Problem 1 (20 Points)

Determine the capacitances for the following structures:
a) Diffusion capacitance

Where: $\quad C_{\text {bottom }}=23 \mathrm{ff} / \mu^{2} \quad$ and $C_{\text {sidewall }}=10 \mathrm{ff} / \mu$
Total DIFFUSION Capacitance $=10.86 \mathrm{ff}+34.00 \mathrm{ff}=44.86 \mathrm{ff}$
b) Gate and Diffusion Capacitances

Total DIFFUSION Cap= 128.34ff (sidewall) + 30.14ff (bottom) = 158.49ff
Total GATE Cap $=\mathbf{2} .1924 \mathrm{ff}+\mathbf{2} .1924 \mathrm{ff}=\mathbf{4} . \mathbf{3 8 4 8 f f}$

Problem 2. Transistor Mapping \& Sizing (20 Points)

a) What is the truth table for the following circuit?

A	B	C	OUT
0	0	0	1
0	1	0	1
1	0	0	1
1	1	0	0
0	0	1	1
0	1	1	0
1	0	1	0
1	1	1	0

b) Size the transistors so that they can drive a load which is $3 X$ minimum size inverter. $\mathrm{PMOS}=\mathbf{6}$ NMOS $=\mathbf{3}$ assuming a fanout of 3 .
c) Draw the logic gate equivalent of this circuit

Problem 3: Sequential Elements (20 Points)

NOTE: Critical timing is from Clock to CLK' Time from Clock to CLK' is 145 ps for CLK' going low and 70ps for CLK' going high.
a) What is the $T_{\text {setup }}$ time
25ps + 15ps + 25ps + 15ps-145ps = -65ps

NOTE: negative setup time is typical of a pulse latch
b) What is the $T_{\text {hold }}$ time?
145ps -25ps = 120ps

NOTE: Excessive hold times are typical of a pulse latch
c) What is the Tclock-q time?
70ps + 15ps + 45ps = 130ps
d) What is the pulse width of the CLK signal?

$$
15 p s+15 p s+15 p s+15 p s+15 p s=75 p s
$$

NOT TO SCALE (obviously :))

Fall 2008
Answers to Exam 1
Oct 9 ${ }^{\text {th }}, 2008$
EE360R
Computer Aided Design of Integrated Circuits
Problem 5. Logical Effort (20 Points)
Design a 10 -input AND gate network for minimum delay using nothing more than the following standard cell gates:

Gate type	1 x	2 x	3 x
INV	\checkmark	\checkmark	\checkmark
2-NAND	\checkmark	\checkmark	\checkmark
3-NAND	\checkmark	\checkmark	n/a
2-NOR	\checkmark	\checkmark	n/a
3-NOR	\checkmark	\checkmark	n/a

NOTE: n / a indicates not available
The network is driven by unit size inverters and the output is driving a load of 23 unit size inverters. Compute the delay using logical effort technique.
$\mathrm{H}=23$
$B=1$ (No Branching)
Assume 5 stages (including unit size inverter)
INV -> NAND-3 -> NOR2 -> NAND2 -> INV
$\mathrm{G}=1 * 5 / 3 * 5 / 3 * 4 / 3 * 1=100 / 27$
$\mathrm{F}=\mathrm{GBH}=23 * 1 * 100 / 27=106.48$
$\mathrm{f}=\mathrm{F}^{1 / 5}=2.43$
$\mathrm{D}=(5 * 2.54)+1+3+2+2+1=21.71$ (if we use a fanout of 2.54)
Lets use 3.00 to size gates:
INV $=69 / 3 \approx 24->16 / 8$ which is 8 X device
NAND2 $=24 / 3 * 4 / 3 \approx 12$ which is a $3 X$ device
NOR2 $=12 / 3 * 5 / 3 \approx 8$ which is a 2 X device
NAND3 $=8 / 3 * 5 / 3 \approx 4$ which is a 1 X device

Fall 2008
Answers to Exam 1

Problem 5. Device Operation (20 Points)

Derive the analytic expression for Vsw where Vout=Vin=Vsw (switch point) for region C for the inverter transfer function shown to the right.

Assume that $|\operatorname{Vtp}|=V$ tn and $\beta n=\beta p$

Recall that the currents through each transistor are equal in the switch point region: $I d s n=-I d s p$

The current through the NMOS device in saturation is: $\frac{\beta n}{2}(\operatorname{Vin}-V t n)^{2}$
The current through the PMOS device in saturation is: $\frac{\beta p}{2}(V i n-V d d-V t p)^{2}$
The switching point where both transistors are saturated (region C) is found by solving for equal currents. Therefore
$\frac{\beta n}{2}(V i n-V t n)^{2}=-\frac{\beta p}{2}(V i n-V d d-V t p)^{2}$
Since $\beta p=\beta n$ and $|-V t p|=V$ tn we get:
$\operatorname{Vin}=\frac{V d d}{2}$ which is what we expected
The real gnarly solution when $\mathrm{Bp} \neq \mathrm{Bn}$ and $\mathrm{V} t p \neq \mathrm{V}$ tn is shown below

$$
\begin{aligned}
& \frac{\beta_{n}}{2}\left(V_{\text {in }}-V_{t n}\right)^{2}=\frac{\beta_{p}}{2}\left(V_{\text {in }}-V_{D D}-V_{t p}\right)^{2} \\
& V_{\text {in }}^{2}\left(\beta_{n}-\beta_{p}\right)+V_{\text {in }}\left(-2 \beta_{n} V_{t n}+2 \beta_{p}\left(V_{D D}+V_{t p}\right)\right)+\left(\beta_{n} V_{t n}^{2}-\beta_{p}\left(V_{D D}+V_{t p}\right)^{2}\right)=0 \\
& V_{\text {in }}=\frac{\beta_{n} V_{t n}-\beta_{p}\left(V_{D D}+V_{t p}\right)+\left(V_{D D}+V_{t p}-V_{t n}\right) \sqrt{\beta_{n} \beta_{p}}}{\beta_{n}-\beta_{p}} \\
& =\frac{V_{D D}+V_{t p}+\sqrt{\frac{\beta_{n}}{\beta_{p}}} V_{t n}}{1+\sqrt{\frac{\beta_{n}}{\beta_{p}}}}
\end{aligned}
$$

