EFUSEPS_READ_FROM_CACHE) Reads from cache

• 1(XSK_EFUSEPS_READ_FROM_EFUSE) Reads from eFUSE array

Returns

• XST_SUCCESS if reads successfully.

• Errorcode on failure.

XilSKey_Puf_Registration

This function performs registration of PUF which generates a new KEK and associated CHash,
Auxiliary and PUF-syndrome data which are unique for each silicon.

Note: With the help of generated PUF syndrome data, it will be possible to re-generate same PUF KEK.

Prototype

u32 XilSKey_Puf_Registration(XilSKey_Puf *InstancePtr);

Parameters

The following table lists the XilSKey_Puf_Registration function arguments.

Table 314: XilSKey_Puf_Registration Arguments

Type Name Description
XilSKey_Puf * InstancePtr Pointer to the XilSKey_Puf instance.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 463Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=463

Returns

• XST_SUCCESS if registration/re-registration was successful.

• ERROR if registration was unsuccessful

XilSKey_Puf_Regeneration

This function regenerates the PUF data so that the PUF's output can be used as the key source
to the AES-GCM hardware cryptographic engine.

Prototype

u32 XilSKey_Puf_Regeneration(XilSKey_Puf *InstancePtr);

Parameters

The following table lists the XilSKey_Puf_Regeneration function arguments.

Table 315: XilSKey_Puf_Regeneration Arguments

Type Name Description
XilSKey_Puf * InstancePtr is a pointer to the XilSKey_Puf instance.

Returns

• XST_SUCCESS if regeneration was successful.

• ERROR if regeneration was unsuccessful

eFUSE PL API
This chapter provides a linked summary and detailed descriptions of the eFUSE APIs of Zynq
eFUSE PL and UltraScale eFUSE.

Example Usage

• The Zynq eFUSE PL and UltraScale example application should contain the
xilskey_efuse_example.c and the xilskey_input.h files.

• By default, both the eFUSE PS and PL are enabled in the application. You can comment
'XSK_EFUSEPL_DRIVER' to execute only the PS.

• For UltraScale, it is mandatory to comment `XSK_EFUSEPS_DRIVER else the example will
generate an error.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 464Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=464

• For more details on the user configurable parameters, refer Zynq User-Configurable PL
eFUSE Parameters and UltraScale or UltraScale+ User-Configurable PL
eFUSE Parameters.

• Requires hardware setup to program PL eFUSE of Zynq or UltraScale.

Table 316: Quick Function Reference

Type Name Arguments
u32 XilSKey_EfusePl_SystemInit

XilSKey_EPl * InstancePtr

u32 XilSKey_EfusePl_Program
InstancePtr

u32 XilSKey_EfusePl_ReadStatus
XilSKey_EPl * InstancePtr
u32 * StatusBits

u32 XilSKey_EfusePl_ReadKey
XilSKey_EPl * InstancePtr

Functions

XilSKey_EfusePl_SystemInit
Note: Updates the global variable ErrorCode with error code(if any).

Prototype

u32 XilSKey_EfusePl_SystemInit(XilSKey_EPl *InstancePtr);

Parameters

The following table lists the XilSKey_EfusePl_SystemInit function arguments.

Table 317: XilSKey_EfusePl_SystemInit Arguments

Type Name Description
XilSKey_EPl * InstancePtr - Input data to be written to PL eFUSE

Returns

XilSKey_EfusePl_Program

Programs PL eFUSE with input data given through InstancePtr.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 465Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=465

Note: When this API is called: Initializes the timer, XADC/xsysmon and JTAG server subsystems. Returns
an error in the following cases, if the reference clock frequency is not in the range or if the PL DAP ID is
not identified, if the system is not in a position to write the requested PL eFUSE bits (because the bits are
already written or not allowed to write) if the temperature and voltage are not within range.

Prototype

u32 XilSKey_EfusePl_Program(XilSKey_EPl *PlInstancePtr);

Parameters

The following table lists the XilSKey_EfusePl_Program function arguments.

Table 318: XilSKey_EfusePl_Program Arguments

Type Name Description
Commented parameter
InstancePtr does not
exist in function
XilSKey_EfusePl_Program.

InstancePtr Pointer to PL eFUSE instance which holds the input data to be
written to PL eFUSE.

Returns

• XST_FAILURE - In case of failure

• XST_SUCCESS - In case of Success

XilSKey_EfusePl_ReadStatus

Reads the PL efuse status bits and gets all secure and control bits.

Prototype

u32 XilSKey_EfusePl_ReadStatus(XilSKey_EPl *InstancePtr, u32 *StatusBits);

Parameters

The following table lists the XilSKey_EfusePl_ReadStatus function arguments.

Table 319: XilSKey_EfusePl_ReadStatus Arguments

Type Name Description
XilSKey_EPl * InstancePtr Pointer to PL eFUSE instance.

u32 * StatusBits Buffer to store the status bits read.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 466Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=466

Returns

XilSKey_EfusePl_ReadKey

Reads the PL efuse keys and stores them in the corresponding arrays in instance structure.

Note: This function initializes the timer, XADC and JTAG server subsystems, if not already done so. In Zynq
- Reads AES key and User keys. In Ultrascale - Reads 32 bit and 128 bit User keys and RSA hash But AES
key cannot be read directly it can be verified with CRC check (for that we need to update the instance with
32 bit CRC value, API updates whether provided CRC value is matched with actuals or not). To calculate
the CRC of expected AES key one can use any of the following APIs XilSKey_CrcCalculation() or
XilSkey_CrcCalculation_AesKey()

Prototype

u32 XilSKey_EfusePl_ReadKey(XilSKey_EPl *InstancePtr);

Parameters

The following table lists the XilSKey_EfusePl_ReadKey function arguments.

Table 320: XilSKey_EfusePl_ReadKey Arguments

Type Name Description
XilSKey_EPl * InstancePtr Pointer to PL eFUSE instance.

Returns

CRC Calculation API
This chapter provides a linked summary and detailed descriptions of the CRC calculation APIs.
For UltraScale and Zynq UltraScale+ MPSoC devices, the programmed AES cannot be read back.
The programmed AES key can only be verified by reading the CRC value of AES key.

Table 321: Quick Function Reference

Type Name Arguments
u32 XilSKey_CrcCalculation

u8 * Key

u32 XilSkey_CrcCalculation_AesKey
u8 * Key

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 467Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=467

Functions

XilSKey_CrcCalculation

This function Calculates CRC value based on hexadecimal string passed.

Note: If the length of the string provided is less than 64, this function appends the string with zeros. For
calculation of AES key's CRC one can use u32 XilSKey_CrcCalculation(u8 *Key) API or reverse
polynomial 0x82F63B78.

Prototype

u32 XilSKey_CrcCalculation(u8 *Key);

Parameters

The following table lists the XilSKey_CrcCalculation function arguments.

Table 322: XilSKey_CrcCalculation Arguments

Type Name Description
u8 * Key Pointer to the string contains AES key in hexadecimal of length less

than or equal to 64.

Returns

• On Success returns the Crc of AES key value.

• On failure returns the error code when string length is greater than 64

XilSkey_CrcCalculation_AesKey

Calculates CRC value of the provided key.

Key should be provided in hexa buffer.

Prototype

u32 XilSkey_CrcCalculation_AesKey(u8 *Key);

Parameters

The following table lists the XilSkey_CrcCalculation_AesKey function arguments.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 468Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=468

Table 323: XilSkey_CrcCalculation_AesKey Arguments

Type Name Description
u8 * Key Pointer to an array of 32 bytes, which holds an AES key.

Returns

Crc of provided AES key value. To calculate CRC on the AES key in string format please use
XilSKey_CrcCalculation.

User-Configurable Parameters
This section provides detailed descriptions of the various user configurable parameters.

Zynq User-Configurable PS eFUSE Parameters
Define the XSK_EFUSEPS_DRIVER macro to use the PS eFUSE. After defining the macro, provide
the inputs defined with XSK_EFUSEPS_DRIVER to burn the bits in PS eFUSE. If the bit is to be
burned, define the macro as TRUE; otherwise define the macro as FALSE. For details, refer the
following table.

Macro Name Description
XSK_EFUSEPS_ENABLE_WRITE_PROTECT Default = FALSE.

TRUE to burn the write-protect bits in eFUSE array. Write
protect has two bits. When either of the bits is burned, it is
considered write-protected. So, while burning the write-
protected bits, even if one bit is blown, write API returns
success. As previously mentioned, POR reset is required
after burning for write protection of the eFUSE bits to go
into effect. It is recommended to do the POR reset after
write protection. Also note that, after write-protect bits are
burned, no more eFUSE writes are possible.

If the write-protect macro is TRUE with other macros, write
protect is burned in the last iteration, after burning all the
defined values, so that for any error while burning other
macros will not effect the total eFUSE array.
FALSE does not modify the write-protect bits.

XSK_EFUSEPS_ENABLE_RSA_AUTH Default = FALSE.
Use TRUE to burn the RSA enable bit in the PS eFUSE array.
After enabling the bit, every successive boot must be RSA-
enabled apart from JTAG. Before burning (blowing) this bit,
make sure that eFUSE array has the valid PPK hash. If the
PPK hash burning is enabled, only after writing the hash
successfully, RSA enable bit will be blown. For the RSA
enable bit to take effect, POR reset is required. FALSE does
not modify the RSA enable bit.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 469Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=469

Macro Name Description
XSK_EFUSEPS_ENABLE_ROM_128K_CRC Default = FALSE.

TRUE burns the ROM 128K CRC bit. In every successive boot,
BootROM calculates 128k CRC. FALSE does not modify the
ROM CRC 128K bit.

XSK_EFUSEPS_ENABLE_RSA_KEY_HASH Default = FALSE.
TRUE burns (blows) the eFUSE hash, that is given in
XSK_EFUSEPS_RSA_KEY_HASH_VALUE when write API is used.
TRUE reads the eFUSE hash when the read API is used and is
read into structure. FALSE ignores the provided value.

XSK_EFUSEPS_RSA_KEY_HASH_VALUE Default =
The specified value is converted to a hexadecimal buffer
and written into the PS eFUSE array when the write API is
used. This value should be the Primary Public Key (PPK)
hash provided in string format. The buffer must be 64
characters long: valid characters are 0-9, a-f, and A-F. Any
other character is considered an invalid string and will not
burn RSA hash. When the Xilskey_EfusePs_Write() API is
used, the RSA hash is written, and the
XSK_EFUSEPS_ENABLE_RSA_KEY_HASH must have a value of
TRUE.

XSK_EFUSEPS_DISABLE_DFT_JTAG Default = FALSE
TRUE disables DFT JTAG permanently. FALSE will not modify
the eFuse PS DFT JTAG disable bit.

XSK_EFUSEPS_DISABLE_DFT_MODE Default = FALSE
TRUE disables DFT mode permanently. FALSE will not modify
the eFuse PS DFT mode disable bit.

Zynq User-Configurable PL eFUSE Parameters
Define the XSK_EFUSEPL_DRIVER macro to use the PL eFUSE. After defining the macro, provide
the inputs defined with XSK_EFUSEPL_DRIVER to burn the bits in PL eFUSE bits. If the bit is to
be burned, define the macro as TRUE; otherwise define the macro as FALSE. The table below
lists the user-configurable PL eFUSE parameters for Zynq devices.

Macro Name Description
XSK_EFUSEPL_FORCE_PCYCLE_RECONFIG Default = FALSE

If the value is set to TRUE, then the part has to be power-
cycled to be reconfigured.
FALSE does not set the eFUSE control bit.

XSK_EFUSEPL_DISABLE_KEY_WRITE Default = FALSE
TRUE disables the eFUSE write to FUSE_AES and FUSE_USER
blocks.
FALSE does not affect the EFUSE bit.

XSK_EFUSEPL_DISABLE_AES_KEY_READ Default = FALSE
TRUE disables the write to FUSE_AES and FUSE_USER key
and disables the read of FUSE_AES.
FALSE does not affect the eFUSE bit.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 470Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=470

Macro Name Description
XSK_EFUSEPL_DISABLE_USER_KEY_READ Default = FALSE.

TRUE disables the write to FUSE_AES and FUSE_USER key
and disables the read of FUSE_USER.
FALSE does not affect the eFUSE bit.

XSK_EFUSEPL_DISABLE_FUSE_CNTRL_WRITE Default = FALSE.
TRUE disables the eFUSE write to FUSE_CTRL block.
FALSE does not affect the eFUSE bit.

XSK_EFUSEPL_FORCE_USE_AES_ONLY Default = FALSE.
TRUE forces the use of secure boot with eFUSE AES key only.
FALSE does not affect the eFUSE bit.

XSK_EFUSEPL_DISABLE_JTAG_CHAIN Default = FALSE.
TRUE permanently disables the Zynq ARM DAP and PL TAP.
FALSE does not affect the eFUSE bit.

XSK_EFUSEPL_BBRAM_KEY_DISABLE Default = FALSE.
TRUE forces the eFUSE key to be used if booting Secure
Image.
FALSE does not affect the eFUSE bit.

MIO Pins for Zynq PL eFUSE JTAG Operations

The table below lists the MIO pins for Zynq PL eFUSE JTAG operations. You can change the
listed pins at your discretion.

Note: The pin numbers listed in the table below are examples. You must assign appropriate pin numbers as
per your hardware design.

Pin Name Pin Number
XSK_EFUSEPL_MIO_JTAG_TDI (17)

XSK_EFUSEPL_MIO_JTAG_TDO (21)

XSK_EFUSEPL_MIO_JTAG_TCK (19)

XSK_EFUSEPL_MIO_JTAG_TMS (20)

MUX Selection Pin for Zynq PL eFUSE JTAG Operations

The table below lists the MUX selection pin.

Pin Name Pin Number Description
XSK_EFUSEPL_MIO_JTAG_
MUX_SELECT

(11) This pin toggles between the external
JTAG or MIO driving JTAG operations.

MUX Parameter for Zynq PL eFUSE JTAG Operations

The table below lists the MUX parameter.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 471Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=471

Parameter Name Description
XSK_EFUSEPL_MIO_MUX_SEL_DEFAULT_VAL Default = LOW.

LOW writes zero on the MUX select line before PL_eFUSE
writing.
HIGH writes one on the MUX select line before PL_eFUSE
writing.

AES and User Key Parameters

The table below lists the AES and user key parameters.

Parameter Name Description
XSK_EFUSEPL_PROGRAM_AES_AND_USER_
LOW_KEY

Default = FALSE.
TRUE burns the AES and User Low hash key, which are given
in the XSK_EFUSEPL_AES_KEY and the
XSK_EFUSEPL_USER_LOW_KEY respectively.

FALSE ignores the provided values.
You cannot write the AES Key and the User Low Key
separately.

XSK_EFUSEPL_PROGRAM_USER_HIGH_KEY Default =FALSE.
TRUE burns the User High hash key, given in
XSK_EFUSEPL_PROGRAM_USER_HIGH_KEY.
FALSE ignores the provided values.

XSK_EFUSEPL_AES_KEY Default =
000
0000000000000
This value converted to hex buffer and written into the PL
eFUSE array when write API is used. This value should be
the AES Key, given in string format. It must be 64 characters
long. Valid characters are 0-9, a-f, A-F. Any other character is
considered an invalid string and will not burn AES Key.

To write AES Key, XSK_EFUSEPL_PROGRAM_AES_AND_USER_
LOW_KEY must have a value of TRUE.

XSK_EFUSEPL_USER_LOW_KEY Default = 00
This value is converted to a hexadecimal buffer and written
into the PL eFUSE array when the write API is used. This
value is the User Low Key given in string format. It must be
two characters long; valid characters are 0-9,a-f, and A-F.
Any other character is considered as an invalid string and
will not burn the User Low Key.

To write the User Low Key,
XSK_EFUSEPL_PROGRAM_AES_AND_USER_
LOW_KEY must have a value of TRUE.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 472Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=472

Parameter Name Description
XSK_EFUSEPL_USER_HIGH_KEY Default = 000000

The default value is converted to a hexadecimal buffer and
written into the PL eFUSE array when the write API is used.
This value is the User High Key given in string format. The
buffer must be six characters long: valid characters are 0-9,
a-f, A-F. Any other character is considered to be an invalid
string and does not burn User High Key.

To write the User High Key, the
XSK_EFUSEPL_PROGRAM_USER_HIGH_
KEY must have a value of TRUE.

Zynq User-Configurable PL BBRAM Parameters
The table below lists the MIO pins for Zynq PL BBRAM JTAG operations.

The table below lists the MUX selection pin for Zynq BBRAM PL JTAG operations.

Note: The pin numbers listed in the table below are examples. You must assign appropriate pin numbers as
per your hardware design.

Pin Name Pin Number
XSK_BBRAM_MIO_JTAG_TDI (17)

XSK_BBRAM_MIO_JTAG_TDO (21)

XSK_BBRAM_MIO_JTAG_TCK (19)

XSK_BBRAM_MIO_JTAG_TMS (20)

Pin Name Pin Number
XSK_BBRAM_MIO_JTAG_MUX_SELECT (11)

MUX Parameter for Zynq BBRAM PL JTAG Operations

The table below lists the MUX parameter for Zynq BBRAM PL JTAG operations.

Parameter Name Description
XSK_BBRAM_MIO_MUX_SEL_DEFAULT_VAL Default = LOW.

LOW writes zero on the MUX select line before PL_eFUSE
writing.
HIGH writes one on the MUX select line before PL_eFUSE
writing.

AES and User Key Parameters

The table below lists the AES and user key parameters.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 473Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=473

Parameter Name Description
XSK_BBRAM_AES_KEY Default = XX.

AES key (in HEX) that must be programmed into BBRAM.

XSK_BBRAM_AES_KEY_SIZE_IN_BITS Default = 256.
Size of AES key. Must be 256 bits.

UltraScale or UltraScale+ User-Configurable BBRAM
PL Parameters
Following parameters need to be configured. Based on your inputs, BBRAM is programmed with
the provided AES key.

AES Keys and Related Parameters

The following table shows AES key related parameters.

Parameter Name Description
XSK_BBRAM_PGM_OBFUSCATED_KEY_SLR_
CONFIG_ORDER_0

Default = FALSE
By default, XSK_BBRAM_PGM_OBFUSCATED_KEY_SLR_

CONFIG_ORDER_0 is FALSE. BBRAM is programmed with a
non-obfuscated key provided in
XSK_BBRAM_AES_KEY_SLR_CONFIG_ORDER_0 and DPA
protection can be either in enabled/disabled state. TRUE
programs the BBRAM with key provided in
XSK_BBRAM_OBFUSCATED_KEY_SLR_CONFIG_
ORDER_0 and DPA protection cannot be enabled.

XSK_BBRAM_PGM_OBFUSCATED_KEY_SLR_
CONFIG_ORDER_1

Default = FALSE
By default, XSK_BBRAM_PGM_OBFUSCATED_KEY_SLR_

CONFIG_ORDER_1 is FALSE. BBRAM is programmed with a
non-obfuscated key provided in
XSK_BBRAM_AES_KEY_SLR_CONFIG_ORDER_1 and DPA
protection can be either in enabled/disabled state. TRUE
programs the BBRAM with key provided in
XSK_BBRAM_OBFUSCATED_KEY_SLR_CONFIG_
ORDER_1 and DPA protection cannot be enabled.

XSK_BBRAM_PGM_OBFUSCATED_KEY_SLR_
CONFIG_ORDER_2

Default = FALSE
By default, XSK_BBRAM_PGM_OBFUSCATED_KEY_SLR_

CONFIG_ORDER_2 is FALSE. BBRAM is programmed with a
non-obfuscated key provided in
XSK_BBRAM_AES_KEY_SLR_CONFIG_ORDER_2 and DPA
protection can be either in enabled/disabled state. TRUE
programs the BBRAM with key provided in
XSK_BBRAM_OBFUSCATED_KEY_SLR_CONFIG_
ORDER_2 and DPA protection cannot be enabled.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 474Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=474

Parameter Name Description
XSK_BBRAM_PGM_OBFUSCATED_KEY_SLR_
CONFIG_ORDER_3

Default = FALSE
By default, XSK_BBRAM_PGM_OBFUSCATED_KEY_SLR_

CONFIG_ORDER_3 is FALSE. BBRAM is programmed with a
non-obfuscated key provided in
XSK_BBRAM_AES_KEY_SLR_CONFIG_ORDER_3 and DPA
protection can be either in enabled/disabled state. TRUE
programs the BBRAM with key provided in
XSK_BBRAM_OBFUSCATED_KEY_SLR_CONFIG_
ORDER_3 and DPA protection cannot be enabled.

XSK_BBRAM_OBFUSCATED_KEY_SLR_CONFIG_
ORDER_0

Default =
b1c276899d71fb4cdd4a0a7905ea46c2e11f9574d09c7ea23b7
0b67de713ccd1
The value mentioned in this will be converted to hex buffer
and the key is programmed into BBRAM, when program API
is called. It should be 64 characters long, valid characters
are 0-9,a-f,A-F. Any other character is considered as invalid
string and will not program BBRAM.

Note: For writing the OBFUSCATED Key,
XSK_BBRAM_PGM_OBFUSCATED_KEY_

SLR_CONFIG_ORDER_0 should have TRUE value.

XSK_BBRAM_OBFUSCATED_KEY_SLR_CONFIG_
ORDER_1

Default =
b1c276899d71fb4cdd4a0a7905ea46c2e11f9574d09c7ea23b7
0b67de713ccd1
The value mentioned in this will be converted to hex buffer
and the key is programmed into BBRAM, when program API
is called. It should be 64 characters long, valid characters
are 0-9,a-f,A-F. Any other character is considered as invalid
string and will not program BBRAM.

Note: For writing the OBFUSCATED Key,
XSK_BBRAM_PGM_OBFUSCATED_KEY_

SLR_CONFIG_ORDER_1 should have TRUE value.

XSK_BBRAM_OBFUSCATED_KEY_SLR_CONFIG_
ORDER_2

Default =
b1c276899d71fb4cdd4a0a7905ea46c2e11f9574d09c7ea23b7
0b67de713ccd1
The value mentioned in this will be converted to hex buffer
and the key is programmed into BBRAM, when program API
is called. It should be 64 characters long, valid characters
are 0-9,a-f,A-F. Any other character is considered as invalid
string and will not program BBRAM.

Note: For writing the OBFUSCATED Key,
XSK_BBRAM_PGM_OBFUSCATED_KEY_

SLR_CONFIG_ORDER_2 should have TRUE value.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 475Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=475

Parameter Name Description
XSK_BBRAM_OBFUSCATED_KEY_SLR_CONFIG_
ORDER_3

Default =
b1c276899d71fb4cdd4a0a7905ea46c2e11f9574d09c7ea23b7
0b67de713ccd1
The value mentioned in this will be converted to hex buffer
and the key is programmed into BBRAM, when program API
is called. It should be 64 characters long, valid characters
are 0-9,a-f,A-F. Any other character is considered as invalid
string and will not program BBRAM.

Note: For writing the OBFUSCATED Key,
XSK_BBRAM_PGM_OBFUSCATED_KEY_

SLR_CONFIG_ORDER_3 should have TRUE value.

XSK_BBRAM_PGM_AES_KEY_SLR_CONFIG_
ORDER_0

Default = FALSE
TRUE will program BBRAM with AES key provided in
XSK_BBRAM_AES_KEY_SLR_CONFIG_ORDER_0

XSK_BBRAM_PGM_AES_KEY_SLR_CONFIG_
ORDER_1

Default = FALSE
TRUE will program BBRAM with AES key provided in
XSK_BBRAM_AES_KEY_SLR_CONFIG_ORDER_1

XSK_BBRAM_PGM_AES_KEY_SLR_CONFIG_
ORDER_2

Default = FALSE
TRUE will program BBRAM with AES key provided in
XSK_BBRAM_AES_KEY_SLR_CONFIG_ORDER_2

XSK_BBRAM_PGM_AES_KEY_SLR_CONFIG_
ORDER_3

Default = FALSE
TRUE will program BBRAM with AES key provided in
XSK_BBRAM_AES_KEY_SLR_CONFIG_ORDER_3

XSK_BBRAM_AES_KEY_SLR_CONFIG_
ORDER_0

Default =
0000000000000000524156a63950bcedafeadcdeabaadee3421
6615aaaabbaaa
The value mentioned in this will be converted to hex buffer
and the key is programmed into BBRAM,when program API
is called. It should be 64 characters long, valid characters
are 0-9,a-f,A-F. Any other character is considered as invalid
string and will not program BBRAM.

Note: For writing AES key,
XSK_BBRAM_PGM_AES_KEY_SLR_CONFIG

_ORDER_0 should have TRUE value , and
XSK_BBRAM_PGM_OBFUSCATED_KEY_SLR

_CONFIG_ORDER_0 should have FALSE value.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 476Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=476

Parameter Name Description
XSK_BBRAM_AES_KEY_SLR_CONFIG_ORDER_1 Default =

0000000000000000524156a63950bcedafeadcdeabaadee3421
6615aaaabbaaa
The value mentioned in this will be converted to hex buffer
and the key is programmed into BBRAM,when program API
is called. It should be 64 characters long, valid characters
are 0-9,a-f,A-F. Any other character is considered as invalid
string and will not program BBRAM.

Note: For writing AES key,
XSK_BBRAM_PGM_AES_KEY_SLR_CONFIG

_ORDER_1 should have TRUE value , and
XSK_BBRAM_PGM_OBFUSCATED_KEY_SLR

_CONFIG_ORDER_1 should have FALSE value

XSK_BBRAM_AES_KEY_SLR_CONFIG_ORDER_2 Default =
0000000000000000524156a63950bcedafeadcdeabaadee3421
6615aaaabbaaa
The value mentioned in this will be converted to hex buffer
and the key is programmed into BBRAM, when program API
is called. It should be 64 characters long, valid characters
are 0-9,a-f,A-F. Any other character is considered as invalid
string and will not program BBRAM.

Note: For writing AES key,
XSK_BBRAM_PGM_AES_KEY_SLR_CONFIG

_ORDER_2 should have TRUE value , and
XSK_BBRAM_PGM_OBFUSCATED_KEY_SLR

_CONFIG_ORDER_2 should have FALSE value

XSK_BBRAM_AES_KEY_SLR_CONFIG_ORDER_3 Default =
0000000000000000524156a63950bcedafeadcdeabaadee3421
6615aaaabbaaa
The value mentioned in this will be converted to hex buffer
and the key is programmed into BBRAM, when program API
is called. It should be 64 characters long, valid characters
are 0-9,a-f,A-F. Any other character is considered as invalid
string and will not program BBRAM.

Note: For writing AES key, XSK_BBRAM_PGM_AES_KEY_SLR

_CONFIG_ORDER_3 should have TRUE value , and
XSK_BBRAM_PGM_OBFUSCATED_KEY_SLR

_CONFIG_ORDER_3 should have FALSE value

XSK_BBRAM_AES_KEY_SIZE_IN_BITS Default= 256 Size of AES key must be 256 bits.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 477Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=477

DPA Protection for BBRAM key

The following table shows DPA protection configurable parameter

Parameter Name Description
XSK_BBRAM_DPA_PROTECT_ENABLE Default = FALSE

By default, the DPA protection will be in disabled state.

TRUE will enable DPA protection with provided DPA count
and configuration in XSK_BBRAM_DPA_COUNT and
XSK_BBRAM_DPA_MODE respectively.
DPA protection cannot be enabled if BBRAM is been
programmed with an obfuscated key.

XSK_BBRAM_DPA_COUNT Default = 0
This input is valid only when DPA protection is enabled.
Valid range of values are 1 - 255 when DPA protection is
enabled else 0.

XSK_BBRAM_DPA_MODE Default = XSK_BBRAM_INVALID_CONFIGURATIONS
When DPA protection is enabled it can be
XSK_BBRAM_INVALID_CONFIGURATIONS or
XSK_BBRAM_ALL_CONFIGURATIONS If DPA protection is
disabled this input provided over here is ignored.

GPIO Device Used for Connecting PL Master JTAG Signals

In hardware design MASTER JTAG can be connected to any one of the available GPIO devices,
based on the design the following parameter should be provided with corresponding device ID of
selected GPIO device.

Master JTAG Signal Description
XSK_BBRAM_AXI_GPIO_DEVICE_ID Default = XPAR_AXI_GPIO_0_DEVICE_ID

This is for providing exact GPIO device ID, based on the
design configuration this parameter can be modified to
provide GPIO device ID which is used for connecting master
jtag pins.

GPIO Pins Used for PL Master JTAG Signals

In Ultrascale the following GPIO pins are used for connecting MASTER_JTAG pins to access
BBRAM. These can be changed depending on your hardware.The table below shows the GPIO
pins used for PL MASTER JTAG signals.

Master JTAG Signal Default PIN Number
XSK_BBRAM_AXI_GPIO_JTAG_TDO 0

XSK_BBRAM_AXI_GPIO_JTAG_TDI 0

XSK_BBRAM_AXI_GPIO_JTAG_TMS 1

XSK_BBRAM_AXI_GPIO_JTAG_TCK 2

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 478Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=478

GPIO Channels

The following table shows GPIO channel number.

Parameter Default Channel Number Master JTAG Signal Connected
XSK_BBRAM_GPIO_INPUT_CH 2 TDO

XSK_BBRAM_GPIO_OUTPUT_CH 1 TDI, TMS, TCK

Note: All inputs and outputs of GPIO should be configured in single channel. For example,
XSK_BBRAM_GPIO_INPUT_CH = XSK_BBRAM_GPIO_OUTPUT_CH = 1 or 2. Among (TDI, TCK, TMS)
Outputs of GPIO cannot be connected to different GPIO channels all the 3 signals should be in same
channel. TDO can be a other channel of (TDI, TCK, TMS) or the same. DPA protection can be enabled only
when programming non-obfuscated key.

UltraScale or UltraScale+ User-Configurable PL
eFUSE Parameters
The table below lists the user-configurable PL eFUSE parameters for UltraScale devices.

Macro Name Description
XSK_EFUSEPL_DISABLE_AES_KEY_READ Default = FALSE

TRUE will permanently disable the write to FUSE_AES and
check CRC for AES key by programming control bit of FUSE.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPL_DISABLE_USER_KEY_READ Default = FALSE
TRUE will permanently disable the write to 32 bit FUSE_USER
and read of FUSE_USER key by programming control bit of
FUSE.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPL_DISABLE_SECURE_READ Default = FALSE
TRUE will permanently disable the write to FUSE_Secure
block and reading of secure block by programming control
bit of FUSE.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPL_DISABLE_FUSE_CNTRL_WRITE Default = FALSE.
TRUE will permanently disable the write to FUSE_CNTRL
block by programming control bit of FUSE.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPL_DISABLE_RSA_KEY_READ Default = FALSE.
TRUE will permanently disable the write to FUSE_RSA block
and reading of FUSE_RSA Hash by programming control bit
of FUSE. FALSE will not modify this control bit of eFuse.

XSK_EFUSEPL_DISABLE_KEY_WRITE Default = FALSE.
TRUE will permanently disable the write to FUSE_AES block
by programming control bit of FUSE.
FALSE will not modify this control bit of eFuse.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 479Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=479

Macro Name Description
XSK_EFUSEPL_DISABLE_USER_KEY_WRITE Default = FALSE.

TRUE will permanently disable the write to FUSE_USER block
by programming control bit of FUSE.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPL_DISABLE_SECURE_WRITE Default = FALSE.
TRUE will permanently disable the write to FUSE_SECURE
block by programming control bit of FUSE.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPL_DISABLE_RSA_HASH_WRITE Default = FALSE.
TRUE will permanently disable the write to FUSE_RSA
authentication key by programming control bit of FUSE.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPL_DISABLE_128BIT_USER_KEY
_WRITE

Default = FALSE.
TRUE will permanently disable the write to 128 bit
FUSE_USER by programming control bit of FUSE.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPL_ALLOW_ENCRYPTED_ONLY Default = FALSE.
TRUE will permanently allow encrypted bitstream only.
FALSE will not modify this Secure bit of eFuse.

XSK_EFUSEPL_FORCE_USE_FUSE_AES_ONLY Default = FALSE.
TRUE then allows only FUSE's AES key as source of
encryption FALSE then allows FPGA to configure an
unencrypted bitstream or bitstream encrypted using key
stored BBRAM or eFuse.

XSK_EFUSEPL_ENABLE_RSA_AUTH Default = FALSE.
TRUE will enable RSA authentication of bitstream FALSE will
not modify this secure bit of eFuse.

XSK_EFUSEPL_DISABLE_JTAG_CHAIN Default = FALSE.
TRUE will disable JTAG permanently. FALSE will not modify
this secure bit of eFuse.

XSK_EFUSEPL_DISABLE_TEST_ACCESS Default = FALSE.
TRUE will disables Xilinx test access. FALSE will not modify
this secure bit of eFuse.

XSK_EFUSEPL_DISABLE_AES_DECRYPTOR Default = FALSE.
TRUE will disables decoder completely. FALSE will not
modify this secure bit of eFuse.

XSK_EFUSEPL_ENABLE_OBFUSCATION_
EFUSEAES

Default = FALSE.
TRUE will enable obfuscation feature for eFUSE AES key.

GPIO Device Used for Connecting PL Master JTAG Signals

In hardware design MASTER JTAG can be connected to any one of the available GPIO devices,
based on the design the following parameter should be provided with corresponding device ID of
selected GPIO device.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 480Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=480

Master JTAG Signal Description
XSK_EFUSEPL_AXI_GPIO_DEVICE_ID Default = XPAR_AXI_GPIO_0_DEVICE_ID

This is for providing exact GPIO device ID, based on the
design configuration this parameter can be modified to
provide GPIO device ID which is used for connecting master
jtag pins.

GPIO Pins Used for PL Master JTAG and HWM Signals

In Ultrascale the following GPIO pins are used for connecting MASTER_JTAG pins to access
eFUSE. These can be changed depending on your hardware.The table below shows the GPIO
pins used for PL MASTER JTAG signals.

Master JTAG Signal Default PIN Number
XSK_EFUSEPL_AXI_GPIO_JTAG_TDO 0

XSK_EFUSEPL_AXI_GPIO_HWM_READY 0

XSK_EFUSEPL_AXI_GPIO_HWM_END 1

XSK_EFUSEPL_AXI_GPIO_JTAG_TDI 2

XSK_EFUSEPL_AXI_GPIO_JTAG_TMS 1

XSK_EFUSEPL_AXI_GPIO_JTAG_TCK 2

XSK_EFUSEPL_AXI_GPIO_HWM_START 3

GPIO Channels

The following table shows GPIO channel number.

Parameter Default Channel Number Master JTAG Signal Connected
XSK_EFUSEPL_GPIO_INPUT_
CH

2 TDO

XSK_EFUSEPL_GPIO_OUTPUT_
CH

1 TDI, TMS, TCK

Note: All inputs and outputs of GPIO should be configured in single channel. For example,
XSK_EFUSEPL_GPIO_INPUT_CH = XSK_EFUSEPL_GPIO_OUTPUT_CH = 1 or 2. Among (TDI, TCK, TMS)
Outputs of GPIO cannot be connected to different GPIO channels all the 3 signals should be in same
channel. TDO can be a other channel of (TDI, TCK, TMS) or the same.

SLR Selection to Program eFUSE on MONO/SSIT Devices

The following table shows parameters for programming different SLRs.

Parameter Name Description
XSK_EFUSEPL_PGM_SLR_CONFIG_ORDER_0 Default = FALSE

TRUE will enable programming SLR config order 0's eFUSE.
FALSE will disable programming.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 481Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=481

Parameter Name Description
XSK_EFUSEPL_PGM_SLR_CONFIG_ORDER_1 Default = FALSE

TRUE will enable programming SLR config order 1's eFUSE.
FALSE will disable programming.

XSK_EFUSEPL_PGM_SLR_CONFIG_ORDER_2 Default = FALSE
TRUE will enable programming SLR config order 2's eFUSE.
FALSE will disable programming.

XSK_EFUSEPL_PGM_SLR_CONFIG_ORDER_3 Default = FALSE
TRUE will enable programming SLR config order 3's eFUSE.
FALSE will disable programming.

eFUSE PL Read Parameters

The following table shows parameters related to read USER 32/128bit keys and RSA hash.

By enabling any of the below parameters, by default will read corresponding hash/key associated
with all the available SLRs. For example, if XSK_EFUSEPL_READ_USER_KEY is TRUE, USER key
for all the available SLRs will be read.

Note: For only reading keys it is not required to enable XSK_EFUSEPL_PGM_SLR1,
XSK_EFUSEPL_PGM_SLR2, XSK_EFUSEPL_PGM_SLR3, XSK_EFUSEPL_PGM_SLR4 macros, they can be in
FALSE state.

Parameter Name Description
XSK_EFUSEPL_READ_USER_KEY Default = FALSE

TRUE will read 32 bit FUSE_USER from eFUSE of all available
SLRs and each time updates in XilSKey_EPl instance
parameter UserKeyReadback, which will be displayed on
UART by example before reading next SLR. FALSE 32-bit
FUSE_USER key read will not be performed.

XSK_EFUSEPL_READ_RSA_KEY_HASH Default = FALSE
TRUE will read FUSE_USER from eFUSE of all available SLRs
and each time updates in XilSKey_EPl instance parameter
RSAHashReadback, which will be displayed on UART by
example before reading next SLR. FALSE FUSE_RSA_HASH
read will not be performed.

XSK_EFUSEPL_READ_USER_KEY128_BIT Default = FALSE
TRUE will read 128 bit USER key eFUSE of all available SLRs
and each time updates in XilSKey_EPl instance parameter
User128BitReadBack, which will be displayed on UART by
example before reading next SLR. FALSE 128 bit USER key
read will not be performed.

AES Keys and Related Parameters
Note: For programming AES key for MONO/SSIT device, the corresponding SLR should be selected and
AES key programming should be enabled.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 482Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=482

USER Keys (32-bit) and Related Parameters
Note: For programming USER key for MONO/SSIT device, the corresponding SLR should be selected and
USER key programming should be enabled.

RSA Hash and Related Parameters
Note: For programming RSA hash for MONO/SSIT device, the corresponding SLR should be selected and
RSA hash programming should be enabled.

USER Keys (128-bit) and Related Parameters
Note: For programming USER key 128 bit for MONO/SSIT device, the corresponding SLR and
programming for USER key 128 bit should be enabled.

AES key CRC verification

You cannot read the AES key. You can verify only by providing the CRC of the expected AES key.
The following lists the parameters that may help you in verifying the AES key:

Parameter Name Description
XSK_EFUSEPL_CHECK_AES_KEY_
CRC

Default = FALSE
TRUE will perform CRC check of FUSE_AES with provided CRC
value in macro XSK_EFUSEPL_CRC_OF_EXPECTED_
AES_KEY. And result of CRC check will be updated in
XilSKey_EPl instance parameter AESKeyMatched with
either TRUE or FALSE. FALSE CRC check of FUSE_AES will not
be performed.

XSK_EFUSEPL_CRC_OF_EXPECTED_AES_KEY_
CONFIG_ORDER_0

Default = XSK_EFUSEPL_AES_CRC_OF_ALL_
ZEROS

CRC value of FUSE_AES with all Zeros. Expected FUSE_AES
key's CRC value of SLR config order 0 has to be updated in
place of XSK_EFUSEPL_AES_CRC_OF_ALL_

ZEROS. For Checking CRC of FUSE_AES
XSK_EFUSEPL_CHECK_AES_KEY_ULTRA macro should be
TRUE otherwise CRC check will not be performed. For
calculation of AES key's CRC one can use u32
XilSKey_CrcCalculation(u8_Key) API.

For UltraScale, the value of XSK_EFUSEPL_AES_CRC_OF_ALL_

ZEROS is
0x621C42AA(XSK_EFUSEPL_CRC_
FOR_AES_ZEROS).
For UltraScale+, the value of
XSK_EFUSEPL_AES_CRC_OF_ALL_ZEROS is
0x3117503A(XSK_EFUSEPL_CRC_FOR_
AES_ZEROS_ULTRA
_PLUS)

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 483Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=483

Parameter Name Description
XSK_EFUSEPL_CRC_OF_EXPECTED_AES_KEY_
CONFIG_ORDER_1

Default = XSK_EFUSEPL_AES_CRC_OF_ALL_
ZEROS

CRC value of FUSE_AES with all Zeros. Expected FUSE_AES
key's CRC value of SLR config order 1 has to be updated in
place of XSK_EFUSEPL_AES_CRC_OF_ALL_

ZEROS. For Checking CRC of FUSE_AES
XSK_EFUSEPL_CHECK_AES_KEY_ULTRA macro should be
TRUE otherwise CRC check will not be performed. For
calculation of AES key's CRC one can use u32
XilSKey_CrcCalculation(u8_Key) API.

For UltraScale, the value of XSK_EFUSEPL_AES_CRC_OF_ALL_

ZEROS is
0x621C42AA(XSK_EFUSEPL_CRC_
FOR_AES_ZEROS).
For UltraScale+, the value of
XSK_EFUSEPL_AES_CRC_OF_ALL_ZEROS is
0x3117503A(XSK_EFUSEPL_CRC_FOR_
AES_ZEROS_ULTRA
_PLUS)

XSK_EFUSEPL_CRC_OF_EXPECTED_AES_KEY_
CONFIG_ORDER_2

Default = XSK_EFUSEPL_AES_CRC_OF_ALL_
ZEROS

CRC value of FUSE_AES with all Zeros. Expected FUSE_AES
key's CRC value of SLR config order 2 has to be updated in
place of XSK_EFUSEPL_AES_CRC_OF_ALL_

ZEROS. For Checking CRC of FUSE_AES
XSK_EFUSEPL_CHECK_AES_KEY_ULTRA macro should be
TRUE otherwise CRC check will not be performed. For
calculation of AES key's CRC one can use u32
XilSKey_CrcCalculation(u8_Key) API.

For UltraScale, the value of XSK_EFUSEPL_AES_CRC_OF_ALL_

ZEROS is
0x621C42AA(XSK_EFUSEPL_CRC_
FOR_AES_ZEROS).
For UltraScale+, the value of
XSK_EFUSEPL_AES_CRC_OF_ALL_ZEROS is
0x3117503A(XSK_EFUSEPL_CRC_FOR_
AES_ZEROS_ULTRA
_PLUS)

XSK_EFUSEPL_CRC_OF_EXPECTED_AES_KEY_
CONFIG_ORDER_3

Default = XSK_EFUSEPL_AES_CRC_OF_ALL_
ZEROS

CRC value of FUSE_AES with all Zeros. Expected FUSE_AES
key's CRC value of SLR config order 3 has to be updated in
place of XSK_EFUSEPL_AES_CRC_OF_ALL_

ZEROS. For Checking CRC of FUSE_AES
XSK_EFUSEPL_CHECK_AES_KEY_ULTRA macro should be
TRUE otherwise CRC check will not be performed. For
calculation of AES key's CRC one can use u32
XilSKey_CrcCalculation(u8_Key) API.

For UltraScale, the value of XSK_EFUSEPL_AES_CRC_OF_ALL_

ZEROS is
0x621C42AA(XSK_EFUSEPL_CRC_
FOR_AES_ZEROS).
For UltraScale+, the value of
XSK_EFUSEPL_AES_CRC_OF_ALL_ZEROS is
0x3117503A(XSK_EFUSEPL_CRC_FOR_
AES_ZEROS_ULTRA
_PLUS)

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 484Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=484

Zynq UltraScale+ MPSoC User-Configurable PS eFUSE
Parameters
The table below lists the user-configurable PS eFUSE parameters for Zynq UltraScale+ MPSoC
devices.

Macro Name Description
XSK_EFUSEPS_AES_RD_LOCK Default = FALSE

TRUE will permanently disable the CRC check of FUSE_AES.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPS_AES_WR_LOCK Default = FALSE
TRUE will permanently disable the writing to FUSE_AES
block. FALSE will not modify this control bit of eFuse.

XSK_EFUSEPS_ENC_ONLY Default = FALSE
TRUE will permanently enable encrypted booting only using
the Fuse key. FALSE will not modify this control bit of eFuse.

XSK_EFUSEPS_BBRAM_DISABLE Default = FALSE
TRUE will permanently disable the BBRAM key. FALSE will
not modify this control bit of eFuse.

XSK_EFUSEPS_ERR_DISABLE Default = FALSE
TRUE will permanently disables the error messages in JTAG
status register. FALSE will not modify this control bit of
eFuse.

XSK_EFUSEPS_JTAG_DISABLE Default = FALSE
TRUE will permanently disable JTAG controller. FALSE will
not modify this control bit of eFuse.

XSK_EFUSEPS_DFT_DISABLE Default = FALSE
TRUE will permanently disable DFT boot mode. FALSE will
not modify this control bit of eFuse.

XSK_EFUSEPS_PROG_GATE_DISABLE Default = FALSE
TRUE will permanently disable PROG_GATE feature in PPD.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPS_SECURE_LOCK Default = FALSE
TRUE will permanently disable reboot into JTAG mode when
doing a secure lockdown. FALSE will not modify thi s control
bit of eFuse.

XSK_EFUSEPS_RSA_ENABLE Default = FALSE
TRUE will permanently enable RSA authentication during
boot. FALSE will not modify this control bit of eFuse.

XSK_EFUSEPS_PPK0_WR_LOCK Default = FALSE
TRUE will permanently disable writing to PPK0 efuses. FALSE
will not modify this control bit of eFuse.

XSK_EFUSEPS_PPK0_INVLD Default = FALSE
TRUE will permanently revoke PPK0. FALSE will not modify
this control bit of eFuse.

XSK_EFUSEPS_PPK1_WR_LOCK Default = FALSE
TRUE will permanently disable writing PPK1 efuses. FALSE
will not modify this control bit of eFuse.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 485Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=485

Macro Name Description
XSK_EFUSEPS_PPK1_INVLD Default = FALSE

TRUE will permanently revoke PPK1. FALSE will not modify
this control bit of eFuse.

XSK_EFUSEPS_USER_WRLK_0 Default = FALSE
TRUE will permanently disable writing to USER_0 efuses.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPS_USER_WRLK_1 Default = FALSE
TRUE will permanently disable writing to USER_1 efuses.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPS_USER_WRLK_2 Default = FALSE
TRUE will permanently disable writing to USER_2 efuses.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPS_USER_WRLK_3 Default = FALSE
TRUE will permanently disable writing to USER_3 efuses.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPS_USER_WRLK_4 Default = FALSE
TRUE will permanently disable writing to USER_4 efuses.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPS_USER_WRLK_5 Default = FALSE
TRUE will permanently disable writing to USER_5 efuses.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPS_USER_WRLK_6 Default = FALSE
TRUE will permanently disable writing to USER_6 efuses.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPS_USER_WRLK_7 Default = FALSE
TRUE will permanently disable writing to USER_7 efuses.
FALSE will not modify this control bit of eFuse.

XSK_EFUSEPS_LBIST_EN Default = FALSE
TRUE will permanently enables logic BIST to be run during
boot. FALSE will not modify this control bit of eFUSE.

XSK_EFUSEPS_LPD_SC_EN Default = FALSE
TRUE will permanently enables zeroization of registers in
Low Power Domain(LPD) during boot. FALSE will not modify
this control bit of eFUSE.

XSK_EFUSEPS_FPD_SC_EN Default = FALSE
TRUE will permanently enables zeroization of registers in
Full Power Domain(FPD) during boot. FALSE will not modify
this control bit of eFUSE.

XSK_EFUSEPS_PBR_BOOT_ERR Default = FALSE
TRUE will permanently enables the boot halt when there is
any PMU error. FALSE will not modify this control bit of
eFUSE.

AES Keys and Related Parameters

The following table shows AES key related parameters.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 486Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=486

Parameter Name Description
XSK_EFUSEPS_WRITE_AES_KEY Default = FALSE

TRUE will burn the AES key provided in
XSK_EFUSEPS_AES_KEY. FALSE will ignore the key provide
XSK_EFUSEPS_AES_KEY.

XSK_EFUSEPS_AES_KEY Default =
000
0000000000000
The value mentioned in this will be converted to hex buffer
and written into the Zynq UltraScale+ MPSoC PS eFUSE array
when write API used. This value should be given in string
format. It should be 64 characters long, valid characters are
0-9,a-f,A-F. Any other character is considered as invalid
string and will not burn AES Key.

Note: For writing the AES Key, XSK_EFUSEPS_WRITE_AES_KEY
should have TRUE value.

XSK_EFUSEPS_CHECK_AES_KEY_CRC Default value is FALSE. TRUE will check the CRC provided in
XSK_EFUSEPS_AES_KEY. CRC verification is done after
programming AES key to verify the key is programmed
properly or not, if not library error outs the same. So While
programming AES key it is not necessary to verify the AES
key again.

Note: Please make sure if intention is to check only CRC of
the provided key and not programming AES key then do not
modify XSK_EFUSEPS_WRITE_AES_

KEY (TRUE will Program key).

User Keys and Related Parameters

Single bit programming is allowed for all the user eFUSEs. When you request to revert already
programmed bit, the library will return an error. Also, if the user eFUSEs is non-zero, the library
will not throw an error for valid requests. The following table shows the user keys and related
parameters.

Parameter Name Description
XSK_EFUSEPS_WRITE_USER0_FUSE Default = FALSE

TRUE will burn User0 Fuse provided in
XSK_EFUSEPS_USER0_FUSES. FALSE will ignore the value
provided in XSK_EFUSEPS_USER0_FUSES

XSK_EFUSEPS_WRITE_USER1_FUSE Default = FALSE
TRUE will burn User1 Fuse provided in
XSK_EFUSEPS_USER1_FUSES. FALSE will ignore the value
provided in XSK_EFUSEPS_USER1_FUSES

XSK_EFUSEPS_WRITE_USER2_FUSE Default = FALSE
TRUE will burn User2 Fuse provided in
XSK_EFUSEPS_USER2_FUSES. FALSE will ignore the value
provided in XSK_EFUSEPS_USER2_FUSES

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 487Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=487

Parameter Name Description
XSK_EFUSEPS_WRITE_USER3_FUSE Default = FALSE

TRUE will burn User3 Fuse provided in
XSK_EFUSEPS_USER3_FUSES. FALSE will ignore the value
provided in XSK_EFUSEPS_USER3_FUSES

XSK_EFUSEPS_WRITE_USER4_FUSE Default = FALSE
TRUE will burn User4 Fuse provided in
XSK_EFUSEPS_USER4_FUSES. FALSE will ignore the value
provided in XSK_EFUSEPS_USER4_FUSES

XSK_EFUSEPS_WRITE_USER5_FUSE Default = FALSE
TRUE will burn User5 Fuse provided in
XSK_EFUSEPS_USER5_FUSES. FALSE will ignore the value
provided in XSK_EFUSEPS_USER5_FUSES

XSK_EFUSEPS_WRITE_USER6_FUSE Default = FALSE
TRUE will burn User6 Fuse provided in
XSK_EFUSEPS_USER6_FUSES. FALSE will ignore the value
provided in XSK_EFUSEPS_USER6_FUSES

XSK_EFUSEPS_WRITE_USER7_FUSE Default = FALSE
TRUE will burn User7 Fuse provided in
XSK_EFUSEPS_USER7_FUSES. FALSE will ignore the value
provided in XSK_EFUSEPS_USER7_FUSES

XSK_EFUSEPS_USER0_FUSES Default = 00000000
The value mentioned in this will be converted to hex buffer
and written into the Zynq UltraScale+ MPSoC PS eFUSE array
when write API used. This value should be given in string
format. It should be 8 characters long, valid characters are
0-9,a-f,A-F. Any other character is considered as invalid
string and will not burn SPK ID.

Note: For writing the User0 Fuse,
XSK_EFUSEPS_WRITE_USER0_FUSE should have TRUE value

XSK_EFUSEPS_USER1_FUSES Default = 00000000
The value mentioned in this will be converted to hex buffer
and written into the Zynq UltraScale+ MPSoC PS eFUSE array
when write API used. This value should be given in string
format. It should be 8 characters long, valid characters are
0-9,a-f,A-F. Any other character is considered as invalid
string and will not burn SPK ID.

Note: For writing the User1 Fuse,
XSK_EFUSEPS_WRITE_USER1_FUSE should have TRUE value

XSK_EFUSEPS_USER2_FUSES Default = 00000000
The value mentioned in this will be converted to hex buffer
and written into the Zynq UltraScale+ MPSoC PS eFUSE array
when write API used. This value should be given in string
format. It should be 8 characters long, valid characters are
0-9,a-f,A-F. Any other character is considered as invalid
string and will not burn SPK ID.

Note: For writing the User2 Fuse,
XSK_EFUSEPS_WRITE_USER2_FUSE should have TRUE value

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 488Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=488

Parameter Name Description
XSK_EFUSEPS_USER3_FUSES Default = 00000000

The value mentioned in this will be converted to hex buffer
and written into the Zynq UltraScale+ MPSoC PS eFUSE array
when write API used. This value should be given in string
format. It should be 8 characters long, valid characters are
0-9,a-f,A-F. Any other character is considered as invalid
string and will not burn SPK ID.

Note: For writing the User3 Fuse,
XSK_EFUSEPS_WRITE_USER3_FUSE should have TRUE value

XSK_EFUSEPS_USER4_FUSES Default = 00000000
The value mentioned in this will be converted to hex buffer
and written into the Zynq UltraScale+ MPSoC PS eFUSE array
when write API used. This value should be given in string
format. It should be 8 characters long, valid characters are
0-9,a-f,A-F. Any other character is considered as invalid
string and will not burn SPK ID.

Note: For writing the User4 Fuse,
XSK_EFUSEPS_WRITE_USER4_FUSE should have TRUE value

XSK_EFUSEPS_USER5_FUSES Default = 00000000
The value mentioned in this will be converted to hex buffer
and written into the Zynq UltraScale+ MPSoC PS eFUSE array
when write API used. This value should be given in string
format. It should be 8 characters long, valid characters are
0-9,a-f,A-F. Any other character is considered as invalid
string and will not burn SPK ID.

Note: For writing the User5 Fuse,
XSK_EFUSEPS_WRITE_USER5_FUSE should have TRUE value

XSK_EFUSEPS_USER6_FUSES Default = 00000000
The value mentioned in this will be converted to hex buffer
and written into the Zynq UltraScale+ MPSoC PS eFUSE array
when write API used. This value should be given in string
format. It should be 8 characters long, valid characters are
0-9,a-f,A-F. Any other character is considered as invalid
string and will not burn SPK ID.

Note: For writing the User6 Fuse,
XSK_EFUSEPS_WRITE_USER6_FUSE should have TRUE value

XSK_EFUSEPS_USER7_FUSES Default = 00000000
The value mentioned in this will be converted to hex buffer
and written into the Zynq UltraScale+ MPSoC PS eFUSE array
when write API used. This value should be given in string
format. It should be 8 characters long, valid characters are
0-9,a-f,A-F. Any other character is considered as invalid
string and will not burn SPK ID.

Note: For writing the User7 Fuse,
XSK_EFUSEPS_WRITE_USER7_FUSE should have TRUE value

PPK0 Keys and Related Parameters

The following table shows the PPK0 keys and related parameters.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 489Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=489

Parameter Name Description
XSK_EFUSEPS_WRITE_PPK0_SHA3_HASH Default = FALSE

TRUE will burn PPK0 sha3 hash provided in
XSK_EFUSEPS_PPK0_SHA3_HASH. FALSE will ignore the hash
provided in XSK_EFUSEPS_PPK0_SHA3_HASH.

XSK_EFUSEPS_PPK0_IS_SHA3 Default = TRUE
TRUE XSK_EFUSEPS_PPK0_SHA3_HASH should be of string
length 96 it specifies that PPK0 is used to program SHA3
hash. FALSE XSK_EFUSEPS_PPK0_SHA3_HASH should be of
string length 64 it specifies that PPK0 is used to program
SHA2 hash.

XSK_EFUSEPS_PPK0_HASH Default =
000
00
The value mentioned in this will be converted to hex buffer
and into the Zynq UltraScale+ MPSoC PS eFUSE array when
write API used. This value should be given in string format.
It should be 96 or 64 characters long, valid characters are
0-9,a-f,A-F. Any other character is considered as invalid
string and will not burn PPK0 hash. Note that,for writing the
PPK0 hash, XSK_EFUSEPS_WRITE_PPK0_SHA3_HASH should
have TRUE value. While writing SHA2 hash, length should be
64 characters long XSK_EFUSEPS_PPK0_IS_SHA3 macro has
to be made FALSE. While writing SHA3 hash, length should
be 96 characters long and XSK_EFUSEPS_PPK0_IS_SHA3
macro should be made TRUE

PPK1 Keys and Related Parameters

The following table shows the PPK1 keys and related parameters.

Parameter Name Description
XSK_EFUSEPS_WRITE_PPK1_SHA3_HASH Default = FALSE

TRUE will burn PPK1 sha3 hash provided in
XSK_EFUSEPS_PPK1_SHA3_HASH. FALSE will ignore the hash
provided in XSK_EFUSEPS_PPK1_SHA3_HASH.

XSK_EFUSEPS_PPK1_IS_SHA3 Default = TRUE
TRUE XSK_EFUSEPS_PPK1_SHA3_HASH should be of string
length 96 it specifies that PPK1 is used to program SHA3
hash. FALSE XSK_EFUSEPS_PPK1_SHA3_HASH should be of
string length 64 it specifies that PPK1 is used to program
SHA2 hash.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 490Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=490

Parameter Name Description
XSK_EFUSEPS_PPK1_HASH Default =

000
0000000000000 The value mentioned in this will be
converted to hex buffer and written into the Zynq UltraScale
+ MPSoC PS eFUSE array when write API used. This value
should be given in string format. It should be 64 or 96
characters long, valid characters are 0-9,a-f,A-F. Any other
character is considered as invalid string and will not burn
PPK1 hash. Note that,for writing the PPK11 hash,
XSK_EFUSEPS_WRITE_PPK1_SHA3_HASH should have TRUE
value. By default, PPK1 hash will be provided with 64
character length to program PPK1 hash with sha2 hash so
XSK_EFUSEPS_PPK1_IS_SHA3 also will be in FALSE state. But
to program PPK1 hash with SHA3 hash make
XSK_EFUSEPS_PPK1_IS_SHA3 to TRUE and provide sha3 hash
of length 96 characters XSK_EFUSEPS_PPK1_HASH so that
one can program sha3 hash.

SPK ID and Related Parameters

The following table shows the SPK ID and related parameters.

Parameter Name Description
XSK_EFUSEPS_WRITE_SPKID Default = FALSE

TRUE will burn SPKID provided in XSK_EFUSEPS_SPK_ID.
FALSE will ignore the hash provided in XSK_EFUSEPS_SPK_ID.

XSK_EFUSEPS_SPK_ID Default = 00000000
The value mentioned in this will be converted to hex buffer
and written into the Zynq UltraScale+ MPSoC PS eFUSE array
when write API used. This value should be given in string
format. It should be 8 characters long, valid characters are
0-9,a-f,A-F. Any other character is considered as invalid
string and will not burn SPK ID.

Note: For writing the SPK ID, XSK_EFUSEPS_WRITE_SPKID
should have TRUE value.

Note: PPK hash should be unmodified hash generated by bootgen. Single bit programming is allowed for
User FUSEs (0 to 7), if you specify a value that tries to set a bit that was previously programmed to 1 back
to 0, you will get an error. you have to provide already programmed bits also along with new requests.

Zynq UltraScale+ MPSoC User-Configurable PS
BBRAM Parameters
The table below lists the AES and user key parameters.

Parameter Name Description
XSK_ZYNQMP_BBRAMPS_AES_KEY Default =

000
0000000000000
AES key (in HEX) that must be programmed into BBRAM.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 491Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=491

Parameter Name Description
XSK_ZYNQMP_BBRAMPS_AES_KEY_LEN_IN_
BYTES

Default = 32.
Length of AES key in bytes.

XSK_ZYNQMP_BBRAMPS_AES_KEY_LEN_IN_
BITS

Default = 256.
Length of AES key in bits.

XSK_ZYNQMP_BBRAMPS_AES_KEY_STR_LEN Default = 64.
String length of the AES key.

Zynq UltraScale+ MPSoC User-Configurable PS PUF
Parameters
The table below lists the user-configurable PS PUF parameters for Zynq UltraScale+ MPSoC
devices.

Macro Name Description
XSK_PUF_INFO_ON_UART Default = FALSE

TRUE will display syndrome data on UART com port
FALSE will display any data on UART com port.

XSK_PUF_PROGRAM_EFUSE Default = FALSE
TRUE will program the generated syndrome data, CHash
and Auxilary values, Black key.
FALSE will not program data into eFUSE.

XSK_PUF_IF_CONTRACT_MANUFACTURER Default = FALSE
This should be enabled when application is hand over to
contract manufacturer.

TRUE will allow only authenticated application.
FALSE authentication is not mandatory.

XSK_PUF_REG_MODE Default = XSK_PUF_MODE4K
PUF registration is performed in 4K mode. For only
understanding it is provided in this file, but user is not
supposed to modify this.

XSK_PUF_READ_SECUREBITS Default = FALSE
TRUE will read status of the puf secure bits from eFUSE and
will be displayed on UART. FALSE will not read secure bits.

XSK_PUF_PROGRAM_SECUREBITS Default = FALSE
TRUE will program PUF secure bits based on the user input
provided at XSK_PUF_SYN_INVALID, XSK_PUF_SYN_WRLK and
XSK_PUF_REGISTER_DISABLE.
FALSE will not program any PUF secure bits.

XSK_PUF_SYN_INVALID Default = FALSE
TRUE will permanently invalidate the already programmed
syndrome data.
FALSE will not modify anything

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 492Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=492

Macro Name Description
XSK_PUF_SYN_WRLK Default = FALSE

TRUE will permanently disable programming syndrome data
into eFUSE.
FALSE will not modify anything.

XSK_PUF_REGISTER_DISABLE Default = FALSE
TRUE permanently does not allow PUF syndrome data
registration.
FALSE will not modify anything.

XSK_PUF_RESERVED Default = FALSE
TRUE programs this reserved eFUSE bit. FALSE will not
modify anything.

XSK_PUF_AES_KEY Default =
000
0000000000000
The value mentioned in this will be converted to hex buffer
and encrypts this with PUF helper data and generates a
black key and written into the Zynq UltraScale+ MPSoC PS
eFUSE array when XSK_PUF_PROGRAM_EFUSE macro is
TRUE.

This value should be given in string format. It should be 64
characters long, valid characters are 0-9,a-f,A-F. Any other
character is considered as invalid string and will not burn
AES Key. Note Provided here should be red key and
application calculates the black key and programs into
eFUSE if XSK_PUF_PROGRAM_EFUSE macro is TRUE.
To avoid programming eFUSE results can be displayed on
UART com port by making XSK_PUF_INFO_ON_UART to
TRUE.

XSK_PUF_BLACK_KEY_IV Default = 000000000000000000000000
The value mentioned here will be converted to hex buffer.
This is Initialization vector(IV) which is used to generated
black key with provided AES key and generated PUF key.
This value should be given in string format. It should be 24
characters long, valid characters are 0-9,a-f,A-F. Any other
character is considered as invalid string.

Error Codes
The application error code is 32 bits long. For example, if the error code for PS is 0x8A05:

• 0x8A indicates that a write error has occurred while writing RSA Authentication bit.

• 0x05 indicates that write error is due to the write temperature out of range.

Applications have the following options on how to show error status. Both of these methods of
conveying the status are implemented by default. However, UART is required to be present and
initialized for status to be displayed through UART.

• Send the error code through UART pins

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 493Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=493

• Write the error code in the reboot status register

PL eFUSE Error Codes

Enumerations

Enumeration XSKEfusePl_ErrorCodes

Table 324: Enumeration XSKEfusePl_ErrorCodes Values

Value Description
XSK_EFUSEPL_ERROR_NONE 0

No error.

XSK_EFUSEPL_ERROR_ROW_NOT_ZERO 0x10
Row is not zero.

XSK_EFUSEPL_ERROR_READ_ROW_OUT_OF_RAN
GE

0x11
Read Row is out of range.

XSK_EFUSEPL_ERROR_READ_MARGIN_OUT_OF_R
ANGE

0x12
Read Margin is out of range.

XSK_EFUSEPL_ERROR_READ_BUFFER_NULL 0x13
No buffer for read.

XSK_EFUSEPL_ERROR_READ_BIT_VALUE_NOT_SE
T

0x14
Read bit not set.

XSK_EFUSEPL_ERROR_READ_BIT_OUT_OF_RANG
E

0x15
Read bit is out of range.

XSK_EFUSEPL_ERROR_READ_TMEPERATURE_OU
T_OF_RANGE

0x16
Temperature obtained from XADC is out of range to read.

XSK_EFUSEPL_ERROR_READ_VCCAUX_VOLTAGE_
OUT_OF_RANGE

0x17
VCCAUX obtained from XADC is out of range to read.

XSK_EFUSEPL_ERROR_READ_VCCINT_VOLTAGE_
OUT_OF_RANGE

0x18
VCCINT obtained from XADC is out of range to read.

XSK_EFUSEPL_ERROR_WRITE_ROW_OUT_OF_RA
NGE

0x19
To write row is out of range.

XSK_EFUSEPL_ERROR_WRITE_BIT_OUT_OF_RAN
GE

0x1A
To read bit is out of range.

XSK_EFUSEPL_ERROR_WRITE_TMEPERATURE_OU
T_OF_RANGE

0x1B
To eFUSE write Temperature obtained from XADC is outof range.

XSK_EFUSEPL_ERROR_WRITE_VCCAUX_VOLTAGE
_OUT_OF_RANGE

0x1C
To write eFUSE VCCAUX obtained from XADC is out of range.

XSK_EFUSEPL_ERROR_WRITE_VCCINT_VOLTAGE_
OUT_OF_RANGE

0x1D
To write into eFUSE VCCINT obtained from XADC is out of range.

XSK_EFUSEPL_ERROR_FUSE_CNTRL_WRITE_DISA
BLED

0x1E
Fuse control write is disabled.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 494Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=494

Table 324: Enumeration XSKEfusePl_ErrorCodes Values (cont'd)

Value Description
XSK_EFUSEPL_ERROR_CNTRL_WRITE_BUFFER_N
ULL

0x1F
Buffer pointer that is supposed to contain control data is null.

XSK_EFUSEPL_ERROR_NOT_VALID_KEY_LENGTH 0x20
Key length invalid.

XSK_EFUSEPL_ERROR_ZERO_KEY_LENGTH 0x21
Key length zero.

XSK_EFUSEPL_ERROR_NOT_VALID_KEY_CHAR 0x22
Invalid key characters.

XSK_EFUSEPL_ERROR_NULL_KEY 0x23
Null key.

XSK_EFUSEPL_ERROR_FUSE_SEC_WRITE_DISABL
ED

0x24
Secure bits write is disabled.

XSK_EFUSEPL_ERROR_FUSE_SEC_READ_DISABLE
D

0x25
Secure bits reading is disabled.

XSK_EFUSEPL_ERROR_SEC_WRITE_BUFFER_NULL 0x26
Buffer to write into secure block is NULL.

XSK_EFUSEPL_ERROR_READ_PAGE_OUT_OF_RAN
GE

0x27
Page is out of range.

XSK_EFUSEPL_ERROR_FUSE_ROW_RANGE 0x28
Row is out of range.

XSK_EFUSEPL_ERROR_IN_PROGRAMMING_ROW 0x29
Error programming fuse row.

XSK_EFUSEPL_ERROR_PRGRMG_ROWS_NOT_EM
PTY

0x2A
Error when tried to program non Zero rows of eFUSE.

XSK_EFUSEPL_ERROR_HWM_TIMEOUT 0x80
Error when hardware module is exceeded the time for programming
eFUSE.

XSK_EFUSEPL_ERROR_USER_FUSE_REVERT 0x90
Error occurs when user requests to revert already programmed user
eFUSE bit.

XSK_EFUSEPL_ERROR_KEY_VALIDATION 0xF000
Invalid key.

XSK_EFUSEPL_ERROR_PL_STRUCT_NULL 0x1000
Null PL structure.

XSK_EFUSEPL_ERROR_JTAG_SERVER_INIT 0x1100
JTAG server initialization error.

XSK_EFUSEPL_ERROR_READING_FUSE_CNTRL 0x1200
Error reading fuse control.

XSK_EFUSEPL_ERROR_DATA_PROGRAMMING_N
OT_ALLOWED

0x1300
Data programming not allowed.

XSK_EFUSEPL_ERROR_FUSE_CTRL_WRITE_NOT_A
LLOWED

0x1400
Fuse control write is disabled.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 495Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=495

Table 324: Enumeration XSKEfusePl_ErrorCodes Values (cont'd)

Value Description
XSK_EFUSEPL_ERROR_READING_FUSE_AES_ROW 0x1500

Error reading fuse AES row.

XSK_EFUSEPL_ERROR_AES_ROW_NOT_EMPTY 0x1600
AES row is not empty.

XSK_EFUSEPL_ERROR_PROGRAMMING_FUSE_AE
S_ROW

0x1700
Error programming fuse AES row.

XSK_EFUSEPL_ERROR_READING_FUSE_USER_DA
TA_ROW

0x1800
Error reading fuse user row.

XSK_EFUSEPL_ERROR_USER_DATA_ROW_NOT_E
MPTY

0x1900
User row is not empty.

XSK_EFUSEPL_ERROR_PROGRAMMING_FUSE_DA
TA_ROW

0x1A00
Error programming fuse user row.

XSK_EFUSEPL_ERROR_PROGRAMMING_FUSE_CN
TRL_ROW

0x1B00
Error programming fuse control row.

XSK_EFUSEPL_ERROR_XADC 0x1C00
XADC error.

XSK_EFUSEPL_ERROR_INVALID_REF_CLK 0x3000
Invalid reference clock.

XSK_EFUSEPL_ERROR_FUSE_SEC_WRITE_NOT_AL
LOWED

0x1D00
Error in programming secure block.

XSK_EFUSEPL_ERROR_READING_FUSE_STATUS 0x1E00
Error in reading FUSE status.

XSK_EFUSEPL_ERROR_FUSE_BUSY 0x1F00
Fuse busy.

XSK_EFUSEPL_ERROR_READING_FUSE_RSA_ROW 0x2000
Error in reading FUSE RSA block.

XSK_EFUSEPL_ERROR_TIMER_INTIALISE_ULTRA 0x2200
Error in initiating Timer.

XSK_EFUSEPL_ERROR_READING_FUSE_SEC 0x2300
Error in reading FUSE secure bits.

XSK_EFUSEPL_ERROR_PRGRMG_FUSE_SEC_ROW 0x2500
Error in programming Secure bits of efuse.

XSK_EFUSEPL_ERROR_PRGRMG_USER_KEY 0x4000
Error in programming 32 bit user key.

XSK_EFUSEPL_ERROR_PRGRMG_128BIT_USER_KE
Y

0x5000
Error in programming 128 bit User key.

XSK_EFUSEPL_ERROR_PRGRMG_RSA_HASH 0x8000
Error in programming RSA hash.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 496Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=496

PS eFUSE Error Codes

Enumerations

Enumeration XSKEfusePs_ErrorCodes

Table 325: Enumeration XSKEfusePs_ErrorCodes Values

Value Description
XSK_EFUSEPS_ERROR_NONE 0

No error.

XSK_EFUSEPS_ERROR_ADDRESS_XIL_RESTRICTE
D

0x01
Address is restricted.

XSK_EFUSEPS_ERROR_READ_TMEPERATURE_OU
T_OF_RANGE

0x02
Temperature obtained from XADC is out of range.

XSK_EFUSEPS_ERROR_READ_VCCPAUX_VOLTAGE
_OUT_OF_RANGE

0x03
VCCAUX obtained from XADC is out of range.

XSK_EFUSEPS_ERROR_READ_VCCPINT_VOLTAGE_
OUT_OF_RANGE

0x04
VCCINT obtained from XADC is out of range.

XSK_EFUSEPS_ERROR_WRITE_TEMPERATURE_OU
T_OF_RANGE

0x05
Temperature obtained from XADC is out of range.

XSK_EFUSEPS_ERROR_WRITE_VCCPAUX_VOLTAG
E_OUT_OF_RANGE

0x06
VCCAUX obtained from XADC is out of range.

XSK_EFUSEPS_ERROR_WRITE_VCCPINT_VOLTAGE
_OUT_OF_RANGE

0x07
VCCINT obtained from XADC is out of range.

XSK_EFUSEPS_ERROR_VERIFICATION 0x08
Verification error.

XSK_EFUSEPS_ERROR_RSA_HASH_ALREADY_PRO
GRAMMED

0x09
RSA hash was already programmed.

XSK_EFUSEPS_ERROR_CONTROLLER_MODE 0x0A
Controller mode error

XSK_EFUSEPS_ERROR_REF_CLOCK 0x0B
Reference clock not between 20 to 60MHz

XSK_EFUSEPS_ERROR_READ_MODE 0x0C
Not supported read mode

XSK_EFUSEPS_ERROR_XADC_CONFIG 0x0D
XADC configuration error.

XSK_EFUSEPS_ERROR_XADC_INITIALIZE 0x0E
XADC initialization error.

XSK_EFUSEPS_ERROR_XADC_SELF_TEST 0x0F
XADC self-test failed.

XSK_EFUSEPS_ERROR_PARAMETER_NULL 0x10
Passed parameter null.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 497Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=497

Table 325: Enumeration XSKEfusePs_ErrorCodes Values (cont'd)

Value Description
XSK_EFUSEPS_ERROR_STRING_INVALID 0x20

Passed string is invalid.

XSK_EFUSEPS_ERROR_AES_ALREADY_PROGRAM
MED

0x12
AES key is already programmed.

XSK_EFUSEPS_ERROR_SPKID_ALREADY_PROGRA
MMED

0x13
SPK ID is already programmed.

XSK_EFUSEPS_ERROR_PPK0_HASH_ALREADY_PR
OGRAMMED

0x14
PPK0 hash is already programmed.

XSK_EFUSEPS_ERROR_PPK1_HASH_ALREADY_PR
OGRAMMED

0x15
PPK1 hash is already programmed.

XSK_EFUSEPS_ERROR_IN_TBIT_PATTERN 0x16
Error in TBITS pattern .

XSK_EFUSEPS_ERROR_PROGRAMMING 0x00A0
Error in programming eFUSE.

XSK_EFUSEPS_ERROR_PGM_NOT_DONE 0x00A1
Program not done

XSK_EFUSEPS_ERROR_READ 0x00B0
Error in reading.

XSK_EFUSEPS_ERROR_BYTES_REQUEST 0x00C0
Error in requested byte count.

XSK_EFUSEPS_ERROR_RESRVD_BITS_PRGRMG 0x00D0
Error in programming reserved bits.

XSK_EFUSEPS_ERROR_ADDR_ACCESS 0x00E0
Error in accessing requested address.

XSK_EFUSEPS_ERROR_READ_NOT_DONE 0x00F0
Read not done

XSK_EFUSEPS_ERROR_PS_STRUCT_NULL 0x8100
PS structure pointer is null.

XSK_EFUSEPS_ERROR_XADC_INIT 0x8200
XADC initialization error.

XSK_EFUSEPS_ERROR_CONTROLLER_LOCK 0x8300
PS eFUSE controller is locked.

XSK_EFUSEPS_ERROR_EFUSE_WRITE_PROTECTE
D

0x8400
PS eFUSE is write protected.

XSK_EFUSEPS_ERROR_CONTROLLER_CONFIG 0x8500
Controller configuration error.

XSK_EFUSEPS_ERROR_PS_PARAMETER_WRONG 0x8600
PS eFUSE parameter is not TRUE/FALSE.

XSK_EFUSEPS_ERROR_WRITE_128K_CRC_BIT 0x9100
Error in enabling 128K CRC.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 498Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=498

Table 325: Enumeration XSKEfusePs_ErrorCodes Values (cont'd)

Value Description
XSK_EFUSEPS_ERROR_WRITE_NONSECURE_INIT
B_BIT

0x9200
Error in programming NON secure bit.

XSK_EFUSEPS_ERROR_WRITE_UART_STATUS_BIT 0x9300
Error in writing UART status bit.

XSK_EFUSEPS_ERROR_WRITE_RSA_HASH 0x9400
Error in writing RSA key.

XSK_EFUSEPS_ERROR_WRITE_RSA_AUTH_BIT 0x9500
Error in enabling RSA authentication bit.

XSK_EFUSEPS_ERROR_WRITE_WRITE_PROTECT_B
IT

0x9600
Error in writing write-protect bit.

XSK_EFUSEPS_ERROR_READ_HASH_BEFORE_PRO
GRAMMING

0x9700
Check RSA key before trying to program.

XSK_EFUSEPS_ERROR_WRTIE_DFT_JTAG_DIS_BIT 0x9800
Error in programming DFT JTAG disable bit.

XSK_EFUSEPS_ERROR_WRTIE_DFT_MODE_DIS_BI
T

0x9900
Error in programming DFT MODE disable bit.

XSK_EFUSEPS_ERROR_WRTIE_AES_CRC_LK_BIT 0x9A00
Error in enabling AES's CRC check lock.

XSK_EFUSEPS_ERROR_WRTIE_AES_WR_LK_BIT 0x9B00
Error in programming AES write lock bit.

XSK_EFUSEPS_ERROR_WRTIE_USE_AESONLY_EN_
BIT

0x9C00
Error in programming use AES only bit.

XSK_EFUSEPS_ERROR_WRTIE_BBRAM_DIS_BIT 0x9D00
Error in programming BBRAM disable bit.

XSK_EFUSEPS_ERROR_WRTIE_PMU_ERR_DIS_BIT 0x9E00
Error in programming PMU error disable bit.

XSK_EFUSEPS_ERROR_WRTIE_JTAG_DIS_BIT 0x9F00
Error in programming JTAG disable bit.

XSK_EFUSEPS_ERROR_READ_RSA_HASH 0xA100
Error in reading RSA key.

XSK_EFUSEPS_ERROR_WRONG_TBIT_PATTERN 0xA200
Error in programming TBIT pattern.

XSK_EFUSEPS_ERROR_WRITE_AES_KEY 0xA300
Error in programming AES key.

XSK_EFUSEPS_ERROR_WRITE_SPK_ID 0xA400
Error in programming SPK ID.

XSK_EFUSEPS_ERROR_WRITE_USER_KEY 0xA500
Error in programming USER key.

XSK_EFUSEPS_ERROR_WRITE_PPK0_HASH 0xA600
Error in programming PPK0 hash.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 499Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=499

Table 325: Enumeration XSKEfusePs_ErrorCodes Values (cont'd)

Value Description
XSK_EFUSEPS_ERROR_WRITE_PPK1_HASH 0xA700

Error in programming PPK1 hash.

XSK_EFUSEPS_ERROR_WRITE_USER0_FUSE 0xC000
Error in programming USER 0 Fuses.

XSK_EFUSEPS_ERROR_WRITE_USER1_FUSE 0xC100
Error in programming USER 1 Fuses.

XSK_EFUSEPS_ERROR_WRITE_USER2_FUSE 0xC200
Error in programming USER 2 Fuses.

XSK_EFUSEPS_ERROR_WRITE_USER3_FUSE 0xC300
Error in programming USER 3 Fuses.

XSK_EFUSEPS_ERROR_WRITE_USER4_FUSE 0xC400
Error in programming USER 4 Fuses.

XSK_EFUSEPS_ERROR_WRITE_USER5_FUSE 0xC500
Error in programming USER 5 Fuses.

XSK_EFUSEPS_ERROR_WRITE_USER6_FUSE 0xC600
Error in programming USER 6 Fuses.

XSK_EFUSEPS_ERROR_WRITE_USER7_FUSE 0xC700
Error in programming USER 7 Fuses.

XSK_EFUSEPS_ERROR_WRTIE_USER0_LK_BIT 0xC800
Error in programming USER 0 fuses lock bit.

XSK_EFUSEPS_ERROR_WRTIE_USER1_LK_BIT 0xC900
Error in programming USER 1 fuses lock bit.

XSK_EFUSEPS_ERROR_WRTIE_USER2_LK_BIT 0xCA00
Error in programming USER 2 fuses lock bit.

XSK_EFUSEPS_ERROR_WRTIE_USER3_LK_BIT 0xCB00
Error in programming USER 3 fuses lock bit.

XSK_EFUSEPS_ERROR_WRTIE_USER4_LK_BIT 0xCC00
Error in programming USER 4 fuses lock bit.

XSK_EFUSEPS_ERROR_WRTIE_USER5_LK_BIT 0xCD00
Error in programming USER 5 fuses lock bit.

XSK_EFUSEPS_ERROR_WRTIE_USER6_LK_BIT 0xCE00
Error in programming USER 6 fuses lock bit.

XSK_EFUSEPS_ERROR_WRTIE_USER7_LK_BIT 0xCF00
Error in programming USER 7 fuses lock bit.

XSK_EFUSEPS_ERROR_WRTIE_PROG_GATE0_DIS_
BIT

0xD000
Error in programming PROG_GATE0 disabling bit.

XSK_EFUSEPS_ERROR_WRTIE_PROG_GATE1_DIS_
BIT

0xD100
Error in programming PROG_GATE1 disabling bit.

XSK_EFUSEPS_ERROR_WRTIE_PROG_GATE2_DIS_
BIT

0xD200
Error in programming PROG_GATE2 disabling bit.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 500Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=500

Table 325: Enumeration XSKEfusePs_ErrorCodes Values (cont'd)

Value Description
XSK_EFUSEPS_ERROR_WRTIE_SEC_LOCK_BIT 0xD300

Error in programming SEC_LOCK bit.

XSK_EFUSEPS_ERROR_WRTIE_PPK0_WR_LK_BIT 0xD400
Error in programming PPK0 write lock bit.

XSK_EFUSEPS_ERROR_WRTIE_PPK0_RVK_BIT 0xD500
Error in programming PPK0 revoke bit.

XSK_EFUSEPS_ERROR_WRTIE_PPK1_WR_LK_BIT 0xD600
Error in programming PPK1 write lock bit.

XSK_EFUSEPS_ERROR_WRTIE_PPK1_RVK_BIT 0xD700
Error in programming PPK0 revoke bit.

XSK_EFUSEPS_ERROR_WRITE_PUF_SYN_INVLD 0xD800
Error while programming the PUF syndrome invalidate bit.

XSK_EFUSEPS_ERROR_WRITE_PUF_SYN_WRLK 0xD900
Error while programming Syndrome write lock bit.

XSK_EFUSEPS_ERROR_WRITE_PUF_SYN_REG_DIS 0xDA00
Error while programming PUF syndrome register disable bit.

XSK_EFUSEPS_ERROR_WRITE_PUF_RESERVED_BI
T

0xDB00
Error while programming PUF reserved bit.

XSK_EFUSEPS_ERROR_WRITE_LBIST_EN_BIT 0xDC00
Error while programming LBIST enable bit.

XSK_EFUSEPS_ERROR_WRITE_LPD_SC_EN_BIT 0xDD00
Error while programming LPD SC enable bit.

XSK_EFUSEPS_ERROR_WRITE_FPD_SC_EN_BIT 0xDE00
Error while programming FPD SC enable bit.

XSK_EFUSEPS_ERROR_WRITE_PBR_BOOT_ERR_BI
T

0xDF00
Error while programming PBR boot error bit.

XSK_EFUSEPS_ERROR_PUF_INVALID_REG_MODE 0xE000
Error when PUF registration is requested with invalid registration mode.

XSK_EFUSEPS_ERROR_PUF_REG_WO_AUTH 0xE100
Error when write not allowed without authentication enabled.

XSK_EFUSEPS_ERROR_PUF_REG_DISABLED 0xE200
Error when trying to do PUF registration and when PUF registration is
disabled.

XSK_EFUSEPS_ERROR_PUF_INVALID_REQUEST 0xE300
Error when an invalid mode is requested.

XSK_EFUSEPS_ERROR_PUF_DATA_ALREADY_PRO
GRAMMED

0xE400
Error when PUF is already programmed in eFUSE.

XSK_EFUSEPS_ERROR_PUF_DATA_OVERFLOW 0xE500
Error when an over flow occurs.

XSK_EFUSEPS_ERROR_SPKID_BIT_CANT_REVERT 0xE600
Already programmed SPKID bit cannot be reverted

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 501Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=501

Table 325: Enumeration XSKEfusePs_ErrorCodes Values (cont'd)

Value Description
XSK_EFUSEPS_ERROR_PUF_DATA_UNDERFLOW 0xE700

Error when an under flow occurs.

XSK_EFUSEPS_ERROR_PUF_TIMEOUT 0xE800
Error when an PUF generation timedout.

XSK_EFUSEPS_ERROR_PUF_ACCESS 0xE900
Error when an PUF Access violation.

XSK_EFUSEPS_ERROR_PUF_CHASH_ALREADY_PR
OGRAMMED

XSK_EFUSEPS_ERROR_PUF_AUX_ALREADY_PROG
RAMMED

0xEA00
Error When PUF Chash already programmed in eFuse.

XSK_EFUSEPS_ERROR_CMPLTD_EFUSE_PRGRM_
WITH_ERR

0xEB00
Error When PUF AUX already programmed in eFuse.
0x10000 eFUSE programming is completed with temp and vol read
errors.

XSK_EFUSEPS_ERROR_CACHE_LOAD 0x20000U
Error in re-loading CACHE.

XSK_EFUSEPS_RD_FROM_EFUSE_NOT_ALLOWED 0x30000U
Read from eFuse is not allowed.

XSK_EFUSEPS_ERROR_FUSE_PROTECTED 0x00080000
Requested eFUSE is write protected.

XSK_EFUSEPS_ERROR_USER_BIT_CANT_REVERT 0x00800000
Already programmed user FUSE bit cannot be reverted.

XSK_EFUSEPS_ERROR_BEFORE_PROGRAMMING 0x08000000U
Error occurred before programming.

Zynq UltraScale+ MPSoC BBRAM PS Error Codes

Enumerations

Enumeration XskZynqMp_Ps_Bbram_ErrorCodes

Table 326: Enumeration XskZynqMp_Ps_Bbram_ErrorCodes Values

Value Description
XSK_ZYNQMP_BBRAMPS_ERROR_NONE 0

No error.

XSK_ZYNQMP_BBRAMPS_ERROR_IN_PRGRMG_E
NABLE

0x010
If this error is occurred programming is not possible.

XSK_ZYNQMP_BBRAMPS_ERROR_IN_ZEROISE 0x20
zeroize bbram is failed.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 502Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=502

Table 326: Enumeration XskZynqMp_Ps_Bbram_ErrorCodes Values (cont'd)

Value Description
XSK_ZYNQMP_BBRAMPS_ERROR_IN_CRC_CHECK 0xB000

If this error is occurred programming is done but CRC check is failed.

XSK_ZYNQMP_BBRAMPS_ERROR_IN_PRGRMG 0xC000
programming of key is failed.

XSK_ZYNQMP_BBRAMPS_ERROR_IN_WRITE_CRC 0xE800
error write CRC value.

Status Codes
For Zynq and UltraScale, the status in the xilskey_efuse_example.c file is conveyed through a
UART or reboot status register in the following format: 0xYYYYZZZZ, where:

• YYYY represents the PS eFUSE Status.

• ZZZZ represents the PL eFUSE Status.

The table below lists the status codes.

Status Code Values Description
0x0000ZZZZ Represents PS eFUSE is successful and PL eFUSE process

returned with error.

0xYYYY0000 Represents PL eFUSE is successful and PS eFUSE process
returned with error.

0xFFFF0000 Represents PS eFUSE is not initiated and PL eFUSE is
successful.

0x0000FFFF Represents PL eFUSE is not initiated and PS eFUSE is
successful.

0xFFFFZZZZ Represents PS eFUSE is not initiated and PL eFUSE is process
returned with error.

0xYYYYFFFF Represents PL eFUSE is not initiated and PS eFUSE is process
returned with error.

For Zynq UltraScale+ MPSoC, the status in the xilskey_bbramps_zynqmp_example.c,
xilskey_puf_registration.c and xilskey_efuseps_zynqmp_example.c files is conveyed as 32 bit error
code. Where Zero represents that no error has occurred and if the value is other than Zero, a 32
bit error code is returned.

Procedures
This section provides detailed descriptions of the various procedures.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 503Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=503

Zynq eFUSE Writing Procedure Running from DDR as an Application

This sequence is same as the existing flow described below.

1. Provide the required inputs in xilskey_input.h, then compile the platform project.

2. Take the latest FSBL (ELF), stitch the <output>.elf generated to it (using the bootgen
utility), and generate a bootable image.

3. Write the generated binary image into the flash device (for example: QSPI, NAND).

4. To burn the eFUSE key bits, execute the image.

Zynq eFUSE Driver Compilation Procedure for OCM

The procedure is as follows:

1. Open the linker script (lscript.ld) in the platform project.

2. Map all the sections to point to ps7_ram_0_S_AXI_BASEADDR instead of
ps7_ddr_0_S_AXI_BASEADDR. For example, Click the Memory Region tab for the .text
section and select ps7_ram_0_S_AXI_BASEADDR from the drop-down list.

3. Copy the ps7_init.c and ps7_init.h files from the hw_platform folder into the example folder.

4. In xilskey_efuse_example.c, un-comment the code that calls the ps7_init()
routine.

5. Compile the project.

The <Project name>.elf file is generated and is executed out of OCM.

When executed, this example displays the success/failure of the eFUSE application in a display
message via UART (if UART is present and initialized) or the reboot status register.

UltraScale eFUSE Access Procedure

The procedure is as follows:

1. After providing the required inputs in xilskey_input.h, compile the project.

2. Generate a memory mapped interface file using TCL command write_mem_info

3. Update memory has to be done using the tcl command updatemem.

4. Program the board using $Final.bit bitstream.

5. Output can be seen in UART terminal.

UltraScale BBRAM Access Procedure

The procedure is as follows:

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 504Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=504

1. After providing the required inputs in the xilskey_bbram_ultrascale_input.h` file,
compile the project.

2. Generate a memory mapped interface file using TCL command

3. Update memory has to be done using the tcl command updatemem:

4. Program the board using $Final.bit bitstream.

5. Output can be seen in UART terminal.

Data Structure Index
The following is a list of data structures:

• XilSKey_EPl

XilSKey_EPl
XEfusePl is the PL eFUSE driver instance.

Using this structure, user can define the eFUSE bits to be blown.

Declaration

typedef struct
{
 u32 ForcePowerCycle,
 u32 KeyWrite,
 u32 AESKeyRead,
 u32 UserKeyRead,
 u32 CtrlWrite,
 u32 RSARead,
 u32 UserKeyWrite,
 u32 SecureWrite,
 u32 RSAWrite,
 u32 User128BitWrite,
 u32 SecureRead,
 u32 AESKeyExclusive,
 u32 JtagDisable,
 u32 UseAESOnly,
 u32 EncryptOnly,
 u32 IntTestAccessDisable,
 u32 DecoderDisable,
 u32 RSAEnable,
 u32 FuseObfusEn,
 u32 ProgAESandUserLowKey,
 u32 ProgUserHighKey,
 u32 ProgAESKeyUltra,
 u32 ProgUserKeyUltra,
 u32 ProgRSAKeyUltra,
 u32 ProgUser128BitUltra,
 u32 CheckAESKeyUltra,
 u32 ReadUserKeyUltra,

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 505Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=505

 u32 ReadRSAKeyUltra,
 u32 ReadUser128BitUltra,
 u8 AESKey[XSK_EFUSEPL_AES_KEY_SIZE_IN_BYTES],
 u8 UserKey[XSK_EFUSEPL_USER_KEY_SIZE_IN_BYTES],
 u8 RSAKeyHash[XSK_EFUSEPL_RSA_KEY_HASH_SIZE_IN_BYTES],
 u8 User128Bit[XSK_EFUSEPL_128BIT_USERKEY_SIZE_IN_BYTES],
 u32 JtagMioTDI,
 u32 JtagMioTDO,
 u32 JtagMioTCK,
 u32 JtagMioTMS,
 u32 JtagMioMuxSel,
 u32 JtagMuxSelLineDefVal,
 u32 JtagGpioID,
 u32 HwmGpioStart,
 u32 HwmGpioReady,
 u32 HwmGpioEnd,
 u32 JtagGpioTDI,
 u32 JtagGpioTDO,
 u32 JtagGpioTMS,
 u32 JtagGpioTCK,
 u32 GpioInputCh,
 u32 GpioOutPutCh,
 u8 AESKeyReadback[XSK_EFUSEPL_AES_KEY_SIZE_IN_BYTES],
 u8 UserKeyReadback[XSK_EFUSEPL_USER_KEY_SIZE_IN_BYTES],
 u32 CrcOfAESKey,
 u8 AESKeyMatched,
 u8 RSAHashReadback[XSK_EFUSEPL_RSA_KEY_HASH_SIZE_IN_BYTES],
 u8 User128BitReadBack[XSK_EFUSEPL_128BIT_USERKEY_SIZE_IN_BYTES],
 u32 SystemInitDone,
 XSKEfusePl_Fpga FpgaFlag,
 u32 CrcToVerify,
 u32 NumSlr,
 u32 MasterSlr,
 u32 SlrConfigOrderIndex
} XilSKey_EPl;

Table 327: Structure XilSKey_EPl member description

Member Description
ForcePowerCycle Following are the FUSE CNTRL bits[1:5, 8-10].

If XTRUE then part has to be power cycled to be able to be reconfigured
only for zynq

KeyWrite If XTRUE will disable eFUSE write to FUSE_AES and FUSE_USER blocks
valid only for zynq but in ultrascale If XTRUE will disable eFUSE write to
FUSE_AESKEY block in Ultrascale.

AESKeyRead If XTRUE will disable eFUSE read to FUSE_AES block and also disables
eFUSE write to FUSE_AES and FUSE_USER blocks in Zynq Pl.but in
Ultrascale if XTRUE will disable eFUSE read to FUSE_KEY block and also
disables eFUSE write to FUSE_KEY blocks.

UserKeyRead If XTRUE will disable eFUSE read to FUSE_USER block and also disables
eFUSE write to FUSE_AES and FUSE_USER blocks in zynq but in ultrascale
if XTRUE will disable eFUSE read to FUSE_USER block and also disables
eFUSE write to FUSE_USER blocks.

CtrlWrite If XTRUE will disable eFUSE write to FUSE_CNTRL block in both Zynq and
Ultrascale.

RSARead If XTRUE will disable eFuse read to FUSE_RSA block and also disables
eFuse write to FUSE_RSA block in Ultrascale.

UserKeyWrite

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 506Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=506

Table 327: Structure XilSKey_EPl member description (cont'd)

Member Description
SecureWrite

RSAWrite

User128BitWrite If TRUE will disable eFUSE write to 128BIT FUSE_USER block in Ultrascale.

SecureRead IF XTRUE will disable eFuse read to FUSE_SEC block and also disables
eFuse write to FUSE_SEC block in Ultrascale.

AESKeyExclusive If XTRUE will force eFUSE key to be used if booting Secure Image In
Zynq.

JtagDisable If XTRUE then permanently sets the Zynq ARM DAP controller in bypass
mode in both zynq and ultrascale.

UseAESOnly If XTRUE will force to use Secure boot with eFUSE key only for both Zynq
and Ultrascale.

EncryptOnly If XTRUE will only allow encrypted bitstreams only.

IntTestAccessDisable If XTRUE then sets the disable's Xilinx internal test access in Ultrascale.

DecoderDisable If XTRUE then permanently disables the decryptor in Ultrascale.

RSAEnable Enable RSA authentication in ultrascale.

FuseObfusEn

ProgAESandUserLowKey Following is the define to select if the user wants to select AES key and
User Low Key for Zynq.

ProgUserHighKey Following is the define to select if the user wants to select User Low Key
for Zynq.

ProgAESKeyUltra Following is the define to select if the user wants to select User key for
Ultrascale.

ProgUserKeyUltra Following is the define to select if the user wants to select User key for
Ultrascale.

ProgRSAKeyUltra Following is the define to select if the user wants to select RSA key for
Ultrascale.

ProgUser128BitUltra Following is the define to select if the user wants to program 128 bit
User key for Ultrascale.

CheckAESKeyUltra Following is the define to select if the user wants to read AES key for
Ultrascale.

ReadUserKeyUltra Following is the define to select if the user wants to read User key for
Ultrascale.

ReadRSAKeyUltra Following is the define to select if the user wants to read RSA key for
Ultrascale.

ReadUser128BitUltra Following is the define to select if the user wants to read 128 bit User key
for Ultrascale.

AESKey This is the REF_CLK value in Hz.
This is for the aes_key value

UserKey This is for the user_key value.

RSAKeyHash This is for the rsa_key value for Ultrascale.

User128Bit This is for the User 128 bit key value for Ultrascale.

JtagMioTDI TDI MIO Pin Number for ZYNQ.

JtagMioTDO TDO MIO Pin Number for ZYNQ.

JtagMioTCK TCK MIO Pin Number for ZYNQ.

JtagMioTMS TMS MIO Pin Number for ZYNQ.

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 507Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=507

Table 327: Structure XilSKey_EPl member description (cont'd)

Member Description
JtagMioMuxSel MUX Selection MIO Pin Number for ZYNQ.

JtagMuxSelLineDefVal Value on the MUX Selection line for ZYNQ.

JtagGpioID GPIO device ID.

HwmGpioStart

HwmGpioReady

HwmGpioEnd

JtagGpioTDI

JtagGpioTDO

JtagGpioTMS

JtagGpioTCK

GpioInputCh

GpioOutPutCh

AESKeyReadback AES key read only for Zynq.

UserKeyReadback User key read in Ultrascale and Zynq.

CrcOfAESKey Expected AES key's CRC for Ultrascale here we can't read AES key
directly.

AESKeyMatched

RSAHashReadback

User128BitReadBack User 128 bit key read back for Ultrascale.

SystemInitDone Internal variable to check if timer, XADC and JTAG are initialized.

FpgaFlag

CrcToVerify

NumSlr

MasterSlr

SlrConfigOrderIndex

Appendix F: XilSkey Library v4.9

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 508Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=508

Appendix G

XilPM Library v3.1

XilPM Zynq UltraScale+ MPSoC APIs
Xilinx Power Management (XilPM) provides Embedded Energy Management Interface (EEMI)
APIs for power management on Zynq UltraScale+ MPSoC. For more details about EEMI, see the
Embedded Energy Management Interface (EEMI) API User Guide (UG1200).

Table 328: Quick Function Reference

Type Name Arguments
XStatus XPm_InitXilpm

XIpiPsu * IpiInst

enum
XPmBootStatus

XPm_GetBootStatus
void

void XPm_SuspendFinalize
void

XStatus pm_ipi_send
struct XPm_Master *const master
u32 payload

XStatus pm_ipi_buff_read32
struct XPm_Master *const master
u32 * value1
u32 * value2
u32 * value3

XStatus XPm_SelfSuspend
const enum XPmNodeId nid
const u32 latency
const u8 state
const u64 address

XStatus XPm_SetConfiguration
const u32 address

XStatus XPm_InitFinalize
void

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 509Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=509

Table 328: Quick Function Reference (cont'd)

Type Name Arguments
XStatus XPm_RequestSuspend

const enum XPmNodeId target
const enum XPmRequestAck ack
const u32 latency
const u8 state

XStatus XPm_RequestWakeUp
const enum XPmNodeId target
const bool setAddress
const u64 address
const enum XPmRequestAck ack

XStatus XPm_ForcePowerDown
const enum XPmNodeId target
const enum XPmRequestAck ack

XStatus XPm_AbortSuspend
const enum XPmAbortReason reason

XStatus XPm_SetWakeUpSource
const enum XPmNodeId target
const enum XPmNodeId wkup_node
const u8 enable

XStatus XPm_SystemShutdown
restart

XStatus XPm_RequestNode
const enum XPmNodeId node
const u32 capabilities
const u32 qos
const enum XPmRequestAck ack

XStatus XPm_SetRequirement
const enum XPmNodeId nid
const u32 capabilities
const u32 qos
const enum XPmRequestAck ack

XStatus XPm_ReleaseNode
const enum XPmNodeId node

XStatus XPm_SetMaxLatency
const enum XPmNodeId node
const u32 latency

void XPm_InitSuspendCb
const enum XPmSuspendReason reason
const u32 latency
const u32 state
const u32 timeout

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 510Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=510

Table 328: Quick Function Reference (cont'd)

Type Name Arguments
void XPm_AcknowledgeCb

const enum XPmNodeId node
const XStatus status
const u32 oppoint

void XPm_NotifyCb
const enum XPmNodeId node
const enum XPmNotifyEvent event
const u32 oppoint

XStatus XPm_GetApiVersion
u32 * version

XStatus XPm_GetNodeStatus
const enum XPmNodeId node
XPm_NodeStatus *const nodestatus

XStatus XPm_GetOpCharacteristic
const enum XPmNodeId node
const enum XPmOpCharType type
u32 *const result

XStatus XPm_ResetAssert
const enum XPmReset reset
assert

XStatus XPm_ResetGetStatus
const enum XPmReset reset
u32 * status

XStatus XPm_RegisterNotifier
XPm_Notifier *const notifier

XStatus XPm_UnregisterNotifier
XPm_Notifier *const notifier

XStatus XPm_MmioWrite
const u32 address
const u32 mask
const u32 value

XStatus XPm_MmioRead
const u32 address
u32 *const value

XStatus XPm_ClockEnable
const enum XPmClock clock

XStatus XPm_ClockDisable
const enum XPmClock clock

XStatus XPm_ClockGetStatus
const enum XPmClock clock
u32 *const status

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 511Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=511

Table 328: Quick Function Reference (cont'd)

Type Name Arguments
XStatus XPm_ClockSetOneDivider

const enum XPmClock clock
const u32 divider
const u32 divId

XStatus XPm_ClockSetDivider
const enum XPmClock clock
const u32 divider

XStatus XPm_ClockGetOneDivider
const enum XPmClock clock
u32 *const divider

XStatus XPm_ClockGetDivider
const enum XPmClock clock
u32 *const divider

XStatus XPm_ClockSetParent
const enum XPmClock clock
const enum XPmClock parent

XStatus XPm_ClockGetParent
const enum XPmClock clock
enum XPmClock *const parent

XStatus XPm_ClockSetRate
const enum XPmClock clock
const u32 rate

XStatus XPm_ClockGetRate
const enum XPmClock clock
u32 *const rate

XStatus XPm_PllSetParameter
const enum XPmNodeId node
const enum XPmPllParam parameter
const u32 value

XStatus XPm_PllGetParameter
const enum XPmNodeId node
const enum XPmPllParam parameter
u32 *const value

XStatus XPm_PllSetMode
const enum XPmNodeId node
const enum XPmPllMode mode

XStatus XPm_PllGetMode
const enum XPmNodeId node
enum XPmPllMode *const mode

XStatus XPm_PinCtrlAction
const u32 pin

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 512Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=512

Table 328: Quick Function Reference (cont'd)

Type Name Arguments
XStatus XPm_PinCtrlRequest

const u32 pin

XStatus XPm_PinCtrlRelease
const u32 pin

XStatus XPm_PinCtrlSetFunction
const u32 pin
const enum XPmPinFn fn

XStatus XPm_PinCtrlGetFunction
const u32 pin
enum XPmPinFn *const fn

XStatus XPm_PinCtrlSetParameter
const u32 pin
const enum XPmPinParam param
const u32 value

XStatus XPm_PinCtrlGetParameter
const u32 pin
const enum XPmPinParam param
u32 *const value

Functions

XPm_InitXilpm

Initialize xilpm library.

Note: None

Prototype

XStatus XPm_InitXilpm(XIpiPsu *IpiInst);

Parameters

The following table lists the XPm_InitXilpm function arguments.

Table 329: XPm_InitXilpm Arguments

Type Name Description
XIpiPsu * IpiInst Pointer to IPI driver instance

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 513Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=513

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_GetBootStatus

This Function returns information about the boot reason. If the boot is not a system startup but a
resume, power down request bitfield for this processor will be cleared.

Note: None

Prototype

enum
 XPmBootStatus
 XPm_GetBootStatus(void);

Returns

Returns processor boot status

• PM_RESUME : If the boot reason is because of system resume.

• PM_INITIAL_BOOT : If this boot is the initial system startup.

XPm_SuspendFinalize

This Function waits for PMU to finish all previous API requests sent by the PU and performs
client specific actions to finish suspend procedure (e.g. execution of wfi instruction on A53 and
R5 processors).

Note: This function should not return if the suspend procedure is successful.

Prototype

void XPm_SuspendFinalize(void);

Returns

pm_ipi_send

Sends IPI request to the PMU.

Note: None

Prototype

XStatus pm_ipi_send(struct XPm_Master *const master, u32
payload[PAYLOAD_ARG_CNT]);

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 514Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=514

Parameters

The following table lists the pm_ipi_send function arguments.

Table 330: pm_ipi_send Arguments

Type Name Description
struct XPm_Master
*const

master Pointer to the master who is initiating request

u32 payload API id and call arguments to be written in IPI buffer

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

pm_ipi_buff_read32

Reads IPI response after PMU has handled interrupt.

Note: None

Prototype

XStatus pm_ipi_buff_read32(struct XPm_Master *const master, u32 *value1,
u32 *value2, u32 *value3);

Parameters

The following table lists the pm_ipi_buff_read32 function arguments.

Table 331: pm_ipi_buff_read32 Arguments

Type Name Description
struct XPm_Master
*const

master Pointer to the master who is waiting and reading response

u32 * value1 Used to return value from 2nd IPI buffer element (optional)

u32 * value2 Used to return value from 3rd IPI buffer element (optional)

u32 * value3 Used to return value from 4th IPI buffer element (optional)

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 515Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=515

XPm_SelfSuspend

This function is used by a CPU to declare that it is about to suspend itself. After the PMU
processes this call it will wait for the requesting CPU to complete the suspend procedure and
become ready to be put into a sleep state.

Note: This is a blocking call, it will return only once PMU has responded

Prototype

XStatus XPm_SelfSuspend(const enum XPmNodeId nid, const u32 latency, const
u8 state, const u64 address);

Parameters

The following table lists the XPm_SelfSuspend function arguments.

Table 332: XPm_SelfSuspend Arguments

Type Name Description
const enum XPmNodeId nid Node ID of the CPU node to be suspended.

const u32 latency Maximum wake-up latency requirement in us(microsecs)

const u8 state Instead of specifying a maximum latency, a CPU can also explicitly
request a certain power state.

const u64 address Address from which to resume when woken up.

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_SetConfiguration

This function is called to configure the power management framework. The call triggers power
management controller to load the configuration object and configure itself according to the
content of the object.

Note: The provided address must be in 32-bit address space which is accessible by the PMU.

Prototype

XStatus XPm_SetConfiguration(const u32 address);

Parameters

The following table lists the XPm_SetConfiguration function arguments.

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 516Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=516

Table 333: XPm_SetConfiguration Arguments

Type Name Description
const u32 address Start address of the configuration object

Returns

XST_SUCCESS if successful, otherwise an error code

XPm_InitFinalize

This function is called to notify the power management controller about the completed power
management initialization.

Note: It is assumed that all used nodes are requested when this call is made. The power management
controller may power down the nodes which are not requested after this call is processed.

Prototype

XStatus XPm_InitFinalize(void);

Returns

XST_SUCCESS if successful, otherwise an error code

XPm_RequestSuspend

This function is used by a PU to request suspend of another PU. This call triggers the power
management controller to notify the PU identified by 'nodeID' that a suspend has been
requested. This will allow said PU to gracefully suspend itself by calling XPm_SelfSuspend for
each of its CPU nodes, or else call XPm_AbortSuspend with its PU node as argument and specify
the reason.

Note: If 'ack' is set to PM_ACK_NON_BLOCKING, the requesting PU will be notified upon completion of
suspend or if an error occurred, such as an abort. REQUEST_ACK_BLOCKING is not supported for this
command.

Prototype

XStatus XPm_RequestSuspend(const enum XPmNodeId target, const enum
XPmRequestAck ack, const u32 latency, const u8 state);

Parameters

The following table lists the XPm_RequestSuspend function arguments.

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 517Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=517

Table 334: XPm_RequestSuspend Arguments

Type Name Description
const enum XPmNodeId target Node ID of the PU node to be suspended

const enum
XPmRequestAck

ack Requested acknowledge type

const u32 latency Maximum wake-up latency requirement in us(micro sec)

const u8 state Instead of specifying a maximum latency, a PU can also explicitly
request a certain power state.

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_RequestWakeUp

This function can be used to request power up of a CPU node within the same PU, or to power
up another PU.

Note: If acknowledge is requested, the calling PU will be notified by the power management controller
once the wake-up is completed.

Prototype

XStatus XPm_RequestWakeUp(const enum XPmNodeId target, const bool
setAddress, const u64 address, const enum XPmRequestAck ack);

Parameters

The following table lists the XPm_RequestWakeUp function arguments.

Table 335: XPm_RequestWakeUp Arguments

Type Name Description
const enum XPmNodeId target Node ID of the CPU or PU to be powered/woken up.

const bool setAddress Specifies whether the start address argument is being passed.

• 0 : do not set start address

• 1 : set start address

const u64 address Address from which to resume when woken up. Will only be used if
set_address is 1.

const enum
XPmRequestAck

ack Requested acknowledge type

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 518Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=518

XPm_ForcePowerDown

One PU can request a forced poweroff of another PU or its power island or power domain. This
can be used for killing an unresponsive PU, in which case all resources of that PU will be
automatically released.

Note: Force power down may not be requested by a PU for itself.

Prototype

XStatus XPm_ForcePowerDown(const enum XPmNodeId target, const enum
XPmRequestAck ack);

Parameters

The following table lists the XPm_ForcePowerDown function arguments.

Table 336: XPm_ForcePowerDown Arguments

Type Name Description
const enum XPmNodeId target Node ID of the PU node or power island/domain to be powered

down.

const enum
XPmRequestAck

ack Requested acknowledge type

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_AbortSuspend

This function is called by a CPU after a XPm_SelfSuspend call to notify the power management
controller that CPU has aborted suspend or in response to an init suspend request when the PU
refuses to suspend.

Note: Calling PU expects the PMU to abort the initiated suspend procedure. This is a non-blocking call
without any acknowledge.

Prototype

XStatus XPm_AbortSuspend(const enum XPmAbortReason reason);

Parameters

The following table lists the XPm_AbortSuspend function arguments.

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 519Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=519

Table 337: XPm_AbortSuspend Arguments

Type Name Description
const enum
XPmAbortReason

reason Reason code why the suspend can not be performed or completed

• ABORT_REASON_WKUP_EVENT : local wakeup-event received

• ABORT_REASON_PU_BUSY : PU is busy

• ABORT_REASON_NO_PWRDN : no external powerdown
supported

• ABORT_REASON_UNKNOWN : unknown error during suspend
procedure

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_SetWakeUpSource

This function is called by a PU to add or remove a wake-up source prior to going to suspend. The
list of wake sources for a PU is automatically cleared whenever the PU is woken up or when one
of its CPUs aborts the suspend procedure.

Note: Declaring a node as a wakeup source will ensure that the node will not be powered off. It also will
cause the PMU to configure the GIC Proxy accordingly if the FPD is powered off.

Prototype

XStatus XPm_SetWakeUpSource(const enum XPmNodeId target, const enum
XPmNodeId wkup_node, const u8 enable);

Parameters

The following table lists the XPm_SetWakeUpSource function arguments.

Table 338: XPm_SetWakeUpSource Arguments

Type Name Description
const enum XPmNodeId target Node ID of the target to be woken up.

const enum XPmNodeId wkup_node Node ID of the wakeup device.

const u8 enable Enable flag:

• 1 : the wakeup source is added to the list

• 0 : the wakeup source is removed from the list

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 520Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=520

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_SystemShutdown

This function can be used by a privileged PU to shut down or restart the complete device.

Note: In either case the PMU will call XPm_InitSuspendCb for each of the other PUs, allowing them to
gracefully shut down. If a PU is asleep it will be woken up by the PMU. The PU making the
XPm_SystemShutdown should perform its own suspend procedure after calling this API. It will not receive
an init suspend callback.

Prototype

XStatus XPm_SystemShutdown(u32 type, u32 subtype);

Parameters

The following table lists the XPm_SystemShutdown function arguments.

Table 339: XPm_SystemShutdown Arguments

Type Name Description
Commented parameter
restart does not exist in
function
XPm_SystemShutdown.

restart Should the system be restarted automatically?

• PM_SHUTDOWN : no restart requested, system will be powered
off permanently

• PM_RESTART : restart is requested, system will go through a full
reset

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_RequestNode

Used to request the usage of a PM-slave. Using this API call a PU requests access to a slave
device and asserts its requirements on that device. Provided the PU is sufficiently privileged, the
PMU will enable access to the memory mapped region containing the control registers of that
device. For devices that can only be serving a single PU, any other privileged PU will now be
blocked from accessing this device until the node is released.

Note: None

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 521Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=521

Prototype

XStatus XPm_RequestNode(const enum XPmNodeId node, const u32 capabilities,
const u32 qos, const enum XPmRequestAck ack);

Parameters

The following table lists the XPm_RequestNode function arguments.

Table 340: XPm_RequestNode Arguments

Type Name Description
const enum XPmNodeId node Node ID of the PM slave requested

const u32 capabilities Slave-specific capabilities required, can be combined

• PM_CAP_ACCESS : full access / functionality

• PM_CAP_CONTEXT : preserve context

• PM_CAP_WAKEUP : emit wake interrupts

const u32 qos Quality of Service (0-100) required

const enum
XPmRequestAck

ack Requested acknowledge type

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_SetRequirement

This function is used by a PU to announce a change in requirements for a specific slave node
which is currently in use.

Note: If this function is called after the last awake CPU within the PU calls SelfSuspend, the requirement
change shall be performed after the CPU signals the end of suspend to the power management controller,
(e.g. WFI interrupt).

Prototype

XStatus XPm_SetRequirement(const enum XPmNodeId nid, const u32
capabilities, const u32 qos, const enum XPmRequestAck ack);

Parameters

The following table lists the XPm_SetRequirement function arguments.

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 522Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=522

Table 341: XPm_SetRequirement Arguments

Type Name Description
const enum XPmNodeId nid Node ID of the PM slave.

const u32 capabilities Slave-specific capabilities required.

const u32 qos Quality of Service (0-100) required.

const enum
XPmRequestAck

ack Requested acknowledge type

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_ReleaseNode

This function is used by a PU to release the usage of a PM slave. This will tell the power
management controller that the node is no longer needed by that PU, potentially allowing the
node to be placed into an inactive state.

Note: None

Prototype

XStatus XPm_ReleaseNode(const enum XPmNodeId node);

Parameters

The following table lists the XPm_ReleaseNode function arguments.

Table 342: XPm_ReleaseNode Arguments

Type Name Description
const enum XPmNodeId node Node ID of the PM slave.

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_SetMaxLatency

This function is used by a PU to announce a change in the maximum wake-up latency
requirements for a specific slave node currently used by that PU.

Note: Setting maximum wake-up latency can constrain the set of possible power states a resource can be
put into.

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 523Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=523

Prototype

XStatus XPm_SetMaxLatency(const enum XPmNodeId node, const u32 latency);

Parameters

The following table lists the XPm_SetMaxLatency function arguments.

Table 343: XPm_SetMaxLatency Arguments

Type Name Description
const enum XPmNodeId node Node ID of the PM slave.

const u32 latency Maximum wake-up latency required.

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_InitSuspendCb

Callback function to be implemented in each PU, allowing the power management controller to
request that the PU suspend itself.

Note: If the PU fails to act on this request the power management controller or the requesting PU may
choose to employ the forceful power down option.

Prototype

void XPm_InitSuspendCb(const enum XPmSuspendReason reason, const u32
latency, const u32 state, const u32 timeout);

Parameters

The following table lists the XPm_InitSuspendCb function arguments.

Table 344: XPm_InitSuspendCb Arguments

Type Name Description
const enum
XPmSuspendReason

reason Suspend reason:

• SUSPEND_REASON_PU_REQ : Request by another PU

• SUSPEND_REASON_ALERT : Unrecoverable SysMon alert

• SUSPEND_REASON_SHUTDOWN : System shutdown

• SUSPEND_REASON_RESTART : System restart

const u32 latency Maximum wake-up latency in us(micro secs). This information can
be used by the PU to decide what level of context saving may be
required.

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 524Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=524

Table 344: XPm_InitSuspendCb Arguments (cont'd)

Type Name Description
const u32 state Targeted sleep/suspend state.

const u32 timeout Timeout in ms, specifying how much time a PU has to initiate its
suspend procedure before it's being considered unresponsive.

Returns

None

XPm_AcknowledgeCb

This function is called by the power management controller in response to any request where an
acknowledge callback was requested, i.e. where the 'ack' argument passed by the PU was
REQUEST_ACK_NON_BLOCKING.

Note: None

Prototype

void XPm_AcknowledgeCb(const enum XPmNodeId node, const XStatus status,
const u32 oppoint);

Parameters

The following table lists the XPm_AcknowledgeCb function arguments.

Table 345: XPm_AcknowledgeCb Arguments

Type Name Description
const enum XPmNodeId node ID of the component or sub-system in question.

const XStatus status Status of the operation:

• OK: the operation completed successfully

• ERR: the requested operation failed

const u32 oppoint Operating point of the node in question

Returns

None

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 525Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=525

XPm_NotifyCb

This function is called by the power management controller if an event the PU was registered for
has occurred. It will populate the notifier data structure passed when calling
XPm_RegisterNotifier.

Note: None

Prototype

void XPm_NotifyCb(const enum XPmNodeId node, const enum XPmNotifyEvent
event, const u32 oppoint);

Parameters

The following table lists the XPm_NotifyCb function arguments.

Table 346: XPm_NotifyCb Arguments

Type Name Description
const enum XPmNodeId node ID of the node the event notification is related to.

const enum
XPmNotifyEvent

event ID of the event

const u32 oppoint Current operating state of the node.

Returns

None

XPm_GetApiVersion

This function is used to request the version number of the API running on the power
management controller.

Note: None

Prototype

XStatus XPm_GetApiVersion(u32 *version);

Parameters

The following table lists the XPm_GetApiVersion function arguments.

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 526Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=526

Table 347: XPm_GetApiVersion Arguments

Type Name Description
u32 * version Returns the API 32-bit version number. Returns 0 if no PM

firmware present.

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_GetNodeStatus

This function is used to obtain information about the current state of a component. The caller
must pass a pointer to an XPm_NodeStatus structure, which must be pre-allocated by the
caller.

• status - The current power state of the requested node.

○ For CPU nodes:

- 0 : if CPU is powered down,

- 1 : if CPU is active (powered up),

- 2 : if CPU is suspending (powered up)

○ For power islands and power domains:

- 0 : if island is powered down,

- 1 : if island is powered up

○ For PM slaves:

- 0 : if slave is powered down,

- 1 : if slave is powered up,

- 2 : if slave is in retention

• requirement - Slave nodes only: Returns current requirements the requesting PU has
requested of the node.

• usage - Slave nodes only: Returns current usage status of the node:

○ 0 : node is not used by any PU,

○ 1 : node is used by caller exclusively,

○ 2 : node is used by other PU(s) only,

○ 3 : node is used by caller and by other PU(s)

Note: None

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 527Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=527

Prototype

XStatus XPm_GetNodeStatus(const enum XPmNodeId node, XPm_NodeStatus *const
nodestatus);

Parameters

The following table lists the XPm_GetNodeStatus function arguments.

Table 348: XPm_GetNodeStatus Arguments

Type Name Description
const enum XPmNodeId node ID of the component or sub-system in question.

XPm_NodeStatus *const nodestatus Used to return the complete status of the node.

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_GetOpCharacteristic

Call this function to request the power management controller to return information about an
operating characteristic of a component.

Note: None

Prototype

XStatus XPm_GetOpCharacteristic(const enum XPmNodeId node, const enum
XPmOpCharType type, u32 *const result);

Parameters

The following table lists the XPm_GetOpCharacteristic function arguments.

Table 349: XPm_GetOpCharacteristic Arguments

Type Name Description
const enum XPmNodeId node ID of the component or sub-system in question.

const enum
XPmOpCharType

type Type of operating characteristic requested:

• power (current power consumption),

• latency (current latency in us to return to active state),

• temperature (current temperature),

u32 *const result Used to return the requested operating characteristic.

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 528Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=528

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_ResetAssert

This function is used to assert or release reset for a particular reset line. Alternatively a reset
pulse can be requested as well.

Note: None

Prototype

XStatus XPm_ResetAssert(const enum XPmReset reset, const enum
XPmResetAction resetaction);

Parameters

The following table lists the XPm_ResetAssert function arguments.

Table 350: XPm_ResetAssert Arguments

Type Name Description
const enum XPmReset reset ID of the reset line

Commented parameter
assert does not exist in
function
XPm_ResetAssert.

assert Identifies action:

• PM_RESET_ACTION_RELEASE : release reset,

• PM_RESET_ACTION_ASSERT : assert reset,

• PM_RESET_ACTION_PULSE : pulse reset,

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_ResetGetStatus

Call this function to get the current status of the selected reset line.

Note: None

Prototype

XStatus XPm_ResetGetStatus(const enum XPmReset reset, u32 *status);

Parameters

The following table lists the XPm_ResetGetStatus function arguments.

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 529Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=529

Table 351: XPm_ResetGetStatus Arguments

Type Name Description
const enum XPmReset reset Reset line

u32 * status Status of specified reset (true - asserted, false - released)

Returns

Returns 1/XST_FAILURE for 'asserted' or 0/XST_SUCCESS for 'released'.

XPm_RegisterNotifier

A PU can call this function to request that the power management controller call its notify
callback whenever a qualifying event occurs. One can request to be notified for a specific or any
event related to a specific node.

• nodeID : ID of the node to be notified about,

• eventID : ID of the event in question, '-1' denotes all events (- EVENT_STATE_CHANGE,
EVENT_ZERO_USERS),

• wake : true: wake up on event, false: do not wake up (only notify if awake), no buffering/
queueing

• callback : Pointer to the custom callback function to be called when the notification is
available. The callback executes from interrupt context, so the user must take special care
when implementing the callback. Callback is optional, may be set to NULL.

• received : Variable indicating how many times the notification has been received since the
notifier is registered.

Note: The caller shall initialize the notifier object before invoking the XPm_RegisteredNotifier function.
While notifier is registered, the notifier object shall not be modified by the caller.

Prototype

XStatus XPm_RegisterNotifier(XPm_Notifier *const notifier);

Parameters

The following table lists the XPm_RegisterNotifier function arguments.

Table 352: XPm_RegisterNotifier Arguments

Type Name Description
XPm_Notifier *const notifier Pointer to the notifier object to be associated with the requested

notification. The notifier object contains the following data related
to the notification:

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 530Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=530

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_UnregisterNotifier

A PU calls this function to unregister for the previously requested notifications.

Note: None

Prototype

XStatus XPm_UnregisterNotifier(XPm_Notifier *const notifier);

Parameters

The following table lists the XPm_UnregisterNotifier function arguments.

Table 353: XPm_UnregisterNotifier Arguments

Type Name Description
XPm_Notifier *const notifier Pointer to the notifier object associated with the previously

requested notification

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_MmioWrite

Call this function to write a value directly into a register that isn't accessible directly, such as
registers in the clock control unit. This call is bypassing the power management logic. The
permitted addresses are subject to restrictions as defined in the PCW configuration.

Note: If the access isn't permitted this function returns an error code.

Prototype

XStatus XPm_MmioWrite(const u32 address, const u32 mask, const u32 value);

Parameters

The following table lists the XPm_MmioWrite function arguments.

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 531Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=531

Table 354: XPm_MmioWrite Arguments

Type Name Description
const u32 address Physical 32-bit address of memory mapped register to write to.

const u32 mask 32-bit value used to limit write to specific bits in the register.

const u32 value Value to write to the register bits specified by the mask.

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_MmioRead

Call this function to read a value from a register that isn't accessible directly. The permitted
addresses are subject to restrictions as defined in the PCW configuration.

Note: If the access isn't permitted this function returns an error code.

Prototype

XStatus XPm_MmioRead(const u32 address, u32 *const value);

Parameters

The following table lists the XPm_MmioRead function arguments.

Table 355: XPm_MmioRead Arguments

Type Name Description
const u32 address Physical 32-bit address of memory mapped register to read from.

u32 *const value Returns the 32-bit value read from the register

Returns

XST_SUCCESS if successful else XST_FAILURE or an error code or a reason code

XPm_ClockEnable

Call this function to enable (activate) a clock.

Note: If the access isn't permitted this function returns an error code.

Prototype

XStatus XPm_ClockEnable(const enum XPmClock clock);

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 532Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=532

Parameters

The following table lists the XPm_ClockEnable function arguments.

Table 356: XPm_ClockEnable Arguments

Type Name Description
const enum XPmClock clock Identifier of the target clock to be enabled

Returns

Status of performing the operation as returned by the PMU-FW

XPm_ClockDisable

Call this function to disable (gate) a clock.

Note: If the access isn't permitted this function returns an error code.

Prototype

XStatus XPm_ClockDisable(const enum XPmClock clock);

Parameters

The following table lists the XPm_ClockDisable function arguments.

Table 357: XPm_ClockDisable Arguments

Type Name Description
const enum XPmClock clock Identifier of the target clock to be disabled

Returns

Status of performing the operation as returned by the PMU-FW

XPm_ClockGetStatus

Call this function to get status of a clock gate state.

Prototype

XStatus XPm_ClockGetStatus(const enum XPmClock clock, u32 *const status);

Parameters

The following table lists the XPm_ClockGetStatus function arguments.

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 533Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=533

Table 358: XPm_ClockGetStatus Arguments

Type Name Description
const enum XPmClock clock Identifier of the target clock

u32 *const status Location to store clock gate state (1=enabled, 0=disabled)

Returns

Status of performing the operation as returned by the PMU-FW

XPm_ClockSetOneDivider

Call this function to set divider for a clock.

Note: If the access isn't permitted this function returns an error code.

Prototype

XStatus XPm_ClockSetOneDivider(const enum XPmClock clock, const u32
divider, const u32 divId);

Parameters

The following table lists the XPm_ClockSetOneDivider function arguments.

Table 359: XPm_ClockSetOneDivider Arguments

Type Name Description
const enum XPmClock clock Identifier of the target clock

const u32 divider Divider value to be set

const u32 divId ID of the divider to be set

Returns

Status of performing the operation as returned by the PMU-FW

XPm_ClockSetDivider

Call this function to set divider for a clock.

Note: If the access isn't permitted this function returns an error code.

Prototype

XStatus XPm_ClockSetDivider(const enum XPmClock clock, const u32 divider);

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 534Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=534

Parameters

The following table lists the XPm_ClockSetDivider function arguments.

Table 360: XPm_ClockSetDivider Arguments

Type Name Description
const enum XPmClock clock Identifier of the target clock

const u32 divider Divider value to be set

Returns

XST_INVALID_PARAM or status of performing the operation as returned by the PMU-FW

XPm_ClockGetOneDivider

Local function to get one divider (DIV0 or DIV1) of a clock.

Prototype

XStatus XPm_ClockGetOneDivider(const enum XPmClock clock, u32 *const
divider, const u32 divId);

Parameters

The following table lists the XPm_ClockGetOneDivider function arguments.

Table 361: XPm_ClockGetOneDivider Arguments

Type Name Description
const enum XPmClock clock Identifier of the target clock

u32 *const divider Location to store the divider value

Returns

Status of performing the operation as returned by the PMU-FW

XPm_ClockGetDivider

Call this function to get divider of a clock.

Prototype

XStatus XPm_ClockGetDivider(const enum XPmClock clock, u32 *const divider);

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 535Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=535

Parameters

The following table lists the XPm_ClockGetDivider function arguments.

Table 362: XPm_ClockGetDivider Arguments

Type Name Description
const enum XPmClock clock Identifier of the target clock

u32 *const divider Location to store the divider value

Returns

XST_INVALID_PARAM or status of performing the operation as returned by the PMU-FW

XPm_ClockSetParent

Call this function to set parent for a clock.

Note: If the access isn't permitted this function returns an error code.

Prototype

XStatus XPm_ClockSetParent(const enum XPmClock clock, const enum XPmClock
parent);

Parameters

The following table lists the XPm_ClockSetParent function arguments.

Table 363: XPm_ClockSetParent Arguments

Type Name Description
const enum XPmClock clock Identifier of the target clock

const enum XPmClock parent Identifier of the target parent clock

Returns

XST_INVALID_PARAM or status of performing the operation as returned by the PMU-FW.

XPm_ClockGetParent

Call this function to get parent of a clock.

Prototype

XStatus XPm_ClockGetParent(const enum XPmClock clock, enum XPmClock *const
parent);

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 536Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=536

Parameters

The following table lists the XPm_ClockGetParent function arguments.

Table 364: XPm_ClockGetParent Arguments

Type Name Description
const enum XPmClock clock Identifier of the target clock

enum XPmClock *const parent Location to store clock parent ID

Returns

XST_INVALID_PARAM or status of performing the operation as returned by the PMU-FW.

XPm_ClockSetRate

Call this function to set rate of a clock.

Note: If the action isn't permitted this function returns an error code.

Prototype

XStatus XPm_ClockSetRate(const enum XPmClock clock, const u32 rate);

Parameters

The following table lists the XPm_ClockSetRate function arguments.

Table 365: XPm_ClockSetRate Arguments

Type Name Description
const enum XPmClock clock Identifier of the target clock

const u32 rate Clock frequency (rate) to be set

Returns

Status of performing the operation as returned by the PMU-FW

XPm_ClockGetRate

Call this function to get rate of a clock.

Prototype

XStatus XPm_ClockGetRate(const enum XPmClock clock, u32 *const rate);

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 537Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=537

Parameters

The following table lists the XPm_ClockGetRate function arguments.

Table 366: XPm_ClockGetRate Arguments

Type Name Description
const enum XPmClock clock Identifier of the target clock

u32 *const rate Location where the rate should be stored

Returns

Status of performing the operation as returned by the PMU-FW

XPm_PllSetParameter

Call this function to set a PLL parameter.

Note: If the access isn't permitted this function returns an error code.

Prototype

XStatus XPm_PllSetParameter(const enum XPmNodeId node, const enum
XPmPllParam parameter, const u32 value);

Parameters

The following table lists the XPm_PllSetParameter function arguments.

Table 367: XPm_PllSetParameter Arguments

Type Name Description
const enum XPmNodeId node PLL node identifier

const enum XPmPllParam parameter PLL parameter identifier

const u32 value Value of the PLL parameter

Returns

Status of performing the operation as returned by the PMU-FW

XPm_PllGetParameter

Call this function to get a PLL parameter.

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 538Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=538

Prototype

XStatus XPm_PllGetParameter(const enum XPmNodeId node, const enum
XPmPllParam parameter, u32 *const value);

Parameters

The following table lists the XPm_PllGetParameter function arguments.

Table 368: XPm_PllGetParameter Arguments

Type Name Description
const enum XPmNodeId node PLL node identifier

const enum XPmPllParam parameter PLL parameter identifier

u32 *const value Location to store value of the PLL parameter

Returns

Status of performing the operation as returned by the PMU-FW

XPm_PllSetMode

Call this function to set a PLL mode.

Note: If the access isn't permitted this function returns an error code.

Prototype

XStatus XPm_PllSetMode(const enum XPmNodeId node, const enum XPmPllMode
mode);

Parameters

The following table lists the XPm_PllSetMode function arguments.

Table 369: XPm_PllSetMode Arguments

Type Name Description
const enum XPmNodeId node PLL node identifier

const enum XPmPllMode mode PLL mode to be set

Returns

Status of performing the operation as returned by the PMU-FW

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 539Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=539

XPm_PllGetMode

Call this function to get a PLL mode.

Prototype

XStatus XPm_PllGetMode(const enum XPmNodeId node, enum XPmPllMode *const
mode);

Parameters

The following table lists the XPm_PllGetMode function arguments.

Table 370: XPm_PllGetMode Arguments

Type Name Description
const enum XPmNodeId node PLL node identifier

enum XPmPllMode
*const

mode Location to store the PLL mode

Returns

Status of performing the operation as returned by the PMU-FW

XPm_PinCtrlAction

Locally used function to request or release a pin control.

Prototype

XStatus XPm_PinCtrlAction(const u32 pin, const enum XPmApiId api);

Parameters

The following table lists the XPm_PinCtrlAction function arguments.

Table 371: XPm_PinCtrlAction Arguments

Type Name Description
const u32 pin PIN identifier (index from range 0-77) @api API identifier (request

or release pin control)

Returns

Status of performing the operation as returned by the PMU-FW

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 540Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=540

XPm_PinCtrlRequest

Call this function to request a pin control.

Prototype

XStatus XPm_PinCtrlRequest(const u32 pin);

Parameters

The following table lists the XPm_PinCtrlRequest function arguments.

Table 372: XPm_PinCtrlRequest Arguments

Type Name Description
const u32 pin PIN identifier (index from range 0-77)

Returns

Status of performing the operation as returned by the PMU-FW

XPm_PinCtrlRelease

Call this function to release a pin control.

Prototype

XStatus XPm_PinCtrlRelease(const u32 pin);

Parameters

The following table lists the XPm_PinCtrlRelease function arguments.

Table 373: XPm_PinCtrlRelease Arguments

Type Name Description
const u32 pin PIN identifier (index from range 0-77)

Returns

Status of performing the operation as returned by the PMU-FW

XPm_PinCtrlSetFunction

Call this function to set a pin function.

Note: If the access isn't permitted this function returns an error code.

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 541Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=541

Prototype

XStatus XPm_PinCtrlSetFunction(const u32 pin, const enum XPmPinFn fn);

Parameters

The following table lists the XPm_PinCtrlSetFunction function arguments.

Table 374: XPm_PinCtrlSetFunction Arguments

Type Name Description
const u32 pin Pin identifier

const enum XPmPinFn fn Pin function to be set

Returns

Status of performing the operation as returned by the PMU-FW

XPm_PinCtrlGetFunction

Call this function to get currently configured pin function.

Prototype

XStatus XPm_PinCtrlGetFunction(const u32 pin, enum XPmPinFn *const fn);

Parameters

The following table lists the XPm_PinCtrlGetFunction function arguments.

Table 375: XPm_PinCtrlGetFunction Arguments

Type Name Description
const u32 pin PLL node identifier

enum XPmPinFn *const fn Location to store the pin function

Returns

Status of performing the operation as returned by the PMU-FW

XPm_PinCtrlSetParameter

Call this function to set a pin parameter.

Note: If the access isn't permitted this function returns an error code.

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 542Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=542

Prototype

XStatus XPm_PinCtrlSetParameter(const u32 pin, const enum XPmPinParam
param, const u32 value);

Parameters

The following table lists the XPm_PinCtrlSetParameter function arguments.

Table 376: XPm_PinCtrlSetParameter Arguments

Type Name Description
const u32 pin Pin identifier

const enum
XPmPinParam

param Pin parameter identifier

const u32 value Value of the pin parameter to set

Returns

Status of performing the operation as returned by the PMU-FW

XPm_PinCtrlGetParameter

Call this function to get currently configured value of pin parameter.

Prototype

XStatus XPm_PinCtrlGetParameter(const u32 pin, const enum XPmPinParam
param, u32 *const value);

Parameters

The following table lists the XPm_PinCtrlGetParameter function arguments.

Table 377: XPm_PinCtrlGetParameter Arguments

Type Name Description
const u32 pin Pin identifier

const enum
XPmPinParam

param Pin parameter identifier

u32 *const value Location to store value of the pin parameter

Returns

Status of performing the operation as returned by the PMU-FW

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 543Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=543

Error Status
This section lists the Power management specific return error statuses.

PLM error codes format is '0xXXXXYYYY'. Where:

• XXXX - PLM/LOADER/XPLMI error codes as defined in the xplmi_status.h file.

• YYYY - Libraries / Drivers error code as defined in respective modules.

Definitions

Define XST_PM_INTERNAL

Definition

#define XST_PM_INTERNAL2000L

Description

An internal error occurred while performing the requested operation

Define XST_PM_CONFLICT

Definition

#define XST_PM_CONFLICT2001L

Description

Conflicting requirements have been asserted when more than one processing cluster is using the
same PM slave

Define XST_PM_NO_ACCESS

Definition

#define XST_PM_NO_ACCESS2002L

Description

The processing cluster does not have access to the requested node or operation

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 544Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=544

Define XST_PM_INVALID_NODE

Definition

#define XST_PM_INVALID_NODE2003L

Description

The API function does not apply to the node passed as argument

Define XST_PM_DOUBLE_REQ

Definition

#define XST_PM_DOUBLE_REQ2004L

Description

A processing cluster has already been assigned access to a PM slave and has issued a duplicate
request for that PM slave

Define XST_PM_ABORT_SUSPEND

Definition

#define XST_PM_ABORT_SUSPEND2005L

Description

The target processing cluster has aborted suspend

Define XST_PM_TIMEOUT

Definition

#define XST_PM_TIMEOUT2006L

Description

A timeout occurred while performing the requested operation

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 545Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=545

Define XST_PM_NODE_USED

Definition

#define XST_PM_NODE_USED2007L

Description

Slave request cannot be granted since node is non-shareable and used

Data Structure Index
The following is a list of data structures:

• XPm_Master

• XPm_NodeStatus

• XPm_Notifier

• pm_acknowledge

• pm_init_suspend

pm_acknowledge
Declaration

typedef struct
{
 u8 received,
 u32 node,
 XStatus status,
 u32 opp
} pm_acknowledge;

Table 378: Structure pm_acknowledge member description

Member Description
received Has acknowledge argument been received?

node Node argument about which the acknowledge is

status Acknowledged status

opp Operating point of node in question

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 546Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=546

pm_init_suspend
Declaration

typedef struct
{
 u8 received,
 enum XPmSuspendReason reason,
 u32 latency,
 u32 state,
 u32 timeout
} pm_init_suspend;

Table 379: Structure pm_init_suspend member description

Member Description
received Has init suspend callback been received/handled

reason Reason of initializing suspend

latency Maximum allowed latency

state Targeted sleep/suspend state

timeout Period of time the client has to response

XPm_Master
XPm_Master - Master structure

Declaration

typedef struct
{
 enum XPmNodeId node_id,
 const u32 pwrctl,
 const u32 pwrdn_mask,
 XIpiPsu * ipi
} XPm_Master;

Table 380: Structure XPm_Master member description

Member Description
node_id Node ID

pwrctl

pwrdn_mask < Power Control Register Address Power Down Mask

ipi IPI Instance

XPm_NodeStatus
XPm_NodeStatus - struct containing node status information

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 547Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=547

Declaration

typedef struct
{
 u32 status,
 u32 requirements,
 u32 usage
} XPm_NodeStatus;

Table 381: Structure XPm_NodeStatus member description

Member Description
status Node power state

requirements Current requirements asserted on the node (slaves only)

usage Usage information (which master is currently using the slave)

XPm_Notifier
XPm_Notifier - Notifier structure registered with a callback by app

Declaration

typedef struct
{
 void(*const callback)(struct XPm_Ntfier *const notifier),
 const u32 node,
 enum XPmNotifyEvent event,
 u32 flags,
 u32 oppoint,
 u32 received,
 struct XPm_Ntfier * next
} XPm_Notifier;

Table 382: Structure XPm_Notifier member description

Member Description
callback Custom callback handler to be called when the notification is received.

The custom handler would execute from interrupt context, it shall return
quickly and must not block! (enables event-driven notifications)

node Node argument (the node to receive notifications about)

event Event argument (the event type to receive notifications about)

flags Flags

oppoint Operating point of node in question. Contains the value updated when
the last event notification is received. User shall not modify this value
while the notifier is registered.

received How many times the notification has been received - to be used by
application (enables polling). User shall not modify this value while the
notifier is registered.

next Pointer to next notifier in linked list. Must not be modified while the
notifier is registered. User shall not ever modify this value.

Appendix G: XilPM Library v3.1

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 548Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=548

Appendix H

XilFPGA Library v5.2

Overview
The XilFPGA library provides an interface to the Linux or bare-metal users for configuring the
programmable logic (PL) over PCAP from PS. The library is designed for Zynq UltraScale+ MPSoC
to run on top of Xilinx standalone BSPs. It is tested for A53, R5 and MicroBlaze. In the most
common use case, we expect users to run this library on the PMU MicroBlaze with PMUFW to
serve requests from either Linux or Uboot for Bitstream programming.

Note: XILFPGA does not support a DDR less system. DDR must be present for use of XilFPGA.

Supported Features
The following features are supported in Zynq UltraScale+ MPSoC platform.

• Full bitstream loading

• Partial bitstream loading

• Encrypted bitstream loading

• Authenticated bitstream loading

• Authenticated and encrypted bitstream loading

• Readback of configuration registers

• Readback of configuration data

XilFPGA library Interface modules
XilFPGA library uses the below major components to configure the PL through PS.

Processor Configuration Access Port (PCAP)

The processor configuration access port (PCAP) is used to configure the programmable logic (PL)
through the PS.

Appendix H: XilFPGA Library v5.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 549Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=549

CSU DMA driver

The CSU DMA driver is used to transfer the actual bitstream file for the PS to PL after PCAP
initialization.

XilSecure Library

The XilSecure library provides APIs to access secure hardware on the Zynq UltraScale+ MPSoC
devices.

Note: The current version of library supports only Zynq UltraScale MPSoC devices.

Design Summary
XilFPGA library acts as a bridge between the user application and the PL device. It provides the
required functionality to the user application for configuring the PL Device with the required
bitstream. The following figure illustrates an implementation where the XilFPGA library needs the
CSU DMA driver APIs to transfer the bitstream from the DDR to the PL region. The XilFPGA
library also needs the XilSecure library APIs to support programming authenticated and
encrypted bitstream files.

Figure 81: XilFPGA Design Summary

Flow Diagram
The following figure illustrates the Bitstream loading flow on the Linux operating system.

Appendix H: XilFPGA Library v5.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 550Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=550

Figure 82: Bitstream loading on Linux:

The following figure illustrates the XilFPGA PL configuration sequence.

Figure 83: XilFPGA PL Configuration Sequence

The following figure illustrates the Bitstream write sequence.

Appendix H: XilFPGA Library v5.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 551Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=551

Figure 84: Bitstream write Sequence

XilFPGA BSP Configuration Settings
The XilFPGA library provides user configuration BSP settings. The following table describes the
parameters and their default value:

Parameter Name Type Default Value Description
secure_mode bool TRUE Enables secure Bitstream

loading support.

debug_mode bool FALSE Enables the Debug
messages in the library.

ocm_address int 0xfffc0000 Address used for the
Bitstream authentication.

base_address int 0x80000 Holds the Bitstream Image
address. This flag is valid
only for the Cortex-A53 or
the Cortex-R5 processors.

secure_readback bool FALSE Should be set to TRUE to
allow the secure Bitstream
configuration data read
back. The application
environment should be
secure and trusted to enable
this flag.

Appendix H: XilFPGA Library v5.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 552Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=552

Parameter Name Type Default Value Description
secure_environment bool FALSE Enable the secure PL

configuration using the IPI.
This flag is valid only for the
Cortex-A53 or the Cortex-R5
processors.

Setting up the Software System

To use XilFPGA in a software application, you must first compile the XilFPGA library as part of
software application.

1. Click File > New > Platform Project.

2. Click Specify to create a new Hardware Platform Specification.

3. Provide a new name for the domain in the Project name field if you wish to override the
default value.

4. Select the location for the board support project files. To use the default location, as
displayed in the Location field, leave the Use default location check box selected. Otherwise,
deselect the checkbox and then type or browse to the directory location.

5. From the Hardware Platform drop-down choose the appropriate platform for your
application or click the New button to browse to an existing Hardware Platform.

6. Select the target CPU from the drop-down list.

7. From the Board Support Package OS list box, select the type of board support package to
create. A description of the platform types displays in the box below the drop-down list.

8. Click Finish. The wizard creates a new software platform and displays it in the Vitis Navigator
pane.

9. Select Project > Build Automatically to automatically build the board support package. The
Board Support Package Settings dialog box opens. Here you can customize the settings for
the domain.

10. Click OK to accept the settings, build the platform, and close the dialog box.

11. From the Explorer, double-click platform.spr file and select the appropriate domain/board
support package. The overview page opens.

12. In the overview page, click Modify BSP Settings.

13. Using the Board Support Package Settings page, you can select the OS Version and which of
the Supported Libraries are to be enabled in this domain/BSP.

14. Select the xilfpga library from the list of Supported Libraries.

15. Expand the Overview tree and select xilfpga. The configuration options for xilfpga are listed.

16. Configure the xilfpga by providing the base address of the Bit-stream file (DDR address) and
the size (in bytes).

Appendix H: XilFPGA Library v5.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 553Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=553

17. Click OK. The board support package automatically builds with XilFPGA library included in it.

18. Double-click the system.mss file to open it in the Editor view.

19. Scroll-down and locate the Libraries section.

20. Click Import Examples adjacent to the XilFPGA entry.

Enabling Security
To support encrypted and/or authenticated bitstream loading, you must enable security in
PMUFW.

1. Click File > New > Platform Project.

2. Click Specify to create a new Hardware Platform Specification.

3. Provide a new name for the domain in the Project name field if you wish to override the
default value.

4. Select the location for the board support project files. To use the default location, as
displayed in the Location field, leave the Use default location check box selected. Otherwise,
deselect the checkbox and then type or browse to the directory location.

5. From the Hardware Platform drop-down choose the appropriate platform for your
application or click the New button to browse to an existing Hardware Platform.

6. Select the target CPU from the drop-down list.

7. From the Board Support Package OS list box, select the type of board support package to
create. A description of the platform types displays in the box below the drop-down list.

8. Click Finish. The wizard creates a new software platform and displays it in the Vitis Navigator
pane.

9. Select Project > Build Automatically to automatically build the board support package. The
Board Support Package Settings dialog box opens. Here you can customize the settings for
the domain.

10. Click OK to accept the settings, build the platform, and close the dialog box.

11. From the Explorer, double-click platform.spr file and select the appropriate domain/board
support package. The overview page opens.

12. In the overview page, click Modify BSP Settings.

13. Using the Board Support Package Settings page, you can select the OS Version and which of
the Supported Libraries are to be enabled in this domain/BSP.

14. Expand the Overview tree and select Standalone.

15. Select a supported hardware platform.

16. Select psu_pmu_0 from the Processor drop-down list.

17. Click Next. The Templates page appears.

Appendix H: XilFPGA Library v5.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 554Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=554

18. Select ZynqMP PMU Firmware from the Available Templates list.

19. Click Finish. A PMUFW application project is created with the required BSPs.

20. Double-click the system.mss file to open it in the Editor view.

21. Click the Modify this BSP's Settings button. The Board Support Package Settings dialog box
appears.

22. Select xilfpga. Various settings related to the library appears.

23. Select secure_mode and modify its value to true .

24. Click OK to save the configuration.

Note: By default the secure mode is enabled. To disable modify the secure_mode value to false.

Bitstream Authentication Using External Memory
The size of the Bitstream is too large to be contained inside the device, therefore external
memory must be used. The use of external memory could create a security risk. Therefore, two
methods are provided to authenticate and decrypt a Bitstream.

• The first method uses the internal OCM as temporary buffer for all cryptographic operations.
For details, see Authenticated and Encrypted Bitstream Loading Using OCM.
This method does not require trust in external DDR.

• The second method uses external DDR for authentication prior to sending the data to the
decryptor, there by requiring trust in the external DDR. For details, see Authenticated
and Encrypted Bitstream Loading Using DDR.

Bootgen
When a Bitstream is requested for authentication, Bootgen divides the Bitstream into blocks of
8MB each and assigns an authentication certificate for each block. If the size of a Bitstream is not
in multiples of 8 MB, the last block contains the remaining Bitstream data.

Appendix H: XilFPGA Library v5.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 555Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=555

Figure 85: Bitstream Blocks

When both authentication and encryption are enabled, encryption is first done on the Bitstream.
Bootgen then divides the encrypted data into blocks and assigns an Authentication certificate for
each block.

Appendix H: XilFPGA Library v5.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 556Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=556

Authenticated and Encrypted Bitstream Loading
Using OCM
To authenticate the Bitstream partition securely, XilFPGA uses the FSBL section's OCM memory
to copy the bitstream in chunks from DDR. This method does not require trust in the external
DDR to securely authenticate and decrypt a Bitstream.

The software workflow for authenticating Bitstream is as follows:

1. XilFPGA identifies DDR secure Bitstream image base address. XilFPGA has two buffers in
OCM, the Read Buffer is of size 56KB and hash of chunks to store intermediate hashes
calculated for each 56 KB of every 8MB block.

2. XilFPGA copies a 56KB chunk from the first 8MB block to Read Buffer.

3. XilFPGA calculates hash on 56 KB and stores in HashsOfChunks.

4. XilFPGA repeats steps 1 to 3 until the entire 8MB of block is completed.

Note: The chunk that XilFPGA copies can be of any size. A 56KB chunk is taken for better
performance.

5. XilFPGA authenticates the 8MB Bitstream chunk.

6. Once the authentication is successful, XilFPGA starts copying information in batches of 56KB
starting from the first block which is located in DDR to Read Buffer, calculates the hash, and
then compares it with the hash stored at HashsOfChunks.

7. If the hash comparison is successful, FSBL transmits data to PCAP using DMA (for un-
encrypted Bitstream) or AES (if encryption is enabled).

8. XilFPGA repeats steps 6 and 7 until the entire 8MB block is completed.

9. Repeats steps 1 through 8 for all the blocks of Bitstream.

Note: You can perform warm restart even when the FSBL OCM memory is used to authenticate the
Bitstream. PMU stores the FSBL image in the PMU reserved DDR memory which is visible and accessible
only to the PMU and restores back to the OCM when APU-only restart needs to be performed. PMU uses
the SHA3 hash to validate the FSBL image integrity before restoring the image to OCM (PMU takes care of
only image integrity and not confidentiality). PMU checks if FSBL image is encrypted and skips copying
FSBL from OCM to reserved DDR memory. In this case, If XilFPGA uses OCM memory for authenticating
bitstream, APU restart feature will not work.

Also, copying FSBL to DDR for APU restart feature can be disabled by setting
USE_DDR_FOR_APU_RESTART_VAL macro value in xpfw_config.h file to 0. If XilFPGA uses OCM memory
for authenticating bitstream, APU restart feature will not work.

Authenticated and Encrypted Bitstream Loading
Using DDR
The software workflow for authenticating Bitstream is as follows:

Appendix H: XilFPGA Library v5.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 557Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=557

1. XilFPGA identifies DDR secure Bitstream image base address.

2. XilFPGA calculates hash for the first 8MB block.

3. XilFPGA authenticates the 8MB block while stored in the external DDR.

4. If Authentication is successful, XilFPGA transmits data to PCAP via DMA (for unencrypted
Bitstream) or AES (if encryption is enabled).

5. Repeats steps 1 through 4 for all the blocks of Bitstream.

Additional References

Linux Interface

To know more about linux interface driver to program bitstream, see https://xilinx-
wiki.atlassian.net/wiki/spaces/A/pages/18842505/Zynq+Ultrascale+MPSoC+Secure+bitstream
+programming+from+Linux.

U-boot Interface

To know more about how to program bitstream from u-boot interface, see https://xilinx-
wiki.atlassian.net/wiki/spaces/A/pages/18842432/Loading+authenticated+and+or+encrypted
+image+partitions+from+u-boot.

XilFPGA APIs
This section provides detailed descriptions of the XilFPGA library APIs.

Table 383: Quick Function Reference

Type Name Arguments
u32 XFpga_Initialize

void

u32 XFpga_PL_BitStream_Load
XFpga * InstancePtr
UINTPTR BitstreamImageAddr
UINTPTR AddrPtr_Size
u32 Flags

u32 XFpga_PL_Preconfig
void

u32 XFpga_PL_Write
void

Appendix H: XilFPGA Library v5.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 558Send Feedback

https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842505/Zynq+Ultrascale+MPSoC+Secure+bitstream+programming+from+Linux
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842505/Zynq+Ultrascale+MPSoC+Secure+bitstream+programming+from+Linux
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842505/Zynq+Ultrascale+MPSoC+Secure+bitstream+programming+from+Linux
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842432/Loading+authenticated+and+or+encrypted+image+partitions+from+u-boot
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842432/Loading+authenticated+and+or+encrypted+image+partitions+from+u-boot
https://xilinx-wiki.atlassian.net/wiki/spaces/A/pages/18842432/Loading+authenticated+and+or+encrypted+image+partitions+from+u-boot
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=558

Table 383: Quick Function Reference (cont'd)

Type Name Arguments
u32 XFpga_PL_PostConfig

XFpga * InstancePtr

u32 XFpga_PL_ValidateImage
XFpga * InstancePtr
UINTPTR BitstreamImageAddr
UINTPTR AddrPtr_Size
u32 Flags

u32 XFpga_GetPlConfigData
XFpga * InstancePtr

u32 XFpga_GetPlConfigReg
XFpga * InstancePtr
ConfigReg
Address

u32 XFpga_InterfaceStatus
XFpga * InstancePtr

Functions

XFpga_Initialize

Prototype

u32 XFpga_Initialize(XFpga *InstancePtr);

XFpga_PL_BitStream_Load

The API is used to load the bitstream file into the PL region.

It supports vivado generated Bitstream(*.bit, *.bin) and bootgen generated Bitstream(*.bin)
loading, Passing valid Bitstream size (AddrPtr_Size) info is mandatory for vivado * generated
Bitstream, For bootgen generated Bitstreams it will take Bitstream size from the Bitstream
Header.

Prototype

u32 XFpga_PL_BitStream_Load(XFpga *InstancePtr, UINTPTR BitstreamImageAddr,
UINTPTR AddrPtr_Size, u32 Flags);

Parameters

The following table lists the XFpga_PL_BitStream_Load function arguments.

Appendix H: XilFPGA Library v5.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 559Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=559

Table 384: XFpga_PL_BitStream_Load Arguments

Type Name Description
XFpga * InstancePtr Pointer to the XFgpa structure.

UINTPTR BitstreamImageAddr Linear memory Bitstream image base address

UINTPTR AddrPtr_Size Aes key address which is used for Decryption (or) In none Secure
Bitstream used it is used to store size of Bitstream Image.

u32 Flags Flags are used to specify the type of Bitstream file.

• BIT(0) - Bitstream type

○ 0 - Full Bitstream

○ 1 - Partial Bitstream

• BIT(1) - Authentication using DDR

○ 1 - Enable

○ 0 - Disable

• BIT(2) - Authentication using OCM

○ 1 - Enable

○ 0 - Disable

• BIT(3) - User-key Encryption

○ 1 - Enable

○ 0 - Disable

• BIT(4) - Device-key Encryption

○ 1 - Enable

○ 0 - Disable

Returns

• XFPGA_SUCCESS on success

• Error code on failure.

• XFPGA_VALIDATE_ERROR.

• XFPGA_PRE_CONFIG_ERROR.

• XFPGA_WRITE_BITSTREAM_ERROR.

• XFPGA_POST_CONFIG_ERROR.

XFpga_PL_Preconfig

Appendix H: XilFPGA Library v5.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 560Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=560

Prototype

u32 XFpga_PL_Preconfig(XFpga *InstancePtr);

XFpga_PL_Write

Prototype

u32 XFpga_PL_Write(XFpga *InstancePtr, UINTPTR BitstreamImageAddr, UINTPTR
AddrPtr_Size, u32 Flags);

XFpga_PL_PostConfig

This function set FPGA to operating state after writing.

Prototype

u32 XFpga_PL_PostConfig(XFpga *InstancePtr);

Parameters

The following table lists the XFpga_PL_PostConfig function arguments.

Table 385: XFpga_PL_PostConfig Arguments

Type Name Description
XFpga * InstancePtr Pointer to the XFgpa structure

Returns

Codes as mentioned in xilfpga.h

XFpga_PL_ValidateImage

This function is used to validate the Bitstream Image.

Prototype

u32 XFpga_PL_ValidateImage(XFpga *InstancePtr, UINTPTR BitstreamImageAddr,
UINTPTR AddrPtr_Size, u32 Flags);

Parameters

The following table lists the XFpga_PL_ValidateImage function arguments.

Appendix H: XilFPGA Library v5.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 561Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=561

Table 386: XFpga_PL_ValidateImage Arguments

Type Name Description
XFpga * InstancePtr Pointer to the XFgpa structure

UINTPTR BitstreamImageAddr Linear memory Bitstream image base address

UINTPTR AddrPtr_Size Aes key address which is used for Decryption (or) In none Secure
Bitstream used it is used to store size of Bitstream Image.

u32 Flags Flags are used to specify the type of Bitstream file.

• BIT(0) - Bitstream type

○ 0 - Full Bitstream

○ 1 - Partial Bitstream

• BIT(1) - Authentication using DDR

○ 1 - Enable

○ 0 - Disable

• BIT(2) - Authentication using OCM

○ 1 - Enable

○ 0 - Disable

• BIT(3) - User-key Encryption

○ 1 - Enable

○ 0 - Disable

• BIT(4) - Device-key Encryption

○ 1 - Enable

○ 0 - Disable

Returns

Codes as mentioned in xilfpga.h

XFpga_GetPlConfigData

Provides functionality to read back the PL configuration data.

Prototype

u32 XFpga_GetPlConfigData(XFpga *InstancePtr, UINTPTR ReadbackAddr, u32
NumFrames);

Parameters

The following table lists the XFpga_GetPlConfigData function arguments.

Appendix H: XilFPGA Library v5.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 562Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=562

Table 387: XFpga_GetPlConfigData Arguments

Type Name Description
XFpga * InstancePtr Pointer to the XFgpa structure

UINTPTR ReadbackAddr Address which is used to store the PL readback data.

u32 NumFrames The number of Fpga configuration frames to read.

Returns

• XFPGA_SUCCESS if successful

• XFPGA_FAILURE if unsuccessful

• XFPGA_OPS_NOT_IMPLEMENTED if implementation not exists.

XFpga_GetPlConfigReg

Provides PL specific configuration register values.

Prototype

u32 XFpga_GetPlConfigReg(XFpga *InstancePtr, UINTPTR ReadbackAddr, u32
ConfigRegAddr);

Parameters

The following table lists the XFpga_GetPlConfigReg function arguments.

Table 388: XFpga_GetPlConfigReg Arguments

Type Name Description
XFpga * InstancePtr Pointer to the XFgpa structure

UINTPTR ReadbackAddr Address which is used to store the PL Configuration register data.

u32 ConfigRegAddr Configuration register address. For more information, see,UG570 -
UltraScale Architecture Configuration User Guide.

Returns

• XFPGA_SUCCESS if successful

• XFPGA_FAILURE if unsuccessful

• XFPGA_OPS_NOT_IMPLEMENTED if implementation not exists.

XFpga_InterfaceStatus

This function provides the STATUS of PL programming interface.

Appendix H: XilFPGA Library v5.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 563Send Feedback

https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug570-ultrascale-configuration.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=563

Prototype

u32 XFpga_InterfaceStatus(XFpga *InstancePtr);

Parameters

The following table lists the XFpga_InterfaceStatus function arguments.

Table 389: XFpga_InterfaceStatus Arguments

Type Name Description
XFpga * InstancePtr Pointer to the XFgpa structure

Returns

Status of the PL programming interface.

Appendix H: XilFPGA Library v5.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 564Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=564

Appendix I

XilMailbox v1.2

Overview
The XilMailbox library provides the top-level hooks for sending or receiving an inter-processor
interrupt (IPI) message using the Zynq® UltraScale+ MPSoC IPI hardware.

Figure 86: Overview

For more details on the IPI interrupts, see the Zynq UltraScale+ MPSoC Technical Reference
Manual (UG1085).

This library supports the following features:

• Triggering an IPI to a remote agent.

• Sending an IPI message to a remote agent.

Appendix I: XilMailbox v1.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 565Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=565

• Callbacks for error and recv IPI events.

• Reading an IPI message.

Software Initialization

The following is a list of software initalization events for a given IPI channel:

1. XMailbox_Initialize() function initializes a library instance for the given IPI channel.

2. XMailbox_Send() function triggers an IPI to a remote agent.

3. XMailbox_SendData() function sends an IPI message to a remote agent, message type
should be either XILMBOX_MSG_TYPE_REQ (OR) XILMBOX_MSG_TYPE_RESP.

4. XMailbox_Recv() function reads an IPI message from a specified source agent, message
type should be either XILMBOX_MSG_TYPE_REQ (OR) XILMBOX_MSG_TYPE_RESP.

5. XMailbox_SetCallBack() using this function user can register call backs for receive and
error events.

Table 390: Quick Function Reference

Type Name Arguments
u32 XMailbox_Send

XMailbox * InstancePtr
u32 RemoteId
u8 Is_Blocking

u32 XMailbox_SendData
XMailbox * InstancePtr
u32 RemoteId
void * BufferPtr
u32 MsgLen
u8 BufferType
u8 Is_Blocking

u32 XMailbox_Recv
XMailbox * InstancePtr
u32 SourceId
void * BufferPtr
u32 MsgLen
u8 BufferType

s32 XMailbox_SetCallBack
XMailbox * InstancePtr
XMailbox_Handler HandlerType
CallBackFunc
CallBackRef

u32 XMailbox_Initialize
XMailbox * InstancePtr
u8 DeviceId

Appendix I: XilMailbox v1.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 566Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=566

Table 390: Quick Function Reference (cont'd)

Type Name Arguments
u32 XIpiPs_Init

XMailbox * InstancePtr
u8 DeviceId

u32 XIpiPs_Send
XMailbox * InstancePtr
u8 Is_Blocking

u32 XIpiPs_SendData
XMailbox * InstancePtr
void * MsgBufferPtr
u32 MsgLen
u8 BufferType
u8 Is_Blocking

u32 XIpiPs_PollforDone
XMailbox * InstancePtr

u32 XIpiPs_RecvData
XMailbox * InstancePtr
void * MsgBufferPtr
u32 MsgLen
u8 BufferType

XStatus XIpiPs_RegisterIrq
void

void XIpiPs_ErrorIntrHandler
void

void XIpiPs_IntrHandler
void

Functions

XMailbox_Send

This function triggers an IPI to a destination CPU.

Prototype

u32 XMailbox_Send(XMailbox *InstancePtr, u32 RemoteId, u8 Is_Blocking);

Parameters

The following table lists the XMailbox_Send function arguments.

Appendix I: XilMailbox v1.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 567Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=567

Table 391: XMailbox_Send Arguments

Type Name Description
XMailbox * InstancePtr Pointer to the XMailbox instance

u32 RemoteId is the Mask of the CPU to which IPI is to be triggered

u8 Is_Blocking if set trigger the notification in blocking mode

Returns

• XST_SUCCESS if successful

• XST_FAILURE if unsuccessful

XMailbox_SendData

This function sends an IPI message to a destination CPU.

Prototype

u32 XMailbox_SendData(XMailbox *InstancePtr, u32 RemoteId, void *BufferPtr,
u32 MsgLen, u8 BufferType, u8 Is_Blocking);

Parameters

The following table lists the XMailbox_SendData function arguments.

Table 392: XMailbox_SendData Arguments

Type Name Description
XMailbox * InstancePtr Pointer to the XMailbox instance

u32 RemoteId is the Mask of the CPU to which IPI is to be triggered

void * BufferPtr is the pointer to Buffer which contains the message to be sent

u32 MsgLen is the length of the buffer/message

u8 BufferType is the type of buffer (XILMBOX_MSG_TYPE_REQ (OR)
XILMBOX_MSG_TYPE_RESP)

u8 Is_Blocking if set trigger the notification in blocking mode

Returns

• XST_SUCCESS if successful

• XST_FAILURE if unsuccessful

XMailbox_Recv

This function reads an IPI message.

Appendix I: XilMailbox v1.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 568Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=568

Prototype

u32 XMailbox_Recv(XMailbox *InstancePtr, u32 SourceId, void *BufferPtr, u32
MsgLen, u8 BufferType);

Parameters

The following table lists the XMailbox_Recv function arguments.

Table 393: XMailbox_Recv Arguments

Type Name Description
XMailbox * InstancePtr Pointer to the XMailbox instance

u32 SourceId is the Mask for the CPU which has sent the message

void * BufferPtr is the pointer to Buffer to which the read message needs to be
stored

u32 MsgLen is the length of the buffer/message

u8 BufferType is the type of buffer (XILMBOX_MSG_TYPE_REQ or
XILMBOX_MSG_TYPE_RESP)

Returns

• XST_SUCCESS if successful

• XST_FAILURE if unsuccessful

XMailbox_SetCallBack

This routine installs an asynchronous callback function for the given HandlerType.

Note: Invoking this function for a handler that already has been installed replaces it with the new handler.

Prototype

s32 XMailbox_SetCallBack(XMailbox *InstancePtr, XMailbox_Handler
HandlerType, void *CallBackFuncPtr, void *CallBackRefPtr);

Parameters

The following table lists the XMailbox_SetCallBack function arguments.

Table 394: XMailbox_SetCallBack Arguments

Type Name Description
XMailbox * InstancePtr is a pointer to the XMailbox instance.

XMailbox_Handler HandlerType specifies which callback is to be attached.

Appendix I: XilMailbox v1.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 569Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=569

Table 394: XMailbox_SetCallBack Arguments (cont'd)

Type Name Description
Commented parameter
CallBackFunc does not
exist in function
XMailbox_SetCallBack.

CallBackFunc is the address of the callback function.

Commented parameter
CallBackRef does not
exist in function
XMailbox_SetCallBack.

CallBackRef is a user data item that will be passed to the callback function
when it is invoked.

Returns

• XST_SUCCESS when handler is installed.

• XST_INVALID_PARAM when HandlerType is invalid.

XMailbox_Initialize

Initialize the XMailbox Instance.

Prototype

u32 XMailbox_Initialize(XMailbox *InstancePtr, u8 DeviceId);

Parameters

The following table lists the XMailbox_Initialize function arguments.

Table 395: XMailbox_Initialize Arguments

Type Name Description
XMailbox * InstancePtr is a pointer to the instance to be worked on

u8 DeviceId is the IPI Instance to be worked on

Returns

XST_SUCCESS if initialization was successful XST_FAILURE in case of failure

XIpiPs_Init

Initialize the ZynqMP Mailbox Instance.

Prototype

u32 XIpiPs_Init(XMailbox *InstancePtr, u8 DeviceId);

Appendix I: XilMailbox v1.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 570Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=570

Parameters

The following table lists the XIpiPs_Init function arguments.

Table 396: XIpiPs_Init Arguments

Type Name Description
XMailbox * InstancePtr is a pointer to the instance to be worked on

u8 DeviceId is the IPI Instance to be worked on

Returns

XST_SUCCESS if initialization was successful XST_FAILURE in case of failure

XIpiPs_Send

This function triggers an IPI to a destnation CPU.

Prototype

u32 XIpiPs_Send(XMailbox *InstancePtr, u8 Is_Blocking);

Parameters

The following table lists the XIpiPs_Send function arguments.

Table 397: XIpiPs_Send Arguments

Type Name Description
XMailbox * InstancePtr Pointer to the XMailbox instance.

u8 Is_Blocking if set trigger the notification in blocking mode

Returns

XST_SUCCESS in case of success XST_FAILURE in case of failure

XIpiPs_SendData

This function sends an IPI message to a destnation CPU.

Prototype

u32 XIpiPs_SendData(XMailbox *InstancePtr, void *MsgBufferPtr, u32 MsgLen,
u8 BufferType, u8 Is_Blocking);

Appendix I: XilMailbox v1.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 571Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=571

Parameters

The following table lists the XIpiPs_SendData function arguments.

Table 398: XIpiPs_SendData Arguments

Type Name Description
XMailbox * InstancePtr Pointer to the XMailbox instance

void * MsgBufferPtr is the pointer to Buffer which contains the message to be sent

u32 MsgLen is the length of the buffer/message

u8 BufferType is the type of buffer

u8 Is_Blocking if set trigger the notification in blocking mode

Returns

XST_SUCCESS in case of success XST_FAILURE in case of failure

XIpiPs_PollforDone

Poll for an acknowledgement using Observation Register.

Prototype

u32 XIpiPs_PollforDone(XMailbox *InstancePtr);

Parameters

The following table lists the XIpiPs_PollforDone function arguments.

Table 399: XIpiPs_PollforDone Arguments

Type Name Description
XMailbox * InstancePtr Pointer to the XMailbox instance

Returns

XST_SUCCESS in case of success XST_FAILURE in case of failure

XIpiPs_RecvData

This function reads an IPI message.

Prototype

u32 XIpiPs_RecvData(XMailbox *InstancePtr, void *MsgBufferPtr, u32 MsgLen,
u8 BufferType);

Appendix I: XilMailbox v1.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 572Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=572

Parameters

The following table lists the XIpiPs_RecvData function arguments.

Table 400: XIpiPs_RecvData Arguments

Type Name Description
XMailbox * InstancePtr Pointer to the XMailbox instance

void * MsgBufferPtr is the pointer to Buffer to which the read message needs to be
stored

u32 MsgLen is the length of the buffer/message

u8 BufferType is the type of buffer

Returns

• XST_SUCCESS if successful

• XST_FAILURE if unsuccessful

XIpiPs_RegisterIrq

Prototype

XStatus XIpiPs_RegisterIrq(XScuGic *IntcInstancePtr, XMailbox *InstancePtr,
u32 IpiIntrId);

XIpiPs_ErrorIntrHandler

Prototype

void XIpiPs_ErrorIntrHandler(void *XMailboxPtr);

XIpiPs_IntrHandler

Prototype

void XIpiPs_IntrHandler(void *XMailboxPtr);

Enumerations

Enumeration XMailbox_Handler

Contains XMAILBOX Handler Types.

Appendix I: XilMailbox v1.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 573Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=573

Table 401: Enumeration XMailbox_Handler Values

Value Description
XMAILBOX_RECV_HANDLER For Recv Handler.

XMAILBOX_ERROR_HANDLER For Error Handler.

Data Structure Index
The following is a list of data structures:

• XMailbox

XMailbox
Holds the function pointers for the operations that can be performed.

Declaration

typedef struct
{
 u32(* XMbox_IPI_Send)(struct XMboxTag *InstancePtr, u8 Is_Blocking),
 u32(* XMbox_IPI_SendData)(struct XMboxTag *InstancePtr, void *BufferPtr,
u32 MsgLen, u8 BufferType, u8 Is_Blocking),
 u32(* XMbox_IPI_Recv)(struct XMboxTag *InstancePtr, void *BufferPtr, u32
MsgLen, u8 BufferType),
 XMailbox_RecvHandler RecvHandler,
 XMailbox_ErrorHandler ErrorHandler,
 void * ErrorRefPtr,
 void * RecvRefPtr,
 XMailbox_Agent Agent
} XMailbox;

Table 402: Structure XMailbox member description

Member Description
XMbox_IPI_Send Triggers an IPI to a destination CPU.

XMbox_IPI_SendData Sends an IPI message to a destination CPU.

XMbox_IPI_Recv Reads an IPI message.

RecvHandler Callback for rx IPI event.

ErrorHandler Callback for error event.

ErrorRefPtr To be passed to the error interrupt callback.

RecvRefPtr To be passed to the receive interrupt callback.

Agent Used to store IPI Channel information.

Appendix I: XilMailbox v1.2

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 574Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=574

Appendix J

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References

Appendix J: Additional Resources and Legal Notices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 575Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=575

Xilinx References

1. Xilinx Third-Party Licensing Solution Center

2. PetaLinux Product Page

3. Xilinx Vivado Design Suite – HLx Editions

4. Xilinx Third-Party Tools

5. Zynq UltraScale+ MPSoC Product Table

6. Zynq UltraScale+ MPSoC Product Advantages

7. Zynq UltraScale+ MPSoC Products Page

Zynq Devices Documentation

1. Xilinx Quick Emulator User Guide: QEMU (UG1169)

2. UltraScale Architecture and Product Data Sheet: Overview (DS890)

3. Isolation Methods in Zynq UltraScale+ MPSoCs (XAPP1320)

4. Zynq UltraScale+ Device Technical Reference Manual (UG1085)

5. Zynq UltraScale+ Device Register Reference (UG1087)

6. Zynq UltraScale+ MPSoC: Embedded Design Tutorial (UG1209)

7. Zynq UltraScale+ MPSoC Processing System LogiCORE IP Product Guide (PG201)

8. UltraScale Architecture System Monitor User Guide (UG580)

9. Libmetal and OpenAMP for Zynq Devices User Guide (UG1186)

10. Embedded Energy Management Interface Specification (UG1200)

11. UltraFast Embedded Design Methodology Guide (UG1046)

12. Zynq-7000 SoC: Embedded Design Tutorial (UG1165)

13. Zynq-7000 SoC Software Developers Guide (UG821)

14. UltraScale Architecture PCB Design User Guide (UG583)

15. Vivado Design Suite Documentation

16. Bootgen User Guide (UG1283)

Vitis software platform and PetaLinux Documents

1. Vitis Unified Software Platform Documentation

Appendix J: Additional Resources and Legal Notices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 576Send Feedback

https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/support/answer-navigation/design-tools/third-party-tools.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productTable
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html#productAdvantages
https://www.xilinx.com/search/support-keyword-search.html?searchKeywords=Zynq%20UltraScale%2B%20MPSoC%20Products%20Page
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1169-xilinx-qemu.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=data_sheets;d=ds890-ultrascale-overview.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp1320-isolation-methods.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1085-zynq-ultrascale-trm.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=registers+ultrascale
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1209-embedded-design-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=zynq_ultra_ps_e;v=latest;d=pg201-zynq-ultrascale-plus-processing-system.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug580-ultrascale-sysmon.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1186-zynq-openamp-gsg.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug1200-eemi-api.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1165-zynq-embedded-design-tutorial.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug821-zynq-7000-swdev.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=user_guides;d=ug583-ultrascale-pcb-design.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1283-bootgen-user-guide.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=576

2. OS and Libraries Document Collection (UG643)

3. Embedded Design Tools Download

4. PetaLinux Tools Documentation: Reference Guide (UG1144)

5. Xilinx Software Development Kit: System Performance (UG1145)

Xilinx IP Documents

1. AXI Central Direct Memory Access LogiCORE IP Product Guide (PG034)

2. AXI Video Direct Memory Access LogiCORE IP Product Guide (PG020)

Miscellaneous Links

1. Xilinx Github

2. Embedded Development

3. meta-xilinx

4. PetaLinux Software Development

5. Zynq UltraScale+ Silicon Devices Page

6. Xilinx Answer: 66249

7. Vivado Quick Take Video: Vivado PS Configuration Wizard Overview

8. Xilinx Wiki

Third-Party References

1. Lauterbach Technologies

2. Arm Trusted Firmware

3. Xen Hypervisor

4. Arm Developer Center

5. Arm Cortex-A53 MPCore Processor Technical Reference Manual

6. Yocto Product Development

7. GNU FTP

8. Power State Coordination Interface – Arm DEN 0022B.b, 6/25/2013

Appendix J: Additional Resources and Legal Notices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 577Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=oslib_rm.pdf
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1144-petalinux-tools-reference-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1145-sdk-system-performance.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_cdma;v=latest;d=pg034-axi-cdma.pdf
https://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_vdma;v=latest;d=pg020_axi_vdma.pdf
https://github.com/Xilinx/linux-xlnx/
https://www.xilinx.com/products/design-tools/software-zone/embedded-computing.html
http://git.yoctoproject.org/cgit/cgit.cgi/meta-xilinx/
http://www.wiki.xilinx.com/MPSoC+Petalinux+Software+Development
https://www.xilinx.com/products/silicon-devices/soc/zynq-ultrascale-mpsoc.html
https://www.xilinx.com/support/answers/66249.html
http://www.zylinks.com/video/hardware/vivado-ps-configuration-wizard-overview.html
http://www.lauterbach.com/frames.html?home.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0928e/CJHIDGJF.html
http://dornerworks.com/services/xilinxxen
http://ds.arm.com/developer-resources/
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0500d/DDI0500D_cortex_a53_r0p2_trm.pdf
https://www.yoctoproject.org/downloads
http://ftp.gnu.org/gnu/coreutils
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=577

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://
www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2015-2020 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Spartan, Versal,
Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of Xilinx in the
United States and other countries. All other trademarks are the property of their respective
owners.

Appendix J: Additional Resources and Legal Notices

UG1137 (2020.1) September 4, 2020 www.xilinx.com
Zynq UltraScale+ MPSoC: Software Developers Guide 578Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG1137&Title=Zynq%20UltraScale+%20MPSoC%20Software%20Developer%20Guide&releaseVersion=2020.1&docPage=578

	Zynq UltraScale+ MPSoC Software Developer Guide
	Revision History
	Table of Contents
	Ch. 1: About This Guide
	Introduction
	Intended Audience and Scope of this Document
	Prerequisites

	Ch. 2: Programming View of Zynq UltraScale+ MPSoC Devices
	Hardware Architecture Overview
	Boot Process
	Boot Modes

	Virtualization
	System Level Reset Requirements
	Security
	Configuration Security Unit
	System-Level Protections

	Safety and Reliability
	Safety Features
	Lock-Step Operation
	Error Checking and Correction
	System-Wide Safety Features

	Memory Overview for APU and RPU Executables

	Ch. 3: Development Tools
	Vivado Design Suite
	Vitis Unified Software Platform
	Arm GNU Tools
	Device Tree Generator
	PetaLinux Tools
	Linux Software Development using Yocto
	Yocto Project Development Environment

	Ch. 4: Software Stack
	Bare Metal Software Stack
	The C Standard Library (libc)
	The C Standard Library Mathematical Functions (libm)
	Standalone BSP

	Linux Software Stack
	Multimedia Stack Overview
	FreeRTOS Software Stack

	Third-Party Software Stack

	Ch. 5: Software Development Flow
	Bare Metal Application Development
	Application Development Using PetaLinux Tools
	Linux Application Development Using Vitis
	Creating a Linux Application Project
	Create a Hello World Application
	Build a Sample Application
	Debug and Run the Application

	Adding Driver Support for Custom IP in the PL

	Ch. 6: Software Design Paradigms
	Frameworks for Multiprocessor Development
	Symmetric Multiprocessing (SMP)
	Asymmetric Multiprocessing (AMP)
	OpenAMP
	Virtualization with Hypervisor
	Use of Hypervisors

	Ch. 7: System Boot and Configuration
	Boot Process Overview
	Boot Flow
	Boot Image Creation
	Creating a Bootable Image

	Boot Modes
	QSPI24 and QSPI32 Boot Modes
	SD Boot Mode
	eMMC18 Boot Mode
	NAND Boot Mode
	JTAG Boot Mode
	USB Boot Mode
	Secondary Boot Mode

	Detailed Boot Flow
	Pre-Boot Sequence

	Disabling FPD in Boot Sequence
	Setting FSBL Compilation Flags
	Fallback and MultiBoot Flow

	FSBL Build Process
	Creating a New Zynq UltraScale+ MPSoC FSBL Application Project
	Phases of FSBL Operation
	Initialization
	Boot Device Initialization
	Partition Loading
	Handoff
	Miscellaneous Functions
	XFsbl_PrintArray
	XFsbl_Strcpy
	XFsbl_Strcat
	XFsbl_Strcmp
	XFsbl_MemCpy
	XFsbl_PowerUpIsland
	XFsbl_IsolationRestore
	XFsbl_SetTlbAttributes
	XFsbl_GetSiliconIdName
	XFsbl_GetProcEng
	XFsbl_CheckSupportedCpu
	XFsbl_AdmaCopy
	XFsbl_GetDrvNumSD
	XFsbl_MakeSdFileName

	Hooks in FSBL

	Ch. 8: Security Features
	Boot Time Security
	Encryption
	BIF File with BBRAM Red Key
	BIF File with eFUSE Red Key
	BIF File with an Operational Key
	Using Op Key to Protect the Device Key in a Development Environment

	BIF File for Black Key Stored in eFUSE
	BIF File for Black Key Stored in Boot Header
	BIF File for Obfuscated Form (Gray) Key Stored in eFUSE
	BIF File with Multiple AESKEY Files

	Authentication
	BIF File with SHA-3 Boot Header Authentication and PPK0
	BIF File with SHA-3 eFUSE RSA Authentication and PPK0

	Enhanced RSA Key Revocation Support

	Bitstream Authentication Using External Memory
	Bootgen
	Software

	Run-Time Security
	Arm Trusted Firmware
	ATF Functions

	FPGA Manager Solution
	FPGA Manager Architecture

	Xilinx Memory Protection Unit
	Protecting Memory with XMPU
	Configuring XMPU Registers

	Xilinx Peripheral Protection Unit
	System Memory Management Unit
	A53 Memory Management Unit
	R5 Memory Protection Unit

	Ch. 9: Platform Management
	Platform Management in PS
	Full-Power Operation Mode
	Low-Power Operation Mode
	Deep-Sleep Operation Mode
	Shutdown Mode
	Battery-Powered Mode
	Power Management Framework

	Wake Up Mechanisms
	Platform Management for Memory
	DDR Controller
	Platform Management for Interconnects
	PMU Firmware

	Ch. 10: Platform Management Unit Firmware
	Features
	PMU Firmware Architecture
	Execution Flow
	Handling Inter-Process Interrupts in PMU firmware
	Send IPI Message
	Send IPI Response
	Read IPI Message
	Read IPI Response
	Triggering an IPI

	PMU Firmware Modules
	Creating a Module
	Setting up Handlers for the Module
	PMU Firmware Build Flags

	Error Management (EM) Module
	Error Management Hardware
	Error Management in PMU firmware
	Error Management API Calls
	Setting up Error Action
	Removing Error Action
	Processing an Error

	IPI Handling by EM Module

	EM Error ID Table
	EM Error Action Table
	PMU Firmware Signals PLL Lock Errors on PS_ERROR_OUT

	Power Management (PM) Module
	Scheduler
	Safety Test Library
	CSU/PMU Register Access
	Timers
	FPD WDT
	LPD WDT
	CSU WDT

	Configuration Object
	PM Configuration Object Generation
	Initial Configuration at Boot

	PMU Firmware Loading Options
	Loading PMU Firmware in JTAG Boot Mode
	Loading PMU Firmware in NON-JTAG Boot Mode
	Using FSBL to Load PMU Firmware
	Using CBR to load PMU Firmware

	PMU Firmware Usage
	Enable/Disable Modules
	Custom Module Usage
	Creating a Custom Module
	Registering for an Event

	Error Management Usage
	Example for Error Management (Custom Handler)
	Example for Error Management (PoR as a Response to Error)
	Example for Error Management (PS Error out as a Response to Error)

	IPI Messaging Usage
	Adding a Task to Scheduler
	Reading FPD Locked Status from RPU

	PMU Firmware Memory Layout and Footprint
	Dependencies

	Ch. 11: Power Management Framework
	Introduction
	Key Features
	Power Management Software Architecture

	Zynq UltraScale+ MPSoC Power Management Overview
	Zynq UltraScale+ MPSoC Power Management Hardware Architecture
	Zynq UltraScale+ MPSoC Power Management Software Architecture

	Power Management Framework Overview
	API Calls and Responses
	Acknowledge Mechanism
	Power Management Framework Layers
	Typical Power Management API Call Flow
	Sub-system Power Management
	Sharing Devices

	Using the API for Power Management
	Implementing Power Management on a Processor Unit
	Interacting with Other Processing Units

	XilPM Implementation Details
	Payload Mapping for API Calls to PMU
	Payload Mapping for API Callbacks from the PMU
	Issuing EEMI API calls to the PMU
	Handling API callbacks from the PMU

	Linux
	User Space PM Interface
	System Power States
	Power Management for the CPU
	Power Management for the Devices

	Demo
	Debug Interface
	Command-line Input
	Command List

	PM Platform Driver

	Arm Trusted Firmware (ATF)
	ATF Application Binary Interface
	Power State Coordination Interface (PSCI)

	PMU Firmware
	Power Management Events
	General flow of an EEMI API Call

	Ch. 12: Reset
	System-Level Reset
	Block-Level Resets
	PS-Only Reset

	Application Processing Unit Reset
	APU-Only Reset

	Real Time Processing Unit Reset
	Full Power Domain Reset
	Warm Restart
	Supported Use Cases
	APU Subsystem Restart
	RPU Subsystem Restart
	PS-Only Reset
	System Reset
	Idle and Reset of Peripherals
	Custom Hooks
	GPIO Reset to PL
	Recovering from a Hang System
	Watchdog Management
	APU Idling
	Escalation
	Building Software
	Modifying Component Recipes

	Ch. 13: High-Speed Bus Interfaces
	USB 3.0
	Gigabit Ethernet Controller
	PCI Express

	Ch. 14: Clock and Frequency Management
	Changing the Peripheral Frequency

	Ch. 15: Target Development Platforms
	QEMU
	Boards and Kits

	Ch. 16: Boot Image Creation
	Appx. A: Standalone Library v7.2
	Xilinx Hardware Abstraction Layer API
	Assert APIs and Macros
	Functions
	Xil_Assert
	XNullHandler
	Xil_AssertSetCallback

	Register IO interfacing APIs
	Functions
	Xil_EndianSwap16
	Xil_EndianSwap32
	Xil_In8
	Xil_In16
	Xil_In32
	Xil_In64
	Xil_Out8
	Xil_Out16
	Xil_Out32
	Xil_Out64
	Xil_SecureOut32

	Definitions for available xilinx platforms
	Functions
	XGetPlatform_Info

	Data types for Xilinx Software IP Cores
	Customized APIs for Memory Operations
	Functions
	Xil_MemCpy

	Xilinx software status codes
	Test Utilities for Memory and Caches
	Functions
	Xil_TestIO8
	Xil_TestIO16
	Xil_TestIO32

	MicroBlaze Processor API
	MicroBlaze Pseudo-asm Macros and Interrupt Handling APIs
	Functions
	microblaze_register_handler
	microblaze_register_exception_handler

	MicroBlaze exception APIs
	Functions
	Xil_ExceptionNullHandler
	Xil_ExceptionInit
	Xil_ExceptionEnable
	Xil_ExceptionDisable
	Xil_ExceptionRegisterHandler
	Xil_ExceptionRemoveHandler

	MicroBlaze Processor FSL Macros
	MicroBlaze PVR access routines and macros
	Functions
	microblaze_get_pvr

	Sleep Routines for MicroBlaze
	Functions
	MB_Sleep

	Cortex R5 Processor API
	Cortex R5 Processor Boot Code
	Cortex R5 Processor MPU specific APIs
	Functions
	Xil_SetTlbAttributes
	Xil_EnableMPU
	Xil_DisableMPU
	Xil_SetMPURegion
	Xil_UpdateMPUConfig
	Xil_GetMPUConfig
	Xil_GetNumOfFreeRegions
	Xil_GetNextMPURegion
	Xil_DisableMPURegionByRegNum
	Xil_GetMPUFreeRegMask
	Xil_SetMPURegionByRegNum

	Cortex R5 Processor Cache Functions
	Functions
	Xil_DCacheEnable
	Xil_DCacheDisable
	Xil_DCacheInvalidate
	Xil_DCacheInvalidateRange
	Xil_DCacheFlush
	Xil_DCacheFlushRange
	Xil_DCacheInvalidateLine
	Xil_DCacheFlushLine
	Xil_DCacheStoreLine
	Xil_ICacheEnable
	Xil_ICacheDisable
	Xil_ICacheInvalidate
	Xil_ICacheInvalidateRange
	Xil_ICacheInvalidateLine

	Cortex R5 Time Functions
	Functions
	XTime_SetTime
	XTime_GetTime

	Cortex R5 Event Counters Functions
	Functions
	Xpm_SetEvents
	Xpm_GetEventCounters
	Xpm_DisableEvent
	Xpm_SetUpAnEvent
	Xpm_GetEventCounter
	Xpm_DisableEventCounters
	Xpm_EnableEventCounters
	Xpm_ResetEventCounters
	Xpm_SleepPerfCounter

	Cortex R5 Processor Specific Include Files
	Cortex R5 peripheral definitions

	ARM Processor Common API
	ARM Processor Exception Handling
	Functions
	Xil_ExceptionRegisterHandler
	Xil_ExceptionRemoveHandler
	Xil_GetExceptionRegisterHandler
	Xil_ExceptionInit
	Xil_DataAbortHandler
	Xil_PrefetchAbortHandler
	Xil_UndefinedExceptionHandler

	Cortex A9 Processor API
	Cortex A9 Processor Boot Code
	Cortex A9 Processor Cache Functions
	Functions
	Xil_DCacheEnable
	Xil_DCacheDisable
	Xil_DCacheInvalidate
	Xil_DCacheInvalidateRange
	Xil_DCacheFlush
	Xil_DCacheFlushRange
	Xil_ICacheEnable
	Xil_ICacheDisable
	Xil_ICacheInvalidate
	Xil_ICacheInvalidateRange
	Xil_DCacheInvalidateLine
	Xil_DCacheFlushLine
	Xil_DCacheStoreLine
	Xil_ICacheInvalidateLine
	Xil_L1DCacheEnable
	Xil_L1DCacheDisable
	Xil_L1DCacheInvalidate
	Xil_L1DCacheInvalidateLine
	Xil_L1DCacheInvalidateRange
	Xil_L1DCacheFlush
	Xil_L1DCacheFlushLine
	Xil_L1DCacheFlushRange
	Xil_L1DCacheStoreLine
	Xil_L1ICacheEnable
	Xil_L1ICacheDisable
	Xil_L1ICacheInvalidate
	Xil_L1ICacheInvalidateLine
	Xil_L1ICacheInvalidateRange
	Xil_L2CacheEnable
	Xil_L2CacheDisable
	Xil_L2CacheInvalidate
	Xil_L2CacheInvalidateLine
	Xil_L2CacheInvalidateRange
	Xil_L2CacheFlush
	Xil_L2CacheFlushLine
	Xil_L2CacheFlushRange
	Xil_L2CacheStoreLine

	Cortex A9 Processor MMU Functions
	Functions
	Xil_SetTlbAttributes
	Xil_EnableMMU
	Xil_DisableMMU
	Xil_MemMap

	Cortex A9 Time Functions
	Functions
	XTime_SetTime
	XTime_GetTime

	Cortex A9 Event Counter Function
	Functions
	Xpm_SetEvents
	Xpm_GetEventCounters

	PL310 L2 Event Counters Functions
	Functions
	XL2cc_EventCtrInit
	XL2cc_EventCtrStart
	XL2cc_EventCtrStop

	Cortex A9 Processor and pl310 Errata Support
	Cortex A9 Processor Specific Include Files

	Cortex A53 32-bit Processor API
	Cortex A53 32-bit Processor Boot Code
	Cortex A53 32-bit Processor Cache Functions
	Functions
	Xil_DCacheEnable
	Xil_DCacheDisable
	Xil_DCacheInvalidate
	Xil_DCacheInvalidateRange
	Xil_DCacheFlush
	Xil_DCacheFlushRange
	Xil_DCacheInvalidateLine
	Xil_DCacheFlushLine
	Xil_ICacheInvalidateLine
	Xil_ICacheEnable
	Xil_ICacheDisable
	Xil_ICacheInvalidate
	Xil_ICacheInvalidateRange

	Cortex A53 32-bit Processor MMU Handling
	Functions
	Xil_SetTlbAttributes
	Xil_EnableMMU
	Xil_DisableMMU

	Cortex A53 32-bit Mode Time Functions
	Functions
	XTime_StartTimer
	XTime_SetTime
	XTime_GetTime

	Cortex A53 32-bit Processor Specific Include Files

	Cortex A53 64-bit Processor Boot Code
	Cortex A53 64-bit Processor Cache Functions
	Functions
	Xil_DCacheEnable
	Xil_DCacheDisable
	Xil_DCacheInvalidate
	Xil_DCacheInvalidateRange
	Xil_DCacheInvalidateLine
	Xil_DCacheFlush
	Xil_DCacheFlushLine
	Xil_ICacheEnable
	Xil_ICacheDisable
	Xil_ICacheInvalidate
	Xil_ICacheInvalidateRange
	Xil_ICacheInvalidateLine
	Xil_ConfigureL1Prefetch

	Cortex A53 64-bit Processor MMU Handling
	Functions
	Xil_SetTlbAttributes

	Cortex A53 64-bit Mode Time Functions
	Functions
	XTime_StartTimer
	XTime_SetTime
	XTime_GetTime

	Cortex A53 64-bit Processor Specific Include Files

	Appx. B: LwIP 2.1.1 Library
	Introduction
	Features
	References

	Using lwIP
	Overview
	Setting up the Hardware System
	Setting up the Software System
	Configuring lwIP Options
	Customizing lwIP API Mode
	Configuring Xilinx Adapter Options
	Configuring Memory Options
	Configuring Packet Buffer (Pbuf) Memory Options
	Configuring ARP Options
	Configuring IP Options
	Configuring ICMP Options
	Configuring IGMP Options
	Configuring UDP Options
	Configuring TCP Options
	Configuring DHCP Options
	Configuring the Stats Option
	Configuring the Debug Option

	LwIP Library APIs
	Raw API
	Socket API
	Using the Xilinx Adapter Helper Functions
	Functions
	xemacif_input_thread
	xemac_add
	lwip_init
	xemacif_input
	xemacpsif_resetrx_on_no_rxdata

	Appx. C: XilIsf Library v5.15
	Overview
	XilIsf Library API
	Functions
	XIsf_Initialize
	XIsf_GetStatus
	XIsf_GetStatusReg2
	XIsf_GetDeviceInfo
	XIsf_Transfer
	GetRealAddr
	XIsf_Write
	XIsf_Read
	XIsf_Erase
	XIsf_SectorProtect
	XIsf_Ioctl
	XIsf_WriteEnable
	XIsf_RegisterInterface
	XIsf_SetSpiConfiguration
	XIsf_SetStatusHandler
	XIsf_IfaceHandler

	Library Parameters in MSS File

	Appx. D: XilFFS Library v4.3
	XilFFS Library API Reference
	Selecting a File System with an SD Interface
	Selecting a RAM Based File System

	Library Parameters in MSS File

	Appx. E: XilSecure Library v4.2
	Overview
	AES-GCM
	Functions
	XSecure_AesInitialize
	XSecure_AesDecryptInit
	XSecure_AesDecryptUpdate
	XSecure_AesDecryptData
	XSecure_AesDecrypt
	XSecure_AesEncryptInit
	XSecure_AesEncryptUpdate
	XSecure_AesEncryptData
	XSecure_AesReset

	Definitions
	XSecure_AesWaitForDone

	AES-GCM Error Codes
	AES-GCM API Example Usage
	AES-GCM Usage to decrypt Boot Image

	RSA
	Functions
	XSecure_RsaInitialize
	XSecure_RsaSignVerification
	XSecure_RsaPublicEncrypt
	XSecure_RsaPrivateDecrypt

	RSA API Example Usage

	SHA-3
	Functions
	XSecure_Sha3Initialize
	XSecure_Sha3Start
	XSecure_Sha3Update
	XSecure_Sha3Finish
	XSecure_Sha3Digest
	XSecure_Sha3_ReadHash
	XSecure_Sha3PadSelection
	XSecure_Sha3LastUpdate
	XSecure_Sha3WaitForDone

	SHA-3 API Example Usage

	XilSecure Utilities
	Functions
	XSecure_ReadReg
	XSecure_WriteReg
	XSecure_SetReset
	XSecure_ReleaseReset

	Additional References

	Appx. F: XilSkey Library v4.9
	Overview
	Board Support Package Settings
	Hardware Setup

	BBRAM PL API
	Functions
	XilSKey_Bbram_Program
	XilSKey_Bbram_JTAGServerInit

	Zynq UltraScale+ MPSoC BBRAM PS API
	Functions
	XilSKey_ZynqMp_Bbram_Program
	XilSKey_ZynqMp_Bbram_Zeroise

	Zynq eFUSE PS API
	Functions
	XilSKey_EfusePs_Write
	XilSKey_EfusePs_Read
	XilSKey_EfusePs_ReadStatus

	Zynq UltraScale+ MPSoC eFUSE PS API
	Functions
	XilSKey_ZynqMp_EfusePs_CheckAesKeyCrc
	XilSKey_ZynqMp_EfusePs_ReadUserFuse
	XilSKey_ZynqMp_EfusePs_ReadPpk0Hash
	XilSKey_ZynqMp_EfusePs_ReadPpk1Hash
	XilSKey_ZynqMp_EfusePs_ReadSpkId
	XilSKey_ZynqMp_EfusePs_ReadDna
	XilSKey_ZynqMp_EfusePs_ReadSecCtrlBits
	XilSKey_ZynqMp_EfusePs_CacheLoad
	XilSKey_ZynqMp_EfusePs_Write
	XilSkey_ZynqMpEfuseAccess
	XilSKey_ZynqMp_EfusePs_WritePufHelprData
	XilSKey_ZynqMp_EfusePs_ReadPufHelprData
	XilSKey_ZynqMp_EfusePs_WritePufChash
	XilSKey_ZynqMp_EfusePs_ReadPufChash
	XilSKey_ZynqMp_EfusePs_WritePufAux
	XilSKey_ZynqMp_EfusePs_ReadPufAux
	XilSKey_Write_Puf_EfusePs_SecureBits
	XilSKey_Read_Puf_EfusePs_SecureBits
	XilSKey_Puf_Registration
	XilSKey_Puf_Regeneration

	eFUSE PL API
	Functions
	XilSKey_EfusePl_SystemInit
	XilSKey_EfusePl_Program
	XilSKey_EfusePl_ReadStatus
	XilSKey_EfusePl_ReadKey

	CRC Calculation API
	Functions
	XilSKey_CrcCalculation
	XilSkey_CrcCalculation_AesKey

	User-Configurable Parameters
	Zynq User-Configurable PS eFUSE Parameters
	Zynq User-Configurable PL eFUSE Parameters
	MIO Pins for Zynq PL eFUSE JTAG Operations
	MUX Selection Pin for Zynq PL eFUSE JTAG Operations
	MUX Parameter for Zynq PL eFUSE JTAG Operations
	AES and User Key Parameters

	Zynq User-Configurable PL BBRAM Parameters
	MUX Parameter for Zynq BBRAM PL JTAG Operations
	AES and User Key Parameters

	UltraScale or UltraScale+ User-Configurable BBRAM PL Parameters
	AES Keys and Related Parameters
	DPA Protection for BBRAM key
	GPIO Device Used for Connecting PL Master JTAG Signals
	GPIO Pins Used for PL Master JTAG Signals
	GPIO Channels

	UltraScale or UltraScale+ User-Configurable PL eFUSE Parameters
	GPIO Device Used for Connecting PL Master JTAG Signals
	GPIO Pins Used for PL Master JTAG and HWM Signals
	GPIO Channels
	SLR Selection to Program eFUSE on MONO/SSIT Devices
	eFUSE PL Read Parameters
	AES Keys and Related Parameters
	USER Keys (32-bit) and Related Parameters
	RSA Hash and Related Parameters
	USER Keys (128-bit) and Related Parameters
	AES key CRC verification

	Zynq UltraScale+ MPSoC User-Configurable PS eFUSE Parameters
	AES Keys and Related Parameters
	User Keys and Related Parameters
	PPK0 Keys and Related Parameters
	PPK1 Keys and Related Parameters
	SPK ID and Related Parameters

	Zynq UltraScale+ MPSoC User-Configurable PS BBRAM Parameters
	Zynq UltraScale+ MPSoC User-Configurable PS PUF Parameters

	Error Codes
	PL eFUSE Error Codes
	Enumerations
	Enumeration XSKEfusePl_ErrorCodes

	PS eFUSE Error Codes
	Enumerations
	Enumeration XSKEfusePs_ErrorCodes

	Zynq UltraScale+ MPSoC BBRAM PS Error Codes
	Enumerations
	Enumeration XskZynqMp_Ps_Bbram_ErrorCodes

	Status Codes
	Procedures
	Data Structure Index
	XilSKey_EPl

	Appx. G: XilPM Library v3.1
	XilPM Zynq UltraScale+ MPSoC APIs
	Functions
	XPm_InitXilpm
	XPm_GetBootStatus
	XPm_SuspendFinalize
	pm_ipi_send
	pm_ipi_buff_read32
	XPm_SelfSuspend
	XPm_SetConfiguration
	XPm_InitFinalize
	XPm_RequestSuspend
	XPm_RequestWakeUp
	XPm_ForcePowerDown
	XPm_AbortSuspend
	XPm_SetWakeUpSource
	XPm_SystemShutdown
	XPm_RequestNode
	XPm_SetRequirement
	XPm_ReleaseNode
	XPm_SetMaxLatency
	XPm_InitSuspendCb
	XPm_AcknowledgeCb
	XPm_NotifyCb
	XPm_GetApiVersion
	XPm_GetNodeStatus
	XPm_GetOpCharacteristic
	XPm_ResetAssert
	XPm_ResetGetStatus
	XPm_RegisterNotifier
	XPm_UnregisterNotifier
	XPm_MmioWrite
	XPm_MmioRead
	XPm_ClockEnable
	XPm_ClockDisable
	XPm_ClockGetStatus
	XPm_ClockSetOneDivider
	XPm_ClockSetDivider
	XPm_ClockGetOneDivider
	XPm_ClockGetDivider
	XPm_ClockSetParent
	XPm_ClockGetParent
	XPm_ClockSetRate
	XPm_ClockGetRate
	XPm_PllSetParameter
	XPm_PllGetParameter
	XPm_PllSetMode
	XPm_PllGetMode
	XPm_PinCtrlAction
	XPm_PinCtrlRequest
	XPm_PinCtrlRelease
	XPm_PinCtrlSetFunction
	XPm_PinCtrlGetFunction
	XPm_PinCtrlSetParameter
	XPm_PinCtrlGetParameter

	Error Status
	Definitions
	Define XST_PM_INTERNAL
	Define XST_PM_CONFLICT
	Define XST_PM_NO_ACCESS
	Define XST_PM_INVALID_NODE
	Define XST_PM_DOUBLE_REQ
	Define XST_PM_ABORT_SUSPEND
	Define XST_PM_TIMEOUT
	Define XST_PM_NODE_USED

	Data Structure Index
	pm_acknowledge
	pm_init_suspend
	XPm_Master
	XPm_NodeStatus
	XPm_Notifier

	Appx. H: XilFPGA Library v5.2
	Overview
	Supported Features
	XilFPGA library Interface modules
	Design Summary
	Flow Diagram
	XilFPGA BSP Configuration Settings
	Setting up the Software System
	Enabling Security
	Bitstream Authentication Using External Memory
	Bootgen
	Authenticated and Encrypted Bitstream Loading Using OCM
	Authenticated and Encrypted Bitstream Loading Using DDR
	Additional References

	XilFPGA APIs
	Functions
	XFpga_Initialize
	XFpga_PL_BitStream_Load
	XFpga_PL_Preconfig
	XFpga_PL_Write
	XFpga_PL_PostConfig
	XFpga_PL_ValidateImage
	XFpga_GetPlConfigData
	XFpga_GetPlConfigReg
	XFpga_InterfaceStatus

	Appx. I: XilMailbox v1.2
	Overview
	Functions
	XMailbox_Send
	XMailbox_SendData
	XMailbox_Recv
	XMailbox_SetCallBack
	XMailbox_Initialize
	XIpiPs_Init
	XIpiPs_Send
	XIpiPs_SendData
	XIpiPs_PollforDone
	XIpiPs_RecvData
	XIpiPs_RegisterIrq
	XIpiPs_ErrorIntrHandler
	XIpiPs_IntrHandler

	Enumerations
	Enumeration XMailbox_Handler

	Data Structure Index
	XMailbox

	Appx. J: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Xilinx References
	Zynq Devices Documentation
	Vitis software platform and PetaLinux Documents
	Xilinx IP Documents
	Miscellaneous Links
	Third-Party References

	Please Read: Important Legal Notices

