VLSI Design, Fall 2017

J. A. Abraham

Homework No. 0
Assigned: August 30, 2017
Due: September 6, 2017

1. Minimize the following Boolean equations to eliminate redundancy:

$$
\begin{gathered}
a b+b d c+c \bar{a} \\
(x+y)(x+z) \\
a(b+c+d)+b(c+d+a)+c(d+a+b)+d(a+b+c)
\end{gathered}
$$

2. Label the inputs of the circuit in Figure 1 so that it implements the function

$$
d(b+\bar{b} c)+a b \bar{c}+\bar{a} b c
$$

Figure 1: Circuit for Function
3. Identify the functions below which are equivalent to $\bar{x} \oplus y$

$$
\begin{gathered}
x y+\bar{x} \bar{y} \\
x \oplus y \\
x \oplus \bar{y} \\
\hline(\bar{x}+\bar{y})(x+y)
\end{gathered}
$$

4. Draw the state transition diagram of a Finite-State-Machine with one input and one output, which produces an output of 1 when the input sequence has an even number of 0 s and an odd number of 1 s . (It is assumed that, in the starting state, the number of 0 s and 1 s is even.)

Shown on the right is a partially drawn state diagram, with the state producing the output of 1 represented as a double circle (the machine is said to "accept" the string and the state is called an "accepting state").

Complete the state diagram for the above specification.

Figure 2: State Machine

