EE382M-7 Fall 2008

Problem 1 (10 Points)

Determine the capacitances for the following structures:

a) Diffusion capacitance

Where: $C_{bottom} = 23 \text{ ff}/\mu^2$ and $C_{sidewall} = 10 \text{ ff}/\mu$

DIFFUSION Capacitance= 10.86ff + 34.00ff = 44.86ff

b) Gate and Diffusion Capacitances

Total DIFFUSION Capacitance= 128.34ff (sidewall) + 30.14ff (bottom) = 158.49ff Total GATE Capacitance= 2.3814ff + 2.3814ff = 4.7628ff EE382M-7 Fall 2008

Problem 2. Transistor Mapping & Sizing (20 Points)

a) What is the truth table for the following circuit?

Α	В	С	OUT
0	0	0	1
0	1	0	1
1	0	0	1
1	1	0	0
0	0	1	1
0	1	1	0
1	0	1	0
1	1	1	0

- b) Size the transistors so that they can drive a load which is 3X minimum size inverter. PMOS = 6 NMOS = 3 assuming a fanout of 3
- c) Draw the logic gate equivalent of this circuit

Problem 3. Logic Mapping (20 Points)

Implement the following expression in STATIC CMOS logic using **no more** than <u>10</u> total (PMOS or NMOS) transistors.

$$\overline{F} = (A.B) + (A.C.E) + (D.E) + (D.C.B)$$

NOTE: Critical timing is from Clock to CLK' Time from Clock to CLK' is 145ps for CLK' going low and 65ps for CLK' going high.

a) What is the T_{setup} time

25ps + 15ps + 25ps + 15ps - 145ps = -65ps

NOTE: negative setup time is typical of a pulse latch

b) What is the Thold time?

145ps - 25ps = 120ps

NOTE: Excessive hold times are typical of a pulse latch

c) What is the T_{clock-q} time?

65ps + 15ps + 45ps = 125ps

d) What is the pulse width of the CLK signal?

15ps + 15ps + 15ps + 15ps + 20ps = 80ps

NOT TO SCALE (obviously ;-)

Problem 5. Logical Effort (15 Points)

Design a 10-input AND gate network for minimum delay using nothing more than the following standard cell gates:

Gate type	1x	2x	3x
INV	✓	✓	✓
2-NAND	✓	✓	✓
3-NAND	✓	✓	n/a
2-NOR	✓	✓	n/a
3-NOR	✓	✓	n/a

NOTE: n/a indicates not available

The network is driven by unit size inverters and the output is driving a load of 23 unit size inverters. Compute the delay using logical effort technique.

H = 23 B = 1 (No Branching) Assume 5 stages (including unit size inverter) INV -> NAND-3 -> NOR2 -> NAND2 -> INV

G=1 * 5/3 * 5/3 * 4/3 * 1 = 100/27

F = GBH = 23 * 1 * 100/27 = 106.48f = F^{1/5} = 2.54 Lets use 3.00 to size gates D = (5 * 2.54) + 1 + 3 + 2 + 2 + 1 = 21.71 (if we use a fanout of 2.54)

INV = $69/3 \approx 24 \rightarrow 16/8$ which is 8X device NAND2 = $24/3 \approx 4/3 \approx 12$ which is a 3X device NOR2 = $12/3 \approx 5/3 \approx 8$ which is a 2X device NAND3 = $8/3 \approx 5/3 \approx 4$ which is a 1X device

EE382M-7 Fall 2008

Problem 6. Device Operation (20 Points)

Derive the analytic expression for Vout as a function of Vin for regions B and D for the inverter transfer function shown to the right. Assume that |Vtp| = Vtn and $\beta n = \beta p$

Region	nMOS	pMOS
А	Cutoff	Linear
В	Saturation	Linear
С	Saturation	Saturation
D	Linear	Saturation
E	Linear	Cutoff

REGION B:

In region B, the NMOS is saturated and PMOS is linear:

$$\frac{\beta}{2} (V_{\rm in} - V_t)^2 = \beta \left((V_{\rm in} - V_{DD}) - \frac{(V_{\rm out} - V_{DD})}{2} + V_t \right) (V_{\rm out} - V_{DD})$$
$$V_{\rm out} = (V_{\rm in} + V_t) + \sqrt{(V_{\rm in} + V_t)^2 - (V_{\rm in} - V_t)^2 + V_{DD} (V_{DD} - 2V_{\rm in} - 2V_t)}$$

REGION D:

In region D, the nMOS is linear and the pMOS is saturated:

$$\frac{\beta}{2} (V_{\rm in} - V_{DD} + V_t)^2 = \beta \left(V_{\rm in} - V_t - \frac{V_{\rm out}}{2} \right) (V_{\rm out})$$
$$V_{\rm out} = (V_{\rm in} - V_t) - \sqrt{(V_{\rm in} - V_t)^2 - (V_{DD} - V_{\rm in} - V_t)^2}$$