Vivado Design Suite User
Guide

Designing IP Subsystems Using IP
Integrator

UG994 (v2014.4) November 19, 2014

A

& XILINX

ALL PROGRAMMABLE.

Revision History

The following table shows the revision history for this document.

Date Version Changes

11/19/2014 20144 Added Interrupt handling in IP Integrator in Chapter 2.
Added Connecting I/O Ports to an ILA or VIO Debug Core in Chapter 6.
Replace export hardware command with write sysdef command in
Chapter 8.

10/16/2014 2014.3 Republish to fix missing links.

10/14/2014 2014.3 Minor editorial update.

10/01/2014 20143 Added Creating a Memory Map, reorganized content, and made minor
editorial changes.

06/04/2014 2014.2 Information updated on the topic Exporting the Hardware Definition to SDK
(starting on page 42).

05/07/2014 2014.1 Added two new chapters, Using Tcl Scripts to Create IP Integrator Designs

within Projects and Using the Board Flow in IP Integrator. Moved the Legal
Notices to Appendix B.

l Send Feedback I

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=2

& XILINX

ALL PROGRAMMABLE.

Table of Contents

REVISION HISTOTY ..ttt h ket e bbb et et be e r et e s es
Chapter 1 Designing IP SUDSYSTEMSc.iiiiiieiieisieere ettt ettt st sbe et e st b e e et e e esanaesenaesaeas
INEFOAUCHION ..ttt bbbt b bttt h et e b bttt b et s e b et st et b et et e b bt e e
Chapter 2 Creating @ BlOCK D@SIGN.......c.ciiiiiiieicine ettt ettt
OVEIVIBW ..ottt sttt h bt h st h bt e st e st e a e bt e bt e bt e 4o b et ea s ea b eh e eb e e bt eb e e e et et et en e eaeeb e e bt ebe st et et e s enteneeneenis
CrEATING @ PrOJECT ..ot b et h ettt b et bbbt b et b et eb et e st bt e bt b e b e
Designing With IP INTEGIatOrc.ciiirieieiiictee ettt b es
MaKING CONNECLIONS ...ttt ettt b et b ettt a bbbt a bt nn bt e en s es 17
Re-arranging the DeSIGN CanVascc.ceieirieinieinicirietstet ettt ettt st b ettt a ettt b et ns 37
RUNNING DESIGN RUIE CHECKS ...ttt 41
Chapter 3 Creating @ MEMOTY IMapc.couriiiireeire ettt ettt 42
OVEIVIBW ...ttt ettt h bbbt b et et et e st e bt e a e e bt e bt s 4 e b et e st e st ehe e bt eh e e b e ne e s et e st en e en e eb e ebeebe st e bentenn et eneereas 42
The Address Eitor in IP INTEGIator ..ottt 43
Chapter 4 Working With BIOCK D@SIGNS......c.coueiiiiiriiiriiieieeierietes ettt sttt e b 55
OVBIVIBW ...ttt b et b et bbbt s b s bt d bt b st b et e bt e bt e b et e bbb e b e s b et en e 55
GeNErating OULPUL PrOTUCESc.ciuiiiiiieiiieieeeeste ettt sttt b ettt b et st et et e b e s b et enessene 55
Integrating the Block Design into @ TOP-LeVel DeSIGN......c.coueiiiiriiirieiniceicneee e 56
Creating a Block-Design Outside Of the Project........ccciireieeec e 58
PaCkaging @ BlOCK DESIGN.....oiuiuiiiiieieieieieee ettt sttt b ettt b ettt e bbb e bt e et et nes 62
Exporting the Hardware Definition t0 SDK ..ot 62
Adding and Associating an ELF File to an Embedded Designcccoeiiiriniiniiineneee e 65
Setting the Block Design as an Out-of-Context (OOC) MOAUIE.......cccoeiriiririeiinirereeeee et 71
Chapter 5 Parameter Propagation in IP INt@grator ..o 75
OVEIVIBW ...ttt bbbttt bbbt bbbt s b e bt s bt bbb sttt e bt b et e b et e b et b et bt s b e e bt en e 75
BUS INTEITACES ...ttt et b e bbbt oAbt b b e R e b b et e e b b et et et e b et et e b e et et e s e s 76
How Parameter Propagation WOTKS ..ottt ns 81
Parameters in the CustomMizZation GULL.........ccouiucuiiiiiiciee ettt 82
Example of @ Parameter MISMatCh ...ttt 84

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 3
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=3

& XILINX

ALL PROGRAMMABLE.

Chapter 6 Using the ILA to Debug IP INtegrator DESIGNS........cccovueueirrieueininieeireeeieesee ettt 86
OVBIVIBW ..ttt bttt h e bbbt b et e b e b et h s bt e bt e b st et e st e b et b ea b e b et eb et b et e b et bt e st nnene 86
Using the HDL Instantiation FIOW in IP INt@Qrator.......ccciiiiiieirieireire ettt 86
Using the Netlist Insertion FIOW in IP INT@GIator ..ottt 92
Connecting to the Target HardWarec.cooiiiiieiccec ettt 103

Chapter 7 Using Tcl Scripts to Create Block Designs Within Projectscccoeireireinenneneereeseeseesee e 109
OVEIVIBW ...ttt bt e et h ettt e b st b et e bt b et e bt h et bt bt e bt e b et e bt st eb e et st et esenb et et eaes 109
Create a Design in the Vivado IDE GUI.......c.cccoiiiiiiiieceneceree ettt 109
Save the Vivado Project Information in @ Tl File ..ot 109

Chapter 8 Using Non-Project Mode in IP INt@Grator ..o 112
OVEIVIBW ...ttt h bbbt h et h et s e b st b et e bt h e e b et e bt e b e s e b et e bt et e b et eb e st eb e et e st et enenb et nnenes 112
Creating @ FIOW in NON-Project MO ..ottt 112

Chapter 9 Updating Designs for @ NEW RelEaSE...........c.ciriiriiiiiiniiiciee et 114
OVEIVIBW ...ttt b et h s h et h e h s e st e b st b et e bt h et e b et e b et e bt e bt s e bt et e b et e bt st eb e et e st et enenb et nn s 114
Upgrading a Block Design in Project MOE ..ottt 114
Upgrading a Block Design in NON-ProjeCt MOAe.........cccoriieiiriieiineeereeese ettt 121

Chapter 10 Revision Control for IP Integrator DESIGNS........ccovurueiririeieinirieierrie e 122
OVEIVIBW ...ttt h ettt bbbt bt e s e st e b e h et st e bt b e e e b et e bt e b e s e bt s e bt et eb et eb e et eb e et e st et ene et eneneenes 122
Design Files Needed to be Checked In for Revision CONtIOl.........ccoiviiirieinieinieinieeseeeere e 123
Creating a Block Design for Use in @ Different Project ... 124
Importing an Existing Block Design into a Different Vivado IDE Projectcccccovreinnrecnninccnnieeceseeene 124

Chapter 11 Using Third-Party SYNthesis TOOIScccoiiiiiriiriiieierieierieeeese et s 128
OVEIVIBW ...ttt b bbb bbbt b et h s b e s b s bbbt b bbbt eb et b et b et en s 128
Creating a Design Check Point (DCP) File for @ BIOCK D@SIGNc.ccvueueiririeiiinirieieeresieieeieice e 128
Create a Verilog or VHDL Stub File for the BlOck DeSIgNcc.cciiirieieininicerieeernicee e 129
Create a HDL or EDIF Netlist in the Synplify ProJECt.......cciveiieireeeeeeeee s 130
Create a Post-Synthesis Project in Vivado and IMplement..........ocovirinieinnieeeeeeeeseese s 131
Add TOP-LeVEl CONSTIAINTSviiiiicere ettt ettt et n e 133
Add ELF File (If PIrESENL) ...uiieeieiiieieeee ettt ettt b ettt b ettt et be ettt b et be s 133
IMPIEMENT TNE DESIGN.c..niiiiiieiiieee ettt sttt sttt e st st e st et et et et e b e e e be e ebe e esestenesaenesens 134

Chapter 12 Using the Board FIOW in IP INt@grator.......coeieeiiiiieieeeeecree et 135
OVEIVIBW ...ttt h bt h s h 4o h b s e st e b e s e a4 e st e b e e e b e a e e b em e e b et eh et eh e s e bt b eb et es e ebebe et e st et ene et et neenes 135

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 4
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=4

& XILINX

ALL PROGRAMMABLE.

SElECt @ TArGET BOAIc.iiiiieiiireeie ettt ettt 135
Create a Block Design t0 use the BOArd FIOWc.ccuveirieirieirieiseiseeeeee ettt 136
Complete Connections iN the BIOCK DESIGN......c.ciiiirieirieirieisieses ettt s et nes 141
Appendix A AddItioNal RESOUICES........ccooviuiiiiieicirecer ettt 143
XIIINX RESOUICES ...ttt bbb bt h et bt b e bt b e st b e stk e st e b e st e b et e b et e b et e bt et e b et e b e saesenene 143
SOIULION CONEEIS. ...ttt b et b b bbbt b bt e ke b et b bt e bt s b bttt be s 143
RETEIENCES ..ttt ekttt b st b e b et b e b e s e e s e b e s et b e b e s e a e e s ek e b en e s et e s ene et et ebene s ebeseneesetas 143
APPENIX B LEGAI NOTICES ...ttt ettt n et n e 145
Please Read: IMportant Legal NOTICESccuoriiiiiiriicirete ettt 145

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 5
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=5

& XILINX

ALL PROGRAMMABLE.

Chapter 1 Designing IP Subsystems

Introduction

As FPGAs become larger and more complex, and as design schedules become shorter, use of third party IP and
design reuse is becoming mandatory. Xilinx® recognizes the challenges designers face, and to aid designers
with design and reuse issues, has created a powerful feature within the Vivado® Design Suite called the Vivado
IP integrator.

The Vivado IP integrator feature lets you create complex system designs by instantiating and interconnecting IP
from the Vivado IP catalog on a design canvas. You can create designs interactively through the IP integrator
canvas GUI or programmatically through a Tcl programming interface. Designs are typically constructed at the
interface level (for enhanced productivity) but may also be manipulated at the port level (for precision design
manipulation).

An interface is a grouping of signals that share a common function. An AXI4-Lite master, for example, contains
a large number of individual signals plus multiple buses, which are all required to make a connection. If each
signal or bus is visible individually on an IP symbol, the symbol will be visually very complex. By grouping these
signals and buses into an interface, the following advantages can be realized. First, a single connection in IP
integrator (or Tcl command) will make a master to slave connection. Next, the graphical representation of this
connection will be simple — a single connection. Finally, Design Rule Checks (DRCs) that are aware of the
specific interface can be run to assure that all the required signals are connected properly.

A key strength of IP integrator is that it provides a Tcl extension mechanism for its automation services so that
system design tasks such as parameter propagation, can be optimized per-IP or application domain.
Additionally, IP integrator implements dynamic, runtime DRCs to ensure, for example, that connections
between the IP in an IP integrator design are compatible and that the IP themselves are properly configured.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 6
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=6

& XILINX

ALL PROGRAMMABLE.

Chapter 2 Creating a Block Design

Overview

This chapter describes the basic operations and functionality of IP integrator.

Creating a Project

While entire designs can be created using IP integrator, the typical design will consist of HDL, IP, and IP
integrator block designs. This section is an introduction to creating a new IP integrator-based design.

As shown in the figure below, you start by clicking on Create New Project in the Vivado® IDE graphical
user interface (GUI) to create a new project. You can add VHDL or Verilog design files, any custom IP,
and other types of design source files to the project using this wizard.

o]

Open Project Open Bxample Project

Quick Start

Tasks

Manage IP Open Hardware Manager Xilinx Tcl Store

Information Center

2 b @

Documentation and Tutorials Quick Take Videos Release Notes Guide

Figure 1: Creating a New Project

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 7
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=7

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

As shown in the figure below, you can also select the target device or a Xilinx target board. Vivado tools
also support multiple versions of Xilinx target boards, so carefully select your target hardware.

-

#- New Project [53 |
Default Part
Choose a default Xilinx part or board for your project. This can be changed later. ‘

Select: @& Parts |@ Boards

4 Filter

Vendor: All hd

Display Name: | All -

Board Rev: Latest hd

Reset All Filters

Search:
Display Name Vendor Board Rev Part I/O Pin Count File Version
@ MicroZed Board em.avnet.com f @ xc7z010clg400-1 400 1.1
@ ZedBoard Zynq Evaluation and Development Kit em.avnet.com d & xc7z020clg484-1 484 1.2]
@ Artix-7 AC701 Evaluation Platform xilinx.com 1.1 i xc7a200tfbga76-2 676 1.1 .
“ Kintex-7 KC705 Evaluation Platform dlinecom [1.1 |8 xc7k325tg
@ virtex-7 VC707 Evaluation Platform xilinx.com 1.1 i xc7vx485tffg1761-2 1,761 1.1
@ Virtex-7 VC709 Evaluation Platform wilinx.com 1.0 @ xc7vx600tfgl1761-2 1,761 1.4
@ virtex UltraScale YCU107 Evaluation Board xilinx.com A @ xovu095-ffvd1924-2-e-es1 1,924 1.2
@ ZynQ-7 ZC702 Evaluation Board xilinx.com 1.0 @ xc7z020clg484-1 484 1.1
@ 7v¥NQ-7 ZC706 Evaluation Board xilinx.com 11 @ xc7z045ffga00-2 a00 1.1
] i} ' =

I < Back ” Next > Finish

Figure 2: Choosing a New Project Target Device

Note: You can perform the same actions by using the following Tcl commands. When displaying the Tcl
commands in this document, the symbols< > are used to surround parameters that are specific to your
design. The < > symbols should not be included in the command string.

The Tcl equivalent commands are:

create project xx <your directory>/xx -part xc7k325tffg900-2
set property board part Xilinx.com:kc705:part0:1.0 [current project]
set property target language VHDL [current project]

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 8
UG994 (v2014.4) November 19, 2014 I—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=8

& XILINX

ALL PROGRAMMABLE.

Creating a Block Design

Designing with IP Integrator

You create a new block design in the Flow Navigator by clicking on Create Block Design under the IP

Integrator heading.

g project_3 - [C/bugs/09122013/736613/project_3/project_3.xpr] - Vivado 201

File Edit Flow
P A]

Tools

Flow Mavigator

My EA pig
< =i

4 Project Manager
ﬁ Project Settings
(" Add Sources
1F 1P catalog

4 IP Integrator

Hp

3 Create Block Design

Window Layout View Help
2 P ¥ H | L E | efault Layout

ks Project Manager - project_3

Sources
n i 3 -
A= ek B|E

-~ Design Sources
+H Constraints
—1- Simulation Sources

I Open Block Desi ate Block Design
Generate Block

Create and add an IP subsystem to the project.

Figure 3: Creating a Block Design

The Tcl equivalent command is:

create bd design “<your design name>"

Re-sizing the IP Integrator Diagram

Once the design is created, a canvas is presented that you can use to construct your design. This canvas can be
re-sized as much as possible by re-sizing panes in the Vivado IDE GUL It is possible to move the diagram to a
separate monitor by clicking on the Float Window button in the upper-right corner of the diagram. You can

also double click on the Diagram tab at the upper-left corner of the diagram to increase the size of the
diagram. When you double click the tab again, the view returns to the default layout.

Changing Layers

To display the layers, click the top-left icon in the Diagram window, as shown by the red circle in the following
figure. You can select the Attributes, Nets and Interface connections that you want to view or hide by checking

or un-checking the boxes against these.

Designing IP Subsystems Using IP Integrator

www.xilinx.com

UG994 (v2014.4) November 19, 2014

l Send Feedback I 9

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=9

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

&= Diagram X | B Address Editor X

Block Design Options c

Layers | Colors

=
pig 5

=Hm| Attributes

~{"] Pin tie offs

|| Pins without parameter propagation
Mark debug

| | Display pins of hidden nets and interface
=HV] Nets

=] Clock Nets

- ~¥] = /microblaze_o_clk

={¥] Reset Nets

T frst_clk_wiz_1_100M_mb_reset

: T frst_clk_wiz_1_100M_bus_struct r
T /mdm_1_debug_sys_rst

T freset 1

T [rst_clk_wiz_1_100M_peripheral_a
‘W] T Jrst_clk_wiz_1_100M_interconnect
Other Nets

=+ Interface Connections
AXT4-Memory Map Lite
~|¥| Others

T ER R

s
=

FCREQE SN L O

Figure 4: Viewing/Hiding Information on the IP Integrator Canvas

Changing the Window Background Color

You can change the background color of the diagram canvas from the default white color. As shown in the
following figure, you can click the Block Design Options >Colors button in the upper-left corner of the
diagram to change the color.

Designing IP Subsystems Using IP Integrator ~ www.xilinx.com Send Feedback 10
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=10

& XILINX

ALL PROGRAMMABLE.

o Diagram X
+[]| Block Design Options

o Layers | Colors

Item

Backaround

Selection

Cell Text

Cell Border

Cell Fill

Hierarchy Fill
Expanded Fil

Pin text

Part Text

Mets

AXI4-Memory Map Connection
AXI4Hite Connection
AXI4-5tream Connection
AXIL3 Connection
Interface Connection
Buses

Ports

Port Fill

Interface Port
Interface Port Fil
Destination Cell
Comment Border
Comment Text

Figure 5: Changing the IP Integrator Background Color

Color

1255, 255, 255
B 156, 139, 37
O, 0,0

B 3, 110, 158
[184, 209, 235
[164, 189, 215
1250, 253, 254
N, 0,0
O, 0,0

B 15, 34, 53
B3, 110, 158
B 3, 110, 158
B3, 110, 158
B 3, 110, 158
B3, 110, 158
B 70, 156, 185
B 15, 34, 53
[]221, 212, 208
B 42, 94, 111
[]221, 212, 208
[200, 153, 0
., 0,0
O, 0,0

Creating a Block Design

Notice that you can control the colors of almost every object displayed in an IP integrator diagram. For

example, changing the background color to 240,240,240 as shown above makes the background light gray. To

hide the Block Design Options, either click the close button in the upper-right corner, or click the Block

Design Options button again.

Using Mouse Strokes and the Left-Button Panel

A northwest stroke (lower-right to upper-left) is Zoom Fit
A southwest stroke (upper-right to lower-left) is Zoom In
A northeast stroke (lower-left to upper-right) is Zoom Out

A southeast stroke (lower-right to upper-left) is Zoom Area

Designing IP Subsystems Using IP Integrator www.xilinx.com

UG994 (v2014.4) November 19, 2014

l Send Feedback I 1

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=11

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

The toolbar menu on the left side of the design canvas allow the following commands to be invoked:

w ——> Block Design Options
3| ——» ZoomlIn

@y —» Zoom Out

| ————» Zoom Fit
———p Select Area
— > Fit Selection
—— > Auto Fit Selection
——p Search

—» AddIP

— > Make External
——p Customize Block
——p Validate Design
—» Regenerate Layout
——— > Optimize Routing
—» Show Interface Connections Only

XY YL RN

Figure 6: IP Integrator Action Buttons

Adding IP Modules to the Design Canvas
You can add IP modules to a diagram in the following ways:

1. Right click in the diagram and select Add IP. A searchable IP Catalog opens.

Search:
1
Name VLNV
iF 3GFF LTE Channel Estimator xilinx.com:ip:lte_3gpp_channel_estimator:2 =
iF 3GFP LTE MIMO Decoder xilinx.com:ip:lte_3gpp_mimo_decoder:3.0
iF 3GFF LTE MIMO Encoder xilinx.com:ip:lte_3gpp_mimo_encoder:4.0
iF 3GPPLTE Turbo Encoder xilinx.com:ip:tcc_encoder_3gpplte:4.0
iF 3GPP Mixed Mode Turbo Decoder xilinx.com:ip:tcc_decoder_3gppmm:2.0
iF 3GPP Turbo Encoder xilinx.com:ip:tcc_encoder_3gpp:5.0
iF 7 Series Integrated Block for PCI Express xilinx.com:ip:pcie_7x:3.0
i{F Accumulator xilinx.com:ip:c_accum:12.0
i{F Adder/Subtracter xilinx.com:ip:c_addsub:12.0
iF AHB-Lite to AXI Bridge xilinx.com:ip:ahblite_axi_bridge:3.0
{F Aurora 8B10E xilinx.com:ip:aurora_8b10b:10.2
iF Aurora 64BGGE xilinx.com:ip:aurora_g4b66b:9.2
{F AXI-Stream FIFO xilinx.com:ip:axi_fifo_mm_s:4.0 -
4] =]
Select and press ENTER. or drag and drop, ESC to cancel |

Figure 7: Opening the Vivado IP Catalog

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 12
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=12

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

By typing in the first few letters of the IP name in the Search filter at the top of the catalog, only IP modules
matching the search string are displayed.

O TIP: Different fields associated with an IP such as Name, Version, Status, License, Vendor VLNV etc. can be
enabled by right-clicking in the displayed Header column of the IP Catalog and enabling and disabling the

appropriate fields.
Search: Imb (2 matches)
1
Name VLNV
iF LMB BRAM Controller xilinx.com:ip:Imb_bram_if_cntlr:4.0
iF Local Memory Bus (LMB) 1.0 xilinx.com:ip:Imb_v10:3.0
4 m =
Select and press ENTER or drag and drop, ESC to cancel |

Figure 8: Using the Search Filter in the IP Catalog

2. To add a single IP, you can either click on the IP name and press the Enter key on your keyboard, or double
click on the IP name.

3. To add multiple IP to the Block Design, you can highlight the additional desired IP (Ctrl-click) and press the
Enter key.

I= Diagram X

*D‘ % design_1
Q| (@ Designer Assistance available.
-
B Imb_bram_if_cntlr_0

SR || BT

-,| —IMB_Ck BRAM_PORT |
= —LMB_Rst
By -—
Q LMB BRAM Controller
ﬁ Imb_vw10_0
o | [l[Reme_m

—ime ok mB_sLo4 ||

" —5Y5_Rst

] .

Local Memory Bus (LMB) 1.0

@ H . i
al

Figure 9: Adding Multiple IP at the Same Time

4. You can also add IP by clicking on the Add IP button on the left side of the canvas.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 13
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=13

& XILINX

ALL PROGRAMMABLE.

Alternatively, IP can also be added by clicking on the link Add IP, in the green banner towards the top of the IP

integrator canvas.

Figure 10: Adding IP by Clicking the Add IP Icon

&= Diagram X
#[| & design_1
Q| (@ Designe

Imb

Creating a Block Design

&= Diagram X

"D| %, design_1

S At

(i) This design is empty. To get started, Add IP from the catalog.

Figure 11: Adding IP by Clicking Add IP Link

You can also add an IP by selecting the IP in the IP Catalog and dragging and dropping it in the canvas.

For the actions described above, the IP is placed near the cursor location when the Add IP command is

invoked.

The Vivado IP catalog entry in the Flow Navigator can also be displayed and used. If you are using dual

monitors, you can open the IP catalog in its own monitor. If you are using a single monitor, you can float the IP

catalog to move it away from the diagram. To add IP from the main IP catalog, you can drag and drop a
selected piece of IP from the IP catalog onto the diagram.

CAUTION! If you double click on an IP in the IP Catalog, that IP will be added to the Vivado project, but

not to the block design.

Designing IP Subsystems Using IP Integrator
UG994 (v2014.4) November 19, 2014

www.xilinx.com

l Send Feedback I 14

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=14

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

Hierarchical IP in IP integrator

Some IP in the IP Catalog are hierarchical, and offer a child block design inside the top-level block design to
display the logical configuration of the parent. These hierarchical blocks let you see the contents of the block,
but do not let you edit the hierarchy. Changes cannot be made to the child block design. Changes can only be
made in the Re-customize IP dialog box of the IP.

As an example, the AXI Ethernet Subsystem is a Hierarchical IP. You would instantiate this IP just as any other IP
by searching and selecting the IP from the IP catalog.

Search: AXI Ether (3 matches)
A1
Name VLNV
iF AXI 10G-Ethernet Subsystem xilinx.com:ip:axi_10g_ethernet:2.0

axi_ethernetlite:3.0

{F AXI EthernetLite xilinx.com:

‘ i} A=

Select and press ENTER or drag and drop, ESC to cancel

Figure 12: Adding a hierarchical IP to the block design

When the IP has been instantiated in the block design, double click on it to re-customize it. This opens the Re-
customize IP dialog box where parameters of the IP can be configured.

.

1F Re-customize IP [s3 |
AXI Ethernet Subsystem (6.2) '
ﬁﬂ Documentation |) IP Location

["] Show disabled ports Component Name | axi_ethernet_0
Board | Physical Interface | MAC Features | Network Timing | Shared Logic

Generate Board based I0 Constraints

Associate IP interface with XILINX.COM:KC705:PART0:1.1 Board interface

—s_ani
= s _avis_ted IP Interface Board Interface
i e rid e [ETHERMET Custom -
s _ani_lite_resetn ot
g r_axis_rs — [MDIO Custom -
=(s_axi_lite_clk a d'_'
faris_clk e H DIFFCLK Custom ~
X armii
=—ari_txd_arstn e PHYRST_N Custom v
=jaxi_txc_arstn oo
g intermpt
=l axi_rxd_arstn
h phy _rst_n
—faxi_ris_arstn
=gtx_clk
=lref_clk
Fl Dl =

’ 0K] I Cancel

Figure 13: Setting parameters of the hierarchical IP

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 15
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=15

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

The child block design inside the AXI Ethernet Subsystem IP can be seen by right-clicking and selecting the
View Block Design option from the menu.

I, - |
H_;-) andil_ethernet_0_dma
kot B M_ax1_5G-H
bt i _prsk #f s pa_ume n_axJ_nan-.E-
4. + _I— e R e
. = Block Properties... Ctrl+E u
Highlight bl
i
= # Delete Delete [o
L 1 Copy Ctrl+C
L Crl+V B
2, Search... Ctrl+F |
L Select All Ctrl+A
E & AddIP... Ctrl+I |
feraBare Y o
[@ Run Connection Automation... -
sumin| % Customize Block... B
T api_ck . .
i posat_n Orientation 4
L e wee | @ IP Settings... L
™ | @ validate Design E6 B
i et oy View Block Design l} =
reset H
Create Hierarchy...

Figure 14: Viewing the child block design under the hierarchical IP

This opens a block design window showing the child level block design. Again, the block design cannot be
directly edited.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 16
UG994 (v2014.4) November 19, 2014 I—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=16

& XILINX

ALL PROGRAMMABLE. Creating a Block Design
¢ Block Design - bd_0 o | @ | = |
Design =0 E= Diagram | & Address Editor]

a =
Q= 3= 3| & bd_0 Read-only
ig. bd_0 a -
[H5 External Interfaces A y =
[Interface Connections - [iy
FEHE Ports a; o
o s 5,
-4 eth_buf (AXI Ethernet Buffer:2.0) g oy
(-4F eth_mac (Tri Mode Ethernet MAC:8.3) LK [
EMAL_RESET_DONE_INT
ﬁ"- —AC_RACCH LOOEOINT 5 AXLETENACH
> PO PMASTATLS_WECTOR 15:41] TH_AKES_MAC -k
[-§ TR0 Al A0SR+
| _STR_TS0_APESETH AL_STR_RAS -}
== e SR T AcLk mdi_tn topeF|
I+ {a_STR_TAC_ARESETH TELT]
A _STR_RSD_ACLK g =
|_STR_RXD_AREETH s a1 63 1] p——
= _sTR s ACLK ey ddnfzaa1])
|_STR_RXS_ARESETH RESETFCS AR
(LK ENABLE_IN RESET
sttt i dar[270] PHTAST s pvr=n
P
itk
o
et
[s d s 0 _w00
El Design | = Signals | @ Board P | | H
Properties | Brcr—u
« [. =
B e ica
— Sl 5] S
P
e g manl
Ao et R,
¥ood_ra ol N
ek [L i
st H:g
_-—-&:::: r_aerks_filir {0
—-luru_.u.«:m "“':
et ok [T ST
e
o D mac va
] v
System Net: eth_buf_te_ifg_delay

Figure 15: Child block design of the Hierarchical IP

O TIP: If you re-customize the IP while the child-level block design is open, it will be closed.

Making Connections

When you create a design in IP integrator, you add blocks to the diagram, configure the blocks as needed,
make interface-level or simple-net connections, and add interface or simple ports. Making connections in IP
integrator is simple. As you move the cursor near an interface or pin connector on an IP block, the cursor
changes into a pencil. You can then click on an interface or pin connector on an IP block, hold down the left-
mouse button, and then draw the connection to the destination block.

As shown in the figure below, an interface-level connection is indicated by the more prominent connection box
on a symbol.

Clicking on the + symbol on a block expands the interface and displays the associated signals and buses.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 17
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=17

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

Imb_bram_if_cntir_0

||| 4-sLmB
t=B=eHed BRAM_PORT <= |||
—LMB_Rst

LMB BRAM Controller

Figure 16: Connection Box on a Symbol

A signal or bus-level connection is shown as a narrow connection line on a symbol. Buses are treated identically
to individual signals for connection purposes. As shown in the figure below, when you are making a
connection, a green check box appears near any possible destination connections, highlighting the potential
connections.

Imb_v10_ 0

[]|4FLMB_M

LMB_Clk LMB
SYS_Rst \ b bram_if_cntlr_0
Local Memory Bus (LMB) #SLMB

LMB_Clk BRAM_PORT 4 |||
LMB_Rst

Connect from 'LMB_SI_Q' interface
to 'SLMB' interface

Controller

Figure 17: Signal or Bus Connection on a Symbol

As shown in the following figure, when signals are grouped as an interface, you can expand the interface in
order to make connections to individual signal or bus pins.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 18
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=18

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

Click on the + sign, which
expands the interface, then
select individual signals

b_bram_if_cntlr_1

B Apus|(1
= pLMB_WriteDBus[0:31]
— pLMB_AddrStrobe

— pLMB_ReadStrobe

— »LMB_WriteStrobe

= pLMB_BE[0:3]

= 4SI_DBus[0:31]
4SI_Ready

<SI_Wait

<SI_UE

4SI_CE

LMB_Clk

LMB_Rst

BRAM_PORT <

le o |

Imb_v10_1

!] 4-LMB_M
iuwta_cm LMB_S|_0 e || s

—|SYS__%t

L&

Figure 18: Expanding the Interface before Making a Connection

There are three ways to connect signals and interfaces to external I/O ports:
e Make External
e Create Port
e Create Interface Port

1. As shown in the following figure, to connect signals or interfaces to external ports on a diagram, you first
select a pin, bus, or interface connection. You can then right-click and select Make External. You can also
use Ctrl-click to select multiple pins and invoke the Make External command for all pins at one time.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 19
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=19

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

Imb_bram_if cntlr_0

||| 4=sLMB
LMB_Clk BRAM_PORT < |||

& Block Pin Properties... Ctrl+E
x Delete
[Copy Ctrl+C
Ctrl+V
%, Search... Ctrl+F
% Select All Ctrl+A
i AddIP.. Ctrl+l
“x Make External L\\s Ctrl+T
¥ validate Design Fa
Start Connection Mode Ctrl+H

Make Connection...

Create Hierarchy...

Create Comment

Create Port... Ctri+K

Create Interface Port... Ctrl+L
@ Regenerate Layout

—| ™ Save as FDF File... T

Figure 19: Making External Connections

This command is used to tie a pin on an IP to an I/O port on the block design. IP integrator simply connects the
port on the IP to an external 1/0.

2. For the second method of making a connection, you can right-click and select Create Port, as shown in the
following figure. This feature is used for connecting individual signals, such as a clock, reset, and
uart txd. Create Port gives you more control in terms of specifying the input/output, the bit-width and
the type (clk, reset, data) etc. In case of a clock, you can also specify the input frequency.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 20
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=20

& XILINX

ALL PROGRAMMABLE.

Creating a Block Design

Imb_bram_if_cntlr_0

LMB_Clkc BRAM_PORT < |||

| BB Dt

Imb_v10_0

& Block Pin Properties...

LMB_SI_0<- ||| j Copy

[o

Local Memory Bus (LMB) 1.0 a,
& Select All

¥ Add IP...

®% Make External
¥ Validate Design

Search...

Start Connection Mode
Make Connection...

Create Hierarchy...

Create Comment

Create Port...

Create Interface Port...
@ Regenerate Layout

® Save as PDF File...

Ctrl+E
Delete
Ctrl+C
Ctrl+V
Ctrl+F
Ctri+A
Ctrl+I
Ctri+T
F6

Ctrl+H

Ctrl+K
Ctrl+L

Figure 20: Creating a Port

In the Create Port dialog box, you specify the port name, the direction such as input, output or bi-

directional, and type such as clock, reset, interrupt, data, clock enable or custom type. You can also create a
bit-vector by checking the Create Vector field and then selecting the appropriate bit-width. When the type

is selected as clock, you can also specify the frequency of the clock.

-

#L Create Port |E|
Create port and connect it to selected pins and ports ‘
Port name: R
Direction: Input A
Type: Reset =
[] create vector: from 315 to o
Frequency (MHz):

Connect to 'LMB_Rst' selected pin
OK l ’ Cancel

Figure 21: Create Port dialog box

Designing IP Subsystems Using IP Integrator www.xilinx.com

UG994 (v2014.4) November 19, 2014

| Send Feedback I 21

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=21

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

3. For the third connection method, you can right-click and select Create Interface Port, as shown in the
following figure.

Imb_bram_if_cntlr_0

& Block Interface Properties... Ctrl+E
Imb_v10_0 - iy Delete
& copy Ctrl+C
& Ctrl+V
2, Search... Ctrl+F
b Select All Ctrl+A
Local Memory Bus (LMB) 1.0 & AddIP... Ctrl+l
“x Make External Ctrl+T
[Validate Design Fe
Start Connection Mode Ctrl+H

Make Connection...

Create Hierarchy...

Create Comment

Create Port... Ctrl+K

Create Interface Port... Ctrl+L
@ Regenerate Layout

® Save as PDF File...

Figure 22: Creating an Interface Port

This command is used to create ports on the interface pins which are groupings of signals that share a
common function. For example, the LMB_M and LMB_SI_0 are interface pins in the figure above. The Create
Interface Port command gives more control in terms of specifying the interface type and the mode
(master/slave).

In the Create Interface Port dialog box, you specify the interface name, the vendor, library, name and version
(VLNV) field, and the mode field such as MASTER or SLAVE.

#L Create Interface Port [53 |
Create interface port ‘
Interface name: |EIE
VLMW yilime.com:interface:Imb_rtl:1.0 -
Mode: SLAVE -

[] Connect to selected interface SLMB
[OK] [Cancel

Figure 23: Create Interface Port dialog box

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 22
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=22

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

You can double-click on external ports to see their properties and modify them. In this case, the port is a clock
input source, so you can specify different properties such as frequency, phase, clock domain, any bus interface,
the associated clock enable, associated reset and associated asynchronous reset (frequency) associated with it.

-

1F Customize Port =7 |
intf_clock_v1_0 (1.0) '

Freq Hz 100000000

Phase 0.000

Clk Domain design_1_LMB_Clk

Associated Busif
Associated Clken 0
Associated Reset

Associated Async Reset |0

’ OK ” Cancel]

Figure 24: Customizing clock Port Properties

On an AXI interface, double clicking on the port shows the following configuration dialog box.

-

1F Customize Port 23|

aximm (1.0) '\\l,

Page 0 | Page 1

Protocol AX14 -
Data Width 32 hd
Addr Width 32 [1..64]

Maximum Burst Length | 256

Hum Write Outstanding | 1 [0..32]
Hum Read Qutstanding |1 [0..32]
Supports Narrow Burst |1
Id Width 0

Read Write Mode

(@) READ_WRITE () READ_ONLY () WRITE_ONLY

Frequency (Hertz) 100000000
Clock Domain
Phase 0.000

’ 0K] ’ Cancel

Figure 25: Customizing Port Properties of aximm

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 23
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=23

& XILINX

ALL PROGRAMMABLE.

Interrupt handling in IP Integrator

Interrupt handling in the Vivado Design Suite IP Integrator tool depends on the processor being used. For a
Zynq® processor the Generic Interrupt Controller block within the Zynq processor handles the interrupt. For a
MicroBlaze™ processor the AXI Interrupt Controller IP must be used to manage interrupt. Regardless of the

Creating a Block Design

processor used in the design, a Concat IP is used to consolidate and drive the interrupt pins.

-

axi_intc_0

= s_axi

xiconcat_0

s_axi_adk '
interrupt < l

-

-

s_axi_aresetn

dout{1:0)
in1[0:0)

intr(0:0)

AXI Interrupt Controller

Concat

microblaze_0

—||1<>mramuw
|

=" Micro3laze

Reset

ows < ||}
M ||}
M_AXI_DPg [t L

MicroBlaze

Figure 26: Using a Concat IP to drive interrupt input of the AXI Interrupt Controller

The inputs of the Concat IP are driven by different interrupt sources. Accordingly, the Concat IP needs to be
configured to support the appropriate number of input ports. The Number of Ports field must be set to the
number of interrupt sources in the design as shown in Figure 27. Notice that the width of the output (D,..) is

usually set automatically during parameter propagation.

Designing IP Subsystems Using IP Integrator

UG994 (v2014.4) November 19, 2014

www.xilinx.com

| Send Feedback I 24

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=24

& XILINX

ALL PROGRAMMABLE, Creating a Block Design
ﬁ Re-customize IP 2
Concat (2.1) '

ﬁﬂDocumentation | IP Location

Show disabled ports Component Mame | xlconcat_0

Mumber of Ports 4
(@) Aute) o width |1 &
(@) Auto) Iniwidth |1 6
(@) Aute) m2width |1]
(@) Aute) In3width |1 &
Dout Width {Auta) 4

MOTE: The In0 port is connected to the LSB bits of the output, and
the In[Number of Ports - 1] input port is connected to the M5B bits of the output,

[OK] | Cancel

Figure 27: The Re-customize IP dialog box of Concat

You can configure several of the parameters for the AXI Interrupt Controller. Figure 28 shows the parameters
available from the Basic tab of the AXI Interrupt Controller.

¢ The Number of Peripheral Interrupts cannot be set by the user. This is automatically set during
parameter propagation. This value is determined by the number of interrupt sources that are driving
the inputs of the Concat IP.

e The Fast Interrupt Mode can be set by the user if low latency interrupt is desired.

e The Peripheral Interrupts Type is set to Auto, which can be overridden by the user by toggling the
Auto to Manual. In manual mode, users can specify the custom values in these fields.

e The Processor Interrupt Type field offers two choices: the Interrupt type and depending on the
Interrupt type the other choice is Level type of Edge Type. As an example if the Interrupt type is
Edge Interrupt then the other choice is Edge Type. If the Interrupt type is Level Interrupt then the
other choice is Level type. Users can select if the interrupt source is either Edge triggered or Level
triggered. Accordingly, then can also select whether the interrupt is rising or falling edge and in case of
Level triggered interrupt the interrupt is active high or active low. In IP Integrator, this value is normally
automatically determined from the connected interrupt signals, but can be set manually if necessary.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback | 23
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=25

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

CAUTION! You must ensure that the interrupt inputs of the Concat IP are all of the same type (e.g.
& Edge/Level triggered and Rising/Falling or Active High/Active Low respectively) when consolidating into
the Interrupt Controller.

-

1F Re-customize IP

=

AXI Interrupt Controller (4.1) '
ﬁﬂ Documentation |) IP Location

[] Show disabled ports Component Name | axi_intc_0

Basic | Advanced

Interrupt Usage

Number of Peripheral Interrupts (Auto) |1
Fast Interrupt Mode

D Enable Fast Interrupt Logic

Interrupt Vector Address Register reset value (Auto) | 0x00000010

interrupt £ ||| Peripheral Interrupts Type

I_J Auto 3' Interrupts type - Edge or Level | 0xFFFFFFFF
I_J Auto 3' Level type - High or Low OxFFFFFFFF
I_J Auto 3' Edge type - Rising or Falling OxFFFFFFFF

Processor Interrupt Type

Interrupt type Edge Interrupt ~
Edge type Rising -

[OK] ’ Cancel

Figure 28: Parameters on the Basic tab of the AXI Interrupt Controller

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 26
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=26

& XILINX

ALL PROGRAMMABLE.

Creating a Block Design

1F Re-customize IP
AXI Interrupt Controller (4.1)

ﬁﬂ Documentation) IF Location

[| show disabled ports

interrupt <= |||

Component Name |axi_intc_0

Basic” Adwvanced

Register Usage
Enable Set Interrupt Enable Register
Enable Clear Interrupt Enable Register
Enable Interrupt Vector Register
Enable Interrupt Pending Register

[] Enable Interrupt Level Reqister

Cascade Mode

["] Enable Cascade Interrupt Mode || Cascade Mode Master

Asynchronous Clocks

o,
() Auto)

- Enable Asyncronous Clock operation

Software Interrupts

Mumber of Software Interrupts 0 ¥

[ok

] I Cancel

Figure 29: The Advanced tab options of the Interrupt Controller

Figure 29 shows parameters on the Advanced tab of the AXI Interrupt Controller. Refer to LogiCORE IP AXI
Interrupt Controller (PG099) for details of these parameters.

One option worth mentioning here, is the Asynchronous Clocks option. The AXI Interrupt Controller
determines whether the interrupt sources in a design are from the same clock domain or different clock
domains. In the case of interrupts being driven from different clock domains, the Enable Asynchronous Clock
operation is automatically enabled. In this case, cascading synchronizing registers are added to the interrupt

sources.

O TIP: You can also override the automatic behavior by toggling the Auto button to Manual and setting this

option manually.

Designing IP Subsystems Using IP Integrator

UG994 (v2014.4) November 19, 2014

www.xilinx.com

l Send Feedback I 27

http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_intc;v=latest;d=pg099-axi-intc.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=27

& XILINX

ALL PROGRAMMABLE.

The Designer Assistance Feature of IP Integrator

IP integrator offers a feature called Designer Assistance, which includes Block Automation and Connection
Automation to assist you in putting together a basic microprocessor system by making internal connections
between different blocks and making connections to external interfaces. The Block Automation Feature is
provided when an embedded processor such as the Zynq Processing System 7 or MicroBlaze processor, or
some other hierarchical IP such as an Ethernet is instantiated in the IP integrator block design. You click on the
Run Block Automation link in the banner of the design canvas, as shown in the following figure, for assistance

in putting together a simple MicroBlaze System.

Diagram

Creating a Block Design

"D| # design_1

% (@ Designer Assistance available. Run Block Automation

i uuiase_u

»
&
o

g P&

Il nTERRUPT
Il DEBUG

Micro3laze

Reset

oM |||
ma: |||

MicroBlaze

The Run Block Automation dialog box lets you provide input about basic features that the microprocessor

system needs.

Figure 30: Run Block Automation

#- Run Block Automation

options on the right.

Q| ={«] All Automation (1 out of 1 selected)

(=5
=

Description

Automatically make connections in your design by checking the boxes of the blocks to connect. Select a block on the left to display its configuration

MicroBlaze connection autormation generates local memory of selected size, and caches can
be configured. MicroBlaze Debug Module, Peripheral AXI interconnect, Interrupt Controller, a
clock source, Processor System Reset are also added and connected as needed.

Instance: /microblaze_0

Options
Local Memory:
Local Memory ECC:
Cache Configuration:
Debug Module:
Peripheral AXI Port:
Interrupt Controller:

Clock Connection:

8KB ~

None ~

None -

Debug Only -
Enabled ~

New Clocking Wizard (100 MHz) ~

=
[
Cancel

Figure 31: The Run Block Automation Dialog Box

Designing IP Subsystems Using IP Integrator

UG994 (v2014.4) November 19, 2014

www.xilinx.com

l Send Feedback I 28

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=28

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

Once you specify the necessary options, the Block Automation feature automatically creates a basic system as
shown in the figure below.

Diagram — 0O ax
+ #[| £ design_1 »
O¢| (@ Designer Assistance available. Run Connection Automation
o)
¥ mdm_1
] MBDEBIJGJLJJE
47 Debug_S¥S Rst microblaze_0_local_memory
WM
{:‘; MicroBlaze Debug Module (MDM) ii _LDLMB
_LILMB
.y . 1lf ==
a, |_ microblaze 0 L8
. -RINTERRUPT] LMB_Ret
ﬁ _H _LDEBUG H ; o Lol EE
~ —a Micro3laze e
M_AXT_DP b f
¥ (Reset -
rst_clk_wiz_1_100M
& MicroBlaze S microblaze_0_axi_periph
@ slowest_syne_dk mib_reset
—ext_reset_in bus_struct_reset{0:0] el Bt 1
(] dk wiz 1 —law_reset_in periphenai_reset[0:0] A
@(|l|-+CK N D dk ot mb_debug_sys_rst t_aresetn[0:0]
i reset locked dem_locked pcriphcra_amcm[o:o]F— p—— 500
Clocking Wizard Processor System Reset Lo ack
I microblaze_0_axi_intc
microblaze 0_xlconcat AXI Interconnect
In0[0:0] ol
P R |
Concat
AXT Interrupt Controller
L] 2

Figure 32: A MicroBlaze System Created by Block Automation

In this case, the MicroBlaze System that is created consists of a MicroBlaze Debug Module, a hierarchical block
called themicroblaze 1 local memory that has the Local Memory Bus, the Local Memory Bus Controller
and the Block Memory Generator, a Clocking Wizard, an AXI Interconnect and an AXI Interrupt Controller.

Since the design is not connected to any external I/O at this point, IP integrator offers the Connection
Automation feature as shown in the light green banner of the design canvas in the preceding figure. When
you click on Run Connection Automation, IP integrator provides assistance in hooking interfaces and/or
ports to external I/O ports.

The Run Connection Automation dialog box, as shown in Figure 33, lists ports and interfaces that the
Connection Automation feature supports, along with a brief description of the available automation, and
available options for each automation.

Designing IP Subsystems Using IP Integrator ~ www.xilinx.com Send Feedback 29
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=29

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

#- Run Connection Automation 28

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its configuration
options on the right. ‘

Q| =] All Automation (0 out of 3 selected)

- Description
= “H £ clk_wiz_1 : _
-~ D I Connect Board Part Interface to IP interface.
=
- [= reset Interface: fclk_wiz_1/CLK_IN1_D
=] £F rst_clk_wiz_1_100M
D = ext_reset_in Options

Select Board Part Interface: | sys_diff_clock -

oK Cancel

Figure 33: Listing the Ports and Interfaces the can use Connection Automation

For Xilinx's Target Reference Platforms or evaluation boards, IP integrator knows the FPGA pins that are used
on the target boards. Based on that information, the IP integrator connection automation feature can assist you
in tying the ports in the design to external ports on the board. IP integrator then creates the appropriate
physical constraints and other I/O constraints required for the I/O port in question.

In the MicroBlaze System design shown in Figure 32, the Processor System Reset IP needs to be connected to
an external reset port, and the Clocking Wizard needs to be connected to an external clock source as well as an
external reset. By selecting the appropriate options you can tie the clock and the reset ports to the appropriate
sources on the target board.

4. Run Connection Automation @

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its configuration
options on the right. ‘

@, || All Automation (0 out of 3 selected)

=
(=]

Description

Connect Board Part Interface to IP interface.
iy
=

Interface: /rst_clk_wiz_1_100M/ext_reset_in

Options
Select Board Part Interface: | reset - [\
0K Cancel

Figure 34: Run Connection Automation

You can select the reset pin that already exists on the KC705 target board in this case, or you can specify a
custom reset pin for your design. Once specified, the reset pin is tied to the ext reset in pin of the Proc Sys
Rst IP.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 30
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=30

& XILINX

ALL PROGRAMMABLE. Creating a Block Design
rst_clk_wiz_1_100M
i T
slowest_sync_clk mb_reset
reset [— K wiz 1 ext_reset_in bus_struct_reset[0:0]
Clk_Wiz_ =—aux_reset_in peripheral_reset[0:0] s
" geCLK_IN1_ D clk_outl mb_debug_sys_rst interconnect_aresetn[0:0]
reset locked dcm_locked peripheral_aresetn[0:0]
L _d
Clocking Wizard Processor System Reset

Figure 35: Connecting the reset Pin to the board Reset Pin

The Designer Assistance feature is constantly monitoring your design development in IP integrator.

For example, assume that you instantiate the AXI GPIO IP into the design. The Run Connection Automation link
reappears in the banner on top of the design canvas. You can then click on Run Connection Automation and
the S_AXI port of the newly added AXI GPIO can be connected to the MicroBlaze processor via the AXI
Interconnect. Likewise the GPIO interface can be tied to one of the several interfaces present on the target
board.

4. Run Connection Automation @

Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its configuration
options on the right. ‘

@ | =H¥] All Automation (2 out of 2 selected)

: Description
= 2] £F axi_gpio_0

Connect Board Part Interface to IP interface.

Interface: /axi_gpio_0/GPIO
Options

Select Board Part Interface: | dip_switches_4bits ~
dip_switches_4bits
led_7bits

[ok][concel
ush_buttons_5bits

p
rotary_switch
Custom

Figure 36: Using Connection Automation to Show Potential Connections

In this case, six different choices are presented. The GPIO interface port can be connected to either the Dip
Switches that are 4-bits, or to the LCD that are 7-bits, LEDs that are 8-bits, 5-bits of Push Buttons, the Rotary
Switch on the board, or can be connected to a custom interface. Selecting any one of the choices above will
connect the GPIO port to the existing connections on the board.

Selecting the S_AXI Interface for automation informs you that the slave AXI port of the GPIO can be connected
to the MicroBlaze master. If there are multiple masters in the design, then you will have a choice to select
between different masters. You can also specify the clock connection for the slave interface such as S_AXI
interface of the GPIO.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 31
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=31

& XILINX

ALL PROGRAMMABLE..

Creating a Block Design

-

#% Run Connection Automation @
Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to display its configuration
options on the right. ‘
Q| =+ All Automation (2 out of 2 selected) Description
= 2] £F axi_gpio_0
T Connect Slave interface (/axi_gpio_0/S_AXI) to a selected Master address space.
=

Options
Master: /microblaze_0 (Periph)
Clock Connection (for unconnected clks) : | Auto -
’ 0K] ’ Cancel

Figure 37: Connecting the Slave Interface S_AXI to the MicroBlaze Master

When you click OK on the Run Connection Automation dialog box, the connections are made and highlighted
as shown in figure below.

axi_gpic_0
_EE ohS_AXT
s aiack GRIOZ||
i_aressn
e microblaze_0_lecal_memaory
(MDM) A1 GPIO I
oaDLME
ll{zFnre
[L [3
. DUMBh||
zg ol
M_AXT_DPdh|
' [2
rst_clk_wiz_1_100M microblaze_0_axi_periph
' vest_sync_ck mib_resstp— .
E——)] 2 [FPS00_AKD
bbars_struct_resat] 0] IacLK
-1 Eu_resst_in peripheral_reszt[0:0]m — =
1 mb_debasg_sys_rst interconnect_aresetn] 000] 500 ACLE B)
ﬂ‘ peripheral_aresein[(:(] s ll-m_ﬁ.)(l%}a
T MOL_AXTh i
Processor System Reset MOOACLE [’
L-mu.cm) .
IMD1_ARESETN _microblaze_{)_axi_
Ll dbs_axi
at AXI Interconnect ez i ack
s i gressn
otr(0:0] intern
processor_ok
ﬁm_l’ﬂ

AXI Intemupt Contr

Figure 38: Master/Slave Connections

Enhanced Designer Assistance is available for advanced users who want to connect a Streaming Interface to a
Memory Mapped Interface. In this case IP integrator instantiates the necessary sub-components and makes
appropriate connections between them to implement this functionality. Please refer to Vivado Design Suite User
Guide: Embedded Hardware Design (UG898) for more information on this feature.

Designing IP Subsystems Using IP Integrator www.xilinx.com

UG994 (v2014.4) November 19, 2014

| Send Feedback l 32

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug898-vivado-embedded-design.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=32

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

Using the Signals Tab to Make Connections

IP integrator also provides for an easy way to make connections to clocks and resets via the Signals window.
Once the block design is opened, the Signals window is displayed, as shown below, with two tabs listing the
Clocks and Reset signals present in the design.

I
X

Signals - O

.f_',.\ = =
ey B | |[ES|

=} Clock Domain - design_1_clk_wiz_1_0_clk_outl
== clk_wiz_1/clk_outl (100 MHz)
----- = microblaze_0/Clk
----- = microblaze_0_local_memory/dimb_v10/LMB_Clk
----- = microblaze_0_local_memory/dimb_bram_if_cntlr/LMB_Clk
----- = microblaze_0_local_memory/ilmb_v10/LMB_Clk
----- = microblaze_0_local_memory/ilmb_bram_if_cntlr/LMB_Clk
D rst_clk_wiz_1_100M/slowest_sync_clk
=M= Unconnected Clocks
Lol clk_wiz_1/CLK_IN1_D

Clocks | Resets

£ Sources | E] Design Hierarchy =5 Signals | ¥l Board Fart Interfa..

Figure 39: Signals window in IP Integrator

Selecting the appropriate tab shows all the clocks or resets in the design.

In the Clocks tab Clocks are listed based on the clock domain name. In the figure above, the clock domain is
design_1_clk_wiz_1_0_clk_outl and the output clock is called clk_outl with a frequency of 100 MHz, and is
driving several clock inputs of different IP.

When you select a clock from the Unconnected Clocks folder, the respective clock port in the block design is
highlighted. Right-clicking on the selected clock presents you with several options as shown in Figure 40. In
this case, Designer Assistance is available in the form of the Run Connection Automation command which
can be used to connect the CLK_IN1_D input interface of the Clocking Wizard to the clock pins on the board.
You can also select the Make Connection option, and connect the input to an existing clock source in the
design. Finally, you can tie the pin to an external port by selecting the Make External option.

Other options for switching the context to the diagram and running design validation are also available.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 33
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=33

& XILINX

ALL PROGRAMMABLE. Creating a Block Design
TSL_LIR_WIZ_I__ TUUNSTUWTESL }'IIL_LII\ "|:v
= Unconnected Clocks Q,
1Y clk_wiz_1/CLK_IN1
= axi_gpio_0/s_axi_|.#3 Block Interface Properties... Ctrl+E i
N =1
Delete N
[@ Run Connection Automation... %
4
Make Connection... :; K wiz 1
CIK_WIZ
“% Make External Ctrl+T - ~
Clocks | Resets el JLCLK INL D elk_outl
& Sources | El Design | 2= piagram F4 ! reset locked
Block Interface Properties & Validate Design Fb Clocking Wizard
- = P35 L

Figure 40: Making Connection using the Signals tab

When you select Make Connection, a dialog box pops up if a valid connection can be made.

-

¢ Make Connection =20

/

Select pins to connect to '/clk_wiz_1/clk_outl".

Q EID [microblaze_o_axi_periph
=| ~[]=soo_ac
e | EH] £F microblaze_o_xlconcat
= T

l:l i Ind

=8 m

Hide pins belonging to interfaces

Figure 41: Make Connection dialog box

Selecting the appropriate clock source will make the connection between the clock source and the port/pin in
question.

Connections can similarly be made from the Resets tab. Using the Clocks and Resets tab of the Signals window
provides you with a visual way to manage and connect clocks in the design.

Using Make Connections to Connect Ports and Pins

Connections to unconnected ports or pins can be made by selecting the port or pin in question and then
selecting Make Connection from the right-click menu.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 34
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=34

& XILINX

ALL PROGRAMMABLE, Creating a Block Design
axi_gpio_0
g=5_AXI
s axi_adk GPIo< |||
5_axi_aresetn
& Block Pin Properties... Ctrl+E
g Delete
— & Copy Ctrl+C
i) Ctrl+V
S, Search... Ctrl+F
& Select All Ctri+A
|| & AddIP.. Ctrl+1
Pk Make External Ctrl+T
[Validate Design F6
Start Connection Mode Ctrl+H
Make Connection... % L

Figure 42: Making Connections

If a valid connection to the pin in question exists, then the Make Connection dialog box showing all the
possible sources that the net can be connected to pops-up. From this dialog box you can select the
appropriate source to drive the port/pin in question can be selected.

-

=

#- Make Connection

Select pins to connect to '/microblaze_0_axi_periph/S00_ACLK'".

Q| =F clk_wiz_1

: C! clk_outl

: ‘e locked

=14k microblaze_0_xlconcat

1k &4

Hide pins belonging to interfaces

Figure 43: Making Connections using the Make Connection option

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 35
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=35

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

Making Connections with Start Connection Mode

You can also make multiple connections at once by clicking on a pin and when the pencil shows up dragging
and releasing the mouse.

Figure 44: Using Start Connection Mode to make connections

After the connection is made to the s_axi aclk pin of the AXI BRAM Controller in the figure above, the Start
Connection Mode will offer to connect the pin to the s_axi_aclk pin of AXIIIC. In this way connections from the
same source pin can be made to multiple different destinations at once.

Interfacing with AXI IP Outside of the Block Design

There are situations when an AXI master is outside of the block design. These external masters are typically
connected to the block design using an AXI Interconnect. Once the ports on the AXI interconnect are made
“external”, the address editor is available and memory mapping can be done in these cases.

As an example, consider the block design shown below.

Diagram — O o
#(]| 4 design_2 »
ar ’ =l
axi_bram_ctrl_0
[o% = = axi_bram_ctrl_0_bram
) = +axT - BRAM_PORTA - || s || 4= BRAM_PORTA
G i BRAM_PORTB < || | || 4= BRAM_PORTB
Lj' axi_interconnect_0 s_axi_aresetn l ”
W
= = — Block Memory Generator
) SDU_AXID | 4-500_AXT AXI BP;iiF ”EJSUJ”LT
a ACLK[ACLK _tic_!
& ARESETN[ARESETN [21 5_AXT nc (I} [iic_main
E, p— == SO0_ACLK ;_axi_adk ficZintc_irpt|
3
SOD_ARESETN MOO_AXT 5 2 ;_axi_aresetn gpa[0:0]
X ——moo_ack Hz[eyt -
& MOO_ARESETN [ARG =
Y MO2_AXI o | axi_uartlite_0
——MOL ACLK & 4
a2 |- MO3_AXI - [.
) 01_ARESETN : _ ity uART 4 | [rs232_uart
&l y— = M02_ACLK ; axi_adlk ’ -
interrupt
Ci MO2_ARESETN ._axi_aresetn
+——M03_ACLK —
M3 ARESETN AXT Uartlite
axi_quad_spi_0
XI Interconnec = R AXI_LITE
AXI Interconnect o[A AXL_L spr 04 > spi_flash
I
ext_spi_dk [P rapTUp 104
_axi_adk -
ipZintc_irpt
_axi_aresetn L
AXI Quad 5PI -
« L3

Figure 45: Example of a Design Consisting of an External AXI Master Interfacing the Block Design

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 36
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=36

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

When the AXI interface of the Interconnect is made external, the Address Editor tab becomes available and
memory mapping all the slaves in the block design can be done in the normal manner.

Re-arranging the Design Canvas

IP blocks placed on the canvas can be re-arranged to get a better layout of the block design, and connections
between blocks. To arrange a completed diagram or a diagram in progress, you can click the Regenerate
Layout % button.

You can also move blocks manually by clicking on a block, holding the left-mouse button down, and moving
the block with the mouse, or with the arrow keys. The diagram only allows specific column locations, indicated
by the dark gray vertical bars that appear when moving a block. A grid appears on the diagram when moving
blocks, which assists you in making better block and pin alignments.

It is also possible to manually place the blocks where desired and then click on Optimize Routing el This
preserves the placement of the blocks (unlike the Regenerate Layout function) and only modifies the routing to
the various blocks. In other words, the optimize routing function keeps the location of different blocks intact
and only modifies the nets connecting different blocks.

Showing Interface Level Connectivity Only

To see only the connectivity between interfaces present on the block design select the Show interface

connections only icon [from the block design toolbar. This shows only the interface level connections, and
hides all the other connections on the block design.

Diagram — 0 a x
F[]| 4 design_1 »

Q mm_t 0.0 i
A o)
el . — = P AXI GPIO
& MicroBlaze Debug Madule {MDM)] microblaze_0_local memary
R :
micrablaze_0

S [l mremaver = . ousl
a ome MICIGSlaze | »—
R Wicrobla e

l‘" clk_wiz_1
Q| ot <MD—|—"
@ Clodking Wizard
=
el
T

microblaze 0_axi_intc

Figure 46: Showing interface connections only

Clicking on the Show interface connections only icon again restores all the connections in the block design.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 37
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=37

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

Creating Hierarchies

As shown in the following figure, you can create a hierarchical block in a diagram by using Ctrl-click to select
the desired IP blocks, right-click and select Create Hierarchy. IP integrator creates a new level of hierarchy
containing the selected blocks.

rst_clk_wiz_1_100M
clk_wiz_1 r W
I — - | slowest_sync_clk mb_reset
=|{l<eCLK_IN1 D dk outl SXLIesel I & Block Properties... Ctrl+E
—==lreset locked ==laux reset il ¥ Delate Delete =
- - mb_debug | & Copy Ctrl+C
Clocking Wizard dem locked| ™ Ctrl+V
L 4, Search... Ctrl+F ‘
Pil & Select Al Ctrl+A
& AddIP.. Ctrl+I
i¥ Customize Block...
Orientation 3
& Vvalidate Design F6
Create Hierarchy...
11 Craata Commant [:e

Figure 47: Creating a Hierarchal Block Design

Creating multiple levels of hierarchy is supported. You can also create an empty level of hierarchy, and later
drag existing IP blocks into that empty hierarchical block.

Hierarchies can be expanded when you click on the + sign in the upper-left corner of an expandable block. You
can traverse levels of hierarchy in a diagram using the Explorer type path information displayed in the upper-
left corner of the IP integrator diagram.

Clicking on Create Hierarchy pops-up the Create Hierarchy dialog box, as shown below, where you can specify
the name of the new hierarchy.

#- Create Hierarchy [3|
Flease specify name of hierarchical cell to create in design_1. You
can also move selected blocks to new hierarchy. ‘
Cell name: | my_hierarchy
Move '2' selected blocks to new hierarchy
OK l l Cancel

Figure 48: The Create Hierarchy Dialog Box

Designing IP Subsystems Using IP Integrator www.xilinx.com I Send Feedback I 38

UG994 (v2014.4) November 19, 2014

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=38

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

This action groups the selected IP blocks under one block, as shown below. You can click on the + sign of the
hierarchy to view the components underneath. Click on the — sign on the expanded hierarchy to collapse it
back to the grouped form.

my_hierarchy
e skowest_syne_clk
dik_wiz_1 .
S rst dk_wiz_1_100M
CLK_IN1_D
4ok o ek ows eripheral_aresetn|
. . slowest_sync_clk mib_resetjm—— bus stud resetlo
Ll u il =
et reset_in bus_struet_meset]0:0]
mb_reset
Clodking Wizard —aLx_reset_in peripheral_reset{0:0] = .

mb._debug_sys_rst intercannect_areset

imb_debug_sys_mt interconnect_aresetn[0:0]

e l_reset_in

dem_locked peripheral_aresetn[0:0]

Processor System Reset

Figure 49: Grouping Two Blocks into One Block

Adding Pins and Interfaces to Hierarchies

As mentioned above, you can create an empty hierarchy and you can define the pin interface on that hierarchy
before moving blocks of IP under the hierarchy.

Right-click on the IP integrator canvas, with no IP blocks selected, and select Create Hierarchy. In the Create
Hierarchy dialog box, you specify the name of the hierarchy. Once the empty hierarchy has been created, the
block design should look like the following figure.

hier 0

Figure 50: Creating an empty hierarchy

You can add pins to this hierarchy by typing the following command on the Tcl Console.
create bd pin -dir I -type rst /hier 0/rst
In the above command, an input pin named reset of rst type was added to the hierarchy. You can add other

pins using similar commands. Likewise, you can add a clock pin to the hierarchy using the following Tcl
command:

create bd pin -dir I -type clk /hier 0/clock

You can also add interfaces to a hierarchy by using the following Tcl commands. First set the block design
instance to the appropriate hierarchy where the interface is to be added, using the following command:

current bd instance /hier 0

Next, create the interface using command as specified below:

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 39
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=39

& XILINX

ALL PROGRAMMABLE, Creating a Block Design

create bd intf pin -mode Master -vlnv xilinx.com:interface:gpio rtl:1.0 gpio

It is assumed that the right type of interface has been created prior to using the above command. After
executing the commands shown above the hierarchy should look as shown in the following figure.

Figure 51: Create Pins in a Hierarchy

Once the appropriate pin interfaces have been created, different blocks can be dropped within this hierarchical
block and pin connections from those IP to the external pin interface can be made.

hier_0

axi_gpio_1

s_axi_adk GPIO s || e 2P

AXI GPIO

reset clk_wiz_0
clock

clk_inl clk_outl
reset locked

Clocking Wizard

Figure 52: Making Connections of IP to the Hierarchical Pin Interface

Cutting and Pasting

You can use Ctrl-C and Ctrl-V to copy and paste blocks in a diagram. This lets you quickly copy IP blocks that
have been customized, or copy IP into new hierarchical blocks.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 40
UG994 (v2014.4) November 19, 2014 I—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=40

& XILINX

ALL PROGRAMMABLE.

Creating a Block Design

Running Design Rule Checks

IP integrator runs basic design rule checks in real time as the design is being assembled. However, there is a
potential for something to go wrong during design creation. As an example, the frequency on a clock pin may
not be set right. As shown in the following figure, you can run a comprehensive design check on the design by

clicking on Validate Design.

g2 E|

Flow Mavigator

G plg
< =i

4 Proiect Mananer

4. microblaze 1 - [C:/tutorials/2014.1/ug995/microblaze_1/microblaze_l.xpr] - Vivado 2014.1
File Edit Flow Tools Window

Layout View Help
L%&‘ P ¥ % | XL (S S Default Layout ~ e D

“| validate Design (F6) |
Validate and display errors and critical warnings in this design. hddr

A TESE- Emr

Figure 53: Validating the Design

Design validation can also be run by clicking on the Validate Design icon & in the toolbar on the IP integrator
canvas. If the design is free of Warnings and/or Errors, a pop-dialog box such as that shown in the figure below
is displayed after running Validate Design.

¢ Validate Design

[1 - - . ’ .)
0 Validation successful. There are no errors or critical warnings in this design.

el

Designing IP Subsystems Using IP Integrator

UG994 (v2014.4) November 19, 2014

Figure 54: Successful Validation Message

www.xilinx.com

l Send Feedback I 41

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=41

& XILINX

ALL PROGRAMMABLE.

Chapter 3 Creating a Memory Map

Overview

Master interfaces reference an assigned memory range container called an address spaces, or address_space
objects. Slave interfaces reference a requested memory range container, called a memory map. By convention
memory maps are usually named after the slave interface pins that reference them, for example the S_AXI
interface references the S_AXI memory map, though that is not required. Also, by convention, Address Space
names often are related to its usage, for example, the MicroBlaze has a Data address space and an Instruction
address space.

The memory map for each slave interface pin contains address segments, or slave_segment objects. These
address segments correspond to the address decode window for that slave. A typical AXI4-Lite slave will have
only one address segment, representing a range of memory. However, some slaves, like a bridge, will have
multiple address segments; or a range of addresses for each address decode window.

When a slave segment is mapped to the master address space, a master address_segment object is created,
mapping the address segments of the slave to the master. The Vivado IP integrator can automatically assign
addresses for all slaves in the design. However, you can also manually assign the addresses using the Address
Editor.

TIP: The Address Editor tab only appears if the diagram contains an IP block that functions as a bus
master (such as the MicroBlaze processor in the following diagram) or an external bus master (outside of
IP integrator) s present.

You can click on the Address Editor tab above the design canvas. In the Address Editor, you can see the
address segments of the slaves, and can map them to address spaces in the masters.

If you generate the RTL from an IP integrator block design without first generating addresses, a prompt will let
you automatically assign addresses at that point.

You can also manually set addresses by entering values in the Offset Address and Range columns.

A master such as a processor communicates with peripheral devices through device registers. Each of the
peripheral devices is allocated a block of memory within a master’s overall memory space. IP Integrator follows
the industry standard IP-XACT data format for capturing memory requirements and capabilities of endpoint
masters and slaves.

The IP Integrator tool provides an Address Editor to allocate these memory ranges to the master/slave
interfaces of different peripherals. Master and slave interfaces each reference specific memory objects.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback | 42
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=42

& XILINX

ALL PROGRAMMABLE, Creating a Memory Map

The Address Editor in IP Integrator

The Address in the IP Integrator tool is used to allocate memory ranges to peripherals from a master’s
perspective. The Address Editor tab becomes available when a master with an address space, such as the
MicroBlaze or the Zynq processor is instantiated in the Diagram canvas.

&= Diagram X I B Address Editor x I

#| & design_1

O¢| [Designer Assistance available. Run Block Automation

o

Q)

5 microblaze_0

= ||[4=mTERRUPT

e |||<=DEBUG M- B’ ~ DLMB |||
e cik ICro=siaze ... |
- Reset

£ _

= MicroBlaze

Figure 55: The Address Editor Tab

As the peripherals are instantiated and connected to the processor in the block design canvas using connection
automation a corresponding memory assignment is automatically entered for that peripheral in the Address
Editor.

%= Diagram ¥ | B Address Editor x

A cell Slave Interface Base Name Offset Address Range High Address

==
e | [=H{F microblaze_0
E2| [HE Data (32 address bits : 4G)

= ~== microblaze_0_local_memory/dimb_br... SLMB Mem 0x00000000 8K > 0x00001FFF
Lz == microblaze_0_axi_intc s_axi Reg 0x41200000 64K~ Oxd120FFFF
o ems axi_bram_ctrl_0 S_AXI Mema 0xC0000000 8K ~ 0xCOO01FFF

=B Instruction (32 address bits : 4G)
= microblaze_0_local_memory/ilmb_bra... SLMB Mem 0x00000000 8K ~ 0x00001FFF

Figure 56: Memory map of peripherals in Address Editor

Following are the descriptions of various columns of the Address Editor.

Cell — This column describes the master and all the peripherals that are connected to it and can thus be
addressed by it. The tree can be expanded by clicking on the Expand All icon = or by clicking on the + sign to
expand the selection. As an example in Figure 56 the instance name of the “master” is microblaze_0 which
addresses the Data and Instruction address spaces.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 43
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=43

& XILINX

ALL PROGRAMMABLE.

Creating a Memory Map

The peripherals microblaze 0 local memory/dlmb bram if cntlr and

microblaze 0 local memory/ilmb bram if cntlr have been mapped into the Data and Instruction
address spaces respectively, whereas, the rest of the peripheral are only accessible by the Data address space.

Slave Interface — This column lists the name of the slave interface pin of the peripheral instance. As an
example, the peripheral instances microblaze 0 local memory/dlmb bram if cntlr and

microblaze 0 local memory/ilmb bram if cntlr each have an interface called SLMB as shown in

Figure 57.

‘B

microblaze_0_local_memaory

dmb_v10

[|= LMB_M

LMB_Clk

SYS_Rst

dimb_bram_if _cntlr

LMB_SI_0 - || | § 23- SLMB
LM
LMB_Rst

Local Memory Bus (LMB) 1.0

|

B_Clk BRAM_PORTHE || fm————x{|| <= BRAM_PORTA

LMB BRAM Controller

Zlk

st

ilmb_v10
[<= LME_Mm
LMB_Clk LMB_SI_0<F
SYS_Rst

ilmb_bram_if cntir

— N <= 5LMB

LMB_Clk BRAM_PORTHR

Local Memory Bus (LMB) 1.0

LMB_Rst

LMB BRAM Controller

Imb_bram

|||<=BRAM_PORTB

Block Memory Generator

Figure 57: Interface Names listed in the Slave Interface column

Base Name — This column specifies the name of the slave segment. By convention, there are two types of

names created on the fly. These are Mem (memory) and Reg (register). This can be seen in Figure 58, which

shows a design with multiple memory instantiations.

Designing IP Subsystems Using IP Integrator
UG994 (v2014.4) November 19, 2014

www.xilinx.com

| Send Feedback l 4

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=44

& XILINX

ALL PROGRAMMABLE. Creating a Memory Map
microblaze_0_axi_periph
2 n -
= ;}.m L8 . ax_bram_ciri_0 axi_bram_ctrl_0_brar
g,
L _.md‘ BRAM_PORTA || |I|s-eRAM_PORTA
500_ACLK [=5 BRAM_PORTE || | |4-BRAM_PORTE
500_ARESETN A il S——
Moo_sck O Dnm iy 70 BRAM Contralier Block Memory General
Moo R PANEY)
b § MO2_AXT 5 axibram di_L ai_bram_ctrl_1_brar
H—0 =
MO3_AXT 4k (dns_AXD
MOL_ARESETN A iack RAMPORTAZ I |l[<FBRAM_PORTA
[M02_ACLK il Jal BRAM_PORTES | |I|<=Bram_porTe
102_ARESETN i T
MO3_ACLK A1 BRAM Controlier Block Memory General
MO3_ARESETN o
= idps aa
AXT Interconnect L i ack PO :
. fs_axi_aresetn
microblaze_0 loal_memory
-] AXI GPIO
DLMe s ||} cmhZe il . axi_uartlite_0
e [—h | DLMB lfaeteee_m dimb_bram_if_cntir X o
M_ANL_DP e | Ok LMB_S 0k ||| |l|4ms1me Imb_bram . '_”:ad‘ uarTR (||
Rt MB_Ck BRAM_PORTx|[| |||kBRam_PORTA “‘“_‘a intemupt]-
e pet JI|<xEram_porTE _—
Local Memory Bus (LMB) 1.0 Pl Uartiie
LMB BRAM Controller Block Memory Generator o
iimb_v 10 iimb_bram_if cntir
ILME| I-||| 5 SLME
LMB_M
LMB_Ox] “im e a0k 1 Jl..-na: BRAM_PORT||
LME_Fst J:m' ! ME_Rst
MB BRAM C
] Local Memary Bus (LM6) 1.0 CHMEBR e
1

Figure 58: Multiple Memory Instantiations in a block design

These are given the base names in the address editor as shown in Figure 59.

Z= Diagram x | M Address Editor x

A cen Slave Interface Base Name Offset Address Range High Address

=
== | [=}-4F microblaze_0
= Bﬂ Data (32 address bits : 4G)

mlcrnhlaze _0_local memor‘ﬁ‘dlmh bram_if_cntlr SLMB Mem 0x00000000 8K ~ 0x00001FFF
[§ axi_uartlite_0 S_AXI Reg 0x40600000 64K ~ O0x4060FFFF
axi_gpio_0 S_AXI Reg 0x40000000 64K ~ 0x4000FFFF
axi_bram_ctr|_0 S_AMI Mem0 0xC0000000 8K ~ 0xCOO001FFF
: axi_bram_ctrl_1 S_AxI Memo 0xC2000000 8K ~ 0xC2001FFF

E| B Instruction (32 address bits : 4G)
oum mlcrohlaze_ﬂ_l0caI_memoryfllmb_bram_if_cntlr SLMB Merm 0x00000000 8K ~ 0x00001FFF

Figure 59: Base Names given to multiple memory instantiations

Offset Address — This field describes the offset from the start of the address block. As an example the
addressable range for data and instruction address spaces are 4G each in Figure 59. The address space starts at
0x00000000 and ends at OXFFFFFFFF. Within this address space the axi_uartlite_0 can be addressed to a range
starting at offset 0x40600000, axi_gpio_0 can be addressed starting at offset 0x40000000 and so forth. This field
is automatically populated as the slaves are mapped in the address space of the master. However, they can also
be changed by the user.

The Offset Address and the Range fields are interdependent on each other. The Offset field must be aligned
with the Range field. Alignment implies that for a range of 2" the least significant bits of the starting offset
must have at least N 0's. As an example, if the range of a slave segment happens to be 64K or 2, the Offset

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 45
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=45

& XILINX

ALL PROGRAMMABLE, Creating a Memory Map

address must be in the form 0xXXXX0000. This means the lowest 16-bits need to be 0's. If this field is not set
correctly, the following type of error message will be seen.

&= Diagram X | B Address Editor x

A cell Slave Interface Base Name Offset Address Range High Address
==
v | - F microblaze_0

21| [=H Data (32 address bits : 4G)
. == microblaze_0_local_memory/dimb_br... SLMB Merm : 8K ~ O0xO00O0LFFF
| Reg 64K ox40FEFEFE |
== axi_gpio_0 S_AXI Reqg X 64K v 0x4000FFFF
~== gxi_bram_ctrl_0 S AXI Mem0 0xCO000000 8K * 0xCO00L1FFF
. == axi_bram_ctrl_1 S_AXI Mem0 0xC2000000 8K ~ O0xC2001FFF
(=B Instruction (32 address bits : 4G)
o microblaze_0_local_memory/iimb_bra... SLMB Mem 0x00000000 8K * 0x00001FFF
#- Set Offset Address [52|

l . The proposed address Ox40FF1000[64K] is misaligned.
" The maximum range for current offset is 4K.
The next aligned offset for the proposed range is 0x41000000

Figure 60: Example of misaligned Offset Address

In Figure 60, the user set an offset with only 12 0's in the least significant bits. Only a range of 4K or 2** can be
accommodated by the proposed offset address. Therefore, the message pops up informing the user that the
address is misaligned. The message also tells the user where the next offset address can be set based on the
current memory map.

Range - This field specifies the total range of the address block for a particular slave. This field is typically
populated based on a parameter in the component.xml file for an IP. This can also be changed by clicking on
the drop-down menu and selecting the appropriate value for this field. The Range and the Offset Address fields
are interdependent on each other and as described in the Offset field, the 2" Range field must be aligned with
the N number of least significant bits of the Offset field. Setting the Range field such that it exceeds this
number can cause the following type of message to show up.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 46
UG994 (v2014.4) November 19, 2014 I—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=46

& XILINX

ALL PROGRAMMABLE, Creating a Memory Map

%= Diagram ¥ | B Address Editor x

A cell Slave Interface Base Name Offset Address Range High Address
o
o |5 microblaze_0

23| [ZE Data (32 address bits : 4G)
¢ = microblaze_0_local_memory/dimb_br... SLMBE Mem 0x00000000 8K ~ 0x00001FFF
= -~ axi_uartite_0 JRes |omsorrocoo |WPTll |oxsoreeerr |
‘== Axi_gpio_0 S_AXI Reg 0x40000000 4K = |0x4000FFFF
== axi_bram_ctrl_0 S_AXI Mem0 0xC0000000 0xCO001FFF
¢ = ogxi_bram_ctrl_1 S_AXI Mem0 0xC2000000 256K | 0xC2001FFF
E}-ﬂ Instruction (32 address bits : 4G) 12K |:|
~~ = microblaze_0_local_memory/ilmb_bra... SLMB Mem 0x00000000 . —!| 0x00001FFF
2M
am .
8M
¢ Set Range [&

I.\ The proposed address 0x40FF0000[128K] is misaligned.
~ The maximum range for current offset is 64K.

The next aligned offset for the proposed range is 0x41000000

Figure 61: Example of not setting the range field properly

In Figure 61, the user tried to set the range to 128K or 2% for an offset in the form 0xXXXX0000 i.e. an offset
with only 16 least significant bits. In order to accommodate a range of 128K, the form of the address must be
at least OxXXX20000, i.e. with at least 17-bits in the least significant bits of the starting offset.

High Address — This field adjusts itself based on the Offset Address and the Range value. This is the last
addressable address in a particular assigned segment.

Memory Mapping Using the Address Editor

While memory block assignments happens automatically as the slave interfaces are connected to master
interfaces in the block design, they mapping can also be done manually in the Address Editor.

Auto Assigning Addresses

To map all the slave segments at once, right-click anywhere in the Address Editor and select Auto Assign
Address or click on the Auto Assign icon on the block design tool bar as shown in Figure 62.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 47
UG994 (v2014.4) November 19, 2014 I—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=47

& XILINX

ALL PROGRAMMABLE, Creating a Memory Map

I= Diagram x | B Address Editor X

A call Slave Interface Base Name Offset Address Range High Address
-

e | 2HEE microblaze_0

=8 Data (32 address bits : 4G)

- [EH unmapped Slaves (5)

I

B

= microblaze_0_local_memory/dimb_bram_if_cntlr ~ SLMB Mem

o gxi_uartlite_0 S_AXI Reg

= axi_gpio_D S AXI Req
o gyi_bram_ctrl_0 S_AXI MemQ
o axi_bram_ctrl_1 5_AXI Mem0

struction (32 address bits : 4G)
[=+= Unmapped Slaves (1)

=@ microblaze_0_local_memory/ilmb_bram_if_cntlr SLMB Mem
a Ctrl+E
B Auto Assign Address L\@
Group by Master Interfaces
Export to Spreadsheet...

Figure 62: Auto Assign Address

This will map all the slave segments as shown in Figure 63.

Z= Diagram X | B Address Editor X

A cell Slave Interface Base Name Offset Address Range High Address
-

o | 2HEE microblaze_0

=4| [E Data (32 address bits : 4G)

SLMB Mem 0x00000000 8K - 0x00001FFF
B axi_bram_ctrl_0 S_AXI Mem 0xC0000000 8K ~ OxCO00LFFF
axi_bram_ctrl_1 S_AXI Memi 0xC2000000 8K * 0xC2001FFF
axi_uartlite_0 S_AXI Reqg 0x40600000 64K + 0x4060FFFF
. = gyi_gpio_D S_AXI Reg 0x40000000 64K ~ 0x4000FFFF
=B Instruction (32 address bits : 4G)
Lomm microblaze_0_local_memory/ilmb_bram_if_cntlr SLMB Mem 0x00000000 8K * 0x00001FFF
#- Auto Assign Address | 23 |

Automatic address assignment completed successfully. There are no unmapped

slaves in this design.

Figure 63: Memory map after auto assignment of address blocks

Once the slave segments have been mapped several options are presented to the user for other actions.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 48
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=48

& XILINX

ALL PROGRAMMABLE, Creating a Memory Map

I= Diagram X | B Address Editor x

A call Slave Interface Base Mame Offset Address Range High Address

=
e | [=H4F microblaze_0
&2 B Data (32 address bits : 4G)

SLMB

ntlr 0x00000000 8K * 0x00001FFF

¥y o 1 coon0000—|8C_ |oxcoooierr
= axi_bram_ctrl_1 & Address Segment Properties... L\\S\Ctr|+E rC2000000 8K - (0xC2001FFF
L a)q_uaﬁlite_ﬂ Unmap Segment k40800000 64K = 0x4060FFFF
: == axi_gpio_0 k40000000 4K ~ 0x4000FFFF
(=+E Instruction (32 address bits : 4G) Exclude Segment
== microblaze_0_local_memory/ilmb_bry g rO0000000 8K * 0x00001FFF
Group by Master Interfaces
Export to Spreadsheet...

Figure 64: Address Editor Options

Right-clicking on a mapped address segment shows the various options available in the context menu as
shown in Figure 64.

Address Segment Properties

The Address Segment Properties shows the details of the address segment in the Address Segment Properties
window.

Address Segment Properties — 0O & =
« »ElE
= SEG_axi_bram_ctrl_0_Mem0

Name: SEG_axi_bram_ctrl_0_Memn

Full name: microblaze_0/Data/SEG_axi_bram_ctrl_0_Mem0

Slave Interface: |4H|' axi_bram_ctrl_0/5_AXI |

Figure 65: Address Segment Properties window

The Name field shows the name of the master segment that was automatically assigned. This name can be
changed by the user if desired. The Full Name field is not editable and shows the full name of the mapped
slave segment. The Slave Interface Field shows the slave interface of the peripheral that references the slave
segment.

Unmap Segment

A mapped address segment can be unmapped by selecting Unmap Segment from the context menu. This
address segment then shows up in the Unmapped Slaves folder as shown in Figure 66. The user can also right-
click and select Assign Address (which will map only the selected address) or Auto Assign Address (which will
assign all unmapped address segments in the design).

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 49
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=49

& XILINX

ALL PROGRAMMABLE.

Creating a Memory Map

I= Diagram x | B Address Editor x

[=HE8 Instruction (32 address bits : 4G)
~ = microblaze_0_local_memory/ilmb_bram_if | @

Assign Address
Ctrl+E

Exclude Segment

B Auto Assign Address
Group by Master Interfaces

s

Export to Spreadsheet...

poooano

A call Slave Interface Base Mame Offset Address Range High Address
= [=HF microblaze_0
=) [=E Data (32 address bits : 4G)
. i~== microblaze_0_local_memory/dimb_bram_if_cntir SLMEB Mem 0x00000000 8K ~ O0x00001FFF
25} = axj_bram_ctrl_1 5 AXI Mem0 0xC2000000 8K ~ 0xC2001FFF
= axi_uartlite_0 S_AXI Req 0x40600000 64K ~ 0x4060FFFF
= axi_gpio_0 S_AXI Reg 0x40000000 a4k = 0x4000FFFF
. M= Unmapped Slaves (1)
- axi_bram ctrl 0 |

8K * 0x00001FFF

Figure 66: Unmapping and Mapping an address segment

Exclude Segment

Excluding a segment makes a mapped segment un-addressable to the master in question. This is typically done
when multiple masters are present in the design and the user wants to control which masters should access

which slaves. Please see Sparse Connectivity for more information.

Group by Master Interfaces

Selecting the Group by Master Interfaces groups the master segments within an address space by the master
interfaces through which they are accessed by the master. As an example, the MicroBlaze in the following block
design has three different master interfaces accessing various address segments: DLMB, ILMB and M_AXI_DP

within the Data Address Space.

Designing IP Subsystems Using IP Integrator www.xilinx.com

UG994 (v2014.4) November 19, 2014

| Send Feedback l 50

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=50

& XILINX

ALL PROGRAMMABLE..

Creating a Memory Map

microblaze_0_axi_periph

il-pso0_sx

ACLK
ARESETN[0:01]
S00_ACLK

S00_ARESETN[0:0]

MOO_ACLK 5]

MOO_ARESETN[0:0] &=

MOL_ACLK |

MOL_ARESETN[0:0]

MO2_ACLK

MO02_ARESETN[O:0]

MO3_ACLK

MO3_ARESETN[O:0]

[MOO_AXE-: [

axi_bram_ctrl_0

R

i oy RAM_PORTA -
N BRAM_PORTE - |[|=
5 awi_aresatn

MO _AKE - i

AXT BRAM Controller

=1

axi_bram_etrl_1

MO2_AXI -3 [
MO3_AXT - [

s _AxI

| BRAM_PORTA -3 [
s d_ack BRAM_PORTE -+ ||}
5 axi_aresatn

AXI BRAM Controller
axi_gpio_0

AXI Interconnect

microblaze_0_local_memary

microblaze_0
||| -+1nTERRUPT .
—|||-+pEBUG - ’ DLME 3 I
"d cr@ ILME -
L ' aze M_AXE_Dp - -
MicroBlaze

AXI GPIO
axi_uartlite_0

AXI Uartlite

Figure 67: Grouping by master interfaces

Selecting the Group by Master Interfaces re-arranges the different address segments in the table under the

master interfaces tree.

|5= Diagram x | B Address Editor x

Cell

[=HF microblaze_0
=B Data (32 address bits : 4G)

. EHB DLMB

i um microblaze_0_local_memory/dimb_bram_if_cntlr

- EHI M_axI_DP

== axi_bram_ctrl_1

~mm gxi_uartlite_0

= gxi_gpio_0

“-mm axi_bram_ctrl_0

=B Instruction (32 address bits : 4G)
= 1MB

‘== microblaze_0_local_memory/ilmb_bram_if_cntlr

W AP

Slave Interface Base Mame

SLMB Mem 0x00000000 8K ~ 0x00001FFF
S_AXI Mem0 0xC2000000 8K » O0xC2001FFF
S_AXI Reg 0x40600000 64K ~ Ox4060FFFF
5_AXI Reg 0x40000000 64K ~ Ox4000FFFF
5_AXI Mem0 0xC0000000 8K ~ 0xCO001FFF
SLMB Mem 0x00000000 8K ~ 0x00001FFF

Offset Address

Range High Address

Figure 68: Address Editor showing groups of address segments under respective master interfaces

www.xilinx.com

Designing IP Subsystems Using IP Integrator
UG994 (v2014.4) November 19, 2014

l Send Feedback l 51

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=51

& XILINX

ALL PROGRAMMABLE, Creating a Memory Map

Sparse Connectivity

In a multiple master design users may want to specify slaves that could potentially be accessed by all masters
or by certain masters only. This feature of memory mapping in IP Integrator is called sparse connectivity.

Excluding an address segment from a master’'s memory map

axi_interconnect_0

Master_1 | L500_aXT
Master 2 i drs01_AXI
ACLK D ACLK
ARESETN D ARESETN
S0ACK 5 o |
S00_ARESETN D%D MOO_AXI <= ":B Slave_1
MOO_ACLK MOL_AXT 4 f Slave_2
moo_areseTn
MO1_ACLK
MO1_ARESETN
S01_ACLK
S01_ARESETN

AXI Interconnect

Figure 69: Multiple Master and Slave Example

In Figure 69, there are two masters, Master_1 and Master_2 accessing two slaves Slave_1 and Slave_2 via the
same interconnect. In this case, the address editor will look as follows.

%= Diagram ¥ | B Address Editor x

A cell Slave Interface Base Name Offset Address Range High Address

=
=2 | =+ External Masters
E3| B S00_AXI (32 address bits : 4G)

M ¢ =+ Unmapped Slaves (2)
B| O Master1
e MOO_AXI Slave_1 Reg
e MO1_AXI Slave_2 Reg

(=HE S01_AXI (32 address bits : 4G)
=M= Unmapped Slaves (2)

=+ Master_2
o MO0_AXT Slave_1 Reg
semm MO1_AXT Slave_2 Reg

Figure 70: Address Editor with multiple masters’ memory map

In this case, let us say that Master_1 needs to access Slave_2 only and Master_2 needs to access both Slave_1
and Slave_2. In order to exclude Slave_1 from Master_1's memory map, right-click on MOO_AXI and select
Exclude Segment from the context menu.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 52
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=52

& XILINX

ALL PROGRAMMABLE.

Creating a Memory Map

&= Diagram X | B Address Editor x
A cell

Slave Interface Base Name Offset Address Range High Address
o
5| = External Masters

E2| [ER S00_AXI (32 address bits : 4G)
== Unmapped Slaves (2)
B 5 Master 1
- M00_AXI [[Reg | pae—
e MO1_AXT Slave 2 Reg Assign Address
=B S01_AXI (32 address bits : 4G) & Ctrl+E
== Unmapped Slaves (2)
(= Master_2
- MOD_AXT Slave_1 Reg Exclude Segment,
e MO1_AXI Slave_2 Reg B Auto Assign Address
v | Group by Master Interfaces
Export to Spreadsheet...

Figure 71: Excluding address segment from the memory map of a master

This action excludes the segment by showing the segment under the folder called Excluded Address Segments
as shown in the following figure.

%= Diagram ¥ | B Address Editor x

A cell

—
=21 | [=HE External Masters
23| B S00_AXI (32 address bits : 4G)
¢ [ZF= Unmapped Slaves (1)
=hm Master_1

e MO1_AXI Slave_2 Reg
¢ == Excluded Address Segments (1)
. [Master_1
=B 501_AXI (32 address bits : 4G)

=H= Unmapped Slaves (2)

Slave Interface Base Name Offset Address Range High Address

&

[=H3 Master_2
e MO0_AXT Slave_1 Reg
somm MO1_AXT Slave_2 Reg

Figure 72: Excluded Address Segment shown in Address Editor

Both mapped and unmapped slaves can be excluded. It is important to note that an excluded master segment
still occupies a range within the address space despite the fact that it is inaccessible by the master. If, after
excluding a slave within a master address space, the user attempts to manually place another slave to address
that overlaps with the excluded slave, an error will then be thrown during validation.

Designing IP Subsystems Using IP Integrator www.xilinx.com

Send Feedback 53
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=53

& XILINX

ALL PROGRAMMABLE, Creating a Memory Map

Including an address segment

An excluded segment can be added back to the Master by selecting Include Segment from the context menu
as shown in Figure 73.

&= Diagram x | B Address Editor x

A cell Slave Interface Base Mame Offset Address Range High Address
==}

e2a | [=HE External Masters

23| [EHE S00_AXI (32 address bits : 4G)

= . EF® Master_1

:: Lmm MO1_AXI Slave_2 Reg 0x44210000 64K v Ox44RIFFFF

== Exduded Address Segments (1)
= 5> Master_1
[owmoowa [[Reg Joxssmooooo [eak Joxs :
- 501 AXI (32 address bits : 4G) 1 = “d @ Address Segment Properties... Ctrl+E
B= Master_2 ' Unmap Segment
e MOO_AXI Slave_1 Reg 0x44200000 64K v Oxd Include Segment
Lomm MO1_AXI Slave_2 Reg 0x44210000 64K v Ox4 [}

B

¥ | Group by Master Interfaces
Export to Spreadsheet...

Figure 73: Including an excluded segment back into the master’'s memory map

Common Addressing related Critical Warnings and Errors

1. [BD 41-971] "Segment <name of segment> mapped into <address space> at Offset[Range] overlaps with
<name of segment> mapped at Offset [Range].

This message is typically thrown during validation. Each peripheral must be mapped into a non-overlapping
range of memory within an address space.

2. [BD 41-1356] Address block <name of slave segment> is not mapped into <name of address space>.
Please use Address Editor to either map or exclude it.

This message is typically thrown during validation. If a slave is accessible to a master, it should be either
mapped into the master’'s address space or excluded from it.

3. [BD 41-1353] <name of slave segment> is mapped at disjoint segments in master <name of address
space> at <memory range> and in master <name of address space> at <memory range>. It is illegal to
have the same peripheral mapped to different addresses within the same network. Peripherals must either
be mapped to the same offset in all masters, or into addresses that are apertures of each other or to
contiguous addresses that can be combined into a single address with a range that is a power of 2.

This message is typically thrown during validation. Within a network defined as a set of masters accessing the
same set of slaves connected through a set of interconnects, each slave must be mapped to the same address
within every master address space, or apertures or subsets of the largest address range.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 54
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=54

& XILINX

ALL PROGRAMMABLE.

Chapter 4 Working with Block Designs

Overview

With the block design populated with IP, connected, with connections external to the design, and validated.
You can work with the block design to generate the output products needed to use the block design in your
top-level design (or as your top-level design) for simulation, synthesis, and implementation.

Generating Output Products

Once the block design is complete and the design is validated, output products must be generated. This is
when the source files and the appropriate constraints for all the IP will be generated and made available in the
Vivado Sources pane. Depending upon the target language selected during project creation, appropriate files
will be generated. If the source files for a particular IP cannot be generated in the target language specified,
then a message stating so will be displayed in the Tcl Console. To generate output products, in the Vivado
sources pane, you right click on the block design, as shown in the following figure, and select Generate
Output Products.

Sources S i [E 8 Address Editor X
A= 2y R|E 3| & my_design »
—& Design Sources (2) O¢| (@ Designer Assis}
| [H-dh design_1 (design_1.bd) (2) o
e my_design (my_ desian.bd) (13 - mdm_1
3 Constraints (1) @ Source Mode Properties... Ctrl+E b
=t~ Simulation Sources 5.k
& sim_1 (2) * QOpen File Alt+0 =

Create HDL Wrapper
View Instantiation Template

Generate Qutput Products...

Reset Output Products...

Figure 74: Generating Output Products

Alternatively, you can also click on Generate Block Design in the Flow Navigator under IP Integrator drop-
down list.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 55
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=55

& XILINX

ALL PROGRAMMABLE, Working with Block Designs
Flow Mavigator « Block Design - design_1 *
o= % design_1 * x| i design_2 * x
4 Project Manager Sources - o
M A o

&% Project Settings A= 2er R

(" Add Sources EI-i-_-'Dgsign Sources (3)

¢ Language Templates =R design_1_wrapper - STRUCTURE (design_1

[=}# design_1_i - design_1 (design_1.bd) (1)

[+ design_1 - STRUCTURE (design_1.vhd) (4

. (B4 design_2 (design_2.bd) (1)
. [} Configuration Files (1]

1F 1P catalog

4 IP Integrator

¥ Create Block Design [Constraints
5% Open Block Design [=H= Simulation Sources (2]
) F-=sim_1 (2)
&5 Generate Block [:ua-agrL\5 s
4 Simulation Generate Block Design
% Simulation Settings Generate outputs needed for synthesis, simulation and implementation.

Figure 75: Generate Block Design

Generating the output products also generates the top level netlist of the block design. The netlist is generated
in either VHDL or Verilog depending on the Target Language settings in Project Settings.

Integrating the Block Design into a Top-Level Design

An IP integrator block design can be integrated into a higher-level design or it can be the highest level in the
design hierarchy. To integrate the IP integrator design into a higher-level design, simply instantiate the design
in the top-level HDL file.

A higher-level instantiation of the block design can also be done by selecting the block design in the Vivado
IDE Sources pane and selecting Create HDL Wrapper (shown below). This will generate a top-level HDL file for
the IP integrator sub-system.

Block Design - my_design *

% my_design * x| & design_1* x

Sources — O

T
*

B Address Editor x | &= Dia
A= 2a R *D| &, my_design »

[ZHs7 Design Sources (2]

o [, design_1 (design_1.bd) (2

O| (@ Designer Assistance 3

=¥ A my_design (my_design.bd) (13 - mdm 1
[+ Constraints (1) i J|=—
(= Simulation Sources (1 3 Scurce Node Properties.. cul+t i
e sim_1 (2) * Open File Alt+0 e (MDH
Create HDL Wrapper
LT H Tocd oy T | ISES h

Figure 76: Creating an HDL Wrapper

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 56
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=56

& XILINX

ALL PROGRAMMABLE, Working with Block Designs

Selecting Create HDL Wrapper offers two choices. The first choice is to make the wrapper file user editable. You
may want to choose this option if you would like to manually edit the wrapper file. Often times a block design
is a subset of an overall design hierarchy. This option can be used in this case. You can then instantiate other
design components in the wrapper file. You need to make sure that this file is updated any time an I/O
interface of the block design changes. The wrapper file created using this method is placed in the

<project name>.srcs/sources 1/imports/hdl directory.

The second choice offered is to allow the Vivado tools to create and manage the top-level wrapper file. If the
block design is the only design component in the project or if edits to the wrapper file are not desired, then
this option should be chosen. In this case the wrapper file is updated every time output products are
generated. The wrapper file created using this method is located in the directory

<project name>.srcs/sources_1l/bd/<bd name>/hdl.

¢ Create HDL Wrapper 3
(0] You can either add or copy the HDL wrapper file to the project. Use copy option if you
== would like to modify this file.

Options
Copy generated wrapper to allow user edits

@) Let Vivado manage wrapper and auto-update

oK l | Cancel

Figure 77: Create HDL Wrapper Dialog Box

At this point, you are ready to take the design through elaboration, synthesis, and implementation.

I/0 Buffer instantiation in IP integrator

When generating the wrapper, IP integrator looks for I/O Interfaces that are made external in the design. If the
tool finds IO Interfaces that are made external, it then looks at the port maps of that interface. If three ports
which match the pattern “<name>_1", “<name>_QO", and “<name>_T" are found, then the tool instantiates an
I/O Buffer and connects the signals appropriately. If any of the three ports are not found, then I/O Buffer is not
inserted. Other conditions in which I/O Buffers are not inserted include the following:

1. If any of the _I, _O and _T ports are manually connected by the user, either by making them external or by
connecting it to another IP in the design.

2. If the interface has a parameter called "BUFFER_TYPE", and it is set to "NONE".

In some cases you may want to hand instantiate I/O buffers in the block design. In such a case, you need to
use the Utility Differential I/O Buffer IP which is available in the IP catalog. This IP can be configured as different
kinds of I/O buffers as shown below.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 137
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=57

& XILINX

ALL PROGRAMMABLE. Working with Block Designs
LI Re-customize IP s
Utility Differential 10 Buffer (1.0) '

i]"J Documentation |7 IP Location

Show disabled ports Component Name | util_ds_buf_0

C Size |1 [1-128]
C Buf Type
@) IBUFDS
OBUFDS

iIBLIF_DS_P[D:EI%E }_ IOBUFDS
UF_QUT[0:0]
IELUF_DS_M[0:0

IBUFDSGTE

BUFG

BUFH

BUFGCE

BUFHCE

[oK] | Cancel
I

Figure 78: The Utility Differential I/O Buffer

Creating a Block-Design Outside of the Project

A block design can be created within a project or outside of the project directory structure. A common use case
for creating the block design outside of a project is to use the block design in a non-project mode or to use it
in a team-based environment.

To create a block design outside the project, click on Create Block Design in the IP integrator drop-down list
in the Flow Navigator. The Create Block Design dialog box opens. In the Create Block Design dialog box you
can specify the name of the block design and also the Directory location. The default value for the Directory
field is <Local to Project>. However, you can override this default value by clicking on Directory field and
selecting Choose Location.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback | 38
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=58

& XILINX

ALL PROGRAMMABLE. Working with Block Designs
#- Create Block Design 52
Flease specify name of block design. ’
Design name: design_3
Directory: & <Local to Project> -
Specify source set: | Design Sources ~
OK | | Cancel

Figure 79: Create Block Design Dialog Box

Click OK after choosing the desired location to create the block design. You can continue to work on the block
design just as you would in a normal project-based flow. The entire block design directory is created at the
chosen location with its own sub-directory structure. You need to keep the entire directory structure of the bd
in order to be able to re-open this block design from a different project or by a different user.

You can also create the block design as Design Sources or Simulation Sources by selecting the drop down
menu from the Specify source set field.

Adding a Block-Design outside of a Project

A block design that has been created outside of a project or a remote location can be added to an existing
Vivado project. To add a remote block design, you click on Add Sources under Project Manager in the Flow
Navigator. Alternatively, you can also right click in the Sources window and select Add Sources. In the Add
Sources dialog box select Add Existing Block Design Sources and click Next.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 139
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=59

& XILINX

ALL PROGRAMMABLE, Working with Block Designs

-

¢- Add Sources

£ |
Add Sources

This guides you through the process of adding and creating sources for your project

(") Add or Create Constraints

(Add or Create Design Sources
Add or Create Simulation Sources
(") Add or Create DSP Sources

(@) Add Existing Block Design Sources
(") Add Existing IP

VIVADO!

To continue, click Next

Figure 80: Add Sources dialog box

In the Add Existing Block Design Sources page, click on Add Files. In the Add Sources File window, navigate to
the block design to be added.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 60
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=60

& XILINX

ALL PROGRAMMABLE.

Working with Block Designs

-

¢ Add Source Files

Ed
Look in: :, zyng_1 V: THOE g LOXS E
| hdl Recent Directories
";_':5 L ip 1 C:ftemp/zyng/zyng.srcs/sources_1/bd/zyng_1 -
Recent Irems Lo ui File Preview
! zynq_l.bd File: zyng 1.bd
Directory: C:/temp/zyng/zvng.sres/sources_1/bd/zyvng 1
Desktop Created: Today at 13:34 PM

Accessed: Thursday 06/12/14 10:32 AM
F Modified: Today at 14:14 PM

P

B Size: 533 KB
: Type: BD
. .. Owner: XLNX'\ndutta
b=
Computer
e
Network

File name: zyng_1.bd

Files of type: :Elock Design Files (.bd) V:

Figure 81: Add block design source

Back in the Add Existing Block Design Sources page click on Finish.

-

¢ Add Sources

el
Add Existing Block Design Sources
Specify block design sub-design units by selecting BD source files '
Index Mame Library Location =
B zyng_1.bd N/A C:ftemp/zyng/zyng.srcs/sources_1/bdfzyng_1 +
. .

D Copy sources into project

Next = ’ EinisE\}'—l[Cancel

Figure 82: Finish adding block design sources

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 61
UG994 (v2014.4) November 19, 2014 I—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=61

& XILINX

ALL PROGRAMMABLE, Working with Block Designs

Note that if the remote block design has been set as an out-of-context module, the design-check-point (DCP)
file for this block design will also be added to the project. If you want to reference the DCP file for a block
design, then you must add the block design as shown above.

CAUTION! While adding a block design from a remote location, ensure that no-one else is editing the
block design at the same time. One way to overcome this issue would be to copy the remote block
design locally into the project.

Packaging a Block Design

Often times it happens that you create an IP integrator design, implement it, and test it on target hardware. If
you are satisfied with the functionality, you may want to “package” it and convert it into an IP that can be
reused in another design. When you package a design, it gets converted into an IP and is available for you in
the IP catalog. You can instantiate that IP as part of a different design.

Vivado also provides you with the capability to create a custom interface that can be created and re-used as an
interface definition on a custom IP. For more information on packaging a block design, refer to Vivado Design
Suite User Guide: Creating and Packaging Custom IP (UG1118).

Exporting the Hardware Definition to SDK

If you want to start software development before a bitstream is created, you can export the hardware definition
to SDK after generating the design. This action exports the necessary XML files needed for SDK to understand
the IP used in the design and also the memory mapping from the processor’s perspective. After a bitstream is
generated and the design is exported, then the device can be downloaded and the software can run on the
processor.

When the output products for the block design are generated, an archive that has all the pertinent information
for exporting the hardware to SDK is created. This archive is called <top level design name>.hwdef and
can be found in the synthesis directory such as <project name>.runs/synth 1.

This archive contains the following files for a Zynq processor-based design.

e ps7_init.c

e ps7_inith

e ps_inithtml
e ps7_init.tcl

e hwdef.xml
e <bd_name>.hwh
For a MicroBlaze-based design this archive contains the following files:

e hwdef.xml

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback | 62
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug1118-vivado-creating-packaging-ip.pdf;a=CreatingandPackagingCustomIPinIPIntegrator
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=62

& XILINX

ALL PROGRAMMABLE, Working with Block Designs

e <bd_name>.hwh

Once the design is implemented and the bitstream is generated, a new archive is created called
<top level design name>.sysdef.

For a Zynq processor-based design, the sysdef archive contains the following files:

e ps7_init.c

e ps7_init.h

e ps_inithtml
e ps7_init.tcl

e sysdefxml
e <bd_name>.hwh
o <top_level_design_name>.bit

o <top_level_design_name>.bmm

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 63
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=63

& XILINX

ALL PROGRAMMABLE, Working with Block Designs

For a MicroBlaze-based design, this archive contains the following files:
e <bd_name>.hwh
o <top_level_design_name>.bit
o <top_level_design_name>.bmm
e sysdefxml
Exporting the hardware simply copies the sysdef file into the location specified by the user.

1. Select File > Export> Export Hardware from the menu to open the Export Hardware dialog box.

¢%. Export Hardware [%3 |

(0] Export hardware platform for
= software development tools

[+] Include bitstream

Export to: | & <Local to Project> -

0K l I Cancel

Figure 83: Exporting the Hardware Definition for a Project

There are a couple of options that are presented as can be seen from the figure above. Checking the
Include bitstream checkbox will include the bitstream as a part of the exported data to SDK. The Export to
field can be set as deemed appropriate by the user. In a typical project based flow, this should be left to its
default value of <Local to Project>.

In a project-based flow, the hardware is exported at the following location:
project name/project name.sdk

2. To launch SDK after the hardware has been exported, click File > Launch SDK. The Launch SDK dialog box
opens.

#L Launch SDK [%3 |

[0] Launch software development tool

Exported location: | &) <Local to Project> -

Workspace: | &1 <Local to Project> -

0K l I Cancel

Figure 84: Launch SDK Dialog Box

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 64
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=64

& XILINX

ALL PROGRAMMABLE, Working with Block Designs

In a typical project based flow, the default options should be left as defined <Local to Project>, for both
the Exported location and the Workspace fields. If you choose a different location while exporting the
hardware, then the Exported location field should be set to that particular location. The Workspace field can
be set as needed as well.

Once SDK launches, a custom application project can be created in it using the hardware definitions
exported. SDK creates the necessary drivers and board support package for the target hardware.

Adding and Associating an ELF File to an Embedded Design

In a microprocessor-based design such as a MicroBlaze design, an ELF file generated in the SDK (or in other
software development tool) can be imported and associated with a block design in the Vivado IDE. A bitstream
can then be generated that includes the ELF contents from the Vivado IDE and run on target hardware. There
are two ways in which you can add the ELF file to an embedded object.

Add an ELF file and Associate it With an Embedded Processor

1. The first way to accomplish this task is by selecting and right-clicking Design Sources in the Sources
window and then selecting Add Sources as shown below. Design sources can also be added by clicking on
Add Sources in the Flow Navigator under the Project Manager drop-down list.

2. The Add Sources dialog box opens. Add or Create Design Sources is selected by default. Selecting this
option will add the ELF file as a design as well as a simulation source. If you are adding an ELF file for
simulation purposes only, select Add or Create Simulation Sources. Click Next.

3. Inthe Add or Create Design Sources dialog box, click on Add Files.

4% Add Sources o3
Add or Create Design Sources

Specify HOL and netlist files, or directories containing HDL and netlist files, to add to your project. Create ‘:'j/
a new source file on disk and add it to your project.

Index MName Library Location

Add Files... | | Add Directories... | | Create File...

Scan and add RTL include files into project
Copy sources into project

Add sources from subdirectories

< Back lext = Finish Cancel

Figure 85: Add Sources Dialog Box

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback | 63
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=65

& XILINX

ALL PROGRAMMABLE, Working with Block Designs

4. The Add Source Files dialog box opens. You then navigate to the ELF file, select it and click OK.

£ Add Source Files =
Look in: Debug TR LORS E
_ src Recent Directories
e peri_test.elf ' Ci/bugs i
Ttems File Preview
! File: peri_test.elf
Directory:
Desktop C/tutorials/2013.2/mb_ex_des/mb_ex_des.sdk/SDE/SDK_Export/p
Created: Friday 04/26/13 02:30 PM
Accessed: Friday 04/26/13 03:24 PM
My Modified: Friday 04/26/13 03:24 PM
Documents Size: 1341 KB
) Type: ELF
..! Owner: XLNX'ndutta
Computer
=1
[T
Network
4 I v O
File name: peri_test.elf
Files of type: [l Design Source Files (.wb, veo, vho, tf, elf, v, vhf, verilog, vhd, edn, svh, sv, dcp, edf, vr, h, ngc, vhdl, vieg, edif, vh, vg, bmm, vf) v

Figure 86: Add Sources Files Dialog Box

5. In the Add or Create Sources dialog box, you can see the ELF file added to the project. Depending on your
preference, you can either copy the ELF file into the project by checking Copy sources into project or
leave that option unchecked if you want to work with the original ELF file. You then click Finish.

6. Under the Sources window, you will see the ELF file added under the ELF folder.

Sources — O a X
o 5
QA= mat R

=+ Design Sources (2]

. @4 my_design_wrapper (my_design_wrapper.v) (1]
| EHE ELF (1)
:) peri_test.elf

-- I Constraints (1)
[+ Simulation Sources (1)

Hierarchy | IP Sources | Libraries | Compile Order

Figure 87: Sources Window with ELF File Displayed

7. Next, you associate that ELF file with the microprocessor design in question. To do this, select and right-
click on the block design in the Sources window and select Associate ELF Files.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 66
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=66

& XILINX

ALL PROGRAMMABLE, Working with Block Designs
Sources —Ouwv = % Proje
A= el liE A

' Design Sources (2) =il
- mb_ex_1_wrapper - STRUCTURE (mb_ex_1_wrapper.f|| —

., n
F-@h mb| & Source Node Properties... Ctrl+E
H-6 ELF (1) * Open File Alt+0D
1 Constraints

& Simulation S Create HDL Wrapper...
View Instantiation Template
Generate Output Products...
Reset Output Products...
Export Hardware for SDK...

Package Block Design...

d Alt+]
Hierarchy | IP So| % Remove File from Project... Delete
4 Sources | | Alt+Equals
Source File Properd Disable File Alt+Minus
- A Hierarchy Update 3
% mb_ex_1.bd @ Refresh Hierarchy
IF Hierarchy L
Location: C:f] a=
Type: Bl Set as Qut-of-Context Module...
Part: 3L/
Size: 73. Set Used In...
Maodified: To Edit Constraints Sets...
: Edit Simulation Sets...

General | Propert - -
Associate ELF Files... I}

Figure 88: Selecting Associate ELF Files

8. You can associate an ELF for synthesis as well as simulation. Click on the appropriate browse icon (Under
Design Sources or Simulation Sources) and browse to the newly added ELF file to the design.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback | 67
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=67

& XILINX
Working with Block Designs

ALL PROGRAMMABLE.

4L Associate ELF File (2]

Associate an ELF file with a processor instance (Address Map). ELF files are available after
running generate on your embedded design sources.

ELF File Associations

Processors/Address Maps Associated ELF File

[Z+& Design Sources

i b design_1_i

“@ microblaze_0

=+ Simulation Sources
[=h sim_1

(=4, design_1_i
- microblaze_0 mb_bootloop_le.elf ()

mb_boatloop_le.elf (=)

’ oK ” Cancel]

Figure 89: Associating ELF Files with a Microprocessor

The Select ELF file dialog box opens. Highlight the file, as shown below, and click OK.

#L Select ELF Files (=]

Select an ELF file to associate with sim_1, microblaze_0. Deselect all files to remove the file ‘

association.

ELF Files

mb_bootloop_le.elf (c:\temp\project_7\project_7.srcs\sources_1\ipshared\xilinx.com\microb

4| I |

[OK] [Cancel

Figure 90: Highlight the ELF File to Associate

Make sure that the ELF file is populated in the Associated ELF File Column and click OK.

Designing IP Subsystems Using IP Integrator www.xilinx.com I Send Feedback l 68

UG994 (v2014.4) November 19, 2014

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=68

& XILINX

ALL PROGRAMMABLE, Working with Block Designs

2e

#- Associate ELF File

R

Associate an ELF file with a processor instance (Address Map). ELF files are available after
running generate on your embedded design sources.

ELF File Associations

Processors/Address Maps Associated ELF File

E| [Design Sources
=y fa design_1_i
----- @ microblaze_0 mb_bootloop_le.elf ()
Eh— Simulation Sources
=+ sim_1
=3 fa design_1_i
""" & microblaze_0 Deri_test.elf [fam:

’ oK ” Cancel]

Figure 91: Making Sure the ELF File is Populated

Adding and Associating an ELF File in a Single Step
You can accomplish adding and associating an ELF file at once by following the following steps.
1. Right-click on the block design in Sources window and select Associate ELF files.

2. Inthe Associate ELF Files dialog box, click on the browse button on either the processor instance under
Design Sources or Simulation Sources.

.

¢ Associate ELF File 23|
Associate an ELF file with a processor instance (Address Map). ELF files are available after
running generate on your embedded design sources. ‘

ELF File Associations

Processors/Address Maps Associated ELF File
B o) DeS|gn Sources

E} fa
mb_bootloop_le.elf c
BI— Simulation OUI’CES

[=HE sim_1

= design 1
1% microblaze_0 2erl, BStell

Figure 92: Adding and Associating an ELF file using the Associate ELF Files Dialog Box

3. When the Associate ELF File dialog box pops up, click on Add Files.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 69
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=69

& XILINX

ALL PROGRAMMABLE..

Working with Block Designs

e

4L Select ELF Files []

Select an ELF file to associate with sim_1, microblaze_0. Deselect all files to remove the file
association.

ELF Files

mb_bootloop_le.elf (c:\temp\project_7\project_7.srcs\sources_1\ipshared\xilinx. com\microb

O il] »

L

’ oK] [Cancel

Figure 93: Click on Add Files Button to Add an ELF File

4. In the Add Source Files dialog box, navigate to the folder where the ELF file is located. Select the file and
click OK.

#- Add Source Files @
Lookin: | | Debug v THE B LA DX S B
L src Recent Directories
,;_'4 testelf = C:/temp/microblaze/microblaze.sdk/SDK/SDK_Export/peri_... =
Recent peri_teste
Items File Preview
- Directory: -
g C:/temp/microblaze/microblaze. sdk/SDK/SDK_Export/peri_test/Dy
Destioy Created: Today at 16:25 PM
15 Accessed: Today at 16:27 PM L
JI d Modified: Today at 1627 PM 5
y P
Documents Size: 85.2 KB
Type: ELF L
L&nj E)‘wner: XLNX'ndutta - \ -
Computer
e‘u; File name: peri_test.elf
Network Files of type: [ELF Files (.elf) -

Figure 94: Navigate to the Directory where the ELF File is Located

5. Back in the Associate ELF file dialog box, select the newly added ELF file and click OK.

-

¢ Select ELF Files []
Select an ELF file to associate with sim_1, microblaze_0. Deselect all files to remove the file
association. ‘

ELF Files

mb_bootloop_le.elf (c:\temp\project_7\project_7.srcs\sources_1\ipshared\xilinx. com\microb
peri_test.elf (C:\tutorials\2014.1\examples)

4 il] r

’ oK l l Cancel

Figure 95: Associate the Newly Added ELF File

Designing IP Subsystems Using IP Integrator www.xilinx.com

l Send Feedback l 70
UG994 (v2014.4) November 19, 2014

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=70

& XILINX

ALL PROGRAMMABLE, Working with Block Designs

6. Inthe Associate ELF Files dialog box, verify that the new ELF file is shown in the processor instance field and
click OK.

¢ Associate ELF File 23

Associate an ELF file with a processor instance (Address Map). ELF files are available after
running generate on your embedded design sources.

ELF File Associations

Processors/Address Maps Associated ELF File
—I5y Design Sources
. Bk design_1_i
“-@ microblaze_0 mb_bootloop_le.elf =)
=} Simulation Sources
=} sim_1
=} i, design_1_i -
@ microblaze_0 Eeri test.elf [

[OK]| Cancel |

Figure 96: Verify that the Newly Added File is Associated to the Processor Instance

With the ELF file added to the project, the Vivado Design Suite will automatically merge the Block RAM
memory information (MMI file) and the ELF file contents with the device bitstream (BIT) when generating
the bitstream to program the device.

You can also do this manually using the UpdateMEM utility. Refer to this link in the Vivado Design Suite
User Guide: Embedded Processor Hardware Design (UG898) for more information on UpdateMEM.

Setting the Block Design as an Out-of-Context (OOC) Module

Hierarchical Design flows enable you to partition the design into smaller, more manageable modules to be
processed independently. In the Vivado Design Suite, these flows are based on the ability to implement a
partitioned module out-of-context (OOC) from the rest of the design. The most common use situation in the
context of IP integrator is that you can set the block design as an out-of-context module which can be
synthesized and a design checkpoint (DCP) file created. This block design, if used as a part of the larger Vivado
design, does not have to be re-synthesized every time other parts of the design (outside of IP integrator) are
modified. This provides in considerable run-time improvements.

& CAUTION! The Out-of-Context Mode can only be enabled for the entire block design. You cannot select
individual IP in a block design and set them as Out-of-Context modules.

To set a block design as an out-of-context module, you highlight the block design, right-click and select Out-
of-Context Settings.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 171
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.3;d=ug898-vivado-embedded-design.pdf;a=UsingUpdateMEMToMergeBITMMIBMMAndELFFiles
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug898-vivado-embedded-design.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=71

& XILINX

ALL PROGRAMMABLE, Working with Block Designs

Sources — O 2 %
A= e R

[=H= Design Sources (2)
Ctrl+E

[H-4 design| & Open File Alt+0
| Constraing
[Simulatior

Create HDL Wrapper...
View Instantiation Template
Generate Output Products...
Reset Output Products...
Out-of-Context Settings...

s

Package Block Design...

Figure 97: Setting a Block Design as an Out-of-Context Module

The Out-of-Context Settings dialog box opens informing you that the a design checkpoint (dcp) file will be
created for the block design. In the Preview pane check the checkbox against the block design.

-

#- Out-of-Context Settings (23|
Configure the generation of synthesized

checkpoints (.dep) for selected IP and set ‘
the number of jobs.

Preview
#, design_1.bd

Number of jobs:|1 ~

’ 0K ” Cancel]

Figure 98: Set as Out-of-Context Dialog Box

You can see if the OOC feature has been enabled on the block design by verifying the square box against the
block design in the Sources window as shown by the highlighted box in the following figure.

Sources — 0O ax
™y g %
azE et BE

[Design Sources (2]

. =l design_1_wrapper - STRUCTURE (design_1_wrappel
fesign_1_i - design_1 (design_1.bd) (1]
esign_1 - STRUCTURE (design_1.vhd] (9]
(-4 design_2 (design_2.bd) (9)

| Constraints

[Simulation Sources (3)

4 i} =

Hierarchy | IP Sources | Libraries | Compile Order

Figure 99: Verify that the Block Design has been Set as an OOC Module

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 72
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=72

& XILINX

ALL PROGRAMMABLE, Working with Block Designs

You can then synthesize the block design by selecting Run Synthesis from the Flow Navigator. As synthesis
launches, you can see the Out-of-Context Module runs in the Design Runs window.

Design Runs —Oa =
& Part Constraints ~ Strategy Status Progress
=
= xc7vx485tffgl157-1 constrs_1 Vivado Synthesis Defaults (Vivado Synthesis 2013) Queued... 0%
= xc7vx485tffg1157-1 constrs_1 Vivado Implementation Defaults (Vivado Implementation 2013) Not started 0%

= design_1_synth_1 xC7vx485tffgl157-1 design_1 Vivado Synthesis Defaults (Vivade Synthesis 2013) Running synth_design... 0%
4 e design_1_impl_1 xC7vx485tfg1157-1 design_1 Vivado Implementation Defaults (Vivado Implementation 2013) Not started 0%
»
p
|
JO’

Pl I » &

Figure 100: Design Runs Window View for Out-of-Context Flow

When the synthesis run completes, a design checkpoint file (DCP) is created which is an archive consisting of
the synthesized netlist and all the constraints necessary for the block design. This DCP file can be found in the
synthesis run directory which can be opened by selecting the design 1 synth 1 run, right-clicking and
selecting Open Run Directory.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 73
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=73

& XILINX

ALL PROGRAMMABLE.

Working with Block Designs

The run directory opens in Windows Explorer.

=@ r=]
O @v‘ | » Computer » OSDisk(C:) » temp » project. 1 » project_lruns ¥ design_l synth_1 » - | 4y | | Search design_1_synth_1 e ‘
Organize ~ Include in library ~ Share with = Burn New folder =T 1l 9
- Favorites Name ’ Date modified Type Size
B Deskiop Xil 10/8/2013 10:47 A... File folder
l4 Downloads Vivado Synthesis.queue.rst 10/8/2013 10:41 A.. RST File 0KB
= Recent Places vivado.begin.rst 10/8/2013 10:41 A.. RSTFile 1KB
wvivado.end.rst 10/8/2013 10:47 A.. RST File 0O KB
- Libraries 3 design_1l.dcp 10/8/2013 1047 A.. DCPFile 613 KB
“+- Documents design_Lrds 10/8/2013 10:47 A.. RDS File 545 KB
4. Music ®| design_l.tcl 10/8/2013 10:41 A.. TCLFile 2KB
£, Pictures design_1_utilization_synth.pb 10/8/2013 10:47 A.. PBFile 1KB
B videos 2 design_1_utilization_synth.rpt 10/8/2013 10:47 A.. RPT File 7KB
& dont_touchxdc 10/8/2013 10:41 A.. XDC File 20 KB
& Computer hir.bet 10/8/2013 10:41 A.. Text Document 1KB
#» O5Disk (C) 2] ISEWrapjs 10/8/2013 10:41 A.. JScript Script File 5 KB
& gdrive (\\ppdeng) (G} & ISEWrap.sh 10/8/2013 10:41 A.. SH File 2KB
& ndutta (\\xcocl2) (H:) ﬁ rundef js 10/8/2013 10:41 A.. IScript Script File 2KB
& xcoswmkig (\\xcoengl) (1) =) runme.bat 10/8/2013 10:41 A.. Windows Batch File 1KB
= rdi-xco (\\efsnac3) () runme.log 10/8/2013 10:47 A.. Text Document 550 KB
< bugcases (\xsjppdnacl) (k) & runmessh 10/8/2013 10:41 A.. SH File 2KB
@ vivadojou 10/8/2013 10:42 A.. JOU File 1KB
@& Network vivado.pb 10/8/2013 10:47 A.. PBFile 797 KB
19 items
|

Figure 101: The Run Directory for the 0OC Module Containing the DCP File

If the block design is added as a synthesized netlist in other designs, this DCP file can be added to the project
where the block design is instantiated. The recommended way to do this is to add the block design to the
project. Adding the block design brings in the DCP file as well.

Designing IP Subsystems Using IP Integrator www.xilinx.com

UG994 (v2014.4) November 19, 2014

| Send Feedback I 74

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=74

& XILINX

ALL PROGRAMMABLE.

Chapter 5 Parameter Propagation in IP Integrator

Overview

Parameter propagation is one of the most powerful features available in IP integrator. The feature enables an IP
to auto-update its parameterization based on how it is connected in the design. IP can be packaged with
specific propagation rules, and IP integrator will run these rules as the diagram is generated. For example, in
the following figure, IPO has a 64-bit wide data bus. IP1 is then added and connected, as is IP2. In this case,
IP2 has a default data bus width of 32 bits. When the parameter propagation rules are run, the user is alerted
to the fact that IP2 has a different bus width. Assuming that the data bus width of IP2 can be changed through
a change of parameter, IP integrator can automatically update IP2. If IP cannot be updated to match properties
based on its connection, then an error will be shown, alerting users of potential issues in the design. This is a
simple example, but demonstrates the power of parameter propagation. The types of errors that can be
corrected or identified by parameter propagation are often errors not found until simulation.

(Ngul \

User specifies Default width = 32 Input width = 64
width = 64 is updated to after propagation
propagated value

Figure 102: Parameter Propagation Concept

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 75
UG994 (v2014.4) November 19, 2014 l—\/_l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=75

& XILINX

ALL PROGRAMMABLE, Parameter Propagation in IP Integrator

Bus Interfaces

A bus interface is a grouping of signals that share a common function. An AXI4-Lite master, for example,
contains a large number of individual signals plus multiple buses, which are all required to make a connection.
One of the important features of IP integrator is the ability to connect a logical group of bus interfaces from
one IP to another, or from the IP to the boundary of the IP integrator design or even the FPGA IO boundary.
Without the signals being packaged as a bus interface, the IP’s symbol will show an extremely long and
unusable list of low-level ports, which will be difficult to connect one by one.

A list of signals can be grouped in IP - XACT using the concept of a bus Interface with its constituent port map
that maps the physical port (available on the IP’s RTL or netlist) to a logical port as defined in the IP-XACT
abstraction Definition file for that interface type.

Common Internal Bus Interfaces

Some common examples of bus interfaces are buses that conform to the AXI specification such as AXI4,
AXI4Lite and AXI-Stream. The AXIMM interface includes all three subsets (AX14, AXI3, and AXI4Lite). Other
interfaces include BRAM.

10 Bus Interfaces
Some Bus Interfaces that group a set of signals going to IO ports are called I/O interfaces. Examples include
UART, I2C, SPI, Ethernet, PCle, DDR etc.
Special Signals
There are five standard signals identified that are used across a wide variety of IP. These interfaces are:
e C(Clock
e Reset
e Interrupt

e Clock Enable

e Data (for traditional arithmetic IP which do not have any AXI interface e.g. adder/subtractor, multiplier)

These special signals are described in the following sections:

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 176
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=76

& XILINX

ALL PROGRAMMABLE, Parameter Propagation in IP Integrator

Clock

The clock interface can have the following parameters associated with them. These parameters are used in the
design generation process and are necessary when the IP is used with other IP in the design.

e ASSOCIATED_BUSIF: The list contains names of bus interfaces, which run at this clock frequency. This

parameter takes a colon ;" separated list of strings as its value. If all interface signals at the boundary
do not run at this clock rate, then this field is left blank.

e ASSOCIATED_RESET: The list contains names of reset ports (not names of reset container interfaces) as

its value. This parameter takes a colon ":" separated list of strings as its value. If there are no resets in
the design, then this field is left blank.

e ASSOCIATED_CLKEN: The list contains names of clock enable ports (not names of container interfaces)

as its value. This parameter takes a colon “:" separated list of strings as its value. If there are no clock
enable signals in the design, then this field is left blank.

e FREQ_HZ: This parameter captures the frequency in hertz at which the clock is running in positive
integer format. This parameter needs to be specified for all output clocks only.

e PHASE: This parameter captures the phase at which the clock is running. The default value is 0. Valid
values are 0 to 360. If you cannot specify the PHASE in a fixed manner, then you must update it in
bd.tcl, similar to updating FREQ_HZ.

e CLK_DOMAIN: This parameter is a string id. By default, IP integrator assumes that all output clocks are
independent and assigns unique ID to all clock outputs across the block design. This is automatically
assigned by IP integrator, or managed by IP if there are multiple output clocks of the same domain.

To see the properties on the clock net, select the source clock port or pin and analyze the properties on the
object.

clk _wiz_1

—||[ek e o

reset locked

Clocking Wizard

Figure 103: Analyzing the Clock Properties in IP Integrator

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 177
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=77

& XILINX

ALL PROGRAMMABLE..

Parameter Propagation in IP Integrator

0.0

clk outl

clk
RLSE

foclk wiz_l/clk outl

Block Pin Properties
« + [k
= clk_outl
Q,
= = CONFIG
= ASSOCIATED_BUSIF
E CLK_DOMAIN
+ FREQ_HZ
PHASE
[‘ NAME
@ DIR
LEFT
RIGHT
TYPE
INTF
LOCATION
PATH
General Interface |

Figure 104: Clock Properties

These properties can also be reported by the following Tcl command:

report property [get bd intf ports sys diff clock]

report _property [get _bd intf ports fays diff clock]

Property Type Read-only Wisible Value

CLASS string true true bd intf port

CONFIG.FREQ_HZ string false true 200000000

LOCATICON string £false true 140 390

MODE string true true Slave

HAME string false true sys_diff clock

BATH atring true true fays_diff clock

VLNV string true true Kilinx.com:interface:diff clock rtl:l.0
Figure 105: Reporting Clock Properties using Tcl Command

You can also double click on the port or pin to see the customization dialog box for the selected object.

Designing IP Subsystems Using IP Integrator

UG994 (v2014.4) November 19, 2014

www.xilinx.com

l Send Feedback l 78

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=78

& XILINX

ALL PROGRAMMABLE.. Parameter Propagation in IP Integrator

Reset

This container bus interface should also include the following parameters with it:

e POLARITY: Valid values for this parameter are ACTIVE_HIGH or ACTIVE_LOW. The default is
ACTIVE_LOW.

To see the properties on the clock net, select the reset port or pin and analyze the properties on the object.

mdm_1

MBDEBUG_0<% |||

MicroBlaze Debug Module (MDM)

rst_clk_wiz_1_100M
slowest_sync_clk mb_reset
olk_wiz_1 exl:_reset_|lr1 htﬁl_sh'uct_reset[D:D]
=—aLx_reset_in peripheral_reset[0:0] =
sys_diff_clock [y==t==||+CLK_IN1_D clk_out mb_debug_sys_rst interconnect_aresetn[0:0] N
reset [p— reset locked dem_locked peripheral_aresetn[0:0] —
Clocking Wizard Processor System Reset

Figure 106: Reset Signal

Properties — O &1 *

« » &[5

Cr reset

Q,

= | =l CONFIG

% POLARITY ACTIVE HIGH

E% NAME reset
DIR I

g

H LEFT

i RIGHT

® TYPE T3t
INTF FRLSE
LOCATION 140 410
PATH freset

General

Figure 107: Reset Properties

These properties can also be reported by the following Tcl command:

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 179
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=79

& XILINX

ALL PROGRAMMABLE.. Parameter Propagation in IP Integrator

report property [get bd ports reset]

report_property [get_bd ports Sreset]

Property Type Bead-only WVisikle Value
CLASS string true true bd port
CONFIG.POLARITY string false true ACTIVE HIGH
DIR string true true I

INIF string true true FALSE
LEFT string false true

LOCATICH string false true 140 410
HAME string false true reset
PATH string true true /reset
RIGHT string false true

TYPE string true true rst

Figure 108: Reporting reset Properties using Tcl Command

Interrupt

This bus interface includes the following parameters:

e SENSITIVITY: Valid values for this parameter are LEVEL_HIGH, LEVEL_LOW, EDGE_RISING, and
EDGE_FALLING. The default is LEVEL_HIGH.

To see the properties on the interrupt pin, highlight the pin as shown below and look at the properties window.

Block Pin Properties — O a1
« +E5
= interrupt
Q,
= =] CONFIG
(=] SENSITIVITY EDGE RISING
=2
E MNAME interrupt
DIR 0
ai_uvartlite_0 + LEFT
If‘ RIGHT
= @ TYFE intr
AX1 Uartlite INTF JELL3E
axi_gpin_0 LOCATION
PATH Jexi vartlite 0/...
AX GPIO General Interface |

Figure 109: Interrupt Properties

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 1 80
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=80

& XILINX

ALL PROGRAMMABLE, Parameter Propagation in IP Integrator

These properties can also be reported by using the following Tcl command:

report property [get bd pins /axi uartlite O/interrupt]

report_property [get_bd pins faxi_uartlite 0/interrupt]
Property Type Read-only Wisibkle Value

CLASS atring true true bd_pin
CONFIG.SENSITIVITY string true true EDGE_RISING
DIR string true true 0

INTF string true true FRLSE

LEFT string true true

LOCATION string £false true

NAME string false true interrupt
EATH string true true faxi_uartlite 0/interrupt
RIGHT string true true

TYPE string true true intr

Figure 110: Reporting Interrupt Properties

Clock Enable
There are two parameters associated with Clock Enable: FREQ_HZ and PHASE.

How Parameter Propagation Works

In IP integrator, parameter propagation takes place when you choose to run Validate Design. You can do this in
one of the following ways:

¢ C(lick on Validate Design in the Vivado® IDE toolbar.

e Click on Validate Design in the Design Canvas toolbar.
e C(lick on Tools > Validate Design from the Vivado Menu.
e Use the Tcl command: validate bd design

The propagation Tcl provides a mechanism to synchronize an IP instance’s configuration with that of other
instances connected to it. The synchronization of configuration happens at bus interface parameters.

IP integrator’s parameter propagation works primarily on the concept of assignment strength for an interface
parameter. An interface parameter can have a strength of USER, CONSTANT, PROPAGATED, or DEFAULT. When
the tool compares parameters across a connection, it always copies a parameter with higher strength to a
parameter with lower strength.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 81
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=81

& XILINX

ALL PROGRAMMABLE, Parameter Propagation in IP Integrator

Parameters in the Customization GUI

In the Non-Project Mode, you must configure all user parameters of an IP. However, in the context of IP
integrator, any user parameters that are auto updated by parameter propagation are grayed out in the IP
customization dialog box. A grayed-out parameter is an indication that you should not set the specific-user
parameters directly on the IP; instead, the property values are auto-computed by the tool.

There are situations when the auto-computed values may not be optimal. In those circumstances, you may
override these propagated values.

There are four different cases that you will encounter related to parameter propagation.

e Auto-computed parameters — these parameters are auto-computed by IP integrator and you cannot
override them. For example, the Ext Reset Logic Level parameter in the following figure is greyed out
and Auto is placed next to the parameter denoting that you cannot change it.

1F Re-customize IP B
Processor System Reset (5.0) ‘
‘T’J Documentation [IP Location

Show disabled ports Component Name | my_hierarchy/rst_clk_wiz_1_100M

Board” Basic

External Reset

IExt Reset Logic Level (Auto) |1 I

Ext Reset Active Width 4 A

Auxillary Reset

P
(&) Aute) Aux Resat Logic Level |0
ovsest_ne_dk mb rasat] E—

#_reset In bus_siriadt_resetiBe|
ux_reset_in peripheral_reset|Ea|
b_aebuq_srs Fanieroonnedt_aresin (B8]

n_loduea perlpheral_aresein B8] Active High Reset

Aux Reset Active Width 4 -

Bus Structure | 1 -
Peripherals | 1 v
Active Low Reset

Interconnect | 1 b

Peripherals |1 -

oK] | Cancel

Figure 111: Auto-Computed Parameter

e Override-able parameters —Auto-computed parameters that you can override. For example, you can
change the SLMB Address Decode Mask for the LMB BRAM Controller. When you hover the mouse on

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 82
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=82

& XILINX

ALL PROGRAMMABLE, Parameter Propagation in IP Integrator

top of the slider button, it will tell you that the parameter is controlled by the system; however, you can
change it by toggling the button to User from Auto.

LF Re-customize IP @
v

i Re-customize IP
LMB BRAM Controller (4.0) LMB BRAM Controller (4.0)

f Documentation [IP Location

[] Show disabled ports

=
s

i bocumentation (5 TP Location

Component Name | design_1_dimb_bram_if_cntir_o

Addresses | ECC

["] show disabled ports

Component Name |design_1_dimb_bram_if_cntlr_0

- Addresses | ECC
Number of LME Forts 1 [1.4] Number of LMB Ports 1 [1.41
LMB BRAM Base Address (Auto) 0x00000000 LMB BRAM Base Address (Auto) 0x00000000
h Address (Auto) 0X00001FFF LMB BRAM High Address (Auto) 0x00001FFF
LMB Address Decode Mask | 0x40000000 Im ISLMB Address Decode Mask 0340000000

|The value of specified parameter is a manual entry. To have auto-generated
value, press this button.

@I sims2 Address Decode Mask |0x00800000

% | The value of specified parameter is controlled by system. To provide
a new value, press this button

() SLMB2 Address Decode Mask |0x00800000

.) W) sume3 Address Decode Mask | 000800000 @) s.MB3 Address Decode Mask |0x00800000

Figure 112: Parameter to Override

e User configurable parameters — These parameters are user configurable only and are to be set by the
user.
1F Re-customize IP []
Clocking Wizard (5.1) ﬁ\)
ﬁ Documentation [IP Location
IP Symbol | Resource Component Name | design_1_clk_wiz_1_0
D Show disabled ports Clocking Options | Qutput Clocks = MMCM Settings | Port Renaming | Summary
- -
Primitive —
@mMMCcM () PLL
Clocking Features Jitter Optimization
Frequency Synthesis I:‘ Minimize Power 6 Balanced
/| Phase Alignment Spread Spectrum () Minimize Output Jitter
]
" I{::I CLK IN 1 D |0Cked D Dynamic Reconfig I:‘ Dynamic Phase Shift () Maximize Input Jiter filtering L
|| safe Clock Startup
resetn clk_outl
Dynamic Reconfig Interface Options
(@) AxmLite DRP
Input Clock Information
Input Clock Input Frequency(MHz) Jitter Options Input Jitter Source
[Tprimary [100.000 [10.000 - 800.000 | UI ~ o010 [ifferential clock capable pin -
| F |Secnndary ‘ 100.000 ‘ | ‘ 0.010 ‘ Single ended clock capable pin i
a bl < | 1 »

Figure 113: User-Configurable Parameter

e Constants — These are parameters that cannot be set by anyone.

Designing IP Subsystems Using IP Integrator
UG994 (v2014.4) November 19, 2014

www.xilinx.com

| Send Feedback I 83

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=83

& XILINX

ALL PROGRAMMABLE, Parameter Propagation in IP Integrator

Example of a Parameter Mismatch

The following is an example of a parameter mismatch on the FREQ_HZ property of a clock pin. In this example,
the frequency does not match between the S01 AXTI port and the S_AXI interface of the AXI Interconnect. This
error is revealed when the design is validated.

processing_system?_0_axi_perip

proc_sys_reset

clowest_sync_clk mb_recat
| ext_reset_in bus_struct_reset[0:0]

¢% Critical Messages

P
':01 There was 1 error message while validating this design.
-

Messages
® [BD 41-237] Bus Interface property FREQ_HZ does not match between [processing_system?7_0_axi_periph/s01_couplers/auto_pc/S_AXI(50000000) and /S01_AXI(500000000)

[oK ” Open Messages View]

Figure 114: FREQ HZ property mismatch between a port and an interface pin

The port, S01 AXTI, has a frequency of 500 MHz as can be seen in the properties window, whereas the
S01_ AXT interface of the AXI Interconnect is set to a frequency of 50 MHz.

This type of error can be easily fixed by changing the frequency in the property, or by double-clicking on the
S01 AXTI port and correcting the frequency in the Frequency field of the customization dialog box.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 84
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=84

& XILINX

ALL PROGRAMMABLE.. Parameter Propagation in IP Integrator
External Interface Properties — 0O & x
+ »8k
I S501_AXT
Q| aqass bd_intf port -
| = CONFIG N
== ADDR_WIDTH 32
=
E ARUSER_WIDTH 0
+ AWUSER_WIDTH 1}

BUSER_WIDTH 0
[4 CLK_DOMAIN
® DATA_WIDTH 32
[eReohz oo
ID_WIDTH 1

1

MAX_BURST_LENGTH 25&
MUM_READ_OUTSTA... 1
MUM_WRITE_OUTST... 1

PHASE 0.000

PROTOCOL RXI4

READ_WRITE_MODE RERD WRITE

RUSER_WIDTH a

SUPPORTS_MARROW... 1

WUSER_WIDTH a L
MAME 501_RXI
VLNV xilinx.com:interface:aximm rtl:1.0
MODE Slave -

General

Figure 115: Change the Frequency of the Port in the Properties Window

Once the frequency has been changed, you can validate the design again to make sure that there are no errors.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback | 83
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=85

& XILINX

ALL PROGRAMMABLE.

Chapter 6 Using the ILA to Debug IP Integrator Designs

Overview

In-system debugging allows you to debug your design in real-time on your target hardware. This is an essential
step in design completion. Invariably, you will come across a situation which is extremely hard to replicate in a
simulator. Therefore, there is a need to debug the problem right there in the FPGA. In this step, you place an
instrument into your design with special debugging hardware to provide you with the ability to observe and
control the design. After the debugging process is complete, you can remove the instrumentation or special
hardware to increase performance and reduce logic.

IP integrator provides ways to instrument your design for debugging which is explained in the following
sections. There are two flows explained: the HDL instantiation flow and the netlist insertion flow. Choosing the
flow depends on your preference and types of nets/signals that you are interested in debugging. As an
example, if you are interested in performing hardware-software co-verification using the cross-trigger feature
of MicroBlaze or Zynq processor, then you can use the HDL instantiation flow. If you are interested in analyzing
I/O ports and internal nets, then netlist insertion will be the way to go. In most of the cases, you will be using a
combination of both flows to debug your design.

Using the HDL Instantiation Flow in IP Integrator

You can instantiate an Integrated Logic Analyzer (ILA) in the IP integrator design and connect nets to the ILA
that you are interested in probing. You can instantiate an ILA by following the steps described below.

1. Right-click on the block design canvas and select Add IP.

Ctrl+E

Delete

Ctrl+C

Ctrl+V
%, Search... Ctrl+F ﬁ

' Select All Ctrl+A

S AddIp.. Cirl+1
| < Validate Design F& —
: Create Hierarchy... |

Figure 116: Add IP from the context menu

2. IntheIP catalog type ILA in the search field, select and double click on the ILA core to instantiate it on the
IP integrator canvas. The ILA core gets instantiated on the IP integrator canvas.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback | 86
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=86

& XILINX

ALL PROGRAMMABLE.. Using the ILA to Debug IP Integrator Designs
Search: | O~ ILA (1 match) ila_0
Name ot VLNV

R SLOT_0_AXI
clk

ILA (Integrated Logic Analyzer)

a4 1 | =
Select and press ENTER or drag and drop, ESC to cancel

Figure 117: Instantiate ILA Core

3. Double click on the ILA core to reconfigure it. The Re-Customize IP dialog box opens.

-

1F Re-customize IP =]
ILA (Integrated Logic Analyzer) (5.0) ‘

ﬁ Documentation | IP Location

[Show disabled ports Component Name | ila_0

To configure more than 64 probe ports use Vivade Tcl Console

General Options rMonitor Interface0

Maonitor Type
() Native (@) AXT

C Num Monitor Slots |1

Sample Data Depth | 1024 -

A dRSLOT_0_AXI [Trigger Out Port

|:| Trigger In Port

Input Pipe Stages 0 -
Trigger And Storage Settings

[| capture Control
[] Advanced Trigger
Same Mumber of Comparators for All Probe Ports

Number of Comparators | 1 -

GUI configuration mode is limited to 64 probe ports.

oK] [Cancel

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 187
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=87

& XILINX

ALL PROGRAMMABLE.

Using the ILA to Debug IP Integrator Designs

Figure 118: Re-customize IP Dialog Box for the ILA Core

The default option under the General Options tab shows AXI as the Monitor Type. Keep this selection in case
you are monitoring an entire AXI interface. Change the Monitor Type to Native if you are monitoring non-AXI
interface signals. You can change the Sample Data Depth and other fields as desired. For more information,
please refer to the following document: Vivado Design Suite User Guide: Programming and Debugging (UG908)

CAUTION! You can only monitor one AXI interface using an ILA. Do not change the value of the C Num
Monitor Slots. If more than one AXI interface is desired to be debugged, then instantiate more ILA cores
as needed.

In case the Monitor Type is set to Native, you can set the Number of Probes to the desired value. This value
should be set to the number of signals that need to be monitored.

LF Re-customize IP 1F Re-customize IP 2 |
ILA (Integrated Logic Analyzer) (5.0) ILA (Integrated Logic Analyzer) (5.0) '
ifid Documentation [P Location [ifid Documentation [TP Location
[7] show disabled parts Component Name | ila_0 [T show disabled ports Component Name |ila_0
‘ To configure more than 64 probe ports vse Vivado Tcl Console ‘ To configure more than 64 probe ports use Vivado Tcl Console
/General Options || Probe_Ports(0..7) General Options” JProbe_Ports(0..7)
Monitor Type Frobe Port Probe Width [1..4096] Number of Comparators
(@FNa PROBEL 1 1
INumher of Probes 2 [1- 1024] I
Sample Data Depth | 1024 -
P [Trigger Out Port i
robe0[0:0] proben[0:0]
probe1[0:0] [Trigger In Port probe1[0:0]
Input Fipe Stages 0 v
Trigger And Storage Settings
[capture Contral
[Advanced Trigger
Same Number of Comparators for All Probe Ports
Number of Comparators| 1 -
GUI configuration mode is limited to 64 probe ports.
< Eli= ‘ 114

Figure 119: Choosing the Native Monitor Type

In the figure above, the number of Probes is set to 2 in the General Options tab. You can see under the
Probe_Ports tab that two ports are displayed. The width of these ports can be set to the desired value. So
assuming that you want to monitor a 32-bit bus, set the Probe Width for Probe 0 to 32. Once the ILA is
configured, the changes are reflected on the IP integrator canvas.

Designing IP Subsystems Using IP Integrator www.xilinx.com

UG994 (v2014.4) November 19, 2014

l Send Feedback I 88

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=88

& XILINX

ALL PROGRAMMABLE. Using the ILA to Debug IP Integrator Designs

ila_0

clk
probe0[31:0]

probe1[0:0]

ILA (Integrated Logic Analyzer)

Figure 120: ILA Core after Making Changes in the Re-customize IP Dialog Box

4. Once the ILA is configured as desired, connection can be made to the pins of the ILA on the IP integrator

canvas.
clk_wiz_1
sys_diff_clock [pmmm—||-CLK_INL D dlk_outt rst_clk_wiz_1_100M
reset [_— reset locked
= = slowest_sync_clk mb_|
Clocking Wizard el Bl et
- alx_reset_in peripheral_reset
mb_debug sys rst interconnect_aresetn
dem_locked ripheral_aresetn|
¢_addsub_0 ia 0 " P
A[30:0] D A[30:0] A Processor System Reset
Bl30:0] 5[31:0] obe0[31:0]
B[30:0] D_I_-"LK ¢ - bel[0:0]
={CE 5 y axi_uartlite_0
[LA (Integrated Logic Analyzer -
Adder/Subtracter (Integ g vzer) ——| R 5_AXT T
|
o 5 axi_adk
interrupt
. S_axi_aresetn
ila_1
| SL0T 0_AXT AXT Uartlite
clk
ILA (Integrated Logic Analyzer)

Figure 121: Instantiating ILAs to Monitor AXI and Non-AXI signals.

& CAUTION! If a pin connected to an I/O port needs to be debugged, then Mark Debug should be used
to mark the nets for debug. This is explained in the following section

5. Follow on to synthesize, implement and generate bitstream.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 189
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=89

& XILINX

ALL PROGRAMMABLE, Using the ILA to Debug IP Integrator Designs

Connecting 1/0 Ports to an ILA or VIO Debug Core

Often times the 1/O ports of a block design need to be probed for debugging. If the I/O ports are a part of the
interface ports then you must take care when connecting these interface port or pins to the ILA or VIO core.

As an example, we will take the following MicroBlaze design for the KC705 board. This design has a GPIO which
is configured for using both the 8-bit LED interface and the 4-bit dip switches on the KC705 board.

axi_uartlite_0

AN b e |5 AXT
il . UART - || e T, 15232_uirt

AN -p 5 axi_adk 5
= interrupt
5 axi_aneaetn

AXI Uartlite
axi_gpio 0

GP10 = || led_8bits

gpia_ia_of7:0]w

footlizld GPL0z — ||} dip_switches_4bits

5 ai_anesetn
. gpio2_jo_i[3:0]4

-pS_AXI

AXI GPIO

Figure 122: Monitoring the 1/0 interfaces of a block design

To monitor these I/O interfaces, you need to expand the GPIO interface pins so that you can see the pins that
make up the interface pin. As you can see in the figure above, the GPIO interface consists of an 8-bit output pin
called gpio io o[7:0] and the GPIO2 interface consists of a 4-bit input pin called gpio2 io i[3:0].

To monitor these pins you need to make them external to the block design. In other words, you must tie the
pins inside the interface pin to an external port. This can be done by right-clicking on the pin, and selecting
Make External from the menu.

axi_uartlite_0
AXT & e | .5 AT
i al = D |
ek - -LI.ARTQ}: | rs232_uart
° i interrupt
5_axi_aresetn
& Block Fin Properties... Ctrl+E
M ;;:';"tg ¥ Highlight ’
r = 3 x Delete
Hles_ax i | @ copy Ctrl+C
— ’—a)ﬁ‘a::ﬁ GPIO2= || Ctrl+V
POMAESEN @ o i[3:0]4 W & Search... Ctrl+F
L A GPL 4] & Select Al Ctrl+A
AXI GPIO
& Add IP... Ctrl+l
®x Make Exter| Ctrl+T
& IP Settings...
& Validate Design F&

Figure 123: Connect the I/0 pin to an I/O port in the design

You can see in the following figure that the pins that make up the GPIO and GPIO2 interface pins have been
tied to external ports in the block design.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 20
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=90

& XILINX

ALL PROGRAMMABLE. Using the ILA to Debug IP Integrator Designs
L] J axi_gpio_0
AX] Interconnect _
] 7|-ns_ma O3 led 8bits
= . apio_io_o[7:0 0 apio_io_o[7:0]
_ui_aresetn GPIO2 ||l——{ > dip_switches_4bits
apio2_lo_ i[3:01 > A B i«
AXI GPIO

Figure 124: External ports connected to pins within an interface

CAUTION! When you make the I/O pins of an interface external, by connecting the input or output pins
to external ports, do not delete the connection between the top-level interface pin and the 1/0O port. As
shown in Figure 125, leave the existing top-level interface pin connected externally to the appropriate

& interface. You will see a warning as shown below:

WARNING: [BD 41-1306] The connection to interface pin /axi gpio 0/gpio2 io i
is being overridden by the user. This pin will not be connected as a part of

interface connection GPIO2

Next you will connect the interface pins to an ILA debug core.

Use the Add IP command to instantiate an ILA core into the design, and configure it to support either Native
or AXI mode. In this case you must configure the ILA to support Native mode, since you are not monitoring an
AXI interface. You also need to configure two probes on the ILA core: one that is 8-bits wide, and one that is 4-

bits wide.

Connect the ILA probes to the appropriate input/output pins, and connect the ILA clock to the same clock
domain as that of the I/O pins.

AXI Uartlite [led_bits
axi_gpio_0 ila_0 12 gpio_io_of7:0]
Mzles aa GPI0= ||| clk
. I A gpio_io_o[7:0]m - probe0[7:0]

I—;::::::.Ltn GPI02= | 1_-|:=robel[3:u]

qgpioZ_io_i[3:0]4

I§A (Integrated Logic Analyzer)
AXI GPIO [dip_switches_4bits

Figure 125: Connect the ILA probes to the input/output pins that need to be monitored

Figure 125 shows the ILA probe pins connected to the internal pins of the GPIO interface pins.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 91
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=91

& XILINX

ALL PROGRAMMABLE. Using the ILA to Debug IP Integrator Designs

Using the Netlist Insertion Flow in IP Integrator

In this flow, you mark nets that you are interested in analyzing in the block design. Marking nets for debug in
the block design offers more control in terms of identifying debug signals during coding and
enabling/disabling debugging later in the flow.

Marking Nets for Debug in the Block Design

1. Nets can be marked for debug in the block design by highlighting them, right-clicking and selecting Mark
Debug.

|
|
axi_gplo_0
[I| 4 s _oxz
L s axi ack GPIO 4k |[jf T, LED_8Bits
5_axi_aresetn
& Interface Connection Properties... Ctrl+E
X Delete Delete
3 Copy Ctrl+C
Ctrl+V
" Search.. Ctrl+F
k Select All Ctrl+A
® AddIP. Ctrl+1
& Validate Design F6
Mark Debug [y

Figure 126: Mark Nets for Debug

The nets that have been marked for debug will show a small bug icon placed on top of the net in the block
design. Likewise, a bug icon can be seen placed on the nets to be debugged in the Design Hierarchy window as
well, as shown in the following figure.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 92
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=92

& XILINX

ALL PROGRAMMABLE. Using the ILA to Debug IP Integrator Designs
System Hierarchy - Owr =
QA I |[E| 3=
%, design_1 -

[HH External Interfaces 0

axi_gpio_0
—
B —-EI < S_AXI
— s_axi_ack GPIOH- |E—D LED_8Bits
S_axi_aresetn
AXI GPIO
[+ Ports

Mets

T axi_uartlite_1_interrupt @
- rlk wiz 1 _Inrked

& Sources . E! Design Hierarchy

4

Figure 127: Identify Nets Marked for Debug

O TIP: Multiple nets can be marked for debug at the same time by highlighting them together, right-
clicking and selecting Mark Debug.

2. You can Generate Output Products by either clicking on Generate Block Design in the Flow Navigator or
by highlighting the block design in the sources window, right-clicking and selecting Generate Output

Products.

4 TP Integrator A mi&'oblaze:l:axi_dp I I%
Create Block Desian | || = microblaze_1_axi_periph_m01_axi L]
fg reate Bloc E_SIQH -2+ microblaze_1_axi_periph_m02_axi i ,[‘5
57 Open Block Design | ||| .. = microblaze_1_debug Q
&% Generate Block Dpsign -« microblaze_1_dimb

----- = microblaze_1_ilmb ﬁ"

e T Generate Block Design
@ simulation Seftind Generate outputs needed for synthesis, simulation and implementation.
() Run Simulation __ . Pnrté - - =

N =+ Nets - il =

Figure 128: Generate Output Products

3. In the Generate Output Products dialog box, click Generate.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 93
UG994 (v2014.4) November 19, 2014 I—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=93

& XILINX

ALL PROGRAMMABLE, Using the ILA to Debug IP Integrator Designs

-

¢ Generate Output Products x |
The following output products will be
generated. ‘

Preview

Q| =, design_1.bd

[l Synthesis

[l Implementation
[Simulation

i B4

[Qut-of-Context Settings...]

[Generate H Cancel]

Figure 129: Generate Output Products Dialog Box

4. Marking the nets for debug places the MARK_DEBUG attribute on the net which can be seen in the
generated top-level HDL file. This prevents the Vivado® tools from optimizing and renaming the nets.

1799 signal VCC_1 : STD_LOGIC;

3ignal axi ig 0 ig TRI O : STD LOGIC WECTOR { 7 downto 0)7
attribute MARK DEBUG : boolean;

attribute MARK DEBUG of axi_gpio_ 0 _gpioc TRI_O : signal is true;
signal axi_uartlite 1 interrupt : _ ;

0 3ignal axi_uvartlite_l1 uart_RxD : 5TD LOGIC;

1305 signal axi uwartlite 1 uart TxD : STD LOGIC;

1806 signal clk_wiz_1 locked : STD LOGIC;

1807 signal mdm 1 debug sys_rst : S5TD_LOGIC;

Figure 130: MARK_DEBUG Attributes in the Generated HDL File

Synthesize the Design and Insert the ILA Core

1. The next step is to synthesize the design by clicking on Run Synthesis from the Flow Navigator under the
Synthesis drop-down list.

2. After synthesis finishes, the Synthesis Completed pop-up dialog box appears. You select Open Synthesized
Design to open the netlist, and then click OK.

3. The Schematic and the Debug window opens. If the Debug window at the bottom of the GUI is not open,
you can always open that window by choosing Windows > Debug from the menu.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 94
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=94

& XILINX

ALL PROGRAMMABLE, Using the ILA to Debug IP Integrator Designs

Synthesized Dasign - x:7k32517g900 2 (acive)
Hetiist -0e x Schematic X e x
o 3| ol Cal 3 VO Ports 4 Nats

+

LED._8Bits_tri_o_OBUF[0) Inst
- e s LED 8Bits_tri_of7:0]

OBUF
LED_8Bits_tri_o_OBUF[1]jnst
i IF~0 Y

3 & Leaf Cells (11
i design_1.1

GET
LED_88its_tri_o_OBUF[2] fnst
B =t B

OBUF
LED_88its_tri_o_OBUF[3] et
I~ B

= L

QBUF
LED_88its_tri_o_OBUF[4] fnst

s -0 4
y pi0 R
3 =
e OBUF
A Sources il netfist LED_88its_tri_o_OBUF[S] jinst
| pr A B
Froperties —oux GauF
« =+ LED_88its_tri_o_OBUF[S] fnst
RS232_Uart_rxd_IBUF_inst Bl Yy
RS232_Uart_ned [=% OBUF
BUF LED_88its_tri_o_OBUF[7] jinst
resat_IBUF_inst - i{::} 4
reset [— 0 OBUF
TBUF RS232_Uart_txd_OBUF_inst
sys_GH_clock_ck_n [~ =2 [RS232_Uan_xg
sys_diff_clock_dk_p["» ‘0BUF
»
Dabug _oex
| Hame Oriver Cell
21|} [Unassigned Debug Nets
i £'8 design_1_faxi_gplo_0_gpio_TRLO FORE
[design_1_i/a4_gpio_0_gpio_TRI_0[0] FDRE
— TRLO| FDRE
¥ FDRE
@ FDRE
F FDRE
b FDRE
¥ FDRE

Debug Cores | Debug Nets

51 Td Console | © Massages | Bl Log | [Reports | Design Runs . # Debug

Figure 131: Schematic and Debug Window View in the Vivado IDE

4. You can see all the nets that were marked for debug in the Debug window under the folder Unassigned
Debug Nets. These nets need to be connected to the probes of an Integrated Logic Analyzer. This is the
step where you insert an ILA core and connect these unassigned nets to the probes of the ILA. You click on
the Setup Debug icon in the Debug window toolbar. Alternatively, you can also select Tools > Setup
Debug from the menu.

Debug

N Name Driver Cell

=

‘f‘ [=F= Unassigned Debug Nets (108)

= EIJJ"di: design_1_ifaxi_gpio_0_gpio_TRL O (8) FDRE

. I'# design_1_ifaxi_gpio_0_gpio_TRI_O[0] FDRE

o I'# design_1_ifaxi_gpio_0_gpio_TRL O[1] FDRE
“ﬁ I'# design_1_i/axi_gpio_0_gpio_TRL 0[2] FDRE

-._ i b [decinon 1 ifawi onin 0 onin TRT O3] FDRE
| Set up Debug FDRE

| Launch wizard for choosing nets and connecting them to debug cores.| FDRE

E 3 | T 7w UESIQI_L_I7aX_gpio_U_gpTo_T RL_J[0] FDRE
W P b Cud dacion 1 ifavi anin 0 anin TDT AC7] Cnpoc

Dehun Cores | Dehiuo Net

Figure 132: Setup Debug

5. The Setup Debug dialog box opens. You then click Next.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 95
UG994 (v2014.4) November 19, 2014 I—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=95

& XILINX

ALL PROGRAMMABLE. Using the ILA to Debug IP Integrator Designs

#- Set Up Debug PG

Set Up Debug
This wizard will guide you through the process of

1. Choosing nets and connecting them to debug cores.

2. Associating a clock domain with each of the nets chosen for debug.

3. Choosing additional features on the debug cores like Data Depth, Advanced
Trigger mode and Capture Control.

Note: This setup wizard does not apply to the VIO, IBERT or JTAG-to-AXI-Master
debug cores. Please refer to Vivado Design Suite User Guide: Programming and
Debugging (UG308) for further instructions on hows to use these IPs.

VIVADO/

To continue, click Mext

ack Finish Cancel

[=2]

Figure 133: The Set up Debug Dialog Box

6. The Specify Nets to Debug page appears. In this page you can select a subset (or all) of the nets that you
want to debug. Every signal must be associated with the same clock in an ILA. If the clock domain
association cannot be found by the tool, you will manually associate those nets to a clock domain by
selecting all the nets that have the Clock Domain column specified as undefined.

CAUTION! You need to mark the entire interfaces that you are interested in debugging. However, if you
are concerned with device resource usage, then the nets you do not need for debugging can be deleted
while setting up the debug core.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 96
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=96

& XILINX

ALL PROGRAMMABLE, Using the ILA to Debug IP Integrator Designs
#~ Setup Debug | & |
Specify Nets to Debug
Specify Nets for debugging “:l'-’

@ sSome net(s) do not have a clock domain. more info

“N| Name Clock Domain Driver Cell TRIG DA...
= [+ I7# design_1_ifaxi_gpio_0_gpio_TRI_O (8] design_1_ifclk_outl FDRE
= |- I design_1_i/microblaze_1_axi_periph_m02_axi_ARADDR (2) design_1_ifclk_outl FDRE
[+ I7# design_1_i/microblaze_1_axi_periph_m02_axi_AWADDR (9) design_1_ifclk_outl FDRE
[+t I7# design_1_i/microblaze_1_axi_periph_m02_axi_BRESP (2] undefined GND
'ﬂ [+ I7# design_1_i/microblaze_1_axi_periph_m02_axi_RDATA (32) undefined (Multiple)
— |++-IF# design_1_i/microblaze_1_axi_periph_m02_axi_RRESP (2) undefined GND
D [+ I7# design_1_i/microblaze_1_axi_periph_m02_axi_WDATA (32) design_1_ifclk_outl FDRE
S [+t I7# design_1_i/microblaze_1_axi_periph_m02_axi_WSTRB (4) design_1_ifclk_outl FDRE

- _['# design_1_i/microblaze_1_axi_periph_m02_axi ARREADY design_1_ifclk_outl LUTZ2
- _[# design_1_i/microblaze_1_axi_periph_m02_axi_ARVALID design_1_ifclk_outl LUT4
- _[# design_1_i/microblaze_1_axi_periph_m02_axi_AWREADY design_1_ifclk_outl LUTZ2
- _[# design_1_i/microblaze_1_axi_periph_m02_axi_AWWVALID design_1_ifclk_outl LUT4

LLLLLLLLLLLLLLCLLLKL
LLLLLLLLLLLLLLCLLLKL

- _['# design_1_i/microblaze_1_axi_periph_m02_axi_BREADY design_1_ifclk_outl LUTS
- _[# design_1_i/microblaze_1_axi_periph_m02_axi_BVALID design_1_ifclk_outl FDRE
- _[# design_1_i/microblaze_1_axi_periph_m02_axi_RREADY design_1_ifclk_outl LUTZ2
- _[# design_1_i/microblaze_1_axi_periph_m02_axi_RVALID design_1_ifclk_outl FDRE
- _[# design_1_i/microblaze_1_axi_periph_m02_axi_WREADY design_1_ifclk_outl LUTZ2
- _[# design_1_i/microblaze_1_axi_periph_m02_axi_WWVALID design_1_ifclk_outl LUTS
Add/Remove Mets... Mets to debug: 108

[< Back ” Next = Finish

Figure 134: Selecting a Subset (or all) Nets Marked for Debug

To associate a clock domain to the signals that have the Clock Domain column specified as undefined, select
all the nets in question, right-click and choose Select Clock Domain.

O TIP: One ILA is inferred per clock domain by the Set up Debug dialog box.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 97
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=97

& XILINX

ALL PROGRAMMABLE . Using the ILA to Debug IP Integrator Designs

#. Set up Debug

Specify Nets to Debug .
Specify Mets for debugging ':\)

‘ @ some net(s) do not have a clock domain. more info |

| Name | Clock Domain | Driver Cell TRIG DA...
==51

2o |78 design_1_ifaxi_gpio_0_gpio_TRL O (8) design_1_ifclk_outl FDRE 4 4
=3 | I design_1_i/microblaze_1_axi_periph_m02_axi ARADDR (2) design_1_i/clk_outl FDRE

'JJ]"HE design_1_i/microblaze_1_axi_periph_m02_axi_AWADDR. (2) design_1_i/clk_outl FDRE

- design_1_i/microblaze 1 axi_periph_m02_axi_BRESP (2)

E ' : _

— B g (=N N CND

Bl e design_1_i/microblaze_1_axi_periph_m02_axi_WD, Select Clock Domaig...

3 | design_1_i/microblaze_1_axi_periph_m02_axi_WS L

- I'# design_1_i/microblaze_1_axi_periph_m02_axi_ARR
- _I'# design_1_ifmicroblaze_1_axi_periph_m02_axi_AR
- I'# design_1_i/microblaze_1_axi_periph_m02_axi_AW

Remove Nets

Export to Spreadsheet...
= i

LKL
LKL

- _['# design_1_ifmicroblaze_1_axi_periph_m02_axi_AWWVA QI CIE_ 0 7
- I'# design_1_i/microblaze_1_axi_periph_m02_axi_BREADY design_1_i/clk_outl LUTS
- _I'# design_1_i/microblaze_1_axi_periph_m02_axi_BVALID design_1_i/clk_outl FDRE
- I'# design_1_i/microblaze_1_axi_periph_m02_axi_RREADY design_1_ifclk_outl LUTZ2
- _I'# design_1_i/microblaze_1_axi_periph_m02_axi_RVALID design_1_i/clk_outl FDRE
- I'# design_1_i/microblaze_1_axi_periph_m02_axi_WREADY design_1_ifclk_outl LUTZ2
- _I'# design_1_ifmicroblaze_1_axi_periph_m02_axi_WWVALID design_1_ifclk_outl LUTS
Add/Remove Nets... Nets to debug: 108
< Back ” MNext = Finish Cancel

Figure 135: Select Clock Domain

7. In the Select Clock Domain dialog box, select the clock for the nets in question and click OK.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback | 98
UG994 (v2014.4) November 19, 2014 I—\/_l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=98

& XILINX

ALL PROGRAMMABLE..

Using the ILA to Debug IP Integrator Designs

#L Select Clock Domain

Find Met Criteria

Type - ||is = || All Clocks

[] unique nets only

Note: results applicable to logical nets only.
Filter out non-debuggable nets

[] Match case

Find Results (93}

----- I design_1_i/axi_gpio_0/s_axi_aclk

----- " design_1_i/axi_gpio_0/U0/s_axi_aclk
----- I design_1_i/axi_uartlite_1/s_axi_aclk
----- I design_1_ifaxi_uvartlite_1/U0/s_axi_aclk

design_1_i/clk_outl
----- I design_1_ifclk_wiz_1/clk_outl
----- I design_1_i/clk_wiz_1/U0/clk_in1_design_1_clk_wiz_1_0
----- I design_1_i/clk_wiz_1/U0/clk_outl

4 | 1 |

»

Selected Clock Domain Met: [design_1_i/clk_outl

oK

” Cancel l

Figure 136: Select Clock Domain Dialog Box

8. In the Specify Nets to Debug dialog box, you click Next.

Designing IP Subsystems Using IP Integrator www.xilinx.com
UG994 (v2014.4) November 19, 2014

| Send Feedback l 99

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=99

& Xl

ALL PROGRAMMABLE..

0.

LINX

Using the ILA to Debug IP Integrator Designs

#- Set up Debug
Specify Nets to Debug
Specify Mets for debugging

(=)

X 0w i i 2

Name Clock Domain Driver Cell TRIG DA...

[+ I design_1_ifaxi_gpio_0_gpio_TRL O (8) design_1_i/clk_outl FDRE W W

-JJ]'—me design_1_ifmicroblaze_1_axi_periph_m02_axi_ ARADDR (2) design_1_i/clk_outl FDRE W W

[+ % design_1_) ifmicrohlaze 1_ axi erih mo2_ axi _AWADDR (9) design_1_i/clk_outl FDRE W W

|-+ design_1_i/clk_outl |GND

design_1_ifclk_outl |(Multiple)

; 1]) “|design_1_i/clk_out1 |GND

[+ Ir# design_1_i/microblaze_1_axi_periph_m02_axi_WDATA (32) design_1_ifclk_outl FDRE 4 4

[+ Ir# design_1_i/microblaze_1_axi_periph_m02_axi WSTRB (4) design_1_ifclk_outl FDRE v v
- I'# design_1_i/microblaze_1_axi_periph_m02_axi_ARREADY design_1_ifclk_outl LUTZ2 W W
- I'# design_1_i/microblaze_1_axi_periph_m02_axi_ARVALID design_1_ifclk_outl LUT4 W W
- I'# design_1_i/microblaze_1_axi_periph_m02_axi_AWREADY design_1_ifclk_outl LUTZ2 W W
- _I'# design_1_ifmicroblaze_1_axi_periph_m02_axi_AWWVALID design_1_ifclk_outl LUT4 W W
- I'# design_1_i/microblaze_1_axi_periph_m02_axi_BREADY design_1_ifclk_outl LUTS W W
- _I'# design_1_i/microblaze_1_axi_periph_m02_axi_BVALID design_1_i/clk_outl FDRE W W
- I'# design_1_i/microblaze_1_axi_periph_m02_axi_RREADY design_1_ifclk_outl LUTZ2 W W
- _I'# design_1_i/microblaze_1_axi_periph_m02_axi_RVALID design_1_i/clk_outl FDRE W W
- I'# design_1_i/microblaze_1_axi_periph_m02_axi_WREADY design_1_ifclk_outl LUTZ2 W W
- _I'# design_1_ifmicroblaze_1_axi_periph_m02_axi_WWVALID design_1_ifclk_outl LUTS W W

[Add/Remove Nets...] Nets to debug: 108
<Back || Next> Finish

Figure 137: Specify Nets to Debug Dialog Box

and capturing data and then click Next.

Designing

In the ILA (Integrated Logic Analyzer) General Options page, select the appropriate options for triggering

-

#~ Setup Debug

Sample of Data Depth | 1024
Input Pipe Stages 0

Trigger And Storage Settings
|| capture Control

[] Advanced Trigger

ILA (Integrated Logic Analyzer) General Options

< Back ” Next =

FEinish

Cancel

=]

Figure 138: Setup the Trigger and Capture Modes in the ILA

IP Subsystems Using IP Integrator www.xilinx.com

UG994 (v2014.4) November 19, 2014

l Send Feedback |100

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=100

& XILINX

ALL PROGRAMMABLE. Using the ILA to Debug IP Integrator Designs

The advanced triggering capabilities provide additional control over the triggering mechanism. Enabling
advanced trigger mode enables a complete trigger state machine language that is configurable at runtime.
There is 3-way branching per state and there are 16 states available as part of the state machine. Four counters
and four programmable counters are available and viewable in the Analyzer as part of the advanced triggering.

In addition to the basic capture of data, capture control capabilities allows you to only capture the data at the
conditions where it matters. This will ensure that unnecessary BRAM space is not wasted and provides a highly
efficient solution.

In the Summary page, you should verify that all the information looks correct and then click Finish.

¢ Set up Debug 23

Set up Debug Summary

(@ 0 debug cores will be removed:
(@ 1 debug core will be created

@ Found 1 clock

VlVADO’ | Open in Debug layout

To apply the above changes, click Finish

< Back Mext = FEinish] | Cancel

Figure 139: Setup Debug Summary

The Debug window looks as follows after the ILA core has been inserted. Note that all the buses (and single-bit
nets) have been assigned to different probes. The probe information also shows how many signals are assigned
to that particular probe. For example, in the following figure, probe0 has 32 signals (the 32 bits of the
microblaze 1 axi periph m02 axi WDATA) assigned to it.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 101
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=101

& XILINX

ALL PROGRAMMABLE. Using the ILA to Debug IP Integrator Designs
Debug
A Name Driver Cell
=
=4 || dbg_hub (labtools_xsdbmasterlib_v2)
E|| BB u_ila_o (labtools_ila_v3)
e clic (1)
& [=+E probed (32)
- i i@ Ch 0 (design_1_i/microblaze_1_axi_periph_m02_axi_WDATA[D]) FDRE
_j @ Ch 1 (design_1_i/microblaze_1_axi_periph_m02_axi_WDATA[1]) FDRE
ot @ Ch 2 (design_1_i/microblaze_1_axi_periph_m02_axi_WDATA[2]) FDRE
" @ Ch 3 (design_1_i/microblaze_1_axi_periph_m02_a» DATA[3]) FDRE
5.3 @ Ch 4 (design_1_i/microblaze_1_axi_periph_m02_a» DATA[4]) FDRE
a[g I M ~h g fdnciny 1 ilmnirenhl P | wi morin Pt i] AIDVA Ale] cnpoC

Debug Cores | Debug Mets

= Tel Console | © Messages | B Log | |2 Reports | (% Design Runs-_%¥ Debug

Figure 140: Debug Window after ILA Insertion

10. You are now ready to implement your design and generate a bitstream. You click on Generate Bitstream
from the Program and Debug drop-down list in the Flow Navigator.

11. Since you have made changes to the netlist (by inserting an ILA core), a dialog box asking if the design
should be saved prior to generating bitstream is displayed.

-

=

¢ Save Project

| Save project before generating bitstream?

Data to Save

Synthesized Design - constrs_1

l Save l l Don't Save l l Cancel

Figure 141: Save Modified Constraints after ILA Insertion

You can choose to save the design at this point, which will write the appropriate constraints in an active
constraints file (if one exists) or will create a new constraints file. The constraints file contains all the commands
to insert the ILA core in the synthesized netlist as shown below.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 102
UG994 (v2014.4) November 19, 2014 I—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=102

& XILINX

ALL PROGRAMMABLE, Using the ILA to Debug IP Integrator Designs

C:/temp/my_migration/my_migration.srcs/constrs_1/new/design_1_wrapper.xdc
1l create debug core u_ila 0 labtools_ila w3

2 set_property ALL PROBE_SAME MU true [get debug cores u_ila 0]

3 set property ALL_FROBE_SAME MU CNT 4 [get debug cores u_ila 0]

4 set_property C_ADV _TRIGGER true [get debug cores u ila 0]

5 set property C_DATA DEFTH 1024 [get debug cores u_ila 0]

6 set_property C_EN STRG_QUAL true [get debug cores u_ila 0]

7 set property C_INEUT_PTPE STAGES 0 [get debug cores u_ila 0]

g set_property C_TRIGIN EN false [get debug cores u_ila 0]

9 set property C_TRIGOUT_EN false [get debug cores u_ila_ 0]

10 set_property port_width 1 [get debug ports u ila 0/clk]

11 connect debug port u_ila 0/clk [get nets [list design_1_i/clk_outl]]
12 set_preoperty port_width 32 [get debug ports u ila 0/probe0]

Figure 142: XDC Constraints for ILA Core Insertion

The benefit of saving the project is that if the signals marked for debug remain the same in the original block
design, then there is no need to insert the ILA core after synthesis manually as these constraints will take care
of it. Therefore, subsequent iteration of design changes will not require a manual core insertion.

If you add more nets for debug (or unmark some nets from debug) then you will still need to open the
synthesized netlist and make appropriate changes using the Set up Debug wizard.

If you do not chose to save the project after core insertion, none of the constraints show up in the constraints
file and you will manually need to insert the ILA core in the synthesized netlist in subsequent iterations of the
design.

Connecting to the Target Hardware

1. Once the bitstream has been generated, the Bitstream Generation Completed dialog box pops up. You then
select Open Hardware Manager and click OK.

-

Bitstream Generation Completed [3|

| Bitstream Generation successfully completed.

(") open Implemented Design
(| View Reports

(@) Open Hardware Manager

[| Don't show this dialog again

0K l ’ Cancel

Figure 143: Bitstream Generation Completed

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 103
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=103

& XILINX

ALL PROGRAMMABLE.

Using the ILA to Debug IP Integrator Designs

2. Click on the Open target link in the Hardware Manager.

Hardware Manager - unconnected
() Mo hardware target is open. Open target
Hardware - o

o = =|E & pn

Mame Status

*

Figure 144: Open Target

3. From the options presented, select any one of the three options. Selecting the Auto Connect option will
attempt to connect to a target board connected locally to the machine. Selecting the Recent Targets will
present a list of the recently opened targets, which can be connected to. Finally, Open New Target will
present a dialog box to connect to the target hardware that may be connected locally or on a remote

machine.

Hardware Manager - unconnected

(i Mo hardware target is open. Open target

E, Auto Connect
Recent Targets

Hardware

o T =H = b

MName Status

& Open New Target...

Figure 145: Connecting to a target board

4. Selecting the Open New Target option opens the Open New Hardware Target dialog box. Next, in the
Hardware Sever Settings page you specify whether you want to connect to a Local Server or a Remote

Server.

Connect to:

machine.

Hardware Server Settings

¢ Open New Hardware Target

Select local or remote hardware server, then configure the host name and port settings. Use Local server '
if the target is attached to the local machine; otherwise, use Remote server.

Local server (target is on local machine) -

Remote server (target is on remote machine)

Click Mext to launch and/or connect to the vese_server (port 60001) and hw_server (port 3121) applications on the local

EX5

[< Back ” Mext > l Finish

Cancel

Designing IP Subsystems Using IP Integrator

Figure 146: Connect to Hardware Server

www.xilinx.com

UG994 (v2014.4) November 19, 2014

| Send Feedback |104

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=104

& XILINX

ALL PROGRAMMABLE, Using the ILA to Debug IP Integrator Designs

Note: Depending on your connection speed, this may take about 10~15 seconds.

5. If you are connecting to a Remote Server, you also need to specify the Host name and the Port. Click Next.
Refer to Vivado Design Suite User Guide: Programming and Debugging (UG908) for more information on
running and connecting to the hardware server.

6. If there is more than one target connected to the hw_server, you will see multiple entries in the Select

Hardware Target dialog box. In this case, there is only one target as shown in the following figure. You
then click Next.

-

¢ Open New Hardware Target
Select Hardware Target

Select a hardware target from the list of available targets, then set the appropriate JTAG clock (TCK) '
frequency. If you do not see the expected devices, decrease the frequency or select a different target.

=

Hardware Targets

Type Port MName JTAG Clock Frequency
© xilinx_tcf| |Digilent/210203327962A

Hardware Devices (for unknown devices, specify the Instruction Register (IR) length)

Name ID Code IR Length
@ xc7k325t_0 33651003 6

VICSE server: localhost:60001

Hardware server: localhost:3121

< Back ” Mext = Einish

Figure 147: Select Hardware Target

7. In the Open Hardware Target Summary page, click Finish as shown in the following figure.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 105
UG994 (v2014.4) November 19, 2014 I—\/—l

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=105

& XILINX

ALL PROGRAMMABLE, Using the ILA to Debug IP Integrator Designs

-

#- Open New Hardware Target

Open Hardware Target Summary

@ Hardware Server Settings:
o Server: localhost:3121

() VCSE Server Settings:
o Server: localhost:60001
o Version: 20

@ Target Settings:
o Target: xilinx_tcf/Digilent/210203327962A
o Frequency: 15000000

VIVADO!

To connect to the hardware described above, click Finish

< Back ” Finish l[Cancel

Figure 148: Open Hardware Summary

8. Wait for the connection to the hardware to complete. The dialog in the following figure appears while the

hardware is connecting.

Once the connection to the hardware target is made, the dialog shown in the following figure appears. The
Hardware tab in the Debug view shows the hardware target and XC7K325T device that was detected in the

JTAG chain.

Hardware

Q, L = |E]| P M

Name
=+ E localhost (1)

Status
Connected

Open

Figure 149: Hardware Window shows Target and Device

9. Next, program the XC7K325T device using the .bit bitstream file that was created previously by right-
clicking on the XC7K325T device and selecting Program Device as shown in the following figure.

Designing IP Subsystems Using IP Integrator www.xilinx.com

UG994 (v2014.4) November 19, 2014

| Send Feedback |106

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=106

& XILINX

ALL PROGRAMMABLE..

Using the ILA to Debug IP Integrator Designs

Hardware — 0O a X
az=Er»HE

Name Status

=+ & localhost (1) Connected

= @e xilinx_tcf/Digilent/21020332796... Open

I Hardware Device Properties... Ctrl+E

Assign Programming File...

Program Device...
@ Refresh Device

o

Export to Spreadsheet...

Figure 150: Program Device

10. In the Program Device dialog box, you should verify that the BIT file is correct for the design that you are

working on. Also, specify the correct probes file in the Debug Probes File field and click the Program
button, as shown in the following figure, to program the device.

-

#.- Program Device =]

Select a bitstream programming file and download it to your hardware device. You can optionally select a
debug probes file that corresponds to the debug cores contained in the bitstream programming file.

Bitstream file: C:/ftutorials/2014.3/ug940/lab4/lab4.runs/impl_1/mb_subsystem_wrapper.bit B
Debug Probes file: B
Program l l Cancel]

Figure 151: Select Bitstream File to Download

Note: Wait for the program device operation to complete. This may take few minutes.

Ensure that an ILA core was detected in the Hardware panel of the Debug view.

Hardware - 0O a =
o T=Ep»E

Name Status

=+ & localhost (1) Connected

~ EEe xl

Open

) Idle

BE hw_ila_1

Figure 152: ILA Core Detected

Designing IP Subsystems Using IP Integrator www.xilinx.com

| Send Feedback |107
UG994 (v2014.4) November 19, 2014

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=107

& XILINX

ALL PROGRAMMABLE, Using the ILA to Debug IP Integrator Designs

The Integrated Logic Analyzer window opens.

LA - hw_ila_1 E—
"[l ILA Properties s Trigger Capture Status A0
| Trigger Mode Settings Core status: | Idle | waiting for Trigger | Post-Trigger | Ful : Ij
= Tri d BASIC

DI LRSI Basic Trigger Setup A0
bp Trigger in S\ Name Compare Value

Trigger out X

D

Capture Mode Settings
Drag and drop

Capture mode: | ALWAYS ~ 1A probes from
bug Probes
Data depth: 1024 ~ .
Trigger position: 0 [0-
< i » O

Figure 153: The Vivado Integrated Logic Analyzer Window

For more information on Programming and Debug please refer to document Vivado Design Suite User Guide:
Programming and Debugging (UG908).

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 108
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=108

& XILINX

ALL PROGRAMMABLE.

Chapter 7 Using Tcl Scripts to Create Block Designs within Projects

Overview

Typically you will create a new design in a project-based flow in the Vivado IDE GUI environment. Once the
initial design has been put together, you may want to re-create the design using a scripted flow in the GUI or in
batch mode. This chapter guides you through creating a scripted flow for block designs.

Create a Design in the Vivado IDE GUI

Create a project and a new block design in the Vivado IDE GUI as mentioned in Chapter 2 of this user guide.
Once the block design is complete, your canvas will contain a design like the example in the following figure.

Diagram =
]| 4 design_1 »

@

A

FCRESQMIG L

Figure 154: Block Design canvas

With the block design open, in the Tcl console type the following command:

write bd tcl <path to file/filename>
This creates a Tcl file that can be sourced to re-create the block design. This Tcl file has information embedded
in it about the version of the Vivado tools that it was created in and as such this file should not be used across

different releases of the Vivado Design Suite. The Tcl file also contains information about all the IP present in
the block design, their configuration and the connectivity.

& CAUTION! The script produced by write bd tcl should only be used in the release it was created in.
The script are not intended for use in versions of the Vivado Design Suite it was not produced in.

Save the Vivado Project Information in a Tcl File

The overall project settings can be saved by using the write project tcl command.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 109
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=109

& XILINX

ALL PROGRAMMABLE. Using Tcl Scripts to Create Block Designs within Projects

write project tcl <path to file/filename>

For a Vivado Project that consists of a block diagram, the Tcl file generated from write_project_tcl command
may look something as follows:

{# foo:1cl (CA\Users\ndutta\AppData\Roaming\XilimdVivado) - GVIM o @ |[=]
File Edit Tools Syntax Buffers Window Help

RS 9@ s anEBRRB(EIA|THO? a

Set the directory path for the original project from where this script was exported
set orig_proj_dir “[file normalize “$origin dir/../../../..7../../tenp/microblaze"]"

Create

¥

1

Mone

set File

set File

Create project
create_project microblaze ./microblaze

Set the directory path for the new project
set proj_dir [get_property directory [current_project]]

Set project properties

set obj [get_projects microblaze]

set_property “board part” "xilinx.com:kc785:part®:0.9" $obj
set_property “default 1ib" "xil defaultlib™ $obj
set_property “simulator_language™ “Hixed" $obj

set_property “target_language” “VHDL" $obj

if {[string equal [get filesets -quiet sources_1] "]} {
create_fileset -srcset sources_1

Set "sources_1' fileset object

selt obj [get_filesets sources_1]

Import local files from the original project
set Files [list

“[file normalize “Sorigin_dir/..f../../..F../.

“[file normalize “$origin_dir/../..7../..f..f../temp/microblaze/microblaze.srcs/sources 1/bd/mb_ex_1/hdl/mb_ex_1_wrapper . vhd"]\

set imported files [import_files -fileset sources 1 $files]

Set "sources_1' fileset File properties for remote files

Set "sources_ 1" fileset file properties for local files
"mb_ex_1/mb_ex_1.bd"

set File_obj [get_files -of_objects [get_filesets sources_1] [Llist “=$file”]]
set_property "registered_with_manager' 1" $File_nDjD
“hdl/mb_ex_1_wrapper .vhd™

set file obj [get_files -of objects [get_filesets sources_1] [list "=$File"]]
set_property “file_type” “UHDL" $file_obj

—— SELECT — 3 76,53 32%

11

‘sources_1" fileset (if not found)

./temp/microblazesmicroblaze.sres/sources_1/bd/mb_ex_1/mb_ex_1.bd"]"y

Figure 155: Code Snippet from the Tcl File Generated by using the write_project_tcl Command

In the above Tcl file, the block design file .bd is read explicitly as shown by the highlighted code. If you choose
not to re-create the block design and just read the already created block design, then the above lines of code
do not need to be modified. However, there are cases in which you may want to re-create the block design. For
this purpose, the Tcl file generated by using the write project tcl command can be modified as follows:

Designing IP Subsystems Using IP Integrator www.xilinx.com [Send Feedback]110

UG994 (v2014.4) November 19, 2014

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=110

& XILINX

ALL PROGRAMMABLE. Using Tcl Scripts to Create Block Designs within Projects
{8 foo.tcl + (C:\Users\ndutta\AppData\Roaming\Xilinx\Vivado) - GVIM o | @ || = |
File Edit Tools Syntax Buffers Window Help
AERE 9 &) B DRRBRSIA[THRO ? R
#t Create project -

create_project microblaze ./microblaze

#t Set the directory path for the new project
set proj_dir [get_property directory [current_project]]

#t Set project properties

set obj [get_projects microblaze]

set_property "board_part" "wilinx.com:kc705:part@:0.9" $obj
set_property "default_1ib" "xil defaultlib" $obj
set_property "simulator_language' “Hixed" $obj

set_property "target_language™ "UHDL™ $%obj

puts "INFO: Project created:microblaze™

m

Source the bd.tcl file to create the bd
source microblaze bd.tcl

Have_bd_design

62,1 Bot

Figure 156: Code Snippet from the Tcl File to Recreate the Block Design using the Output file

As can be seen from the above code snippet, the Tcl file from the write_project_tcl file has been modified to
source the output file that was created using write bd tcl command. This will re-create the block design
every time the Tcl file is run.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 111
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=111

& XILINX

ALL PROGRAMMABLE.

Chapter 8 Using Non-Project Mode in IP Integrator

Overview

Non-Project Mode is for users who want to manage their own design data or track the design state. In this
flow, Vivado® tools read the various source files and implement the design through the entire flow in-memory.
At any stage of the implementation process, you can generate a variety of reports based on your script. When
running in Non-Project Mode, it is also important to note that this mode does not enable project-based
features such as source file and run management, cross-probing back to source files, and design state
reporting. Essentially, each time a source file is updated on the disk, you must know about it and reload the
design. There are no default reports or intermediate files created within the Non-Project Mode. You need to
have your script control the creation of reports with Tcl commands.

Creating a Flow in Non-Project Mode

Vivado tools can be invoked in Tcl mode instead of the usual Project Mode by issuing following commands in
the Tcl Console. The recommended approach in this mode is to create a Tcl script and source it from the
Vivado prompt:

Vivado$% vivado -mode tcl

In non-project mode, you have to create an in-memory project, and set your project options as shown below:

create project -in memory -part xc7k325tffg900-2

set property target language VHDL [current project]

set property board part xilinx.com:kc705:part0:0.9 [current project]
set property default 1lib work [current project]

In non-project mode, there is no project file saved to disk. Instead, an in-memory Vivado project is created. The
device/part/target-language of a block design is not stored as a part of the block design sources. Therefore, it
is recommended that you specify the create project -in memory command to define the desired part
settings before issuing the read bd command.

Once the project has been created the source file for the block design can be added to the project.

This can be done in two different ways. First, assuming that there is an existing block design that has been
created in a Project Mode with the entire directory structure of the block design intact, you can add the block
design using the read_bd tcl command as follows:

Vivado% read bd <absolute path to the bd file>

CAUTION! Your need to have the project settings (board, part and user repository) match with the
project settings of the original project in which the bd was created. Otherwise, the IP in the block
design will be locked.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 112
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=112

& XILINX

ALL PROGRAMMABLE. Using Non-Project Mode in IP Integrator

Once the block design is added successfully, you need to add your top-level RTL files and any top-level XDC
constraints.

Vivado% read verilog <top-level>.v
Vivado% read xdc <top-level>.xdc

You can also create top-level HDL wrapper file using the command below since a bd source cannot be
synthesized directly.
Vivado% make wrapper -files [<path to bd>/<bd instance name>.bd] -top

add files -norecurse <path to bd>/< bd instance name > wrapper.vhd
update compile order -fileset sources 1

This creates a top-level HDL file and adds it to the source list.

If setting the block design as an out-of-context module is desired, then use the commands below to generate a
synthesized design check point (dcp) for the block design.

create fileset -blockset -define from <block design name> <block design name>
reset run <block design name> synth 1 -from step synth design

For a MicroBlaze-based design, you should populate the I-LMB with either a Bootloop or your own executable
in ELF format. You then needs to add the ELF and associate it with the MicroBlaze instance. The following steps
will do this.

vivado% add files <ELF file Targeted to BRAM with .elf extension>

vivado% set property MEMDATA.ADDR MAP CELLS {<bd instance name>/microblaze 0}
[get files <BRAM Targeted ELF File>]

If the design has multiple levels of hierarchy, you need to ensure that the correct hierarchy is provided. After
this, you need to go through the usual synthesis, Place and Route steps to get the design implemented. One
aspect that needs to be kept in mind is that for the synthesis (synth_design) step, you need to provide the
target part as the default target part, which may not be the same as the desired one.

synth design -top <path to top level wrapper file> -part <part>

opt design

place design

route design write bitstream top

Refer to the Vivado Design Suite User Guide: Design Flows Overview (UG892) for more details about working in
a Non-Project Mode flow.

To export the implemented hardware system to SDK, you can use the following command:

write sysdef -hwdef "C:/Data/ug940/labl/zyng design.hwdef" \

-bitfile "<project name>/<project name>.runs/impl 1/zyng design.bit" \
-meminfo "<project name>/<project name>.runs/impl 1/zyng design.bmm" \
-file "C:/Data/ug940/labl/zyng design.sysdef"

Refer to the Vivado Design Suite Tcl Command Reference (UG835) for more on the write sysdef or
write hwdef commands.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 113
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug892-vivado-design-flows-overview.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug835-vivado-tcl-commands.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=113

& XILINX

ALL PROGRAMMABLE.

Chapter 9 Updating Designs for a New Release

Overview

As you upgrade your Vivado® Design Suite to the latest release, you will need to upgrade the block designs
created in IP integrator as well. The IP version numbers change from one release to another. When IP integrator
detects that the IP contained within a block design are older versions of the IP, it “locks” those IP in the block
design. If the intention is to keep older version of the block design (and the IP contained within it), then you
should not do any operations such as modifying the block design on the canvas, validating it and/or resetting
output products and re-generating output products. In this case, the expectation is that you have all the design
data from the previous release intact. If that is the case, then you can use the block design from the previous
release “as is” by synthesizing and implementing the design.

The recommended practice is to upgrade the block design with the latest IP versions, make any necessary
design changes, validate design and generate target.

Upgrading can be done in two ways:

1. Using the Vivado IDE GUI in the Project Mode Flow
2. Using a Tcl script in the Non-Project Mode Flow
Both methods are described in this Chapter.

Upgrading a Block Design in Project Mode

1. Launch the latest version of the Vivado Design Suite.

2. From the Vivado IDE main page, click on Open Project and navigate to the design that was created from a
previous version of Vivado tools.

3. The Older Project Version pop-up opens. Automatically upgrade for the current version is selected by
default. Although you can upgrade the design from a previous version by selecting the Automatically
upgrade for the current version, it is highly recommended that you save your project with a different
name before upgrading. To do this, select Open project in read-only mode and click OK.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 114
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=114

& XILINX

ALL PROGRAMMABLE, Updating Designs for a New Release

-

¢ Older Project Version & |

| This project was created using an older version of Vivado. It is strongly recommended that you backup the project prior to

* migration by opening the project in the older version of Vivado (v2014.2) and running "File->Archive Project”. This will ensure all
sources, including any IPs used by the design, are preserved properly.

Choose to either automatically upgrade to the current version or open the project in read-only mode.

More about older project versions

What do you want to do?

(") automatically upgrade to the current version

0 Open project in read-only mode

0K] [Cancel

Figure 157: Open Project in Read-Only Mode

4. The Project is Read-Only dialog box pops-up. Select Save Project As...

Project is Read-Only | &3 |

Igl Project 'zynq_2014_2' is read-only. To make it editable, click the 'Save
"Y' Project As' button.

[| Don't show this dialog again

oK] [Save Project As...

Figure 158: Save Project As

5. When the Save Project As dialog box opens, type in the name of the project and click OK.

-

#- Save Project As

=

Save this project to a new name and location.

Eroject name: zZyng
Project location: | C:ftemp
Create project subdirectory

Project will be created at: C:/temp/zyng

0K] [Cancel

Figure 159: Specify Project Name

Designing IP Subsystems Using IP Integrator www.xilinx.com

Send Feedback 115
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=115

& XILINX

ALL PROGRAMMABLE, Updating Designs for a New Release

6. The Project Upgraded dialog box opens, informing you that the IP used in the design may have changed
and therefore need to be updated.

P

#- Project Upgraded 3

i Your project uses Xilinx IP. Some of these IP may have
* undergone changes in this release of the software. To see the
recommended actions, use the Report IP Status button.

This report can be accessed at any time using the Tools ->
Report -> Report IP Status menu item.

If using remote IP, you may wish to create a backup copy of the
IP and the output products prior to upgrading the IP to the
current release.

Report IP Status] | Ignore

Figure 160: Project Upgraded dialog box

7. Click on Report IP Status.
Alternatively, from the menu select Tools > Report > Report IP Status.

8. If any of the IP in the design has gone through a major version change, then the following message will
pop-up on the screen. Click OK.

¥

¢ Report IP Status 53

1Y The design contains IP with major version changes. Please refer to the Change
Log to understand the impact of upgrading an IP with major version change
in your design, prior to upgrading.

Figure 161: Report IP Status Results

In the IP Status window, look at the different columns and familiarize yourself with the IP Status report. Expand
the block design by clicking on the + sign and look at the changes that the IP cores in the block design may
have gone through. Also realize that you cannot individually select some IP of a block design for upgrade and
let the others remain in their current versions.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 116
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=116

& XILINX

ALL PROGRAMMABLE. Updating Designs for a New Release
TP Status _oax
e 1 Major Change 3 Minor Changes /|8 Revision Changes 1 Up-to-date Hide All I
e T
_ Source File IP Status Recommendation Change Log Upgrade Log TP Name Current Version Recommended Ve
By e design_1.bd (13) Open Block Design
[@ [microblaze_1_axi_intc Major version change Please consider the impact on design before upgrading the TP JiMore info AXIINTC 3.0 4.0
6 [dk_wiz_1 Minor version change Please review the change log before upgrading the IP. More info Clocking Wizard 5.0 5.1
£ /microblaze_1_axi_periph Minor version change Please review the change log before upgrading the IP. More info AXI Interconnect 2.0 2.1
@ /microblaze_1 Minor version change Please review the change log before upgrading the IP. More info MicroBlaze 50 9.2
@ /microblaze_1_local_memory/dimb_v10 Revision change Please upgrade this IP. More info Local Memory Bus (LMB) 1.0 3.0 3.0 (Rev. 2)
#@ /microblaze_1_local_memory/iimb_v10 Revision change Please upgrade this IP. More info Local Memory Bus (LM8) 1.0 3.0 3.0 (Rev. 2)
2@ [proc_sys_reset_L Revision change Please upgrade this IP. More info Proc Sys Reset 50 5.0 (Rev. 2)
#@ /microblaze_1_local_memory/Imb_bram Revision change Please upgrade this IP. More info Block Memory Generator 8.0 8.0 (Rev. 2)
28 /mdm_1 Revision change Please upgrade this IP. More info MicroBlaze Debug Module (MDM) 3.0 3.0 (Rev. 2)
#@ /microblaze_1_local_memory/iimb_bram_if_cntir Revision change Please upgrade this IP. More info LMB BRAM Controller 4.0 4.0 (Rev. 2)
26 [avi_uartite_1 Revision change Please upgrade this IP. More info AXI Uartlite 20 2.0 (Rev. 2)
4@ /microblaze_1_local_memory/dimb_bram_if_cntlr Revision change Please upgrade this IP. More info LMB BRAM Controller 4.0 4.0 (Rev. 2)
4k /microblaze_1_xlconcat Up-to-date No changes required Concat 1.0 1.0
< 101 r O
Upgrade Selected
3 ip_status_1 x 4B

Figure 162: IP Status Report

The very top of the IP Status window shows the summary of the design. It reports how many changes are
needed to upgrade the design to the current version. The changes reported are Major Changes, Minor
Changes, Revision Changes and Other Changes. These changes are reported in the IP Status column as well.

Major Changes: The IP has gone through a major version change, for example from Version 2.0 to 3.0. This
type of change is not automatically selected for upgrade. To select this for upgrade, uncheck the Upgrade
column for the block design and then re-check it.

Minor Changes: The IP has undergone a minor version change, for example, from version 3.0 to 3.1.

Revision Changes: A revision change has been made to the IP. For example the IP’s current version is 5.0, and
the upgraded version is 5.0 (Rev. 1)

You can click on the More info... link in the Change Log column to see a description of the change.

More info AXI BRAM Controller 3.0 (Rev. 3) 4.0
: Change Log for AXI BRAM Controller view full log X
- 2014.1: -

4 * Version 4.0

- * The ID Ports s_axi_arid,s_axi_awid,s_axi_bid,s_axi_rid shall be generated only i | ;J
- when the ID width is greater than or equal to '1". when upgrading the previously Ev. 3]
- released core, the ID ports mentioned above will not be generated unless the ID - :5' 3%
More info Local Memory Bus (LMB) 1.0 3.0 (Rev. 2) 3.0 (Rev. 3)
More info LMB BRAM Controller 4.0 (Rev. 2) 4.0 (Rev. 3)

Figure 163: Inspect the Change Log by Clicking on More Info link

The Recommendation column also suggests that you need to understand what the changes are before
selecting the IP for upgrade.

9. Once you understand the changes and the impact of them on your design, you should click on Upgrade
Selected.

10. The Upgrade IP dialog box pops up to confirm that you want to proceed with upgrade.
11. Click OK.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 117
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=117

& XILINX

ALL PROGRAMMABLE, Updating Designs for a New Release

12. When the upgrade process is complete, a Critical Messages dialog box may pop-up informing you about
any critical issues that you need to pay attention to.

&

¢ Critical Messages

l-.\ There were two critical warning messages during Upgrade IP.

Messages

® [1P_Flow 19-3298] Detected external port differences while upgrading IP 'zynq_1_processing_s
These changes may impact your design.

® [Coretcl 2-1279] The upgrade of IP instance 'zynq_1_processing_system7_0_0' has identified
issues that may require user intervention. Please review the upgrade log 'c:ftemp/zyng/
zyng.sresfsources_1/bdfzyng_1/ip/zyng_1_processing_system7_0_0/zynq_1_processing_syster
and verify that the upgraded IP is correctly configured.

oK l l Open Messages View

Figure 164: Critical Messages dialog box

13. You should review any critical warnings and other messages that may be flagged as a part of the upgrade.
Click Ok.

14. If there are multiple diagrams in the design, the IP Status window will show the status of IP in all the
diagrams as shown below.

IF Status - ip_status_1 —oax
| [7]2 Minor changes 21 Revision Changes | Hide Al
% =1
| source File Upgrade TF Status Recommendation Change Log TP Name Current Version ~ Recommended Version License
(= g e mb_ex_1.bd (12) Open Block Design...
e fmb_1 TP definition minor version change. Please raview the .. More info... MicroBlaze 9.0 9.1 Included
IFa gpio_1 TP definition revision change. Please upgrade this I More info. AXI GPIO 2.0 2.0 (Rev. 1) Included
& fproc_reset_1 TP definition revision change. Flease upgrade this IF. Proc Sys Reset 5.0 5.0 (Rev. 1) Tncluded
& s fmb_1_local_memory/ilmb_v10 TP definition revision change. Please upgrade this TP. Local Memory Bus (LMB) 1.0 3.0 3.0 (Rev. 1) Included
{Fs fmb_1_axi_periph TP definition revision change. Please upgrade this IP. AXI Interconnect 2.0 2.0 (Rev. 1) Included
s fmb_1_local_memory/ilmb_bram_if_cntir TP definition revision change. Flease upgrade this IF. LME BRAM Contraller 4.0 4.0 (Rev. 1) Tncluded
ko folk_wiz_1 1P definition revision change. Please upgrade this TP. Clocking Wizard 5.0 5.0 (Rev. 1) Included
4¥s /mb_1_local_memory/dimb_bram_if_cntlr 1P definition revision change. Please upgrade this IP. LMB BRAM Controller 4.0 4.0 (Rev. 1) Included
42 /mb_1_local_memory/dimb_v10 TP definition revision change. Please upgrade this IP. Local Memory Bus (LMB) 1.0 3.0 3.0 (Rev. 1) Included
o fmdm_t TP definition revision change. Flease upgrade this IF. MicroBlaze Debug Module (MDM) 3.0 3.0 (Rev. 1) Tncluded
o fuartlite_1 1P definition revision change. Please upgrade this TP. i AXI Uartlite 2.0 2.0 (Rev. 1) Included
iFs [fmb memory/l IP definition revision change. Please upgrade this IP. More info... Block Memory Generator 8.0 8.0 (Rev. 1 Included
o S — = —
@ [microblaze_1 TP definition minor version change. Flease review the chan... - MicroBlaze 9.0 9.1 Included
e [axi_gpio_1 TP definition revision change. Flease upgrade this TP. AXI GPIO 2.0 2.0 (Rev. 1) Included
4 [microblaze_1_local_memary/ilmb_bram_if_cntlr TP definition revision change. Please upgrade this IP. LMB BRAM Controller 4.0 4.0 (Rev. 1) Included
o [microblaze_1_local_memory/dimb_v10 TP definition revision change. Please upgrade this IP. Local Memary Bus (LMB) 1.0 3.0 3.0 (Rev. 1) Included
& s [microblaze_1_local_memory/dimb_bram_if_catir TP definition revision change. Please upgrade this TP. LMB BRAM Contraller 4.0 4.0 (Rev. 1) Tncluded
4Fa [microblaze_1_local_memory/Imb_bram TP definition revision change. Please upgrade this IP. Block Memory Generator 8.0 8.0 (Rev. 1) Included
o fmdm_1 TP definition revision change. Flease upgrade this IF. MicroBlaze Debug Module (MDM) 3.0 3.0 (Rev. 1) Tncluded
«{ka [microblaze_1_axi_periph 1P definition revision change. Please upgrade this TP. AXI Interconnect 2.0 2.0 (Rev. 1) Included
s [proc_sys reset 1 TP definition revision change. Please upgrade this TP. Proc Sys Reset 5.0 5.0 (Rev. 1) Tncluded
4o folk_wiz_1 TP definition revision change. Please upgrade thisIP. More info... Clocking Wizard 5.0 5.0 (Rev. 1) Included
& fmicroblaze_1_local_memoryfilmb_v10 TP definition revision change. Flease upgrade this F. More info... Local Memory Bus (LM8) 1.0 3.0 3.0 (Rev. 1) Tncluded
3 ip_status_1 x

Figure 165: IP Status Window for Multiple Diagrams

When you click on Upgrade Selected, all the block diagrams are updated in the design (if the block
diagrams are selected for upgrade).

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 118
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=118

& XILINX

ALL PROGRAMMABLE, Updating Designs for a New Release

Running Design Rule Checks

From the toolbar, click on Validate Design.

4. microblaze 1 - [C:/temp/microblaze_l/microblaze_l.xpr] - Vivado 2014.1
File Edit Flow Tools Window

g2 E o

Flow Mavigator

Layout View Help
Bl x| P ¥ H XK E S| Default Layout

Blocl Niocinn -

T RN ®

mbh oy 1 %

o =3 pag Validate Design (F6) =
X oo =) ; .. ; - . pDia
Validate and display errors and critical warnings in this design.
= 3
4 Project Manager ; '? I£|1£“ dl| -
£ proiect Setting ‘ it) | —

Figure 166: Validate Design

You can also do this by clicking the validate design icon ¥ in the block design toolbar.

Regenerating Output Products

1. In the Sources pane in Vivado, right-click on block diagram and select Generate Output Products.

¢ microblaze 1 - [C:/temp/microblaze_1/microblaze_1.xpr] - Vivado 2014.1
File Edit Flow Tools

g2 E D e B

Flow Navigator

Window Layout View Help
b X &P b ¥ H 2| X G |2 Default Layout

< Block Design - mb_ex 1 *

e R D

QI = Sources &= Diagram x | B Ad

y =
. o N
4 Project Manager

=2

R

| & mb ex 1 »

ﬁ Project Settings EI---E';‘-.". mh_ex_l_rapper - STRUCTURE (mb_ex 1_wre * oy
" [=EEAMb ex 1 i- mb g —
@ Add Sources ik mb_ex_1_axi| @ Source Node Properties... Ctrl+E
1F 1P catalog ~iFmb_ex_1_axi| (* Open File Alt+0
~{Fmb_ex_1_axi
4 1P Integrator —LEmb_ex 1_axi Create HDL Wrapper...
_,nﬁ Create Block Design ~LFmb_ex_1_clk View Instantiation Template
5% Open Block Design g $E_z§_1_g:; Generate Output Products... %
&5 Generate Block Design g mb ex 1 ilm Reset OQutput Products...

Figure 167: Generate Output Products

Alternately, you can also click on the Generate Block Design in the Flow Navigator under IP integrator

drop-down list.

Designing IP Subsystems Using IP Integrator
UG994 (v2014.4) November 19, 2014

www.xilinx.com

| Send Feedback |119

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=119

& XILINX

ALL PROGRAMMABLE.

Updating Designs for a New Release

-

#L Generate QOutput Products

The following output products will be
generated.

Preview

Q| = zyng_1.bd

[l Synthesis

[l Implementation
[Simulation

i B4

2 |

y

[Qut-of-Context Settings...

)

[Generate H

Cancel]

Figure 168: Generate Output Products Dialog Box

2. In the Generate Output Products dialog box, click Generate.

Create/Change the HDL Wrapper

If you previously created an HDL wrapper in the previous version

of the design, you may want to re-create it to

reconcile any design changes. If you had chosen the option to let the Vivado tools create and manage the top-
level wrapper for you, then the wrapper file will be updated as a part of generating the block design or

generating output products as defined in the previous section. If

you modified the HDL wrapper manually, then

you will need to manually make any updates that may be necessary in the HDL wrapper.

1. In the Sources pane in Vivado right-click on the block diagram and select Create HDL Wrapper.

Block Design - mb_ex 1
Sources O
A= 2k ?_

[E Z= Diagram X | B A
5| C:ftemp/microblaz

E}1 = Design Sources (17

1 --Copyright 1
|

[+ Constraints
[+ Simulation Sources (2)

|-y mb_ex_1 wrapper STRUCTURE (mb_ex_1_wrapp ;“‘) "
-9 mb_ex_1 - 51 & Source Node Properties... Cirl+E
1P Update Log (16) | @ Open File Alt+0

Create HDL Wrapper...
View Instantiation Template %

Figure 169: Create HDL Wrapper

2. The Create HDL Wrapper dialog box opens. You have two choices to make at this point. You can create a
wrapper file that can be edited or else you can let the Vivado tools manage the wrapper file for you. Click

OK.

Designing IP Subsystems Using IP Integrator www.xilinx.com
UG994 (v2014.4) November 19, 2014

| Send Feedback |120

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=120

& XILINX

ALL PROGRAMMABLE. Updating Designs for a New Release
¢ Create HDL Wrapper [3|
You can either add or copy the HDL wrapper file to the project. Use copy option if you
wiould like to modify this file. ‘
Options

(") Copy generated wrapper to allow user edits

(@) Let Vivado manage wrapper and auto-update

oK II Cance

Figure 170: Create HDL Wrapper Dialog Box

You can now synthesize, implement, and generate the bitstream for the design.

Upgrading a Block Design in Non-Project Mode

You can open an existing project from a previous release using the Non-Project Mode flow and upgrade the
block design to the current release of Vivado. You can use the following script as a guideline to upgrade the IP
in the block diagram.

Open an existing project from a previous Vivado release
open_project <path to project>/project name.xpr

update compile order —-fileset sim 1

Open the block diagram

read bd {<path to bd>/bd name.bd}

Make the block diagram current

current bd design bd name.bd

Upgrade IP

upgrade bd cells [get bd cells -hierarchical *]

Reset output products

reset target {synthesis simulation implementation} [get files
<path to project>/project name.srcs/sources 1/bd/bd name/bd name.bd]

Generate output products

generate target {synthesis simulation implementation} [get files

<path to project>/project name/project name.srcs/sources_ 1l/bd/bd name/bd name.bd]

Create HDL Wrapper (if needed)

make wrapper -files [get files

<path to project>/project name/project name.srcs/sources_1/bd/bd name/bd name.bd] -top
Overwrite any existing HDL wrapper from before

import files -force -norecurse

<path to project>/project name/project name.srcs/sources_1l/bd/bd name/hdl/bd name wrap
per.v

update compile order -fileset sources 1

Continue through implementation

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 121
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=121

& XILINX

ALL PROGRAMMABLE.

Chapter 10 Revision Control for IP Integrator Designs

Overview

This chapter provides recommendations for using version control systems with IP integrator- based block
designs in both Project as well as Non-Project Mode. The IP integrator tool in the Vivado® IDE is a powerful
tool that enables the creation of complex IP subsystem designs. As designs get more complex, the challenge is
to keep a track of different versions of the design to facilitate project management and collaboration in a
team-design environment.

While a project may include multiple design sources and configuration files, only a subset of these files require
revision control to recreate a project and reproduce implementation results. Some of these files applicable to
block designs are:

e IP-XACT core files (.xci, .mem, .coe)

e Block diagram files (.bd)

e Embedded subsystems and files (.elf, .omm)
e Xilinx Design constraints files (.xdc)

e Configuration files, including Vivado Simulator and Vivado Integrated Logic Analyzer configuration files
(.wcfg)

e RTL file (wrappers for block designs if managed by user: .vhd, .v)

The Vivado Design Suite does not support any particular revision control system. Rather, it is designed to work
with any revision control system. In order to make Vivado designs suitable for revision control, the Vivado
Design Suite provides the following features:

e Updates the timestamps only when the files are modified. Accordingly, opening a project doesn’t
change the timestamp on it.

e Supports ASCII-based project files.

e Supports extensive Tcl scripting capabilities.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 1122
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=122

& XILINX

ALL PROGRAMMABLE, Revision Control for IP Integrator Designs

Design Files Needed to be Checked In for Revision Control

A block design consists of several IP constructed graphically in a GUI environment. A block design directory
structure in a Project Mode flow looks as shown in the following figure:

| microblaze =
| microblaze_1

. project 1l

| project_l.cache
| project_l.data
I) project_l.srcsl
|, sources 1
I bd
|| design_1

| design_l_axi_uartlite_1_0

| design_1 clk wiz_1 0

| design_l_dimb_bram_if_cntlr_0
| design_1 dimb_v10_0 =
| design_l_ilmb_bram_if_cntlr_1
| design_1 ilmb_v10_1

| design_l_Imb_bram_1

11

| design_1l mdm_1_0

| design_l_microblaze_1_0

| design_1_microblaze_1_axi_intc_1 4
| design_l_microblaze_1_axi_periph_0
| design_1_microblaze_1 xlconcat 0

| design_l_proc_sys _reset_1 0

| design_1 xbar 0

L. oui
I—

| project_ 2

| project_3 -

Figure 171: Vivado Project Directory Structure

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 123
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=123

& XILINX

ALL PROGRAMMABLE. Revision Control for IP Integrator Designs

In Figure 171, the folders mean the following:
e project_1 - Vivado Project folder (project_1 is the name given to the project)
e project_l.srcs — Sources folder containing project specific files
e sources_l - Folder containing all source file including the bd

e bd - contains block design specific data. May have multiple sub-directories corresponding to each
block design

e design_1 - folder containing data for the block design called design_1. If there are multiple block
designs in the project, then multiple folders will be present here.

¢ hdl - folder containing the top-level HDL file and the wrapper file.
e ip — contains subfolders pertaining each of the IP in the block design

e ui—folder containing GUI (IP integrator canvas) data for the block design

O TIP: The recommendation is to put all the files contained in the bd folder including the entire directory
structure under revision control.

Creating a Block Design for Use in a Different Project

IP integrator provides the capability to re-use a block design created in a different project to be imported into
other projects for re-use purpose. In order to do this, a block design must be created in a project-based flow.
You also need to make sure that the design doesn't flag any DRC violations and synthesizes (and possibly
implements) without any issues. Once you are satisfied with the block design, you can delete everything except
for the bd directory and all the sub-directories included beneath it from the Vivado Project. This way all the
block design data including the data for all the IP contained within the block design can be imported into a
different Vivado project.

Importing an Existing Block Design into a Different Vivado IDE
Project

Assuming that a block design was created using a project-based flow, and all the directory structure including
and within the bd folder is available, the block design can be opened in a different Vivado project. The only
limitation in such a scenario is that the new project settings in which the existing block design is being
imported must be the same as the original project in which the block design was created. If the target device of
the projects (this includes devices even within the same family) are different then the IP will get locked and the
design will have to be re-generated. In such a scenario there is a likelihood that the behavior of the design may
not be the same as the original block design.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 124
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=124

& XILINX

ALL PROGRAMMABLE, Revision Control for IP Integrator Designs

1. Toimport an existing block design, highlight Design Sources in the Sources window, right-click and select
Add Sources.

L
=]
=
=
[=]
1]
o
|
O
P
e

e .
[+ Constrg Ctrl+E
Eh— Simulat Hierarchy Update ’
0 sim
@ Refresh Hierarchy
IP Hierarchy 4
Edit Constraints Sets...
Edit Simulation Sets...
& Add Sources... [Alt+A

Hierarchy | Libraries | Compile Order

£t Sources | 7 Templates

Figure 172: Add Sources to a New Vivado Project

2. The Add Sources dialog box appears. Select Add Existing Block Design Sources. Click Next.

-

#- Add Sources |ﬂ

Add Sources

This guides you through the process of adding and creating sources for your project

() Add or Create Constraints

Add or Create Design Sources
Add or Create Simulation Sources
_' Add or Create DSP Sources

(@) Add Existing Block Design Sources

() Add Existing TP

VIVADO/

To continue, click Mext

< Back Finish

Figure 173: Add Existing Block Design

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 125
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=125

& XILINX

ALL PROGRAMMABLE, Revision Control for IP Integrator Designs

3. Inthe Add Sources dialog box, click on Add Files.

-

#. Add Sources &3]
Add Existing Block Design Sources
Specify block design sub-design units by selecting BD source files 'ﬂ‘,

Index Name Library Location

Copy sources into project

Next > Finish

Figure 174: Point to the Existing Block Design File by Clicking on Add Files

4. In the Add Source Files dialog box, browse to the bd folder where the block design is located, select the
.bd file and click OK.

#- Add Source Files (=]
Look in: :, design_1 ': TOH= g OGS B
= Name Size Item type Date modified Recegtffirec}t{orie.sct S / 1/bd/design_1
] . 1 Liftem roject_ roject_l.srcs/sources_ esign_ hd
R:c.ént L hdl File folder 10/13/201.. pIpre) Prel :
Ttems L. ip File folder 10/13/201... File Preview
Loui File folder 10/13/201...)
Sel i e,
[design1bd 67.1KB BDFile 10/13/201.. elect afile to previer
Desktop
My
Documents
Computer
=N
@ oo
Network gijeq of type: :Block Design Files (.bd) ':
Figure 175: Browse to the Folder Containing the Block Design
Designing IP Subsystems Using IP Integrator ~ www.xilinx.com Send Feedback 126
UG994 (v2014.4) November 19, 2014 I—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=126

& XILINX

ALL PROGRAMMABLE, Revision Control for IP Integrator Designs

5. Click Finish once the existing block design has been added.

-

¢ Add Sources

=]
Add Existing Block Design Sources
Specify block design sub-design units by selecting BD source files “L
Index Name Library Location
1 design_1.bd NfA C:ftemp/project_1/project_1.srcs/sources_1/bd/design_1
¥
2 4

|:| Copy sources into project

Next = Finish]l Cancel

Figure 176: Existing Block Design Sources Added to the Project

In the Sources window, you can see the imported block design under Design Sources.

Sources O e x

AI=E 2l R

=+ Design Sources (1)

=R Y design_1 (design_1.bd) (1)
[+ Constraints

[+ Simulation Sources (1)

Hierarchy | IP Sources | Libraries | Compile Order

Figure 177: Imported Block Design in the Sources Window

6. Open the block design by double clicking on it.

You may need to update the IP used in the block design, or validate the block design, generate a wrapper

and synthesize and implement the design. All of these topics are discussed in other sections of this
document.

Designing IP Subsystems Using IP Integrator www.xilinx.com

Send Feedback 127
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=127

& XILINX

ALL PROGRAMMABLE.

Chapter 11 Using Third-Party Synthesis Tools

Overview

Sometimes it may be necessary to use a third-party synthesis tool as a part of the design flow. In this case, you
will need to incorporate the block design as a black-box to the top-level user design. You can then synthesize
the rest of the design in a third-party synthesis tool, write out a HDL or EDIF netlist and implement the post-
synthesis project in the Vivado environment.

This chapter describes the necessary steps that are required to synthesize the black-box of a block design in a
third-party synthesis tool. Although the flow is applicable to any third-party synthesis tool, this chapter has
been written for Synplify Pro synthesis tool.

Creating a Design Check Point (DCP) File for a Block Design

A design check point can be created for a block design by setting the block design as an Out-of-Context
module. To do this you can select the block design in the sources window, right-click and choose Out-of-
Context Settings.

Sources — 0O e X
QA= Est R[E

—H= Design Sources (1)

WY g 1 2o b
—}= Constraint{ (& Source Node Properties... Ctrl+E
. [Dconstrs 3 Open File Alt+0
== Simulation

HEsim_1 | Create HDL Wrapper...

View Instantiation Template
Generate Output Products...
Reset OQutput Products...
Out-of-Context Settings...

[

Figure 178: Set Block Design as an Out-of-Context Module

In the Out-of-Context Settings dialog box, click in the checkbox next to the block design that needs to be set
as an out-of-context module.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 128
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=128

& XILINX

ALL PROGRAMMABLE, Using Third-Party Synthesis Tools

-

#- Out-of-Context Settings 53|
Configure the generation of synthesized

checkpoints (.dcp) for selected IP and set ‘
the number of jobs.

Preview

¥ . zyng 1.bd

Number of jobs:|1 -

l OK ” Cancel l

Figure 179: Out-of-Context Settings dialog box

A square is placed against the block design in the Sources view to indicate that the block design has been set
as an out-of-context module. The Design Runs window also shows an Out-of-Context module run for the block
design.

Next, synthesize the design which will create a design-check-point file for the block design which can be found
in the directory shown below.

<path to design>\<project name>\<project name>.runs\<block design name> synth 1

Design checkpoints enable you to take a snapshot of your design in its current state. The current netlist,
constraints, and implementation results are stored in the design checkpoint. Using design checkpoints, you
can:

e Restore your design if needed
e Perform design analysis
e Define constraints

e Proceed with the design flow

Create a Verilog or VHDL Stub File for the Block Design

Once the check-point has been generated, you need to create a stub file which can be instantiated in the top-
level HDL file to refer to the block design as a black-box. First open the synthesized design and then to create
the HDL stub file using the following commands:

write verilog -mode synth stub <path to file>/<file name>
write vhdl -mode synth stub <path to file>/<file name>

& CAUTION! The synthesized design must be open in order for the write_verilog/write_vhdl command to
work.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 129
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=129

& XILINX

ALL PROGRAMMABLE. Using Third-Party Synthesis Tools

An example stub file is shown in the following figure.

‘\Bmicroblaze_s‘[ub.v{C:\temp)—GVIMl (o | = ==
File Edit Tools Syntax Buffers Window Help

AdRE 9 @ BB SIATEAQ ? 2

/ Copyright 1986-2814 Xilinx, Inc. All Rights Reserved. -
S~

/7 Tool Version: Vivado v.2014.1 {(win64) Build 881834 Fri Apr &4 14:15:54 HDT 2614

f/ Date D Mon Apr 21 13:44:43 2014

/7 Host : XCONDUTTA38 running 64-bit Service Pack 1 ({build 7661)

// Command : write_verilog -mode synth_stub c:/temp/microblaze_stub.v

// Design : mb_ex_1_wrapper |
/f Purpose : Stub declaration of top-level module interface —
// Device : RCFK325tffg900-2
S~

// This empty module with port declaration file causes synthesis tools to infer a black box for IP.
// The synthesis directives are for Synopsys Synplify support to prevent IO buffer insertion.
// Please paste the declaration into a Verilog source file or add the file as an additional source.
module mb_ex_1_wrapper (R$232_Uart_rxd, RS232_Uart_txd, led_8bits_tri_o, reset,
sys_diff_clock_clk_n, sys_diff_clock_clk_p)
/* synthesis syn_black_box black_box_pad_pin="RS$232_Uart_rxd,RS232_Uart_txd,led_8bits_tri_o[7:0],
reset,sys_diff_clock_clk_n,sys_diff_clock_clk_p" =/;

input R$232_Uart_rxd;

output R3232_Uart_txd;

output [7:08]led_8bits_tri_o;

input reset;

input sys_diff_clock_clk_n;

input sys_diff_clock_clk_p;
endmodule

1.1 All

Figure 180: Example Stub File

Create a HDL or EDIF Netlist in the Synplify Project

Create a Synplify project and instantiate the black-box stub file (created in Vivado) along with the top- level
HDL wrapper for the block design in the Synplify project. The block design will be treated as a black-box in
Synplify. Once the project has been synthesized, an HDL or EDIF netlist for the project can be written out.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 130
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=130

& XILINX

ALL PROGRAMMABLE.

Using Third-Party Synthesis Tools

Create a Post-Synthesis Project in Vivado and Implement

The next step is to create a post-synthesis project in the Vivado IDE. This can be done by selecting the Post-

synthesis Project option in the Project type page while creating a New Project in Vivado.

Once the project has been created, add the netlist file and the DCP file for the block design to the project by

selecting and right-clicking on Design Sources and then choosing the Add Sources option.

Sources

oy g
B =

Project Manager - post_synth_project

¥ Bf| 1z |[E

|

0O
Tu
=

Ctrl+E
Edit Constraints Sets...
Edit Simulation Sets...

Add Sources... M Alt+A
g

Figure 181: Add HDL Netlist from Synplify and the DCP File to the Project

In the Add Sources dialog box Add Design Sources is selected by default. Click Next.

As shown below in the Add Design Sources page, click on Add Files.

4 Add Sources
Add Design Sources

Specify netlist files, or directories containing netlist files, to add to your project.

Index Name Library Location

Copy sources into project

Add sources from subdirectories

‘ I Add Directories...

Add Files...
W

Add Files
Add HDL and Netlist files to your project.

Finish

Figure 182: Add Design Sources Page

Select the netlist file by browsing to the right folder. Click OK.

Designing IP Subsystems Using IP Integrator
UG994 (v2014.4) November 19, 2014

www.xilinx.com

l Send Feedback |131

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=131

& XILINX

ALL PROGRAMMABLE.

Using Third-Party Synthesis Tools

My
Documents
p [
A

Computer

h'

Network

Look in:

¢ Add Source Files

[=]
| rev 1 v PO A OIXRKS E
. backup Recent Directories
) | C:/Designs/synplify/rev_1 -
L. corelp
File Preview

L. dm

ll{edif microblaze subsystem Wrapper I
I physical_plus 2 (edifVersiocn 2 0 0) E
. synlog 3 {ediflewvel 0) 0

4 {keywordMap (keywordLewel 0))
L syntmp 5 (status

[{written
I synwork 7 (timeStarp 2013 10 29 13 2 47)
75 synplify_ipi_proj.edf g {author "Synopsys, Inc.™)

9 {program "Synplify Pro" (version "I-2013.08-

10)

11)

12 {library VIRTEX

13 {ediflewvel 0)

14 {technology (numberDefinition })

4 il |

File name:

b
Files of fype: | Al Design Source Files (.edn, edf, edif, ngc, sv, v, tsm, bmm, mif, de...

synplify_ipi_proj.edf

Figure 183: Browse to the Folder Containing the Netlist

Repeat the above steps to add the DCP file as well and then click Finish.

-

#- Add Sources [5= |
Add Design Sources
Specify netlist files, or directories containing netlist files, to add to your project. ‘
Index Name Library Location
1 synplify_ipi_proj.edf N/A C:/Designs/synplify/rev_1
@2 mb_ex_1.dcp N/A C:/temp/microblaze/mi...
[Add Files...] [Add Directories...
Copy sources into project
Add sources from subdirectories
Next = Finish] [Cancel
Figure 184: Add Netlist file and DCP File to the Project
Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 132
UG994 (v2014.4) November 19, 2014 I—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=132

& XILINX

ALL PROGRAMMABLE. Using Third-Party Synthesis Tools

Add Top-Level Constraints

Prior to implementing the design, you should add any necessary constraints to the project. The constraints file
to the block design is contained with the DCP file. However, if you have changed the hierarchy of the block
design, then the constraints file must be modified to make sure that hierarchical paths are properly scoped.

A constraints file can be added to the project just as the netlist and DCP file was added by right-clicking Design
Sources in the Sources window, and choosing Add Sources. In the Add Sources dialog box select Add or
Create Constraints.

Add ELF File (if present)

If the block design has an ELF file associated to it, then you will need to add the ELF file to the Vivado project.
In a post-synthesis project, adding an ELF file via the Vivado IDE GUI is not allowed. However, an ELF file can be
added and associated to an embedded object using the following Tcl command:

add files <path to elf file>/<file name>.elf

The added elf files can be seen in the Sources window.

Sources — O e X
Q= =gk iz |E

—Hi= Design Sources (3)

. EEEDF (1)

- 4f synplify_proj.edf (top)
& ELF (1)

= Design Checkpoint (1)
: ‘-d microblaze_subsystem_wrapper.dcp
—}= Constraints
constrs_1
=} Simulation-Only Sources
15im_1

Libraries | Compile Order

Figure 185: Check to make sure ELF file has been added to the project

Once the ELF file has been added to the project, it can be associated to an embedded object using the
following command:

set property SCOPED TO CELLS { <processor instance> } \
[get files -all -of objects [get fileset sources 1] \

<path_to_elf_file>/<file_name> .elf]

In the GUI you can do the same thing by selecting the ELF file in the Sources view and then editing the
ADDR_MAP_CELLS field in the Source File Properties window.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 133
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=133

& XILINX

ALL PROGRAMMABLE . Using Third-Party Synthesis Tools

Source File Properties O e X

« B[R

31 peri_test.elf

CLASS file
FILE_TYPE ELF
IS_AVAILABLE

IS_ENABLED
IS_GENERATED

[=] MEMDATA

ADDR_MAFP_CELLS Inicroblaze subsystem wrapper/microblaze (

MNAME C:/Designs/create_dcp_tps/create_dcp tps.sdk/SDK/SDE Export/peri_ test/Debug/peri_test.elf
NEEDS_REFRESH

PATH_MODE ’ RelativeFirst
SCOPED_TO_CELLS

SCOPED_TO_REF

USED_IN implementation, simulation
USED_IMN_IMPLEMENTATL...

USED_IN_SIMULATION

General

+ W Ik M P

®=

HE

Figure 186: Specify the ADDR_MAP_CELLS field in the Source File Properties window

Implement the Design

Next the design can be implemented and bitstream generated for the design.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 134
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=134

& XILINX

ALL PROGRAMMABLE.

Chapter 12 Using the Board Flow in IP Integrator

Overview

The Vivado Design Suite is board aware. The tools know the various interfaces present on the target boards
and can customize and configure an IP to be connected to a particular board interface. Several 7 series boards
are currently supported, and support for boards with UltraScale™ parts is planned. Other boards, from third-
party vendors such as Avnet, are also available now.

The IP integrator shows all the interfaces to the board in a separate tab called the Board tab. When you use this
tab to select the desired interfaces and the Designer Assistance offered by IP integrator, you can easily connect
your design to the board interfaces of your choosing. All the I/O constraints are automatically generated as a
part of using this flow.

Select a Target Board

When a new project is created in the Vivado environment, you have the option to select a target board from
the Default Part page of the New Project dialog box.

-

#- New Project L=

Default Part

Choose a default Xilinx part or board for your project. This can be changed later. '
Select: & Parts @ Boards
4 Filter

Vendor: All -

Display Name: | All -

Board Rev: Latest -

Reset All Filters
Search:
Display Name Vendor Board Rev Part I/O Pin Count File Version
@ MicroZed Board em.avnet.com f i xc7z010clg400-1 400 1.1
@ ZedBoard Zyng Evaluation and Development Kit em.avnet.com d % xc7z020clg484-1 484 1.2
@ Artix-7 AC701 Evaluation Platform xilinx. com 1.1 & xc7a200tfbg676-2 676 1.1 .
' Kintex-7 KC705 Evaluation Platform % xc7k325tffg R i
@ virtex-7 VC707 Evaluation Platform ilinx.com 1.1 G xC7Vxa85tffg1761-2 1,761 1.1 1
@ virtex-7 VC709 Evaluation Platform ilinx.com 1.0 G xC7Vx690tffg1761-2 1,761 1.4
@ Virtex UltraScale VCU107 Evaluation Board ilinx.com A @ xovu095-fivd1924-2-e-es1 1,924 1.2
@ 7YNQ-7 ZC702 Evaluation Board ilinx.com 1.0 i xc7z020clg484-1 484 1.1
@ 7YNQ-7 ZC706 Evaluation Board ilinx.com 1.1 @ xc7z045ffga00-2 00 1.1
[1]] =
[< Back ” Next = Finish

Figure 187: Select a target board

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 135
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=135

& XILINX

ALL PROGRAMMABLE, Using the Board Flow in IP Integrator

The list of available boards can be filtered based on Vendor, Display Name and Board Revision.

Filter
Vendor | All -
Display Mame
Board Rev |em.avnet.com
xilinax. com
|

Figure 188: Filter list of available boards

Board Rev. allows filtering based on the revision of the board. Setting the Board Rev to All shows revisions of
all the boards that are supported in Vivado. Likewise, setting Board Rev to Latest shows only the latest revision
of a target board. Various information such as resources available and operating conditions are also listed in
the table.

When you select a board, the project is configured using the pre-defined interface for that board.

Create a Block Design to use the Board Flow

The real power of the board flow can be seen in the IP integrator tool. Start a new block design by clicking on
Create Block Design from the drop-down list IP integrator in the Flow Navigator. As the design canvas opens,
you will notice a Board window, as shown below.

T
*

Board — O
o= D it %

E Kintex-7 KC705 Evaluation Platform -
=5 clock (0 out of 3 connected)

~Cr sgmii_mgt_clk

~Cr sma_magt_clk

~Cr sys_diff_clock

EHE ethernet (0 out of 12 connected)
- gmii

-2 mdio_io

-2 mdio_mdc

mii

phy_reset_out

rgmii

sfp

sfp_sgmii

sgmii

sma_lvds

sma_sfp

- sma_sgmii

EHE GPIO (0 out of 5 connected)

- 0 dip_switches_4bits =

1

1

£ Sources | E Design Signals-, & Board

Figure 189: Board window

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 136
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=136

& XILINX

ALL PROGRAMMABLE, Using the Board Flow in IP Integrator

This Board window lists all the possible interfaces for an evaluation board (in the preceding figure the KC705

board is displayed). By selecting one of these interfaces, an IP can be quickly instantiated on the block design
canvas.

The first way of using the Board interfaces, is to select an interface from the Board window and drag it on the
block design canvas. This instantiates an IP that can connect to that interface and configures it appropriately
for the interface in question. It then also connects the interface pin of the IP to an I/O port.

axi_emc_0

RS AXT_MEM
5 axi_adk

EMC_INTF |—| > linear_flash
5_axi_aresetn a8 + l -

rdelk

AXT EMC

-

¢ Auto Connect | 23 |

A new block 'axi_emc_0' was added to the block design and then connected
to board part interface 'linear_flash'

Figure 190: Dragging and dropping an interface on the block design canvas

The second way to use an interface on the target board, is to double-click the ddr3_sdram interface from the
Unconnected Interfaces folder. The Connect Board Part Interface dialog box opens.

-

¢L. Connect Board Part Interface | =3 |
Select an IP block interface for connecting board interface 'ddr3_sdram'. ‘
“\| name VLNV
=
= | =} Create new IP
23| =4 Memory Interface Generator (MIG 7 Series) xilinx.com:ip:mig_7series:2.2

""" {i mig_ddr_interface

Figure 191: Connect Board Part Interface Dialog Box

Select themig ddr interface and click OK.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 137
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=137

& XILINX

ALL PROGRAMMABLE..

Using the Board Flow in IP Integrator

-

#- Connect Board Part Interface @
Select an IP block interface for connecting board interface 'ddr3_sdram'. ‘
| name VLNV
==
= | =} Create new IP
=%
=
OK l ’ Cancel

Figure 192: IP Catalog Showing the List of IP that can be Connected to an Interface

Notice that the IP is placed on the Diagram canvas and connections are made to the interface via I/O ports. The
IP is all configured accordingly to connect to that interface.

mig_7series_0

ffdhs_axa DDR3 - I_Dddr3_sdram
sys_diff_clock D—" aovsak ket

- wi_clk
r

B mmem_locked
aresetn

init_calib_complete

Memory Interface Generator (MIG 7 Series)

Figure 193: IP instantiated, Configured and Connected to Interfaces on the Diagram Canvas

As an interface is connected, that particular interface now shows up as a shaded circle in the Board window.

D\E%I'@ﬂ*bﬁ‘

¥2 sgmii .
- sma_lvds
¥ sma_sfp
¥ sma_sgmii
EHE GPIO (0 out of 5 connected)
dip_switches_4bits
lcd_7hits
led_8bits
push_buttons_Shits
-+ rotary_switch
EHE memories (1 out of 3 connected)

> w w =

1

-+ linear_flash
-+ spi_flash

= miseellaneous (0 out of 2 connected)

Figure 194: Board Window after Connecting to an Interface

Designing IP Subsystems Using IP Integrator www.xilinx.com

| Send Feedback |138
UG994 (v2014.4) November 19, 2014

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=138

& XILINX

ALL PROGRAMMABLE, Using the Board Flow in IP Integrator

An interface can also be connected using the Auto Connect option. To do this, select and right-click on the
desired interface and from the menu select Auto Connect.

¥ sgmii
¥ sma_lvds
-0 sma_sfp
¥ sma_sgmii
GPIO (0 out of 5 connected)
-+ dip_switches_4bits
-2 led_7hits

~+#2 push_bi & Board Part Interface Properties... Ctrl+

il
=

- rota_ry_ ¥ Connect Board Part Interface...
£+ memaories

B'Q ddr3_sq Auto Connect M
" {l} mig_7series_0/DDR3 "‘5' 1

Figure 195: Using the Preferred Connection Option to Connect to a Board Interface

You will notice that the GPIO IP has been instantiated and the GPIO interface is connected to an I/O port.

mig_7series_0

DDR3 || > ddlr3_sdram

ui_clk_sync_rst
ui_clk
mmcm_locked
init_calib_complete

Memory Interface Generator (MIG 7 Series)

axi_gpio_0

“|dms_AXT

—s_axi_adk GPIO < || 3, ledl_8bits

5_axi_aresetn

AXI GPIO

Figure 196: Instantiating an IP using the Preferred Connection Option

If another interface such as dip_switches_4bits is selected, then the board flow is smart enough to know that a
GPIO already is instantiated in the design and it re-uses the second channel of the GPIO.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 139
UG994 (v2014.4) November 19, 2014 I—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=139

& XILINX

ALL PROGRAMMABLE, Using the Board Flow in IP Integrator

Board ST
Q= LN

~¥) sgmii

-¥) sma_lvds

~¥2 sma_sfp

~¥_) sma_sgmii

EHE GPIO (1 out of 5 connected)

-+ led_7bits| (3 Board Part Interface Properties...

W* Connect Board Part Interface...

-+ push_but Auto Connect %

~¥2 rotary_switch

Figure 197: Connecting an interface that can Share an Already Instantiated IP

The already instantiated GPIO is re-configured to use the second channel of the GPIO as shown in the following
figure.

axi_gpio_0

| dnS_AXT —[> dip_switches_4bits
. Od ||_L—|:> led_8bits
GPI02 ¢ ||] -

5_axi_aresetn

AXI GPIO

Figure 198: GPIO IP Configured to Use the Second Channel

If an external memory interface such as the linear_flash or the spi_flash is chosen, then as one of them is used
the other interface becomes unusable as only one of these interfaces can be used on the target board. In this
case, the following message will pop-up when the user tries to drag the other interface such as the spi_flash on

the bd canvas.

-

=

#- Auto Connect

l i 'spi_flash' board part interface cannot be connected because 'spi_flash'
shares some pins with interface 'linear_flash', which is already connected.

Figure 199: Auto-connect Warning

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 140
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=140

& XILINX

ALL PROGRAMMABLE, Using the Board Flow in IP Integrator

Complete Connections in the Block Design

Once the desired interfaces have been used in the design, the next step is to instantiate a processor (in case of
an processor-based design) or an AXI interconnect if this happens to be a non-embedded design to complete
the design.

To do this, right-click on the canvas and select add IP. From the IP catalog choose the MicroBlaze processor, as
an example.

Search: micro (3 matches)
1

Name VLNV

L xilinx.com:ip:microblaze

iF MicroBlaze Debug Module (MDM) xilinx.com:ip:mdm:3.1

iF MicroBlaze MCS ¥ilinx.com:ip:microblaze

4 1] =

Select and press ENTER or drag and drop, ESC to cancel |

Figure 200: Instantiate a Processor to Complete the Design

As the processor is instantiated, Designer Assistance becomes available.

Z= Diagram X | @ Address Editor x

#[| & mb_susbsytem
Qr La- Designer Assistance available. Run Block Automation Run Connection Automation

Q-

Figure 201: Use Designer Assistance to Complete Connections

Click on Run Block Automation to configure a basic processor sub-system. The processor sub-system is
created which includes commonly used IP in a sub-system such as block memory controllers, block memory
generator and a debug module. Then you can use the Connection Automation feature to connect the rest of
the IP in your design to the MicroBlaze processor by selecting Run Connection Automation.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 141
UG994 (v2014.4) November 19, 2014 l—\/—l

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=141

& XILINX
Using the Board Flow in IP Integrator

ALL PROGRAMMABLE.

#- Run Connection Automation | &3 |
Automatically make connections in your design by checking the boxes of the interfaces to connect. Select an interface on the left to
display its configuration options on the right. ‘
@, | =] All Automation (4 out of 4 selected) Description
= =[] £F axi_emc_0 _ _
i __ NS Ax1 MEM Connect Slave interface (faxi_emc_0/S_AXI_MEM) to a selected Master address
&= : = space.
B iF axi_gpio_0
: Options
=[] £F mig_7series_o — —
7@ s axt Master: /microblaze_0 (Cached)
] = sys_rst Clock Connection (for unconnected clks) : | Auto -
<] »
a| il = =]
Ok] ’ Cancel]

Figure 202: Run Connection Automation to Complete Connections

The rest of the process from here on after is the same as needed for designing in IP integrator as described in

Chapter 2 Creating a Block Design of this document.

Designing IP Subsystems Using IP Integrator www.xilinx.com I Send Feedback |142

UG994 (v2014.4) November 19, 2014

http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=142

& XILINX

ALL PROGRAMMABLE.

Appendix A Additional Resources

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see the Xilinx® Support
website at:

www.xilinx.com/support

For a glossary of technical terms used in Xilinx documentation, see:

www.Xilinx.com/company/terms.htm

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual property at all stages of
the design cycle. Topics include design assistance, advisories, and troubleshooting tips.

References

Vivado® Design Suite Documentation

(www.xilinx.com/support/documentation/dt vivado vivado2014-1.htm)

Vivado Design Suite User Guides

Vivado Design Suite User Guide: System-Level Design Entry (UG895)

Vivado Design Suite User Guide: Design Flows Overview (UG892)

Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

Vivado Design Suite User Guide: Using Tcl Scripting (UG894)

Vivado Design Suite User Guide: Designing with IP (UG896)

Vivado Design Suite User Guide: Model-Based DSP Design Using System Generator (UG897)
Vivado Design Suite User Guide: Embedded Hardware Design (UG898)

Vivado Design Suite User Guide: High-Level Synthesis (UG902)

Vivado Design Suite User Guide: Using Constraints (UG903)

Vivado Design Suite User Guide: Programming and Debugging (UG908)

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 143
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/support
http://www.xilinx.com/company/terms.htm
http://www.xilinx.com/support/solcenters.htm
http://www.xilinx.com/support/documentation/dt_vivado_vivado2014-1.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug895-vivado-system-level-design-entry.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug892-vivado-design-flows-overview.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug893-vivado-ide.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug894-vivado-tcl-scripting.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug896-vivado-ip.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug897-vivado-sysgen-user.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug898-vivado-embedded-design.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug903-vivado-using-constraints.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug908-vivado-programming-debugging.pdf
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=143

& XILINX

ALL PROGRAMMABLE. Appendix A Additional Resources

Vivado Design Suite Tutorials

Vivado Design Suite Tutorial: Design Flows Overview (UG888)
Vivado Design Suite Tutorial: Designing with IP (UG939)

Vivado Design Suite Tutorial: Embedded Hardware Design (UG940)
Vivado Design Suite Tutorial: Using Constraints (UG945)

Vivado Design Suite Tutorial: Programming and Debugging (UG936)

Other Vivado Design Suite Tutorials (www.xilinx.com/training/vivado/index.htm)

Other Vivado Design Suite Documents

Vivado Design Suite Tcl Command Reference Guide (UG835)

AXI Reference Guide (UG761)

Zyng-7000 All Programmable SoC PCB Design and Pin Planning Guide (UG933)
Zyng-7000 All Programmable SoC Software Developers Guide (UG821)
UltraFast Design Methodology Guide for the Vivado Design Suite (UG949)
UltraFast Embedded Design Methodology Guide (UG1046)

Other Vivado Design Suite Documentation

(www.xilinx.com/support/documentation/dt vivado vivado2014-1.htm)

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 144
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug888-vivado-design-flows-overview-tutorial.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug939-vivado-designing-with-ip-tutorial.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug940-vivado-tutorial-embedded-design.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug945-vivado-using-constraints-tutorial.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug936-vivado-tutorial-programming-debugging.pdf
http://www.xilinx.com/training/vivado/index.htm
http://www.xilinx.com/cgi-bin/docs/rdoc?v=2014.4;d=ug835-vivado-tcl-commands.pdf
http://www.xilinx.com/cgi-bin/docs/ipdoc?c=axi_ref_guide;v=latest;d=ug761_axi_reference_guide.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug933-Zynq-7000-PCB.pdf
http://www.xilinx.com/cgi-bin/docs/ndoc?t=user+guide;d=ug821-zynq-7000-swdev.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?d=ug949-vivado-design-methodology.pdf
http://www.xilinx.com/cgi-bin/docs/rdoc?d=ug1046-ultrafast-design-methodology-guide.pdf
http://www.xilinx.com/support/documentation/dt_vivado_vivado2014-1.htm
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=144

& XILINX

ALL PROGRAMMABLE.

Appendix B Legal Notices

Please Read: Important Legal Notices

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the maximum extent
permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including negligence,
or under any other theory of liability) for any loss or damage of any kind or nature related to, arising under, or in connection with, the Materials (including
your use of the Materials), including for any direct, indirect, special, incidental, or consequential loss or damage (including loss of data, profits, goodwiill,
or any type of loss or damage suffered as a result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or
Xilinx had been advised of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials without prior written
consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to Xilinx's Terms of Sale which can be viewed
at http://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained in a license issued to you by Xilinx. Xilinx
products are not designed or intended to be fail-safe or for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx’s Terms of Sale which can be viewed at
http://lwww.xilinx.com/legal.htm#tos.

© Copyright 2013-2014 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated brands included herein
are trademarks of Xilinx in the United States and other countries. All other trademarks are the property of their respective owners.

Designing IP Subsystems Using IP Integrator www.xilinx.com Send Feedback 145
UG994 (v2014.4) November 19, 2014 [—\/—]

http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/legal.htm#tos
http://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG994&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Designing%20IP%20Subsystems%20Using%20IP%20Integrator&releaseVersion=2014.4&docPage=145

	Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator
	Revision History
	Ch. 1: Designing IP Subsystems
	Introduction

	Ch. 2: Creating a Block Design
	Overview
	Creating a Project
	Designing with IP Integrator
	Re-sizing the IP Integrator Diagram
	Changing Layers
	Changing the Window Background Color
	Using Mouse Strokes and the Left-Button Panel
	Adding IP Modules to the Design Canvas
	Hierarchical IP in IP integrator

	Making Connections
	Interrupt handling in IP Integrator
	The Designer Assistance Feature of IP Integrator
	Using the Signals Tab to Make Connections
	Using Make Connections to Connect Ports and Pins
	Making Connections with Start Connection Mode
	Interfacing with AXI IP Outside of the Block Design

	Re-arranging the Design Canvas
	Showing Interface Level Connectivity Only
	Creating Hierarchies
	Adding Pins and Interfaces to Hierarchies
	Cutting and Pasting

	Running Design Rule Checks

	Ch. 3: Creating a Memory Map
	Overview
	The Address Editor in IP Integrator
	Sparse Connectivity
	Common Addressing related Critical Warnings and Errors

	Ch. 4: Working with Block Designs
	Overview
	Generating Output Products
	Integrating the Block Design into a Top-Level Design
	I/O Buffer instantiation in IP integrator

	Creating a Block-Design Outside of the Project
	Adding a Block-Design outside of a Project

	Packaging a Block Design
	Exporting the Hardware Definition to SDK
	Adding and Associating an ELF File to an Embedded Design
	Add an ELF file and Associate it With an Embedded Processor
	Adding and Associating an ELF File in a Single Step

	Setting the Block Design as an Out-of-Context (OOC) Module

	Ch. 5: Parameter Propagation in IP Integrator
	Overview
	Bus Interfaces
	Common Internal Bus Interfaces
	IO Bus Interfaces
	Special Signals
	Clock
	Reset
	Interrupt
	Clock Enable

	How Parameter Propagation Works
	Parameters in the Customization GUI
	Example of a Parameter Mismatch

	Ch. 6: Using the ILA to Debug IP Integrator Designs
	Overview
	Using the HDL Instantiation Flow in IP Integrator
	Connecting I/O Ports to an ILA or VIO Debug Core

	Using the Netlist Insertion Flow in IP Integrator
	Marking Nets for Debug in the Block Design
	Synthesize the Design and Insert the ILA Core

	Connecting to the Target Hardware

	Ch. 7: Using Tcl Scripts to Create Block Designs within Projects
	Overview
	Create a Design in the Vivado IDE GUI
	Save the Vivado Project Information in a Tcl File

	Ch. 8: Using Non-Project Mode in IP Integrator
	Overview
	Creating a Flow in Non-Project Mode

	Ch. 9: Updating Designs for a New Release
	Overview
	Upgrading a Block Design in Project Mode
	Running Design Rule Checks
	Regenerating Output Products
	Create/Change the HDL Wrapper

	Upgrading a Block Design in Non-Project Mode

	Ch. 10: Revision Control for IP Integrator Designs
	Overview
	Design Files Needed to be Checked In for Revision Control
	Creating a Block Design for Use in a Different Project
	Importing an Existing Block Design into a Different Vivado IDE Project

	Ch. 11: Using Third-Party Synthesis Tools
	Overview
	Creating a Design Check Point (DCP) File for a Block Design
	Create a Verilog or VHDL Stub File for the Block Design
	Create a HDL or EDIF Netlist in the Synplify Project
	Create a Post-Synthesis Project in Vivado and Implement
	Add Top-Level Constraints
	Add ELF File (if present)
	Implement the Design

	Ch. 12: Using the Board Flow in IP Integrator
	Overview
	Select a Target Board
	Create a Block Design to use the Board Flow
	Complete Connections in the Block Design

	Appx. A: Additional Resources
	Xilinx Resources
	Solution Centers
	References
	Vivado® Design Suite Documentation
	Vivado Design Suite User Guides
	Vivado Design Suite Tutorials
	Other Vivado Design Suite Documents
	Other Vivado Design Suite Documentation

	Appx. B: Legal Notices
	Please Read: Important Legal Notices

