VLSI Design
EXAM. II
J. Abraham

November 20, 2006

Name: Exam, No. 2

- Open Book, Open Notes.
- Time Limit: 75 minutes (pace yourself).
- Check for 6 pages in exam.
- Write all your answers in the spaces/boxes provided.
- Show any calculations in these pages using the back of the pages if needed.
- State clearly any assumptions made.

1. (20 points)

The inverters in the circuit below have minimum-sized transistors and the widths of the pass transistors are shown in the figure. Assume that the diffusion capacitance of a transistor is equal to its gate capacitance, and that a minimum sized transistor has gate and diffusion capacitance equal to C. In addition, $V_{d d}=2 V, V_{t n}=0.3 \mathrm{~V}$ and $\left|V_{t p}\right|=0.4 V$.

The sequence $\mathrm{ABCD}=(0011,1001)$ is given as input to the circuit. Write down the voltage on node N just after the sequence is applied.

Voltage on Node $\mathrm{N}=$ \square

2. (20 points)

The components of the flip-flop below have the following rise/fall delays (in picoseconds).
Nand gate: 75/125
Transmission gate: 75/75
Inverter: 50/50

What are the values of the following flip-flop parameters (which a designer needs to use to calculate the performance of a system)?
(a) Setup time $=\square \mathrm{ps}$
(b) Hold time $=\square \mathrm{ps}$
(c) Clock-to-Q delay $=\square \mathrm{ps}$

4. (20 points)

The flops used in the shift register below have a setup time of 100 ps , a maximum clock-Q delay of 150 ps , and a minimum clock-Q delay of 100 ps .

(a) How fast can this circuit be clocked?

Clock frequency $=\square \mathrm{MHz}$
(b) What is the limit on the hold time of the flops at this frequency?

Hold time $<\square \mathrm{ps}$
(c) What is the limit on the hold time of the flops at a frequency of 1 GHz ?

Hold time $<\square \mathrm{ps}$
(d) What is the limit on the hold time of the flops if the circuit is clocked at a frequency of 100 MHz ?

Hold time $<\square \mathrm{ps}$

3. (20 points)

(a) What is the highest frequency at which the following circuit can be operated correctly? The parameters of the components are as follows.
Inverter: $t_{p d}=200 p s, t_{c d}=100 p s$
2-input NOR: $t_{p d}=200 p s, t_{c d}=150 p s$
D-flop: $t_{p d}=200 \mathrm{ps} t_{c d}=0 p s$, Setup time $=\mathbf{3 0 0} \mathbf{p s}$, Hold time $=\mathbf{1 0 0} \mathbf{p s}$.

Maximum Clock frequency $=\square \mathrm{MHz}$
(b) If the two inverters are removed (the Q of the first flop is connected to the D of the second), what will be the highest frequency at which the circuit can be operated. Explain your answer.

Maximum Clock frequency $=$ \square MHz
5. (20 points)
(a) Write down all the paths from input B to the output and the worst-case and lowest delays for each path in the circuit below. The rise and fall times (in picoseconds) for each gate are shown over the gate symbol as risetime/falltime.

For example, the paths from input \mathbf{A} to the output, and the delays are:

Path	Worst-case delay	Lowest delay
ADFH	600 ps	500 ps

(b) Give the test sequences for the following cases:
(i) Rising input on B , path BDFH
(i) Falling input on B, path BEFH
(ii) Rising input on B , path BEFH

